1
|
Colinet M, Chiver I, Bonafina A, Masset G, Almansa D, Di Valentin E, Twizere JC, Nguyen L, Espuny-Camacho I. SARS-CoV2 infection triggers inflammatory conditions and astrogliosis-related gene expression in long-term human cortical organoids. Stem Cells 2025; 43:sxaf010. [PMID: 40103011 PMCID: PMC12121356 DOI: 10.1093/stmcls/sxaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 02/18/2025] [Indexed: 03/20/2025]
Abstract
SARS-CoV2, severe acute respiratory syndrome coronavirus 2, is frequently associated with neurological manifestations. Despite the presence of mild to severe CNS-related symptoms in a cohort of patients, there is no consensus whether the virus can infect directly brain tissue or if the symptoms in patients are a consequence of peripheral infectivity of the virus. Here, we use long-term human stem cell-derived cortical organoids to assess SARS-CoV2 infectivity of brain cells and unravel the cell-type tropism and its downstream pathological effects. Our results show consistent and reproducible low levels of SARS-CoV2 infection of astrocytes, deep projection neurons, upper callosal neurons, and inhibitory neurons in 6 months of human cortical organoids. Interestingly, astrocytes showed the highest infection rate among all infected cell populations which led to changes in their morphology and upregulation of SERPINA3, CD44, and S100A10 astrogliosis markers. Further, transcriptomic analysis revealed overall changes in expression of genes related to cell metabolism, astrogliosis and, inflammation and further, upregulation of cell survival pathways. Thus, local and minor infectivity of SARS-CoV2 in the brain may induce widespread adverse effects and lead to the resilience of dysregulated neurons and astrocytes within an inflammatory environment.
Collapse
Affiliation(s)
- Mathilde Colinet
- Laboratory of Molecular Regulation of Neurogenesis, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Ioana Chiver
- Laboratory of Molecular Regulation of Neurogenesis, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Antonela Bonafina
- Laboratory of Molecular Regulation of Neurogenesis, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Gérald Masset
- Laboratory of Molecular Regulation of Neurogenesis, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Daniel Almansa
- Laboratory of Molecular Regulation of Neurogenesis, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Emmanuel Di Valentin
- GIGA Viral Vector Platform, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Jean-Claude Twizere
- Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Laurent Nguyen
- Laboratory of Molecular Regulation of Neurogenesis, GIGA Institute, University of Liège, Liège 4000, Belgium
- WELBIO Department, WEL Research Institute, Wavre 1300, Belgium
| | - Ira Espuny-Camacho
- Laboratory of Molecular Regulation of Neurogenesis, GIGA Institute, University of Liège, Liège 4000, Belgium
- GIGA HIPS, GIGA Institute, University of Liège, Liège 4000, Belgium
| |
Collapse
|
2
|
Sun Y, Luo X, Chen N, Xie L, Hu S, Zhou M, Wang L, Wang L, Li X, Yang Z, Yi P, Xu J. Impact of maternal COVID-19 infection on offspring immunity and maternal-fetal outcomes at different pregnancy stages: a cohort study. BMC Pregnancy Childbirth 2025; 25:219. [PMID: 40022096 PMCID: PMC11869480 DOI: 10.1186/s12884-025-07323-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/12/2025] [Indexed: 03/03/2025] Open
Abstract
OBJECTIVE To investigate the impact of COVID-19 infection on maternal and neonatal outcomes and immunity in pregnant women in China. METHODS 283 pregnant women with COVID-19 were included in the prospective observational cohort study and divided into five groups based on infection stage. Antibody levels were measured in plasma, umbilical cord blood, and breast milk, and combined with clinical data and 6-month follow-up results. We measured SARS-CoV-2 antibody levels using a chemiluminescence immunoassay and analyzed the data with the Kruskal-Wallis test, χ2 test, or Fisher's exact test. RESULTS No significant differences were found in age, BMI, weight change during pregnancy, or the incidence of gestational hypertension, gestational diabetes, gestational hypothyroidism, intrahepatic cholestasis, transaminitis, preterm birth, small for gestational age, neonatal NICU transfers, developmental delays, and hearing damage among the five groups. The incidence of COVID-19 in infants from mothers infected at different stages of pregnancy was significantly lower than in the uninfected group (P < 0.05). Maternal and umbilical cord blood showed significantly higher IgG levels in the infected group compared to the uninfected group at different stages of pregnancy (P < 0.05). The median transplacental antibody transfer ratio across all infection groups was 1.15 (0.98-1.30), with no significant differences between them. The reinfection group had significantly higher IgA levels during pregnancy compared to other groups (P < 0.05). CONCLUSION No adverse outcomes were observed in mothers or infants at any stage of maternal SARS-CoV-2 infection. Antibodies in umbilical cord blood and breast milk may offer passive immunity to newborns for 1-3 months. Reinfection during pregnancy may extend this immunity without raising the risk of adverse outcomes.
