1
|
Dalin D, Wiesmeier IK, Heimbach B, Weiller C, Maurer C. Postural control deficits due to bilateral pyramidal tract lesions exemplified by hereditary spastic paraplegia (HSP) originate from increased feedback time delay and reduced long-term error corrections. Front Hum Neurosci 2023; 17:1229055. [PMID: 38116238 PMCID: PMC10728727 DOI: 10.3389/fnhum.2023.1229055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
Pyramidal tract lesions determine the clinical syndrome of Hereditary Spastic Paraplegia (HSP). The clinical impairments of HSP are typically exemplified by their deficits in mobility, leading to falls and injuries. The first aim of this study was to identify the cause for postural abnormalities caused by pyramidal tract lesions in HSP. The second aim was to specify the effect of treadmill training for postural abnormalities. We examined nine HSP patients before and after treadmill training, as well as nine healthy control subjects during perturbed and unperturbed stance. We found that HSP was associated with larger sway amplitudes and velocities. Body excursions following platform tilts were larger, and upper body excursions showed a phase lead. Model-based analysis detected a greater time delay and a reduced long-term error correction of postural reactions in the center of mass. HSP patients performed significantly better in clinical assessments after treadmill training. In addition, treadmill training reduced sway amplitudes and body excursions, most likely by increasing positional and velocity error correction gain as a compensatory mechanism, while the time delay and long-term error correction gain remained largely unaffected. Moreover, the upper body's phase lead was reduced. We conclude that HSP leads to very specific postural impairments. While postural control generally benefits from treadmill training, the effect seems to mainly rely on compensatory mechanisms, whereas the original deficits are not affected significantly.
Collapse
Affiliation(s)
- Daniela Dalin
- Department of Neurology and Neurophysiology, Medical Faculty, University Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Isabella Katharina Wiesmeier
- Department of Neurology and Neurophysiology, Medical Faculty, University Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Bernhard Heimbach
- Department of Neurology and Neurophysiology, Medical Faculty, University Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Cornelius Weiller
- Department of Neurology and Neurophysiology, Medical Faculty, University Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Christoph Maurer
- Department of Neurology and Neurophysiology, Medical Faculty, University Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
2
|
Dukkipati SS, Walker SJ, Trevarrow MP, Busboom MT, Kurz MJ. Spinal cord H-reflex post-activation depression is linked with hand motor control in adults with cerebral palsy. Clin Neurophysiol 2023; 148:9-16. [PMID: 36773504 PMCID: PMC9998348 DOI: 10.1016/j.clinph.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/08/2022] [Accepted: 01/01/2023] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Cerebral palsy (CP) is associated with upper extremity motor impairments that are largely assumed to arise from alterations in the supraspinal networks. The objective of this study was to determine if post-activation depression of the spinal H-reflexes is altered in adults with CP and connected with altered upper extremity function. METHODS The post-activation depression of the flexor carpi radialis (FCR) H-reflex of adults with CP and healthy adults (HA) controls were assessed by 1) a 1 Hz continuous single-pulse stimulus train and 2) 0.11 Hz / 1 Hz paired-pulse stimuli. Secondarily, we measured the maximum key grip force and the box and blocks assessment of manual dexterity. RESULTS Our results revealed that adults with CP had reduced post-activation depression of the FCR H-reflex during the stimulus train and the paired pulse protocol. A greater reduction in H-reflex post-activation depression was connected to lower manual dexterity and weaker grip forces. CONCLUSIONS Our results indicate that the post-activation depression of the upper extremity spinal H-reflex pathways is altered in adults with CP and possibly linked with their uncharacteristic upper extremity motor performance. Alterations in the spinal networks may also play a significant role in the altered motor control of adults with CP. SIGNIFICANCE Our results identify spinal H-reflex modulation as a possible locus for hand motor control in CP.
Collapse
Affiliation(s)
- Shekar S Dukkipati
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Sarah J Walker
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Michael P Trevarrow
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Morgan T Busboom
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Max J Kurz
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
3
|
Dukkipati SS, Walker SJ, Trevarrow MP, Busboom M, Baker SE, Kurz MJ. Reduced wrist flexor H-reflex excitability is linked with increased wrist proprioceptive error in adults with cerebral palsy. Front Neurol 2022; 13:930303. [PMID: 36016542 PMCID: PMC9396222 DOI: 10.3389/fneur.2022.930303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/18/2022] [Indexed: 12/03/2022] Open
Abstract
Although most neurophysiological studies of persons with cerebral palsy (CP) have been focused on supraspinal networks, recent evidence points toward the spinal cord as a central contributor to their motor impairments. However, it is unclear if alterations in the spinal pathways are also linked to deficits in the sensory processing observed clinically. This investigation aimed to begin to address this knowledge gap by evaluating the flexor carpi radialis (FCR) H-reflex in adults with CP and neurotypical (NT) controls while at rest and during an isometric wrist flexion task. The maximal H-wave (Hmax) and M-wave (Mmax) at rest were calculated and utilized to compute Hmax/Mmax ratios (H:M ratios). Secondarily, the facilitation of the H-wave was measured while producing an isometric, voluntary wrist flexion contraction (i.e., active condition). Finally, a wrist position sense test was used to quantify the level of joint position sense. These results revealed that the adults with CP had a lower H:M ratio compared with the NT controls while at rest. The adults with CP were also unable to facilitate their H-reflexes with voluntary contraction and had greater position sense errors compared with the controls. Further, these results showed that the adults with CP that had greater wrist position sense errors tended to have a lower H:M ratio at rest. Overall, these findings highlight that aberration in the spinal cord pathways of adults with CP might play a role in the sensory processing deficiencies observed in adults with CP.
Collapse
Affiliation(s)
- S. Shekar Dukkipati
- Boys Town National Research Hospital, Omaha, NE, United States
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Sarah J. Walker
- Boys Town National Research Hospital, Omaha, NE, United States
| | | | - Morgan Busboom
- Boys Town National Research Hospital, Omaha, NE, United States
| | - Sarah E. Baker
- Boys Town National Research Hospital, Omaha, NE, United States
| | - Max J. Kurz
- Boys Town National Research Hospital, Omaha, NE, United States
- School of Medicine, Creighton University, Omaha, NE, United States
- *Correspondence: Max J. Kurz
| |
Collapse
|
4
|
Conner BC, Spomer AM, Bishe SSPA, Steele KM, Lerner ZF. Soleus H-reflex modulation in cerebral palsy and its relationship with neural control complexity: a pilot study. Exp Brain Res 2022; 240:2073-2084. [PMID: 35752662 PMCID: PMC10072969 DOI: 10.1007/s00221-022-06399-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/09/2022] [Indexed: 02/08/2023]
Abstract
Individuals with cerebral palsy (CP) display motor control patterns that suggest decreased supraspinal input, but it remains unknown if they are able to modulate lower-limb reflexes in response to more complex tasks, or whether global motor control patterns relate to reflex modulation capacity in this population. Eight ambulatory individuals with CP (12-18 years old) were recruited to complete a task complexity protocol, where soleus H-reflex excitability was compared between bilateral (baseline) and unilateral (complex) standing. We also investigated the relationship between each participant's ability to modulate soleus H-reflex excitability and the complexity of their walking neural control pattern determined from muscle synergy analysis. Finally, six of the eight participants completed an exoskeleton walking protocol, where soleus H-reflexes were collected during the stance phase of walking with and without stance-phase plantar flexor resistance. Participants displayed a significant reduction in soleus H-reflex excitability (- 26 ± 25%, p = 0.04) with unilateral standing, and a strong positive relationship was observed between more refined neural control during walking and an increased ability to modulate reflex excitability (R = 0.79, p = 0.04). There was no difference in neuromuscular outcome measures with and without the ankle exoskeleton (p values all > 0.05), with variable reflex responses to walking with ankle exoskeleton resistance. These findings provide evidence that ambulatory individuals with CP retain some capacity to modulate lower-limb reflexes in response to increased task complexity, and that less refined neural control during walking appears to be related to deficits in reflex modulation.
