1
|
Bodien YG, Fecchio M, Gilmore N, Freeman HJ, Sanders WR, Meydan A, Lawrence PK, Atalay AS, Kirsch J, Healy BC, Edlow BL. Acute biomarkers of consciousness are associated with recovery after severe traumatic brain injury. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.02.25322248. [PMID: 40093212 PMCID: PMC11908294 DOI: 10.1101/2025.03.02.25322248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Objective Determine whether acute behavioral, electroencephalography (EEG), and functional MRI (fMRI) biomarkers of consciousness are associated with outcome after severe traumatic brain injury (TBI). Methods Patients with acute severe TBI admitted consecutively to the intensive care unit (ICU) participated in a multimodal battery assessing behavioral level of consciousness (Coma Recovery Scale-Revised [CRS-R]), cognitive motor dissociation (CMD; task-based EEG and fMRI), covert cortical processing (CCP; stimulus-based EEG and fMRI), and default mode network connectivity (DMN; resting-state fMRI). The primary outcome was 6-month Disability Rating Scale (DRS) total scores. Results We enrolled 55 patients with acute severe TBI. Six-month outcome was available in 45 (45.2±20.7 years old, 70% male), of whom 10 died, all due to withdrawal of life-sustaining treatment (WLST). Behavioral level of consciousness and presence of command-following in the ICU were each associated with lower (i.e., better) DRS scores (p=0.003, p=0.011). EEG and fMRI biomarkers did not strengthen this relationship, but higher DMN connectivity was associated with better recovery on multiple secondary outcome measures. In a subsample of participants without command-following on the CRS-R, CMD (EEG:18%; fMRI:33%) and CCP (EEG:91%; fMRI:79%) were not associated with outcome, an unexpected result that may reflect the high rate of WLST. However, higher DMN connectivity was associated with lower DRS scores (ρ[95%CI]=-0.41[-0.707, -0.027]; p=0.046) in this group. Interpretation Standardized behavioral assessment in the ICU may improve prediction of recovery from severe TBI. Further research is required to determine whether integrating behavioral, EEG, and fMRI biomarkers of consciousness is more predictive than behavioral assessment alone.
Collapse
Affiliation(s)
- Yelena G Bodien
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114
- Department of Neurology, Harvard Medical School, Boston, MA, 02114
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA, 02129
| | - Matteo Fecchio
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114
- Department of Neurology, Harvard Medical School, Boston, MA, 02114
| | - Natalie Gilmore
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114
- Department of Neurology, Harvard Medical School, Boston, MA, 02114
| | - Holly J Freeman
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114
- Department of Neurology, Harvard Medical School, Boston, MA, 02114
| | - William R Sanders
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114
- Department of Neurology, Harvard Medical School, Boston, MA, 02114
| | - Anogue Meydan
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114
- Department of Neurology, Harvard Medical School, Boston, MA, 02114
| | - Phoebe K Lawrence
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114
- Department of Neurology, Harvard Medical School, Boston, MA, 02114
| | - Alexander S Atalay
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114
- Department of Neurology, Harvard Medical School, Boston, MA, 02114
| | - John Kirsch
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Brian C Healy
- Department of Neurology, Harvard Medical School, Boston, MA, 02114
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, 02115
- Massachusetts General Hospital Biostatistics Center, Massachusetts General Hospital, Boston, MA, 02114
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114
- Department of Neurology, Harvard Medical School, Boston, MA, 02114
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129
| |
Collapse
|
2
|
Fischer D, Edlow BL, Freeman HJ, Alaiev D, Wu Q, Ware JB, Detre JA, Aguirre GK. Reconstructing Covert Consciousness: Neural Decoding as a Novel Consciousness Assessment. Neurology 2025; 104:e210208. [PMID: 39883908 PMCID: PMC11781786 DOI: 10.1212/wnl.0000000000210208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/23/2024] [Indexed: 02/01/2025] Open
Abstract
Determining the level of consciousness in patients with brain injury-and more fundamentally, establishing what they can experience-is ethically and clinically impactful. Patient behaviors may unreliably reflect their level of consciousness: a subset of unresponsive patients demonstrate covert consciousness by willfully modulating their brain activity to commands through fMRI or EEG. However, current paradigms for assessing covert consciousness remain fundamentally limited because they are insensitive, rely on imperfect assumptions of functional neuroanatomy, and do not reflect the spectrum of conscious experience. Neural decoding, in which stimuli and concepts are reconstructed from brain activity, offers a novel approach to covert consciousness assessment that overcomes many of these limitations. In this article, we discuss the current state of covert consciousness assessments, their shortcomings, the state of the science in neural decoding, the potential application of neural decoding to disorders of consciousness, and future directions that may help realize this potential. To do so, we searched PubMed and Google Scholar databases for pertinent articles published between January 1990 and September 2024, using the search terms "covert consciousness," "cognitive motor dissociation," "neural decoding," and "semantic decoding." Redefining covert consciousness with neural decoding may improve sensitivity, enhance granularity, and more directly address the question of what patients can experience after brain injury.
Collapse
Affiliation(s)
- David Fischer
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston; and
| | - Holly J Freeman
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston; and
| | - Daniel Alaiev
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Qichao Wu
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Jeffrey B Ware
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - John A Detre
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Geoffrey K Aguirre
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
3
|
Naseri Alavi SA, Pourasghary S, Rezakhah A, Habibi MA, Kazempour A, Mahdkhah A, Kobets A. Assessment of the Sex Hormone Profile and Its Predictive Role in Consciousness Recovery Following Severe Traumatic Brain Injury. Life (Basel) 2025; 15:359. [PMID: 40141704 PMCID: PMC11943621 DOI: 10.3390/life15030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/15/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
INTRODUCTION Traumatic brain injuries (TBIs) are conditions affecting brain function caused by blunt or penetrating forces to the head. Symptoms may include confusion, impaired consciousness, coma, seizures, and focal or sensory neurological motor injuries. OBJECTIVE This study evaluated sex hormone profiles and their predictive role in returning consciousness after severe traumatic brain injury. MATERIALS AND METHODS We included 120 patients with TBIs and collected comprehensive information about each patient, including the cause of the trauma, age, gender, Glasgow Coma Scale (GCS) score, Injury Severity Score (ISS), and neuroradiological imaging data. The ISS was used to assess the severity of the trauma. At the same time, the lowest GCS score was recorded either before sedation and intubation in the emergency room or by emergency medical services personnel. For female participants, samples were collected during the luteal phase of the menstrual cycle (days 18 to 23). RESULTS The mean age of male patients was 33.40 years, ranging from 23 to 45 years, while female patients had an average age of 34.25 years, ranging from 25 to 48 years. The primary cause of injury for both genders was motor vehicle accidents. In male patients, testosterone levels were significantly higher in those classified as responsive (RC) compared to those non-responsive (NRC), with levels of 2.56 ± 0.47 ng/mL versus 0.81 ± 0.41 ng/mL (p = 0.003). A cut-off point of 1.885 ng/mL for testosterone levels in males was established, achieving a sensitivity and specificity of 86.7% and 86.7%, respectively. In female patients, progesterone levels were elevated in those who regained consciousness, measuring 1.80 ± 0.31 ng/mL compared to 0.62 ± 0.31 ng/mL (p = 0.012). A cut-off point of 1.335 ng/mL for progesterone levels in females was determined, with a sensitivity and specificity of 93.3% and 86.7%, respectively. CONCLUSIONS We can conclude that sex hormone levels in the acute phase of TBIs can vary between males and females. Notably, serum testosterone levels in males and progesterone levels in females with TBIs are significant prognostic factors for assessing the likelihood of regaining consciousness after such injuries. These findings underscore the importance of considering sex hormone profiles in TBI recovery prognosis.
Collapse
Affiliation(s)
| | - Sajjad Pourasghary
- Faculty of Medicine, Urmia University of Medical Sciences, Urmia 5714783734, Iran (A.R.); (A.K.); (A.M.)
| | - Amir Rezakhah
- Faculty of Medicine, Urmia University of Medical Sciences, Urmia 5714783734, Iran (A.R.); (A.K.); (A.M.)
| | - Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1474833163, Iran;
| | - Aydin Kazempour
- Faculty of Medicine, Urmia University of Medical Sciences, Urmia 5714783734, Iran (A.R.); (A.K.); (A.M.)
| | - Ata Mahdkhah
- Faculty of Medicine, Urmia University of Medical Sciences, Urmia 5714783734, Iran (A.R.); (A.K.); (A.M.)
| | - Andrew Kobets
- Department of Neurological Surgery, Montefiore Medical, Bronx, NY 10467, USA;
| |
Collapse
|
4
|
Wang N, He Y, Zhu S, Liu D, Chai X, He Q, Cao T, He J, Li J, Si J, Yang Y, Zhao J. Functional near-infrared spectroscopy for the assessment and treatment of patients with disorders of consciousness. Front Neurol 2025; 16:1524806. [PMID: 39963381 PMCID: PMC11830608 DOI: 10.3389/fneur.2025.1524806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Background Advances in neuroimaging have significantly enhanced our understanding of brain function, providing critical insights into the diagnosis and management of disorders of consciousness (DoC). Functional near-infrared spectroscopy (fNIRS), with its real-time, portable, and noninvasive imaging capabilities, has emerged as a promising tool for evaluating functional brain activity and nonrecovery potential in DoC patients. This review explores the current applications of fNIRS in DoC research, identifies its limitations, and proposes future directions to optimize its clinical utility. Aim This review examines the clinical application of fNIRS in monitoring DoC. Specifically, it investigates the potential value of combining fNIRS with brain-computer interfaces (BCIs) and closed-loop neuromodulation systems for patients with DoC, aiming to elucidate mechanisms that promote neurological recovery. Methods A systematic analysis was conducted on 155 studies published between January 1993 and October 2024, retrieved from the Web of Science Core Collection database. Results Analysis of 21 eligible studies on neurological diseases involving 262 DoC patients revealed significant findings. The prefrontal cortex was the most frequently targeted brain region. fNIRS has proven crucial in assessing brain functional connectivity and activation, facilitating the diagnosis of DoC. Furthermore, fNIRS plays a pivotal role in diagnosis and treatment through its application in neuromodulation techniques such as deep brain stimulation (DBS) and spinal cord stimulation (SCS). Conclusion As a noninvasive, portable, and real-time neuroimaging tool, fNIRS holds significant promise for advancing the assessment and treatment of DoC. Despite limitations such as low spatial resolution and the need for standardized protocols, fNIRS has demonstrated its utility in evaluating residual brain activity, detecting covert consciousness, and monitoring therapeutic interventions. In addition to assessing consciousness levels, fNIRS offers unique advantages in tracking hemodynamic changes associated with neuroregulatory treatments, including DBS and SCS. By providing real-time feedback on cortical activation, fNIRS facilitates optimizing therapeutic strategies and supports individualized treatment planning. Continued research addressing its technical and methodological challenges will further establish fNIRS as an indispensable tool in the diagnosis, prognosis, and treatment monitoring of DoC patients.
Collapse
Affiliation(s)
- Nan Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yifang He
- School of Instrumentation Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, China
| | - Sipeng Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dongsheng Liu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Xiaoke Chai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Brain Computer Interface Transitional Research Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tianqing Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianghong He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jingqi Li
- Hangzhou Mingzhou Brain Rehabilitation Hospital, Hangzhou, China
| | - Juanning Si
- School of Instrumentation Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, China
| | - Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Brain Computer Interface Transitional Research Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Center for Neurological Disorders, Beijing, China
- National Research Center for Rehabilitation Technical Aids, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Beijing Institute of Brain Disorders, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
5
|
Sala A, Gosseries O, Laureys S, Annen J. Advances in neuroimaging in disorders of consciousness. HANDBOOK OF CLINICAL NEUROLOGY 2025; 207:97-127. [PMID: 39986730 DOI: 10.1016/b978-0-443-13408-1.00008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Disorders of consciousness (DoC) are a heterogeneous spectrum of clinical conditions, including coma, unresponsive wakefulness syndrome, and minimally conscious state. DoC are clinically defined on the basis of behavioral cues expressed by the patients, on the assumption that such behavioral responses of the patient are representative of the patient's degree of consciousness impairment. However, many studies have highlighted the issues arising from formulating a DoC diagnosis merely on behavioral assessment. Overcoming the limitations of behavioral assessment, neuroimaging provides a direct window on the cerebral activity of the patient, bypassing the motor, perceptual, or cognitive deficits that might hamper the patient's ability to produce an appropriate behavioral response. This chapter provides an overview of available molecular, functional, and structural neuroimaging evidence in patients with DoC. This chapter introduces the neuroimaging tools available in the clinical settings of nuclear medicine and neuroradiology and presents the evidence on the role of neuroimaging tools to improve the clinical management of DoC patients, from the standpoint of differential diagnosis and prognosis. Last, we outline the open questions in the field, and point at actions that are urgently needed to fully exploit neuroimaging tools to advance scientific understanding and clinical management of DoC.