Collapse
Affiliation(s)
- Yushan Sun
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Xin Luo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Ningxuan Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Lingcui Xie
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Shan Hu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Mingfang Zhou
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Li Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Liyan Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Xia Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Zailin Yang
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China.
| | - Jing Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China.
| |
Collapse
|
3
|
Perochon T, Krsnik Z, Massimo M, Ruchiy Y, Romero AL, Mohammadi E, Li X, Long KR, Parkkinen L, Blomgren K, Lagache T, Menassa DA, Holcman D. Unraveling microglial spatial organization in the developing human brain with DeepCellMap, a deep learning approach coupled with spatial statistics. Nat Commun 2025; 16:1577. [PMID: 39948387 PMCID: PMC11825940 DOI: 10.1038/s41467-025-56560-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Mapping cellular organization in the developing brain presents significant challenges due to the multidimensional nature of the data, characterized by complex spatial patterns that are difficult to interpret without high-throughput tools. Here, we present DeepCellMap, a deep-learning-assisted tool that integrates multi-scale image processing with advanced spatial and clustering statistics. This pipeline is designed to map microglial organization during normal and pathological brain development and has the potential to be adapted to any cell type. Using DeepCellMap, we capture the morphological diversity of microglia, identify strong coupling between proliferative and phagocytic phenotypes, and show that distinct spatial clusters rarely overlap as human brain development progresses. Additionally, we uncover an association between microglia and blood vessels in fetal brains exposed to maternal SARS-CoV-2. These findings offer insights into whether various microglial phenotypes form networks in the developing brain to occupy space, and in conditions involving haemorrhages, whether microglia respond to, or influence changes in blood vessel integrity. DeepCellMap is available as an open-source software and is a powerful tool for extracting spatial statistics and analyzing cellular organization in large tissue sections, accommodating various imaging modalities. This platform opens new avenues for studying brain development and related pathologies.
Collapse
Affiliation(s)
- Theo Perochon
- Group of Data Modeling and Computational Biology, IBENS, École Normale Supérieure, Paris, France
| | - Zeljka Krsnik
- Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | - Marco Massimo
- Centre for Developmental Neurobiology, MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Yana Ruchiy
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | | | - Elyas Mohammadi
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Xiaofei Li
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Katherine R Long
- Centre for Developmental Neurobiology, MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Laura Parkkinen
- Department of Neuropathology and The Queen's College, University of Oxford, Oxford, United Kingdom
| | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Thibault Lagache
- BioImage Analysis Unit, CNRS UMR3691, Institut Pasteur, Université Paris Cité, Paris, France.
| | - David A Menassa
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.
- Department of Neuropathology and The Queen's College, University of Oxford, Oxford, United Kingdom.
| | - David Holcman
- Group of Data Modeling and Computational Biology, IBENS, École Normale Supérieure, Paris, France.
- DAMPT, University of Cambridge, DAMPT and Churchill College, Cambridge, United Kingdom.
| |
Collapse
|
4
|
Courtney Y, Hochstetler A, Lehtinen MK. Choroid Plexus Pathophysiology. ANNUAL REVIEW OF PATHOLOGY 2025; 20:193-220. [PMID: 39383438 PMCID: PMC11884907 DOI: 10.1146/annurev-pathmechdis-051222-114051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
This review examines the roles of the choroid plexus (ChP) in central nervous system (CNS) pathology, emphasizing its involvement in disease mechanisms and therapeutic potential. Structural changes in the human ChP have been reported across various diseases in case reports and descriptive work, but studies have yet to pin down the physiological relevance of these changes. We highlight primary pathologies of the ChP, as well as their significance in neurologic disorders, including stroke, hydrocephalus, infectious diseases, and neurodegeneration. Synthesizing recent research, this review positions the ChP as a critical player in CNS homeostasis and pathology, advocating for enhanced focus on its mechanisms to unlock new diagnostic and treatment strategies and ultimately improve patient outcomes in CNS diseases. Whether acting as a principal driver of disease, a gateway for pathogens into the CNS, or an orchestrator of neuroimmune processes, the ChP holds tremendous promise as a therapeutic target to attenuate a multitude of CNS conditions.
