1
|
Therkildsen ER, Lorentzen J, Perez MA, Nielsen JB. Evaluation of spasticity: IFCN Handbook Chapter. Clin Neurophysiol 2025; 173:1-23. [PMID: 40068367 DOI: 10.1016/j.clinph.2025.02.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/20/2025] [Accepted: 02/17/2025] [Indexed: 05/09/2025]
Abstract
There is no generally accepted definition of spasticity, but hyperexcitable stretch reflexes, exaggerated tendon jerks, clonus, spasms, cramps, increased resistance to passive joint movement, sustained involuntary muscle activity and aberrant muscle activation, including co-contraction of antagonist muscles are all signs and symptoms which are usually associated clinically to the term spasticity. This review describes how biomechanical and electrophysiological techniques may be used to provide quantitative and objective measures of each of these signs and symptoms. The review further describes how neurophysiological techniques may be used to evaluate pathophysiological changes in spinal motor control mechanisms. It is emphasized that understanding the pathophysiology and distinguishing the specific signs and symptoms associated with spasticity, using objective, valid, and reproducible measurements, is essential for providing optimal therapy.
Collapse
Affiliation(s)
- Eva Rudjord Therkildsen
- Department of Neuroscience, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark
| | - Jakob Lorentzen
- Department of Neuroscience, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark; Department of Pediatrics, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 10, Dk-2100 Copenhagen Ø, Denmark
| | - Monica A Perez
- Shirley Ryan Ability Lab, Chicago, USA; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, USA; Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, USA; Edward Jr. Hines VA Hospital, Chicago, USA
| | - Jens Bo Nielsen
- Department of Neuroscience, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark; The Elsass Foundation, Holmegårdsvej 28, Charlottenlund, 2920, Denmark.
| |
Collapse
|
2
|
Therkildsen ER, Nielsen JB, Lorentzen J. The calcium channel blocker nimodipine inhibits spinal reflex pathways in humans. J Neurophysiol 2025; 133:428-439. [PMID: 39718533 DOI: 10.1152/jn.00585.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024] Open
Abstract
Voltage-sensitive calcium channels contribute to depolarization of both motor neurons and interneurons in animal studies, but less is known of their contribution to human motor control and whether blocking them has potential in future antispasmodic treatment in humans. Therefore, this study investigated the acute effect of nimodipine on the transmission of human spinal reflex pathways involved in spasticity. In a double-blinded, crossover study, we measured soleus muscle stretch reflexes and H reflexes and tibialis anterior cutaneous reflexes in 19 healthy subjects before and after nimodipine (tablet 60 mg) or baclofen (tablet 25 mg). Baclofen was used as a control to compare nimodipine's effects with known antispastic treatment. Changes in the size of the maximum H reflex (Hmax)/maximum direct motor response in muscle (Mmax) ratio and stretch and cutaneous reflexes following intervention with nimodipine and baclofen, respectively, were analyzed with a one-way repeated-measures (RM) ANOVA. Nimodipine significantly reduced the Hmax/Mmax ratio [F(2.5,42) = 15; P < 0.0001] and the normalized soleus stretch reflex [F(2.6,47) = 4.8; P = 0.0073] after administration. A similar tendency was seen after baclofen [Hmax/Mmax ratio: F(2.1,39) = 4.0, P = 0.024; normalized stretch reflex: F(2.8,50) = 2.4; P = 0.083]. The Mmax response was unaffected by either intervention. Interestingly, during voluntary soleus activation, the stretch reflex remained unchanged with either treatment. For the cutaneous reflexes, there was a trend toward reduced early inhibition [F(1.6,9.3) = 4.5; P = 0.050] and subsequent facilitation [F(1.3,8.0) = 4.3; P = 0.065] after nimodipine. No severe adverse effects were reported after nimodipine. These findings suggest that nimodipine acutely reduced electrophysiological measures related to spasticity in healthy individuals. The effect seemed located at the spinal level, and voluntary contraction counterbalanced the reduction of the stretch reflex, highlighting its relevance for future studies on antispastic therapies.NEW & NOTEWORTHY The calcium channel antagonist nimodipine significantly reduces the size of the soleus H reflex and stretch reflex in healthy individuals without affecting maximum direct motor response (Mmax) or the stretch reflex during voluntary activation. This underscores the importance of exploring nimodipine as a potential antispastic medication in the future.
Collapse
Affiliation(s)
| | - Jens Bo Nielsen
- Department of NeuroscienceUniversity of CopenhagenCopenhagenDenmark
- The Elsass FoundationCharlottenlundDenmark
| | - Jakob Lorentzen
- Department of NeuroscienceUniversity of CopenhagenCopenhagenDenmark
- Department of PaediatricsRigshospitaletCopenhagenDenmark
| |
Collapse
|
3
|
Urbin MA. Adaptation in the spinal cord after stroke: Implications for restoring cortical control over the final common pathway. J Physiol 2025; 603:685-721. [PMID: 38787922 DOI: 10.1113/jp285563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Control of voluntary movement is predicated on integration between circuits in the brain and spinal cord. Although damage is often restricted to supraspinal or spinal circuits in cases of neurological injury, both spinal motor neurons and axons linking these cells to the cortical origins of descending motor commands begin showing changes soon after the brain is injured by stroke. The concept of 'transneuronal degeneration' is not new and has been documented in histological, imaging and electrophysiological studies dating back over a century. Taken together, evidence from these studies comports more with a system attempting to survive rather than one passively surrendering to degeneration. There tends to be at least some preservation of fibres at the brainstem origin and along the spinal course of the descending white matter tracts, even in severe cases. Myelin-associated proteins are observed in the spinal cord years after stroke onset. Spinal motor neurons remain morphometrically unaltered. Skeletal muscle fibres once innervated by neurons that lose their source of trophic input receive collaterals from adjacent neurons, causing spinal motor units to consolidate and increase in size. Although some level of excitability within the distributed brain network mediating voluntary movement is needed to facilitate recovery, minimal structural connectivity between cortical and spinal motor neurons can support meaningful distal limb function. Restoring access to the final common pathway via the descending input that remains in the spinal cord therefore represents a viable target for directed plasticity, particularly in light of recent advances in rehabilitation medicine.
Collapse
Affiliation(s)
- Michael A Urbin
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Chen B, Yang T, Liao Z, Sun F, Mei Z, Zhang W. Pathophysiology and Management Strategies for Post-Stroke Spasticity: An Update Review. Int J Mol Sci 2025; 26:406. [PMID: 39796261 PMCID: PMC11721500 DOI: 10.3390/ijms26010406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/22/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Post-stroke spasticity (PSS), characterized by a velocity-dependent increase in muscle tone and exaggerated reflexes, affects a significant portion of stroke patients and presents a substantial obstacle to post-stroke rehabilitation. Effective management and treatment for PSS remains a significant clinical challenge in the interdisciplinary aspect depending on the understanding of its etiologies and pathophysiology. We systematically review the relevant literature and provide the main pathogenic hypotheses: alterations in the balance of excitatory and inhibitory inputs to the descending pathway or the spinal circuit, which are secondary to cortical and subcortical ischemic or hemorrhagic injury, lead to disinhibition of the stretch reflex and increased muscle tone. Prolongation of motoneuron responses to synaptic excitation by persistent inward currents and secondary changes in muscle contribute to hypertonia. The guidelines for PSS treatment advocate for a variety of therapeutic approaches, yet they are hindered by constraints such as dose-dependent adverse effects, high cost, and limited therapeutic efficacy. Taken together, we highlight key processes of PSS pathophysiology and summarize many interventions, including neuroprotective agents, gene therapy, targeted therapy, physiotherapy, NexTGen therapy and complementary and alternative medicine. We aim to confer additional clinical benefits to patients and lay the foundation for the development of new potential therapies against PSS.
Collapse
Affiliation(s)
- Bei Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (B.C.); (T.Y.); (Z.L.); (F.S.)
| | - Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (B.C.); (T.Y.); (Z.L.); (F.S.)
| | - Zi Liao
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (B.C.); (T.Y.); (Z.L.); (F.S.)
| | - Feiyue Sun
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (B.C.); (T.Y.); (Z.L.); (F.S.)
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (B.C.); (T.Y.); (Z.L.); (F.S.)
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
5
|
Han L, Calcutt NA, Zhou X. Rate-Dependent Depression of the Hoffmann Reflex: Practical Applications in Painful Diabetic Neuropathy. Diabetes Metab J 2024; 48:1029-1046. [PMID: 39610132 PMCID: PMC11621664 DOI: 10.4093/dmj.2024.0614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
Measurement of the rate-dependent depression (RDD) of the Hoffmann (H) reflex, a technique developed over half a century ago, is founded on repeated stimulation of the H-reflex with tracking of sequentially evoked H-wave amplitudes in the resulting electromyogram. RDD offers insight into the integrity of spinal reflex pathways and spinal inhibitory regulation. Initially, RDD was predominantly utilized in the mechanistic exploration and evaluation of movement disorders characterized by spasticity symptoms, as may occur following spinal cord injury. However, there is increasing recognition that sensory input from the periphery is modified at the spinal level before ascending to the higher central nervous system and that some pain states can arise from, or be exaggerated by, disruption of spinal processing via a mechanism termed spinal disinhibition. This, along with the urgent clinical need to identify biological markers of pain generator and/or amplifier sites to facilitate targeted pain therapies, has prompted interest in RDD as a biomarker for the contribution of spinal disinhibition to neuropathic pain states. Current research in animals and humans with diabetes has revealed specific disorders of spinal GABAergic function associated with impaired RDD. Future investigations on RDD aim to further elucidate its underlying pathways and enhance its clinical applications.
Collapse
Affiliation(s)
- Lu Han
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Nigel A. Calcutt
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Xiajun Zhou
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Colard J, Jubeau M, Crouzier M, Duclay J, Cattagni T. Effect of muscle length on the modulation of H-reflex and inhibitory mechanisms of Ia afferent discharges during passive muscle lengthening. J Neurophysiol 2024; 132:890-905. [PMID: 39015079 DOI: 10.1152/jn.00142.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024] Open
Abstract
The effectiveness of activated Ia afferents to discharge α-motoneurons is decreased during passive muscle lengthening compared with static and shortening muscle conditions. Evidence suggests that these regulations are explained by 1) greater postactivation depression induced by homosynaptic postactivation depression (HPAD) and 2) primary afferent depolarization (PAD). It remains uncertain whether muscle length impacts the muscle lengthening-related aspect of regulation of the effectiveness of activated Ia afferents to discharge α-motoneurons, HPAD, PAD, and heteronymous Ia facilitation (HF). We conducted a study involving 15 healthy young individuals. We recorded conditioned or nonconditioned soleus Hoffmann (H) reflex with electromyography (EMG) to estimate the effectiveness of activated Ia afferents to discharge α-motoneurons, HPAD, PAD, and HF during passive shortening, static, and lengthening muscle conditions at short, intermediate, and long lengths. Our results show that the decrease of effectiveness of activated Ia afferents to discharge α-motoneurons and increase of postactivation depression during passive muscle lengthening occur at all muscle lengths. For PAD and HF, we found that longer muscle length increases the magnitude of regulation related to muscle lengthening. To conclude, our findings support an inhibitory effect (resulting from increased postactivation depression) of muscle lengthening and longer muscle length on the effectiveness of activated Ia afferents to discharge α-motoneurons. The increase in postactivation depression associated with muscle lengthening can be attributed to the amplification of Ia afferents discharge.NEW & NOTEWORTHY Original results are that in response to passive muscle lengthening and increased muscle length, inhibition of the effectiveness of activated Ia afferents to discharge α-motoneurons increases, with primary afferent depolarization and homosynaptic postactivation depression mechanisms playing central roles in this regulatory process. Our findings highlight for the first time a cumulative inhibitory effect of muscle lengthening and increased muscle length on the effectiveness of activated Ia afferents to discharge α-motoneurons.
