1
|
Cruz-Criollo L, Dávila-Salazar W, Sarapura-Castro E, Rivera-Valdivia A, Bazalar-Montoya J, Bluske K, Taylor J, Thorpe E, Kesari A, Taft RJ, Cornejo-Olivas M. Delayed diagnosis of ataxia with oculomotor apraxia type 2 in a Peruvian patient, a case report. Clin Neurol Neurosurg 2025; 251:108823. [PMID: 40068357 DOI: 10.1016/j.clineuro.2025.108823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/01/2025] [Accepted: 03/01/2025] [Indexed: 03/30/2025]
Abstract
INTRODUCTION Ataxia with oculomotor apraxia type 2 (AOA2) is a rare autosomal recessive cerebellar ataxia characterized by progressive cerebellar ataxia, sensorimotor peripheral neuropathy, and occasional oculomotor apraxia. CASE REPORT A 50-year-old male with a history of orthopedic shoe use since childhood presented with slowly progressive ataxia and neuropathy. Laboratory tests showed elevated serum alpha-fetoprotein levels and increased total cholesterol. Clinical whole genome sequencing identified a c.4853C > G (p.Ser1618Ter) homozygous pathogenic variant in SETX. CONCLUSION The case highlights the challenges identifying rare disorders like AOA2 due to limited access to genetic testing and socioeconomic and healthcare barriers.
Collapse
Affiliation(s)
- Leonardo Cruz-Criollo
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru; Department of Neurology, University of Iowa Healthcare, Iowa City, IA, United States
| | | | - Elison Sarapura-Castro
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru; Neurogenetics Working Group, Universidad Cientifica del Sur, Lima, Peru
| | - Andrea Rivera-Valdivia
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru; Neurogenetics Working Group, Universidad Cientifica del Sur, Lima, Peru
| | - Jeny Bazalar-Montoya
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru; Facultad de Medicina Humana, Universidad de Piura, Lima, Peru
| | | | | | - Erin Thorpe
- Illumina, Inc., San Diego, CA, United States; Genetic Alliance, Damascus, MD, United States
| | | | - Ryan J Taft
- Illumina, Inc., San Diego, CA, United States; Genetic Alliance, Damascus, MD, United States
| | - Mario Cornejo-Olivas
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru; Neurogenetics Working Group, Universidad Cientifica del Sur, Lima, Peru.
| |
Collapse
|
2
|
Kilic S, Bove J, So BN, Whitman MC. Strabismus in Genetic Syndromes: A Review. Clin Exp Ophthalmol 2025; 53:302-330. [PMID: 39948700 DOI: 10.1111/ceo.14507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 04/03/2025]
Abstract
Strabismus is a feature of many genetic syndromes, with highly variable penetrance. The congenital cranial dysinnervation disorders (CCDDs) result in paralytic strabismus, with limited eye movements. CCDDs result from either deficits in differentiation of the cranial motor neuron precursors or from abnormal axon guidance of the cranial nerves. Although most individuals with comitant strabismus are otherwise healthy, strabismus is a variable feature of many genetic syndromes, most commonly those associated with intellectual disability. We review 255 genetic syndromes in which strabismus has been described and discuss the variable penetrance. The association with intellectual disability and neurological disorders underscores the likely neurological basis of strabismus, but the variable penetrance emphasises the complexity of strabismus pathophysiology. The syndromes described here mostly result from loss of function or change in function of the responsible genes; one hypothesis is that nonsyndromic strabismus may result from altered expression or regulation of the same genes.
Collapse
Affiliation(s)
- Seyda Kilic
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jillian Bove
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, USA
- Boston Orthoptic Fellowship Program, Boston, Massachusetts, USA
| | | | - Mary C Whitman
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- F.M. Kirby Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Sberna S, Filipuzzi M, Bianchi N, Croci O, Fardella F, Soriani C, Rohban S, Carnevali S, Albertini AA, Crosetto N, Rodighiero S, Chiesa A, Curti L, Campaner S. Senataxin prevents replicative stress induced by the Myc oncogene. Cell Death Dis 2025; 16:187. [PMID: 40108134 PMCID: PMC11923212 DOI: 10.1038/s41419-025-07485-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/14/2025] [Accepted: 02/26/2025] [Indexed: 03/22/2025]
Abstract
Replicative stress (RS) is emerging as a promising therapeutic target in oncology, yet full exploitation of its potential requires a detailed understanding of the mechanisms and genes involved. Here, we investigated the RNA helicase Senataxin (SETX), an enzyme that resolves RNA-DNA hybrids and R-loops, to address its role in preventing RS by oncogenic Myc. Upon Myc activation, silencing of SETX led to selective engagement of the DNA damage response (DDR) and robust cytotoxicity. Pharmacological dissection of the upstream kinases regulating the DDR uncovered a protective role of the ATR pathway, that once inhibited, boosted SETX driven-DDR. While SETX loss did not lead to a genome-wide increase of R-loops, mechanistic analyses revealed enhanced R-loops localized at DDR-foci and newly replicated genomic loci, compatible with a selective role of SETX in resolving RNA-DNA hybrids to alleviate Myc-induced RS. Genome-wide mapping of DNA double-strand breaks confirmed that SETX silencing exacerbated DNA damage at transcription-replication conflict (TRC) regions at early replicated sites. We propose that SETX prevents Myc-induced TRCs by resolving transcription-associated R-loops that encounter the replisome. The identification of SETX as a genetic liability of oncogenic Myc opens up new therapeutic options against aggressive Myc-driven tumors.