Collapse
Affiliation(s)
- Benjamin C Conner
- College of Medicine, Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Alyssa M Spomer
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Safoura Sadegh Pour Aji Bishe
- Department of Mechanical Engineering, Northern Arizona University, 15600 S McConnell Drive, NAU EGRBldg 69, Flagstaff, AZ, 86011, USA
| | - Katherine M Steele
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Zachary F Lerner
- College of Medicine, Phoenix, University of Arizona, Phoenix, AZ, USA. .,Department of Mechanical Engineering, Northern Arizona University, 15600 S McConnell Drive, NAU EGRBldg 69, Flagstaff, AZ, 86011, USA.
| |
Collapse
|
5
|
Xu J, Lopez AJ, Hoque MM, Borich MR, Kesar TM. Temporal Profile of Descending Cortical Modulation of Spinal Excitability: Group and Individual-Specific Effects. Front Integr Neurosci 2022; 15:777741. [PMID: 35197831 PMCID: PMC8859157 DOI: 10.3389/fnint.2021.777741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
Sensorimotor control is modulated through complex interactions between descending corticomotor pathways and ascending sensory inputs. Pairing sub-threshold transcranial magnetic stimulation (TMS) with peripheral nerve stimulation (PNS) modulates the Hoffmann’s reflex (H-reflex), providing a neurophysiologic probe into the influence of descending cortical drive on spinal segmental circuits. However, individual variability in the timing and magnitude of H-reflex modulation is poorly understood. Here, we varied the inter-stimulus interval (ISI) between TMS and PNS to systematically manipulate the relative timing of convergence of descending TMS-induced volleys with respect to ascending PNS-induced afferent volleys in the spinal cord to: (1) characterize effective connectivity between the primary motor cortex (M1) and spinal circuits, mediated by both direct, fastest-conducting, and indirect, slower-conducting descending pathways; and (2) compare the effect of individual-specific vs. standard ISIs. Unconditioned and TMS-conditioned H-reflexes (24 different ISIs ranging from −6 to 12 ms) were recorded from the soleus muscle in 10 able-bodied individuals. The magnitude of H-reflex modulation at individualized ISIs (earliest facilitation delay or EFD and individual-specific peak facilitation) was compared with standard ISIs. Our results revealed a significant effect of ISI on H-reflex modulation. ISIs eliciting earliest-onset facilitation (EFD 0 ms) ranged from −3 to −5 ms across individuals. No difference in the magnitude of facilitation was observed at EFD 0 ms vs. a standardized short-interval ISI of −1.5 ms. Peak facilitation occurred at longer ISIs, ranging from +3 to +11 ms. The magnitude of H-reflex facilitation derived using an individual-specific peak facilitation was significantly larger than facilitation observed at a standardized longer-interval ISI of +10 ms. Our results suggest that unique insights can be provided with individual-specific measures of top-down effective connectivity mediated by direct and/or fastest-conducting pathways (indicated by the magnitude of facilitation observed at EFD 0 ms) and other descending pathways that encompass relatively slower and/or indirect connections from M1 to spinal circuits (indicated by peak facilitation and facilitation at longer ISIs). By comprehensively characterizing the temporal profile and inter-individual variability of descending modulation of spinal reflexes, our findings provide methodological guidelines and normative reference values to inform future studies on neurophysiological correlates of the complex array of descending neural connections between M1 and spinal circuits.
Collapse
Affiliation(s)
- Jiang Xu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
| | - Alejandro J. Lopez
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, United States
| | - Maruf M. Hoque
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
| | - Michael R. Borich
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
| | - Trisha M. Kesar
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
- *Correspondence: Trisha M. Kesar
| |
Collapse
|
6
|
Ruhde L, Hulla R. An overview of the effects of whole-body vibration on individuals with cerebral palsy. J Pediatr Rehabil Med 2022; 15:193-210. [PMID: 35275570 DOI: 10.3233/prm-201508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The purpose of this review is to examine how whole-body vibration can be used as a tool in therapy to help improve common physical weaknesses in balance, bone density, gait, spasticity, and strength experienced by individuals with cerebral palsy. Cerebral palsy is the most common movement disorder in children, and whole-body vibration is quickly becoming a potential therapeutic tool with some advantages compared to traditional therapies for individuals with movement disorders. The advantages of whole-body vibration include less strain and risk of injury, more passive training activity, and reduced time to complete an effective therapeutic session, all of which are appealing for populations with physiological impairments that cause physical weakness, including individuals with cerebral palsy. This review involves a brief overview of cerebral palsy, whole-body vibration's influence on physical performance measures, its influence on physical performance in individuals with cerebral palsy, and then discusses the future directions of whole-body vibration therapy in the cerebral palsy population.
Collapse
Affiliation(s)
- Logan Ruhde
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| | - Ryan Hulla
- Department of Psychology, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
7
|
Neurophysiological Assessments of Brain and Spinal Cord Associated with Lower Limb Functions in Children with Cerebral Palsy: A Protocol for Systematic Review and Meta-Analysis. Brain Sci 2021; 11:brainsci11050628. [PMID: 34068265 PMCID: PMC8153104 DOI: 10.3390/brainsci11050628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Task-dependent neurophysiological adaptations in people with cerebral palsy have been examined using various techniques such as functional magnetic resonance imaging, peripheral nerve stimulation in order to assess H-reflexes, and transcranial magnetic stimulation. This activity-dependent plasticity is hypothesized to improve specific gross motor function in individuals with cerebral palsy. Although these adaptations have been examined extensively, most studies examined tasks utilizing the upper limbs. The aim of this review is to assess the neurophysiological adaptations of the central nervous system in individuals with cerebral palsy during lower limb functional tasks. Methods: A systematic review and meta-analysis will be conducted to evaluate the neurophysiological changes in the brain and spinal cord associated with lower extremity tasks in individuals with cerebral palsy. We will search within PubMed, MEDLINE, Embase, PsychINFO, and CINAHL using a predetermined search string to identify and evaluate relevant studies. Two independent reviewers will screen these studies against our inclusion criteria and risks of bias, and will extract the data from each study. A third reviewer will be used to resolve any disagreement regarding the inclusion of a study between reviewers. Randomized controlled trials as well as cross-sectional studies published in English 10 years before May 2021 that investigate the neurophysiological adaptations in the brain and spinal cord in people with cerebral palsy will be included if they meet the eligibility criteria. Primary outcomes will include scalar values of fractional anisotropy (FA), H-reflex gains or measures of amplitude, as well as motor cortex (M1) cortical excitability as measured by transcranial magnetic stimulation. Discussion: Since no identifiable data will be involved in this study, no ethical approval is required. Our results will provide insight into the neurophysiological adaptations in children with cerebral palsy, which will be useful in guiding directions for clinical decision making and future development of targeted interventions in pediatrics rehabilitation for children with cerebral palsy. Systematic review registration: The protocol for this systematic review is registered with the International Prospective Register of Systematic Reviews (PROSPERO; registration number: CRD42020215902).