Collapse
Affiliation(s)
- Arianna Sala
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Department of Neurology, Centre du Cerveau (2), University Hospital of Liège, Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Department of Neurology, Centre du Cerveau (2), University Hospital of Liège, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Department of Neurology, Centre du Cerveau (2), University Hospital of Liège, Liège, Belgium
| | - Jitka Annen
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Department of Neurology, Centre du Cerveau (2), University Hospital of Liège, Liège, Belgium; Department of Data Analysis, University of Ghent, Ghent, Belgium
| |
Collapse
|
6
|
Threlkeld ZD, Bodien YG, Edlow BL. A scientific approach to diagnosis of disorders of consciousness. HANDBOOK OF CLINICAL NEUROLOGY 2025; 207:49-66. [PMID: 39986727 DOI: 10.1016/b978-0-443-13408-1.00003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Disorder of consciousness (DoC) are the shared clinical manifestation of severe brain injuries resulting from a variety of etiologies. The nosology of DoC, as well as the armamentarium of methods available to diagnose it, has rapidly evolved. As a result, the diagnosis of DoC is complex and dynamic. We offer an evidence-based approach to DoC diagnosis, highlighting the challenges and pitfalls therein. Accordingly, we summarize the contemporary taxonomy of DoC and its development. We discuss the standardized behavioral diagnostic tools that form the foundation of DoC diagnosis, the evidence for their use, and their limitations. We also highlight recent advances in functional MRI (fMRI) and electroencephalography (EEG) techniques to increase the sensitivity and specificity of DoC diagnosis. We discuss the concept of covert consciousness (i.e., cognitive motor dissociation) as a discrete diagnostic category of DoC, as well as its diagnostic implications. Finally, we underscore issues of neuroethics and equity raised by contemporary models of DoC.
Collapse
Affiliation(s)
- Zachary D Threlkeld
- Department of Neurology, Stanford School of Medicine, Stanford, CA, United States.
| | - Yelena G Bodien
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, United States
| | - Brian L Edlow
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| |
Collapse
|
7
|
Maza A, Goizueta S, Dolores Navarro M, Noé E, Ferri J, Naranjo V, Llorens R. EEG-based responses of patients with disorders of consciousness and healthy controls to familiar and non-familiar emotional videos. Clin Neurophysiol 2024; 168:104-120. [PMID: 39486289 DOI: 10.1016/j.clinph.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/27/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
OBJECTIVE To investigate the differences in the brain responses of healthy controls (HC) and patients with disorders of consciousness (DOC) to familiar and non-familiar audiovisual stimuli and their consistency with the clinical progress. METHODS EEG responses of 19 HC and 19 patients with DOC were recorded while watching emotionally-valenced familiar and non-familiar videos. Differential entropy of the EEG recordings was used to train machine learning models aimed to distinguish brain responses to stimuli type. The consistency of brain responses with the clinical progress of the patients was also evaluated. RESULTS Models trained using data from HC outperformed those for patients. However, the performance of the models for patients was not influenced by their clinical condition. The models were successfully trained for over 75% of participants, regardless of their clinical condition. More than 75% of patients whose CRS-R scores increased post-study displayed distinguishable brain responses to both stimuli. CONCLUSIONS Responses to emotionally-valenced stimuli enabled modelling classifiers that were sensitive to the familiarity of the stimuli, regardless of the clinical condition of the participants and were consistent with their clinical progress in most cases. SIGNIFICANCE EEG responses are sensitive to familiarity of emotionally-valenced stimuli in HC and patients with DOC.
Collapse
Affiliation(s)
- Anny Maza
- Institute for Human-Centered Technology Research, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46011, Spain
| | - Sandra Goizueta
- Institute for Human-Centered Technology Research, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46011, Spain
| | - María Dolores Navarro
- IRENEA. Instituto de Rehabilitación Neurológica, Fundación Hospitales Vithas, València, Spain
| | - Enrique Noé
- IRENEA. Instituto de Rehabilitación Neurológica, Fundación Hospitales Vithas, València, Spain
| | - Joan Ferri
- IRENEA. Instituto de Rehabilitación Neurológica, Fundación Hospitales Vithas, València, Spain
| | - Valery Naranjo
- Institute for Human-Centered Technology Research, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46011, Spain
| | - Roberto Llorens
- Institute for Human-Centered Technology Research, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46011, Spain.
| |
Collapse
|
8
|
Wang J, Lai Q, Han J, Qin P, Wu H. Neuroimaging biomarkers for the diagnosis and prognosis of patients with disorders of consciousness. Brain Res 2024; 1843:149133. [PMID: 39084451 DOI: 10.1016/j.brainres.2024.149133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/29/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
The progress in neuroimaging and electrophysiological techniques has shown substantial promise in improving the clinical assessment of disorders of consciousness (DOC). Through the examination of both stimulus-induced and spontaneous brain activity, numerous comprehensive investigations have explored variations in brain activity patterns among patients with DOC, yielding valuable insights for clinical diagnosis and prognostic purposes. Nonetheless, reaching a consensus on precise neuroimaging biomarkers for patients with DOC remains a challenge. Therefore, in this review, we begin by summarizing the empirical evidence related to neuroimaging biomarkers for DOC using various paradigms, including active, passive, and resting-state approaches, by employing task-based fMRI, resting-state fMRI (rs-fMRI), electroencephalography (EEG), and positron emission tomography (PET) techniques. Subsequently, we conducted a review of studies examining the neural correlates of consciousness in patients with DOC, with the findings holding potential value for the clinical application of DOC. Notably, previous research indicates that neuroimaging techniques have the potential to unveil covert awareness that conventional behavioral assessments might overlook. Furthermore, when integrated with various task paradigms or analytical approaches, this combination has the potential to significantly enhance the accuracy of both diagnosis and prognosis in DOC patients. Nonetheless, the stability of these neural biomarkers still needs additional validation, and future directions may entail integrating diagnostic and prognostic methods with big data and deep learning approaches.
Collapse
Affiliation(s)
- Jiaying Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Qiantu Lai
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Junrong Han
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Pengmin Qin
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China; Pazhou Lab, Guangzhou 510330, China.
| | - Hang Wu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China.
| |
Collapse
|
9
|
Lo CCH, Woo PYM, Cheung VCK. Task-based EEG and fMRI paradigms in a multimodal clinical diagnostic framework for disorders of consciousness. Rev Neurosci 2024; 35:775-787. [PMID: 38804042 DOI: 10.1515/revneuro-2023-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Disorders of consciousness (DoC) are generally diagnosed by clinical assessment, which is a predominantly motor-driven process and accounts for up to 40 % of non-communication being misdiagnosed as unresponsive wakefulness syndrome (UWS) (previously known as prolonged/persistent vegetative state). Given the consequences of misdiagnosis, a more reliable and objective multimodal protocol to diagnosing DoC is needed, but has not been produced due to concerns regarding their interpretation and reliability. Of the techniques commonly used to detect consciousness in DoC, task-based paradigms (active paradigms) produce the most unequivocal result when findings are positive. It is well-established that command following (CF) reliably reflects preserved consciousness. Task-based electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) can detect motor-independent CF and reveal preserved covert consciousness in up to 14 % of UWS patients. Accordingly, to improve the diagnostic accuracy of DoC, we propose a practical multimodal clinical decision framework centered on task-based EEG and fMRI, and complemented by measures like transcranial magnetic stimulation (TMS-EEG).
Collapse
Affiliation(s)
- Chris Chun Hei Lo
- School of Biomedical Sciences, and Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Peter Yat Ming Woo
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Vincent C K Cheung
- School of Biomedical Sciences, and Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
10
|
Kazazian K, Abdalmalak A, Novi SL, Norton L, Moulavi-Ardakani R, Kolisnyk M, Gofton TE, Mesquita RC, Owen AM, Debicki DB. Functional near-infrared spectroscopy: A novel tool for detecting consciousness after acute severe brain injury. Proc Natl Acad Sci U S A 2024; 121:e2402723121. [PMID: 39186658 PMCID: PMC11388405 DOI: 10.1073/pnas.2402723121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/05/2024] [Indexed: 08/28/2024] Open
Abstract
Recent advancements in functional neuroimaging have demonstrated that some unresponsive patients in the intensive care unit retain a level of consciousness that is inconsistent with their behavioral diagnosis of awareness. Functional near-infrared spectroscopy (fNIRS) is a portable optical neuroimaging method that can be used to measure neural activity with good temporal and spatial resolution. However, the reliability of fNIRS for detecting the neural correlates of consciousness remains to be established. In a series of studies, we evaluated whether fNIRS can record sensory, perceptual, and command-driven neural processing in healthy participants and in behaviorally nonresponsive patients. At the individual healthy subject level, we demonstrate that fNIRS can detect commonly studied resting state networks, sensorimotor processing, speech-specific auditory processing, and volitional command-driven brain activity to a motor imagery task. We then tested fNIRS with three acutely brain injured patients and found that one could willfully modulate their brain activity when instructed to imagine playing a game of tennis-providing evidence of preserved consciousness despite no observable behavioral signs of awareness. The successful application of fNIRS for detecting preserved awareness among behaviorally nonresponsive patients highlights its potential as a valuable tool for uncovering hidden cognitive states in critical care settings.
Collapse
Affiliation(s)
- Karnig Kazazian
- Western Institute of Neuroscience, Western University, London N6A 3K7, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada
| | - Androu Abdalmalak
- Western Institute of Neuroscience, Western University, London N6A 3K7, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada
| | - Sergio L Novi
- Western Institute of Neuroscience, Western University, London N6A 3K7, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada
| | - Loretta Norton
- Western Institute of Neuroscience, Western University, London N6A 3K7, Canada
- Department of Psychology, King's University College at Western University, London N6A 2M3, Canada
| | | | - Matthew Kolisnyk
- Western Institute of Neuroscience, Western University, London N6A 3K7, Canada
| | - Teneille E Gofton
- Western Institute of Neuroscience, Western University, London N6A 3K7, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada
| | - Rickson C Mesquita
- School of Computer Science, University of Birmingham, Birmingham B15 2SQ, United Kingdom
- Gleb Wataghin Institute of Physics, University of Campinas, Campinas 13083-970, Brazil
| | - Adrian M Owen
- Western Institute of Neuroscience, Western University, London N6A 3K7, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada
- Department of Psychology, Faculty of Social Science, Western University, London N6A 3K7, Canada
| | - Derek B Debicki
- Western Institute of Neuroscience, Western University, London N6A 3K7, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada
| |
Collapse
|
11
|
Kazazian K, Edlow BL, Owen AM. Detecting awareness after acute brain injury. Lancet Neurol 2024; 23:836-844. [PMID: 39030043 DOI: 10.1016/s1474-4422(24)00209-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/28/2024] [Accepted: 05/07/2024] [Indexed: 07/21/2024]
Abstract
Advances over the past two decades in functional neuroimaging have provided new diagnostic and prognostic tools for patients with severe brain injury. Some of the most pertinent developments in this area involve the assessment of residual brain function in patients in the intensive care unit during the acute phase of severe injury, when they are at their most vulnerable and prognosis is uncertain. Advanced neuroimaging techniques, such as functional MRI and EEG, have now been used to identify preserved cognitive processing, including covert conscious awareness, and to relate them to outcome in patients who are behaviourally unresponsive. Yet, technical and logistical challenges to clinical integration of these advanced neuroimaging techniques remain, such as the need for specialised expertise to acquire, analyse, and interpret data and to determine the appropriate timing for such assessments. Once these barriers are overcome, advanced functional neuroimaging technologies could improve diagnosis and prognosis for millions of patients worldwide.
Collapse
Affiliation(s)
- Karnig Kazazian
- Western Institute of Neuroscience, Western University, London, ON, Canada.