Collapse
Affiliation(s)
- Silvia Sberna
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Marco Filipuzzi
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Nicola Bianchi
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Ottavio Croci
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Federica Fardella
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Chiara Soriani
- Imaging Unit, Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Sara Rohban
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Sara Carnevali
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | | | - Nicola Crosetto
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE, 17165, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, Solna, SE, 17165, Sweden
| | - Simona Rodighiero
- Imaging Unit, Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Arianna Chiesa
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Laura Curti
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Stefano Campaner
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy.
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| |
Collapse
|
4
|
Buchholz M, Pfaff M, Iskandar A, Reetz K, Schulz JB, Grobe-Einsler M, Klockgether T, Michalowsky B. Health-Related Quality of Life in Patients with Friedreich Ataxia Using Mobility Assistive Technologies: Limited Fit of the EQ-5D-3L Mobility Dimension. Neurol Ther 2025; 14:379-398. [PMID: 39738982 PMCID: PMC11762039 DOI: 10.1007/s40120-024-00694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/05/2024] [Indexed: 01/02/2025] Open
Abstract
INTRODUCTION Friedreich Ataxia (FA) is a multisystem neurodegenerative disease. Affected individuals rely on mobility assistive technologies (MAT) (e.g. wheelchairs) and require long-term treatments and care. To analyse the patients' health-related quality of life (HRQoL), the EuroQol 5 Dimension 3 Level survey (EQ-5D-3L)-a widely used and recommended generic measure-is used in clinical and in health economic studies. Concerns about using the instrument in mobility-impaired individuals who might have difficulties finding appropriate response options for mobility-related items led us to investigate how the 3L dimensions perform in patients with FA using or not using MAT. METHODS Using longitudinal data from 607 patients with FA of the EFACTS study (from baseline to the 3-year follow-up), we analysed the acceptability, distribution properties, validity, and responsiveness of the EQ-5D-3L, focusing on the mobility item. Analyses were stratified for patients without and with different MAT-usage. RESULTS We identified that n = 177 patients used no MAT, n = 299 a wheelchair and n = 131 walking aids. The mobility item non-response was highest in wheelchair users (6.8%) and lowest in patients without MAT. Walking aid users showed the least variability, all selecting the mid-response option "some problems" for mobility. The mobility item correlated moderately with disease severity (rsp = 0.35) and the activities of daily living scale (rsp = 0.36) in wheelchair users. No correlation exists for walking aid users. The strongest health changes occurred for wheelchair users, the weakest for walking aid users. The mobility dimensions showed the highest amount of no changes. CONCLUSION The EQ-5D-3L's mobility item has limitations in MAT users, particularly in walking aid users, due to a tendency towards mid-responses. These limitations may affect the efficacy and (cost)effectiveness conclusions drawn from interventions and clinical trials with mobility-impaired individuals. Further research is needed to explore the understanding and interpretation of responses of the EQ-5D in patients with FA with mobility support. TRIAL REGISTRATION ClinicalTrials.gov identifier NCT02069509.
Collapse
Affiliation(s)
- Maresa Buchholz
- Patient-Reported Outcomes and Health Economics Research, Deutsches Zentrum für Neurodegenerative Erkrankungen/German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Ellernholzstrasse 1-2, 17489, Greifswald, Germany.
| | - Michelle Pfaff
- Patient-Reported Outcomes and Health Economics Research, Deutsches Zentrum für Neurodegenerative Erkrankungen/German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Ellernholzstrasse 1-2, 17489, Greifswald, Germany
| | - Audrey Iskandar
- Patient-Reported Outcomes and Health Economics Research, Deutsches Zentrum für Neurodegenerative Erkrankungen/German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Ellernholzstrasse 1-2, 17489, Greifswald, Germany
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Jörg B Schulz
- Department of Neurology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Marcus Grobe-Einsler
- Deutsches Zentrum für Neurodegenerative Erkrankungen/German Center for Neurodegenerative Diseases (DZNE), Site Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Thomas Klockgether
- Deutsches Zentrum für Neurodegenerative Erkrankungen/German Center for Neurodegenerative Diseases (DZNE), Site Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Bernhard Michalowsky
- Patient-Reported Outcomes and Health Economics Research, Deutsches Zentrum für Neurodegenerative Erkrankungen/German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Ellernholzstrasse 1-2, 17489, Greifswald, Germany
| |
Collapse
|
5
|