Collapse
|
8
|
O'Brien SM, Lichtwark GA, Carroll TJ, Barber LA. Impact of Lower Limb Active Movement Training in Individuals With Spastic Type Cerebral Palsy on Neuromuscular Control Outcomes: A Systematic Review. Front Neurol 2020; 11:581892. [PMID: 33324326 PMCID: PMC7726235 DOI: 10.3389/fneur.2020.581892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/22/2020] [Indexed: 01/17/2023] Open
Abstract
Background: Cerebral Palsy (CP) is a non-progressive neurological condition that results in motor impairment which increases proximally to distally along the lower extremity (i.e., greatest impairment at the ankle). Consequently, motor impairment and reduced voluntary muscle activation results in reduced neuromuscular control of the lower limb in this population. CP rehabilitation traditionally aims to improve movement proficiency for functional activities, such as walking, by using a range of active movement modalities that require volitional effort; however, the underlying neural mechanisms of improved control and function remain unknown. The primary purpose of this study was to systematically determine the efficacy of lower limb active movement interventions to improve neuromuscular control in individuals with CP. Methodology: A search for studies involving an active lower limb intervention and neurophysiological outcome measures in individuals with CP was performed in five electronic databases. Studies were assessed for methodological quality using the Downs and Black assessment tool. Results: Nine of 6,263 articles met the inclusion criteria. Methodological quality of all studies was poor, ranging from 2 to 27 out of a possible score of 32 points on the Downs and Black assessment tool. The study interventions varied extensively in modality and prescription as well as in the outcome measures used. Conclusions: Whether active movement improves neuromuscular control of the lower limb in CP is unclear due to high variability in intervention protocols and selected outcomes measures. Future active intervention studies must carefully consider the selection of neurophysiological outcome measures.
Collapse
Affiliation(s)
- Shari M O'Brien
- School of Human Movement and Nutrition Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD, Australia.,Centre for Sensorimotor Performance, The University of Queensland, Brisbane, QLD, Australia
| | - Glen A Lichtwark
- School of Human Movement and Nutrition Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD, Australia.,Centre for Sensorimotor Performance, The University of Queensland, Brisbane, QLD, Australia
| | - Timothy J Carroll
- School of Human Movement and Nutrition Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD, Australia.,Centre for Sensorimotor Performance, The University of Queensland, Brisbane, QLD, Australia
| | - Lee A Barber
- School of Allied Health Sciences, Griffith University, Brisbane, QLD, Australia.,Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Andreu-Caravaca L, Chung LH, Ramos-Campo DJ, Marín-Cascales E, Encarnación-Martínez A, Rubio-Arias JÁ. Neuromuscular and Mobility Responses to a Vibration Session in Hypoxia in Multiple Sclerosis. Int J Sports Med 2020; 42:307-313. [PMID: 33075829 DOI: 10.1055/a-1273-8304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The aim of this study was to investigate the acute effects of vibration training (WBVT) under hypoxic and normoxic conditions on the voluntary rate of force development (RFD), balance and muscle oxygen saturation (SMO2) in persons with Multiple Sclerosis (MS). 10 participants completed the study (30% males, 44.4±7.7 years, 164.3±8.9 cm, 65.2±11.1 kg, 2.5±1.3 Expanded Disability Status Scale, 24.1±4.0 kg.m-2 BMI). Maximal force, RFD during isometric knee extension, static balance with eyes open and closed and sit-to-stand test were evaluated before and immediately after one session of WBVT (12 60-s bout of vibration; frequency 35 Hz; amplitude 4 mm; 1-min rest intervals) under both normoxic and hypoxic conditions. In addition, SMO2 of the gastrocnemius lateralis was assessed during each condition. No changes were found in force, static balance and sit-to-stand test. Time-to-peak RFD increased in the left leg (p=0.02) and tended to increase in the right leg (p=0.06) after the hypoxic session. SMO2 resulted in significant increases from the initial to final intervals of the WBVT under both hypoxic and normoxic conditions (p<0.05). Increases in SMO2 during WBVT demonstrates muscle work that may contribute to the observed muscle adaptations in long-term WBVT programs without inducing decreases in neuromuscular activation, physical function and balance within a session.
Collapse
Affiliation(s)
- Luis Andreu-Caravaca
- International Chair of Sports Medicine, Universidad Católica San Antonio de Murcia, Murcia.,Faculty of Sport, Universidad Católica San Antonio de Murcia, Murcia
| | - Linda H Chung
- UCAM Research Center for High Performance Sport, Universidad Católica San Antonio de Murcia, Murcia
| | | | - Elena Marín-Cascales
- UCAM Research Center for High Performance Sport, Universidad Católica San Antonio de Murcia, Murcia
| | - Alberto Encarnación-Martínez
- Department of Physical Education and Sports, Research Group in Sport Biomechanics (GIBD), University of Valencia, Valencia
| | - Jacobo Á Rubio-Arias
- LFE Research Group, Department of Health and Human Performance, Universidad Politecnica de Madrid, Madrid
| |
Collapse
|
10
|
Parvin S, Mehdinezhad M, Taghiloo A, Nourian R, Mirbagheri MM. The Impact of Repetitive Transcranial Magnetic Stimulation on Affected and Unaffected Sides of a Child with Hemiplegic Cerebral Palsy. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:2523-2526. [PMID: 30440921 DOI: 10.1109/embc.2018.8512877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The purpose of this study was to investigate the therapeutic effects of neuro-navigated repetitive transcranial magnetic stimulation (rTMS) combined with occupational therapy (OT) on gait impairment of a child (male, age: 13.2) with spastic hemiplegic cerebral palsy (CP). The treatment included 4 days a week of rTMS sessions for 3 weeks and 4 days of rTMS and OT sessions per week for 3 weeks. Transcranial magnetic stimulation (TMS) was used to evaluate corticospinal tract (CST) activities and H-reflex test was used to assess reflex hyper-excitability. Common clinical tests demonstrate the clinical status of the patient. Evaluations were performed in 4 time steps: baseline, 3 weeks after the beginning of the treatment, at the end of the treatment, and 1 month after the end of the treatment. The patient did not receive any specific treatment after the end of the treatment up to the follow up evaluations. The tests' results were compared between the affected and unaffected legs of the patient. Four parameters of the TMS test were calculated (motor evoked potential (MEP) latency, MEP peak-to-peak amplitude, cortical silent period (cSP), and stimulation intensity). These parameters were all improved for the affected side and cSP improved for the unaffected side, but MEP p-p amplitude and intensity got worse slightly for the unaffected side. Recruitment curves of H response and M-wave of the H-reflex test for both sides were obtained. Improvements could be seen after the treatment for both sides. Max H response on max M-wave (H/M) and H response latency got better after the treatment for both sides. Walking speed for self and fast velocity, timed up and go, and walking endurance improved during and after the treatment. All the improvements persisted after one month of the end of the treatment in the follow up evaluations. These findings indicate that rTMS combined with OT can have effective and long-lasting impact on neuromuscular impairments in spastic CP children.
Collapse
|
11
|
Affiliation(s)
- Volker Mall
- kbo-Kinderzentrum Munich, Munchen, Germany; Technical University Munich, Munchen, Germany.
| |
Collapse
|
12
|
Somatosensory Plasticity in Pediatric Cerebral Palsy following Constraint-Induced Movement Therapy. Neural Plast 2018; 2018:1891978. [PMID: 30532772 PMCID: PMC6250030 DOI: 10.1155/2018/1891978] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 09/16/2018] [Indexed: 01/15/2023] Open
Abstract
Cerebral palsy (CP) is predominantly a disorder of movement, with evidence of sensory-motor dysfunction. CIMT1 is a widely used treatment for hemiplegic CP. However, effects of CIMT on somatosensory processing remain unclear. To examine potential CIMT-induced changes in cortical tactile processing, we designed a prospective study, during which 10 children with hemiplegic CP (5 to 8 years old) underwent an intensive one-week-long nonremovable hard-constraint CIMT. Before and directly after the treatment, we recorded their cortical event-related potential (ERP) responses to calibrated light touch (versus a control stimulus) at the more and less affected hand. To provide insights into the core neurophysiological deficits in light touch processing in CP as well as into the plasticity of this function following CIMT, we analyzed the ERPs within an electrical neuroimaging framework. After CIMT, brain areas governing the more affected hand responded to touch in configurations similar to those activated by the hemisphere controlling the less affected hand before CIMT. This was in contrast to the affected hand where configurations resembled those of the more affected hand before CIMT. Furthermore, dysfunctional patterns of brain activity, identified using hierarchical ERP cluster analyses, appeared reduced after CIMT in proportion with changes in sensory-motor measures (grip or pinch movements). These novel results suggest recovery of functional sensory activation as one possible mechanism underlying the effectiveness of intensive constraint-based therapy on motor functions in the more affected upper extremity in CP. However, maladaptive effects on the less affected constrained extremity may also have occurred. Our findings also highlight the use of electrical neuroimaging as feasible methodology to measure changes in tactile function after treatment even in young children, as it does not require active participation.