Collapse
Affiliation(s)
- Ya'el Courtney
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA;
- Graduate Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexandra Hochstetler
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA;
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA;
- Graduate Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Crawford G, Soper O, Kang E, Berg DA. Advancing insights into virus-induced neurodevelopmental disorders through human brain organoid modelling. Expert Rev Mol Med 2024; 27:e1. [PMID: 39587735 PMCID: PMC11707831 DOI: 10.1017/erm.2024.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/18/2024] [Accepted: 10/19/2024] [Indexed: 11/27/2024]
Abstract
Human neurodevelopment is a complex process vulnerable to disruptions, particularly during the prenatal period. Maternal viral infections represent a significant environmental factor contributing to a spectrum of congenital defects with profound and enduring impacts on affected offspring. The advent of induced pluripotent stem cell (iPSC)-derived three-dimensional (3D) human brain organoids has revolutionised our ability to model prenatal viral infections and associated neurodevelopmental disorders. Notably, human brain organoids provide a distinct advantage over traditional animal models, whose brain structures and developmental processes differ markedly from those of humans. These organoids offer a sophisticated platform for investigating viral pathogenesis, infection mechanisms and potential therapeutic interventions, as demonstrated by their pivotal role during the 2016 Zika virus outbreak. This review critically examines the utilisation of brain organoids in elucidating the mechanisms of TORCH viral infections, their impact on human brain development and contribution to associated neurodevelopmental disorders.
Collapse
Affiliation(s)
- Gabriella Crawford
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Olivia Soper
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Eunchai Kang
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Daniel A. Berg
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
6
|
McMahon CL, Hurley EM, Muniz Perez A, Estrada M, Lodge DJ, Hsieh J. Prenatal SARS-CoV-2 infection results in neurodevelopmental and behavioral outcomes in mice. JCI Insight 2024; 9:e179068. [PMID: 38781563 PMCID: PMC11383367 DOI: 10.1172/jci.insight.179068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Prenatal exposure to viral pathogens has been known to cause the development of neuropsychiatric disorders in adulthood. Furthermore, COVID-19 has been associated with a variety of neurological manifestations, raising the question of whether in utero SARS-CoV-2 exposure can affect neurodevelopment, resulting in long-lasting behavioral and cognitive deficits. Using a human ACE2-knock-in mouse model, we have previously shown that prenatal exposure to SARS-CoV-2 at later stages of development leads to fetal brain infection and gliosis in the hippocampus and cortex. In this study, we aimed to determine whether infection of the fetal brain results in long-term neuroanatomical alterations of the cortex and hippocampus or in any cognitive deficits in adulthood. Here, we show that infected mice developed slower and weighed less in adulthood. We also found altered hippocampal and amygdala volume and aberrant newborn neuron morphology in the hippocampus of adult mice infected in utero. Furthermore, we observed sex-dependent alterations in anxiety-like behavior and locomotion, as well as hippocampal-dependent spatial memory. Taken together, our study reveals long-lasting neurological and cognitive changes as a result of prenatal SARS-CoV-2 infection, identifying a window for early intervention and highlighting the importance of immunization and antiviral intervention in pregnant women.