Galota F, Di Rauso G, Sireci F, Castellucci A, Cavallieri F, Monfrini E, Fioravanti V, Campanini I, Merlo A, Napoli M, Cavazzuti L, Grisanti S, Ferrari S, Di Fonzo A, Valzania F. Obsessive-compulsive disorder as a first manifestation of Ataxia with Oculomotor Apraxia type 2 due to a novel mutation of SETX gene. Neurol Sci 2025; 46:469-472. [PMID: 39294407 DOI: 10.1007/s10072-024-07761-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND Ataxia with oculomotor apraxia type 2 (AOA2) is an autosomal recessive disorder presenting with cerebellar ataxia, sensory-motor axonal neuropathy, oculomotor apraxia, cerebellar atrophy and high alpha-fetoprotein (AFP) serum level. AOA2 is due to coding mutations of the SETX gene, mapped to chromosome 9q34. Seldom noncoding mutations affecting RNA processing have been reported too. To date psychiatric symptoms have never been reported in AOA2. CASE PRESENTATION A 19 years-old man came to our attention for progressive gait ataxia debuted five years earlier. His past medical history was unremarkable, while his parents were consanguineous. On neurological examination, he had bilateral horizontal gaze-evoked nystagmus with hypometric saccades and saccadic horizontal smooth pursuit, appendicular ataxia, limbs and trunk myoclonic involuntary movements with hands' dystonic postures and dance of the tendons. Psychological evaluation described intrusive and obsessive thoughts experienced by the patient, then diagnosed as obsessive-compulsive disorder. Blood tests detected an elevated AFP level. Brain MRI showed cerebellar atrophy, while electroneuromyography revealed an axonal sensory-motor polyneuropathy. In the suspicion of a pathology belonging to the autosomal recessive cerebellar ataxias (ARCA) spectrum disorder, a direct search of point mutations by whole-exome sequencing was performed revealing a novel biallelic variant in SETX gene (c.6208+2dupT), which was classified as likely pathogenic. CONCLUSION The present case expands the genotypic and phenotypic spectrum of AOA2, reporting a novel likely pathogenic SETX mutation (c.6208+2dupT) and highlighting an early psychiatric involvement in AOA2, suggesting the need for psychiatric assessment in these neurologic patients.
Collapse
Affiliation(s)
- Federica Galota
- Neurology Unit, Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Di Rauso
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy.
| | - Francesca Sireci
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Andrea Castellucci
- Otolaryngology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Francesco Cavallieri
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Edoardo Monfrini
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Valentina Fioravanti
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Isabella Campanini
- LAM-Motion Analysis Laboratory, Neuromotor and Rehabilitation Department, AUSL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Andrea Merlo
- LAM-Motion Analysis Laboratory, Neuromotor and Rehabilitation Department, AUSL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Manuela Napoli
- Neuroradiology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Lorenzo Cavazzuti
- LAM-Motion Analysis Laboratory, Neuromotor and Rehabilitation Department, AUSL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Sara Grisanti
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Ferrari
- Department of Mental Health and Drug Abuse, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessio Di Fonzo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Franco Valzania
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
6
|
Ahmed AN, Rawlins LE, Khan N, Jan Z, Ubeyratna N, Voutsina N, Azeem A, Khan S, Baple EL, Crosby AH, Saleha S. Expanding the genetic spectrum of hereditary motor sensory neuropathies in Pakistan. BMC Neurol 2024; 24:394. [PMID: 39415096 PMCID: PMC11481789 DOI: 10.1186/s12883-024-03882-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Hereditary motor and sensory neuropathy (HMSN) refers to a group of inherited progressive peripheral neuropathies characterized by reduced nerve conduction velocity with chronic segmental demyelination and/or axonal degeneration. HMSN is highly clinically and genetically heterogeneous with multiple inheritance patterns and phenotypic overlap with other inherited neuropathies and neurodegenerative diseases. Due to this high complexity and genetic heterogeneity, this study aimed to elucidate the genetic causes of HMSN in Pakistani families using Whole Exome Sequencing (WES) for variant identification and Sanger sequencing for validation and segregation analysis, facilitating accurate clinical diagnosis. METHODS Families from Khyber Pakhtunkhwa with at least two members showing HMSN symptoms, who had not previously undergone genetic analysis, were included. Referrals for genetic investigations were based on clinical features suggestive of HMSN by local neurologists. WES was performed on affected individuals from each family, with Sanger sequencing used to validate and analyze the segregation of identified variants among family members. Clinical data including age of onset were assessed for variability among affected individuals, and the success rate of genetic diagnosis was compared with existing literature using proportional differences and Cohen's h. RESULTS WES identified homozygous pathogenic variants in GDAP1 (c.310 + 4 A > G, p.?), SETX (c.5948_5949del, p.(Asn1984Profs*30), IGHMBP2 (c.1591 C > A, p.(Pro531Thr) and NARS1 (c.1633 C > T, p.(Arg545Cys) as causative for HMSN in five out of nine families, consistent with an autosomal recessive inheritance pattern. Additionally, in families with HMSN, a SETX variant was found to cause cerebellar ataxia, while a NARS1 variant was linked to intellectual disability. Based on American College of Medical Genetics and Genomics criteria, the GDAP1 variant is classified as a variant of uncertain significance, while variants in SETX and IGHMBP2 are classified as pathogenic, and the NARS1 variant is classified as likely pathogenic. The age of onset ranged from 1 to 15 years (Mean = 5.13, SD = 3.61), and a genetic diagnosis was achieved in 55.56% of families with HMSN, with small effect sizes compared to previous studies. CONCLUSIONS This study expands the molecular genetic spectrum of HMSN and HMSN plus type neuropathies in Pakistan and facilitates accurate diagnosis, genetic counseling, and clinical management for affected families.