Collapse
|
13
|
Booth ATC, Buizer AI, Meyns P, Oude Lansink ILB, Steenbrink F, van der Krogt MM. The efficacy of functional gait training in children and young adults with cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol 2018; 60:866-883. [PMID: 29512110 DOI: 10.1111/dmcn.13708] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2018] [Indexed: 11/28/2022]
Abstract
AIM The aim of this systematic review was to investigate the effects of functional gait training on walking ability in children and young adults with cerebral palsy (CP). METHOD The review was conducted using standardized methodology, searching four electronic databases (PubMed, Embase, CINAHL, Web of Science) for relevant literature published between January 1980 and January 2017. Included studies involved training with a focus on actively practising the task of walking as an intervention while reporting outcome measures relating to walking ability. RESULTS Forty-one studies were identified, with 11 randomized controlled trials included. There is strong evidence that functional gait training results in clinically important benefits for children and young adults with CP, with a therapeutic goal of improved walking speed. Functional gait training was found to have a moderate positive effect on walking speed over standard physical therapy (effect size 0.79, p=0.04). Further, there is weaker yet relatively consistent evidence that functional gait training can also benefit walking endurance and gait-related gross motor function. INTERPRETATION There is promising evidence that functional gait training is a safe, feasible, and effective intervention to target improved walking ability in children and young adults with CP. The addition of virtual reality and biofeedback can increase patient engagement and magnify effects. WHAT THIS PAPER ADDS Functional gait training is a safe, feasible, and effective intervention to improve walking ability. Functional gait training shows larger positive effects on walking speed than standard physical therapy. Walking endurance and gait-related gross motor function can also benefit from functional gait training. Addition of virtual reality and biofeedback shows promise to increase engagement and improve outcomes.
Collapse
Affiliation(s)
- Adam T C Booth
- Department of Rehabilitation Medicine, VU University Medical Center, Amsterdam Movement Sciences, Amsterdam, the Netherlands.,Department of Clinical Applications and Research, Motek Medical BV, Amsterdam, the Netherlands
| | - Annemieke I Buizer
- Department of Rehabilitation Medicine, VU University Medical Center, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Pieter Meyns
- Department of Rehabilitation Medicine, VU University Medical Center, Amsterdam Movement Sciences, Amsterdam, the Netherlands.,Faculty of Medicine and Life Sciences, REVAL Rehabilitation Research Center - BIOMED Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Irene L B Oude Lansink
- Department of Rehabilitation Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Frans Steenbrink
- Department of Clinical Applications and Research, Motek Medical BV, Amsterdam, the Netherlands
| | - Marjolein M van der Krogt
- Department of Rehabilitation Medicine, VU University Medical Center, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| |
Collapse
|
14
|
Rossi EM, Nevalainen P, Mäenpää H, Lauronen L. Soleus H-Reflex and Its Modulation With Vibration in Idiopathic Toe Walkers and Typically Developing Children. J Child Neurol 2018; 33:351-358. [PMID: 29575996 DOI: 10.1177/0883073818759104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Idiopathic toe walking is a relatively common developmental condition often leading to secondary problems such as pain and muscle contractures in the lower extremities. The cause of idiopathic toe walking is unknown, which hinders the development of treatment strategies. To test whether children with idiopathic toe walking have functional alterations in their spinal motor circuits, we studied the properties of the soleus H-reflex and its modulation with vibration in 26 idiopathic toe walkers and 16 typically developing children. At the group level, the H-reflex properties did not differ, but at the individual level, in 7 of 25 idiopathic toe walkers, some of the H-reflex parameters fell out of normal limits of typically developing children. However, the H-reflex was suppressed by vibration to the Achilles tendon similarly in both the idiopathic toe walkers and typically developing children. In conclusion, idiopathic toe walking in some children can be associated with functional alterations in their spinal motor circuits.
Collapse
Affiliation(s)
- Essi Marttinen Rossi
- 1 Pediatric Neurology, Children's Hospital, University of Helsinki and Helsinki University Hospital, HUS, Finland
| | - Päivi Nevalainen
- 2 Clinical Neurophysiology, HUS Medical Imaging Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, HUS, Finland
| | - Helena Mäenpää
- 1 Pediatric Neurology, Children's Hospital, University of Helsinki and Helsinki University Hospital, HUS, Finland
| | - Leena Lauronen
- 2 Clinical Neurophysiology, HUS Medical Imaging Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, HUS, Finland
| |
Collapse
|
15
|
Cappellini G, Sylos-Labini F, MacLellan MJ, Sacco A, Morelli D, Lacquaniti F, Ivanenko Y. Backward walking highlights gait asymmetries in children with cerebral palsy. J Neurophysiol 2017; 119:1153-1165. [PMID: 29357466 DOI: 10.1152/jn.00679.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
To investigate how early injuries to developing motor regions of the brain affect different forms of gait, we compared the spatiotemporal locomotor patterns during forward (FW) and backward (BW) walking in children with cerebral palsy (CP). Bilateral gait kinematics and EMG activity of 11 pairs of leg muscles were recorded in 14 children with CP (9 diplegic, 5 hemiplegic; 3.0-11.1 yr) and 14 typically developing (TD) children (3.3-11.8 yr). During BW, children with CP showed a significant increase of gait asymmetry in foot trajectory characteristics and limb intersegmental coordination. Furthermore, gait asymmetries, which were not evident during FW in diplegic children, became evident during BW. Factorization of the EMG signals revealed a comparable structure of the motor output during FW and BW in all groups of children, but we found differences in the basic temporal activation patterns. Overall, the results are consistent with the idea that both forms of gait share pattern generation control circuits providing similar (though reversed) kinematic patterns. However, BW requires different muscle activation timings associated with muscle modules, highlighting subtle gait asymmetries in diplegic children, and thus provides a more comprehensive assessment of gait pathology in children with CP. The findings suggest that spatiotemporal asymmetry assessments during BW might reflect an impaired state and/or descending control of the spinal locomotor circuitry and can be used for diagnostic purposes and as complementary markers of gait recovery. NEW & NOTEWORTHY Early injuries to developing motor regions of the brain affect both forward progression and other forms of gait. In particular, backward walking highlights prominent gait asymmetries in children with hemiplegia and diplegia from cerebral palsy and can give a more comprehensive assessment of gait pathology. The observed spatiotemporal asymmetry assessments may reflect both impaired supraspinal control and impaired state of the spinal circuitry.