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Adrian M Owen
- Western Institute of Neuroscience, Western University, London, ON, Canada; Department of Physiology and Pharmacology and Department of Psychology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
12
|
Wang X, Yang Y, Laforge G, Chen X, Norton L, Owen AM, He J, Cong F. Global Field Time-Frequency Representation-Based Discriminative Similarity Analysis of Passive Auditory ERPs for Diagnosis of Disorders of Consciousness. IEEE Trans Biomed Eng 2024; 71:1820-1830. [PMID: 38215326 DOI: 10.1109/tbme.2024.3353110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Behavioural diagnosis of patients with disorders of consciousness (DOC) is challenging and prone to inaccuracies. Consequently, there have been increased efforts to develop bedside assessment based on EEG and event-related potentials (ERPs) that are more sensitive to the neural factors supporting conscious awareness. However, individual detection of residual consciousness using these techniques is less established. Here, we hypothesize that the cross-state similarity (defined as the similarity between healthy and impaired conscious states) of passive brain responses to auditory stimuli can index the level of awareness in individual DOC patients. To this end, we introduce the global field time-frequency representation-based discriminative similarity analysis (GFTFR-DSA). This method quantifies the average cross-state similarity index between an individual patient and our constructed healthy templates using the GFTFR as an EEG feature. We demonstrate that the proposed GFTFR feature exhibits superior within-group consistency in 34 healthy controls over traditional EEG features such as temporal waveforms. Second, we observed the GFTFR-based similarity index was significantly higher in patients with a minimally conscious state (MCS, 40 patients) than those with unresponsive wakefulness syndrome (UWS, 54 patients), supporting our hypothesis. Finally, applying a linear support vector machine classifier for individual MCS/UWS classification, the model achieved a balanced accuracy and F1 score of 0.77. Overall, our findings indicate that combining discriminative and interpretable markers, along with automatic machine learning algorithms, is effective for the differential diagnosis in patients with DOC. Importantly, this approach can, in principle, be transferred into any ERP of interest to better inform DOC diagnoses.
Collapse
|
13
|
Young MJ, Kazazian K, Fischer D, Lissak IA, Bodien YG, Edlow BL. Disclosing Results of Tests for Covert Consciousness: A Framework for Ethical Translation. Neurocrit Care 2024; 40:865-878. [PMID: 38243150 PMCID: PMC11147696 DOI: 10.1007/s12028-023-01899-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/22/2023] [Indexed: 01/21/2024]
Abstract
The advent of neurotechnologies including advanced functional magnetic resonance imaging and electroencephalography to detect states of awareness not detectable by traditional bedside neurobehavioral techniques (i.e., covert consciousness) promises to transform neuroscience research and clinical practice for patients with brain injury. As these interventions progress from research tools into actionable, guideline-endorsed clinical tests, ethical guidance for clinicians on how to responsibly communicate the sensitive results they yield is crucial yet remains underdeveloped. Drawing on insights from empirical and theoretical neuroethics research and our clinical experience with advanced neurotechnologies to detect consciousness in behaviorally unresponsive patients, we critically evaluate ethical promises and perils associated with disclosing the results of clinical covert consciousness assessments and describe a semistructured approach to responsible data sharing to mitigate potential risks.
Collapse
Affiliation(s)
- Michael J Young
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 101 Merrimac Street, Suite 310, Boston, MA, 02114, USA.
| | - Karnig Kazazian
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 101 Merrimac Street, Suite 310, Boston, MA, 02114, USA
- Western Institute of Neuroscience, Western University, London, ON, Canada
| | - David Fischer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - India A Lissak
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 101 Merrimac Street, Suite 310, Boston, MA, 02114, USA
| | - Yelena G Bodien
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 101 Merrimac Street, Suite 310, Boston, MA, 02114, USA
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 101 Merrimac Street, Suite 310, Boston, MA, 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
14
|
Fischer D, Edlow BL. Coma Prognostication After Acute Brain Injury: A Review. JAMA Neurol 2024; 81:2815829. [PMID: 38436946 DOI: 10.1001/jamaneurol.2023.5634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Importance Among the most impactful neurologic assessments is that of neuroprognostication, defined here as the prediction of neurologic recovery from disorders of consciousness caused by severe, acute brain injury. Across a range of brain injury etiologies, these determinations often dictate whether life-sustaining treatment is continued or withdrawn; thus, they have major implications for morbidity, mortality, and health care costs. Neuroprognostication relies on a diverse array of tests, including behavioral, radiologic, physiological, and serologic markers, that evaluate the brain's functional and structural integrity. Observations Prognostic markers, such as the neurologic examination, electroencephalography, and conventional computed tomography and magnetic resonance imaging (MRI), have been foundational in assessing a patient's current level of consciousness and capacity for recovery. Emerging techniques, such as functional MRI, diffusion MRI, and advanced forms of electroencephalography, provide new ways of evaluating the brain, leading to evolving schemes for characterizing neurologic function and novel methods for predicting recovery. Conclusions and Relevance Neuroprognostic markers are rapidly evolving as new ways of assessing the brain's structural and functional integrity after brain injury are discovered. Many of these techniques remain in development, and further research is needed to optimize their prognostic utility. However, even as such efforts are underway, a series of promising findings coupled with the imperfect predictive value of conventional prognostic markers and the high stakes of these assessments have prompted clinical guidelines to endorse emerging techniques for neuroprognostication. Thus, clinicians have been thrust into an uncertain predicament in which emerging techniques are not yet perfected but too promising to ignore. This review illustrates the current, and likely future, landscapes of prognostic markers. No matter how much prognostic markers evolve and improve, these assessments must be approached with humility and individualized to reflect each patient's values.
Collapse
Affiliation(s)
- David Fischer
- Division of Neurocritical Care, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown
| |
Collapse
|
15
|
Errante A, Ferraro S, Demichelis G, Pinardi C, Stanziano M, Sattin D, Rossi Sebastiano D, Rozzi S, D’Incerti L, Catricalà E, Leonardi M, Bruzzone MG, Fogassi L, Nigri A. Brain activation during processing of mouth actions in patients with disorders of consciousness. Brain Commun 2024; 6:fcae045. [PMID: 38434219 PMCID: PMC10907975 DOI: 10.1093/braincomms/fcae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/12/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024] Open
Abstract
In the past 2 decades, several attempts have been made to promote a correct diagnosis and possible restorative interventions in patients suffering from disorders of consciousness. Sensory stimulation has been proved to be useful in sustaining the level of arousal/awareness and to improve behavioural responsiveness with a significant effect on oro-motor functions. Recently, action observation has been proposed as a stimulation strategy in patients with disorders of consciousness, based on neurophysiological evidence that the motor cortex can be activated not only during action execution but also when actions are merely observed in the absence of motor output, or during listening to action sounds and speech. This mechanism is provided by the activity of mirror neurons. In the present study, a group of patients with disorders of consciousness (11 males, 4 females; median age: 55 years; age range: 19-74 years) underwent task-based functional MRI in which they had, in one condition, to observe and listen to the sound of mouth actions, and in another condition, to listen to verbs with motor or abstract content. In order to verify the presence of residual activation of the mirror neuron system, the brain activations of patients were compared with that of a group of healthy individuals (seven males, eight females; median age: 33.4 years; age range: 24-65 years) performing the same tasks. The results show that brain activations were lower in patients with disorders of consciousness compared with controls, except for primary auditory areas. During the audiovisual task, 5 out of 15 patients with disorders of consciousness showed only residual activation of low-level visual and auditory areas. Activation of high-level parieto-premotor areas was present in six patients. During the listening task, three patients showed only low-level activations, and six patients activated also high-level areas. Interestingly, in both tasks, one patient with a clinical diagnosis of vegetative state showed activations of high-level areas. Region of interest analysis on blood oxygen level dependent signal change in temporal, parietal and premotor cortex revealed a significant linear relation with the level of clinical functioning, assessed with coma recovery scale-revised. We propose a classification of the patient's response based on the presence of low-level and high-level activations, combined with the patient's functional level. These findings support the use of action observation and listening as possible stimulation strategies in patients with disorders of consciousness and highlight the relevance of combined methods based on functional assessment and brain imaging to provide more detailed neuroanatomical specificity about residual activated areas at both cortical and subcortical levels.
Collapse
Affiliation(s)
- Antonino Errante
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Stefania Ferraro
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, 611731 Chengdu, China
- Neuroradiology Unit, Diagnostic and Technology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Greta Demichelis
- Neuroradiology Unit, Diagnostic and Technology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Chiara Pinardi
- Health Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Mario Stanziano
- Neuroradiology Unit, Diagnostic and Technology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- Neurosciences Department ‘Rita Levi Montalcini’, University of Turin, 10126 Turin, Italy
| | - Davide Sattin
- Istituti Clinici Scientifici Maugeri IRCCS, 20138 Milan, Italy
| | - Davide Rossi Sebastiano
- Neurophysiology Unit, Diagnostic and Technology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Stefano Rozzi
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Ludovico D’Incerti
- Neuroradiology Unit, Children’s Hospital A. Meyer—University of Florence, 50139 Florence, Italy
| | - Eleonora Catricalà
- ICoN Cognitive Neuroscience Center, IUSS, Institute for Advances Studies, 27100 Pavia, Italy
| | - Matilde Leonardi
- Disability Unit and Coma Research Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Maria Grazia Bruzzone
- Neuroradiology Unit, Diagnostic and Technology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Leonardo Fogassi
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Anna Nigri
- Neuroradiology Unit, Diagnostic and Technology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| |
Collapse
|
16
|
Young MJ, Fecchio M, Bodien YG, Edlow BL. Covert cortical processing: a diagnosis in search of a definition. Neurosci Conscious 2024; 2024:niad026. [PMID: 38327828 PMCID: PMC10849751 DOI: 10.1093/nc/niad026] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/22/2023] [Accepted: 12/10/2023] [Indexed: 02/09/2024] Open
Abstract
Historically, clinical evaluation of unresponsive patients following brain injury has relied principally on serial behavioral examination to search for emerging signs of consciousness and track recovery. Advances in neuroimaging and electrophysiologic techniques now enable clinicians to peer into residual brain functions even in the absence of overt behavioral signs. These advances have expanded clinicians' ability to sub-stratify behaviorally unresponsive and seemingly unaware patients following brain injury by querying and classifying covert brain activity made evident through active or passive neuroimaging or electrophysiologic techniques, including functional MRI, electroencephalography (EEG), transcranial magnetic stimulation-EEG, and positron emission tomography. Clinical research has thus reciprocally influenced clinical practice, giving rise to new diagnostic categories including cognitive-motor dissociation (i.e. 'covert consciousness') and covert cortical processing (CCP). While covert consciousness has received extensive attention and study, CCP is relatively less understood. We describe that CCP is an emerging and clinically relevant state of consciousness marked by the presence of intact association cortex responses to environmental stimuli in the absence of behavioral evidence of stimulus processing. CCP is not a monotonic state but rather encapsulates a spectrum of possible association cortex responses from rudimentary to complex and to a range of possible stimuli. In constructing a roadmap for this evolving field, we emphasize that efforts to inform clinicians, philosophers, and researchers of this condition are crucial. Along with strategies to sensitize diagnostic criteria and disorders of consciousness nosology to these vital discoveries, democratizing access to the resources necessary for clinical identification of CCP is an emerging clinical and ethical imperative.
Collapse
Affiliation(s)
- Michael J Young
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 101 Merrimac Street, Suite 310, Boston, MA 02114, USA
| | - Matteo Fecchio
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 101 Merrimac Street, Suite 310, Boston, MA 02114, USA
| | - Yelena G Bodien
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 101 Merrimac Street, Suite 310, Boston, MA 02114, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, 300 1st Ave, Charlestown, Boston, MA 02129, USA
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 101 Merrimac Street, Suite 310, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 13th St, Charlestown, Charlestown, MA 02129, USA
| |
Collapse
|
17
|
Abstract
In this article, we discuss the taxonomy associated with the four major disorders of consciousness (DoC): coma, vegetative state or unresponsive wakefulness syndrome, minimally conscious state, and post-traumatic confusional state. We briefly review the history of each disorder and then provide operational definitions and diagnostic criteria for each one. We rely heavily on recently released practice guidelines and, where appropriate, identify knowledge gaps and discuss future directions to advance DoC research and practice.
Collapse
Affiliation(s)
- Katherine Golden
- School of Health & Rehabilitation Sciences, MGH Institute of Health Professions, 36 1st Avenue, Boston, MA 02129, USA
| | - Yelena G Bodien
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, 300 1st Avenue, Charlestown, MA, 02129, USA; Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA; Department of Physical Medicine and Rehabilitation, Harvard Medical School, 25 Shattuck Street, Boston, MA, USA
| | - Joseph T Giacino
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, 300 1st Avenue, Charlestown, MA, 02129, USA; Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.
| |
Collapse
|
18
|
Abstract
Covert consciousness is a state of residual awareness following severe brain injury or neurological disorder that evades routine bedside behavioral detection. Patients with covert consciousness have preserved awareness but are incapable of self-expression through ordinary means of behavior or communication. Growing recognition of the limitations of bedside neurobehavioral examination in reliably detecting consciousness, along with advances in neurotechnologies capable of detecting brain states or subtle signs indicative of consciousness not discernible by routine examination, carry promise to transform approaches to classifying, diagnosing, prognosticating and treating disorders of consciousness. Here we describe and critically evaluate the evolving clinical category of covert consciousness, including approaches to its diagnosis through neuroimaging, electrophysiology, and novel behavioral tools, its prognostic relevance, and open questions pertaining to optimal clinical management of patients with covert consciousness recovering from severe brain injury.