Collapse
Affiliation(s)
- Asif Naveed Ahmed
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Lettie E Rawlins
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK.
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Exeter, UK.
| | - Niamat Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Zakir Jan
- Department of Neurology, Pakistan Institute of Medical Science, Islamabad, 44000, Pakistan
| | - Nishanka Ubeyratna
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Nikol Voutsina
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Arfa Azeem
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Saadullah Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Emma L Baple
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Andrew H Crosby
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Shamim Saleha
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan.
| |
Collapse
|
7
|
Ros‐Arlanzón P, Serrano‐Serrano B, Aledo‐Sala C, Guevara‐Dalrymple N, Martí‐Martínez S. Exploring the Pathogenicity of SETX I1942T Variant in Ataxia with Oculomotor Apraxia Type 2 Through Segregation Analysis. Mov Disord Clin Pract 2024; 11:1041-1043. [PMID: 38817201 PMCID: PMC11329564 DOI: 10.1002/mdc3.14128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/19/2024] [Indexed: 06/01/2024] Open
Affiliation(s)
- Pablo Ros‐Arlanzón
- Department of NeurologyDr. Balmis General University HospitalAlicanteSpain
- Alicante Institute for Health and Biomedical Research (ISABIAL)AlicanteSpain
| | | | - Carlos Aledo‐Sala
- Department of NeurologyDr. Balmis General University HospitalAlicanteSpain
- Alicante Institute for Health and Biomedical Research (ISABIAL)AlicanteSpain
| | - Natasha Guevara‐Dalrymple
- Department of NeurologyDr. Balmis General University HospitalAlicanteSpain
- Alicante Institute for Health and Biomedical Research (ISABIAL)AlicanteSpain
| | - Silvia Martí‐Martínez
- Department of NeurologyDr. Balmis General University HospitalAlicanteSpain
- Alicante Institute for Health and Biomedical Research (ISABIAL)AlicanteSpain
| |
Collapse
|
8
|
Kannan A, Gangadharan Leela S, Branzei D, Gangwani L. Role of senataxin in R-loop-mediated neurodegeneration. Brain Commun 2024; 6:fcae239. [PMID: 39070547 PMCID: PMC11277865 DOI: 10.1093/braincomms/fcae239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/14/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024] Open
Abstract
Senataxin is an RNA:DNA helicase that plays an important role in the resolution of RNA:DNA hybrids (R-loops) formed during transcription. R-loops are involved in the regulation of biological processes such as immunoglobulin class switching, gene expression and DNA repair. Excessive accumulation of R-loops results in DNA damage and loss of genomic integrity. Senataxin is critical for maintaining optimal levels of R-loops to prevent DNA damage and acts as a genome guardian. Within the nucleus, senataxin interacts with various RNA processing factors and DNA damage response and repair proteins. Senataxin interactors include survival motor neuron and zinc finger protein 1, with whom it co-localizes in sub-nuclear bodies. Despite its ubiquitous expression, mutations in senataxin specifically affect neurons and result in distinct neurodegenerative diseases such as amyotrophic lateral sclerosis type 4 and ataxia with oculomotor apraxia type 2, which are attributed to the gain-of-function and the loss-of-function mutations in senataxin, respectively. In addition, low levels of senataxin (loss-of-function) in spinal muscular atrophy result in the accumulation of R-loops causing DNA damage and motor neuron degeneration. Senataxin may play multiple functions in diverse cellular processes; however, its emerging role in R-loop resolution and maintenance of genomic integrity is gaining attention in the field of neurodegenerative diseases. In this review, we highlight the role of senataxin in R-loop resolution and its potential as a therapeutic target to treat neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Shyni Gangadharan Leela
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Dana Branzei
- The AIRC Institute of Molecular Oncology Foundation, IFOM ETS, Milan 20139, Italy
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Pavia 27100, Italy
| | - Laxman Gangwani
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
9
|
Wen X, Xu H, Woolley PR, Conway OM, Yao J, Matouschek A, Lambowitz AM, Paull TT. Senataxin deficiency disrupts proteostasis through nucleolar ncRNA-driven protein aggregation. J Cell Biol 2024; 223:e202309036. [PMID: 38717338 PMCID: PMC11080644 DOI: 10.1083/jcb.202309036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/19/2024] [Accepted: 03/13/2024] [Indexed: 05/12/2024] Open
Abstract
Senataxin is an evolutionarily conserved RNA-DNA helicase involved in DNA repair and transcription termination that is associated with human neurodegenerative disorders. Here, we investigated whether Senataxin loss affects protein homeostasis based on previous work showing R-loop-driven accumulation of DNA damage and protein aggregates in human cells. We find that Senataxin loss results in the accumulation of insoluble proteins, including many factors known to be prone to aggregation in neurodegenerative disorders. These aggregates are located primarily in the nucleolus and are promoted by upregulation of non-coding RNAs expressed from the intergenic spacer region of ribosomal DNA. We also map sites of R-loop accumulation in human cells lacking Senataxin and find higher RNA-DNA hybrids within the ribosomal DNA, peri-centromeric regions, and other intergenic sites but not at annotated protein-coding genes. These findings indicate that Senataxin loss affects the solubility of the proteome through the regulation of transcription-dependent lesions in the nucleus and the nucleolus.