Collapse
Affiliation(s)
- Germana Cappellini
- Centre of Space Bio-medicine, University of Rome Tor Vergata , Rome , Italy.,Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation , Rome , Italy
| | - Francesca Sylos-Labini
- Centre of Space Bio-medicine, University of Rome Tor Vergata , Rome , Italy.,Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation , Rome , Italy
| | | | - Annalisa Sacco
- Department of Pediatric Neurorehabilitation, IRCCS Santa Lucia Foundation , Rome , Italy
| | - Daniela Morelli
- Department of Pediatric Neurorehabilitation, IRCCS Santa Lucia Foundation , Rome , Italy
| | - Francesco Lacquaniti
- Centre of Space Bio-medicine, University of Rome Tor Vergata , Rome , Italy.,Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation , Rome , Italy.,Department of Systems Medicine, University of Rome Tor Vergata , Rome , Italy
| | - Yury Ivanenko
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation , Rome , Italy
| |
Collapse
|
16
|
Krause A, Schönau E, Gollhofer A, Duran I, Ferrari-Malik A, Freyler K, Ritzmann R. Alleviation of Motor Impairments in Patients with Cerebral Palsy: Acute Effects of Whole-body Vibration on Stretch Reflex Response, Voluntary Muscle Activation and Mobility. Front Neurol 2017; 8:416. [PMID: 28861038 PMCID: PMC5561012 DOI: 10.3389/fneur.2017.00416] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/31/2017] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Individuals suffering from cerebral palsy (CP) often have involuntary, reflex-evoked muscle activity resulting in spastic hyperreflexia. Whole-body vibration (WBV) has been demonstrated to reduce reflex activity in healthy subjects, but evidence in CP patients is still limited. Therefore, this study aimed to establish the acute neuromuscular and kinematic effects of WBV in subjects with spastic CP. METHODS 44 children with spastic CP were tested on neuromuscular activation and kinematics before and immediately after a 1-min bout of WBV (16-25 Hz, 1.5-3 mm). Assessment included (1) recordings of stretch reflex (SR) activity of the triceps surae, (2) electromyography (EMG) measurements of maximal voluntary muscle activation of lower limb muscles, and (3) neuromuscular activation during active range of motion (aROM). We recorded EMG of m. soleus (SOL), m. gastrocnemius medialis (GM), m. tibialis anterior, m. vastus medialis, m. rectus femoris, and m. biceps femoris. Angular excursion was recorded by goniometry of the ankle and knee joint. RESULTS After WBV, (1) SOL SRs were decreased (p < 0.01) while (2) maximal voluntary activation (p < 0.05) and (3) angular excursion in the knee joint (p < 0.01) were significantly increased. No changes could be observed for GM SR amplitudes or ankle joint excursion. Neuromuscular coordination expressed by greater agonist-antagonist ratios during aROM was significantly enhanced (p < 0.05). DISCUSSION The findings point toward acute neuromuscular and kinematic effects following one bout of WBV. Protocols demonstrate that pathological reflex responses are reduced (spinal level), while the execution of voluntary movement (supraspinal level) is improved in regards to kinematic and neuromuscular control. This facilitation of muscle and joint control is probably due to a reduction of spasticity-associated spinal excitability in favor of giving access for greater supraspinal input during voluntary motor control.
Collapse
Affiliation(s)
- Anne Krause
- Department of Sport Science, University of Freiburg, Freiburg, Germany
| | - Eckhard Schönau
- Center of Prevention and Rehabilitation, University of Cologne, Cologne, Germany
| | - Albert Gollhofer
- Department of Sport Science, University of Freiburg, Freiburg, Germany
| | - Ibrahim Duran
- Center of Prevention and Rehabilitation, University of Cologne, Cologne, Germany
| | - Anja Ferrari-Malik
- Center of Prevention and Rehabilitation, University of Cologne, Cologne, Germany
| | - Kathrin Freyler
- Department of Sport Science, University of Freiburg, Freiburg, Germany
| | - Ramona Ritzmann
- Department of Sport Science, University of Freiburg, Freiburg, Germany
| |
Collapse
|
17
|
Kang J, Martelli D, Vashista V, Martinez-Hernandez I, Kim H, Agrawal SK. Robot-driven downward pelvic pull to improve crouch gait in children with cerebral palsy. Sci Robot 2017; 2:2/8/eaan2634. [DOI: 10.1126/scirobotics.aan2634] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/30/2017] [Indexed: 11/02/2022]
|
18
|
Gannotti ME. Coupling Timing of Interventions With Dose to Optimize Plasticity and Participation in Pediatric Neurologic Populations. Pediatr Phys Ther 2017; 29 Suppl 3:S37-S47. [PMID: 28654476 PMCID: PMC5488702 DOI: 10.1097/pep.0000000000000383] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE The purpose of this article is to propose that coupling of timing of interventions with dosing of interventions optimizes plasticity and participation in pediatric neurologic conditions, specifically cerebral palsy. Dosing includes frequency, intensity, time per session, and type of intervention. Interventions focus on body structures and function and activity and participation, and both are explored. Known parameters for promoting bone, muscle, and brain plasticity and evidence supporting critical periods of growth during development are reviewed. Although parameters for dosing participation are not yet established, emerging evidence suggests that participation at high intensities has the potential for change. Participation interventions may provide an additional avenue to promote change through the life span. Recommendations for research and clinical practice are presented to stimulate discussions and innovations in research and practice.
Collapse
Affiliation(s)
- Mary E Gannotti
- Department of Rehabilitation Sciences, University of Hartford, West Hartford, Connecticut
| |
Collapse
|
19
|
Klarner T, Barss TS, Sun Y, Kaupp C, Loadman PM, Zehr EP. Long-Term Plasticity in Reflex Excitability Induced by Five Weeks of Arm and Leg Cycling Training after Stroke. Brain Sci 2016; 6:brainsci6040054. [PMID: 27827888 PMCID: PMC5187568 DOI: 10.3390/brainsci6040054] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/22/2016] [Accepted: 10/28/2016] [Indexed: 12/21/2022] Open
Abstract
Neural connections remain partially viable after stroke, and access to these residual connections provides a substrate for training-induced plasticity. The objective of this project was to test if reflex excitability could be modified with arm and leg (A & L) cycling training. Nineteen individuals with chronic stroke (more than six months postlesion) performed 30 min of A & L cycling training three times a week for five weeks. Changes in reflex excitability were inferred from modulation of cutaneous and stretch reflexes. A multiple baseline (three pretests) within-subject control design was used. Plasticity in reflex excitability was determined as an increase in the conditioning effect of arm cycling on soleus stretch reflex amplitude on the more affected side, by the index of modulation, and by the modulation ratio between sides for cutaneous reflexes. In general, A & L cycling training induces plasticity and modifies reflex excitability after stroke.
Collapse
Affiliation(s)
- Taryn Klarner
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| | - Trevor S Barss
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| | - Yao Sun
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| | - Chelsea Kaupp
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| | - Pamela M Loadman
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
- Division of Medical Sciences, University of Victoria, BC V8P 5C2, Canada.
| |
Collapse
|
20
|
Cappellini G, Ivanenko YP, Martino G, MacLellan MJ, Sacco A, Morelli D, Lacquaniti F. Immature Spinal Locomotor Output in Children with Cerebral Palsy. Front Physiol 2016; 7:478. [PMID: 27826251 PMCID: PMC5078720 DOI: 10.3389/fphys.2016.00478] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/05/2016] [Indexed: 12/29/2022] Open
Abstract
Detailed descriptions of gait impairments have been reported in cerebral palsy (CP), but it is still unclear how maturation of the spinal motoneuron output is affected. Spatiotemporal alpha-motoneuron activation during walking can be assessed by mapping the electromyographic activity profiles from several, simultaneously recorded muscles onto the anatomical rostrocaudal location of the motoneuron pools in the spinal cord, and by means of factor analysis of the muscle activity profiles. Here, we analyzed gait kinematics and EMG activity of 11 pairs of bilateral muscles with lumbosacral innervation in 35 children with CP (19 diplegic, 16 hemiplegic, 2-12 years) and 33 typically developing (TD) children (1-12 years). TD children showed a progressive reduction of EMG burst durations and a gradual reorganization of the spatiotemporal motoneuron output with increasing age. By contrast, children with CP showed very limited age-related changes of EMG durations and motoneuron output, as well as of limb intersegmental coordination and foot trajectory control (on both sides for diplegic children and the affected side for hemiplegic children). Factorization of the EMG signals revealed a comparable structure of the motor output in children with CP and TD children, but significantly wider temporal activation patterns in children with CP, resembling the patterns of much younger TD infants. A similar picture emerged when considering the spatiotemporal maps of alpha-motoneuron activation. Overall, the results are consistent with the idea that early injuries to developing motor regions of the brain substantially affect the maturation of the spinal locomotor output and consequently the future locomotor behavior.
