1
|
Qu X, Lai X, He M, Zhang J, Xiang B, Liu C, Huang R, Shi Y, Qiao J. Investigation of epilepsy-related genes in a Drosophila model. Neural Regen Res 2026; 21:195-211. [PMID: 39688550 PMCID: PMC12094548 DOI: 10.4103/nrr.nrr-d-24-00877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/15/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Complex genetic architecture is the major cause of heterogeneity in epilepsy, which poses challenges for accurate diagnosis and precise treatment. A large number of epilepsy candidate genes have been identified from clinical studies, particularly with the widespread use of next-generation sequencing. Validating these candidate genes is emerging as a valuable yet challenging task. Drosophila serves as an ideal animal model for validating candidate genes associated with neurogenetic disorders such as epilepsy, due to its rapid reproduction rate, powerful genetic tools, and efficient use of ethological and electrophysiological assays. Here, we systematically summarize the advantageous techniques of the Drosophila model used to investigate epilepsy genes, including genetic tools for manipulating target gene expression, ethological assays for seizure-like behaviors, electrophysiological techniques, and functional imaging for recording neural activity. We then introduce several typical strategies for identifying epilepsy genes and provide new insights into gene‒gene interactions in epilepsy with polygenic causes. We summarize well-established precision medicine strategies for epilepsy and discuss prospective treatment options, including drug therapy and gene therapy for genetic epilepsy based on the Drosophila model. Finally, we also address genetic counseling and assisted reproductive technology as potential approaches for the prevention of genetic epilepsy.
Collapse
Affiliation(s)
- Xiaochong Qu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xiaodan Lai
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Mingfeng He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Jinyuan Zhang
- School of Health Management, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Binbin Xiang
- The First Clinical Medicine School of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Chuqiao Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ruina Huang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yiwu Shi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Jingda Qiao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Zhang W, Luo S, Jiang M, Chen Y, Ren R, Wu Y, Wang P, Zhou P, Qin J, Liao W. CSMD1 as a causative gene of developmental and epileptic encephalopathy and generalized epilepsies. Genes Dis 2025; 12:101473. [PMID: 40330149 PMCID: PMC12052674 DOI: 10.1016/j.gendis.2024.101473] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/11/2024] [Accepted: 11/02/2024] [Indexed: 05/08/2025] Open
Abstract
Genetic factors are the major causes of epilepsies, such as developmental and epileptic encephalopathy (DEE) and idiopathic generalized epilepsy (IGE). However, the etiology of most patients remains elusive. This study performed exon sequencing in a cohort of 173 patients with IGE. Additional cases were recruited from the matching platform in China. The excess and damaging effect of variants, the genotype-phenotype correlation, and the correlation between gene expression and phenotype were studied to validate the gene-disease association. CSMD1 compound heterozygous variants were identified in four unrelated cases with IGE. Additional CSMD1 variants were identified in five cases with DEE featured by generalized seizures from the matching platform, including two with de novo and three with compound heterozygous variants. Two patients were refractory to antiseizure medications and all patients were on long-term therapy. The CSMD1 variants presented a significantly high excess of variants in the case-cohort. Besides de novo origination, the DEE cases had each of the paired variants located closer to each other than the IGE cases or more significant alterations in hydrophobicity. The DEE-associated variants were all absent in the normal population and presented significantly lower minor allele frequency than the IGE-associated variants, suggesting a minor allele frequency-phenotype severity correlation. Gene expression analysis showed that CSMD1 was extensively expressed throughout the brain, particularly in the cortex. The CSMD1 temporal expression pattern correlated with the disease onset and outcomes. This study suggests that CSMD1 is associated with epilepsy and is a novel causative gene of DEE and generalized epilepsies.
Collapse
Affiliation(s)
- Wenjun Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510000, China
- School of Medical Laboratory, Shao Yang University, Shaoyang, Hunan 422000, China
| | - Sheng Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Mi Jiang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Yongxin Chen
- Department of Pediatrics, Guangdong General Hospital, Guangzhou, Guangdong 510000, China
| | - Rongna Ren
- Department of Pediatrics, The 900 Hospital of the Joint Service Support Force of the People's Liberation Army of China, Fuzhou, Fujian 350000, China
| | - Yunhong Wu
- Department of Neurology, Children's Hospital of Shanxi, Taiyuan, Shanxi 030000, China
| | - Pengyu Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Peng Zhou
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Jiong Qin
- Department of Pediatrics, Peking University People's Hospital, Beijing 100044, China
| | - Weiping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| |
Collapse
|
3
|
Ye ZL, Shen NX, Luo XY, Lin HS, Guo YT, Qiu DJ, Yuan SZ, He MF, Fan CX, Li WB, Shi YW, Zhang LB. De novo heterozygous missense variants in ATP11A are associated with refractory focal epilepsy. J Med Genet 2025; 62:396-404. [PMID: 40185629 DOI: 10.1136/jmg-2024-110540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/17/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND ATP11A encodes an integral-membrane type IV P-type-adenosine triphosphatase that plays an important role in neural development by maintaining membrane lipid asymmetry. ATP11A de novo heterozygous missense variants have been reported to be associated with hypomyelinating leukodystrophy; however, the neurological symptoms of patients are often varying. In this study, we aimed to explore the relationship between ATP11A variants and epilepsy. METHODS Trio-based whole-exome sequencing was performed on patients with focal epilepsy. Multiple bioinformatics analyses were used to predict the pathogenicity of the variants. Previously reported literature was collected to analyse the relation between variants and phenotypes. RESULTS Two de novo heterozygous missense variants of ATP11A were identified in two unrelated patients with refractory focal epilepsy and were predicted to be pathogenic using multiple bioinformatics analyses. Then, six patients associated with missense variants were collected. Half of the patients (3/6) with variants located on/near the transmembrane regions (TMs) had more severe and multiple neurological symptoms, while the other half with non-TM variants had mild and single symptoms, indicating a correlation between variant location and phenotype. All patients showed progressively worsening conditions, potentially due to a gradually increased expression of ATP11A in the human brain over time. CONCLUSION This study suggested that de novo heterozygous missense variants of ATP11A are associated with refractory focal epilepsy. Missense variant-associated phenotypes range from epileptic seizures to severe neurological symptoms. It should be noted that patients with ATP11A variants have a gradually worsening potential.
Collapse
Affiliation(s)
- Zi-Long Ye
- Guangzhou Medical University Second Affiliated Hospital, Guangzhou, Guangdong, China
| | - Nan-Xiang Shen
- Guangzhou Medical University Second Affiliated Hospital, Guangzhou, Guangdong, China
| | - Xiang-Yun Luo
- Guangzhou Medical University Second Affiliated Hospital, Guangzhou, Guangdong, China
| | - Hai-Sheng Lin
- Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Yu-Tao Guo
- Shantou Central Hospital, Shantou, Guangdong, China
| | - Dong-Jie Qiu
- Shantou Central Hospital, Shantou, Guangdong, China
| | - Shi-Zhan Yuan
- Guangzhou Medical University Second Affiliated Hospital, Guangzhou, Guangdong, China
| | - Ming-Feng He
- Guangzhou Medical University Second Affiliated Hospital, Guangzhou, Guangdong, China
| | - Cui-Xia Fan
- Guangzhou Medical University Second Affiliated Hospital, Guangzhou, Guangdong, China
| | - Wen-Bin Li
- Guangzhou Medical University Second Affiliated Hospital, Guangzhou, Guangdong, China
| | - Yi-Wu Shi
- Guangzhou Medical University Second Affiliated Hospital, Guangzhou, Guangdong, China
| | - Li-Bin Zhang
- Shantou Central Hospital, Shantou, Guangdong, China
| |
Collapse
|
4
|
Lei XY, Zhang MW, Sun H, Song W, Liang XY, Wang CS, Luo S, Li BM, Liu XR, Wang Y, Tian Y, Peng Q, Wang J, Meng H, He N, Liao WP. Identification of MACF1 as a causative gene of generalised epilepsy. J Med Genet 2025:jmg-2025-110699. [PMID: 40350249 DOI: 10.1136/jmg-2025-110699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 04/27/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND The microtubule actin crosslinking factor 1 (MACF1) gene encodes microtubule-microfilament cross-linking factor 1 that plays an essential role in the embryonic brain development. MACF1 variants were associated with lissencephaly-9 (LIS9). However, the MACF1-epilepsy relationship was unknown. METHODS Trios-based whole-exome sequencing was performed on a cohort with generalised epilepsy from the China Epilepsy Gene 1.0 project. The spatial-temporal expression, single-cell sequencing and genotype-phenotype correlation were analysed to explore the role of MACF1 in epilepsy and neurodevelopment. RESULTS Two de novo heterozygous and eight biallelic MACF1 variants were identified in 10 unrelated patients. The variants presented significantly high excess by multiple statistical analyses. All patients were diagnosed with generalised epilepsy, among whom three patients presented with neurodevelopmental delay. MACF1 was expressed throughout the lifespan, with three major peaks in the fetal, early childhood and adulthood stages, consistent with seizure onset ages of the patients. The highest expression in adulthood was in the thalamus nucleus, potentially associated with the pathogenesis of generalised epilepsy. The single-cell sequencing in organoids showed MACF1 is widely expressed in the developing brain, especially in the early stage, suggesting a vital role in neurodevelopment. Genotype-phenotype association analysis revealed that LIS9-associated variants were featured by de novo monoallelic variants clustered within the C-terminal; the autism spectrum disorder-associated variants were mainly de novo monoallelic variants located at the spectrin-repeat rod domains. In contrast, the epilepsy-associated variants were biallelic missense variants, and those in the plakin domain were potentially associated with neurodevelopment delay. SIGNIFICANCE MACF1 is potentially a novel causative gene of generalised epilepsy.
Collapse
Affiliation(s)
- Xiao-Yun Lei
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
- Department of Neurology, The First Affiliated Hospital, Jinan University, 613 West Huangpu Ave, Guangzhou 510632, Guangdong, China
| | - Meng-Wen Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Hui Sun
- Department of Neurology, The First Affiliated Hospital, Jinan University, 613 West Huangpu Ave, Guangzhou 510632, Guangdong, China
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| | - Wang Song
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Xiao-Yu Liang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Cui-Shan Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Sheng Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Bing-Mei Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Xiao-Rong Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Yao Wang
- Epilepsy Center, Guangdong Sanjiu Brain Hospital, Guangzhou 510000, Guangdong, China
| | - Yang Tian
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou 510623, Guangdong, China
| | - Qian Peng
- Department of pediatrics, Dongguan Maternal and Child Health Hospital, Southern Medical University Affiliated, Dongguan 523129, Guangdong, China
| | - Jie Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Heng Meng
- Department of Neurology, The First Affiliated Hospital, Jinan University, 613 West Huangpu Ave, Guangzhou 510632, Guangdong, China
| | - Na He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| |
Collapse
|
5
|
Liu CQ, Sun MZ, Lin YM, Zhang XX, Huang RN, He MF, Luo S, Luo SY, Huang T, Jiang N, Luo J, Zhang JX, Chen PR, Dai X, Han TA, Liao WP, Peng RC, Qiao JD. Protective effect of CACNA1A deficiency in oligogenic refractory epilepsy with CACNA1A-CELSR2 digenic mutations. Epilepsia 2025. [PMID: 40184228 DOI: 10.1111/epi.18390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 04/06/2025]
Abstract
OBJECTIVE The vast majority of refractory epilepsy cases have a complex oligogenic/polygenic origin, which presents a challenge to precision medicine in individual patients. Nonetheless, the high workload and lack of effective guidelines have limited the number of in-depth animal studies. METHODS Whole-exon sequencing identified a case with refractory epilepsy caused by a combination of two rare and de novo heterozygous variants in CACNA1A and CELSR2, respectively. Polygenic mutation flies were established and logistic regression were applied to study the gene-gene interaction and quantify the seizure-risk weight of epilepsy-associated genes in a polygenic background. In addition, calcium imaging, pharmacology, and transgenic rescue experiments were used to explore the mechanism and the precision medicine strategy for this model. RESULTS Seizure-like activity was mitigated in the Cacna1a-Celsr2 digenic knockdown flies, whereas it was aggravated in the Cacna1a knockin-Celsr2 knockdown flies, and all relevant monogenic mutation flies showed seizures. Logistic regression suggested that the Cacna1a deficiency provided a protective effect against seizures in Celsr2 knockdown flies. The severe seizures from Cacna1a knockin-Celsr2 knockdown, the genotype mimicking that of the patient, can be completely rescued by inhibiting the calcium channel via genetic (Cacna1a knockdown) or pharmacologic (pregabalin) treatment during a limited period of development. Calcium imaging results suggested a synaptic cleft balance mechanism for the protective effect of CACNA1A deficiency in the polygenic background. SIGNIFICANCE CACNA1A presented multiple effects on epileptogenesis in diverse genetic backgrounds and provided an effective preclinical approach to clarify the net impact of polygenic variants for designing a precisive medicine strategy against refractory epilepsy.
Collapse
Affiliation(s)
- Chu-Qiao Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mei-Zhen Sun
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yong-Miao Lin
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xi-Xing Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Rui-Na Huang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ming-Feng He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Sheng Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Si-Yuan Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Tao Huang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Nan Jiang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jie Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jia-Xin Zhang
- The Affiliated TCM School of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Pei-Run Chen
- The First Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Xi Dai
- The First Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Tian-Ai Han
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Rong-Chao Peng
- School of Biomedical Engineering, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jing-Da Qiao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Wen Q, Zhang D, Ding Y, Luo S, Huang Q, Zhu J, Li Y, Liu W, Wang P, Li X, Lin Z, Wang Y, Liang X, Liao W, Wang J, Meng H. MDN1 variants cause susceptibility to epilepsy : For the China Epilepsy Gene 1.0 Project. ACTA EPILEPTOLOGICA 2025; 7:17. [PMID: 40217384 PMCID: PMC11960335 DOI: 10.1186/s42494-025-00209-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/13/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND The Midasin AAA (ATPase associated with various activities) ATPase 1 (MDN1) gene, a member of the AAA protein family, plays a crucial role in ribosome maturation. MDN1 is expressed in the human brain throughout life, especially during early development and adulthood. However, MDN1 variants have not been previously reported in patients with epilepsy. This study aims to explore the association between MDN1 variants and epilepsy. METHODS Trios-based whole-exome sequencing was performed in a cohort of patients with epilepsy susceptibility from the China Epilepsy Gene 1.0 Project. The excess, damaging effects, and molecular subregional implications of variants, as well as the spatio-temporal expression of MDN1, were analyzed to validate the gene-disease association. RESULTS Compound heterozygous variants in MDN1 were identified in five unrelated patients with febrile seizures or secondary epilepsy. Three patients presented with febrile seizures/epilepsy with febrile seizures plus, while two patients developed epilepsy secondary to brain damage (five or seven years after). These variants were either absent or present at low frequencies in the control group, and exhibited statistically significant higher frequencies in the case group compared to controls. All the missense variants were predicted to be damaging by at least one in silico tool. In each pair of compound heterozygous variants, one allele was located in the AAA2-AAA3 domains, while the other allele was located in the linker domain or its vicinity. In contrast, most of the variants from the asymptomatic control group were located outside the AAA domains, suggesting a molecular subregional implication of the MDN1 variants. CONCLUSIONS MDN1 is potentially a susceptibility gene for epilepsy.