Collapse
Affiliation(s)
- Xuemei Wen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Hengyi Xu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Phillip R. Woolley
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Olivia M. Conway
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jun Yao
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Andreas Matouschek
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Alan M. Lambowitz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Tanya T. Paull
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
10
|
Scaravilli A, Tranfa M, Pontillo G, Brais B, De Michele G, La Piana R, Saccà F, Santorelli FM, Synofzik M, Brunetti A, Cocozza S. A Review of Brain and Pituitary Gland MRI Findings in Patients with Ataxia and Hypogonadism. CEREBELLUM (LONDON, ENGLAND) 2024; 23:757-774. [PMID: 37155088 DOI: 10.1007/s12311-023-01562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
The association of cerebellar ataxia and hypogonadism occurs in a heterogeneous group of disorders, caused by different genetic mutations often associated with a recessive inheritance. In these patients, magnetic resonance imaging (MRI) plays a pivotal role in the diagnostic workflow, with a variable involvement of the cerebellar cortex, alone or in combination with other brain structures. Neuroimaging involvement of the pituitary gland is also variable. Here, we provide an overview of the main clinical and conventional brain and pituitary gland MRI imaging findings of the most common genetic mutations associated with the clinical phenotype of ataxia and hypogonadism, with the aim of helping neuroradiologists in the identification of these disorders.
Collapse
Affiliation(s)
- Alessandra Scaravilli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Mario Tranfa
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples "Federico II", Naples, Italy
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, Montreal, Canada
| | - Giovanna De Michele
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Roberta La Piana
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, Montreal, Canada
| | - Francesco Saccà
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | | | - Matthis Synofzik
- German Center for Neurodegenerative Diseases (DZNE), Tubingen, Germany
- Division Translational Genomics of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Strasse 27, 72076, Tubingen, Germany
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
11
|
Salari M, Etemadifar M, Rashedi R, Mardani S. A Review of Ocular Movement Abnormalities in Hereditary Cerebellar Ataxias. CEREBELLUM (LONDON, ENGLAND) 2024; 23:702-721. [PMID: 37000369 DOI: 10.1007/s12311-023-01554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 04/01/2023]
Abstract
Cerebellar ataxias are a wide heterogeneous group of disorders that may present with fine motor deficits as well as gait and balance disturbances that have a significant influence on everyday activities. To review the ocular movements in cerebellar ataxias in order to improve the clinical knowledge of cerebellar ataxias and related subtypes. English papers published from January 1990 to May 2022 were selected by searching PubMed services. The main search keywords were ocular motor, oculomotor, eye movement, eye motility, and ocular motility, along with each ataxia subtype. The eligible papers were analyzed for clinical presentation, involved mutations, the underlying pathology, and ocular movement alterations. Forty-three subtypes of spinocerebellar ataxias and a number of autosomal dominant and autosomal recessive ataxias were discussed in terms of pathology, clinical manifestations, involved mutations, and with a focus on the ocular abnormalities. A flowchart has been made using ocular movement manifestations to differentiate different ataxia subtypes. And underlying pathology of each subtype is reviewed in form of illustrated models to reach a better understanding of each disorder.
Collapse
Affiliation(s)
- Mehri Salari
- Neurology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Etemadifar
- Department of Functional Neurosurgery, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ronak Rashedi
- Neurology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sayna Mardani
- Neurology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Wirth T, Bonnet C, Delvallée C, Pellerin D, Bogdan T, Clément G, Schalk A, Chanson JB, Fleury MC, Piton A, Calmels N, Namer IJ, Kremer S, Brais B, Tranchant C, Renaud M, Anheim M. Does Spinocerebellar ataxia 27B mimic cerebellar multiple system atrophy? J Neurol 2024; 271:2078-2085. [PMID: 38263489 DOI: 10.1007/s00415-024-12182-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Whether spinocerebellar ataxia 27B (SCA27B) may present as a cerebellar multiple system atrophy (MSA-C) mimic remains undetermined. OBJECTIVES To assess the prevalence of FGF14 (GAA)≥250 expansions in patients with MSA-C, to compare SCA27B and MSA-C clinical presentation and natural history. METHODS FGF14 expansion screening combined with longitudinal deep-phenotyping in a prospective cohort of 195 patients with sporadic late-onset cerebellar ataxia. RESULTS After a mean disease duration of 6.4 years, 111 patients were not meeting criteria for MSA-C while 24 and 60 patients had a final diagnosis of possible and probable MSA-C, respectively. 16 patients carried an FGF14 (GAA)≥250 expansion in the group not meeting MSA-C criteria (14.4%), 3 patients in the possible MSA-C group (12.5%), but none among probable MSA-C cases. SCA27B patients were evolving more slowly than probable MSA-C patients. CONCLUSIONS FGF14 (GAA)≥250 expansion may account for MSA look-alike cases and should be screened among slow progressors.
Collapse
Affiliation(s)
- Thomas Wirth
- Neurology Department, Strasbourg University Hospital, Strasbourg, France.
- Strasbourg Federation of Translational Medicine, Strasbourg University, Strasbourg, France.