Collapse
Affiliation(s)
- Germana Cappellini
- Centre of Space Bio-medicine, University of Rome Tor Vergata Rome, Italy
| | - Yury P Ivanenko
- Laboratory of Neuromotor Physiology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation Rome, Italy
| | - Giovanni Martino
- Centre of Space Bio-medicine, University of Rome Tor Vergata Rome, Italy
| | | | - Annalisa Sacco
- Department of Pediatric Neurorehabilitation, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation Rome, Italy
| | - Daniela Morelli
- Department of Pediatric Neurorehabilitation, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation Rome, Italy
| | - Francesco Lacquaniti
- Centre of Space Bio-medicine, University of Rome Tor VergataRome, Italy; Laboratory of Neuromotor Physiology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia FoundationRome, Italy; Department of Systems Medicine, University of Rome Tor VergataRome, Italy
| |
Collapse
|
21
|
Thompson AK, Wolpaw JR. The simplest motor skill: mechanisms and applications of reflex operant conditioning. Exerc Sport Sci Rev 2014; 42:82-90. [PMID: 24508738 DOI: 10.1249/jes.0000000000000010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Operant conditioning protocols can change spinal reflexes gradually, which are the simplest behaviors. This article summarizes the evidence supporting two propositions: that these protocols provide excellent models for defining the substrates of learning and that they can induce and guide plasticity to help restore skills, such as locomotion, that have been impaired by spinal cord injury or other disorders.
Collapse
Affiliation(s)
- Aiko K Thompson
- 1Helen Hayes Hospital, NYS Department of Health, West Haverstraw; 2Wadsworth Center, NYS Department of Health, Albany; 3Department of Neurology, Neurological Institute, Columbia University, New York; and 4Department of Biomedical Sciences, State University of New York, Albany, NY
| | | |
Collapse
|
22
|
Jansen K, De Groote F, Aerts W, De Schutter J, Duysens J, Jonkers I. Altering length and velocity feedback during a neuro-musculoskeletal simulation of normal gait contributes to hemiparetic gait characteristics. J Neuroeng Rehabil 2014; 11:78. [PMID: 24885302 PMCID: PMC4030738 DOI: 10.1186/1743-0003-11-78] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 04/14/2014] [Indexed: 11/14/2022] Open
Abstract
Background Spasticity is an important complication after stroke, especially in the anti-gravity muscles, i.e. lower limb extensors. However the contribution of hyperexcitable muscle spindle reflex loops to gait impairments after stroke is often disputed. In this study a neuro-musculoskeletal model was developed to investigate the contribution of an increased length and velocity feedback and altered reflex modulation patterns to hemiparetic gait deficits. Methods A musculoskeletal model was extended with a muscle spindle model providing real-time length and velocity feedback of gastrocnemius, soleus, vasti and rectus femoris during a forward dynamic simulation (neural control model). By using a healthy subject’s base muscle excitations, in combination with increased feedback gains and altered reflex modulation patterns, the effect on kinematics was simulated. A foot-ground contact model was added to account for the interaction effect between the changed kinematics and the ground. The qualitative effect i.e. the directional effect and the specific gait phases where the effect is present, on the joint kinematics was then compared with hemiparetic gait deviations reported in the literature. Results Our results show that increased feedback in combination with altered reflex modulation patterns of soleus, vasti and rectus femoris muscle can contribute to excessive ankle plantarflexion/inadequate dorsiflexion, knee hyperextension/inadequate flexion and increased hip extension/inadequate flexion during dedicated gait cycle phases. Increased feedback of gastrocnemius can also contribute to excessive plantarflexion/inadequate dorsiflexion, however in combination with excessive knee and hip flexion. Increased length/velocity feedback can therefore contribute to two types of gait deviations, which are both in accordance with previously reported gait deviations in hemiparetic patients. Furthermore altered modulation patterns, in particular the reduced suppression of the muscle spindle feedback during swing, can contribute largely to an increased plantarflexion and knee extension during the swing phase and consequently to hampered toe clearance. Conclusions Our results support the idea that hyperexcitability of length and velocity feedback pathways, especially in combination with altered reflex modulation patterns, can contribute to deviations in hemiparetic gait. Surprisingly, our results showed only subtle temporal differences between length and velocity feedback. Therefore, we cannot attribute the effects seen in kinematics to one specific type of feedback.
Collapse
Affiliation(s)
- Karen Jansen
- Department of Kinesiology, Human Movement Biomechanics Research Group, KU Leuven, Tervuursevest 101 - box 1501, 3001 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
23
|
Molecular mechanisms of treadmill therapy on neuromuscular atrophy induced via botulinum toxin A. Neural Plast 2013; 2013:593271. [PMID: 24327926 PMCID: PMC3845528 DOI: 10.1155/2013/593271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 09/13/2013] [Accepted: 10/01/2013] [Indexed: 01/09/2023] Open
Abstract
Botulinum toxin A (BoNT-A) is a bacterial zinc-dependent endopeptidase that acts specifically on neuromuscular junctions. BoNT-A blocks the release of acetylcholine, thereby decreasing the ability of a spastic muscle to generate forceful contraction, which results in a temporal local weakness and the atrophy of targeted muscles. BoNT-A-induced temporal muscle weakness has been used to manage skeletal muscle spasticity, such as poststroke spasticity, cerebral palsy, and cervical dystonia. However, the combined effect of treadmill exercise and BoNT-A treatment is not well understood. We previously demonstrated that for rats, following BoNT-A injection in the gastrocnemius muscle, treadmill running improved the recovery of the sciatic functional index (SFI), muscle contraction strength, and compound muscle action potential (CMAP) amplitude and area. Treadmill training had no influence on gastrocnemius mass that received BoNT-A injection, but it improved the maximal contraction force of the gastrocnemius, and upregulation of GAP-43, IGF-1, Myo-D, Myf-5, myogenin, and acetylcholine receptor (AChR) subunits α and β was found following treadmill training. Taken together, these results suggest that the upregulation of genes associated with neurite and AChR regeneration following treadmill training may contribute to enhanced gastrocnemius strength recovery following BoNT-A injection.