Collapse
Affiliation(s)
- Julian Colard
- Movement-Interactions-Performance (MIP), UR-4334, Nantes Université, Nantes, UR-4334, France
| | - Marc Jubeau
- Movement-Interactions-Performance (MIP), UR-4334, Nantes Université, Nantes, UR-4334, France
| | - Marion Crouzier
- Movement-Interactions-Performance (MIP), UR-4334, Nantes Université, Nantes, UR-4334, France
| | - Julien Duclay
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Thomas Cattagni
- Movement-Interactions-Performance (MIP), UR-4334, Nantes Université, Nantes, UR-4334, France
| |
Collapse
|
7
|
Mahmoud W, Baur D, Zrenner B, Brancaccio A, Belardinelli P, Ramos-Murguialday A, Zrenner C, Ziemann U. Brain state-dependent repetitive transcranial magnetic stimulation for motor stroke rehabilitation: a proof of concept randomized controlled trial. Front Neurol 2024; 15:1427198. [PMID: 39253360 PMCID: PMC11381265 DOI: 10.3389/fneur.2024.1427198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
Background In healthy subjects, repetitive transcranial magnetic stimulation (rTMS) targeting the primary motor cortex (M1) demonstrated plasticity effects contingent on electroencephalography (EEG)-derived excitability states, defined by the phase of the ongoing sensorimotor μ-oscillation. The therapeutic potential of brain state-dependent rTMS in the rehabilitation of upper limb motor impairment post-stroke remains unexplored. Objective Proof-of-concept trial to assess the efficacy of rTMS, synchronized to the sensorimotor μ-oscillation, in improving motor impairment and reducing upper-limb spasticity in stroke patients. Methods We conducted a parallel group, randomized double-blind controlled trial in 30 chronic stroke patients (clinical trial registration number: NCT05005780). The experimental intervention group received EEG-triggered rTMS of the ipsilesional M1 [1,200 pulses; 0.33 Hz; 100% of the resting motor threshold (RMT)], while the control group received low-frequency rTMS of the contralesional motor cortex (1,200 pulses; 1 Hz, 115% RMT), i.e., an established treatment protocol. Both groups received 12 rTMS sessions (20 min, 3× per week, 4 weeks) followed by 50 min of physiotherapy. The primary outcome measure was the change in upper-extremity Fugl-Meyer assessment (FMA-UE) scores between baseline, immediately post-treatment and 3 months' follow-up. Results Both groups showed significant improvement in the primary outcome measure (FMA-UE) and the secondary outcome measures. This included the reduction in spasticity, measured objectively using the hand-held dynamometer, and enhanced motor function as measured by the Wolf Motor Function Test (WMFT). There were no significant differences between the groups in any of the outcome measures. Conclusion The application of brain state-dependent rTMS for rehabilitation in chronic stroke patients is feasible. This pilot study demonstrated that the brain oscillation-synchronized rTMS protocol produced beneficial effects on motor impairment, motor function and spasticity that were comparable to those observed with an established therapeutic rTMS protocol. Clinical Trial Registration ClinicalTrials.gov, identifier [NCT05005780].
Collapse
Affiliation(s)
- Wala Mahmoud
- Institute for Clinical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - David Baur
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Brigitte Zrenner
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Arianna Brancaccio
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Rovereto, Italy
| | - Paolo Belardinelli
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Rovereto, Italy
| | - Ander Ramos-Murguialday
- Institute for Clinical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Tecnalia, Basque Research and Technology Alliance, San Sebastián, Spain
- Athenea Neuroclinics, San Sebastián, Spain
| | - Christoph Zrenner
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute for Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Ulf Ziemann
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Mardell LC, Spedden ME, O'Neill GC, Tierney TM, Timms RC, Zich C, Barnes GR, Bestmann S. Concurrent spinal and brain imaging with optically pumped magnetometers. J Neurosci Methods 2024; 406:110131. [PMID: 38583588 DOI: 10.1016/j.jneumeth.2024.110131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/11/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND The spinal cord and its interactions with the brain are fundamental for movement control and somatosensation. However, brain and spinal electrophysiology in humans have largely been treated as distinct enterprises, in part due to the relative inaccessibility of the spinal cord. Consequently, there is a dearth of knowledge on human spinal electrophysiology, including the multiple pathologies that affect the spinal cord as well as the brain. NEW METHOD Here we exploit recent advances in the development of wearable optically pumped magnetometers (OPMs) which can be flexibly arranged to provide coverage of both the spinal cord and the brain in relatively unconstrained environments. This system for magnetospinoencephalography (MSEG) measures both spinal and cortical signals simultaneously by employing custom-made scanning casts. RESULTS We evidence the utility of such a system by recording spinal and cortical evoked responses to median nerve stimulation at the wrist. MSEG revealed early (10 - 15 ms) and late (>20 ms) responses at the spinal cord, in addition to typical cortical evoked responses (i.e., N20). COMPARISON WITH EXISTING METHODS Early spinal evoked responses detected were in line with conventional somatosensory evoked potential recordings. CONCLUSION This MSEG system demonstrates the novel ability for concurrent non-invasive millisecond imaging of brain and spinal cord.
Collapse
Affiliation(s)
- Lydia C Mardell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG, UK.
| | - Meaghan E Spedden
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, WC1N 3AR, UK
| | - George C O'Neill
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, WC1N 3AR, UK
| | - Tim M Tierney
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, WC1N 3AR, UK
| | - Ryan C Timms
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, WC1N 3AR, UK
| | - Catharina Zich
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG, UK
| | - Gareth R Barnes
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, WC1N 3AR, UK
| | - Sven Bestmann
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG, UK; Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, WC1N 3AR, UK
| |
Collapse
|
9
|
Liu Z, Li Z, Duan C. Effects of Maitland mobilization technique on upper extremity function in stroke survivors with spasticity: An experimental study. Medicine (Baltimore) 2024; 103:e38184. [PMID: 38758885 PMCID: PMC11098168 DOI: 10.1097/md.0000000000038184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/18/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND The recovery of upper limb function is of great significance for stroke patients to regain their self-care ability, yet it is still a difficult point in clinical practice of neurological rehabilitation. This study aimed to investigate the effect of Maitland joint mobilization technique on the recovery of upper extremity function in patients with spasticity after stroke. METHODS From August to December 2023, 71 patients with upper extremity flexor spasm after stroke were recruited and randomly divided into experimental group (n = 35) and control group (n = 36). The control group was given conventional rehabilitation treatment, while the experimental group was treated with Maitland mobilization technique treatment of upper extremity joints on the basis of the control group. The experiment lasted for 8 weeks. Participants of the 2 groups were observed for Fugl-Meyer motor assessment-upper extremity (FMA-UE), box and block test (BBT) and Brunnstrom stage, modified Ashworth scale (MAS), and functional independence measure (FIM) at pre- and post-8 weeks study. RESULTS There was no significant difference in gender distribution, hemiplegic side, diagnosis, past history, age, duration, body mass index, and mini-mental state examination between the 2 groups (P > .05). After 8 weeks of intervention, both groups showed significant improvement in FMA-UE, Brunnstrom stage, BBT, FIM, and MAS of the shoulder (P < .05); however, there was no significant change in MAS of the elbow, wrist, and finger joints (P > .05). The posttreatment values showed a significant improvement in FMA-UE, BBT, and FIM in the experimental group compared to the control group. Comparing the changes in pretreatment and posttreatment, FMA-UE, BBT, and FIM in the experimental group were significantly improved compared with those in the control group (P < .05). CONCLUSION Maitland joint mobilization can improve the motor function of upper extremity and the spasticity of shoulder joint complex in patients with stroke.
Collapse
Affiliation(s)
- Ziqing Liu
- Department of Rehabilitation, Shanghai Yangpu Hospital of TCM, Shanghai, China
| | - Zhangjie Li
- Department of Rehabilitation, Yangpu Hospital, Tongji University, Shanghai, China
| | - Chaoyang Duan
- Department of Rehabilitation, Shanghai Yangpu Hospital of TCM, Shanghai, China
| |
Collapse
|
10
|
Ogawa T, Fujita K, Kawabata K, Hori H, Hayashi K, Suzuki A, Nakaya Y, Kobayashi Y. Is it safe to control the car pedal with the lower limb of the unaffected side in patients with stroke? TRAFFIC INJURY PREVENTION 2023; 25:27-35. [PMID: 37773056 DOI: 10.1080/15389588.2023.2260914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023]
Abstract
OBJECTIVES Few studies have examined motor function in determining the suitability of patients with stroke to resume driving a car. Patients with hemiplegia usually control car pedals with the unaffected lower limb. However, motor control on the unaffected side is also impaired in patients with stroke. This study aimed to clarify the neurophysiological characteristics of pedal switching control during emergency braking in patients with hemiplegia. METHODS The study participants consisted of 10 drivers with left hemiplegia and 10 age-matched healthy drivers. An experimental pedal was used to measure muscle activity and kinematic data during braking, triggered by the light from a light-emitting diode placed in front of the drivers. RESULTS The patient group took the same reaction time as the healthy group. However, from the visual stimulus to the release of the accelerator pedal, the patient group had higher muscle activity in the tibialis anterior and rectus femoris and had faster angular velocities of hip and knee flexion than the healthy group. In addition, the patient group had higher co-contraction activities between flexors and extensors. From the accelerator pedal release to brake contact, the patient group had slower angular velocities of hip adduction, internal rotation, ankle dorsiflexion, internal return, and internal rotation than the healthy group. CONCLUSIONS Patients with hemiplegia exhibited poor control of pedal switching using their unaffected side throughout the pedal-switching task. These results indicate that the safety related to car-pedal control should be carefully evaluated while deciding whether a patient can resume driving a car after a stroke.
Collapse
Affiliation(s)
- Tomoki Ogawa
- Department of Health Science, Graduate School of Health Science, Fukui Health Science University, Fukui, Japan
- Department of Physical Therapy Rehabilitation, Fukui General Hospital, Fukui, Japan
| | - Kazuki Fujita
- Graduate School of Health Science, Fukui Health Science University, Fukui, Japan
| | - Kaori Kawabata
- Graduate School of Health Science, Fukui Health Science University, Fukui, Japan
| | - Hideaki Hori
- Graduate School of Health Science, Fukui Health Science University, Fukui, Japan
| | - Koji Hayashi
- Department of Rehabilitation Medicine, Fukui General Hospital, Fukui, Japan
| | - Asuka Suzuki
- Department of Rehabilitation Medicine, Fukui General Hospital, Fukui, Japan
| | - Yuka Nakaya
- Department of Rehabilitation Medicine, Fukui General Hospital, Fukui, Japan
| | - Yasutaka Kobayashi
- Graduate School of Health Science, Fukui Health Science University, Fukui, Japan
| |
Collapse
|
11
|
Couto AGB, Vaz MAP, Pinho L, Félix J, Moreira J, Pinho F, Mesquita IA, Mesquita Montes A, Crasto C, Sousa ASP. Interlimb Coordination during Double Support Phase of Gait in People with and without Stroke. J Mot Behav 2023; 56:195-210. [PMID: 37990958 DOI: 10.1080/00222895.2023.2282088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/12/2023] [Indexed: 11/23/2023]
Abstract
This study aims to identify differences between participants with and without stroke regarding the ipsilesional and contralesional lower limbs kinematics, kinetics, muscle activity and their variability during double support phase of gait. Eleven post-stroke and thirteen healthy participants performed 10 gait trials at a self-selected speed while being monitored by an optoelectronic motion capture system, two force plates and an electromyographic system. The following outcomes were evaluated during the double support: the time and the joint position; the external mechanical work on the centre of mass; and the relative electromyographic activity. Both, contralesional/ipsilesional and dominant/non-dominant of participants with and without stroke, respectively, were evaluated during double support phase of gait in trailing or leading positions. The average value of each parameter and the coefficient of variation of the 10 trials were analysed. Post-stroke participants present bilateral decreased mechanical work on the centre of mass and increased variability, decreased contralesional knee and ankle flexion in trailing position, increased ipsilesional knee flexion in leading position and increased variability. Increased relative muscle activity was observed in post-stroke participants with decreased variability. Mechanical work on the centre of mass seems to be the most relevant parameter to identify interlimb coordination impairments in post-stroke subjects.