- Institute of Genetics and Cellular and Molecular Biology, INSERM-U964, CNRS-UMR7104, University of Strasbourg, Illkirch-Graffenstaden, France.
| | - Céline Bonnet
- Medical Genetics Laboratory, Nancy Regional University Hospital, Nancy, France
- INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Lorraine Univesity, 54000, Nancy, France
| | - Clarisse Delvallée
- Neurology Department, Strasbourg University Hospital, Strasbourg, France
- Strasbourg Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- Institute of Genetics and Cellular and Molecular Biology, INSERM-U964, CNRS-UMR7104, University of Strasbourg, Illkirch-Graffenstaden, France
| | - David Pellerin
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Canada
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, London, UK
| | - Thomas Bogdan
- Neurology Department, Strasbourg University Hospital, Strasbourg, France
| | | | - Audrey Schalk
- Strasbourg Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- Genetic Diagnosis Laboratory, Strasbourg University Hospital, Strasbourg, France
| | - Jean-Baptiste Chanson
- Neurology Department, Strasbourg University Hospital, Strasbourg, France
- Strasbourg Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- Neuromuscular Center Nord/Est/Ile-de-France, Strasbourg University Hospital, Strasbourg, France
| | - Marie-Céline Fleury
- Neurology Department, Strasbourg University Hospital, Strasbourg, France
- Strasbourg Federation of Translational Medicine, Strasbourg University, Strasbourg, France
| | - Amélie Piton
- Strasbourg Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- Institute of Genetics and Cellular and Molecular Biology, INSERM-U964, CNRS-UMR7104, University of Strasbourg, Illkirch-Graffenstaden, France
- Genetic Diagnosis Laboratory, Strasbourg University Hospital, Strasbourg, France
| | - Nadège Calmels
- Strasbourg Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- Genetic Diagnosis Laboratory, Strasbourg University Hospital, Strasbourg, France
| | - Izzie Jacques Namer
- MNMS Platform, Institut de Cancérologie Strasbourg Europe, Strasbourg, France
- ICube, University of Strasbourg/CNRS UMR 7357, Strasbourg, France
- Department of Nuclear Medicine and Molecular Imaging, ICANS, Strasbourg, France
| | - Stéphane Kremer
- ICube, University of Strasbourg/CNRS UMR 7357, Strasbourg, France
- Neuroradiology Department, Strasbourg University Hospital, Strasbourg, France
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Canada
| | - Christine Tranchant
- Neurology Department, Strasbourg University Hospital, Strasbourg, France
- Strasbourg Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- Institute of Genetics and Cellular and Molecular Biology, INSERM-U964, CNRS-UMR7104, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Mathilde Renaud
- INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Lorraine Univesity, 54000, Nancy, France
- Neurology Department, Nancy Regional University Hospital, Nancy, France
- Clinical Genetics Department, Nancy Regional University Hospital, Nancy, France
| | - Mathieu Anheim
- Neurology Department, Strasbourg University Hospital, Strasbourg, France
- Strasbourg Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- Institute of Genetics and Cellular and Molecular Biology, INSERM-U964, CNRS-UMR7104, University of Strasbourg, Illkirch-Graffenstaden, France
| |
Collapse
|
13
|
Westover KR, Jin P, Yao B. Bridging the gap: R-loop mediated genomic instability and its implications in neurological diseases. Epigenomics 2024; 16:589-608. [PMID: 38530068 PMCID: PMC11160457 DOI: 10.2217/epi-2023-0379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/12/2024] [Indexed: 03/27/2024] Open
Abstract
R-loops, intricate three-stranded structures formed by RNA-DNA hybrids and an exposed non-template DNA strand, are fundamental to various biological phenomena. They carry out essential and contrasting functions within cellular mechanisms, underlining their critical role in maintaining cellular homeostasis. The specific cellular context that dictates R-loop formation determines their function, particularly emphasizing the necessity for their meticulous genomic regulation. Notably, the aberrant formation or misregulation of R-loops is implicated in numerous neurological disorders. This review focuses on the complex interactions between R-loops and double-strand DNA breaks, exploring how R-loop dysregulation potentially contributes to the pathogenesis of various brain disorders, which could provide novel insights into the molecular mechanisms underpinning neurological disease progression and identify potential therapeutic targets by highlighting these aspects.