Collapse
|
24
|
MacGillivray MK, Klimstra M, Sawatzky B, Zehr EP, Lam T. Prior experience does not alter modulation of cutaneous reflexes during manual wheeling and symmetrical arm cycling. J Neurophysiol 2013; 109:2345-53. [DOI: 10.1152/jn.00512.2012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous research has reported that training and experience influence H-reflex amplitude during rhythmic activity; however, little research has yet examined the influence of training on cutaneous reflexes. Manual wheelchair users (MWUs) depend on their arms for locomotion. We postulated that the daily dependence and high amount of use of the arms for mobility in MWUs would show differences in cutaneous reflex modulation during upper limb cyclic movements compared with able-bodied control subjects. We hypothesized that MWUs would demonstrate increased reflex response amplitudes for both manual wheeling and symmetrical arm cycling tasks. The superficial radial nerve was stimulated randomly at different points of the movement cycle of manual wheeling and symmetrical arm cycling in MWUs and able-bodied subjects naive to wheeling. Our results showed that there were no differences in amplitude modulation of early- or middle-latency cutaneous reflexes between the able-bodied group and the MWU group. However, there were several differences in amplitude modulation of cutaneous reflexes between tasks (manual wheeling and symmetrical arm cycling). Specifically, differences were observed in early-latency responses in the anterior and posterior deltoid muscles and biceps and triceps brachii as well as in middle-latency responses in the anterior and posterior deltoid. These data suggest that manual wheeling experience does not modify the pattern of cutaneous reflex amplitude modulation during manual wheeling. The differences in amplitude modulation of cutaneous reflexes between tasks may be a result of mechanical differences (i.e., hand contact) between tasks.
Collapse
Affiliation(s)
- Megan K. MacGillivray
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Marc Klimstra
- School of Exercise Science, Physical and Health Education, University of Victoria, Victoria, British Columbia, Canada; and
| | - Bonita Sawatzky
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
- Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - E. Paul Zehr
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
- School of Exercise Science, Physical and Health Education, University of Victoria, Victoria, British Columbia, Canada; and
| | - Tania Lam
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
25
|
Duysens J, Hoogkamer W, Levin O. Is there "arthrogenic inhibition" of cutaneous reflexes in subjects with functional ankle instability? Clin Neurophysiol 2013; 124:1264-6. [PMID: 23567073 DOI: 10.1016/j.clinph.2013.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 02/21/2013] [Accepted: 02/23/2013] [Indexed: 11/28/2022]
|
26
|
Tsai SW, Tung YT, Chen HL, Shen CJ, Chuang CH, Tang TY, Chen CM. Treadmill running upregulates the expression of acetylcholine receptor in rat gastrocnemius following botulinum toxin A injection. J Orthop Res 2013; 31:125-31. [PMID: 22733692 DOI: 10.1002/jor.22180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 06/04/2012] [Indexed: 02/04/2023]
Abstract
Treadmill running is a commonly used training method for patients with spasticity to improve functional performance. Botulinum toxin has been widely used therapeutically to reduce contraction force of spastic muscle. However, the effects of treadmill running in neuromuscular junction expression and motor unit physiology on muscle following botulinum toxin injection are not well established. To assess the effects of treadmill running on neuromuscular recovery of gastrocnemius following botulinum toxin A (BoNT-A) injection, we observed changes in gene expression. We hypothesized that the expression of acetylcholine receptor (AChR), myogenesis, and nerve plasticity could be enhanced. Twenty-four Sprague-Dawley rats received botulinum toxin injection in right gastrocnemius and were then randomly assigned into untrained control and treadmill running groups. The rats assigned to the treadmill running group were trained on a treadmill 3 times/week with a running speed of 15 m/min for 8 weeks. The duration of training was 20 min per session. Muscle strength and gene expression of AChR subunit (α, β, δ, γ, and ε), MyoD, Myf-5, MRF4, myogenin, p21, IGF-1, GAP43, were analyzed. Treadmill running had no influence on gastrocnemius mass, but improved the maximal contraction force of the gastrocnemius in the treadmill running group (p < 0.05). Upregulation of GAP-43, IGF-1, Myo-D, Myf-5, myogenin, and AChR subunits α and β were found following treadmill running. The expression of genes associated with neurite and AChR regeneration following treadmill exercise was upregulated, which may have contributed to enhanced recovery of gastrocnemius strength.
Collapse
Affiliation(s)
- Sen-Wei Tsai
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
27
|
Influence of stimulus intensity on the soleus H-reflex amplitude and modulation during locomotion. J Electromyogr Kinesiol 2012. [PMID: 23186866 DOI: 10.1016/j.jelekin.2012.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Diverging results have been reported regarding the modulation and amplitude of the soleus H-reflex measured during human walking and running. A possible explanation to this could be the use of too high stimulus strength in some studies while not in others. During activities like walking and running it is necessary to use a small M-wave to control the effective stimulus strength during all phases of the movement. This implies that the descending part of the H-reflex recruitment curve is being used, which may lead to an unwanted suppression of the H-reflex due to limitations imbedded within the H-reflex methodology itself. Accordingly, the purpose of the present study was to study the effect on the soleus H-reflex during walking and running using stimulus intensities normally considered too high (up to 45% Mmax). Using M-waves of 25-45% Mmax as opposed to 5-25% Mmax showed a significant suppression of the peak H-reflex during the stance phase of walking, while no changes were observed during running. No differences were observed regarding modulation pattern. So a possible use of too high stimulus intensity cannot explain the differences mentioned. The surprising result in running may be explained by the much higher voluntary muscle activity, which implies the existence of a V-wave influencing the H-reflex amplitude in positive direction.
Collapse
|
28
|
Activity-dependent plasticity of spinal circuits in the developing and mature spinal cord. Neural Plast 2012; 2012:964843. [PMID: 22900208 PMCID: PMC3415235 DOI: 10.1155/2012/964843] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 06/12/2012] [Indexed: 01/29/2023] Open
Abstract
Part of the development and maturation of the central nervous system (CNS) occurs through interactions with the environment. Through physical activities and interactions with the world, an animal receives considerable sensory information from various sources. These sources can be internally (proprioceptive) or externally (such as touch and pressure) generated senses. Ample evidence exists to demonstrate that the sensory information originating from large diameter afferents (Ia fibers) have an important role in inducing essential functional and morphological changes for the maturation of both the brain and the spinal cord. The Ia fibers transmit sensory information generated by muscle activity and movement. Such use or activity-dependent plastic changes occur throughout life and are one reason for the ability to acquire new skills and learn new movements. However, the extent and particularly the mechanisms of activity-dependent changes are markedly different between a developing nervous system and a mature nervous system. Understanding these mechanisms is an important step to develop strategies for regaining motor function after different injuries to the CNS. Plastic changes induced by activity occur both in the brain and spinal cord. This paper reviews the activity-dependent changes in the spinal cord neural circuits during both the developmental stages of the CNS and in adulthood.
Collapse
|
29
|
Lacquaniti F, Ivanenko YP, Zago M. Development of human locomotion. Curr Opin Neurobiol 2012; 22:822-8. [PMID: 22498713 DOI: 10.1016/j.conb.2012.03.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/18/2012] [Accepted: 03/22/2012] [Indexed: 01/28/2023]
Abstract
Neural control of locomotion in human adults involves the generation of a small set of basic patterned commands directed to the leg muscles. The commands are generated sequentially in time during each step by neural networks located in the spinal cord, called Central Pattern Generators. This review outlines recent advances in understanding how motor commands are expressed at different stages of human development. Similar commands are found in several other vertebrates, indicating that locomotion development follows common principles of organization of the control networks. Movements show a high degree of flexibility at all stages of development, which is instrumental for learning and exploration of variable interactions with the environment.