Collapse
Affiliation(s)
- Qianru Wen
- Department of Neurology, The Sixth Affiliated Hospital of Jinan University, Dongguan, 523573, China
| | - Dongming Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Yan Ding
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Sheng Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Qiang Huang
- Department of Pediatric, Xiangxi Tujia and Miao Autonomous Prefecture People's Hospital, Jishou, 416000, China
| | - Junhui Zhu
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518000, China
| | - Yongxin Li
- Department of Neurology, Shunde Hospital of Southern Medical University (the First Hospital of Shunde), Shunde, 528308, China
| | - Wenhui Liu
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Pengyu Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Xian Li
- Department of Pediatric, Zhuhai Women'S and Children'S Hospital, Zhuhai, 519000, China
| | - Zisheng Lin
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Yaying Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Xiaoyu Liang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Weiping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Jie Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Heng Meng
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
7
|
Su K, Ma Y, Zhou M, Liu Y, Li C, Jiang Y, Wu Q, Peng G, Wang Y, Fan S. De novo missense variants of UNC13A are implicated in epileptic encephalopathies and neurodevelopmental disorders. Genes Dis 2025; 12:101315. [PMID: 39634123 PMCID: PMC11615879 DOI: 10.1016/j.gendis.2024.101315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/15/2024] [Accepted: 03/31/2024] [Indexed: 12/07/2024] Open
Affiliation(s)
- Ke Su
- Division of Neurology, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Human Phenome Institute and School of Life Sciences, Institute of Brain Science of Fudan University, Shanghai 200438, China
| | - Yu Ma
- Division of Neurology, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Human Phenome Institute and School of Life Sciences, Institute of Brain Science of Fudan University, Shanghai 200438, China
| | - Mingshan Zhou
- Division of Neurology, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Human Phenome Institute and School of Life Sciences, Institute of Brain Science of Fudan University, Shanghai 200438, China
| | - Yihan Liu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200434, China
| | - Chengjie Li
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200434, China
| | - Yonghui Jiang
- Department of Genetics, Neuroscience, and Pediatrics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Qihui Wu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200434, China
| | - Gang Peng
- Division of Neurology, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Human Phenome Institute and School of Life Sciences, Institute of Brain Science of Fudan University, Shanghai 200438, China
| | - Yi Wang
- Division of Neurology, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Human Phenome Institute and School of Life Sciences, Institute of Brain Science of Fudan University, Shanghai 200438, China
| | - Shaohua Fan
- Division of Neurology, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Human Phenome Institute and School of Life Sciences, Institute of Brain Science of Fudan University, Shanghai 200438, China
| |
Collapse
|
8
|
Tian Y, Hou YQ, Zhai QX, Song XW, Li BM, Wang J, Ji JJ, Liao YT, Chen WX, Li B, Liao WP. RYR3 Variants Are Potentially Associated With Idiopathic (Non-Lesional) Partial Epilepsy/Susceptibility of Seizures, Toward Understanding the Gene-Disease Association by Genetic Dependent Nature. Am J Med Genet B Neuropsychiatr Genet 2025:e33023. [PMID: 39840699 DOI: 10.1002/ajmg.b.33023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 11/16/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025]
Abstract
The RYR3 gene encodes a brain-type ryanodine receptor that functions to release calcium from intracellular storage and plays an essential role in calcium signaling. The associations between RYR3 variants and brain disorders remain unknown. We performed whole-exome sequencing in patients with idiopathic (non-lesional) partial epilepsy of unknown etiology. One de novo missense and six biallelic missense RYR3 variants were identified in seven unrelated cases. These variants had no or extremely low allele frequencies in the general population and were predicted to alter hydrogen bonds/decrease protein stability. Patients presented with partial seizures or secondarily generalized tonic-clonic seizures. All patients were seizure-free with/without anti-seizure treatment. Four showed antecedent febrile seizures, a typical susceptibility disorder that is related to the precipitating factor of fever. The genetic dependence nature (GDN) of RYR3, which is defined as the distinct impact of the absence of a gene on normal life, is "obligatory" (causing disease phenotypes). Complete abolishing of RYR3 results in abnormal phenotypes instead of lethality, whereas partial/mild impairment (usually more common) is associated with mild disease or increased susceptibility to disease, consistent with our findings. RYR3 is therefore potentially a candidate disease gene or susceptibility gene for idiopathic partial epilepsy.
Collapse
Affiliation(s)
- Yang Tian
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yun-Qi Hou
- Department of Neurology, Shunde Hospital of Southern Medical University, Foshan, China
| | - Qiong-Xiang Zhai
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xing-Wang Song
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bing-Mei Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jie Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jing-Jing Ji
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yin-Ting Liao
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wen-Xiong Chen
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bin Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Sheng W, Wang P, Cai Y, Zhai C, Wang H, Zhou F, Liu X, Wang L, Li D, Shu J, Cai C. Epilepsy due to potential loss of ATP6V1B2 function with mechanistic insight by a Drosophila Vha55 model. Clin Genet 2024; 106:702-712. [PMID: 39075926 DOI: 10.1111/cge.14600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024]
Abstract
ATP6V1B2 encodes the subunit of the vacuolar H+-ATPase, which is an enzyme responsible for the acidification of intracellular organelles and essential for cell signaling and neurotransmitter release. The aim of the study is to identify the correlation between ATP6V1B2 and epilepsy. Trio-exome sequencing was performed. Reverse Transcription-PCR and Quantitative real-time PCR analyses were carried out to determine whether this variant leads to nonsense-mediated mRNA decay (NMD). Drosophila models with knocked-down homologous genes of ATP6V1B2 were generated to study the causal relationship between the ATP6V1B2 and the phenotype of epilepsy. We described a 5-year-old male with a novel variant c.1163delT(p.Tyr389IlefsTer13) in ATP6V1B2, who presented with epilepsy. The expression level of the premature termination codon (PTC) transcript was normal in the patient, which indicated that NMD evasion existed in the PTC transcript. We generated an animal model using Drosophila to study the knock down effects of Vha55, which is the ATP6V1B2 ortholog in fly. The Vha55 knockdown flies show seizure-like behaviors and climbing defects. This study expands the variation spectrum of the ATP6V1B2 gene. Cross-species animal model demonstrates the causal relationship between ATP6V1B2 defect and epilepsy, and shed new insights into the disease mechanism caused by ATP6V1B2 LOF variants.
Collapse
Affiliation(s)
- Wenchao Sheng
- Tianjin University Children's Hospital, Tianjin, China
- Tianjin Children's Hospital, Tianjin, China
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital, Tianjin, China
- Clinical Pediatric College of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Ping Wang
- Tianjin Children's Hospital, Tianjin, China
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital, Tianjin, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| | - Yingzi Cai
- Tianjin University Children's Hospital, Tianjin, China
- Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Chaojun Zhai
- The State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin, China
| | - Hong Wang
- Tianjin Children's Hospital, Tianjin, China
- Department of Neuroloy, Tianjin Children's Hospital, Tianjin, China
| | - Feiyu Zhou
- Tianjin University Children's Hospital, Tianjin, China
- Tianjin Children's Hospital, Tianjin, China
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital, Tianjin, China
- Clinical Pediatric College of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Xiaoyu Liu
- Tianjin University Children's Hospital, Tianjin, China
- Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Leyi Wang
- Tianjin University Children's Hospital, Tianjin, China
- Tianjin Children's Hospital, Tianjin, China
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital, Tianjin, China
- Clinical Pediatric College of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Dong Li
- Tianjin Children's Hospital, Tianjin, China
- Department of Neuroloy, Tianjin Children's Hospital, Tianjin, China
| | - Jianbo Shu
- Tianjin University Children's Hospital, Tianjin, China
- Tianjin Children's Hospital, Tianjin, China
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital, Tianjin, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| | - Chunquan Cai
- Tianjin University Children's Hospital, Tianjin, China
- Tianjin Children's Hospital, Tianjin, China
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital, Tianjin, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| |
Collapse
|
10
|
Shen N, Zhuo Z, Luo X, Li B, Lin X, Luo S, Ye Z, Wang P, He N, Shi Y, Liao W. Variants of TSC1 are associated with developmental and epileptic encephalopathy and focal epilepsy without tuberous sclerosis : For the China Epilepsy Gene 1.0 Project. ACTA EPILEPTOLOGICA 2024; 6:41. [PMID: 40217423 PMCID: PMC11960315 DOI: 10.1186/s42494-024-00189-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/26/2024] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND The TSC1 gene encodes a growth inhibitory protein hamartin, which plays a crucial role in negative regulation of the activity of mTORC1 (mechanistic target of rapamycin complex 1). TSC1 has been associated with tuberous sclerosis complex (TSC). This study aims to investigate the association between TSC1 variants and common epilepsy. METHODS Trio-based whole-exome sequencing was performed in epilepsy patients without acquired etiologies from the China Epilepsy Gene 1.0 Project platform. The pathogenicity of the variants was evaluated according to the American College of Medical Genetics and Genomic (ACMG) guidelines. RESULTS Two TSC1 de novo variants, including c.1498 C > T/p.Arg500* and c.2356 C > T/p.Arg786*, were identified in two patients with developmental and epileptic encephalopathy (DEE). The patients exhibited frequent seizures and neurodevelopmental delay. Additionally, we identified two heterozygous TSC1 variants that affected four individuals with focal epilepsy from two unrelated families. The four probands did not present any typical symptom of TSC and had normal brain MRI findings. The four variants were absent in the Genome Aggregation Database (gnomAD) and were predicted to be damaging with a in silico prediction tool. Based on the ACMG guidelines, the four variants were evaluated to be "pathogenic" or "likely pathogenic". Of the patients in the China Epilepsy Gene 1.0 Project, 22 patients carried TSC1 variants and were diagnosed with TSC. The ratio of patients carrying TSC1 variants with or without TSC is about 5:1. CONCLUSIONS TSC1 is potentially associated with common epilepsy without tuberous sclerosis.
Collapse
Affiliation(s)
- Nanxiang Shen
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Zhihong Zhuo
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Xiangyun Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Bingmei Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Xuqing Lin
- Guangzhou Medical University, Guangzhou, 511436, China
| | - Sheng Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Zilong Ye
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Pengyu Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Na He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Yiwu Shi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Weiping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
11
|
Shen NX, Qu XC, Yu J, Fan CX, Min FL, Li LY, Zhang MR, Li BM, Wang J, He N, Liao WP, Shi YW, Li WB. NUS1 Variants Cause Lennox-Gastaut Syndrome Related to Unfolded Protein Reaction Activation. Mol Neurobiol 2024; 61:8518-8530. [PMID: 38520610 DOI: 10.1007/s12035-024-04123-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024]
Abstract
NUS1 encodes the Nogo-B receptor, a critical regulator for unfolded protein reaction (UPR) signaling. Although several loss-of-function variants of NUS1 have been identified in patients with developmental and epileptic encephalopathy (DEE), the role of the NUS1 variant in Lennox-Gastaut syndrome (LGS), a severe child-onset DEE, remains unknown. In this study, we identified two de novo variants of NUS1, a missense variant (c.868 C > T/p.R290C) and a splice site variant (c.792-2 A > G), in two unrelated LGS patients using trio-based whole-exome sequencing performed in a cohort of 165 LGS patients. Both variants were absent in the gnomAD population and showed a significantly higher observed number of variants than expected genome-wide. The R290C variant was predicted to damage NUS1 and decrease its protein stability. The c.792-2 A > G variant caused premature termination of the protein. Knockdown of NUS1 activated the UPR pathway, resulting in apoptosis of HEK293T cells. Supplementing cells with expression of wild-type NUS1, but not the mutant (R290C), rescued UPR activation and apoptosis in NUS1 knockdown cells. Compared to wild-type Drosophila, seizure-like behaviors and excitability in projection neurons were significantly increased in Tango14 (homolog of human NUS1) knockdown and Tango14R290C/+ knock-in Drosophila. Additionally, abnormal development and a small body size were observed in both mutants. Activated UPR signaling was also detected in both mutants. Thus, NUS1 is a causative gene for LGS with dominant inheritance. The pathogenicity of these variants is related to the UPR signaling activation, which may be a common pathogenic mechanism of DEE.
Collapse
Affiliation(s)
- Nan-Xiang Shen
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Xiao-Chong Qu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Jing Yu
- Neurology Department, Children's Hospital of Xinjiang Uygur Autonomous Region, Urumchi, China
| | - Cui-Xia Fan
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Fu-Li Min
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ling-Ying Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Ming-Rui Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Bing-Mei Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Jie Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Na He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Yi-Wu Shi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Wen-Bin Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
12
|
Li SX, He N, Liao JX, Lu XG, Hu WG, Liu XR, Liao WP, Song XW, Li B. Association of LONP1 gene with epilepsy and the sub-regional effect. Sci Rep 2024; 14:25575. [PMID: 39462050 PMCID: PMC11513111 DOI: 10.1038/s41598-024-77039-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
The LONP1 gene encodes Lon protease, which is responsible for degrading damaged or misfolded proteins and binding mitochondrial DNA. Previously, LONP1 variants have been identified in patients with cerebral, ocular, dental, auricular, and skeletal anomalies (CODAS syndrome) and mitochondrial diseases. Seizures were occasionally observed. However, the association between LONP1 and epilepsy remains elusive. In this study, we performed trio-based whole-exome sequencing in a cohort of 450 patients with unexplained epilepsy and identified four pairs of compound heterozygous LONP1 variants in four unrelated cases. All patients exhibited good responses to anti-seizure medications and demonstrated no developmental delay or intellectual disabilities. The variant allele frequencies observed in this study were absent or low in the general population and were significantly lower than those of benign variants. At least one variant in each biallelic pair affected hydrogen bonding and/or altered protein stability. The CODAS syndrome-associated variants were concentrated in the AAA+ module, especially the α domain. Four of the five mitochondrial disease-associated variants were located in the AAA + domain and the NTD5H and NTD3H subdomains. In contrast, each of the biallelic variants from the patients with pure epilepsy had one variant located in the linker domain, and the other variant located in the mitochondrial targeting sequence or P domain. This study suggested that LONP1 gene is potentially a novel candidate gene for pure epilepsy. The phenotypic variation is associated with the sub-regional effects of variants.