Collapse
Affiliation(s)
- Courtney L McMahon
- Department of Neuroscience, Developmental and Regenerative Biology, and
- Brain Health Consortium, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Erin M Hurley
- Department of Neuroscience, Developmental and Regenerative Biology, and
- Brain Health Consortium, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Aranis Muniz Perez
- Department of Neuroscience, Developmental and Regenerative Biology, and
- Brain Health Consortium, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Manuel Estrada
- Department of Neuroscience, Developmental and Regenerative Biology, and
| | - Daniel J Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Jenny Hsieh
- Department of Neuroscience, Developmental and Regenerative Biology, and
- Brain Health Consortium, University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
7
|
Pellegrini L, Silva-Vargas V, Patrizi A. Breakthroughs in choroid plexus and CSF biology from the first European Choroid plexus Scientific Forum (ECSF). Fluids Barriers CNS 2024; 21:43. [PMID: 38773599 PMCID: PMC11106960 DOI: 10.1186/s12987-024-00546-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024] Open
Abstract
The European Choroid plexus Scientific Forum (ECSF), held in Heidelberg, Germany between the 7th and 9th of November 2023, involved 21 speakers from eight countries. ECSF focused on discussing cutting-edge fundamental and medical research related to the development and functions of the choroid plexus and its implications for health, aging, and disease, including choroid plexus tumors. In addition to new findings in this expanding field, innovative approaches, animal models and 3D in vitro models were showcased to encourage further investigation into choroid plexus and cerebrospinal fluid roles.
Collapse
Affiliation(s)
- Laura Pellegrini
- Centre for Developmental Neurobiology, Guys Campus, King's College London, New Hunt's House, London, UK.
| | | | - Annarita Patrizi
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
8
|
Stepien BK, Wielockx B. From Vessels to Neurons-The Role of Hypoxia Pathway Proteins in Embryonic Neurogenesis. Cells 2024; 13:621. [PMID: 38607059 PMCID: PMC11012138 DOI: 10.3390/cells13070621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Embryonic neurogenesis can be defined as a period of prenatal development during which divisions of neural stem and progenitor cells give rise to neurons. In the central nervous system of most mammals, including humans, the majority of neocortical neurogenesis occurs before birth. It is a highly spatiotemporally organized process whose perturbations lead to cortical malformations and dysfunctions underlying neurological and psychiatric pathologies, and in which oxygen availability plays a critical role. In case of deprived oxygen conditions, known as hypoxia, the hypoxia-inducible factor (HIF) signaling pathway is activated, resulting in the selective expression of a group of genes that regulate homeostatic adaptations, including cell differentiation and survival, metabolism and angiogenesis. While a physiological degree of hypoxia is essential for proper brain development, imbalanced oxygen levels can adversely affect this process, as observed in common obstetrical pathologies such as prematurity. This review comprehensively explores and discusses the current body of knowledge regarding the role of hypoxia and the HIF pathway in embryonic neurogenesis of the mammalian cortex. Additionally, it highlights existing gaps in our understanding, presents unanswered questions, and provides avenues for future research.
Collapse
Affiliation(s)
- Barbara K. Stepien
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ben Wielockx
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany
- Experimental Centre, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
9
|
Stolp HB, Solito E. Developmental priming of early cerebrovascular ageing: Implications across a lifetime. Int J Geriatr Psychiatry 2024; 39:e6090. [PMID: 38629845 DOI: 10.1002/gps.6090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
INTRODUCTION Neurological conditions such as Alzheimer's disease and stroke represent a substantial health burden to the world's ageing population. Cerebrovascular dysfunction is a key contributor to these conditions, affecting an individual's risk profile, age of onset, and severity of neurological disease. Recent data shows that early-life events, such as maternal health during pregnancy, birth weight and exposure to environmental toxins can 'prime' the vascular system for later changes. With age, blood vessels can become less flexible and more prone to damage. This can lead to reduced blood flow to the brain, which is associated with cognitive decline and an increased risk of stroke and other cerebrovascular diseases. These in turn increase the risk of vascular dementia and Alzheimer's disease. OBJECTIVES We aim to explore how early life factors influence cerebrovascular health, ageing and disease. METHODS We have reviewed recently published literature from epidemiological studies, clinical cases and basic research which explore mechanisms that contribute to cerebrovascular and blood-brain barrier dysfunction, with a particularly focus on those that assess contribution of early-life events or vascular priming to subsequent injury. RESULTS Perinatal events have been linked to acute cerebrovascular dysfunction and long-term structural reorganisation. Systemic disease throughout the lifetime that produce inflammatory or oxidative stress may further sensitise the cerebrovasculature to disease and contribute to neurodegeneration. CONCLUSIONS By identifying these early-life determinants and understanding their mechanisms, scientists aim to develop strategies for preventing or mitigating cerebrovascular ageing-related issues.