Collapse
Affiliation(s)
- Katherine R Westover
- Department of Human Genetics, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Bing Yao
- Department of Human Genetics, Emory University, School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
14
|
Gullulu O, Ozcelik E, Tuzlakoglu Ozturk M, Karagoz MS, Tazebay UH. A multi-faceted approach to unravel coding and non-coding gene fusions and target chimeric proteins in ataxia. J Biomol Struct Dyn 2024:1-21. [PMID: 38411012 DOI: 10.1080/07391102.2024.2321510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
Ataxia represents a heterogeneous group of neurodegenerative disorders characterized by a loss of balance and coordination, often resulting from mutations in genes vital for cerebellar function and maintenance. Recent advances in genomics have identified gene fusion events as critical contributors to various cancers and neurodegenerative diseases. However, their role in ataxia pathogenesis remains largely unexplored. Our study Hdelved into this possibility by analyzing RNA sequencing data from 1443 diverse samples, including cell and mouse models, patient samples, and healthy controls. We identified 7067 novel gene fusions, potentially pivotal in disease onset. These fusions, notably in-frame, could produce chimeric proteins, disrupt gene regulation, or introduce new functions. We observed conservation of specific amino acids at fusion breakpoints and identified potential aggregate formations in fusion proteins, known to contribute to ataxia. Through AI-based protein structure prediction, we identified topological changes in three high-confidence fusion proteins-TEN1-ACOX1, PEX14-NMNAT1, and ITPR1-GRID2-which could potentially alter their functions. Subsequent virtual drug screening identified several molecules and peptides with high-affinity binding to fusion sites. Molecular dynamics simulations confirmed the stability of these protein-ligand complexes at fusion breakpoints. Additionally, we explored the role of non-coding RNA fusions as miRNA sponges. One such fusion, RP11-547P4-FLJ33910, showed strong interaction with hsa-miR-504-5p, potentially acting as its sponge. This interaction correlated with the upregulation of hsa-miR-504-5p target genes, some previously linked to ataxia. In conclusion, our study unveils new aspects of gene fusions in ataxia, suggesting their significant role in pathogenesis and opening avenues for targeted therapeutic interventions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Omer Gullulu
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Emrah Ozcelik
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
- Central Research Laboratory (GTU-MAR), Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Merve Tuzlakoglu Ozturk
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
- Central Research Laboratory (GTU-MAR), Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Mustafa Safa Karagoz
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Uygar Halis Tazebay
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
- Central Research Laboratory (GTU-MAR), Gebze Technical University, Gebze, Kocaeli, Turkey
| |
Collapse
|
15
|
Lopergolo D, Rosini F, Pretegiani E, Bargagli A, Serchi V, Rufa A. Autosomal recessive cerebellar ataxias: a diagnostic classification approach according to ocular features. Front Integr Neurosci 2024; 17:1275794. [PMID: 38390227 PMCID: PMC10883068 DOI: 10.3389/fnint.2023.1275794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/10/2023] [Indexed: 02/24/2024] Open
Abstract
Autosomal recessive cerebellar ataxias (ARCAs) are a heterogeneous group of neurodegenerative disorders affecting primarily the cerebellum and/or its afferent tracts, often accompanied by damage of other neurological or extra-neurological systems. Due to the overlap of clinical presentation among ARCAs and the variety of hereditary, acquired, and reversible etiologies that can determine cerebellar dysfunction, the differential diagnosis is challenging, but also urgent considering the ongoing development of promising target therapies. The examination of afferent and efferent visual system may provide neurophysiological and structural information related to cerebellar dysfunction and neurodegeneration thus allowing a possible diagnostic classification approach according to ocular features. While optic coherence tomography (OCT) is applied for the parametrization of the optic nerve and macular area, the eye movements analysis relies on a wide range of eye-tracker devices and the application of machine-learning techniques. We discuss the results of clinical and eye-tracking oculomotor examination, the OCT findings and some advancing of computer science in ARCAs thus providing evidence sustaining the identification of robust eye parameters as possible markers of ARCAs.
Collapse
Affiliation(s)
- Diego Lopergolo
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Francesca Rosini
- UOC Stroke Unit, Department of Emergenza-Urgenza, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Elena Pretegiani
- Unit of Neurology, Centre Hospitalier Universitaire Vaudoise Lausanne, Unit of Neurology and Cognitive Neurorehabilitation, Universitary Hospital of Fribourg, Fribourg, Switzerland
| | - Alessia Bargagli
- Evalab-Neurosense, Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Valeria Serchi
- Evalab-Neurosense, Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Alessandra Rufa
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
- Evalab-Neurosense, Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
16
|
Saft C, Burgunder JM, Dose M, Jung HH, Katzenschlager R, Priller J, Nguyen HP, Reetz K, Reilmann R, Seppi K, Landwehrmeyer GB. Differential diagnosis of chorea (guidelines of the German Neurological Society). Neurol Res Pract 2023; 5:63. [PMID: 37993913 PMCID: PMC10666412 DOI: 10.1186/s42466-023-00292-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/24/2023] Open
Abstract
INTRODUCTION Choreiform movement disorders are characterized by involuntary, rapid, irregular, and unpredictable movements of the limbs, face, neck, and trunk. These movements often initially go unnoticed by the affected individuals and may blend together with seemingly intended, random motions. Choreiform movements can occur both at rest and during voluntary movements. They typically increase in intensity with stress and physical activity and essentially cease during deep sleep stages. In particularly in advanced stages of Huntington disease (HD), choreiform hyperkinesia occurs alongside with dystonic postures of the limbs or trunk before they typically decrease in intensity. The differential diagnosis of HD can be complex. Here, the authors aim to provide guidance for the diagnostic process. This guidance was prepared for the German Neurological Society (DGN) for German-speaking countries. RECOMMENDATIONS Hereditary (inherited) and non-hereditary (non-inherited) forms of chorea can be distinguished. Therefore, the family history is crucial. However, even in conditions with autosomal-dominant transmission such as HD, unremarkable family histories do not necessarily rule out a hereditary form (e.g., in cases of early deceased or unknown parents, uncertainties in familial relationships, as well as in offspring of parents with CAG repeats in the expandable range (27-35 CAG repeats) which may display expansions into the pathogenic range). CONCLUSIONS The differential diagnosis of chorea can be challenging. This guidance prepared for the German Neurological Society (DGN) reflects the state of the art as of 2023.