Collapse
Affiliation(s)
- Si-Xiu Li
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Guangzhou Medical University, Ministry of Education of China, Guangzhou, China
- Department of Pediatric Neurology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Na He
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Guangzhou Medical University, Ministry of Education of China, Guangzhou, China
| | - Jian-Xiang Liao
- Epilepsy Center, Department of Neurology, Shenzhen Children's Hospital, Shantou University Medical College, Shenzhen, China
| | - Xin-Guo Lu
- Epilepsy Center, Department of Neurology, Shenzhen Children's Hospital, Shantou University Medical College, Shenzhen, China
| | - Wen-Guang Hu
- Department of Pediatric Neurology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao-Rong Liu
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Guangzhou Medical University, Ministry of Education of China, Guangzhou, China
| | - Wei-Ping Liao
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Guangzhou Medical University, Ministry of Education of China, Guangzhou, China
| | - Xing-Wang Song
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Guangzhou Medical University, Ministry of Education of China, Guangzhou, China.
| | - Bin Li
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Guangzhou Medical University, Ministry of Education of China, Guangzhou, China.
| |
Collapse
|
13
|
Wang C, Zhai JX, Chen YJ. Identification of a novel TSC1 variant in a family with developmental and epileptic encephalopathies: A case report and literature review. Medicine (Baltimore) 2024; 103:e40151. [PMID: 39432612 PMCID: PMC11495709 DOI: 10.1097/md.0000000000040151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024] Open
Abstract
RATIONALE Tuberous sclerosis (TSC) is an autosomal dominant neurocutaneous syndrome resulting from mutations in the tumor suppressor genes TSC1 and TSC2. Unfortunately, the absence of accurate diagnosis has significantly impacted the well-being of both patients and their families. Furthermore, the pathogenicity of numerous variants remains unverified, which could potentially result in misinterpretation of their functional implications. PATIENT CONCERNS Proband 1 was a 33-year-old Chinese male, this patient presents with hamartomas in multiple organ systems, accompanied by clinical symptoms such as intellectual disability, epilepsy, and lipid adenoma. The patient and their family members used targeted next-generation sequencing and Sanger sequencing to identify the pathogenic variant. DIAGNOSES The TSC1 (c.2923G>T, c.2924C>T) variant was identified and the patient was diagnosed with TSC disease. INTERVENTIONS After the definite diagnosis, the patient was treated with valproic acid, oxcarbazepine, and various organ supports. OUTCOMES At present, the patient has intellectual decline, multiple sebaceous adenomas, multiple fiber nodules on the back, palpable mass in the right subcostal and middle upper abdomen, and percussion pain in the right kidney area, 1 to 2 times a month seizure, poor intelligence than peers. LESSONS This finding strengthens the significant phenotypic variability associated with TSC and expands the mutational spectrum of this rare disease.
Collapse
Affiliation(s)
- Chao Wang
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jin-Xia Zhai
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yong-Jun Chen
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
14
|
Fan CX, Liu XR, Mei DQ, Li BM, Li WB, Xie HC, Wang J, Shen NX, Ye ZL, You QL, Li LY, Qu XC, Chen LZ, Liang JJ, Zhang MR, He N, Li J, Gao JY, Deng WY, Liu WZ, Wang WT, Liao WP, Chen Q, Shi YW. Heterozygous variants in USP25 cause genetic generalized epilepsy. Brain 2024; 147:3442-3457. [PMID: 38875478 DOI: 10.1093/brain/awae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/17/2024] [Accepted: 05/14/2024] [Indexed: 06/16/2024] Open
Abstract
USP25 encodes ubiquitin-specific protease 25, a key member of the deubiquitinating enzyme family that is involved in neural fate determination. Although abnormal expression in Down's syndrome was reported previously, the specific role of USP25 in human diseases has not been defined. In this study, we performed trio-based whole exome sequencing in a cohort of 319 cases (families) with generalized epilepsy of unknown aetiology. Five heterozygous USP25 variants, including two de novo and three co-segregated variants, were determined in eight individuals affected by generalized seizures and/or febrile seizures from five unrelated families. The frequency of USP25 variants showed a significantly high aggregation in this cohort compared with the East Asian population and all populations in the gnomAD database. The mean age at onset of febrile and afebrile seizures were 10 months (infancy) and 11.8 years (juvenile), respectively. The patients achieved seizure freedom, except that one had occasional nocturnal seizures at the last follow-up. Two patients exhibited intellectual disability. Usp25 was expressed ubiquitously in mouse brain with two peaks, on embryonic Days 14-16 and postnatal Day 21, respectively. In human brain, likewise, USP25 is expressed in the fetus/early childhood stage and with a second peak at ∼12-20 years old, consistent with the seizure onset age in patients during infancy and in juveniles. To investigate the functional impact of USP25 deficiency in vivo, we established Usp25 knockout mice, which showed increased seizure susceptibility compared with wild-type mice in a pentylenetetrazol-induced seizure test. To explore the impact of USP25 variants, we used multiple functional detections. In HEK293 T cells, the variant associated with a severe phenotype (p.Gln889Ter) led to a significant reduction of mRNA and protein expressions but formed stable truncated dimers with an increment of deubiquitinating enzyme activities and abnormal cellular aggregations, indicating a gain-of-function effect. The p.Gln889Ter and p.Leu1045del variants increased neuronal excitability in mouse brain, with a higher firing ability in p.Gln889Ter. These functional impairments align with the severity of the observed phenotypes, suggesting a genotype-phenotype correlation. Hence, a moderate association between USP25 and epilepsy was noted, indicating that USP25 is potentially a predisposing gene for epilepsy. Our results from Usp25 null mice and the patient-derived variants indicated that USP25 would play an epileptogenic role via loss-of-function or gain-of-function effects. The truncated variant p.Gln889Ter would have a profoundly different effect on epilepsy. Together, our results underscore the significance of USP25 heterozygous variants in epilepsy, thereby highlighting the critical role of USP25 in the brain.
Collapse
Affiliation(s)
- Cui-Xia Fan
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xiao-Rong Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Dao-Qi Mei
- Department of Neurology, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Bing-Mei Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Wen-Bin Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Huan-Cheng Xie
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Jie Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Nan-Xiang Shen
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Zi-Long Ye
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Qiang-Long You
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Ling-Ying Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xiao-Chong Qu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Li-Zhi Chen
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Jin-Jie Liang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Ming-Rui Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Na He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Jia Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Jun-Ying Gao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Wei-Yi Deng
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Wen-Zhe Liu
- Department of Stomatology of the second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Wen-Ting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Qian Chen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yi-Wu Shi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| |
Collapse
|
15
|
Chen X, Bao Y, Sun G, Wang X, Zhu J. UNC13B regulates the sensitivity of Wilms' tumor cells to doxorubicin by modulating lysosomes. Oncol Lett 2024; 28:446. [PMID: 39091580 PMCID: PMC11292464 DOI: 10.3892/ol.2024.14579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/14/2024] [Indexed: 08/04/2024] Open
Abstract
Wilms' tumor is a malignant neoplasm where current medical advancements have significantly improved survival rates; however, challenges persist such as the resistance of the tumor to chemotherapy drugs like doxorubicin. This necessitates higher dosages, leading to decreased sensitivity. However, using high doses of doxorubicin can have late effects on the heart. Unc-13 homolog B (UNC13B) may be involved in the drug resistance in several tumors, yet its role in modulating drug sensitivity in Wilms' tumor remains unexplored. UNC13B levels were quantified using reverse transcription-qPCR and Western blotting. The half-maximal inhibitory concentration for doxorubicin, vincristine, and actinomycin-D was determined using CCK-8 assays. Cell cycle and apoptosis were analyzed using flow cytometry, and lysosomal changes were observed using Lyso-Tracker staining. The present study initially evaluated UNC13B expression levels in the Wilms' tumor 17.94 cell line. Additionally, through short hairpin RNA-mediated knockdown, changes in doxorubicin sensitivity in 17.94 Wilms' tumor cells were assessed. Concurrently, preliminary investigations into the role of UNC13B in regulating lysosomes was performed, revealing a significant positive association between UNC13B levels and lysosome formation in the 17.94 cell line. Lysosomes likely serve a role in the sensitivity of Wilms' tumor cell lines to drugs. Elevated UNC13B expression was observed in the 17.94 Wilms' tumor cell line compared to normal kidney cells. UNC13B knockdown also resulted in increased apoptosis levels upon doxorubicin treatment. Immunofluorescence revealed UNC13B localization within cellular vesicles, and its knockdown significantly decreased lysosome levels. Overall, the findings of the present study demonstrate that UNC13B regulates the sensitivity of the Wilms' tumor 17.94 cell line to doxorubicin by modulating lysosome formation within cells. The results suggest that UNC13B is likely an enriched target involved in lysosomal regulation in certain tumors, offering a new approach for optimizing chemotherapy in Wilms' tumor and other cancers with high UNC13B expression.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neonatology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yingying Bao
- Department of Neonatology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Ge Sun
- Department of Neonatology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiaobo Wang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Jiajun Zhu
- Department of Neonatology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
- Zhejiang Provincial Clinical Research Center for Child Health, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
16
|
He MF, Liu LH, Luo S, Wang J, Guo JJ, Wang PY, Zhai QX, He SL, Zou DF, Liu XR, Li BM, Ma HY, Qiao JD, Zhou P, He N, Yi YH, Liao WP. ZFHX3 variants cause childhood partial epilepsy and infantile spasms with favourable outcomes. J Med Genet 2024; 61:652-660. [PMID: 38508705 PMCID: PMC11228202 DOI: 10.1136/jmg-2023-109725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/18/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND The ZFHX3 gene plays vital roles in embryonic development, cell proliferation, neuronal differentiation and neuronal death. This study aims to explore the relationship between ZFHX3 variants and epilepsy. METHODS Whole-exome sequencing was performed in a cohort of 378 patients with partial (focal) epilepsy. A Drosophila Zfh2 knockdown model was used to validate the association between ZFHX3 and epilepsy. RESULTS Compound heterozygous ZFHX3 variants were identified in eight unrelated cases. The burden of ZFHX3 variants was significantly higher in the case cohort, shown by multiple/specific statistical analyses. In Zfh2 knockdown flies, the incidence and duration of seizure-like behaviour were significantly greater than those in the controls. The Zfh2 knockdown flies exhibited more firing in excitatory neurons. All patients presented partial seizures. The five patients with variants in the C-terminus/N-terminus presented mild partial epilepsy. The other three patients included one who experienced frequent non-convulsive status epilepticus and two who had early spasms. These three patients had also neurodevelopmental abnormalities and were diagnosed as developmental epileptic encephalopathy (DEE), but achieved seizure-free after antiepileptic-drug treatment without adrenocorticotropic-hormone/steroids. The analyses of temporal expression (genetic dependent stages) indicated that ZFHX3 orthologous were highly expressed in the embryonic stage and decreased dramatically after birth. CONCLUSION ZFHX3 is a novel causative gene of childhood partial epilepsy and DEE. The patients of infantile spasms achieved seizure-free after treatment without adrenocorticotropic-hormone/steroids implies a significance of genetic diagnosis in precise treatment. The genetic dependent stage provided an insight into the underlying mechanism of the evolutional course of illness.
Collapse
Affiliation(s)
- Ming-Feng He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Li-Hong Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Sheng Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Juan Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Jia-Jun Guo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Peng-Yu Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Qiong-Xiang Zhai
- Department of Pediatrics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510120, China
| | - Su-Li He
- Department of Pediatrics, Shantou Chaonan Minsheng Hospital, Shantou 515000, China
| | - Dong-Fang Zou
- Epilepsy Center and Department of Neurology, Shenzhen Children's Hospital, Shenzhen 518029, China
| | - Xiao-Rong Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Bing-Mei Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Hai-Yan Ma
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jing-Da Qiao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Peng Zhou
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Na He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Yong-Hong Yi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| |
Collapse
|
17
|
Lin ZJ, He JW, Zhu SY, Xue LH, Zheng JF, Zheng LQ, Huang BX, Chen GZ, Lin PX. Gene-gene interaction network analysis indicates CNTN2 is a candidate gene for idiopathic generalized epilepsy. Neurogenetics 2024; 25:131-139. [PMID: 38460076 DOI: 10.1007/s10048-024-00748-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/19/2024] [Indexed: 03/11/2024]
Abstract
Twin and family studies have established the genetic contribution to idiopathic generalized epilepsy (IGE). The genetic architecture of IGE is generally complex and heterogeneous, and the majority of the genetic burden in IGE remains unsolved. We hypothesize that gene-gene interactions contribute to the complex inheritance of IGE. CNTN2 (OMIM* 615,400) variants have been identified in cases with familial adult myoclonic epilepsy and other epilepsies. To explore the gene-gene interaction network in IGE, we took the CNTN2 gene as an example and investigated its co-occurrent genetic variants in IGE cases. We performed whole-exome sequencing in 114 unrelated IGE cases and 296 healthy controls. Variants were qualified with sequencing quality, minor allele frequency, in silico prediction, genetic phenotype, and recurrent case numbers. The STRING_TOP25 gene interaction network analysis was introduced with the bait gene CNTN2 (denoted as A). The gene-gene interaction pair mode was presumed to be A + c, A + d, A + e, with a leading gene A, or A + B + f, A + B + g, A + B + h, with a double-gene A + B, or other combinations. We compared the number of gene interaction pairs between the case and control groups. We identified three pairs in the case group, CNTN2 + PTPN18, CNTN2 + CNTN1 + ANK2 + ANK3 + SNTG2, and CNTN2 + PTPRZ1, while we did not discover any pairs in the control group. The number of gene interaction pairs in the case group was much more than in the control group (p = 0.021). Taking together the genetic bioinformatics, reported epilepsy cases, and statistical evidence in the study, we supposed CNTN2 as a candidate pathogenic gene for IGE. The gene interaction network analysis might help screen candidate genes for IGE or other complex genetic disorders.