Collapse
Affiliation(s)
- Helen B Stolp
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Egle Solito
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
10
|
Hofbauer A, Schneider H, Kehl S, Reutter H, Pecks U, Andresen K, Morhart P. [SARS-CoV-2 Infection in Pregnancy and Incidence of Congenital Malformations - is there a Correlation? Analysis of 8032 Pregnancies from the CRONOS Registry]. Z Geburtshilfe Neonatol 2024; 228:65-73. [PMID: 38330961 DOI: 10.1055/a-2213-1506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
BACKGROUND Based on single case reports, the COVID-19 Related Obstetric and Neonatal Outcome Study (CRONOS) registry, sponsored by the German Society for Perinatal Medicine (DGPM), investigated the likelihood that SARS-CoV-2 infections of the mother in (early) pregnancy cause embryopathies and/or fetopathies. MATERIAL/METHODS The CRONOS registry enrolled a total of 8032 women with confirmed SARS-CoV-2 infection during pregnancy at more than 130 participating hospitals from April 2020 to February 2023. Both maternal and fetal data were documented and the anonymized multicenter data were analyzed. RESULTS Of 7142 fully documented pregnancies (including postnatal data), 140 showed congenital malformations. 8.57% of the mothers had had a SARS-CoV-2-infection in the 1st trimester and 36.43% in the 2nd trimester. In 66 cases with congenital malformations (47.14%), the malformation was only detected after the diagnosis of a maternal SARS-CoV-2 infection. The overall prevalence of congenital malformations in this cohort was 1.96%, compared to a prevalence of 2.39% reported in the EUROCAT (European network of population-based registries for the epidemiological surveillance of congenital anomalies) pre-pandemic registry between 2017-2019. DISCUSSION Our multicenter data argue against a link between maternal SARS-CoV-2 infection in early pregnancy and congenital malformation.
Collapse
Affiliation(s)
- Anna Hofbauer
- Neonatologie, Kinder- und Jugendklinik, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Holm Schneider
- Neonatologie, Kinder- und Jugendklinik, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sven Kehl
- Fachbereich Geburtshilfe, Frauenklinik, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Heiko Reutter
- Neonatologie, Kinder- und Jugendklinik, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ulrich Pecks
- Geburtshilfe, Klinik für Gynäkologie und Geburtshilfe, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Kristin Andresen
- Geburtshilfe, Klinik für Gynäkologie und Geburtshilfe, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Patrick Morhart
- Neonatologie, Kinder- und Jugendklinik, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
11
|
Zhang L, Lin C, Zhu J, He Y, Zhan M, Xia X, Yang N, Yang K, Wang B, Zhong Z, Wang Y, Ding W, Yang Y. Restoring prefrontal cortical excitation-inhibition balance with cannabidiol ameliorates neurobehavioral abnormalities in a mouse model of neurodevelopmental disorders. Neuropharmacology 2023; 240:109715. [PMID: 37716533 DOI: 10.1016/j.neuropharm.2023.109715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
Maternal immune activation (MIA) resulting from viral infections during pregnancy is linked to increased rates of neurodevelopmental disorders in offspring. However, the mechanisms underlying MIA-induced neurobehavioral abnormalities remain unclear. Here, we used a poly (I:C)-induced MIA mouse model to demonstrate the presence of multiple behavioral deficits in male offspring. Through RNA sequencing (RNA-seq), we identified significant upregulation of genes involved in axonogenesis, synaptogenesis, and glutamatergic synaptic neurotransmission in the mPFC of MIA mice. Electrophysiological analyses further revealed an excitatory-inhibitory (E/I) synaptic imbalance in mPFC pyramidal neurons, leading to hyperactivity in this brain region. Cannabidiol (CBD) effectively alleviated the behavioral abnormalities observed in MIA offspring by reducing glutamatergic transmission and enhancing GABAergic neurotransmission of mPFC pyramidal neurons. Activation of GPR55 by lipid lysophosphatidylinositol (LPI), an endogenous GPR55 agonist, specifically in the mPFC of healthy animals led to MIA-associated behavioral phenotypes, which CBD could effectively reverse. Moreover, we found that a GPR55 antagonist can mimic CBD's beneficial effects, indicating that CBD's therapeutic effects are mediated via the LPI-GPR55 signaling pathway. Therefore, we identified mPFC as a primary node of a neural network that mediates MIA-induced behavioral abnormalities in offspring. Our work provides insights into the mechanisms underlying the developmental consequences of MIA and identifies CBD as a promising therapeutic approach to alleviate these effects.