Collapse
Affiliation(s)
- Ana G B Couto
- Department of Physiotherapy and Research Center and Projects (NIP), Santa Maria Health School, Porto, Portugal
- Center for Rehabilitation Research (CIR), ESS, Polytechnic of Porto, rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Faculty of Engineering, University of Porto, Porto, Portugal
| | - Mário A P Vaz
- Institute of Mechanical Engineering and Industrial Management, Faculty of Engineering, University of Porto, Porto, Portugal
- Porto Biomechanics Laboratory (LABIOMEP), University of Porto, Porto, Portugal
| | - Liliana Pinho
- Center for Rehabilitation Research (CIR), ESS, Polytechnic of Porto, rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- College of Health Sciences - Escola Superior de Saúde do Vale do Ave, Cooperative for Higher, Polytechnic and University Education, Vila Nova de Famalicão, Portugal
- Faculty of Sport, University of Porto, Porto, Portugal
| | - José Félix
- Department of Physics and Center for Rehabilitation Research (CIR), ESS, Polytechnic of Porto, rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Juliana Moreira
- Department of Physiotherapy and Center for Rehabilitation Research (CIR), ESS, Polytechnic of Porto, rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Francisco Pinho
- College of Health Sciences - Escola Superior de Saúde do Vale do Ave and Health and Human Movement Unit (H2M), Cooperative for Higher, Polytechnic and University Education, Vila Nova de Famalicão, Portugal
| | - Inês Albuquerque Mesquita
- Research Center and Projects (NIP), Santa Maria Health School, Porto, Portugal
- Department of Functional Sciences and Center for Rehabilitation Research (CIR), ESS, Polytechnic of Porto, rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - António Mesquita Montes
- Department of Physiotherapy and Center for Rehabilitation Research (CIR), ESS, Polytechnic of Porto, rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Research Center and Projects (NIP), Santa Maria Health School, Porto, Portugal
| | - Carlos Crasto
- Department of Physiotherapy and Center for Rehabilitation Research (CIR), ESS, Polytechnic of Porto, rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Research Center and Projects (NIP), Santa Maria Health School, Porto, Portugal
| | - Andreia S P Sousa
- Department of Physiotherapy and Center for Rehabilitation Research (CIR), ESS, Polytechnic of Porto, rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| |
Collapse
|
12
|
Mahmoud W, Hultborn H, Zuluaga J, Zrenner C, Zrenner B, Ziemann U, Ramos-Murguialday A. Testing spasticity mechanisms in chronic stroke before and after intervention with contralesional motor cortex 1 Hz rTMS and physiotherapy. J Neuroeng Rehabil 2023; 20:150. [PMID: 37941036 PMCID: PMC10631065 DOI: 10.1186/s12984-023-01275-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Previous studies showed that repetitive transcranial magnetic stimulation (rTMS) reduces spasticity after stroke. However, clinical assessments like the modified Ashworth scale, cannot discriminate stretch reflex-mediated stiffness (spasticity) from passive stiffness components of resistance to muscle stretch. The mechanisms through which rTMS might influence spasticity are also not understood. METHODS We measured the effects of contralesional motor cortex 1 Hz rTMS (1200 pulses + 50 min physiotherapy: 3×/week, for 4-6 weeks) on spasticity of the wrist flexor muscles in 54 chronic stroke patients using a hand-held dynamometer for objective quantification of the stretch reflex response. In addition, we measured the excitability of three spinal mechanisms thought to be related to post-stroke spasticity: post-activation depression, presynaptic inhibition and reciprocal inhibition before and after the intervention. Effects on motor impairment and function were also assessed using standardized stroke-specific clinical scales. RESULTS The stretch reflex-mediated torque in the wrist flexors was significantly reduced after the intervention, while no change was detected in the passive stiffness. Additionally, there was a significant improvement in the clinical tests of motor impairment and function. There were no significant changes in the excitability of any of the measured spinal mechanisms. CONCLUSIONS We demonstrated that contralesional motor cortex 1 Hz rTMS and physiotherapy can reduce the stretch reflex-mediated component of resistance to muscle stretch without affecting passive stiffness in chronic stroke. The specific physiological mechanisms driving this spasticity reduction remain unresolved, as no changes were observed in the excitability of the investigated spinal mechanisms.
Collapse
Affiliation(s)
- Wala Mahmoud
- Institute for Clinical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Eberhard Karls University Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Hans Hultborn
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Jagoba Zuluaga
- Institute for Clinical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Christoph Zrenner
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Eberhard Karls University Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Brigitte Zrenner
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Eberhard Karls University Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany.
- Hertie Institute for Clinical Brain Research, University of Tübingen, Eberhard Karls University Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany.
| | - Ander Ramos-Murguialday
- Institute for Clinical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany
- Tecnalia, Basque Research and Technology Alliance, San Sebastián, Spain
- Athenea Neuroclinics, San Sebastián, Spain
| |
Collapse
|
13
|
Abe S, Yokoi Y, Kozuka N. Leg Cycling Leads to Improvement of Spasticity by Enhancement of Presynaptic Inhibition in Patients with Cerebral Palsy. Phys Ther Res 2023; 26:65-70. [PMID: 37621569 PMCID: PMC10445118 DOI: 10.1298/ptr.e10228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/18/2023] [Indexed: 08/26/2023]
Abstract
OBJECTIVE The purpose of this study was to investigate if leg cycling could reduce lower extremity spasticity in patients with cerebral palsy (CP). In addition, we investigated whether the intervention could cause changes in the modulation of presynaptic inhibition. METHODS This study was a quasi-experimental study, with pretest-posttest for 1 group. Participants in this experiment were eight adult patients with CP with lower extremity spasticity. Spasticity parameters assessed were the amplitude of soleus maximum Hoffmann's reflex (Hmax) and maximum angular velocity (MAV) of knee flexion measured using the pendulum test. D1 inhibition, which seems to be related to the presynaptic inhibition, was recorded by measuring soleus Hoffmann's reflex (H-reflex) with conditioned electric stimuli to the common peroneal nerve. RESULTS D1 inhibition was significantly enhanced immediately by the cycling intervention. The amplitude of the soleus Hmax was significantly depressed, and there was significant difference in Hmax/maximum M-wave. The MAV was increased due to inhibition of the stretch reflex. CONCLUSION Leg cycling suppressed stretch reflex and H-reflex, and caused plasticity of inhibitory circuits in patients with CP with lower extremity spasticity. These findings strongly suggest that lower extremity spasticity can be improved by cycling movements.
Collapse
Affiliation(s)
- Senshu Abe
- Department of Physical Therapy, Rehabilitation Part, Hokuto Social Medical Corporation, Tokachi Rehabilitation Center, Japan
- Advanced Rehabilitation Office, Hokuto Social Medical Corporation, Tokachi Rehabilitation Center, Japan
| | - Yuichiro Yokoi
- Department of Physical Therapy, Rehabilitation of Healthcare and Science, Hokkaido Bunkyo University, Japan
| | - Naoki Kozuka
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Japan
| |
Collapse
|
14
|
Klein C, Liu H, Zhao C, Huang W. Altered flexor carpi radialis motor axon excitability properties after cerebrovascular stroke. Front Neurol 2023; 14:1172960. [PMID: 37284180 PMCID: PMC10240235 DOI: 10.3389/fneur.2023.1172960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/12/2023] [Indexed: 06/08/2023] Open
Abstract
Background Spinal motoneurons may become hyperexcitable after a stroke. Knowledge about motoneuron hyperexcitability remains clinically important as it may contribute to a number of phenomena including spasticity, flexion synergies, and abnormal limb postures. Hyperexcitability seems to occur more often in muscles that flex the wrist and fingers (forearm flexors) compared to other upper limb muscles. The cause of hyperexcitability remains uncertain but may involve plastic changes in motoneurons and their axons. Aim To characterize intrinsic membrane properties of flexor carpi radialis (FCR) motor axons after stroke using nerve excitability testing. Methods Nerve excitability testing using threshold tracking techniques was applied to characterize FCR motor axon properties in persons who suffered a first-time unilateral cortical/subcortical stroke 23 to 308 days earlier. The median nerve was stimulated at the elbow bilaterally in 16 male stroke subjects (51.4 ± 2.9 y) with compound muscle action potentials recorded from the FCR. Nineteen age-matched males (52.7 ± 2.4 y) were also tested to serve as controls. Results Axon parameters after stroke were consistent with bilateral hyperpolarization of the resting potential. Nonparetic and paretic side axons were modeled by a 2.6-fold increase in pump currents (IPumpNI) together with an increase (38%-33%) in internodal leak conductance (GLkI) and a decrease (23%-29%) in internodal H conductance (Ih) relative to control axons. A decrease (14%) in Na+ channel inactivation rate (Aah) was also needed to fit the paretic axon recovery cycle. "Fanning out" of threshold electrotonus and the resting I/V slope (stroke limbs combined) correlated with blood potassium [K+] (R = -0.61 to 0.62, p< 0.01) and disability (R = -0.58 to 0.55, p < 0.05), but not with spasticity, grip strength, or maximal FCR activity. Conclusion In contrast to our expectations, FCR axons were not hyperexcitable after stroke. Rather, FCR axons were found to be hyperpolarized bilaterally post stroke, and this was associated with disability and [K+]. Reduced FCR axon excitability may represent a kind of bilateral trans-synaptic homeostatic mechanism that acts to minimize motoneuron hyperexcitability.
Collapse
|
15
|
Dukkipati SS, Walker SJ, Trevarrow MP, Busboom MT, Kurz MJ. Spinal cord H-reflex post-activation depression is linked with hand motor control in adults with cerebral palsy. Clin Neurophysiol 2023; 148:9-16. [PMID: 36773504 PMCID: PMC9998348 DOI: 10.1016/j.clinph.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/08/2022] [Accepted: 01/01/2023] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Cerebral palsy (CP) is associated with upper extremity motor impairments that are largely assumed to arise from alterations in the supraspinal networks. The objective of this study was to determine if post-activation depression of the spinal H-reflexes is altered in adults with CP and connected with altered upper extremity function. METHODS The post-activation depression of the flexor carpi radialis (FCR) H-reflex of adults with CP and healthy adults (HA) controls were assessed by 1) a 1 Hz continuous single-pulse stimulus train and 2) 0.11 Hz / 1 Hz paired-pulse stimuli. Secondarily, we measured the maximum key grip force and the box and blocks assessment of manual dexterity. RESULTS Our results revealed that adults with CP had reduced post-activation depression of the FCR H-reflex during the stimulus train and the paired pulse protocol. A greater reduction in H-reflex post-activation depression was connected to lower manual dexterity and weaker grip forces. CONCLUSIONS Our results indicate that the post-activation depression of the upper extremity spinal H-reflex pathways is altered in adults with CP and possibly linked with their uncharacteristic upper extremity motor performance. Alterations in the spinal networks may also play a significant role in the altered motor control of adults with CP. SIGNIFICANCE Our results identify spinal H-reflex modulation as a possible locus for hand motor control in CP.