Collapse
Affiliation(s)
- Michael J. Young
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian L. Edlow
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Yelena G. Bodien
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Edlow BL, Boerwinkle VL, Annen J, Boly M, Gosseries O, Laureys S, Mukherjee P, Puybasset L, Stevens RD, Threlkeld ZD, Newcombe VFJ, Fernandez-Espejo D. Common Data Elements for Disorders of Consciousness: Recommendations from the Working Group on Neuroimaging. Neurocrit Care 2023; 39:611-617. [PMID: 37552410 DOI: 10.1007/s12028-023-01794-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Over the past 5 decades, advances in neuroimaging have yielded insights into the pathophysiologic mechanisms that cause disorders of consciousness (DoC) in patients with severe brain injuries. Structural, functional, metabolic, and perfusion imaging studies have revealed specific neuroanatomic regions, such as the brainstem tegmentum, thalamus, posterior cingulate cortex, medial prefrontal cortex, and occipital cortex, where lesions correlate with the current or future state of consciousness. Advanced imaging modalities, such as diffusion tensor imaging, resting-state functional magnetic resonance imaging (fMRI), and task-based fMRI, have been used to improve the accuracy of diagnosis and long-term prognosis, culminating in the endorsement of fMRI for the clinical evaluation of patients with DoC in the 2018 US (task-based fMRI) and 2020 European (task-based and resting-state fMRI) guidelines. As diverse neuroimaging techniques are increasingly used for patients with DoC in research and clinical settings, the need for a standardized approach to reporting results is clear. The success of future multicenter collaborations and international trials fundamentally depends on the implementation of a shared nomenclature and infrastructure. METHODS To address this need, the Neurocritical Care Society's Curing Coma Campaign convened an international panel of DoC neuroimaging experts to propose common data elements (CDEs) for data collection and reporting in this field. RESULTS We report the recommendations of this CDE development panel and disseminate CDEs to be used in neuroimaging studies of patients with DoC. CONCLUSIONS These CDEs will support progress in the field of DoC neuroimaging and facilitate international collaboration.
Collapse
Affiliation(s)
- Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.
| | - Varina L Boerwinkle
- Clinical Resting-State Functional Magnetic Resonance Imaging Laboratory and Service, Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jitka Annen
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre de Cerveau2, University Hospital of Liège, Liège, Belgium
| | - Melanie Boly
- Department of Neurology, University of Wisconsin, Madison, WI, USA
- Department of Psychiatry, Wisconsin Institute for Sleep and Consciousness, University of Wisconsin, Madison, WI, USA
| | - Olivia Gosseries
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre de Cerveau2, University Hospital of Liège, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre de Cerveau2, University Hospital of Liège, Liège, Belgium
- CERVO Research Institute, Laval University, Quebec, Canada
| | - Pratik Mukherjee
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Louis Puybasset
- Department of Anesthesiology and Intensive Care, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Robert D Stevens
- Departments of Anesthesiology and Critical Care Medicine, Neurology, Radiology, and Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zachary D Threlkeld
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Davinia Fernandez-Espejo
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
20
|
Sarma AK, Popli G, Anzalone A, Contillo N, Cornell C, Nunn AM, Rowland JA, Godwin DW, Flashman LA, Couture D, Stapleton-Kotloski JR. Use of magnetic source imaging to assess recovery after severe traumatic brain injury-an MEG pilot study. Front Neurol 2023; 14:1257886. [PMID: 38020602 PMCID: PMC10656620 DOI: 10.3389/fneur.2023.1257886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Rationale Severe TBI (sTBI) is a devastating neurological injury that comprises a significant global trauma burden. Early comprehensive neurocritical care and rehabilitation improve outcomes for such patients, although better diagnostic and prognostic tools are necessary to guide personalized treatment plans. Methods In this study, we explored the feasibility of conducting resting state magnetoencephalography (MEG) in a case series of sTBI patients acutely after injury (~7 days), and then about 1.5 and 8 months after injury. Synthetic aperture magnetometry (SAM) was utilized to localize source power in the canonical frequency bands of delta, theta, alpha, beta, and gamma, as well as DC-80 Hz. Results At the first scan, SAM source maps revealed zones of hypofunction, islands of preserved activity, and hemispheric asymmetry across bandwidths, with markedly reduced power on the side of injury for each patient. GCS scores improved at scan 2 and by scan 3 the patients were ambulatory. The SAM maps for scans 2 and 3 varied, with most patients showing increasing power over time, especially in gamma, but a continued reduction in power in damaged areas and hemispheric asymmetry and/or relative diminishment in power at the site of injury. At the group level for scan 1, there was a large excess of neural generators operating within the delta band relative to control participants, while the number of neural generators for beta and gamma were significantly reduced. At scan 2 there was increased beta power relative to controls. At scan 3 there was increased group-wise delta power in comparison to controls. Conclusion In summary, this pilot study shows that MEG can be safely used to monitor and track the recovery of brain function in patients with severe TBI as well as to identify patient-specific regions of decreased or altered brain function. Such MEG maps of brain function may be used in the future to tailor patient-specific rehabilitation plans to target regions of altered spectral power with neurostimulation and other treatments.
Collapse
Affiliation(s)
- Anand Karthik Sarma
- Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Neurocritical Care, Piedmont Atlanta Hospital, Atlanta, GA, United States
| | - Gautam Popli
- Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Anthony Anzalone
- Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, United States
| | - Nicholas Contillo
- Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Cassandra Cornell
- Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Andrew M. Nunn
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Jared A. Rowland
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Research and Education Department, W.G. (Bill) Hefner VA Healthcare System, Salisbury, NC, United States
| | - Dwayne W. Godwin
- Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Research and Education Department, W.G. (Bill) Hefner VA Healthcare System, Salisbury, NC, United States
| | - Laura A. Flashman
- Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Daniel Couture
- Department of Neurosurgery, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Jennifer R. Stapleton-Kotloski
- Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
21
|
Okahara Y, Takano K, Odaka K, Uchino Y, Kansaku K. Detecting passive and active response in patients with behaviourally diagnosed unresponsive wakefulness syndrome. Neurosci Res 2023; 196:23-31. [PMID: 37302715 DOI: 10.1016/j.neures.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
The diagnosis of unresponsive wakefulness syndrome depends mostly on the motor response following verbal commands. However, there is a potential for misdiagnosis in patients who understand verbal commands (passive response) but cannot perform voluntary movements (active response). To evaluate passive and active responses in such patients, this study used an approach combining functional magnetic resonance imaging and passive listening tasks to evaluate the level of speech comprehension, with portable brain-computer interface modalities that were applied to elicit an active response to attentional modulation tasks at the bedside. We included ten patients who were clinically diagnosed as unresponsive wakefulness syndrome. Two of ten patients showed no significant activation, while limited activation in the auditory cortex was found in six patients. The remaining two patients showed significant activation in language areas, and were able to control the brain-computer interface with reliable accuracy. Using a combined passive/active approach, we identified unresponsive wakefulness syndrome patients who showed both active and passive neural responses. This suggests that some patients with unresponsive wakefulness syndrome diagnosed behaviourally are both wakeful and responsive, and the combined approach is useful for distinguishing a minimally conscious state from unresponsive wakefulness syndrome physiologically.
Collapse
Affiliation(s)
- Yoji Okahara
- Department of Neurological Surgery, Chiba Cerebral and Cardiovascular Center, Chiba, Japan; Systems Neuroscience Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation for Persons with Disabilities, Saitama, Japan
| | - Kouji Takano
- Systems Neuroscience Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation for Persons with Disabilities, Saitama, Japan
| | | | | | - Kenji Kansaku
- Systems Neuroscience Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation for Persons with Disabilities, Saitama, Japan; Department of Physiology, Dokkyo Medical University School of Medicine, Tochigi, Japan; Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo, Japan.
| |
Collapse
|
22
|
Boerwinkle VL, Gillette K, Rubinos CA, Broman-Fulks J, Aseem F, DeHoff GK, Arhin M, Cediel E, Strohm T. Functional MRI for Acute Covert Consciousness: Emerging Data and Implementation Case Series. Semin Neurol 2023; 43:712-734. [PMID: 37788679 DOI: 10.1055/s-0043-1775845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Although research studies have begun to demonstrate relationships between disorders of consciousness and brain network biomarkers, there are limited data on the practical aspects of obtaining such network biomarkers to potentially guide care. As the state of knowledge continues to evolve, guidelines from professional societies such as the American and European Academies of Neurology and many experts have advocated that the risk-benefit ratio for the assessment of network biomarkers has begun to favor their application toward potentially detecting covert consciousness. Given the lack of detailed operationalization guidance and the context of the ethical implications, herein we offer a roadmap based on local institutional experience with the implementation of functional MRI in the neonatal, pediatric, and adult intensive care units of our local government-supported health system. We provide a case-based demonstrative approach intended to review the current literature and to assist with the initiation of such services at other facilities.
Collapse
Affiliation(s)
- Varina L Boerwinkle
- Division of Child Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Kirsten Gillette
- Division of Child Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Clio A Rubinos
- Division of Neurocritical Care, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Jordan Broman-Fulks
- Division of Child Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Fazila Aseem
- Division of Neurocritical Care, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Grace K DeHoff
- Division of Neurocritical Care, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Martin Arhin
- Division of Child Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Emilio Cediel
- Division of Child Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Tamara Strohm
- Division of Neurocritical Care, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
23
|
Zamora E, Chun KJ, Zamora C. Neuroimaging in Coma, Brain Death, and Related Conditions. NEUROGRAPHICS 2023; 13:190-209. [DOI: 10.3174/ng.2200001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Coma is a state of unresponsiveness to external stimuli, which can be secondary to a variety of CNS alterations affecting essential neuronal pathways, particularly the ascending reticular activating system. A comprehensive clinical evaluation is necessary for assessment of motor function and brainstem reflexes but is often insufficient for determination of the underlying etiology and extent of injury. Diagnostic brain imaging is typically needed for management and decision-making, particularly in acute settings where prompt diagnosis of reversible/treatable conditions is essential, as well as for prognostication. Understanding the pathophysiologic mechanisms leading to coma and comalike states and their imaging manifestations will enable selection of appropriate modalities and facilitate a clinically relevant interpretation. For evaluation of brain death, diagnostic imaging has a supportive role, and when indicated, selection of an ancillary diagnostic test is based on multiple factors, including susceptibility to confounding factors and specificity, in addition to safety, convenience, and availability.Learning objective: To describe the pathophysiology of alterations of consciousness and discuss the role of neuroimaging modalities in the evaluation of coma, brain death, and associated conditions
Collapse
|
24
|
Shin A, Park S, Shin W, Woo J, Jeong M, Kim J, Kim D. A brainstem-to-mediodorsal thalamic pathway mediates sound-induced arousal from slow-wave sleep. Curr Biol 2023; 33:875-885.e5. [PMID: 36754050 DOI: 10.1016/j.cub.2023.01.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/25/2022] [Accepted: 01/17/2023] [Indexed: 02/09/2023]
Abstract
Auditory-induced arousal is a defense mechanism of animals against potential dangers. Although the thalamus is the neural substrate that relays sensory information to the cortex, its function is reduced during slow-wave sleep (SWS), also known as deep sleep. Despite this, animals are capable of waking up in response to external sensory stimuli, suggesting the existence of neural circuits that are involved in this response. Here, we report that kainate-class-type ionotropic glutamate receptor subunit 4 (GRIK4)-positive mediodorsal (MD) thalamic neurons act as a neural substrate for arousals from SWS. These neurons become active during arousal from SWS and their photoactivation can induce arousal from SWS. Moreover, we show that these neurons are influenced by glutamatergic neurons in the brainstem, the activity of which increases during auditory-induced arousals. These results suggest that this brainstem-MD pathway can mediate wakefulness from SWS.