Collapse
Affiliation(s)
- Francesco Lacquaniti
- Department of Systems Medicine, Neuroscience Section, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | | | | |
Collapse
|
30
|
Sakita M, Murakami S, Saito T, Kumagai S. Influences of H and Medium Latency Reflex Responses of the Soleus Muscle while Receiving with Malleolus Vibration during Upright Standing. J Phys Ther Sci 2012. [DOI: 10.1589/jpts.24.1041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Masahiro Sakita
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University
| | - Shinichiro Murakami
- Department of Physical Therapy, Faculty of Health Care Sciences, Himeji Dokkyo University
| | - Takafumi Saito
- Department of Physical Therapy, Aso Rehabilitation College
| | | |
Collapse
|
31
|
Hwang S, Jeon HS, Kwon OY, Yi CH. The effects of body weight on the soleus H-reflex modulation during standing. J Electromyogr Kinesiol 2011; 21:445-9. [PMID: 21144768 DOI: 10.1016/j.jelekin.2010.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Revised: 10/01/2010] [Accepted: 11/05/2010] [Indexed: 11/25/2022] Open
|
32
|
Wu YN, Hwang M, Ren Y, Gaebler-Spira D, Zhang LQ. Combined Passive Stretching and Active Movement Rehabilitation of Lower-Limb Impairments in Children With Cerebral Palsy Using a Portable Robot. Neurorehabil Neural Repair 2011; 25:378-85. [DOI: 10.1177/1545968310388666] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background. Ankle impairments are closely associated with functional limitations in children with cerebral palsy (CP). Passive stretching is often used to increase the range of motion (ROM) of the impaired ankle. Improving motor control is also a focus of physical therapy. However, convenient and effective ways to control passive stretching and motivate active movement training with quantitative outcomes are lacking. Objective. To investigate the efficacy of combined passive stretching and active movement training with motivating games using a portable rehabilitation robot. Methods. Twelve children with mild to moderate spastic CP participated in robotic rehabilitation 3 times per week for 6 weeks. Each session consisted of 20 minutes of passive stretching followed by 30 minutes of active movement training and ended with 10 minutes of passive stretching. Passive ROM (PROM), active ROM (AROM), dorsiflexor and plantarflexor muscle strength, Selective Control Assessment of the Lower Extremity, and functional outcome measures (Pediatric Balance Scale, 6-minute walk, and Timed Up-and-Go) were evaluated before and after the 6-week intervention. Results. Significant increases were observed in dorsiflexion PROM ( P = .002), AROM ( P = .02), and dorsiflexor muscle strength ( P = .001). Spasticity of the ankle musculature was significantly reduced ( P = .01). Selective motor control improved significantly ( P = .005). Functionally, participants showed significantly improved balance ( P = .0025) and increased walking distance within 6 minutes ( P = .025). Conclusions. Passive stretching combined with engaging in active movement training was of benefit in this pilot study for children with CP. They demonstrated improvements in joint biomechanical properties, motor control performance, and functional capability in balance and mobility.
Collapse
Affiliation(s)
- Yi-Ning Wu
- Rehabilitation Institute of Chicago, Chicago, IL, USA
| | - Miriam Hwang
- Korea University College of Medicine, Seoul, Korea
| | - Yupeng Ren
- Rehabilitation Institute of Chicago, Chicago, IL, USA
| | - Deborah Gaebler-Spira
- Rehabilitation Institute of Chicago, Chicago, IL, USA
- Northwestern University, Chicago, Chicago, IL, USA
| | - Li-Qun Zhang
- Rehabilitation Institute of Chicago, Chicago, IL, USA
- Northwestern University, Chicago, Chicago, IL, USA
- Northwestern University, Evanston, Evanston, IL, USA
| |
Collapse
|
33
|
Teulier C, Ulrich BD, Martin B. Functioning of peripheral Ia pathways in infants with typical development: responses in antagonist muscle pairs. Exp Brain Res 2010; 208:581-93. [PMID: 21140137 DOI: 10.1007/s00221-010-2506-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 11/22/2010] [Indexed: 12/21/2022]
Abstract
In muscle responses of proprioceptive origin, including the stretch/tendon reflex (T-reflex), the corresponding reciprocal excitation and irradiation to distant muscles have been described from newborn infants to older adults. However, the functioning of other responses mediated primarily by Ia-afferents has not been investigated in infants. Understanding the typical development of these multiple pathways is critical to determining potential problems in their development in populations affected by neurological disease, such as spina bifida or cerebral palsy. Hence, the goal of the present study was to quantify the excitability of Ia-mediated responses in lower limb muscles of infants with typical development. These responses were elicited by mechanical stimulation applied to the distal tendons of the gastrocnemius-soleus (GS), tibialis anterior (TA) and quadriceps (QAD) muscles of both legs in twelve 2- to 10-month-old infants and recorded simultaneously in antagonist muscle pairs by surface EMG. Tendon taps alone elicited responses in either, both or neither muscle. The homonymous response (T-reflex) was less frequent in the TA than the GS or QAD muscle. An 80 Hz vibration superimposed on tendon taps induced primarily an inhibition of monosynaptic responses; however, facilitation also occurred in either muscle of the recorded pair. These responses were not influenced significantly by age or gender. Vibration alone produced a tonic reflex response in the vibrated muscle (TVR) and/or the antagonist muscle (AVR). However, for the TA muscle the TVR was more frequently elicited in older than younger infants. High variability was common to all responses. Overall, the random distribution and inconsistency of muscle responses suggests that the gain of Ia-mediated feedback is unstable. We propose that during infancy the central nervous system needs to learn to set stable feedback gain, or destination of proprioceptive assistance, based on their use during functional movements. This will tailor the neuromuscular connectivity to support adaptive motor behaviors.
Collapse
Affiliation(s)
- Caroline Teulier
- Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland.
| | | | | |
Collapse
|
34
|
Neural control of locomotion and training-induced plasticity after spinal and cerebral lesions. Clin Neurophysiol 2010; 121:1655-68. [DOI: 10.1016/j.clinph.2010.01.039] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 01/15/2010] [Accepted: 01/19/2010] [Indexed: 12/21/2022]
|
35
|
Simonsen EB, Dyhre-Poulsen P. Test-retest reliability of the soleus H-reflex excitability measured during human walking. Hum Mov Sci 2010; 30:333-40. [PMID: 20692062 DOI: 10.1016/j.humov.2010.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 02/09/2010] [Accepted: 02/23/2010] [Indexed: 10/19/2022]
Abstract
The purpose of the study was to investigate with what accuracy the soleus H-reflex modulation and excitability could be measured during human walking on two occasions separated by days. The maximal M-wave (Mmax) was measured at rest in the standing position. During treadmill walking every stimulus elicited an M-wave of 25 ± 10% of Mmax in the soleus muscle and a supra-maximal stimulus elicited a maximal M-wave 60 ms after the first stimulus. Both Mmax during rest and during walking were later used for normalization. When normalized to resting Mmax, the peak reflex amplitude during walking was 5% lower on Day 2 than on Day 1 (p = .32). However, when the peak H-reflex was normalized to Mmax in every sweep, Day 2 showed a significant 15% lower amplitude (p = .037). The same pattern was found for the mean H-reflex. Spearman's Rho was .92 when normalized to resting Mmax but .88 when normalized to Mmax in every sweep. The Pearson product was used to identify one participant at a time on Day 1 among all seven participants on Day 2. For both normalization procedures 5 of 7 participants were identified by this test. Since 5 of 7 participants were recognized between days, it must be recommended to use 10-15 participants for training or intervention studies as far as the H-reflex pattern of modulation during movement is concerned.
Collapse
Affiliation(s)
- Erik B Simonsen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3c, 2200 Copenhagen N, Denmark.
| | | |
Collapse
|
36
|
Achache V, Roche N, Lamy JC, Boakye M, Lackmy A, Gastal A, Quentin V, Katz R. Transmission within several spinal pathways in adults with cerebral palsy. Brain 2010; 133:1470-83. [DOI: 10.1093/brain/awq053] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
37
|
Mall V, Jung N, Linder-Lucht M. „Focus Cerebralparese“. Monatsschr Kinderheilkd 2009. [DOI: 10.1007/s00112-009-2036-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
|
39
|
Flexion reflex modulation during stepping in human spinal cord injury. Exp Brain Res 2009; 196:341-51. [DOI: 10.1007/s00221-009-1854-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Accepted: 05/08/2009] [Indexed: 10/20/2022]
|