Collapse
Affiliation(s)
- Shekar S Dukkipati
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Sarah J Walker
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Michael P Trevarrow
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Morgan T Busboom
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Max J Kurz
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
16
|
Colard J, Jubeau M, Duclay J, Cattagni T. Regulation of primary afferent depolarization and homosynaptic post-activation depression during passive and active lengthening, shortening and isometric conditions. Eur J Appl Physiol 2023; 123:1257-1269. [PMID: 36781424 DOI: 10.1007/s00421-023-05147-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/26/2023] [Indexed: 02/15/2023]
Abstract
PURPOSE This study aimed to determine whether the modulation of primary afferent depolarization (PAD) and homosynaptic post-activation depression (HPAD) are involved in the lower efficacy of Ia-afferent-α-motoneuron transmission commonly observed during lengthening compared to isometric and shortening conditions. METHODS 15 healthy young individuals participated in two experimental sessions dedicated to measurement in passive and active muscle states, respectively. In each session, PAD, HPAD and the efficacy of Ia-afferent-α-motoneuron transmission were evaluated during lengthening, shortening and isometric conditions. PAD was evaluated with D1 inhibition technique. Posterior tibial nerve stimulation was used to study HPAD and the efficacy of the Ia-afferent-α-motoneuron transmission through the recording of the soleus Hoffmann reflex (H reflex). RESULTS PAD was increased in lengthening than shortening (11.2%) and isometric (12.3%) conditions regardless of muscle state (P < 0.001). HPAD was increased in lengthening than shortening (5.1%) and isometric (4.2%) conditions in the passive muscle state (P < 0.05), while no difference was observed in the active muscle state. H reflex was lower in lengthening than shortening (- 13.2%) and isometric (- 9.4%) conditions in both muscle states (P < 0.001). CONCLUSION These results highlight the specific regulation of PAD and HPAD during lengthening conditions. However, the differences observed during passive lengthening compared to shortening and isometric conditions seem to result from an increase in Ia-afferent discharge, while the variations highlighted during active lengthening might come from polysynaptic descending pathways involving supraspinal centres that could regulate PAD mechanism.
Collapse
Affiliation(s)
- Julian Colard
- Nantes University, Movement-Interactions-Performance, MIP, 25 Bis Boulevard Guy Mollet-BP 72206, UR 4334, 44322, Nantes, France
| | - Marc Jubeau
- Nantes University, Movement-Interactions-Performance, MIP, 25 Bis Boulevard Guy Mollet-BP 72206, UR 4334, 44322, Nantes, France.
| | - Julien Duclay
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Thomas Cattagni
- Nantes University, Movement-Interactions-Performance, MIP, 25 Bis Boulevard Guy Mollet-BP 72206, UR 4334, 44322, Nantes, France
| |
Collapse
|
17
|
Abstract
Spasticity is characterized by an enhanced size and reduced threshold for activation of stretch reflexes and is associated with "positive signs" such as clonus and spasms, as well as "negative features" such as paresis and a loss of automatic postural responses. Spasticity develops over time after a lesion and can be associated with reduced speed of movement, cocontraction, abnormal synergies, and pain. Spasticity is caused by a combination of damage to descending tracts, reductions in inhibitory activity within spinal cord circuits, and adaptive changes within motoneurons. Increased tone, hypertonia, can also be caused by changes in passive stiffness due to, for example, increase in connective tissue and reduction in muscle fascicle length. Understanding the cause of hypertonia is important for determining the management strategy as nonneural, passive causes of stiffness will be more amenable to physical rather than pharmacological interventions. The management of spasticity is determined by the views and goals of the patient, family, and carers, which should be integral to the multidisciplinary assessment. An assessment, and treatment, of trigger factors such as infection and skin breakdown should be made especially in people with a recent change in tone. The choice of management strategies for an individual will vary depending on the severity of spasticity, the distribution of spasticity (i.e., whether it affects multiple muscle groups or is more prominent in one or two groups), the type of lesion, and the potential for recovery. Management options include physical therapy, oral agents; focal therapies such as botulinum injections; and peripheral nerve blocks. Intrathecal baclofen can lead to a reduction in required oral antispasticity medications. When spasticity is severe intrathecal phenol may be an option. Surgical interventions, largely used in the pediatric population, include muscle transfers and lengthening and selective dorsal root rhizotomy.
Collapse
Affiliation(s)
- Jonathan Marsden
- School of Health Professions, Faculty of Health, University of Plymouth, Plymouth, United Kingdom.
| | - Valerie Stevenson
- Department of Therapies and Rehabilitation, National Hospital for Neurology and Neurosurgery UCLH, London, United Kingdom
| | - Louise Jarrett
- Department of Neurology, Royal Devon and Exeter Hospital, Exeter, United Kingdom
| |
Collapse
|
18
|
Tedeschi A, Larson MJE, Zouridakis A, Mo L, Bordbar A, Myers JM, Qin HY, Rodocker HI, Fan F, Lannutti JJ, McElroy CA, Nimjee SM, Peng J, Arnold WD, Moon LDF, Sun W. Harnessing cortical plasticity via gabapentinoid administration promotes recovery after stroke. Brain 2022; 145:2378-2393. [PMID: 35905466 PMCID: PMC9890504 DOI: 10.1093/brain/awac103] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 02/18/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023] Open
Abstract
Stroke causes devastating sensory-motor deficits and long-term disability due to disruption of descending motor pathways. Restoration of these functions enables independent living and therefore represents a high priority for those afflicted by stroke. Here, we report that daily administration of gabapentin, a clinically approved drug already used to treat various neurological disorders, promotes structural and functional plasticity of the corticospinal pathway after photothrombotic cortical stroke in adult mice. We found that gabapentin administration had no effects on vascular occlusion, haemodynamic changes nor survival of corticospinal neurons within the ipsilateral sensory-motor cortex in the acute stages of stroke. Instead, using a combination of tract tracing, electrical stimulation and functional connectivity mapping, we demonstrated that corticospinal axons originating from the contralateral side of the brain in mice administered gabapentin extend numerous collaterals, form new synaptic contacts and better integrate within spinal circuits that control forelimb muscles. Not only does gabapentin daily administration promote neuroplasticity, but it also dampens maladaptive plasticity by reducing the excitability of spinal motor circuitry. In turn, mice administered gabapentin starting 1 h or 1 day after stroke recovered skilled upper extremity function. Functional recovery persists even after stopping the treatment at 6 weeks following a stroke. Finally, chemogenetic silencing of cortical projections originating from the contralateral side of the brain transiently abrogated recovery in mice administered gabapentin, further supporting the conclusion that gabapentin-dependent reorganization of spared cortical pathways drives functional recovery after stroke. These observations highlight the strong potential for repurposing gabapentinoids as a promising treatment strategy for stroke repair.
Collapse
Affiliation(s)
- Andrea Tedeschi
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Discovery Theme on Chronic Brain Injury, The Ohio State University, Columbus, OH 43210, USA
| | - Molly J E Larson
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Antonia Zouridakis
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Lujia Mo
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Arman Bordbar
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Julia M Myers
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Hannah Y Qin
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Haven I Rodocker
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Fan Fan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - John J Lannutti
- Discovery Theme on Chronic Brain Injury, The Ohio State University, Columbus, OH 43210, USA
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Craig A McElroy
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, OH 43210, USA
| | - Shahid M Nimjee
- Discovery Theme on Chronic Brain Injury, The Ohio State University, Columbus, OH 43210, USA
- Department of Neurosurgery, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Juan Peng
- Center for Biostatistics and Bioinformatics, The Ohio State University, Columbus, OH 43210, USA
| | - W David Arnold
- Division of Neuromuscular Diseases, Department of Neurology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Lawrence D F Moon
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Wenjing Sun
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
19
|
Zhou X, Zhu Y, Wang Z, Lin Z, Zhu D, Xie C, Calcutt NA, Guan Y. Rate-Dependent Depression: A Predictor of the Therapeutic Efficacy in Treating Painful Diabetic Peripheral Neuropathy. Diabetes 2022; 71:1272-1281. [PMID: 35234842 DOI: 10.2337/db21-0960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022]
Abstract
We investigated the application of rate-dependent depression (RDD) of the Hoffmann (H) wave as a predictor of treatment efficacy in patients with painful diabetic peripheral neuropathy (DPN). General medical information, scales, and nerve conduction data were collected from 73 healthy subjects, 50 subjects with type 2 diabetes and painless DPN, and 71 subjects with type 2 diabetes and painful DPN. The left tibial nerve was stimulated, and RDD was calculated by the decline in amplitude of the third H wave relative to the first one. Gabapentin treatment was initiated after baseline evaluation, and the RDD and visual analog scale (VAS) score were both evaluated regularly during the 2-week study period. At baseline, the painful DPN group exhibited significant RDD impairment across all stimulation frequencies. Gabapentin treatment significantly reduced the VAS score and restored RDD during the 2-week observation period. RDD was found to be an independent factor of minimal VAS score improvement, such that the benefit increased by 1.27 times per 1% decrease in the RDD value. In conclusion, this study demonstrates that diabetes-induced loss of RDD can be modified by gabapentin and suggests that RDD may be valuable for predicting the initial efficacy of gabapentin therapy in patients with painful DPN.
Collapse
Affiliation(s)
- Xiajun Zhou
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ying Zhu
- Department of Neurology, Shanghai International Medical Center, Shanghai, China
| | - Ze Wang
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhi Lin
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Desheng Zhu
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chong Xie
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Nigel A Calcutt
- Department of Pathology, University of California, San Diego, San Diego, CA
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Takahashi Y, Kawakami M, Mikami R, Nakajima T, Nagumo T, Yamaguchi T, Honaga K, Kondo K, Ishii R, Fujiwara T, Liu M. Relationship between spinal reflexes and leg motor function in sub-acute and chronic stroke patients. Clin Neurophysiol 2022; 138:74-83. [DOI: 10.1016/j.clinph.2022.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/27/2022] [Accepted: 02/27/2022] [Indexed: 11/03/2022]
|
21
|
Jannati A, Ryan MA, Kaye HL, Tsuboyama M, Rotenberg A. Biomarkers Obtained by Transcranial Magnetic Stimulation in Neurodevelopmental Disorders. J Clin Neurophysiol 2022; 39:135-148. [PMID: 34366399 PMCID: PMC8810902 DOI: 10.1097/wnp.0000000000000784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
SUMMARY Transcranial magnetic stimulation (TMS) is a method for focal brain stimulation that is based on the principle of electromagnetic induction where small intracranial electric currents are generated by a powerful fluctuating magnetic field. Over the past three decades, TMS has shown promise in the diagnosis, monitoring, and treatment of neurological and psychiatric disorders in adults. However, the use of TMS in children has been more limited. We provide a brief introduction to the TMS technique; common TMS protocols including single-pulse TMS, paired-pulse TMS, paired associative stimulation, and repetitive TMS; and relevant TMS-derived neurophysiological measurements including resting and active motor threshold, cortical silent period, paired-pulse TMS measures of intracortical inhibition and facilitation, and plasticity metrics after repetitive TMS. We then discuss the biomarker applications of TMS in a few representative neurodevelopmental disorders including autism spectrum disorder, fragile X syndrome, attention-deficit hyperactivity disorder, Tourette syndrome, and developmental stuttering.