Collapse
Affiliation(s)
- Anna Shin
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seahyung Park
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Wooyeon Shin
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jeonghoon Woo
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Minju Jeong
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jeongjin Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| | - Daesoo Kim
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
25
|
Norton L, Kazazian K, Gofton T, Debicki DB, Fernandez-Espejo D, Peelle JE, Al Thenayan E, Young GB, Owen AM. Functional Neuroimaging as an Assessment Tool in Critically Ill Patients. Ann Neurol 2023; 93:131-141. [PMID: 36222470 DOI: 10.1002/ana.26530] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Little is known about residual cognitive function in the earliest stages of serious brain injury. Functional neuroimaging has yielded valuable diagnostic and prognostic information in chronic disorders of consciousness, such as the vegetative state (also termed unresponsive wakefulness syndrome). The objective of the current study was to determine if functional neuroimaging could be efficacious in the assessment of cognitive function in acute disorders of consciousness, such as coma, where decisions about the withdrawal of life-sustaining therapies are often made. METHODS A hierarchical functional magnetic resonance imaging (fMRI) approach assessed sound perception, speech perception, language comprehension, and covert command following in 17 critically ill patients admitted to the intensive care unit (ICU). RESULTS Preserved auditory function was observed in 15 patients (88%), whereas 5 (29%) also had preserved higher-order language comprehension. Notably, one patient could willfully modulate his brain activity when instructed to do so, suggesting a level of covert conscious awareness that was entirely inconsistent with his clinical diagnosis at the time of the scan. Across patients, a positive relationship was also observed between fMRI responsivity and the level of functional recovery, such that patients with the greatest functional recovery had neural responses most similar to those observed in healthy control participants. INTERPRETATION These results suggest that fMRI may provide important diagnostic and prognostic information beyond standard clinical assessment in acutely unresponsive patients, which may aid discussions surrounding the continuation or removal of life-sustaining therapies during the early post-injury period. ANN NEUROL 2023;93:131-141.
Collapse
Affiliation(s)
- Loretta Norton
- Brain and Mind Institute, Western University, London, Ontario, Canada.,Department of Psychology, King's University College at Western University, London, Ontario, Canada
| | - Karnig Kazazian
- Brain and Mind Institute, Western University, London, Ontario, Canada
| | - Teneille Gofton
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Derek B Debicki
- Brain and Mind Institute, Western University, London, Ontario, Canada.,Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Davinia Fernandez-Espejo
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, UK.,Centre for Human Brain Health and School of Psychology, University of Birmingham, Edgbaston, Birmingham, UK
| | - Jonathan E Peelle
- Center for Cognitive and Brain Health, Northeastern University, Boston, MA, USA
| | - Eyad Al Thenayan
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - G Bryan Young
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Adrian M Owen
- Brain and Mind Institute, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology and Department of Psychology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
26
|
Ferré F, Heine L, Naboulsi E, Gobert F, Beaudoin-Gobert M, Dailler F, Buffières W, Corneyllie A, Sarton B, Riu B, Luauté J, Silva S, Perrin F. Self-processing in coma, unresponsive wakefulness syndrome and minimally conscious state. Front Hum Neurosci 2023; 17:1145253. [PMID: 37125347 PMCID: PMC10132704 DOI: 10.3389/fnhum.2023.1145253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Behavioral and cerebral dissociation has been now clearly established in some patients with acquired disorders of consciousness (DoC). Altogether, these studies mainly focused on the preservation of high-level cognitive markers in prolonged DoC, but did not specifically investigate lower but key-cognitive functions to consciousness emergence, such as the ability to take a first-person perspective, notably at the acute stage of coma. We made the hypothesis that the preservation of self-recognition (i) is independent of the behavioral impairment of consciousness, and (ii) can reflect the ability to recover consciousness. Methods Hence, using bedside Electroencephalography (EEG) recordings, we acquired, in a large cohort of 129 severely brain damaged patients, the brain response to the passive listening of the subject's own name (SON) and unfamiliar other first names (OFN). One hundred and twelve of them (mean age ± SD = 46 ± 18.3 years, sex ratio M/F: 71/41) could be analyzed for the detection of an individual and significant discriminative P3 event-related brain response to the SON as compared to OFN ('SON effect', primary endpoint assessed by temporal clustering permutation tests). Results Patients were either coma (n = 38), unresponsive wakefulness syndrome (UWS, n = 30) or minimally conscious state (MCS, n = 44), according to the revised version of the Coma Recovery Scale (CRS-R). Overall, 33 DoC patients (29%) evoked a 'SON effect'. This electrophysiological index was similar between coma (29%), MCS (23%) and UWS (34%) patients (p = 0.61). MCS patients at the time of enrolment were more likely to emerged from MCS (EMCS) at 6 months than coma and UWS patients (p = 0.013 for comparison between groups). Among the 72 survivors' patients with event-related responses recorded within 3 months after brain injury, 75% of the 16 patients with a SON effect were EMCS at 6 months, while 59% of the 56 patients without a SON effect evolved to this favorable behavioral outcome. Discussion About 30% of severely brain-damaged patients suffering from DoC are capable to process salient self-referential auditory stimuli, even in case of absence of behavioral detection of self-conscious processing. We suggest that self-recognition covert brain ability could be an index of consciousness recovery, and thus could help to predict good outcome.
Collapse
Affiliation(s)
- Fabrice Ferré
- CAP Team (Cognition Auditive et Psychoacoustique), Lyon Neuroscience Research Centre (Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR5292), Bron Cedex, France
- Intensive Care Unit, Purpan University Teaching Hospital, Place du Dr Joseph Baylac, Toulouse CEDEX 9, France
- Toulouse NeuroImaging Centre (ToNIC), UPS—INSERM UMR, Place du Dr Joseph Baylac, Purpan University Teaching Hospital, Toulouse CEDEX 3, France
- *Correspondence: Fabrice Ferré,
| | - Lizette Heine
- CAP Team (Cognition Auditive et Psychoacoustique), Lyon Neuroscience Research Centre (Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR5292), Bron Cedex, France
| | - Edouard Naboulsi
- Intensive Care Unit, Purpan University Teaching Hospital, Place du Dr Joseph Baylac, Toulouse CEDEX 9, France
| | - Florent Gobert
- CAP Team (Cognition Auditive et Psychoacoustique), Lyon Neuroscience Research Centre (Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR5292), Bron Cedex, France
- Neuro-Intensive Care Unit, Hospices Civils de Lyon, Neurological Hospital Pierre-Wertheimer, Bron, France
- Trajectoires Team, Lyon Neuroscience Research Centre (Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR5292), Bron, France
| | - Maude Beaudoin-Gobert
- Physical Medicine and Rehabilitation Department, Henry-Gabrielle Hospital, Hospices Civils de Lyon, Saint Genis Laval, France
| | - Frédéric Dailler
- Neuro-Intensive Care Unit, Hospices Civils de Lyon, Neurological Hospital Pierre-Wertheimer, Bron, France
| | - William Buffières
- Intensive Care Unit, Purpan University Teaching Hospital, Place du Dr Joseph Baylac, Toulouse CEDEX 9, France
- Toulouse NeuroImaging Centre (ToNIC), UPS—INSERM UMR, Place du Dr Joseph Baylac, Purpan University Teaching Hospital, Toulouse CEDEX 3, France
| | - Alexandra Corneyllie
- CAP Team (Cognition Auditive et Psychoacoustique), Lyon Neuroscience Research Centre (Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR5292), Bron Cedex, France
| | - Benjamine Sarton
- Intensive Care Unit, Purpan University Teaching Hospital, Place du Dr Joseph Baylac, Toulouse CEDEX 9, France
- Toulouse NeuroImaging Centre (ToNIC), UPS—INSERM UMR, Place du Dr Joseph Baylac, Purpan University Teaching Hospital, Toulouse CEDEX 3, France
| | - Béatrice Riu
- Intensive Care Unit, Purpan University Teaching Hospital, Place du Dr Joseph Baylac, Toulouse CEDEX 9, France
| | - Jacques Luauté
- Physical Medicine and Rehabilitation Department, Henry-Gabrielle Hospital, Hospices Civils de Lyon, Saint Genis Laval, France
| | - Stein Silva
- Intensive Care Unit, Purpan University Teaching Hospital, Place du Dr Joseph Baylac, Toulouse CEDEX 9, France
- Toulouse NeuroImaging Centre (ToNIC), UPS—INSERM UMR, Place du Dr Joseph Baylac, Purpan University Teaching Hospital, Toulouse CEDEX 3, France
| | - Fabien Perrin
- CAP Team (Cognition Auditive et Psychoacoustique), Lyon Neuroscience Research Centre (Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR5292), Bron Cedex, France
| |
Collapse
|
27
|
Coppola L, Mirabelli P, Baldi D, Smaldone G, Estraneo A, Soddu A, Grimaldi AM, Mele G, Salvatore M, Cavaliere C. An innovative approach for the evaluation of prolonged disorders of consciousness using NF-L and GFAP biomarkers: a pivotal study. Sci Rep 2022; 12:18446. [PMID: 36323711 PMCID: PMC9630372 DOI: 10.1038/s41598-022-21930-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
Behavioral assessments during the clinical evaluation in prolonged disorders of consciousness patients could be not sufficient for a correct diagnosis and prognostication. To this aim, we used an innovative approach, involving the ultra-sensitive determination of biological markers, correlating them with imaging parameters to investigate the prolonged disorders of consciousness (pDoC).We assessed the serum concentration of neurofilament light chain(NF-L) and glial fibrillary acidic protein (GFAP) in pDoC (n = 16), and healthy controls (HC, n = 6) as well as several clinical imaging parameters such as Fractional Anisotropy (FA), Whole Brain SUV, and White Matter Hyperintensities volumes (WMH) using PET-MRI acquisition. As for differential diagnosis task, only the imaging WMH volume was able to discriminate between vegetative state/unresponsive wakefulness syndrome (VS/UWS), and minimally conscious state (MCS) patients (p-value < 0.01), while all selected markers (both imaging and in vitro) were able to differentiate between pDoC patients and HC. At subject level, serum NF-L concentrations significantly differ according to clinical progression and consciousness recovery (p-value < 0.01), highlighting a potential play for the longitudinal management of these patients.
Collapse
Affiliation(s)
| | | | | | | | - A. Estraneo
- grid.418563.d0000 0001 1090 9021Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS) Fondazione Don Carlo Gnocchi, Florence, Italy
| | - A. Soddu
- grid.39381.300000 0004 1936 8884Department of Physics and Astronomy, Western Institute of Neuroscience, University of Western Ontario, London, ON Canada
| | | | - G. Mele
- IRCCS Synlab SDN, Napoli, Italy
| | | | | |
Collapse
|
28
|
OBE AMO. Improving prognostication after severe brain injury. Lancet Neurol 2022; 21:673-674. [DOI: 10.1016/s1474-4422(22)00262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022]
|
29
|
Fischer D, Edlow BL, Giacino JT, Greer DM. Neuroprognostication: a conceptual framework. Nat Rev Neurol 2022; 18:419-427. [PMID: 35352033 PMCID: PMC9326772 DOI: 10.1038/s41582-022-00644-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 11/09/2022]
Abstract
Neuroprognostication, or the prediction of recovery from disorders of consciousness caused by severe brain injury, is as critical as it is complex. With profound implications for mortality and quality of life, neuroprognostication draws upon an intricate set of biomedical, probabilistic, psychosocial and ethical factors. However, the clinical approach to neuroprognostication is often unsystematic, and consequently, variable among clinicians and prone to error. Here, we offer a stepwise conceptual framework for reasoning through neuroprognostic determinations - including an evaluation of neurological function, estimation of a recovery trajectory, definition of goals of care and consideration of patient values - culminating in a clinically actionable formula for weighing the risks and benefits of life-sustaining treatment. Although the complexity of neuroprognostication might never be fully reducible to arithmetic, this systematic approach provides structure and guidance to supplement clinical judgement and direct future investigation.
Collapse
Affiliation(s)
- David Fischer
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph T Giacino
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA, USA
| | - David M Greer
- Department of Neurology, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| |
Collapse
|
30
|
Young M, Peterson AH. Neuroethics across the Disorders of Consciousness Care Continuum. Semin Neurol 2022; 42:375-392. [PMID: 35738293 DOI: 10.1055/a-1883-0701] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
31
|
Fischer D, Newcombe V, Fernandez-Espejo D, Snider SB. Applications of Advanced MRI to Disorders of Consciousness. Semin Neurol 2022; 42:325-334. [PMID: 35790201 DOI: 10.1055/a-1892-1894] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Disorder of consciousness (DoC) after severe brain injury presents numerous challenges to clinicians, as the diagnosis, prognosis, and management are often uncertain. Magnetic resonance imaging (MRI) has long been used to evaluate brain structure in patients with DoC. More recently, advances in MRI technology have permitted more detailed investigations of the brain's structural integrity (via diffusion MRI) and function (via functional MRI). A growing literature has begun to show that these advanced forms of MRI may improve our understanding of DoC pathophysiology, facilitate the identification of patient consciousness, and improve the accuracy of clinical prognostication. Here we review the emerging evidence for the application of advanced MRI for patients with DoC.