Collapse
Affiliation(s)
- Zhi-Jian Lin
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Neurology, the Affiliated Hospital of Putian University, Putian, China
- Brain Science Institute of Putian University, 999 Dongzhen East Road, Licheng District, Putian, 351100, China
| | - Jun-Wei He
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Neurology, the Affiliated Hospital of Putian University, Putian, China
- Brain Science Institute of Putian University, 999 Dongzhen East Road, Licheng District, Putian, 351100, China
| | - Sheng-Yin Zhu
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Neurology, the Affiliated Hospital of Putian University, Putian, China
- Brain Science Institute of Putian University, 999 Dongzhen East Road, Licheng District, Putian, 351100, China
| | - Li-Hong Xue
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Neurology, the Affiliated Hospital of Putian University, Putian, China
- Brain Science Institute of Putian University, 999 Dongzhen East Road, Licheng District, Putian, 351100, China
| | - Jian-Feng Zheng
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Neurology, the Affiliated Hospital of Putian University, Putian, China
- Brain Science Institute of Putian University, 999 Dongzhen East Road, Licheng District, Putian, 351100, China
| | - Li-Qin Zheng
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Neurology, the Affiliated Hospital of Putian University, Putian, China
- Brain Science Institute of Putian University, 999 Dongzhen East Road, Licheng District, Putian, 351100, China
| | - Bi-Xia Huang
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Neurology, the Affiliated Hospital of Putian University, Putian, China
- Brain Science Institute of Putian University, 999 Dongzhen East Road, Licheng District, Putian, 351100, China
| | - Guo-Zhang Chen
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Neurology, the Affiliated Hospital of Putian University, Putian, China
- Brain Science Institute of Putian University, 999 Dongzhen East Road, Licheng District, Putian, 351100, China
| | - Peng-Xing Lin
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China.
- Department of Neurology, the Affiliated Hospital of Putian University, Putian, China.
- Brain Science Institute of Putian University, 999 Dongzhen East Road, Licheng District, Putian, 351100, China.
| |
Collapse
|
18
|
Chen YJ, Wang WJ, Zou DF, Luo JX, Jin PY, Jin L, Liu XR, Liao WP, Li B, Chen YJ. CCDC88C variants are associated with focal epilepsy and genotype-phenotype correlation. Clin Genet 2024; 105:397-405. [PMID: 38173219 DOI: 10.1111/cge.14476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/17/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
CCDC88C gene, which encodes coiled-coil domain containing 88C, is essential for cell communication during neural development. Variants in the CCDC88C caused congenital hydrocephalus, some accompanied by seizures. In patients with epilepsy without acquired etiologies, we performed whole-exome sequencing (trio-based). Two de novo and two biallelic CCDC88C variants were identified in four cases with focal (partial) epilepsy. These variants did not present or had low frequencies in the gnomAD populations and were predicted to be damaging by multiple computational algorithms. Patients with de novo variants presented with adult-onset epilepsy, whereas patients with biallelic variants displayed infant-onset epilepsy. They all responded well to anti-seizure medications and were seizure-free. Further analysis showed that de novo variants were located at crucial domains, whereas one paired biallelic variants were located outside the crucial domains, and the other paired variant had a non-classical splicing and a variant located at crucial domain, suggesting a sub-molecular effect. CCDC88C variants associated with congenital hydrocephalus were all truncated, whereas epilepsy-associated variants were mainly missense, the proportion of which was significantly higher than that of congenital hydrocephalus-associated variants. CCDC88C is potentially associated with focal epilepsy with favorable outcome. The underlying mechanisms of phenotypic variation may correlation between genotype and phenotype.
Collapse
Affiliation(s)
- Yu-Jie Chen
- Institute of Neuroscience of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, Guangdong, China
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Wen-Jie Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Dong-Fang Zou
- Epilepsy Center and Department of Neurology, Shenzhen Children's Hospital, Shantou University Medical College, Shenzhen, China
| | - Jun-Xia Luo
- Department of Epilepsy Center, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, Shandong, China
| | - Pei-Yan Jin
- Department of Critical Care Medicine, Jinan Central Hospital, Jinan, Shandong, China
| | - Liang Jin
- Institute of Neuroscience of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, Guangdong, China
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiao-Rong Liu
- Institute of Neuroscience of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, Guangdong, China
| | - Wei-Ping Liao
- Institute of Neuroscience of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, Guangdong, China
| | - Bin Li
- Institute of Neuroscience of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, Guangdong, China
| | - Yong-Jun Chen
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
19
|
Yang JH, Liu ZG, Liu CL, Zhang MR, Jia YL, Zhai QX, He MF, He N, Qiao JD. MED12 variants associated with X-linked recessive partial epilepsy without intellectual disability. Seizure 2024; 116:30-36. [PMID: 36894399 DOI: 10.1016/j.seizure.2023.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
OBJECTIVES The MED12 gene encodes mediator complex subunit 12, which is a component of the mediator complex involved in the transcriptional regulation of nearly all RNA polymerase II-dependent genes. MED12 variants have previously been associated with developmental disorders with or without nonspecific intellectual disability. This study aims to explore the association between MED12 variants and epilepsy. MATERIALS AND METHODS Trios-based whole-exome sequencing was performed in a cohort of 349 unrelated cases with partial (focal) epilepsy without acquired causes. The genotype-phenotype correlations of MED12 variants were analyzed. RESULTS Five hemizygous missense MED12 variants, including c.958A>G/p.Ile320Val, c.1757G>A/p.Ser586Asn, c.2138C>T/p.Pro713Leu, c.3379T>C/p.Ser1127Pro, and c.4219A>C/p.Met1407Leu were identified in five unrelated males with partial epilepsy. All patients showed infrequent focal seizures and achieved seizure free without developmental abnormalities or intellectual disability. All the hemizygous variants were inherited from asymptomatic mothers (consistent with the X-linked recessive inheritance pattern) and were absent in the general population. The two variants with damaging hydrogen bonds were associated with early-onset seizures. Further genotype-phenotype analysis revealed that congenital anomaly disorder (Hardikar syndrome) was associated with (de novo) destructive variants in an X-linked dominant inheritance pattern, whereas epilepsy was associated with missense variants in an X-linked recessive inheritance pattern. Phenotypic features of intellectual disability appeared as the intermediate phenotype in terms of both genotype and inheritance. Epilepsy-related variants were located at the MED12-LCEWAV domain and the regions between MED12-LCEWAV and MED12-POL. CONCLUSION MED12 is a potentially causative gene for X-linked recessive partial epilepsy without developmental or intellectual abnormalities. The genotype-phenotype correlation of MED12 variants explains the phenotypic variations and can help the genetic diagnosis.
Collapse
Affiliation(s)
- Jie-Hua Yang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Department of Neurology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhi-Gang Liu
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Chun-Ling Liu
- Department of Neurology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ming-Rui Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yan-Lu Jia
- Department of Neurology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qiong-Xiang Zhai
- Department of pediatrics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ming-Feng He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Na He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Jing-Da Qiao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
20
|
Ye ZL, Yan HJ, Guo QH, Zhang SQ, Luo S, Lian YJ, Ma YQ, Lu XG, Liu XR, Shen NX, Gao LD, Chen Z, Shi YW. NEXMIF variants are associated with epilepsy with or without intellectual disability. Seizure 2024; 116:93-99. [PMID: 37643945 DOI: 10.1016/j.seizure.2023.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/09/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVES Variants in NEXMIF had been reported associated with intellectual disability (ID) without epilepsy or developmental epileptic encephalopathy (DEE). It is unkown whether NEXMIF variants are associated with epilepsy without ID. This study aims to explore the phenotypic spectrum of NEXMIF and the genotype-phenotype correlations. MATERIALS AND METHODS Trio-based whole-exome sequencing was performed in patients with epilepsy. Previously reported NEXMIF variants were systematically reviewed to analyze the genotype-phenotype correlations. RESULTS Six variants were identified in seven unrelated cases with epilepsy, including two de novo null variants and four hemizygous missense variants. The two de novo variants were absent in all populations of gnomAD and four hemizygous missense variants were absent in male controls of gnomAD. The two patients with de novo null variants exhibited severe developmental epileptic encephalopathy. While, the patients with hemizygous missense variants had mild focal epilepsy with favorable outcome. Analysis of previously reported cases revealed that males with missense variants presented significantly higher percentage of normal intellectual development and later onset age of seizure than those with null variants, indicating a genotype-phenotype correlation. CONCLUSION This study suggested that NEXMIF variants were potentially associated with pure epilepsy with or without intellectual disability. The spectrum of epileptic phenotypes ranged from the mild epilepsy to severe developmental epileptic encephalopathy, where the epileptic phenotypes variability are potentially associated with patients' gender and variant type.
Collapse
Affiliation(s)
- Zi-Long Ye
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Hong-Jun Yan
- Epilepsy Center, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Qing-Hui Guo
- Department of Pediatrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shu-Qian Zhang
- Department of Pediatrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Sheng Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Ya-Jun Lian
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yun-Qing Ma
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin-Guo Lu
- Epilepsy Center and Department of Neurology, Shenzhen Children's Hospital, Shenzhen, China
| | - Xiao-Rong Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Nan-Xiang Shen
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Liang-Di Gao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Zheng Chen
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi-Wu Shi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
21
|
Lin ZJ, Li B, Lin PX, Song W, Yan LM, Meng H, He N. Clinical application of trio-based whole-exome sequencing in idiopathic generalized epilepsy. Seizure 2024; 116:24-29. [PMID: 36842888 DOI: 10.1016/j.seizure.2023.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023] Open
Abstract
PURPOSE Idiopathic generalized epilepsies (IGEs) are a common group of genetic generalized epilepsies with high genetic heterogeneity and complex inheritance. However, the genetic basis is still largely unknown. This study aimed to explore the genetic etiologies in IGEs. METHODS Trio-based whole-exome sequencing was performed in 60 cases with IGEs. The pathogenicity of candidate genetic variants was evaluated by the criteria of the American College of Medical Genetics and Genomics (ACMG), and the clinical causality was assessed by concordance between the observed phenotype and the reported phenotype. RESULTS Seven candidate variants were detected in seven unrelated cases with IGE (11.7%, 7/60). According to ACMG, a de novo SLC2A1 (c.376C>T/p.Arg126Cys) variant identified in childhood absence epilepsy was evaluated as pathogenic with clinical concordance. Six variants were assessed to be uncertain significance by ACMG, but then considered causative after evaluation of clinical concordance. These variants included CLCN4 hemizygous variant (c.2044G>A/p.Glu682Lys) and IQSEC2 heterozygous variant (c.4315C>T/p.Pro1439Ser) in juvenile absence epilepsy, EFHC1 variant (c.1504C>T/p.Arg502Trp) and CACNA1H (c.589G>T/p.Ala197Ser) both with incomplete penetrance in juvenile myoclonic epilepsy, and GRIN2A variant (c.2011C>G/p.Gln671Glu) and GABRB1 variant (c.1075G>A/p.Val359Ile) both co-segregated with juvenile myoclonic epilepsy. Among them, GABRB1 was for the first time identified as potential novel causative gene for IGE. SIGNIFICANCE Considering the genetic heterogeneity and complex inheritance of IGEs, a comprehensive evaluation combined the ACMG scoring and assessment of clinical concordance is suggested for the pathogenicity analysis of variants identified in clinical screening. GABRB1 is probably a novel causative gene for IGE, which warrants further studies.
Collapse
Affiliation(s)
- Zhi-Jian Lin
- Department of Neurology, the Affiliated Hospital of Putian University, Putian 351100, Fujian Province, China; Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bin Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Peng-Xing Lin
- Department of Neurology, the Affiliated Hospital of Putian University, Putian 351100, Fujian Province, China
| | - Wang Song
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Li-Min Yan
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, 570311 Haikou, Hainan, China
| | - Heng Meng
- Department of Neurology, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Na He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
22
|
Jin L, Li Y, Luo S, Peng Q, Zhai QX, Zhai JX, Gao LD, Guo JJ, Song W, Yi YH, He N, Chen YJ. Reprint of: Recessive APC2 missense variants associated with epilepsies without neurodevelopmental disorders. Seizure 2024; 116:87-92. [PMID: 38523034 DOI: 10.1016/j.seizure.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 03/26/2024] Open
Abstract
OBJECTIVES The APC2 gene, encoding adenomatous polyposis coli protein-2, is involved in cytoskeletal regulation in neurons responding to endogenous extracellular signals and plays an important role in brain development. Previously, the APC2 variants have been reported to be associated with cortical dysplasia and intellectual disability. This study aims to explore the association between APC2 variants and epilepsy. METHODS Whole-exome sequencing (WES) was performed in cases (trios) with epilepsies of unknown causes. The damaging effects of variants were predicted by protein modeling and in silico tools. Previously reported APC2 variants were reviewed to analyze the genotype-phenotype correlations. RESULTS Four pairs of compound heterozygous missense variants were identified in four unrelated patients with epilepsy without brain malformation/intellectual disability. All variants presented no or low allele frequencies in the controls. The missense variants were predicted to be damaging by silico tools, and affect hydrogen bonding with surrounding amino acids or decreased protein stability. Patients with variants that resulted in significant changes in protein stability exhibited more severe and intractable epilepsy, whereas patients with variants that had minor effect on protein stability exhibited relatively mild phenotypes. The previously reported APC2 variants in patients with complex cortical dysplasia with other brain malformations-10 (CDCBM10; MIM: 618677) were all truncating variants; in contrast, the variants identified in epilepsy in this study were all missense variants, suggesting a potential genotype-phenotype correlation. SIGNIFICANCE This study suggests that APC2 is potentially associated with epilepsy without brain malformation/intellectual disability. The genotype-phenotype correlation helps to understand the underlying mechanisms of phenotypic heterogeneity.