Collapse
Affiliation(s)
- Ali Jannati
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Mary A. Ryan
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Harper Lee Kaye
- Behavioral Neuroscience Program, Division of Medical Sciences, Boston University School of Medicine, Boston, USA
| | - Melissa Tsuboyama
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Rotenberg
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Chen SF, Shen HY, Lin JY, Chen CC, Lee HF, Chao H, Lieu FK. Evaluation of post-stroke spasticity from the subacute to chronic stages: A clinical and neurophysiologic study of motoneuron pool excitability. CHINESE J PHYSIOL 2022; 65:109-116. [DOI: 10.4103/0304-4920.348359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
23
|
Anodal tDCS of contralesional hemisphere modulates ipsilateral control of spinal motor networks targeting the paretic arm post-stroke. Clin Neurophysiol 2022; 136:1-12. [DOI: 10.1016/j.clinph.2021.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/23/2021] [Accepted: 12/19/2021] [Indexed: 11/23/2022]
|
24
|
Zhou X, Wang Z, Lin Z, Zhu Y, Zhu D, Xie C, Calcutt NA, Guan Y. Rate-dependent depression is impaired in amyotrophic lateral sclerosis. Neurol Sci 2021; 43:1831-1838. [PMID: 34518934 DOI: 10.1007/s10072-021-05596-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/06/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE We investigated rate-dependent depression (RDD) of the Hoffman reflex (H-reflex) in patients with amyotrophic lateral sclerosis (ALS), a degenerative disease with ventral horn involvement. PATIENTS AND METHODS In this case-control study, we enrolled 27 patients with ALS and 30 matched healthy control subjects. Clinical and electrophysiological assessments, as well as RDD in response to various stimulation frequencies (0.5 Hz, 1 Hz, 3 Hz and 5 Hz), were compared between groups. Multiple clinical and electrophysiological factors were also explored to determine any underlying associations with RDD. RESULTS The ALS group showed a significant loss of RDD across all frequencies compared to the control group, most notably following 1 Hz stimulation (19.1 ± 20.3 vs. 34.0 ± 13.7%, p = 0.003). Among factors that might influence RDD, the enlargement of the motor unit potential (MUP) showed a significant relationship with RDD following multifactor analysis of variance (p = 0.007) and Pearson correlation analysis (ρ = - 0.70, p < 0.001), while various upper motor neuron manifestations were not correlated with RDD values (p > 0.05). CONCLUSION We report a loss of RDD in patients with ALS. The strong correlation detected between the RDD deficit and increased MUP suggests that RDD is a sensitive indicator of underlying spinal disinhibition in ALS. TRIAL REGISTRATION ChiCTR2000038848, 10/7/2020 (retrospectively registered), http://www.chictr.org.cn/ .
Collapse
Affiliation(s)
- Xiajun Zhou
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Ze Wang
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Zhi Lin
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Ying Zhu
- Department of Neurology, Shanghai International Medical Center, Shanghai, 201318, China
| | - Desheng Zhu
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Chong Xie
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Nigel A Calcutt
- Department of Pathology, University of California San Diego, San Diego, CA, 92093, USA
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China.
| |
Collapse
|
25
|
Effects of Ankle Continuous Passive Motion on Soleus Hypertonia in Individuals with Cerebral Palsy: A Case Series. Biomed J 2021; 45:708-716. [PMID: 34332162 PMCID: PMC9486241 DOI: 10.1016/j.bj.2021.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 11/23/2022] Open
Abstract
Background Continuous passive motion device (CPM) provides repetitive movement over extended periods of time for those who have low functional ability. The purpose of this research was to evaluate the effects of a four-week program of continuous passive motion of the ankle joint on the changes in soleus hypertonia in individuals with cerebral palsy who suffered from life-long hypertonia. Methods A single group, repeated-measures study was conducted. Eight individuals (7 males and 1 female with a mean age of 21.8 ± 8.5 years) with spastic cerebral palsy underwent bilateral ankle CPM for 1 h a day, 5 days a week, for 4 weeks. The outcome measures included the Modified Ashworth Scale (MAS) score, passive range of motion (PROM) of the ankle, the ratio of maximum H reflex to maximum soleus M-response (H/M ratio), and post-activation depression (PAD). All outcomes were measured before and after the intervention. A paired t-test was used to examine treatment effects pre-versus post-intervention. Results Paired t-tests showed that the CPM program significantly decreased the MAS score (p = 0.006), decreased the maximum H/M ratio (p=0.001), improved PAD (p = 0.003, p = 0.040, and p = 0.032 at 0.2 Hz, 1 Hz, and 2 Hz, respectively), and increased the passive ankle range of motion (p = 0.049). Conclusion Ankle CPM not only reduced soleus hypertonia but also improved the PROM in individuals with cerebral palsy. The results of this study show ankle CPM to be an effective intervention for individuals with cerebral palsy.
Collapse
|
26
|
Valadão P, Piitulainen H, Haapala EA, Parviainen T, Avela J, Finni T. Exercise intervention protocol in children and young adults with cerebral palsy: the effects of strength, flexibility and gait training on physical performance, neuromuscular mechanisms and cardiometabolic risk factors (EXECP). BMC Sports Sci Med Rehabil 2021; 13:17. [PMID: 33637124 PMCID: PMC7908003 DOI: 10.1186/s13102-021-00242-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/05/2021] [Indexed: 11/24/2022]
Abstract
Background Individuals with cerebral palsy (CP) have problems in everyday tasks such as walking and climbing stairs due to a combination of neuromuscular impairments such as spasticity, muscle weakness, reduced joint flexibility and poor coordination. Development of evidence-based interventions are in pivotal role in the development of better targeted rehabilitation of CP, and thus in maintaining their motor function and wellbeing. Our aim is to investigate the efficacy of an individually tailored, multifaceted exercise intervention (EXECP) in children and young adults with CP. EXECP is composed of strength, flexibility and gait training. Furthermore, this study aims to verify the short-term retention of the adaptations three months after the end of the EXECP intervention. Methods Twenty-four children and young adults with spastic CP will be recruited to participate in a 9-month research project with a 3-month training intervention, consisting of two to three 90-min sessions per week. In each session, strength training for the lower limbs and trunk muscles, flexibility training for the lower limbs and inclined treadmill gait training will be performed. We will evaluate muscle strength, joint flexibility, neuromuscular and cardiometabolic parameters. A nonconcurrent multiple baseline design with two pre-tests and two post-tests all interspaced by three months is used. In addition to the CP participants, 24 typically developing age and sex-matched participants will perform the two pre-tests (i.e. no intervention) to provide normative data. Discussion This study has a comprehensive approach examining longitudinal effects of wide variety of variables ranging from physical activity and gross motor function to sensorimotor functions of the brain and neuromuscular and cardiometabolic parameters, providing novel information about the adaptation mechanisms in cerebral palsy. To the best of our knowledge, this is the first intervention study providing supervised combined strength, flexibility and gait training for young individuals with CP. Trial registration number ISRCTN69044459, prospectively registered (21/04/2017).
Collapse
Affiliation(s)
- Pedro Valadão
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
| | - Harri Piitulainen
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.,Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Eero A Haapala
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.,Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Tiina Parviainen
- Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| | - Janne Avela
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Taija Finni
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
27
|
Characterization of Motor-Evoked Responses Obtained with Transcutaneous Electrical Spinal Stimulation from the Lower-Limb Muscles after Stroke. Brain Sci 2021; 11:brainsci11030289. [PMID: 33652677 PMCID: PMC7996860 DOI: 10.3390/brainsci11030289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/06/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022] Open
Abstract
An increasing number of studies suggests that a novel neuromodulation technique targeting the spinal circuitry enhances gait rehabilitation, but research on its application to stroke survivors is limited. Therefore, we investigated the characteristics of spinal motor-evoked responses (sMERs) from lower-limb muscles obtained by transcutaneous spinal cord stimulation (tSCS) after stroke compared to age-matched and younger controls without stroke. Thirty participants (ten stroke survivors, ten age-matched controls, and ten younger controls) completed the study. By using tSCS applied between the L1 and L2 vertebral levels, we compared sMER characteristics (resting motor threshold (RMT), slope of the recruitment curve, and latency) of the tibialis anterior (TA) and medial gastrocnemius (MG) muscles among groups. A single pulse of stimulation was delivered in 5 mA increments, increasing from 5 mA to 250 mA or until the subjects reached their maximum tolerance. The stroke group had an increased RMT (27–51%) compared to both age-matched (TA: p = 0.032; MG: p = 0.005) and younger controls (TA: p < 0.001; MG: p < 0.001). For the TA muscle, the paretic side demonstrated a 13% increased latency compared to the non-paretic side in the stroke group (p = 0.010). Age-matched controls also exhibited an increased RMT compared to younger controls (TA: p = 0.002; MG: p = 0.007), suggesting that altered sMER characteristics present in stroke survivors may result from both stroke and normal aging. This observation may provide implications for altered spinal motor output after stroke and demonstrates the feasibility of using sMER characteristics as an assessment after stroke.
Collapse
|
28
|
Amyotrophic lateral sclerosis weakens spinal recurrent inhibition and post-activation depression. Clin Neurophysiol 2020; 131:2875-2886. [DOI: 10.1016/j.clinph.2020.09.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/15/2020] [Accepted: 09/07/2020] [Indexed: 01/07/2023]
|
29
|
Wieters F, Weiss Lucas C, Gruhn M, Büschges A, Fink GR, Aswendt M. Introduction to spasticity and related mouse models. Exp Neurol 2020; 335:113491. [PMID: 33007294 DOI: 10.1016/j.expneurol.2020.113491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 12/22/2022]
Abstract
Although spasticity is one of the most common causes of motor disability worldwide, its precise definition and pathophysiology remain elusive, which to date renders its experimental targeting tricky. At least in part, this difficulty is caused by heterogeneous phenotypes of spasticity-causing neurological disorders, all causing spasticity by involving upper motor neurons. The most common clinical symptoms are a series of rapid muscle contractions (clonus), an increased muscle tone (hypertonia), and augmented tendon reflex activity (hyperreflexia). This muscle overactivity is due to disturbed inhibition of spinal reflexes following upper motor neuron dysfunction. Despite a range of physical and pharmacological therapies ameliorating the symptoms, their targeted application remains difficult. Therefore, to date, spasticity impacts rehabilitative therapy, and no therapy exists that reverses the pathology completely. In contrast to the incidence and importance of spasticity, only very little pre-clinical work in animal models exists, and this research is focused on the cat or the rat spastic tail model to decipher altered reflexes and excitability of the motor neurons in the spinal cord. Meanwhile, the characterization of spasticity in clinically more relevant mouse models of neurological disorders, such as stroke, remains understudied. Here, we provide a brief introduction into the clinical knowledge and therapy of spasticity and an in-depth review of pre-clinical studies of spasticity in mice including the current experimental challenges for clinical translation.