Collapse
Affiliation(s)
- David Fischer
- Division of Neurocritical Care, Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Virginia Newcombe
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Davinia Fernandez-Espejo
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Samuel B Snider
- Division of Neurocritical Care, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
32
|
Aubinet C, Schnakers C, Majerus S. Language Assessment in Patients with Disorders of Consciousness. Semin Neurol 2022; 42:273-282. [PMID: 36100226 DOI: 10.1055/s-0042-1755561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The assessment of residual language abilities in patients with disorders of consciousness (DoC) after severe brain injury is particularly challenging due to their limited behavioral repertoire. Moreover, associated language impairment such as receptive aphasia may lead to an underestimation of actual consciousness levels. In this review, we examine past research on the assessment of residual language processing in DoC patients, and we discuss currently available tools for identifying language-specific abilities and their prognostic value. We first highlight the need for validated and sensitive bedside behavioral assessment tools for residual language abilities in DoC patients. As regards neuroimaging and electrophysiological methods, the tasks involving higher level linguistic commands appear to be the most informative about level of consciousness and have the best prognostic value. Neuroimaging methods should be combined with the most appropriate behavioral tools in multimodal assessment protocols to assess receptive language abilities in DoC patients in the most complete and sensitive manner.
Collapse
Affiliation(s)
- Charlène Aubinet
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium.,Centre du Cerveau, University Hospital of Liège, Liège, Belgium.,Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium
| | - Caroline Schnakers
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, California
| | - Steve Majerus
- Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium
| |
Collapse
|
33
|
Pain in Persons with Disorders of Consciousness. Brain Sci 2022; 12:brainsci12030300. [PMID: 35326257 PMCID: PMC8946117 DOI: 10.3390/brainsci12030300] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Pain and suffering in persons with disorders of consciousness (DoC) remain poorly understood, frequently unaddressed or inadequately addressed, and controversial on numerous levels. This narrative literature review will address a number of critical issues germane to pain and suffering in this challenging group of patients, providing an introductory overview of the topic, perspectives on current knowledge regarding pain pathoanatomy and pathophysiology, and a review of common pain generators and factors that can lead to the chronifcation of pain. Caveats on bedside pain assessment challenges, as well as electrophysiologic and neuroimaging findings in these patients, will also be explored. Pain management techniques, including non-pharmacological and pharmacological, will be reviewed. Ethical considerations in the context of pain and suffering in persons with disorders of consciousness will round out the review prior to our concluding comments.
Collapse
|
34
|
Walter J. Consciousness as a multidimensional phenomenon: implications for the assessment of disorders of consciousness. Neurosci Conscious 2021; 2021:niab047. [PMID: 34992792 PMCID: PMC8716840 DOI: 10.1093/nc/niab047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 10/19/2021] [Accepted: 12/10/2021] [Indexed: 01/10/2023] Open
Abstract
Disorders of consciousness (DoCs) pose a significant clinical and ethical challenge because they allow for complex forms of conscious experience in patients where intentional behaviour and communication are highly limited or non-existent. There is a pressing need for brain-based assessments that can precisely and accurately characterize the conscious state of individual DoC patients. There has been an ongoing research effort to develop neural measures of consciousness. However, these measures are challenging to validate not only due to our lack of ground truth about consciousness in many DoC patients but also because there is an open ontological question about consciousness. There is a growing, well-supported view that consciousness is a multidimensional phenomenon that cannot be fully described in terms of the theoretical construct of hierarchical, easily ordered conscious levels. The multidimensional view of consciousness challenges the utility of levels-based neural measures in the context of DoC assessment. To examine how these measures may map onto consciousness as a multidimensional phenomenon, this article will investigate a range of studies where they have been applied in states other than DoC and where more is known about conscious experience. This comparative evidence suggests that measures of conscious level are more sensitive to some dimensions of consciousness than others and cannot be assumed to provide a straightforward hierarchical characterization of conscious states. Elevated levels of brain complexity, for example, are associated with conscious states characterized by a high degree of sensory richness and minimal attentional constraints, but are suboptimal for goal-directed behaviour and external responsiveness. Overall, this comparative analysis indicates that there are currently limitations to the use of these measures as tools to evaluate consciousness as a multidimensional phenomenon and that the relationship between these neural signatures and phenomenology requires closer scrutiny.
Collapse
Affiliation(s)
- Jasmine Walter
- Cognition and Philosophy Lab, 21 Chancellor’s Walk, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
35
|
Kazazian K, Norton L, Laforge G, Abdalmalak A, Gofton TE, Debicki D, Slessarev M, Hollywood S, Lawrence KS, Owen AM. Improving Diagnosis and Prognosis in Acute Severe Brain Injury: A Multimodal Imaging Protocol. Front Neurol 2021; 12:757219. [PMID: 34938260 PMCID: PMC8685572 DOI: 10.3389/fneur.2021.757219] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Multi-modal neuroimaging techniques have the potential to dramatically improve the diagnosis of the level consciousness and prognostication of neurological outcome for patients with severe brain injury in the intensive care unit (ICU). This protocol describes a study that will utilize functional Magnetic Resonance Imaging (fMRI), electroencephalography (EEG), and functional Near Infrared Spectroscopy (fNIRS) to measure and map the brain activity of acute critically ill patients. Our goal is to investigate whether these modalities can provide objective and quantifiable indicators of good neurological outcome and reliably detect conscious awareness. To this end, we will conduct a prospective longitudinal cohort study to validate the prognostic and diagnostic utility of neuroimaging techniques in the ICU. We will recruit 350 individuals from two ICUs over the course of 7 years. Participants will undergo fMRI, EEG, and fNIRS testing several times over the first 10 days of care to assess for residual cognitive function and evidence of covert awareness. Patients who regain behavioral awareness will be asked to complete web-based neurocognitive tests for 1 year, as well as return for follow up neuroimaging to determine which acute imaging features are most predictive of cognitive and functional recovery. Ultimately, multi-modal neuroimaging techniques may improve the clinical assessments of patients' level of consciousness, aid in the prediction of outcome, and facilitate efforts to find interventional methods that improve recovery and quality of life.
Collapse
Affiliation(s)
- Karnig Kazazian
- Graduate Program in Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Brain and Mind Institute, Western University, London, ON, Canada
| | - Loretta Norton
- Department of Psychology, King's University College at Western University, London, ON, Canada
| | - Geoffrey Laforge
- Brain and Mind Institute, Western University, London, ON, Canada.,Department of Psychology, Western University, London, ON, Canada
| | - Androu Abdalmalak
- Brain and Mind Institute, Western University, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Teneille E Gofton
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Derek Debicki
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Marat Slessarev
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Sarah Hollywood
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Keith St Lawrence
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Adrian M Owen
- Brain and Mind Institute, Western University, London, ON, Canada.,Department of Psychology, Western University, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
36
|
Aubinet C, Chatelle C, Gosseries O, Carrière M, Laureys S, Majerus S. Residual implicit and explicit language abilities in patients with disorders of consciousness: A systematic review. Neurosci Biobehav Rev 2021; 132:391-409. [PMID: 34864003 DOI: 10.1016/j.neubiorev.2021.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/13/2021] [Accepted: 12/01/2021] [Indexed: 01/14/2023]
Abstract
Language assessment in post-comatose patients is difficult due to their limited behavioral repertoire; yet associated language deficits might lead to an underestimation of consciousness levels in unresponsive wakefulness syndrome (UWS) or minimally conscious state (MCS; -/+) diagnoses. We present a systematic review of studies from 2002 assessing residual language abilities with neuroimaging, electrophysiological or behavioral measures in patients with severe brain injury. Eighty-five articles including a total of 2278 patients were assessed for quality. The median percentages of patients showing residual implicit language abilities (i.e., cortical responses to specific words/sentences) were 33 % for UWS, 50 % for MCS- and 78 % for MCS + patients, whereas explicit language abilities (i.e., command-following using brain-computer interfaces) were reported in 20 % of UWS, 33 % of MCS- and 50 % of MCS + patients. Cortical responses to verbal stimuli increased along with consciousness levels and the progressive recovery of consciousness after a coma was paralleled by the reappearance of both implicit and explicit language processing. This review highlights the importance of language assessment in patients with disorders of consciousness.
Collapse
Affiliation(s)
- Charlène Aubinet
- Coma Science Group, GIGA Consciousness, University of Liège, Belgium; Centre du Cerveau, University Hospital of Liège, Belgium.
| | - Camille Chatelle
- Coma Science Group, GIGA Consciousness, University of Liège, Belgium; Centre du Cerveau, University Hospital of Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA Consciousness, University of Liège, Belgium; Centre du Cerveau, University Hospital of Liège, Belgium; Fund for Scientific Research, FNRS, Belgium
| | - Manon Carrière
- Coma Science Group, GIGA Consciousness, University of Liège, Belgium; Centre du Cerveau, University Hospital of Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness, University of Liège, Belgium; Centre du Cerveau, University Hospital of Liège, Belgium; Fund for Scientific Research, FNRS, Belgium
| | - Steve Majerus
- Fund for Scientific Research, FNRS, Belgium; Psychology and Neuroscience of Cognition Research Unit, University of Liège, Belgium.
| |
Collapse
|
37
|
Coffey BJ, Threlkeld ZD, Foulkes AS, Bodien YG, Edlow BL. Reemergence of the language network during recovery from severe traumatic brain injury: A pilot functional MRI study. Brain Inj 2021; 35:1552-1562. [PMID: 34546806 DOI: 10.1080/02699052.2021.1972455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PRIMARY OBJECTIVE We hypothesized that, in patients with acute severe traumatic brain injury (TBI) who recover basic language function, speech-evoked blood-oxygen-level-dependent (BOLD) functional MRI (fMRI) responses within the canonical language network increase over the first 6 months post-injury. RESEARCH DESIGN We conducted a prospective, longitudinal fMRI pilot study of adults with acute severe TBI admitted to the intensive care unit. We also enrolled age- and sex-matched healthy subjects. METHODS AND PROCEDURES We evaluated BOLD signal in bilateral superior temporal gyrus (STG) and inferior frontal gyrus (IFG) regions of interest acutely and approximately 6 months post-injury. Given evidence that regions outside the canonical language network contribute to language processing, we also performed exploratory whole-brain analyses. MAIN OUTCOMES AND RESULTS Of the 16 patients enrolled, eight returned for follow-up fMRI, all of whom recovered basic language function. We observed speech-evoked longitudinal BOLD increases in the left STG, but not in the right STG, right IFG, or left IFG. Whole-brain analysis revealed increases in the right supramarginal and middle temporal gyri but no differences between patients and healthy subjects (n = 16). CONCLUSION This pilot study suggests that, in patients with severe TBI who recover llanguage function, speech-evoked responses in bihemispheric language-processing cortex reemerge by 6 months post-injury.
Collapse
Affiliation(s)
- Brian J Coffey
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, University of Florida Health, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Zachary D Threlkeld
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Stanford University School of Medicine, Stanford, California, USA
| | - Andrea S Foulkes
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yelena G Bodien
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts, USA
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| |
Collapse
|
38
|
Sokoliuk R, Degano G, Melloni L, Noppeney U, Cruse D. The Influence of Auditory Attention on Rhythmic Speech Tracking: Implications for Studies of Unresponsive Patients. Front Hum Neurosci 2021; 15:702768. [PMID: 34456697 PMCID: PMC8385206 DOI: 10.3389/fnhum.2021.702768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/21/2021] [Indexed: 11/13/2022] Open
Abstract
Language comprehension relies on integrating words into progressively more complex structures, like phrases and sentences. This hierarchical structure-building is reflected in rhythmic neural activity across multiple timescales in E/MEG in healthy, awake participants. However, recent studies have shown evidence for this “cortical tracking” of higher-level linguistic structures also in a proportion of unresponsive patients. What does this tell us about these patients’ residual levels of cognition and consciousness? Must the listener direct their attention toward higher level speech structures to exhibit cortical tracking, and would selective attention across levels of the hierarchy influence the expression of these rhythms? We investigated these questions in an EEG study of 72 healthy human volunteers listening to streams of monosyllabic isochronous English words that were either unrelated (scrambled condition) or composed of four-word-sequences building meaningful sentences (sentential condition). Importantly, there were no physical cues between four-word-sentences. Rather, boundaries were marked by syntactic structure and thematic role assignment. Participants were divided into three attention groups: from passive listening (passive group) to attending to individual words (word group) or sentences (sentence group). The passive and word groups were initially naïve to the sentential stimulus structure, while the sentence group was not. We found significant tracking at word- and sentence rate across all three groups, with sentence tracking linked to left middle temporal gyrus and right superior temporal gyrus. Goal-directed attention to words did not enhance word-rate-tracking, suggesting that word tracking here reflects largely automatic mechanisms, as was shown for tracking at the syllable-rate before. Importantly, goal-directed attention to sentences relative to words significantly increased sentence-rate-tracking over left inferior frontal gyrus. This attentional modulation of rhythmic EEG activity at the sentential rate highlights the role of attention in integrating individual words into complex linguistic structures. Nevertheless, given the presence of high-level cortical tracking under conditions of lower attentional effort, our findings underline the suitability of the paradigm in its clinical application in patients after brain injury. The neural dissociation between passive tracking of sentences and directed attention to sentences provides a potential means to further characterise the cognitive state of each unresponsive patient.