Collapse
Affiliation(s)
- Liang Jin
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yun Li
- Department of Brain Function and Neuroelectrophysiology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Sheng Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qian Peng
- Department of Pediatrics, Dongguan Maternal and Child Health Hospital, Southern Medical University Affiliated, Dongguang, China
| | - Qiong-Xiang Zhai
- Department of Pediatrics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jin-Xia Zhai
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Liang-Di Gao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jia-Jun Guo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wang Song
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yong-Hong Yi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Na He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Yong-Jun Chen
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
23
|
Zhang MW, Liang XY, Wang J, Gao LD, Liao HJ, He YH, Yi YH, He N, Liao WP. Epilepsy-associated genes: an update. Seizure 2024; 116:4-13. [PMID: 37777370 DOI: 10.1016/j.seizure.2023.09.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/31/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023] Open
Abstract
PURPOSE To provide an updated list of epilepsy-associated genes based on clinical-genetic evidence. METHODS Epilepsy-associated genes were systematically searched and cross-checked from the OMIM, HGMD, and PubMed databases up to July 2023. To facilitate the reference for the epilepsy-associated genes that are potentially common in clinical practice, the epilepsy-associated genes were ranked by the mutation number in the HGMD database and by case number in the China Epilepsy Gene 1.0 project, which targeted common epilepsy. RESULTS Based on the OMIM database, 1506 genes were identified to be associated with epilepsy and were classified into three categories according to their potential association with epilepsy or other abnormal phenotypes, including 168 epilepsy genes that were associated with epilepsies as pure or core symptoms, 364 genes that were associated with neurodevelopmental disorders as the main symptom and epilepsy, and 974 epilepsy-related genes that were associated with gross physical/systemic abnormalities accompanied by epilepsy/seizures. Among the epilepsy genes, 115 genes (68.5%) were associated with epileptic encephalopathy. After cross-checking with the HGMD and PubMed databases, an additional 1440 genes were listed as potential epilepsy-associated genes, of which 278 genes have been repeatedly identified variants in patients with epilepsy. The top 100 frequently reported/identified epilepsy-associated genes from the HGMD database and the China Epilepsy Gene 1.0 project were listed, among which 40 genes were identical in both sources. SIGNIFICANCE Recognition of epilepsy-associated genes will facilitate genetic screening strategies and be helpful for precise molecular diagnosis and treatment of epilepsy in clinical practice.
Collapse
Affiliation(s)
- Meng-Wen Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Xiao-Yu Liang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Jie Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Liang-Di Gao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Han-Jun Liao
- University of South China, Hengyang, 421001, China
| | - Yun-Hua He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Yong-Hong Yi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Na He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
24
|
Wu WC, Liang XY, Zhang DM, Jin L, Liu ZG, Zeng XL, Zhai QX, Liao WP, He N, Meng XH. DYNC1H1 variants associated with infant-onset epilepsy without neurodevelopmental disorders. Seizure 2024; 116:119-125. [PMID: 37903666 DOI: 10.1016/j.seizure.2023.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/01/2023] Open
Abstract
OBJECTIVES The DYNC1H1 variants are associated with abnormal brain morphology and neuromuscular disorders that are accompanied by epilepsy. This study aimed to explore the relationship between DYNC1H1 variants and epilepsy. MATERIALS AND METHODS Trios-based whole-exome sequencing was performed on patients with epilepsy. Previously reported epilepsy-related DYNC1H1 variants were systematically reviewed to analyse genotype-phenotype correlation. RESULTS The DYNC1H1 variants were identified in four unrelated cases of infant-onset epilepsy, including two de novo and two biallelic variants. Two patients harbouring de novo missense variants located in the stem and stalk domains presented with refractory epilepsies, whereas two patients harbouring biallelic variants located in the regions between functional domains had mild epilepsy with infrequent focal seizures and favourable outcomes. One patient presented with pachygyria and neurodevelopmental abnormalities, and the other three patients presented with normal development. These variants have no or low frequencies in the Genome Aggregation Database. All the missense variants were predicted to be damaging using silico tools. Previously reported epilepsy-related variants were monoallelic variants, mainly de novo missense variants, and all the patients presented with severe epileptic phenotypes or developmental delay and malformations of cortical development. Epilepsy-related variants were clustered in the dimerization and stalk domains, and generalized epilepsy-associated variants were distributed in the stem domain. CONCLUSION This study suggested that DYNC1H1 variants are potentially associated with infant-onset epilepsy without neurodevelopmental disorders, expanding the phenotypic spectrum of DYNC1H1. The genotype-phenotype correlation helps to understand the underlying mechanisms of phenotypic variation.
Collapse
Affiliation(s)
- Wu-Chen Wu
- Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Xiao-Yu Liang
- Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Dong-Ming Zhang
- Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Liang Jin
- Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhi-Gang Liu
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Xiao-Lu Zeng
- Department of pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qiong-Xiang Zhai
- Department of pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wei-Ping Liao
- Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Na He
- Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Xiang-Hong Meng
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China.
| |
Collapse
|
25
|
Li B, Lan S, Liu XR, Ji JJ, He YY, Zhang DM, Xu J, Sun H, Shi Z, Wang J, Tian Y. ATP6V1A variants are associated with childhood epilepsy with favorable outcome. Seizure 2024; 116:81-86. [PMID: 37574426 DOI: 10.1016/j.seizure.2023.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023] Open
Abstract
PURPOSE ATP6V1A variants have been identified in patients with highly variable phenotypes such as autosomal dominant epileptic encephalopathy and autosomal recessive cutis laxa. However, the mechanism underlying phenotype variation is unknown. We screened ATP6V1A variants in patients with epilepsy and analyzed the genotype-phenotype correlation to explain the mechanism underlying phenotypic variations. METHODS We performed trio-based whole-exome sequencing in people with epilepsy without acquired causes. All previously reported ATP6V1A variants were systematically retrieved from the HGMD and PubMed databases. RESULTS Three novel de novo ATP6V1A variants, including c.749G>C/p.Gly250Ala, c.782A>G/p.Gln261Arg, and c.1103T>C/p.Met368Thr, were identified in three unrelated cases with childhood focal (partial) epilepsy. None of the variants were listed in any public population database and evaluated as likely pathogenic according to the criteria of the American College of Medical Genetics and Genomics (ACMG). All persons showed good responses to anti-seizure medication and psychomotor development was normal. Further analysis showed that monoallelic missense variants were associated with epilepsy with variable severity, whereas biallelic variants resulted in developmental abnormalities of multisystem that may result in early lethality. CONCLUSION Childhood focal epilepsy with favorable outcome was probably a novel phenotype of ATP6V1A. ATP6V1A variants are associated with a range of phenotypes that correlate with genotypes. The relationship between phenotype severity and the genotype (genetic impairment) of ATP6V1A variants helps explain the phenotypic variations.
Collapse
Affiliation(s)
- Bin Li
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Song Lan
- Department of Neurology, Maoming People's Hospital, Maoming, China
| | - Xiao-Rong Liu
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Jing-Jing Ji
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Yun-Yan He
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Dong-Ming Zhang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Jie Xu
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Hui Sun
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University
| | - Zhen Shi
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Jie Wang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China.
| | - Yang Tian
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China; Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China.
| |
Collapse
|
26
|
Hu Y, Zhang B, Chen L, He J, Yang L, Chen X. SCAF4 variants are associated with epilepsy with neurodevelopmental disorders. Seizure 2024; 116:113-118. [PMID: 37891035 DOI: 10.1016/j.seizure.2023.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
AIMS The genetic causes of epilepsy with unknown etiology in most patients remain unknown. The aim of this study was to elucidate the phenotype of SCAF4-related epilepsy. METHODS Trio-based whole-exome sequencing was performed in patients with epilepsy. Silico programs and protein modeling were employed to predict the damaging of variants. Previously reported SCAF4 variants were systematically reviewed to analyze the genotype-phenotype correlations. RESULTS Three heterozygous variants in the SCAF4 were detected in three cases, including one missense variant and two frameshift variants. All variants were de novo. None of these variants is present in gnomAD controls. The missense variant was predicted to be damaging in silico tools. Protein modeling showed that two frameshift variants resulted in loss of domains, and the missense variant may disrupt a nearby phosphorylation site and alter the hydrogen bonds around 54C and the stability of the SCAF4 protein. Intellectual development was mildly delayed for all patients except for one with whom contact was lost. All probands experienced epilepsy as infrequent seizures, responded well to antiseizure drugs, and had a median [IQR] seizure onset age of 4 [1.75, 7.5] years. The variants in the domain-encoding exons and upstream exons exhibited a strong association with epilepsy. CONCLUSIONS SCAF4 is a potential causative gene of epilepsy with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Epilepsy Center and Neurology Department of Children's Hospital of Soochow University, Suzhou 215000, China
| | - Bingbing Zhang
- Epilepsy Center and Neurology Department of Children's Hospital of Soochow University, Suzhou 215000, China
| | - Li Chen
- Neurogenetic Group, Department of Neurology, Shenzhen Children's Hospital, Shenzhen 518000, China
| | - Jing He
- Department of Neurology, Yuquan Hospital, Tsinghua University, Beijing 100000, China
| | - Letian Yang
- Epilepsy Center and Neurology Department of Children's Hospital of Soochow University, Suzhou 215000, China
| | - Xuqin Chen
- Epilepsy Center and Neurology Department of Children's Hospital of Soochow University, Suzhou 215000, China.
| |
Collapse
|
27
|
Zou DF, Li XY, Lu XG, Wang HL, Song W, Zhang MW, Liu XR, Li BM, Liao JX, Zhong JM, Meng H, Li B. Association of FAT1 with focal epilepsy and correlation between seizure relapse and gene expression stage. Seizure 2024; 116:37-44. [PMID: 36941137 DOI: 10.1016/j.seizure.2023.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/13/2023] Open
Abstract
PURPOSE The FAT1 gene encodes FAT atypical cadherin 1, which is essential for foetal development, including brain development. This study aimed to investigate the relationship between FAT1 variants and epilepsy. METHODS Trio-based whole-exome sequencing was performed on a cohort of 313 patients with epilepsy. Additional cases with FAT1 variants were collected from the China Epilepsy Gene V.1.0 Matching Platform. RESULTS Four pairs of compound heterozygous missense FAT1 variants were identified in four unrelated patients with partial (focal) epilepsy and/or febrile seizures, but without intellectual disability/developmental abnormalities. These variants presented no/very low frequencies in the gnomAD database, and the aggregate frequencies in this cohort were significantly higher than those in controls. Two additional compound heterozygous missense variants were identified in two unrelated cases using the gene-matching platform. All patients experienced infrequent (yearly/monthly) complex partial seizures or secondary generalised tonic-clonic seizures. They responded well toantiseizure medication, but seizures relapsed in three cases when antiseizure medication were decreased or withdrawn after being seizure-free for three to six years, which correlated with the expression stage of FAT1. Genotype-phenotype analysis showed that epilepsy-associated FAT1 variants were missense, whereas non-epilepsy-associated variants were mainly truncated. The relationship between FAT1 and epilepsy was evaluated to be "Strong" by the Clinical Validity Framework of ClinGen. CONCLUSIONS FAT1 is a potential causative gene of partial epilepsy and febrile seizures. Gene expression stage was suggested to be one of the considerations in determining the duration ofantiseizure medication. Genotype-phenotype correlation helps to explain the mechanisms underlying phenotypic variation.
Collapse
Affiliation(s)
- Dong-Fang Zou
- Institute of Neuroscience of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China; Epilepsy Center and Department of Neurology, Shenzhen Children's Hospital, Shantou University Medical College, Shenzhen, China
| | - Xiao-Yan Li
- Institute of Neuroscience of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China; Department of Neurology, Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Xin-Guo Lu
- Epilepsy Center and Department of Neurology, Shenzhen Children's Hospital, Shantou University Medical College, Shenzhen, China
| | - Huai-Li Wang
- Department of Pediatric Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wang Song
- Institute of Neuroscience of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China
| | - Meng-Wen Zhang
- Institute of Neuroscience of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China
| | - Xiao-Rong Liu
- Institute of Neuroscience of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China
| | - Bing-Mei Li
- Institute of Neuroscience of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China
| | - Jian-Xiang Liao
- Epilepsy Center and Department of Neurology, Shenzhen Children's Hospital, Shantou University Medical College, Shenzhen, China
| | - Jian-Min Zhong
- Department of Neurology, Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Heng Meng
- Department of Neurology, The First Affiliated Hospital, & Clinical Neuroscience Institute of Jinan University, 613 West Huangpu Ave, Guangzhou, China..
| | - Bin Li
- Institute of Neuroscience of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China.
| |
Collapse
|
28
|
He YY, Luo S, Jin L, Wang PY, Xu J, Jiao HL, Yan HJ, Wang Y, Zhai QX, Ji JJ, Zhang WJ, Zhou P, Li H, Liao WP, Lan S, Xu L. DLG3 variants caused X-linked epilepsy with/without neurodevelopmental disorders and the genotype-phenotype correlation. Front Mol Neurosci 2024; 16:1290919. [PMID: 38249294 PMCID: PMC10796462 DOI: 10.3389/fnmol.2023.1290919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/28/2023] [Indexed: 01/23/2024] Open
Abstract
Background The DLG3 gene encodes disks large membrane-associated guanylate kinase scaffold protein 3, which plays essential roles in the clustering of N-methyl-D-aspartate receptors (NMDARs) at excitatory synapses. Previously, DLG3 has been identified as the causative gene of X-linked intellectual developmental disorder-90 (XLID-90; OMIM# 300850). This study aims to explore the phenotypic spectrum of DLG3 and the genotype-phenotype correlation. Methods Trios-based whole-exome sequencing was performed in patients with epilepsy of unknown causes. To analyze the genotype-phenotype correlations, previously reported DLG3 variants were systematically reviewed. Results DLG3 variants were identified in seven unrelated cases with epilepsy. These variants had no hemizygous frequencies in controls. All variants were predicted to be damaging by silico tools and alter the hydrogen bonds with surrounding residues and/or protein stability. Four cases mainly presented with generalized seizures, including generalized tonic-clonic and myoclonic seizures, and the other three cases exhibited secondary generalized tonic-clonic seizures and focal seizures. Multifocal discharges were recorded in all cases during electroencephalography monitoring, including the four cases with generalized discharges initially but multifocal discharges after drug treating. Protein-protein interaction network analysis revealed that DLG3 interacts with 52 genes with high confidence, in which the majority of disease-causing genes were associated with a wide spectrum of neurodevelopmental disorder (NDD) and epilepsy. Three patients with variants locating outside functional domains all achieved seizure-free, while the four patients with variants locating in functional domains presented poor control of seizures. Analysis of previously reported cases revealed that patients with non-null variants presented higher percentages of epilepsy than those with null variants, suggesting a genotype-phenotype correlation. Significance This study suggested that DLG3 variants were associated with epilepsy with/without NDD, expanding the phenotypic spectrum of DLG3. The observed genotype-phenotype correlation potentially contributes to the understanding of the underlying mechanisms driving phenotypic variation.