Collapse
Affiliation(s)
- Frederique Wieters
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Carolin Weiss Lucas
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Center of Neurosurgery, Cologne, Germany
| | - Matthias Gruhn
- Department for Animal Physiology, Institute for Zoology, Biocenter Cologne, University of Cologne
| | - Ansgar Büschges
- Department for Animal Physiology, Institute for Zoology, Biocenter Cologne, University of Cologne
| | - Gereon R Fink
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Department of Neurology, Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Germany
| | - Markus Aswendt
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Department of Neurology, Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Germany.
| |
Collapse
|
30
|
Özyurt MG, Topkara B, Şenocak BS, Budan AS, Yüce MN, Türker KS. Post-activation depression of primary afferents reevaluated in humans. J Electromyogr Kinesiol 2020; 54:102460. [PMID: 32905963 DOI: 10.1016/j.jelekin.2020.102460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/05/2020] [Accepted: 08/19/2020] [Indexed: 11/26/2022] Open
Abstract
Amplitude variation of Hoffmann Reflex (H-reflex) was used as a tool to investigate many neuronal networks. However, H-reflex itself is a subject to intrinsic changes including post-activation depression (P-AD). We aimed to investigate P-AD and its implication on motor control in humans. Upon tibial nerve stimulation in 23 healthy participants, peak-to-peak amplitude change of H-reflex was investigated using surface electromyography (SEMG) of soleus muscle. Variety of stimulus intensities, interstimulus intervals (ISIs), voluntary contraction levels/types and force recording were used to investigate the nature of P-AD. We have shown that P-AD was significantly stronger in the shorter ISIs. The only exception was the ISI of 200 msecs which had a weaker P-AD than some of the longer ISIs. Sudden muscle relaxation, on the other hand, further increased the effectiveness of the ongoing P-AD. Moreover, P-AD displayed its full effect with the first stimulus when there was no muscle contraction and was efficient to reduce the muscle force output by about 30%. These findings provide insight about the variations and mechanism of P-AD and could lead to improvements in diagnostic tools in neurological diseases.
Collapse
Affiliation(s)
| | - Betilay Topkara
- Koç University, School of Medicine, 34450 Sariyer, Istanbul, Turkey
| | | | | | | | | |
Collapse
|
31
|
Yurttutmuş Z, Ekici Zincirci D, Bardak AN, Topkara B, Aydın T, Karacan I, Türker KS. A stimulus rate that is not influenced by homosynaptic post-activation depression in chronic stroke. Somatosens Mot Res 2020; 37:271-276. [PMID: 32811248 DOI: 10.1080/08990220.2020.1807925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE To determine a stimulus rate that is not influenced by homosynaptic post-activation depression for H-reflex studies in patients with chronic spasticity. MATERIALS AND METHODS A cohort of 15 chronic stroke patients with soleus spasticity who received inpatient treatment at our rehabilitation centre participated in this study. The effect of stimulus frequency related depression on H-reflex size was tested using four different stimulus rates (0.1, 0.2, 0.3 and 1 Hz). The affected sides stibial nerve was stimulated by a bipolar electrode. The H-reflex was recorded from the affected sideed sidee sidehe affected smine stimulus frequency related depression of H-reflex size, amplitude of the first H-reflex response (H1) was used as control and amplitude of the second H-reflex response (H2) as test. RESULTS H2 amplitude for frequency of 1 Hz, 0.3 Hz, 0.2 Hz and 0.1 Hz were 74.3, 84.1, 85.5 and 92.7% of H1, respectively. Depression of H2 amplitude was statistically significant for 1 Hz, 0.3 Hz and 0.2 Hz (p < 0.001, p = 0.002, p = 0.024, respectively). CONCLUSIONS Higher frequency stimulation of Ia afferents than 0.1 Hz induced a stimulus frequency-related depression of H-reflex size in patients with chronic spasticity. The optimal stimulus rate for H-reflex was found to be 0.1 Hz.
Collapse
Affiliation(s)
- Zeynep Yurttutmuş
- Istanbul Physical Therapy Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Dilara Ekici Zincirci
- Istanbul Physical Therapy Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Ayse Nur Bardak
- Istanbul Physical Therapy Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Betilay Topkara
- Physiology Department, Koç University School of Medicine, Istanbul, Turkey
| | - Tugba Aydın
- Istanbul Physical Therapy Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Ilhan Karacan
- Istanbul Physical Therapy Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Kemal S Türker
- Physiology Department, Koç University School of Medicine, Istanbul, Turkey
| |
Collapse
|
32
|
Kim G, Ogawa T, Sekiguchi H, Nakazawa K. Acquisition and maintenance of motor memory through specific motor practice over the long term as revealed by stretch reflex responses in older ballet dancers. Physiol Rep 2020; 8:e14335. [PMID: 31960615 PMCID: PMC6971327 DOI: 10.14814/phy2.14335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The present study addressed whether motor memory acquired earlier in life through specific training can be maintained through later life with further training. To this end, the present study focused on the training effect of a specific ballet practice and investigated the spinally mediated stretch reflex responses of the soleus muscle in ballet dancers of upper-middle to old age (60.6 ± 5.4 years old) with experience levels of 28.4 ± 7.4 years ("older ballet" group). Comparisons were conducted with a group of young ballet dancers ("young ballet" group) and groups of both young and older individuals without weekly participation in physical activities ("young sedentary" and "older sedentary" groups). The results revealed natural age-dependent changes, with reflex responses being larger in older sedentary than in young sedentary individuals. A training-induced effect was also observed, with responses being smaller in ballet dancers than in sedentary groups of the same age. Furthermore, the responses were surprisingly smaller in the older ballet dancers than in the young sedentary group, at an equivalent level to that of the young ballet dancers. The influence of training, therefore, overcame the natural age-dependent changes. On the other hand, the onset latencies of the responses showed a solely age-dependent trend. Taken together, the present is the first to demonstrate that the motor memories in the spinal cord acquired through specific ballet training earlier in life can be maintained and carried forward in later life through further weekly participation in the same training.
Collapse
Affiliation(s)
- GeeHee Kim
- Graduate School of Arts and SciencesThe University of TokyoKomabaTokyoJapan
| | - Tetsuya Ogawa
- Graduate School of Arts and SciencesThe University of TokyoKomabaTokyoJapan
- Research InstituteNational Rehabilitation Center for Persons with DisabilitiesNamikiTokorozawaJapan
| | - Hirofumi Sekiguchi
- Sports Management ProgramFaculty of Business and Information SciencesJobu UniversityIsesakiGunmaJapan
| | - Kimitaka Nakazawa
- Graduate School of Arts and SciencesThe University of TokyoKomabaTokyoJapan
- Research InstituteNational Rehabilitation Center for Persons with DisabilitiesNamikiTokorozawaJapan
| |
Collapse
|
33
|
Jia G, Ma J, Wang S, Wu D, Tan B, Yin Y, Jia L, Cheng L. Long-term Effects of Extracorporeal Shock Wave Therapy on Poststroke Spasticity: A Meta-analysis of Randomized Controlled Trials. J Stroke Cerebrovasc Dis 2019; 29:104591. [PMID: 31899073 DOI: 10.1016/j.jstrokecerebrovasdis.2019.104591] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/04/2019] [Accepted: 12/03/2019] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE The purpose of this meta-analysis was to assess the long-term effects of extracorporeal shock wave therapy (ESWT) on post-stroke spasticity. DATA SOURCES An electronic search of EMBASE, MEDLINE, and Cochrane Central Register of Controlled Trials (CENTRAL) with hand search of relevant papers were performed on 20 June 2019. REVIEW METHODS This study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched the literature for randomized controlled trials of ESWT in stroke patients with spasticity. The primary outcome was the Modified Ashworth Scale (MAS) grade, and the second outcomes were the Visual Analogue Scale (VAS), range of motion (ROM) of joint, the Fugl-Meyer assessment (FMA) grade and adverse events. Two authors independently extracted data, assessed trial eligibility and risk of bias. Meta-analyses were performed using RevMan 5.3 software. RESULTS We extracted data from 8 randomized controlled trials (301 participants). At long-term follow-up, ESWT significantly reduced MAS (Weighted Mean Difference (WMD) = -.36, 95% confidence interval (CI) = -.53 to -.19, I2 = 68%; P < .001) and VAS (WMD = -.94, 95% CI = -1.51 to -.37, I2 = 15%; P = .001), enhanced ROM (WMD = 5.97, 95% CI = 2.76 to 9.18, I2 = 0%; P < .001) and FMA (WMD = 1.26, 95% CI = .29 to 2.24, I2 = 96%; P = .01). CONCLUSIONS ESWT showed long-term effects in relieving spasticity, while reducing pain, enhancing ROM and motor function in stroke patients.
Collapse
Affiliation(s)
- Gongwei Jia
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jingxi Ma
- Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China; Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| | - Sanrong Wang
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dandong Wu
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Botao Tan
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Yin
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lang Jia
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Cheng
- Department of Health Management, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
34
|
Magalhães FH, Mello EM, Kohn AF. Association Between Plantarflexion Torque Variability In Quiet Stance And During Force And Position Tasks. Somatosens Mot Res 2019; 36:241-248. [PMID: 31583939 DOI: 10.1080/08990220.2019.1673720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study examined the association between plantarflexion torque variability during quiet bipedal standing (QS) and during plantarflexion force- and position-matching tasks (FT and PT, respectively). In QS, participants stood still over a force plate, and the mean plantarflexion torque level exerted by each subject in QS (divided by 2 to give the torque due to a single leg) served as the target torque level for right leg FT and PT (performed with the participants seated with their right knee fully extended). During FT participants controlled the force level exerted by the foot against a rigid restraint, while during PT they controlled the angular position of the ankle when sustaining equivalent inertial loads. Standard deviation (SD) of plantarflexion torque was computed from torque signals acquired during periods with and without visual feedback. Significant correlations were found between plantarflexion torque variability in QS and FT (r = 0.8615, p < 0.0001 and r = 0.8838, p = 0.0003 for visual and no visual conditions, respectively) as well as between QS and PT (r = 0.8046, p = 0.003 and r = 0.7332, p = 0.0103 for visual and no visual conditions, respectively), regardless of vision availability. No significant differences were found between the correlations for Qs vs FT and QS vs PT (t(8) = 0.4778, p = 0.6455 and t(8) = 1.6819, p = 0.1310 for visual and no visual conditions, respectively), as assessed by "Hotelling-Williams" tests for equality among dependent correlations. The results indicate that simple measurements of plantarflexion torque fluctuations during FT and PT may be used to estimate balance ability. From a practical standpoint, it is suggested that rehabilitation protocols designed to regain/improve balance function may be based on the performance of FTs or PTs executed in a seated position.
Collapse
Affiliation(s)
- Fernando Henrique Magalhães
- School of Arts, Sciences and Humanities, Universidade de São Paulo, EACH-USP, São Paulo, Brazil.,Biomedical Engineering Laboratory and Neuroscience Program, Universidade de São Paulo, EPUSP, PTC, São Paulo, Brazil
| | - Emanuele Moraes Mello
- Biomedical Engineering Laboratory and Neuroscience Program, Universidade de São Paulo, EPUSP, PTC, São Paulo, Brazil
| | - André Fabio Kohn
- Biomedical Engineering Laboratory and Neuroscience Program, Universidade de São Paulo, EPUSP, PTC, São Paulo, Brazil
| |
Collapse
|
35
|
Recruitment gain of spinal motor neuron pools in cat and human. Exp Brain Res 2019; 237:2897-2909. [PMID: 31492990 DOI: 10.1007/s00221-019-05628-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022]
Abstract
The output from a motor nucleus is determined by the synaptic input to the motor neurons and their intrinsic properties. Here, we explore whether the source of synaptic inputs to the motor neurons (cats) and the age or post-stroke conditions (humans) may change the recruitment gain of the motor neuron pool. In cats, the size of Ia EPSPs in triceps surae motor neurons (input) and monosynaptic reflexes (MSRs; output) was recorded in the soleus and medial gastrocnemius motor nerves following graded stimulation of dorsal roots. The MSR was plotted against the EPSP thereby obtaining a measure of the recruitment gain. Conditioning stimulation of sural and peroneal cutaneous afferents caused significant increase in the recruitment gain of the medial gastrocnemius, but not the soleus motor neuron pool. In humans, the discharge probability of individual soleus motor units (input) and soleus H-reflexes (output) was performed. With graded stimulation of the tibial nerve, the gain of the motor neuron pool was assessed as the slope of the relation between probability of firing and the reflex size. The gain in young subjects was higher than in elderly subjects. The gain in post-stroke survivors was higher than in age-matched neurologically intact subjects. These findings provide experimental evidence that recruitment gain of a motor neuron pool contributes to the regulation of movement at the final output stage from the spinal cord and should be considered when interpreting changes in reflex excitability in relation to movement or injuries of the nervous system.