Collapse
Affiliation(s)
- Rodika Sokoliuk
- School of Psychology, University of Birmingham, Birmingham, United Kingdom.,Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Giulio Degano
- School of Psychology, University of Birmingham, Birmingham, United Kingdom.,Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom.,Brain and Language Lab, Department of Psychology, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Lucia Melloni
- Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany.,Department of Neurology, New York University, New York City, NY, United States
| | - Uta Noppeney
- Donders Centre for Cognitive Neuroimaging, Nijmegen, Netherlands.,Department of Biophysics, Radboud University, Nijmegen, Netherlands
| | - Damian Cruse
- School of Psychology, University of Birmingham, Birmingham, United Kingdom.,Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
39
|
Scolding N, Owen AM, Keown J. Prolonged disorders of consciousness: a critical evaluation of the new UK guidelines. Brain 2021; 144:1655-1660. [PMID: 33778883 PMCID: PMC8320298 DOI: 10.1093/brain/awab063] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/06/2020] [Accepted: 12/11/2020] [Indexed: 11/14/2022] Open
Abstract
In March 2020, the Royal College of Physicians in the UK published national guidelines on the management of patients with prolonged disorders of consciousness, updating their 2013 guidance 'particularly in relation to recent developments in assessment and management and … changes in the law governing … the withdrawal of clinically assisted nutrition and hydration'. The report's primary focus is on patients who could live for many years with treatment and care. This update, by a neurologist, an imaging neuroscientist, and a lawyer-ethicist, questions the document's rejection of any significant role for neuroimaging techniques including functional MRI and/or bedside EEG to detect covert consciousness in such patients. We find the reasons for this rejection unconvincing, given (i) the significant advances made in the use of this technology in recent years; and (ii) the wider scope for its use envisaged by the earlier (2018) guidelines issued by the American Academy of Neurology. We suggest that, since around one in five patients diagnosed with prolonged disorders of consciousness are in fact conscious enough to follow commands in a neuroimaging context (i.e. those who are 'covertly conscious' or those with 'cognitive motor dissociation'), and given the clinical, ethical and legal importance of determining whether patients with prolonged disorders of consciousness are legally competent or at least able to express their views and feelings, the guidance from the Royal College of Physicians requires urgent review.
Collapse
Affiliation(s)
- Neil Scolding
- Institute of Clinical Neurosciences, University of Bristol, Bristol, UK
| | | | - John Keown
- Kennedy Institute of Ethics, Georgetown University, Washington, DC, USA
| |
Collapse
|
40
|
Peterson A, Webster F, Gonzalez-Lara LE, Munce S, Owen AM, Weijer C. Caregiver reactions to neuroimaging evidence of covert consciousness in patients with severe brain injury: a qualitative interview study. BMC Med Ethics 2021; 22:105. [PMID: 34320966 PMCID: PMC8320067 DOI: 10.1186/s12910-021-00674-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/16/2021] [Indexed: 11/10/2022] Open
Abstract
Background Severe brain injury is a leading cause of death and disability. Diagnosis and prognostication are difficult, and errors occur often. Novel neuroimaging methods can improve diagnostic and prognostic accuracy, especially in patients with prolonged disorders of consciousness (PDoC). Yet it is currently unknown how family caregivers understand this information, raising ethical concerns that disclosure of neuroimaging results could result in therapeutic misconception or false hope. Methods To examine these ethical concerns, we conducted semi-structured interviews with caregivers of patients with PDoC who were enrolled in a concurrent neuroimaging research program designed to detect covert consciousness following severe brain injury. Caregivers held surrogate decision-making status for a patient. Interviews were conducted at two time points for each caregiver. The first interview occurred before the disclosure of neuroimaging results. The second occurred after disclosure. Descriptive analysis was applied to the data of four interview topics: (1) expectations for neuroimaging; (2) reactions to evidence of preserved cognition; (3) reactions to null results; and (4) understanding of the results and study. Results Twelve caregivers participated in the study; two caregivers shared surrogate decision-making status for one patient with PDoC. Twenty-one interviews were completed; one caregiver declined to participate in the post-disclosure interview. Three patients with PDoC associated with the study displayed evidence of covert consciousness. Overall, caregivers understood the neuroimaging research and results. Caregivers who received results of covert consciousness were generally pleased. However, there was some variation in expectations and reactions to these data and null results. Conclusion This study, for the first time, reveals caregiver expectations for and reactions to neuroimaging evidence of covert consciousness in patients with PDoC. Caregivers understood the neuroimaging research and results, casting doubt on speculative ethical concerns regarding therapeutic misconception and false hope. However, disclosure of neuroimaging result could be improved. Pre-disclosure consultations might assist professionals in shaping caregiver expectations. Standardization of disclosure might also improve comprehension of the results. Supplementary Information The online version contains supplementary material available at 10.1186/s12910-021-00674-8.
Collapse
Affiliation(s)
- Andrew Peterson
- Institute for Philosophy and Public Policy, George Mason University, Fairfax, USA.
| | - Fiona Webster
- Arthur Labatt Family School of Nursing, Western University, London, Canada
| | | | - Sarah Munce
- Toronto Rehabilitation Institute-University Health Network, Toronoto, Canada
| | - Adrian M Owen
- Brain and Mind Institute, Western University, London, Canada
| | - Charles Weijer
- Departments of Medicine, Epidemiology & Biostatistics, and Philosophy, Western University, London, Canada
| |
Collapse
|
41
|
Abdalmalak A, Milej D, Norton L, Debicki DB, Owen AM, Lawrence KS. The Potential Role of fNIRS in Evaluating Levels of Consciousness. Front Hum Neurosci 2021; 15:703405. [PMID: 34305558 PMCID: PMC8296905 DOI: 10.3389/fnhum.2021.703405] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022] Open
Abstract
Over the last few decades, neuroimaging techniques have transformed our understanding of the brain and the effect of neurological conditions on brain function. More recently, light-based modalities such as functional near-infrared spectroscopy have gained popularity as tools to study brain function at the bedside. A recent application is to assess residual awareness in patients with disorders of consciousness, as some patients retain awareness albeit lacking all behavioural response to commands. Functional near-infrared spectroscopy can play a vital role in identifying these patients by assessing command-driven brain activity. The goal of this review is to summarise the studies reported on this topic, to discuss the technical and ethical challenges of working with patients with disorders of consciousness, and to outline promising future directions in this field.
Collapse
Affiliation(s)
- Androu Abdalmalak
- Department of Physiology and Pharmacology, Western University, London, ON, Canada.,Brain and Mind Institute, Western University, London, ON, Canada
| | - Daniel Milej
- Imaging Program, Lawson Health Research Institute, London, ON, Canada.,Department of Medical Biophysics, Western University, London, ON, Canada
| | - Loretta Norton
- Department of Psychology, King's College, Western University, London, ON, Canada
| | - Derek B Debicki
- Brain and Mind Institute, Western University, London, ON, Canada.,Clinical Neurological Sciences, Western University, London, ON, Canada
| | - Adrian M Owen
- Department of Physiology and Pharmacology, Western University, London, ON, Canada.,Brain and Mind Institute, Western University, London, ON, Canada.,Department of Psychology, Western University, London, ON, Canada
| | - Keith St Lawrence
- Imaging Program, Lawson Health Research Institute, London, ON, Canada.,Department of Medical Biophysics, Western University, London, ON, Canada
| |
Collapse
|
42
|
Calabrò RS, Pignolo L, Müller-Eising C, Naro A. Pain Perception in Disorder of Consciousness: A Scoping Review on Current Knowledge, Clinical Applications, and Future Perspective. Brain Sci 2021; 11:665. [PMID: 34065349 PMCID: PMC8161058 DOI: 10.3390/brainsci11050665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/05/2021] [Accepted: 05/19/2021] [Indexed: 01/18/2023] Open
Abstract
Pain perception in individuals with prolonged disorders of consciousness (PDOC) is still a matter of debate. Advanced neuroimaging studies suggest some cortical activations even in patients with unresponsive wakefulness syndrome (UWS) compared to those with a minimally conscious state (MCS). Therefore, pain perception has to be considered even in individuals with UWS. However, advanced neuroimaging assessment can be challenging to conduct, and its findings are sometimes difficult to be interpreted. Conversely, multichannel electroencephalography (EEG) and laser-evoked potentials (LEPs) can be carried out quickly and are more adaptable to the clinical needs. In this scoping review, we dealt with the neurophysiological basis underpinning pain in PDOC, pointing out how pain perception assessment in these individuals might help in reducing the misdiagnosis rate. The available literature data suggest that patients with UWS show a more severe functional connectivity breakdown among the pain-related brain areas compared to individuals in MCS, pointing out that pain perception increases with the level of consciousness. However, there are noteworthy exceptions, because some UWS patients show pain-related cortical activations that partially overlap those observed in MCS individuals. This suggests that some patients with UWS may have residual brain functional connectivity supporting the somatosensory, affective, and cognitive aspects of pain processing (i.e., a conscious experience of the unpleasantness of pain), rather than only being able to show autonomic responses to potentially harmful stimuli. Therefore, the significance of the neurophysiological approach to pain perception in PDOC seems to be clear, and despite some methodological caveats (including intensity of stimulation, multimodal paradigms, and active vs. passive stimulation protocols), remain to be solved. To summarize, an accurate clinical and neurophysiological assessment should always be performed for a better understanding of pain perception neurophysiological underpinnings, a more precise differential diagnosis at the level of individual cases as well as group comparisons, and patient-tailored management.
Collapse
Affiliation(s)
| | | | | | - Antonino Naro
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy;
| |
Collapse
|
43
|
Peterson A, Aas S, Wasserman D. What Justifies the Allocation of Health Care Resources to Patients with Disorders of Consciousness? AJOB Neurosci 2021; 12:127-139. [PMID: 33787458 DOI: 10.1080/21507740.2021.1896594] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This paper critically engages ethical issues in the allocation of novel, and potentially costly, health care resources to patients with disorders of consciousness. First, we review potential benefits of novel health care resources for patients and their families and outline preliminary considerations to address concerns about cost. We then address two problems regarding the allocation of health care resources to patients with disorders of consciousness: (1) the problem of uncertain moral status; and (2) the problem of accurately measuring the welfare burdens these resources would relieve. We conclude by suggesting that opportunity-based frameworks might complement standard approaches for justifying resources allocation to patients with disorders of consciousness.
Collapse
Affiliation(s)
- Andrew Peterson
- Institute for Philosophy and Public Policy, George Mason University
| | - Sean Aas
- Kennedy Institute of Ethics, Georgetown University
| | | |
Collapse
|
44
|
Edlow BL, Claassen J, Schiff ND, Greer DM. Recovery from disorders of consciousness: mechanisms, prognosis and emerging therapies. Nat Rev Neurol 2021; 17:135-156. [PMID: 33318675 PMCID: PMC7734616 DOI: 10.1038/s41582-020-00428-x] [Citation(s) in RCA: 359] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2020] [Indexed: 12/16/2022]
Abstract
Substantial progress has been made over the past two decades in detecting, predicting and promoting recovery of consciousness in patients with disorders of consciousness (DoC) caused by severe brain injuries. Advanced neuroimaging and electrophysiological techniques have revealed new insights into the biological mechanisms underlying recovery of consciousness and have enabled the identification of preserved brain networks in patients who seem unresponsive, thus raising hope for more accurate diagnosis and prognosis. Emerging evidence suggests that covert consciousness, or cognitive motor dissociation (CMD), is present in up to 15-20% of patients with DoC and that detection of CMD in the intensive care unit can predict functional recovery at 1 year post injury. Although fundamental questions remain about which patients with DoC have the potential for recovery, novel pharmacological and electrophysiological therapies have shown the potential to reactivate injured neural networks and promote re-emergence of consciousness. In this Review, we focus on mechanisms of recovery from DoC in the acute and subacute-to-chronic stages, and we discuss recent progress in detecting and predicting recovery of consciousness. We also describe the developments in pharmacological and electrophysiological therapies that are creating new opportunities to improve the lives of patients with DoC.