Collapse
Affiliation(s)
- Lu Zhang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chunqiao Lin
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiushuang Zhu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yan He
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Meng Zhan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiuwen Xia
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ni Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Kun Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Baojia Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhanqion Zhong
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yili Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Weijun Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Youjun Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
12
|
Vimercati A, De Nola R, Dellino M, Vinci L, Ricci I, Malvasi A, Damiani GR, Gaetani M, Lamanna B, Cicinelli E, Salzillo C, Marzullo A, Resta L, Cascardi E, Cazzato G. SARS-CoV-2 Infection in the Second Trimester of Pregnancy: A Case Report of Fetal Intraventricular Hemorrhage After Critical COVID-19 Infection and a Brief Review of the Literature. Cureus 2023; 15:e48659. [PMID: 38090414 PMCID: PMC10712690 DOI: 10.7759/cureus.48659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2023] [Indexed: 10/16/2024] Open
Abstract
More than three and a half years have passed since the start of the coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and there have been several studies in the literature about the different damage and symptom patterns related to the condition; particular attention has been paid to the transmission of the disease from pregnant mothers to fetus. In this report, we present the case of a 36-year-old patient with a history of two cesarean sections (CS), two miscarriages, and hypothyroidism on replacement therapy, who contracted COVID-19 during the 15th week of gestation. Ultrasound (US) examination at 22 weeks revealed regular fetal biometry and bilateral ventriculomegaly, highly suggestive of massive intracerebral hemorrhage. The patient opted for the interruption of pregnancy. Given the critical maternal COVID-19 complications, especially tracheoesophageal fistula and the patient's two previous cesareans, we decided on an abortive CS at 23 weeks of gestation, and the samples were sent to the Pathology Department. Histologic analysis showed massive intervillous deposition of fibrin and inflammatory infiltration with hotspots of necrotic deciduitis and confirmed massive cerebral hemorrhage in the fetus. This morphological appearance was consistent with COVID-19 infection and probable fetal oxygenation compromise related to deciduitis. Immunoexpression of anti-SARS-CoV-2 S1 antibody was almost entirely positive at the level of syncytiotrophoblast cells and maternal leukocytes in the absence of a clear signal in the fetal circulation. Conversely, in the brain, immunoexpression of angiotensin-converting enzyme 2 (ACE2) and the S1 subunit of the spike protein of SARS-CoV-2, detected by a monoclonal antibody, was almost entirely negative, suggesting that there was no infection in the brain and that the massive intraventricular hemorrhage was probably a secondary effect of placental damage.