Collapse
|
36
|
Cattagni T, Geiger M, Supiot A, de Mazancourt P, Pradon D, Zory R, Roche N. A single session of anodal transcranial direct current stimulation applied over the affected primary motor cortex does not alter gait parameters in chronic stroke survivors. Neurophysiol Clin 2019; 49:283-293. [DOI: 10.1016/j.neucli.2019.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 01/20/2023] Open
|
37
|
Zheng Y, Hu X. Elicited Finger and Wrist Extension Through Transcutaneous Radial Nerve Stimulation. IEEE Trans Neural Syst Rehabil Eng 2019; 27:1875-1882. [DOI: 10.1109/tnsre.2019.2930669] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Son J, Hu X, Suresh NL, Rymer WZ. Prolonged time course of population excitatory postsynaptic potentials in motoneurons of chronic stroke survivors. J Neurophysiol 2019; 122:176-183. [PMID: 31017842 DOI: 10.1152/jn.00288.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hyperexcitability of spinal motoneurons may contribute to muscular hypertonia after hemispheric stroke. The origins of this hyperexcitability are not clear, but we hypothesized that prolongation of the Ia excitatory postsynaptic potential (EPSP) in spastic motoneurons may be one potential mechanism, by enabling more effective temporal summation of Ia EPSPs, making action potential initiation easier. Thus, the purpose of this study is to quantify the time course of putative EPSPs in spinal motoneurons of chronic stroke survivors. To estimate the EPSP time course, a pair of low-intensity electrical stimuli was delivered sequentially to the median nerve in seven hemispheric stroke survivors and in six intact individuals, to induce an H-reflex response from the flexor carpi radialis muscle. H-reflex response probability was then used to quantify the time course of the underlying EPSPs in the motoneuron pool. A population EPSP estimate was then derived, based on the probability of evoking an H-reflex from the second test stimulus in the absence of a reflex response to the first conditioning stimulus. Our experimental results showed that in six of seven hemispheric stroke survivors, the apparent rate of decay of the population EPSP was markedly slower in spastic compared with contralateral (stroke) and intact motoneuron pools. There was no significant difference in EPSP time course between the contralateral side of stroke survivors and control subject muscles. We propose that one potential mechanism for hyperexcitability of spastic motoneurons in chronic stroke survivors may be associated with this prolongation of the Ia EPSP time course. Our subthreshold double-stimulation approach could provide a noninvasive tool for quantifying the time course of EPSPs in both healthy and pathological conditions. NEW & NOTEWORTHY Spastic motoneurons in stroke survivors showed a prolonged Ia excitatory postsynaptic potential (EPSP) time course compared with contralateral and intact motoneurons, suggesting that one potential mechanism for hyperexcitability of spastic motoneurons in chronic stroke survivors may be associated with this prolongation of the Ia EPSP time course.
Collapse
Affiliation(s)
- Jongsang Son
- Shirley Ryan AbilityLab (formerly the Rehabilitation Institute of Chicago) , Chicago, Illinois.,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Xiaogang Hu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University , Raleigh, North Carolina
| | - Nina L Suresh
- Shirley Ryan AbilityLab (formerly the Rehabilitation Institute of Chicago) , Chicago, Illinois.,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - William Z Rymer
- Shirley Ryan AbilityLab (formerly the Rehabilitation Institute of Chicago) , Chicago, Illinois.,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| |
Collapse
|
39
|
Quilgars C, Bertrand SS. Activity-dependent synaptic dynamics in motor circuits of the spinal cord. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2018.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Iskra DA, Kovalenko AP, Koshkarev MA, Dyskin DE. [Spasticity: from pathophysiology to treatment]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:108-114. [PMID: 30499506 DOI: 10.17116/jnevro2018118101108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The article presents modern views on the pathophysiology of spasticity, which is a frequent disabling consequence to the upper motor neuron (UMN) damage. Morphological and functional system of motion organization and the changes after the UMN damage is considered. The authors analyze existing definitions of spasticity. Stages of spasticity development are described in the context of neuroplasticity as well as in the framework of pathogenesis and sanogenesis. Existing ideas of its pathogenesis are compared with the typical clinical symptoms. The occurring pathological processes in muscles, tendons and joints that can aggravate the development of spasticity and complicate the diagnosis are considered. In addition, the main pathological spasticity patterns are described and the current development of diagnostic techniques is estimated. A review of main methods of spasticity treatment is presented. Special attention is paid to the botulinum neurotoxin type A (BoNT) preparations and central action muscle relaxants. The pathophysiological basement for complex treatment of spasticity as a part of the general rehabilitation process is given, so that the BoNT can be considered as the obligatory element of standard rehabilitation programs.
Collapse
Affiliation(s)
- D A Iskra
- Military Medical Academy n.a. S.M. Kirov, Saint-Petersburg, Russia
| | - A P Kovalenko
- Military Medical Academy n.a. S.M. Kirov, Saint-Petersburg, Russia
| | - M A Koshkarev
- Military Medical Academy n.a. S.M. Kirov, Saint-Petersburg, Russia
| | - D E Dyskin
- Military Medical Academy n.a. S.M. Kirov, Saint-Petersburg, Russia
| |
Collapse
|
41
|
Okuyama K, Ogura M, Kawakami M, Tsujimoto K, Okada K, Miwa K, Takahashi Y, Abe K, Tanabe S, Yamaguchi T, Liu M. Effect of the combination of motor imagery and electrical stimulation on upper extremity motor function in patients with chronic stroke: preliminary results. Ther Adv Neurol Disord 2018; 11:1756286418804785. [PMID: 30327684 PMCID: PMC6178123 DOI: 10.1177/1756286418804785] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023] Open
Abstract
Background The combination of motor imagery (MI) and afferent input with electrical stimulation (ES) enhances the excitability of the corticospinal tract compared with motor imagery alone or electrical stimulation alone. However, its therapeutic effect is unknown in patients with hemiparetic stroke. We performed a preliminary examination of the therapeutic effects of MI + ES on upper extremity (UE) motor function in patients with chronic stroke. Methods A total of 10 patients with chronic stroke demonstrating severe hemiparesis participated. The imagined task was extension of the affected finger. Peripheral nerve electrical stimulation was applied to the radial nerve at the spiral groove. MI + ES intervention was conducted for 10 days. UE motor function as assessed with the Fugl-Meyer assessment UE motor score (FMA-UE), the amount of the affected UE use in daily life as assessed with a Motor Activity Log (MAL-AOU), and the degree of hypertonia in flexor muscles as assessed with the Modified Ashworth Scale (MAS) were evaluated before and after intervention. To assess the change in spinal neural circuits, reciprocal inhibition between forearm extensor and flexor muscles with the H reflex conditioning-test paradigm at interstimulus intervals (ISIs) of 0, 20, and 100 ms were measured before and after intervention. Results UE motor function, the amount of the affected UE use, and muscle hypertonia in flexor muscles were significantly improved after MI + ES intervention (FMA-UE: p < 0.01, MAL-AOU: p < 0.01, MAS: p = 0.02). Neurophysiologically, the intervention induced restoration of reciprocal inhibition from the forearm extensor to the flexor muscles (ISI at 0 ms: p = 0.03, ISI at 20 ms: p = 0.03, ISI at 100 ms: p = 0.01). Conclusion MI + ES intervention was effective for improving UE motor function in patients with severe paralysis.
Collapse
Affiliation(s)
- Kohei Okuyama
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Miho Ogura
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Michiyuki Kawakami
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kengo Tsujimoto
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kohsuke Okada
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kazuma Miwa
- Department of Rehabilitation Medicine, Keio University Hospital, Tokyo, Japan
| | - Yoko Takahashi
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kaoru Abe
- Department of Rehabilitation Medicine, Keio University Hospital, Tokyo, Japan
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake-shi, Aichi, Japan
| | - Tomofumi Yamaguchi
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata-shi, Yamagata, Japan
| | - Meigen Liu
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
42
|
|
43
|
McPherson JG, McPherson LM, Thompson CK, Ellis MD, Heckman CJ, Dewald JPA. Altered Neuromodulatory Drive May Contribute to Exaggerated Tonic Vibration Reflexes in Chronic Hemiparetic Stroke. Front Hum Neurosci 2018; 12:131. [PMID: 29686611 PMCID: PMC5900019 DOI: 10.3389/fnhum.2018.00131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 03/22/2018] [Indexed: 12/05/2022] Open
Abstract
Exaggerated stretch-sensitive reflexes are a common finding in elbow flexors of the contralesional arm in chronic hemiparetic stroke, particularly when muscles are not voluntarily activated prior to stretch. Previous investigations have suggested that this exaggeration could arise either from an abnormal tonic ionotropic drive to motoneuron pools innervating the paretic limbs, which could bring additional motor units near firing threshold, or from an increased influence of descending monoaminergic neuromodulatory pathways, which could depolarize motoneurons and amplify their responses to synaptic inputs. However, previous investigations have been unable to differentiate between these explanations, leaving the source(s) of this excitability increase unclear. Here, we used tonic vibration reflexes (TVRs) during voluntary muscle contractions of increasing magnitude to infer the sources of spinal motor excitability in individuals with chronic hemiparetic stroke. We show that when the paretic and non-paretic elbow flexors are preactivated to the same percentage of maximum prior to vibration, TVRs remain significantly elevated in the paretic arm. We also show that the rate of vibration-induced torque development increases as a function of increasing preactivation in the paretic limb, even though the amplitude of vibration-induced torque remains conspicuously unchanged as preactivation increases. It is highly unlikely that these findings could be explained by a source that is either purely ionotropic or purely neuromodulatory, because matching preactivation should control for the effects of a potential ionotropic drive (and lead to comparable tonic vibration reflex responses between limbs), while a purely monoaminergic mechanism would increase reflex magnitude as a function of preactivation. Thus, our results suggest that increased excitability of motor pools innervating the paretic limb post-stroke is likely to arise from both ionotropic and neuromodulatory mechanisms.