Collapse
Affiliation(s)
- Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Jan Claassen
- Department of Neurology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - Nicholas D Schiff
- Feil Family Brain Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - David M Greer
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
45
|
Edlow BL, Naccache L. Unmasking Covert Language Processing in the Intensive Care Unit with Electroencephalography. Ann Neurol 2021; 89:643-645. [PMID: 33491250 PMCID: PMC8048541 DOI: 10.1002/ana.26030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 01/16/2023]
Affiliation(s)
- Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Lionel Naccache
- PICNIC Lab Team, INSERM, U 1127, CNRS UMR 7225, Faculté de Médecine de Sorbonne Université, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital Pitié-Salpêtrière, Paris, France.,APHP, Departments of Neurology and of Clinical Neurophysiology, Hôpital de la Salpêtriere, Paris, France
| |
Collapse
|
46
|
Sokoliuk R, Degano G, Banellis L, Melloni L, Hayton T, Sturman S, Veenith T, Yakoub KM, Belli A, Noppeney U, Cruse D. Covert Speech Comprehension Predicts Recovery From Acute Unresponsive States. Ann Neurol 2021; 89:646-656. [PMID: 33368496 DOI: 10.1002/ana.25995] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Patients with traumatic brain injury who fail to obey commands after sedation-washout pose one of the most significant challenges for neurological prognostication. Reducing prognostic uncertainty will lead to more appropriate care decisions and ensure provision of limited rehabilitation resources to those most likely to benefit. Bedside markers of covert residual cognition, including speech comprehension, may reduce this uncertainty. METHODS We recruited 28 patients with acute traumatic brain injury who were 2 to 7 days sedation-free and failed to obey commands. Patients heard streams of isochronous monosyllabic words that built meaningful phrases and sentences while their brain activity via electroencephalography (EEG) was recorded. In healthy individuals, EEG activity only synchronizes with the rhythm of phrases and sentences when listeners consciously comprehend the speech. This approach therefore provides a measure of residual speech comprehension in unresponsive patients. RESULTS Seventeen and 16 patients were available for assessment with the Glasgow Outcome Scale Extended (GOSE) at 3 months and 6 months, respectively. Outcome significantly correlated with the strength of patients' acute cortical tracking of phrases and sentences (r > 0.6, p < 0.007), quantified by inter-trial phase coherence. Linear regressions revealed that the strength of this comprehension response (beta = 0.603, p = 0.006) significantly improved the accuracy of prognoses relative to clinical characteristics alone (eg, Glasgow Coma Scale [GCS], computed tomography [CT] grade). INTERPRETATION A simple, passive, auditory EEG protocol improves prognostic accuracy in a critical period of clinical decision making. Unlike other approaches to probing covert cognition for prognostication, this approach is entirely passive and therefore less susceptible to cognitive deficits, increasing the number of patients who may benefit. ANN NEUROL 2021;89:646-656.
Collapse
Affiliation(s)
- Rodika Sokoliuk
- School of Psychology, University of Birmingham, Birmingham, UK.,Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Giulio Degano
- School of Psychology, University of Birmingham, Birmingham, UK.,Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Leah Banellis
- School of Psychology, University of Birmingham, Birmingham, UK.,Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Lucia Melloni
- Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany.,Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Tom Hayton
- Surgical Reconstruction and Microbiology Research Centre, National Institute for Health Research, Birmingham, UK
| | - Steve Sturman
- Surgical Reconstruction and Microbiology Research Centre, National Institute for Health Research, Birmingham, UK
| | - Tonny Veenith
- Surgical Reconstruction and Microbiology Research Centre, National Institute for Health Research, Birmingham, UK.,Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Kamal M Yakoub
- Surgical Reconstruction and Microbiology Research Centre, National Institute for Health Research, Birmingham, UK
| | - Antonio Belli
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.,Surgical Reconstruction and Microbiology Research Centre, National Institute for Health Research, Birmingham, UK
| | - Uta Noppeney
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Damian Cruse
- School of Psychology, University of Birmingham, Birmingham, UK.,Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
47
|
Chatelle C, Rosenthal ES, Bodien YG, Spencer-Salmon CA, Giacino JT, Edlow BL. EEG Correlates of Language Function in Traumatic Disorders of Consciousness. Neurocrit Care 2020; 33:449-457. [PMID: 31900883 PMCID: PMC7373666 DOI: 10.1007/s12028-019-00904-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND/OBJECTIVE Behavioral examinations may fail to detect language function in patients with severe traumatic brain injury (TBI) due to confounds such as having an endotracheal tube. We investigated whether resting and stimulus-evoked electroencephalography (EEG) methods detect the presence of language function in patients with severe TBI. METHODS Four EEG measures were assessed: (1) resting background (applying Forgacs' criteria), (2) reactivity to speech, (3) background and reactivity (applying Synek's criteria); and (4) an automated support vector machine (classifier for speech versus rest). Cohen's kappa measured agreement between the four EEG measures and evidence of language function on a behavioral coma recovery scale-revised (CRS-R) and composite (CRS-R or functional MRI) reference standard. Sensitivity and specificity of each EEG measure were calculated against the reference standards. RESULTS We enrolled 17 adult patients with severe TBI (mean ± SD age 27.0 ± 7.0 years; median [range] 11.5 [2-1173] days post-injury) and 16 healthy subjects (age 28.5 ± 7.8 years). The classifier, followed by Forgacs' criteria for resting background, demonstrated the highest agreement with the behavioral reference standard. Only Synek's criteria for background and reactivity showed significant agreement with the composite reference standard. The classifier and resting background showed balanced sensitivity and specificity for behavioral (sensitivity = 84.6% and 80.8%; specificity = 57.1% for both) and composite reference standards (sensitivity = 79.3% and 75.9%, specificity = 50% for both). CONCLUSIONS Methods applying an automated classifier, resting background, or resting background with reactivity may identify severe TBI patients with preserved language function. Automated classifier methods may enable unbiased and efficient assessment of larger populations or serial timepoints, while qualitative visual methods may be practical in community settings.
Collapse
Affiliation(s)
- Camille Chatelle
- GIGA Consciousness, Coma Science Group, University of Liège, Avenue de l'Hôpital, 11, 4000, Liège, Belgium.
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA.
| | - Eric S Rosenthal
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Clinical Data Animation Center, Massachusetts General Hospital, Boston, MA, USA
| | - Yelena G Bodien
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Joseph T Giacino
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
48
|
Song M, Yang Y, Yang Z, Cui Y, Yu S, He J, Jiang T. Prognostic models for prolonged disorders of consciousness: an integrative review. Cell Mol Life Sci 2020; 77:3945-3961. [PMID: 32306061 PMCID: PMC11104990 DOI: 10.1007/s00018-020-03512-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022]
Abstract
Disorders of consciousness (DoC) are acquired conditions of severe altered consciousness. During the past decades, some prognostic models for DoC have been explored on the basis of a variety of predictors, including demographics, neurological examinations, clinical diagnosis, neurophysiology and brain images. In this article, a systematic review of pertinent literature was conducted. We identified and evaluated 21 prognostic models involving a total of 1201 DoC patients. In terms of the reported accuracies of predicting the prognosis of DoC, these 21 models vary widely, ranging from 60 to 90%. Using improvement of consciousness level as favorable outcome criteria, we performed a quantitative meta-analysis, and found that the pooled sensitivity and specificity of the hybrid model that combined more than one technique were both superior to those of any single technique, including EEG and fMRI at the tasks and resting state. These results support the view that any single technique has its own advantages and limitations; and the integrations of multiple techniques, including diverse brain images and different paradigms, have the potential to improve predictive accuracy for DoC. Then, we provide methodological points of view and some prospects about future research. Totally, in comparison to a great many diagnostic methods for the DoC, the research of prognostic models is sparse and preliminary, still largely in its infancy with many challenges and opportunities.
Collapse
Affiliation(s)
- Ming Song
- National Laboratory of Pattern Recognition, Institute of Automation, The Chinese Academy of Sciences, Beijing, 100190, China
- Brainnetome Center, Institute of Automation, The Chinese Academy of Sciences, Beijing, 100190, China
| | - Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Zhengyi Yang
- National Laboratory of Pattern Recognition, Institute of Automation, The Chinese Academy of Sciences, Beijing, 100190, China
- Brainnetome Center, Institute of Automation, The Chinese Academy of Sciences, Beijing, 100190, China
| | - Yue Cui
- National Laboratory of Pattern Recognition, Institute of Automation, The Chinese Academy of Sciences, Beijing, 100190, China
- Brainnetome Center, Institute of Automation, The Chinese Academy of Sciences, Beijing, 100190, China
| | - Shan Yu
- National Laboratory of Pattern Recognition, Institute of Automation, The Chinese Academy of Sciences, Beijing, 100190, China
- Brainnetome Center, Institute of Automation, The Chinese Academy of Sciences, Beijing, 100190, China
| | - Jianghong He
- Department of Neurosurgery, The 7th Medical Center of the PLA General Hospital, Beijing, 100070, China.
| | - Tianzi Jiang
- National Laboratory of Pattern Recognition, Institute of Automation, The Chinese Academy of Sciences, Beijing, 100190, China.
- Brainnetome Center, Institute of Automation, The Chinese Academy of Sciences, Beijing, 100190, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing, 100190, China.
- Key Laboratory for Neuroinformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 625014, China.
- The Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
49
|
Cortical Function in Acute Severe Traumatic Brain Injury and at Recovery: A Longitudinal fMRI Case Study. Brain Sci 2020; 10:brainsci10090604. [PMID: 32899145 PMCID: PMC7563151 DOI: 10.3390/brainsci10090604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/22/2020] [Accepted: 09/01/2020] [Indexed: 11/17/2022] Open
Abstract
Differences in the functional integrity of the brain from acute severe brain injury to subsequent recovery of consciousness have not been well documented. Functional magnetic resonance imaging (fMRI) may elucidate this issue as it allows for the objective measurement of brain function both at rest and in response to stimuli. Here, we report the cortical function of a patient with a severe traumatic brain injury (TBI) in a critically ill state and at subsequent functional recovery 9-months post injury. A series of fMRI paradigms were employed to assess sound and speech perception, command following, and resting state connectivity. The patient retained sound perception and speech perception acutely, as indexed by his fMRI responses. Command following was absent acutely, but was present at recovery. Increases in functional connectivity across multiple resting state networks were observed at recovery. We demonstrate the clinical utility of fMRI in assessing cortical function in a patient with severe TBI. We suggest that hallmarks of the recovery of consciousness are associated with neural activity to higher-order cognitive tasks and increased resting state connectivity.
Collapse
|
50
|
Subcortical atrophy correlates with the perturbational complexity index in patients with disorders of consciousness. Brain Stimul 2020; 13:1426-1435. [PMID: 32717393 DOI: 10.1016/j.brs.2020.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 05/26/2020] [Accepted: 07/21/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The complexity of neurophysiological brain responses to direct cortical stimulation, referred to as the perturbational complexity index (PCI), has been shown able to discriminate between consciousness and unconsciousness in patients surviving severe brain injury as well as several other conditions (e.g., wake, dreamless sleep, sleep and ketamine dreaming, anesthesia). OBJECTIVE This study asks whether, in patients with a disorder of consciousness (DOC), the complexity of the neurophysiological response to cortical stimulation is preferentially associated with atrophy within specific brain structures. METHODS We perform a retrospective analysis of 40 DOC patients and correlate their maximal PCI to MR-based measurements of cortical thinning and subcortical atrophy. RESULTS PCI was systematically and inversely associated with the degree of local atrophy within the globus pallidus, a region previously linked to electrocortical and behavioral arousal. Conversely, we fail to detect any association between variance in cortical ribbon thickness and PCI. CONCLUSION These findings corroborate the previously reported association between pallidal atrophy and low behavioral arousal and suggest that this region's role in maintaining the overall balance of excitation and inhibition may critically affect the emergence of complex cortical interactions in chronic disorders of consciousness. This finding thus also suggests a target for potential neuromodulatory intervention in DOC patients.
Collapse
|