Collapse
Affiliation(s)
- Yun-Yan He
- Department of Neurology, Women and Children’s Hospital, Qingdao University, Qingdao, China
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Sheng Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Liang Jin
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Peng-Yu Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jie Xu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hong-Liang Jiao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong-Jun Yan
- Epilepsy Center, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Yao Wang
- Epilepsy Center, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Qiong-Xiang Zhai
- Department of Pediatrics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jing-Jing Ji
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weng-Jun Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Peng Zhou
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hua Li
- Epilepsy Center, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Song Lan
- Department of Neurology, Maoming People’s Hospital, Maoming, China
| | - Lin Xu
- Department of Neurology, Women and Children’s Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
29
|
Ansari U, Chen V, Sedighi R, Syed B, Muttalib Z, Ansari K, Ansari F, Nadora D, Razick D, Lui F. Role of the UNC13 family in human diseases: A literature review. AIMS Neurosci 2023; 10:388-400. [PMID: 38188011 PMCID: PMC10767061 DOI: 10.3934/neuroscience.2023029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
This literature review explores the pivotal roles of the Uncoordinated-13 (UNC13) protein family, encompassing UNC13A, UNC13B, UNC13C, and UNC13D, in the pathogenesis of various human diseases. These proteins, which are evolutionarily conserved and crucial for synaptic vesicle priming and exocytosis, have been implicated in a range of disorders, spanning from neurodegenerative diseases like amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) to immune-related conditions such as familial hemophagocytic lymphohistiocytosis (FHL). The involvement of UNC13A in neurotransmitter release and synaptic plasticity is linked to ALS and FTD, with genetic variations affecting disease progression. UNC13B, which is closely related to UNC13A, plays a role in autism spectrum disorders (ASD), epilepsy, and schizophrenia. UNC13C is implicated in oral squamous cell carcinoma (OSCC) and hepatocellular carcinoma (HCC), and has a neuroprotective role in Alzheimer's disease (AD). UNC13D has an essential role in immune cell function, making it a key player in FHL. This review highlights the distinct molecular functions of each UNC13 family member and their implications in disease contexts, shedding light on potential therapeutic strategies and avenues for future research. Understanding these proteins' roles offers new insights into the management and treatment of neurological and immunological disorders.
Collapse
Affiliation(s)
- Ubaid Ansari
- California Northstate University College of Medicine, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Jin L, Li Y, Luo S, Peng Q, Zhai QX, Zhai JX, Gao LD, Guo JJ, Song W, Yi YH, He N, Chen YJ. Recessive APC2 missense variants associated with epilepsies without neurodevelopmental disorders. Seizure 2023; 111:172-177. [PMID: 37657306 DOI: 10.1016/j.seizure.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023] Open
Abstract
OBJECTIVES The APC2 gene, encoding adenomatous polyposis coli protein-2, is involved in cytoskeletal regulation in neurons responding to endogenous extracellular signals and plays an important role in brain development. Previously, the APC2 variants have been reported to be associated with cortical dysplasia and intellectual disability. This study aims to explore the association between APC2 variants and epilepsy. METHODS Whole-exome sequencing (WES) was performed in cases (trios) with epilepsies of unknown causes. The damaging effects of variants were predicted by protein modeling and in silico tools. Previously reported APC2 variants were reviewed to analyze the genotype-phenotype correlations. RESULTS Four pairs of compound heterozygous missense variants were identified in four unrelated patients with epilepsy without brain malformation/intellectual disability. All variants presented no or low allele frequencies in the controls. The missense variants were predicted to be damaging by silico tools, and affect hydrogen bonding with surrounding amino acids or decreased protein stability. Patients with variants that resulted in significant changes in protein stability exhibited more severe and intractable epilepsy, whereas patients with variants that had minor effect on protein stability exhibited relatively mild phenotypes. The previously reported APC2 variants in patients with complex cortical dysplasia with other brain malformations-10 (CDCBM10; MIM: 618677) were all truncating variants; in contrast, the variants identified in epilepsy in this study were all missense variants, suggesting a potential genotype-phenotype correlation. SIGNIFICANCE This study suggests that APC2 is potentially associated with epilepsy without brain malformation/intellectual disability. The genotype-phenotype correlation helps to understand the underlying mechanisms of phenotypic heterogeneity.
Collapse
Affiliation(s)
- Liang Jin
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yun Li
- Department of Brain Function and Neuroelectrophysiology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Sheng Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qian Peng
- Department of Pediatrics, Dongguan Maternal and Child Health Hospital, Southern Medical University Affiliated, Dongguang, China
| | - Qiong-Xiang Zhai
- Department of Pediatrics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jin-Xia Zhai
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Liang-Di Gao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jia-Jun Guo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wang Song
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yong-Hong Yi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Na He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Yong-Jun Chen
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
31
|
Ye T, Zhang J, Wang J, Lan S, Zeng T, Wang H, He X, Li BM, Deng W, Liao WP, Liu XR. Variants in BSN gene associated with epilepsy with favourable outcome. J Med Genet 2023; 60:776-783. [PMID: 36600631 PMCID: PMC10439262 DOI: 10.1136/jmg-2022-108865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND BSN gene encodes Bassoon, an essential protein to assemble the cytomatrix at the active zone of neurotransmitter release. This study aims to explore the relationship between BSN variants and epilepsy. METHODS Whole-exome sequencing was performed in a cohort of 313 cases (trios) with epilepsies of unknown causes. Additional cases with BSN variants were collected from China Epilepsy Gene V.1.0 Matching Platform. The Clinical Validity Framework of ClinGen was used to evaluate the relationship between BSN variants and epilepsy. RESULTS Four pairs of compound heterozygous variants and one cosegregating heterozygous missense variant in BSN were identified in five unrelated families. These variants presented statistically higher frequency in the case cohort than in controls. Additional two de novo heterozygous nonsense variants and one cosegregating heterozygous missense variant were identified in three unrelated cases from the gene matching platform, which were not present in the Genome Aggregation Database. The missense variants tended to be located in C-terminus, including the two monoallelic missense variants. Protein modelling showed that at least one missense variant in each pair of compound heterozygous variants had hydrogen bond alterations. Clinically, two cases were diagnosed as idiopathic generalised epilepsy, two as focal epilepsy and the remaining four as epilepsy with febrile seizures plus. Seven out of eight probands showed infancy or childhood-onset epilepsy. Eight out of 10 affected individuals had a history of febrile convulsions. All the cases were seizure-free. The cases with monoallelic variants achieved seizure-free without treatment or under monotherapy, while cases with biallelic missense variants mostly required combined therapy. The evidence from ClinGen Framework suggested an association between BSN variants and epilepsy. CONCLUSION The BSN gene was potentially a novel candidate gene for epilepsy. The phenotypical severity was associated with the genotypes and the molecular subregional effects of the variants.
Collapse
Affiliation(s)
- Tingting Ye
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiwei Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jie Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Song Lan
- Department of Neurology, Maoming People's Hospital, Maoming, Guangdong, China
| | - Tao Zeng
- Department of Neurology, Guangzhou First People's Hospital, Guangzhou, China
| | - Huaili Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuelian He
- Precision Medical Center, Wuhan Childrens Hospital, Wuhan, China
| | - Bing-Mei Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weiwen Deng
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Rong Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
32
|
He N, Li B, Lin ZJ, Zhou P, Su T, Liao WP. Common genetic epilepsies, pathogenicity of genes/variants, and genetic dependence. Seizure 2023; 109:38-39. [PMID: 37207537 DOI: 10.1016/j.seizure.2023.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023] Open
Affiliation(s)
- Na He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Bin Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Zhi-Jian Lin
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Peng Zhou
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Tao Su
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
33
|
Ruggiero SM, Xian J, Helbig I. The current landscape of epilepsy genetics: where are we, and where are we going? Curr Opin Neurol 2023; 36:86-94. [PMID: 36762645 PMCID: PMC10088099 DOI: 10.1097/wco.0000000000001141] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
PURPOSE OF REVIEW In this review, we aim to analyse the progress in understanding the genetic basis of the epilepsies, as well as ongoing efforts to define the increasingly diverse and novel presentations, phenotypes and divergences from the expected that have continually characterized the field. RECENT FINDINGS A genetic workup is now considered to be standard of care for individuals with an unexplained epilepsy, due to mounting evidence that genetic diagnoses significantly influence treatment choices, prognostication, community support, and increasingly, access to clinical trials. As more individuals with epilepsy are tested, novel presentations of known epilepsy genes are being discovered, and more individuals with self-limited epilepsy are able to attain genetic diagnoses. In addition, new genes causative of epilepsy are being uncovered through both traditional and novel methods, including large international data-sharing collaborations and massive sequencing efforts as well as computational methods and analyses driven by the Human Phenotype Ontology (HPO). SUMMARY New approaches to gene discovery and characterization are advancing rapidly our understanding of the genetic and phenotypic architecture of the epilepsies. This review highlights relevant and groundbreaking studies published recently that have pushed forward the field of epilepsy genetics.
Collapse
Affiliation(s)
- Sarah M Ruggiero
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Julie Xian
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Ingo Helbig
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19146, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| |
Collapse
|
34
|
Liu CQ, Qu XC, He MF, Liang DH, Xie SM, Zhang XX, Lin YM, Zhang WJ, Wu KC, Qiao JD. Efficient strategies based on behavioral and electrophysiological methods for epilepsy-related gene screening in the Drosophila model. Front Mol Neurosci 2023; 16:1121877. [PMID: 37152436 PMCID: PMC10157486 DOI: 10.3389/fnmol.2023.1121877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction With the advent of trio-based whole-exome sequencing, the identification of epilepsy candidate genes has become easier, resulting in a large number of potential genes that need to be validated in a whole-organism context. However, conducting animal experiments systematically and efficiently remains a challenge due to their laborious and time-consuming nature. This study aims to develop optimized strategies for validating epilepsy candidate genes using the Drosophila model. Methods This study incorporate behavior, morphology, and electrophysiology for genetic manipulation and phenotypic examination. We utilized the Gal4/UAS system in combination with RNAi techniques to generate loss-of-function models. We performed a range of behavioral tests, including two previously unreported seizure phenotypes, to evaluate the seizure behavior of mutant and wild-type flies. We used Gal4/UAS-mGFP flies to observe the morphological alterations in the brain under a confocal microscope. We also implemented patch-clamp recordings, including a novel electrophysiological method for studying synapse function and improved methods for recording action potential currents and spontaneous EPSCs on targeted neurons. Results We applied different techniques or methods mentioned above to investigate four epilepsy-associated genes, namely Tango14, Klp3A, Cac, and Sbf, based on their genotype-phenotype correlation. Our findings showcase the feasibility and efficiency of our screening system for confirming epilepsy candidate genes in the Drosophila model. Discussion This efficient screening system holds the potential to significantly accelerate and optimize the process of identifying epilepsy candidate genes, particularly in conjunction with trio-based whole-exome sequencing.
Collapse
Affiliation(s)
- Chu-Qiao Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- The Second Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Xiao-Chong Qu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ming-Feng He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - De-Hai Liang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shi-Ming Xie
- The First Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Xi-Xing Zhang
- The Second Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Yong-Miao Lin
- The Second Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Wen-Jun Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ka-Chun Wu
- School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jing-Da Qiao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Jing-Da Qiao, ; orcid.org/0000-0002-4693-8390
| |
Collapse
|
35
|
Luo S, Ye XG, Jin L, Li H, He YY, Guan BZ, Gao LD, Liang XY, Wang PY, Lu XG, Yan HJ, Li BM, Chen YJ, Liu ZG. SZT2 variants associated with partial epilepsy or epileptic encephalopathy and the genotype-phenotype correlation. Front Mol Neurosci 2023; 16:1162408. [PMID: 37213690 PMCID: PMC10198435 DOI: 10.3389/fnmol.2023.1162408] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/10/2023] [Indexed: 05/23/2023] Open
Abstract
Background Recessive SZT2 variants are reported to be associated with developmental and epileptic encephalopathy 18 (DEE-18) and occasionally neurodevelopment abnormalities (NDD) without seizures. This study aims to explore the phenotypic spectrum of SZT2 and the genotype-phenotype correlation. Methods Trios-based whole-exome sequencing was performed in patients with epilepsy. Previously reported SZT2 mutations were systematically reviewed to analyze the genotype-phenotype correlations. Results SZT2 variants were identified in six unrelated cases with heterogeneous epilepsy, including one de novo null variant and five pairs of biallelic variants. These variants had no or low frequencies in controls. All missense variants were predicted to alter the hydrogen bonds with surrounding residues and/or protein stability. The three patients with null variants exhibited DEE. The patients with biallelic null mutations presented severe DEE featured by frequent spasms/tonic seizures and diffuse cortical dysplasia/periventricular nodular heterotopia. The three patients with biallelic missense variants presented mild partial epilepsy with favorable outcomes. Analysis of previously reported cases revealed that patients with biallelic null mutations presented significantly higher frequency of refractory seizures and earlier onset age of seizure than those with biallelic non-null mutations or with biallelic mutations containing one null variant. Significance This study suggested that SZT2 variants were potentially associated with partial epilepsy with favorable outcomes without NDD, expanding the phenotypic spectrum of SZT2. The genotype-phenotype correlation helps in understanding the underlying mechanism of phenotypic variation.