Collapse
Affiliation(s)
- Jacob G McPherson
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States.,Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Laura M McPherson
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States.,Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Physical Therapy, Florida International University, Miami, FL, United States
| | - Christopher K Thompson
- Department of Physical Therapy, Temple University, Philadelphia, PA, United States.,Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Michael D Ellis
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Charles J Heckman
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| |
Collapse
|
44
|
Valero-Cabré A, Amengual JL, Stengel C, Pascual-Leone A, Coubard OA. Transcranial magnetic stimulation in basic and clinical neuroscience: A comprehensive review of fundamental principles and novel insights. Neurosci Biobehav Rev 2017; 83:381-404. [DOI: 10.1016/j.neubiorev.2017.10.006] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/29/2017] [Accepted: 10/06/2017] [Indexed: 01/13/2023]
|
45
|
Miller DM, Rymer WZ. Sound-Evoked Biceps Myogenic Potentials Reflect Asymmetric Vestibular Drive to Spastic Muscles in Chronic Hemiparetic Stroke Survivors. Front Hum Neurosci 2017; 11:535. [PMID: 29176945 PMCID: PMC5686083 DOI: 10.3389/fnhum.2017.00535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 10/20/2017] [Indexed: 11/13/2022] Open
Abstract
Aberrant vestibular nuclear function is proposed to be a principle driver of limb muscle spasticity after stroke. We sought to determine whether altered cortical modulation of descending vestibulospinal pathways post-stroke could impact the excitability of biceps brachii motoneurons. Twelve chronic hemispheric stroke survivors aged 46–68 years were enrolled. Sound evoked biceps myogenic potentials (SEBMPs) were recorded from the spastic and contralateral biceps muscles using surface EMG electrodes. We assessed the impact of descending vestibulospinal pathways on biceps muscle activity and evaluated the relationship between vestibular function and the severity of spasticity. Spastic SEBMP responses were recorded in 11/12 subjects. Almost 60% of stroke subjects showed evoked responses solely on the spastic side. These data strongly support the idea that vestibular drive is asymmetrically distributed to biceps motoneuron pools in hemiparetic spastic stroke survivors. This abnormal vestibular drive is very likely to be a factor mediating the striking differences in motoneuron excitability between the clinically affected and clinically spared sides. This study extends our previous observations on vestibular nuclear changes following hemispheric stroke and potentially sheds light on the underlying mechanisms of post-stroke spasticity.
Collapse
Affiliation(s)
- Derek M Miller
- Single Motor Unit Laboratory, Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, United States.,Interdepartmental Neurosciences Program, Northwestern University, Evanston, IL, United States
| | - William Z Rymer
- Single Motor Unit Laboratory, Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, United States.,Interdepartmental Neurosciences Program, Northwestern University, Evanston, IL, United States
| |
Collapse
|
46
|
Okuyama K, Kawakami M, Hiramoto M, Muraoka K, Fujiwara T, Liu M. Relationship between spasticity and spinal neural circuits in patients with chronic hemiparetic stroke. Exp Brain Res 2017; 236:207-213. [PMID: 29119209 DOI: 10.1007/s00221-017-5119-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/02/2017] [Indexed: 01/06/2023]
Abstract
Spasticity is a common problem in patients with stroke that contributes to motor dysfunction. However, the pathophysiological mechanisms underlying spasticity are not fully understood. The purpose of the present study was to explain the relationship between features of spinal neural circuits assessed using electrophysiological techniques and the clinical manifestations of stroke. The participants were 71 patients with chronic hemiparetic stroke. To assess spinal neural circuits, Hmax/Mmax of the forearm flexor muscles and reciprocal inhibition (RI) between forearm extensor and flexor muscles with the H reflex conditioning-test paradigm were measured. The relationships between electrophysiological parameters and clinical variables (age, time from stroke onset, upper extremity functional scores, and spasticity) were then analyzed. It was found that the third phase of RI (RI-3) correlated with the modified Ashworth scores of the wrist and finger flexors. No other correlations were found between electrophysiological and clinical measures. These results suggest that RI-3 is associated with spasticity and may be helpful to understand the basis of post-stroke spasticity.
Collapse
Affiliation(s)
- Kohei Okuyama
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Michiyuki Kawakami
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Miho Hiramoto
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kaori Muraoka
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Toshiyuki Fujiwara
- Department of Physical Medicine and Rehabilitation, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
| | - Meigen Liu
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
47
|
Kawaishi Y, Matsumoto N, Nishiwaki T, Hirano T. Postactivation depression of soleus H-reflex increase with recovery of lower extremities motor functions in patients with subacute stroke. J Phys Ther Sci 2017; 29:1539-1542. [PMID: 28931983 PMCID: PMC5599816 DOI: 10.1589/jpts.29.1539] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/05/2017] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The soleus H-reflex is depressed at stimulation rates greater than 0.1 Hz. This
reflex depression is referred to as postactivation depression. Postactivation depression
reflects the reduced efficacy of the Ia-motoneurons synapses when they are evaluated after
a previous activation. The aim of this study was to determine whether the recovery of
motor functions in the lower extremities affects the PAD of the soleus H-reflex in
patients with subacute stroke undergoing rehabilitation. [Subjects and Methods] Eight
patients with subacute stroke patients were recruited. Postactivation depression,
Fugl-Meyer score (lower-limb portion), walking velocity, the Modified Ashworth Scale, and
center of pressure sway during standing were measured within three days of admission to
rehabilitation and 50 days later. [Results] After rehabilitation, Fugl-Meyer scores,
center of pressure path length, and walking velocity were significantly improved, and
postactivation depression had significantly increased. There was a significant positive
correlation between the rates of change of postactivation depression and center of
pressure path length. [Conclusion] The results demonstrated that postactivation depression
is partially normalized after rehabilitation in patients with subacute stroke, and
suggested that the recovery in lower extremity function after stroke particularly standing
stability is affected by spinal synaptic plasticity.
Collapse
Affiliation(s)
- Yu Kawaishi
- Department of Rehabilitation, Kobe Rehabilitation Hospital: 14-1 Nakaichiriyama, Shimotanigami-Aza, Ymada-cho, Kita-ku, Kobe-shi, Hyogo 651-1102, Japan
| | - Naoki Matsumoto
- Department of Rehabilitation, Kobe Rehabilitation Hospital: 14-1 Nakaichiriyama, Shimotanigami-Aza, Ymada-cho, Kita-ku, Kobe-shi, Hyogo 651-1102, Japan
| | - Toshiya Nishiwaki
- Department of Rehabilitation, Kobe Rehabilitation Hospital: 14-1 Nakaichiriyama, Shimotanigami-Aza, Ymada-cho, Kita-ku, Kobe-shi, Hyogo 651-1102, Japan
| | - Tatsuro Hirano
- Department of Rehabilitation, Kobe Rehabilitation Hospital: 14-1 Nakaichiriyama, Shimotanigami-Aza, Ymada-cho, Kita-ku, Kobe-shi, Hyogo 651-1102, Japan
| |
Collapse
|
48
|
Maupas E, Dyer JO, Melo SDA, Forget R. Patellar tendon vibration reduces the increased facilitation from quadriceps to soleus in post-stroke hemiparetic individuals. Ann Phys Rehabil Med 2017; 60:319-328. [PMID: 28528818 DOI: 10.1016/j.rehab.2017.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 03/19/2017] [Accepted: 03/20/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Stimulation of the femoral nerve in healthy people can facilitate soleus H-reflex and electromyography (EMG) activity. In stroke patients, such facilitation of transmission in spinal pathways linking the quadriceps and soleus muscles is enhanced and related to co-activation of knee and ankle extensors while sitting and walking. Soleus H-reflex facilitation can be depressed by vibration of the quadriceps in healthy people, but the effects of such vibration have never been studied on the abnormal soleus facilitation observed in people after stroke. OBJECTIVES To determine whether vibration of the quadriceps can modify the enhanced heteronymous facilitation of the soleus muscle observed in people with spastic stroke after femoral nerve stimulation and compare post-vibration effects on soleus facilitation in control and stroke individuals. METHODS Modulation of voluntary soleus EMG activity induced by femoral nerve stimulation (2×motor threshold) was assessed before, during and after vibration of the patellar tendon in 10 healthy controls and 17 stroke participants. RESULTS Voluntary soleus EMG activity was facilitated by femoral nerve stimulation in 4/10 (40%) controls and 11/17 (65%) stroke participants. The level of facilitation was greater in the stroke than control group. Vibration significantly reduced early heteronymous facilitation in both groups (50% of pre-vibration values). However, the delay in recovery of soleus facilitation after vibration was shorter for the stroke than control group. The control condition with the vibrator turned off had no effect on the modulation. CONCLUSIONS Patellar tendon vibration can reduce the facilitation between knee and ankle extensors, which suggests effective presynaptic inhibition but decreased post-activation depression in the lower limb of people after chronic hemiparetic stroke. Further studies are warranted to determine whether such vibration could be used to reduce the abnormal extension synergy of knee and ankle extensors in people after hemiparetic stroke.
Collapse
Affiliation(s)
- Eric Maupas
- ASEI, centre Paul-Dottin, 31520 Ramonville-Saint-Agne, France; Laboratoire de physiologie de la posture et du mouvement PoM, université Champollion, 81000 Albi, France.
| | - Joseph-Omer Dyer
- Centre de recherche interdisciplinaire en réadaptation, institut de réadaptation Gingras-Lindsay de Montréal, CIUSSS du centre-Sud-de-l'Île-de-Montréal, Québec, Canada; École de réadaptation, faculté de médecine, université de Montréal, Québec, Canada
| | - Sibele de Andrade Melo
- Centre de recherche interdisciplinaire en réadaptation, institut de réadaptation Gingras-Lindsay de Montréal, CIUSSS du centre-Sud-de-l'Île-de-Montréal, Québec, Canada; École de réadaptation, faculté de médecine, université de Montréal, Québec, Canada
| | - Robert Forget
- Centre de recherche interdisciplinaire en réadaptation, institut de réadaptation Gingras-Lindsay de Montréal, CIUSSS du centre-Sud-de-l'Île-de-Montréal, Québec, Canada; École de réadaptation, faculté de médecine, université de Montréal, Québec, Canada
| |
Collapse
|
49
|
Sawan S, Abd-Allah F, Hegazy MM, Farrag MA, El-Den NHS. Effect of shock wave therapy on ankle plantar flexors spasticity in stroke patients. NeuroRehabilitation 2017; 40:115-118. [DOI: 10.3233/nre-161396] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Salah Sawan
- Department of Neuromuscular Disorders, Faculty of Physical Therapy, Cairo University, Cairo, Egypt
| | - Foad Abd-Allah
- Department of Neurology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Montasser M. Hegazy
- Department of Neurology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohammad A. Farrag
- Department of Neurology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | |
Collapse
|
50
|
Klarner T, Barss TS, Sun Y, Kaupp C, Loadman PM, Zehr EP. Long-Term Plasticity in Reflex Excitability Induced by Five Weeks of Arm and Leg Cycling Training after Stroke. Brain Sci 2016; 6:brainsci6040054. [PMID: 27827888 PMCID: PMC5187568 DOI: 10.3390/brainsci6040054] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/22/2016] [Accepted: 10/28/2016] [Indexed: 12/21/2022] Open
Abstract
Neural connections remain partially viable after stroke, and access to these residual connections provides a substrate for training-induced plasticity. The objective of this project was to test if reflex excitability could be modified with arm and leg (A & L) cycling training. Nineteen individuals with chronic stroke (more than six months postlesion) performed 30 min of A & L cycling training three times a week for five weeks. Changes in reflex excitability were inferred from modulation of cutaneous and stretch reflexes. A multiple baseline (three pretests) within-subject control design was used. Plasticity in reflex excitability was determined as an increase in the conditioning effect of arm cycling on soleus stretch reflex amplitude on the more affected side, by the index of modulation, and by the modulation ratio between sides for cutaneous reflexes. In general, A & L cycling training induces plasticity and modifies reflex excitability after stroke.
Collapse
Affiliation(s)
- Taryn Klarner
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| | - Trevor S Barss
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| | - Yao Sun
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| | - Chelsea Kaupp
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| | - Pamela M Loadman
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
- Division of Medical Sciences, University of Victoria, BC V8P 5C2, Canada.
| |
Collapse
|