Collapse
Affiliation(s)
- Antonella Vimercati
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, ITA
| | - Rosalba De Nola
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, ITA
| | - Miriam Dellino
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, ITA
| | - Lorenzo Vinci
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, ITA
| | - Ilaria Ricci
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, ITA
| | | | - Gianluca Raffaello Damiani
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, ITA
| | - Maria Gaetani
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, ITA
| | - Bruno Lamanna
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, ITA
| | - Ettore Cicinelli
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, ITA
| | - Cecilia Salzillo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, ITA
| | - Andrea Marzullo
- Section of Pathology, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, ITA
| | - Leonardo Resta
- Department of Pathology, University of Bari Aldo Moro, Bari, ITA
| | - Eliano Cascardi
- Pathology Unit, FPO-IRCCS Candiolo Cancer Institute, University of Turin, Turin, ITA
| | - Gerardo Cazzato
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, ITA
| |
Collapse
|
13
|
Basak I, Harfoot R, Palmer JE, Kumar A, Quiñones-Mateu ME, Schweitzer L, Hughes SM. Neuroproteomic Analysis after SARS-CoV-2 Infection Reveals Overrepresented Neurodegeneration Pathways and Disrupted Metabolic Pathways. Biomolecules 2023; 13:1597. [PMID: 38002279 PMCID: PMC10669333 DOI: 10.3390/biom13111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Besides respiratory illness, SARS-CoV-2, the causative agent of COVID-19, leads to neurological symptoms. The molecular mechanisms leading to neuropathology after SARS-CoV-2 infection are sparsely explored. SARS-CoV-2 enters human cells via different receptors, including ACE-2, TMPRSS2, and TMEM106B. In this study, we used a human-induced pluripotent stem cell-derived neuronal model, which expresses ACE-2, TMPRSS2, TMEM106B, and other possible SARS-CoV-2 receptors, to evaluate its susceptibility to SARS-CoV-2 infection. The neurons were exposed to SARS-CoV-2, followed by RT-qPCR, immunocytochemistry, and proteomic analyses of the infected neurons. Our findings showed that SARS-CoV-2 infects neurons at a lower rate than other human cells; however, the virus could not replicate or produce infectious virions in this neuronal model. Despite the aborted SARS-CoV-2 replication, the infected neuronal nuclei showed irregular morphology compared to other human cells. Since cytokine storm is a significant effect of SARS-CoV-2 infection in COVID-19 patients, in addition to the direct neuronal infection, the neurons were treated with pre-conditioned media from SARS-CoV-2-infected lung cells, and the neuroproteomic changes were investigated. The limited SARS-CoV-2 infection in the neurons and the neurons treated with the pre-conditioned media showed changes in the neuroproteomic profile, particularly affecting mitochondrial proteins and apoptotic and metabolic pathways, which may lead to the development of neurological complications. The findings from our study uncover a possible mechanism behind SARS-CoV-2-mediated neuropathology that might contribute to the lingering effects of the virus on the human brain.
Collapse
Affiliation(s)
- Indranil Basak
- Brain Health Research Centre, Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Rhodri Harfoot
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand (M.E.Q.-M.)
| | - Jennifer E. Palmer
- Brain Health Research Centre, Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Abhishek Kumar
- Centre for Protein Research, University of Otago, Dunedin 9016, New Zealand
| | - Miguel E. Quiñones-Mateu
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand (M.E.Q.-M.)
| | - Lucia Schweitzer
- Brain Health Research Centre, Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Stephanie M. Hughes
- Brain Health Research Centre, Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
14
|
Suleri A, Cecil C, Rommel AS, Hillegers M, White T, de Witte LD, Muetzel RL, Bergink V. Long-term effects of prenatal infection on the human brain: a prospective multimodal neuroimaging study. Transl Psychiatry 2023; 13:306. [PMID: 37789021 PMCID: PMC10547711 DOI: 10.1038/s41398-023-02597-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023] Open
Abstract
There is convincing evidence from rodent studies suggesting that prenatal infections affect the offspring's brain, but evidence in humans is limited. Here, we assessed the occurrence of common infections during each trimester of pregnancy and examined associations with brain outcomes in adolescent offspring. Our study was embedded in the Generation R Study, a large-scale sociodemographically diverse prospective birth cohort. We included 1094 mother-child dyads and investigated brain morphology (structural MRI), white matter microstructure (DTI), and functional connectivity (functional MRI), as outcomes at the age of 14. We focused on both global and focal regions. To define prenatal infections, we composed a score based on the number and type of infections during each trimester of pregnancy. Models were adjusted for several confounders. We found that prenatal infection was negatively associated with cerebral white matter volume (B = -0.069, 95% CI -0.123 to -0.015, p = 0.011), and we found an association between higher prenatal infection scores and smaller volumes of several frontotemporal regions of the brain. After multiple testing correction, we only observed an association between prenatal infections and the caudal anterior cingulate volume (B = -0.104, 95% CI -0.164 to -0.045, p < 0.001). We did not observe effects of prenatal infection on other measures of adolescent brain morphology, white matter microstructure, or functional connectivity, which is reassuring. Our results show potential regions of interest in the brain for future studies; data on the effect of severe prenatal infections on the offspring's brain in humans are needed.
Collapse
Affiliation(s)
- Anna Suleri
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- The Generation R Study Group, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Charlotte Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anna-Sophie Rommel
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Manon Hillegers
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tonya White
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - Lot D de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ryan L Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Veerle Bergink
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA.
- Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|