Collapse
Affiliation(s)
- Sheng Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xing-Guang Ye
- Department of Pediatrics, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Liang Jin
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Huan Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yun-Yan He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bao-Zhu Guan
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Liang-Di Gao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Yu Liang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Peng-Yu Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xin-Guo Lu
- Epilepsy Center and Department of Neurology, Shenzhen Children's Hospital, Shenzhen, China
| | - Hong-Jun Yan
- Epilepsy Center, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Bing-Mei Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yong-Jun Chen
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Yong-Jun Chen
| | - Zhi-Gang Liu
- Department of Pediatrics, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Zhi-Gang Liu
| |
Collapse
|
36
|
Tian M, Liu X, Lin S, Wang J, Luo S, Gao L, Chen X, Liang X, Liu Z, He N, Yi Y, Liao W, For the China Epilepsy Gene 1.0 Project. Variants in BRWD3 associated with X-linked partial epilepsy without intellectual disability. CNS Neurosci Ther 2022; 29:727-735. [PMID: 36514184 PMCID: PMC9873514 DOI: 10.1111/cns.14057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/15/2022] Open
Abstract
AIMS Etiology of the majority patients with idiopathic partial epilepsy (IPE) remains elusive. We thus screened the potential disease-associated variants in the patients with IPE. METHODS Trios-based whole exome sequencing was performed in a cohort of 320 patients with IPE. Frequency and molecular effects of variants were predicted. RESULTS Three novel BRWD3 variants were identified in five unrelated cases with IPE, which were four male cases and one female case. The variants included two recurrent missense variants (c.836C>T/p.Thr279Ile and c.4234A>C/p.Ile1412Leu) and one intronic variant close to splice site (c.2475 + 6A>G). The two missense variants were located in WD40 repeat domain and bromodomain, respectively. They were predicted to be damaging by silico tools and change hydrogen bonds with surrounding amino acids. The frequency of mutant alleles in this cohort was significantly higher than that in the controls of East Asian and all population of gnomAD. All these variants were inherited from the asymptomatic mothers. Four male cases presented frequent seizures at onset, while the female case only had two fever-triggered seizures. They showed good responses to valproate and lamotrigine, then finally became seizure free. All the cases had no intellectual disability. Further analysis demonstrated that all previously reported destructive variants of BRWD3 caused intellectual disability, while missense variants located in WD40 repeat domains and bromodomains of BRWD3 were associated with epilepsy. CONCLUSION BRWD3 gene is potentially associated with X-linked partial epilepsy without intellectual disability. The genotypes and locations of BRWD3 variants may explain for their phenotypic variation.
Collapse
Affiliation(s)
- Mao‐Qiang Tian
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina,Department of PediatricsAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Xiao‐Rong Liu
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Si‐Mei Lin
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Jie Wang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Sheng Luo
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Liang‐Di Gao
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Xiao‐Bin Chen
- Department of PediatricsThe 900th Hospital of Joint Logistic Support ForceFuzhouChina
| | - Xiao‐Yu Liang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Zhi‐Gang Liu
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare HospitalSouthern Medical UniversityFoshanChina
| | - Na He
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Yong‐Hong Yi
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Wei‐Ping Liao
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | | |
Collapse
|
37
|
Matta J, Dobrino D, Yeboah D, Howard S, EL-Manzalawy Y, Obafemi-Ajayi T. Connecting phenotype to genotype: PheWAS-inspired analysis of autism spectrum disorder. Front Hum Neurosci 2022; 16:960991. [PMID: 36310845 PMCID: PMC9605200 DOI: 10.3389/fnhum.2022.960991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/14/2022] [Indexed: 04/13/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is extremely heterogeneous clinically and genetically. There is a pressing need for a better understanding of the heterogeneity of ASD based on scientifically rigorous approaches centered on systematic evaluation of the clinical and research utility of both phenotype and genotype markers. This paper presents a holistic PheWAS-inspired method to identify meaningful associations between ASD phenotypes and genotypes. We generate two types of phenotype-phenotype (p-p) graphs: a direct graph that utilizes only phenotype data, and an indirect graph that incorporates genotype as well as phenotype data. We introduce a novel methodology for fusing the direct and indirect p-p networks in which the genotype data is incorporated into the phenotype data in varying degrees. The hypothesis is that the heterogeneity of ASD can be distinguished by clustering the p-p graph. The obtained graphs are clustered using network-oriented clustering techniques, and results are evaluated. The most promising clusterings are subsequently analyzed for biological and domain-based relevance. Clusters obtained delineated different aspects of ASD, including differentiating ASD-specific symptoms, cognitive, adaptive, language and communication functions, and behavioral problems. Some of the important genes associated with the clusters have previous known associations to ASD. We found that clusters based on integrated genetic and phenotype data were more effective at identifying relevant genes than clusters constructed from phenotype information alone. These genes included five with suggestive evidence of ASD association and one known to be a strong candidate.
Collapse
Affiliation(s)
- John Matta
- Department of Computer Science, Southern Illinois University Edwardsville, Edwardsville, IL, United States
| | - Daniel Dobrino
- Department of Computer Science, Southern Illinois University Edwardsville, Edwardsville, IL, United States
| | - Dacosta Yeboah
- Department of Computer Science, Missouri State University, Springfield, MO, United States
| | - Swade Howard
- Department of Computer Science, Southern Illinois University Edwardsville, Edwardsville, IL, United States
| | - Yasser EL-Manzalawy
- Department of Translational Data Science and Informatics, Geisinger, Danville, PA, United States
| | - Tayo Obafemi-Ajayi
- Engineering Program, Missouri State University, Springfield, MO, United States
| |
Collapse
|
38
|
Zhang W, Wang H, Brandt DYC, Hu B, Sheng J, Wang M, Luo H, Li Y, Guo S, Sheng B, Zeng Q, Peng K, Zhao D, Jian S, Wu D, Wang J, Zhao G, Ren J, Shi W, van Esch JHM, Klingunga S, Nielsen R, Hong Y. The genetic architecture of phenotypic diversity in the Betta fish ( Betta splendens). SCIENCE ADVANCES 2022; 8:eabm4955. [PMID: 36129976 PMCID: PMC9491723 DOI: 10.1126/sciadv.abm4955] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 08/03/2022] [Indexed: 05/28/2023]
Abstract
The Betta fish displays a remarkable variety of phenotypes selected during domestication. However, the genetic basis underlying these traits remains largely unexplored. Here, we report a high-quality genome assembly and resequencing of 727 individuals representing diverse morphotypes of the Betta fish. We show that current breeds have a complex domestication history with extensive introgression with wild species. Using a genome-wide association study, we identify the genetic basis of multiple traits, including coloration patterns, the "Dumbo" phenotype with pectoral fin outgrowth, extraordinary enlargement of body size that we map to a major locus on chromosome 8, the sex determination locus that we map to dmrt1, and the long-fin phenotype that maps to the locus containing kcnj15. We also identify a polygenic signal related to aggression, involving multiple neural system-related genes such as esyt2, apbb2, and pank2. Our study provides a resource for developing the Betta fish as a genetic model for morphological and behavioral research in vertebrates.
Collapse
Affiliation(s)
- Wanchang Zhang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Hongru Wang
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Débora Y. C. Brandt
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Beijuan Hu
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Junqing Sheng
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Mengnan Wang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Haijiang Luo
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Yahui Li
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Shujie Guo
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Bin Sheng
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Qi Zeng
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Kou Peng
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Daxian Zhao
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Shaoqing Jian
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Di Wu
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Junhua Wang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Guang Zhao
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Jun Ren
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wentian Shi
- Faculty of Philosophy, University of Tübingen, Tübingen 72074, Germany
| | - Joep H. M. van Esch
- Biology and Medical Laboratory Research, Rotterdam University of Applied Sciences, Rotterdam 3015, Netherlands
| | - Sirawut Klingunga
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Globe Institute, University of Copenhagen, Copenhagen DK-1165, Denmark
| | - Yijiang Hong
- School of Life Sciences, Nanchang University, Nanchang 330031, China
- Key Laboratory of Aquatic Resources and Utilization, Nanchang University, Nanchang 330031, China
| |
Collapse
|
39
|
Fell CW, Hagelkruys A, Cicvaric A, Horrer M, Liu L, Li JSS, Stadlmann J, Polyansky AA, Mereiter S, Tejada MA, Kokotović T, Achuta VS, Scaramuzza A, Twyman KA, Morrow MM, Juusola J, Yan H, Wang J, Burmeister M, Choudhury B, Andersen TL, Wirnsberger G, Holmskov U, Perrimon N, Žagrović B, Monje FJ, Moeller JB, Penninger JM, Nagy V. FIBCD1 is an endocytic GAG receptor associated with a novel neurodevelopmental disorder. EMBO Mol Med 2022; 14:e15829. [PMID: 35916241 PMCID: PMC9449597 DOI: 10.15252/emmm.202215829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
Whole-exome sequencing of two patients with idiopathic complex neurodevelopmental disorder (NDD) identified biallelic variants of unknown significance within FIBCD1, encoding an endocytic acetyl group-binding transmembrane receptor with no known function in the central nervous system. We found that FIBCD1 preferentially binds and endocytoses glycosaminoglycan (GAG) chondroitin sulphate-4S (CS-4S) and regulates GAG content of the brain extracellular matrix (ECM). In silico molecular simulation studies and GAG binding analyses of patient variants determined that such variants are loss-of-function by disrupting FIBCD1-CS-4S association. Gene knockdown in flies resulted in morphological disruption of the neuromuscular junction and motor-related behavioural deficits. In humans and mice, FIBCD1 is expressed in discrete brain regions, including the hippocampus. Fibcd1 KO mice exhibited normal hippocampal neuronal morphology but impaired hippocampal-dependent learning. Further, hippocampal synaptic remodelling in acute slices from Fibcd1 KO mice was deficient but restored upon enzymatically modulating the ECM. Together, we identified FIBCD1 as an endocytic receptor for GAGs in the brain ECM and a novel gene associated with an NDD, revealing a critical role in nervous system structure, function and plasticity.
Collapse
Affiliation(s)
- Christopher W Fell
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Department of NeurologyMedical University of ViennaViennaAustria
| | - Astrid Hagelkruys
- VBC – Vienna BioCenter CampusIMBA, Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
| | - Ana Cicvaric
- Department of Neurophysiology and Neuropharmacology, Centre for Physiology and PharmacologyMedical University of ViennaViennaAustria
- Department of Psychiatry and Behavioral Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Marion Horrer
- VBC – Vienna BioCenter CampusIMBA, Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
| | - Lucy Liu
- Department of Genetics, Harvard Medical SchoolHoward Hughes Medical InstituteBostonMAUSA
| | - Joshua Shing Shun Li
- Department of Genetics, Harvard Medical SchoolHoward Hughes Medical InstituteBostonMAUSA
| | - Johannes Stadlmann
- VBC – Vienna BioCenter CampusIMBA, Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
- Institute of BiochemistryUniversity of Natural Resource and Life SciencesViennaAustria
| | - Anton A Polyansky
- Department of Structural and Computational Biology, Max Perutz LabsUniversity of ViennaViennaAustria
- MM Shemyakin and Yu A Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
| | - Stefan Mereiter
- VBC – Vienna BioCenter CampusIMBA, Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
| | - Miguel Angel Tejada
- VBC – Vienna BioCenter CampusIMBA, Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
- Research Unit on Women's Health‐Institute of Health Research INCLIVAValenciaSpain
| | - Tomislav Kokotović
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Department of NeurologyMedical University of ViennaViennaAustria
| | - Venkat Swaroop Achuta
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- Department of NeurologyMedical University of ViennaViennaAustria
| | - Angelica Scaramuzza
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- Department of NeurologyMedical University of ViennaViennaAustria
| | | | | | | | - Huifang Yan
- Department of PediatricsPeking University First HospitalBeijingChina
- Joint International Research Center of Translational and Clinical ResearchBeijingChina
| | - Jingmin Wang
- Department of PediatricsPeking University First HospitalBeijingChina
- Joint International Research Center of Translational and Clinical ResearchBeijingChina
| | - Margit Burmeister
- Michigan Neuroscience InstituteUniversity of MichiganAnn ArborMIUSA
- Departments of Computational Medicine & Bioinformatics, Psychiatry and Human GeneticsUniversity of MichiganAnn ArborMIUSA
| | - Biswa Choudhury
- Department of Cellular and Molecular MedicineUCSDLa JollaCAUSA
| | - Thomas Levin Andersen
- Clinical Cell Biology, Department of PathologyOdense University HospitalOdenseDenmark
- Pathology Research Unit, Department of Clinical Research and Department of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Gerald Wirnsberger
- VBC – Vienna BioCenter CampusIMBA, Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
- Apeiron Biologics AG, Vienna BioCenter CampusViennaAustria
| | - Uffe Holmskov
- Cancer and Inflammation Research, Department of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical SchoolHoward Hughes Medical InstituteBostonMAUSA
| | - Bojan Žagrović
- Department of Structural and Computational Biology, Max Perutz LabsUniversity of ViennaViennaAustria
| | - Francisco J Monje
- Department of Neurophysiology and Neuropharmacology, Centre for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Jesper Bonnet Moeller
- Cancer and Inflammation Research, Department of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
- Danish Institute for Advanced StudyUniversity of Southern DenmarkOdenseDenmark
| | - Josef M Penninger
- VBC – Vienna BioCenter CampusIMBA, Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
- Department of Medical Genetics, Life Science InstituteUniversity of British ColumbiaVancouverBCCanada
| | - Vanja Nagy
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Department of NeurologyMedical University of ViennaViennaAustria
| |
Collapse
|
40
|
Wan RP, Liu ZG, Huang XF, Kwan P, Li YP, Qu XC, Ye XG, Chen FY, Zhang DW, He MF, Wang J, Mao YL, Qiao JD. YWHAZ variation causes intellectual disability and global developmental delay with brain malformation. Hum Mol Genet 2022; 32:462-472. [PMID: 36001342 PMCID: PMC9851741 DOI: 10.1093/hmg/ddac210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 01/24/2023] Open
Abstract
YWHAZ encodes an adapter protein 14-3-3ζ, which is involved in many signaling pathways that control cellular proliferation, migration and differentiation. It has not been definitely correlated to any phenotype in OMIM. To investigate the role of YWHAZ gene in intellectual disability and global developmental delay, we conducted whole-exon sequencing in all of the available members from a large three-generation family and we discovered that a novel variant of the YWHAZ gene was associated with intellectual disability and global developmental delay. This variant is a missense mutation of YWHAZ, p.Lys49Asn/c.147A > T, which was found in all affected members but not found in other unaffected members. We also conducted computational modeling and knockdown/knockin with Drosophila to confirm the role of the YWHAZ variant in intellectual disability. Computational modeling showed that the binding energy was increased in the mutated protein combining with the ligand indicating that the c147A > T variation was a loss-of-function variant. Cognitive defects and mushroom body morphological abnormalities were observed in YWHAZ c.147A > T knockin flies. The YWHAZ knockdown flies also manifested serious cognitive defects with hyperactivity behaviors, which is consistent with the clinical features. Our clinical and experimental results consistently suggested that YWHAZ was a novel intellectual disability pathogenic gene.
Collapse
Affiliation(s)
- Rui-Ping Wan
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong 528011, China
| | - Zhi-Gang Liu
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong 528011, China
| | - Xiao-Fei Huang
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong 528011, China
| | - Ping Kwan
- School of Veterinary Science, University of Sydney, Sydney 2050, Australia
| | - Ya-Ping Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xiao-Chong Qu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xing-Guang Ye
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong 528011, China
| | - Feng-Ying Chen
- Department of Radiology, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong 528011, China
| | - Da-Wei Zhang
- Department of Radiology, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong 528011, China
| | - Ming-Feng He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Jie Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Yu-Ling Mao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China,Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Jing-Da Qiao
- To whom correspondence should be addressed at: Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China. Tel: 86-13242327861;
| |
Collapse
|
41
|
Zhang JM, Chen MJ, He JH, Li YP, Li ZC, Ye ZJ, Bao YH, Huang BJ, Zhang WJ, Kwan P, Mao YL, Qiao JD. Ketone Body Rescued Seizure Behavior of LRP1 Deficiency in Drosophila by Modulating Glutamate Transport. J Mol Neurosci 2022; 72:1706-1714. [PMID: 35668313 DOI: 10.1007/s12031-022-02026-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022]
Abstract
LRP1, the low-density lipoprotein receptor 1, would be a novel candidate gene of epilepsy according to our bioinformatic results and the animal study. In this study, we explored the role of LRP1 in epilepsy and whether beta-hydroxybutyrate, the principal ketone body of the ketogenic diet, can treat epilepsy caused by LRP1 deficiency in drosophila. UAS/GAL4 system was used to establish different genotype models. Flies were given standard, high-sucrose, and ketone body food randomly. The bang-sensitive test was performed on flies and seizure-like behavior was assessed. In morphologic experiments, we found that LRP1 deficiency caused partial loss of the ellipsoidal body and partial destruction of the fan-shaped body. Whole-body and glia LRP1 defect flies had a higher seizure rate compared to the control group. Ketone body decreased the seizure rate in behavior test in all LRP1 defect flies, compared to standard and high sucrose diet. Overexpression of glutamate transporter gene Eaat1 could mimic the ketone body effect on LRP1 deficiency flies. This study demonstrated that LRP1 defect globally or in glial cells or neurons could induce epilepsy in drosophila. The ketone body efficaciously rescued epilepsy caused by LRP1 knockdown. The results support screening for LRP1 mutations as discriminating conduct for individuals who require clinical attention and further clarify the mechanism of the ketogenic diet in epilepsy, which could help epilepsy patients make a precise treatment case by case.
Collapse
Affiliation(s)
- Jin-Ming Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ming-Jie Chen
- The Third Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Jiong-Hui He
- The Third Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Ya-Ping Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhi-Cai Li
- The First Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Zi-Jing Ye
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yong-Hui Bao
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Bing-Jun Huang
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Wen-Jie Zhang
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Ping Kwan
- School of Veterinary Science, University of Sydney, Sydney, Australia
| | - Yu-Ling Mao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Jing-da Qiao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
42
|
Wang JY, Wang J, Lu XG, Song W, Luo S, Zou DF, Hua LD, Peng Q, Tian Y, Gao LD, Liao WP, He N. Recessive PKD1 Mutations Are Associated With Febrile Seizures and Epilepsy With Antecedent Febrile Seizures and the Genotype-Phenotype Correlation. Front Mol Neurosci 2022; 15:861159. [PMID: 35620448 PMCID: PMC9128595 DOI: 10.3389/fnmol.2022.861159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThe PKD1 encodes polycystin-1, a large transmembrane protein that plays important roles in cell proliferation, apoptosis, and cation transport. Previous studies have identified PKD1 mutations in autosomal dominant polycystic kidney disease (ADPKD). However, the expression of PKD1 in the brain is much higher than that in the kidney. This study aimed to explore the association between PKD1 and epilepsy.MethodsTrios-based whole-exome sequencing was performed in a cohort of 314 patients with febrile seizures or epilepsy with antecedent febrile seizures. The damaging effects of variants was predicted by protein modeling and multiple in silico tools. The genotype-phenotype association of PKD1 mutations was systematically reviewed and analyzed.ResultsEight pairs of compound heterozygous missense variants in PKD1 were identified in eight unrelated patients. All patients suffered from febrile seizures or epilepsy with antecedent febrile seizures with favorable prognosis. All of the 16 heterozygous variants presented no or low allele frequencies in the gnomAD database, and presented statistically higher frequency in the case-cohort than that in controls. These missense variants were predicted to be damaging and/or affect hydrogen bonding or free energy stability of amino acids. Five patients showed generalized tonic-clonic seizures (GTCS), who all had one of the paired missense mutations located in the PKD repeat domain, suggesting that mutations in the PKD domains were possibly associated with GTCS. Further analysis demonstrated that monoallelic mutations with haploinsufficiency of PKD1 potentially caused kidney disease, compound heterozygotes with superimposed effects of two missense mutations were associated with epilepsy, whereas the homozygotes with complete loss of PKD1 would be embryonically lethal.ConclusionPKD1 gene was potentially a novel causative gene of epilepsy. The genotype-phenotype relationship of PKD1 mutations suggested a quantitative correlation between genetic impairment and phenotypic variation, which will facilitate the genetic diagnosis and management in patients with PKD1 mutations.
Collapse
Affiliation(s)
- Jing-Yang Wang
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Jie Wang
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Xin-Guo Lu
- Epilepsy Center, Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Wang Song
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Sheng Luo
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Dong-Fang Zou
- Epilepsy Center, Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Li-Dong Hua
- Translational Medicine Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Qian Peng
- Department of Pediatrics, Dongguan City Maternal and Child Health Hospital, Southern Medical University, Dongguan, China
| | - Yang Tian
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Liang-Di Gao
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Na He
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
- *Correspondence: Na He,
| |
Collapse
|
43
|
Tian Y, Zhai QX, Li XJ, Shi Z, Cheng CF, Fan CX, Tang B, Zhang Y, He YY, Li WB, Luo S, Hou C, Chen WX, Liao WP, Wang J. ATP6V0C Is Associated With Febrile Seizures and Epilepsy With Febrile Seizures Plus. Front Mol Neurosci 2022; 15:889534. [PMID: 35600075 PMCID: PMC9120599 DOI: 10.3389/fnmol.2022.889534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose To identify novel genetic causes of febrile seizures (FS) and epilepsy with febrile seizures plus (EFS+). Methods We performed whole-exome sequencing in a cohort of 32 families, in which at least two individuals were affected by FS or EFS+. The probands, their parents, and available family members were recruited to ascertain whether the genetic variants were co-segregation. Genes with repetitively identified variants with segregations were selected for further studies to define the gene-disease association. Results We identified two heterozygous ATP6V0C mutations (c.64G > A/p.Ala22Thr and c.361_373del/p.Thr121Profs*7) in two unrelated families with six individuals affected by FS or EFS+. The missense mutation was located in the proteolipid c-ring that cooperated with a-subunit forming the hemichannel for proton transferring. It also affected the hydrogen bonds with surround residues and the protein stability, implying a damaging effect. The frameshift mutation resulted in a loss of function by yielding a premature termination of 28 residues at the C-terminus of the protein. The frequencies of ATP6V0C mutations identified in this cohort were significantly higher than that in the control populations. All the six affected individuals suffered from their first FS at the age of 7-8 months. The two probands later manifested afebrile seizures including myoclonic seizures that responded well to lamotrigine. They all displayed favorable outcomes without intellectual or developmental abnormalities, although afebrile seizures or frequent seizures occurred. Conclusion This study suggests that ATP6V0C is potentially a candidate pathogenic gene of FS and EFS+. Screening for ATP6V0C mutations would help differentiating patients with Dravet syndrome caused by SCN1A mutations, which presented similar clinical manifestation but different responses to antiepileptic treatment.
Collapse
Affiliation(s)
- Yang Tian
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qiong-Xiang Zhai
- Department of Pediatrics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiao-Jing Li
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhen Shi
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chuan-Fang Cheng
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Guangzhou, China
| | - Cui-Xia Fan
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Guangzhou, China
| | - Bin Tang
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Guangzhou, China
| | - Ying Zhang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yun-Yan He
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Guangzhou, China
| | - Wen-Bin Li
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Guangzhou, China
| | - Sheng Luo
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Guangzhou, China
| | - Chi Hou
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wen-Xiong Chen
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Guangzhou, China
| | - Jie Wang
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Guangzhou, China
| |
Collapse
|
44
|
Qiao JD, Li X, Li J, Guo QH, Tang XQ, Chen LZ, Su T, Yi YH, Wang J, Liao WP. Reply: UNC13B and focal epilepsy. Brain 2022; 145:e13-e16. [PMID: 35380625 DOI: 10.1093/brain/awab486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jing-Da Qiao
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Xin Li
- Department of Pediatrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jia Li
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Qing-Hui Guo
- Department of Pediatrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xue-Qing Tang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Li-Zhi Chen
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Tao Su
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Yong-Hong Yi
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Jie Wang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Wei-Ping Liao
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| |
Collapse
|
45
|
|
46
|
Li XL, Li ZJ, Liang XY, Liu DT, Jiang M, Gao LD, Li H, Tang XQ, Shi YW, Li BM, He N, Li B, Bian WJ, Yi YH, Cheng CF, Wang J. CACNA1A Mutations Associated With Epilepsies and Their Molecular Sub-Regional Implications. Front Mol Neurosci 2022; 15:860662. [PMID: 35600082 PMCID: PMC9116572 DOI: 10.3389/fnmol.2022.860662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/05/2022] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Previously, mutations in the voltage-gated calcium channel subunit alpha1 A (CACNA1A) gene have been reported to be associated with paroxysmal disorders, typically as episodic ataxia type 2. To determine the relationship between CACNA1A and epilepsies and the role of molecular sub-regional on the phenotypic heterogeneity. METHODS Trio-based whole-exome sequencing was performed in 318 cases with partial epilepsy and 150 cases with generalized epilepsy. We then reviewed all previously reported CACNA1A mutations and analyzed the genotype-phenotype correlations with molecular sub-regional implications. RESULTS We identified 12 CACNA1A mutations in ten unrelated cases of epilepsy, including four de novo null mutations (c.2963_2964insG/p.Gly989Argfs*78, c.3089 + 1G > A, c.4755 + 1G > T, and c.6340-1G > A), four de novo missense mutations (c.203G > T/p.Arg68Leu, c.3965G > A/p.Gly1322Glu, c.5032C > T/p.Arg1678Cys, and c.5393C > T/p.Ser1798Leu), and two pairs of compound heterozygous missense mutations (c.4891A > G/p.Ile1631Val& c.5978C > T/p.Pro1993Leu and c.3233C > T/p.Ser1078Leu&c.6061G > A/p.Glu2021Lys). The eight de novo mutations were evaluated as pathogenic or likely pathogenic mutations according to the criteria of American College of Medical Genetics and Genomics (ACMG). The frequencies of the compound heterozygous CACNA1A mutations identified in this cohort were significantly higher than that in the controls of East Asian and all populations (P = 7.30 × 10-4, P = 2.53 × 10-4). All of the ten cases were ultimately seizure-free after antiepileptic treatment, although frequent epileptic seizures were observed in four cases. Further analysis revealed that episodic ataxia type 2 (EA2) had a tendency of higher frequency of null mutations than epilepsies. The missense mutations in severe epileptic phenotypes were more frequently located in the pore region than those in milder epileptic phenotypes (P = 1.67 × 10-4); de novo mutations in the epilepsy with intellectual disability (ID) had a higher percentage than those in the epilepsy without ID (P = 1.92 × 10-3). CONCLUSION This study suggested that CACNA1A mutations were potentially associated with pure epilepsy and the spectrum of epileptic phenotypes potentially ranged from the mild form of epilepsies such as absence epilepsy or partial epilepsy, to the severe form of developmental epileptic encephalopathy. The clinical phenotypes variability is potentially associated with the molecular sub-regional of the mutations.
Collapse
Affiliation(s)
- Xue-Lian Li
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Neurology, The Affiliated Yuebei People’s Hospital of Shantou University Medical College, Shaoguan, China
| | - Zong-Jun Li
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao-Yu Liang
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - De-Tian Liu
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mi Jiang
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liang-Di Gao
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huan Li
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xue-Qing Tang
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yi-Wu Shi
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bing-Mei Li
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Na He
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bin Li
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wen-Jun Bian
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yong-Hong Yi
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chuan-Fang Cheng
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Chuan-Fang Cheng,
| | - Jie Wang
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Jie Wang,
| |
Collapse
|
47
|
Li J, Lin SM, Qiao JD, Liu XR, Wang J, Jiang M, Zhang J, Zhong M, Chen XQ, Zhu J, He N, Su T, Shi YW, Yi YH, Liao WP. CELSR3 variants are associated with febrile seizures and epilepsy with antecedent febrile seizures. CNS Neurosci Ther 2021; 28:382-389. [PMID: 34951123 PMCID: PMC8841303 DOI: 10.1111/cns.13781] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/27/2021] [Accepted: 11/27/2021] [Indexed: 11/30/2022] Open
Abstract
Aims To identify novel pathogenic gene of febrile seizures (FS)/epilepsy with antecedent FS (EFS+). Methods The trio‐based whole‐exome sequencing was performed in a cohort of 462 cases with FS/EFS+. Silico programs, sequence alignment, and protein modeling were used to predict the damaging of variants. Statistical testing was performed to analyze gene‐based burden of variants. Results Five heterozygous missense variants in CELSR3 were detected in five cases (families) with eight individuals (five females, three males) affected. Two variants were de novo, and three were identified in families with more than one individual affected. All the variants were predicted to be damaging in silico tools. Protein modeling showed that the variants resulted in disappearance of multiple hydrogen bonds and one disulfide bond, which potentially caused functional impairments of protein. The frequency of CELSR3 variants identified in this study was significantly higher than that in controls. All affected individuals were diagnosed with FS/EFS+, including six patients with FS and two patients with EFS+. All cases presented favorable outcomes without neurodevelopmental disorders. Conclusions CELSR3 variants are potentially associated with FS/EFS+.
Collapse
Affiliation(s)
- Jia Li
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Si-Mei Lin
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Jing-Da Qiao
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Xiao-Rong Liu
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Jie Wang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Mi Jiang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Jing Zhang
- Department of Pediatrics, Xiangya Changde Hospital, Changde, China
| | - Min Zhong
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xu-Qin Chen
- Department of Neurology, Children's Hospital of Soochow University, Suzhou, China
| | - Jing Zhu
- Department of Pediatrics, The First Hospital of Anhui Medical University, Hefei, China
| | - Na He
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Tao Su
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Yi-Wu Shi
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Yong-Hong Yi
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Wei-Ping Liao
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | | |
Collapse
|