Collapse
Affiliation(s)
- Carsten Saft
- Department of Neurology, St. Josef-Hospital, Huntington-Zentrum NRW, Ruhr-Universität Bochum, Bochum, Germany.
| | - Jean-Marc Burgunder
- Department of Neurology, Schweizerisches Huntington-Zentrum, Bern University, Bern, Switzerland
| | - Matthias Dose
- Kbo-Isar-Amper-Klinikum Taufkirchen/München-Ost, Munich, Germany
| | - Hans Heinrich Jung
- Department of Neurology, University Hospital Zürich, Zurich, Switzerland
| | - Regina Katzenschlager
- Department of Neurology, Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders, Klinik Donaustadt, Vienna, Austria
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Neuropsychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Huntington-Zentrum NRW, Ruhr-Universität Bochum, Bochum, Germany
| | - Kathrin Reetz
- Department of Neurology, Euregional Huntington Centre Aachen, RWTH Aachen University Hospital, Aachen, Germany
| | - Ralf Reilmann
- George-Huntington-Institute, Muenster, Germany
- Department of Radiology, Universitaetsklinikum Muenster (UKM), Westfaelische Wilhelms-University, Muenster, Germany
- Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
17
|
Martínez-Rubio D, Hinarejos I, Argente-Escrig H, Marco-Marín C, Lozano MA, Gorría-Redondo N, Lupo V, Martí-Carrera I, Miranda C, Vázquez-López M, García-Pérez A, Marco-Hernández AV, Tomás-Vila M, Aguilera-Albesa S, Espinós C. Genetic Heterogeneity Underlying Phenotypes with Early-Onset Cerebellar Atrophy. Int J Mol Sci 2023; 24:16400. [PMID: 38003592 PMCID: PMC10671053 DOI: 10.3390/ijms242216400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Cerebellar atrophy (CA) is a frequent neuroimaging finding in paediatric neurology, usually associated with cerebellar ataxia. The list of genes involved in hereditary forms of CA is continuously growing and reveals its genetic complexity. We investigated ten cases with early-onset cerebellar involvement with and without ataxia by exome sequencing or by a targeted panel with 363 genes involved in ataxia or spastic paraplegia. Novel variants were investigated by in silico or experimental approaches. Seven probands carry causative variants in well-known genes associated with CA or cerebellar hypoplasia: SETX, CACNA1G, CACNA1A, CLN6, CPLANE1, and TBCD. The remaining three cases deserve special attention; they harbour variants in MAST1, PI4KA and CLK2 genes. MAST1 is responsible for an ultrarare condition characterised by global developmental delay and cognitive decline; our index case added ataxia to the list of concomitant associated symptoms. PIK4A is mainly related to hypomyelinating leukodystrophy; our proband presented with pure spastic paraplegia and normal intellectual capacity. Finally, in a patient who suffers from mild ataxia with oculomotor apraxia, the de novo novel CLK2 c.1120T>C variant was found. The protein expression of the mutated protein was reduced, which may indicate instability that would affect its kinase activity.
Collapse
Affiliation(s)
- Dolores Martínez-Rubio
- Rare Neurodegenerative Diseases Laboratory, Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF), 46012 València, Spain
- Joint Unit CIPF-IIS La Fe Rare Diseases, 46012 València, Spain
| | - Isabel Hinarejos
- Rare Neurodegenerative Diseases Laboratory, Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF), 46012 València, Spain
- Joint Unit CIPF-IIS La Fe Rare Diseases, 46012 València, Spain
| | | | - Clara Marco-Marín
- Structural Enzymopathology Unit, Instituto de Biomedicina de Valencia (IBV), Consejo Superior de Investigaciones Científicas (CSIC), 46022 València, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - María Ana Lozano
- Rare Neurodegenerative Diseases Laboratory, Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF), 46012 València, Spain
| | - Nerea Gorría-Redondo
- Paediatric Neurology Unit, Department of Paediatrics, Hospital Universitario de Navarra, Navarrabiomed, 31008 Pamplona, Spain
| | - Vincenzo Lupo
- Rare Neurodegenerative Diseases Laboratory, Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF), 46012 València, Spain
| | - Itxaso Martí-Carrera
- Paediatric Neurology Unit, Department of Paediatrics, Hospital Universitario Donostia, 20014 Donostia, Spain
| | - Concepción Miranda
- Paediatric Neurology Unit, Department of Paediatrics, Hospital General Universitario Gregorio Marañón, 28027 Madrid, Spain
| | - María Vázquez-López
- Paediatric Neurology Unit, Department of Paediatrics, Hospital General Universitario Gregorio Marañón, 28027 Madrid, Spain
| | - Asunción García-Pérez
- Paediatric Neurology Unit, Department of Paediatrics, Hospital Universitario Fundación Alcorcón, Alcorcón, 28922 Madrid, Spain
| | - Ana Victoria Marco-Hernández
- Paediatric Neurology Unit, Department of Paediatrics, Hospital Universitari Doctor, Peset, 46017 València, Spain
| | - Miguel Tomás-Vila
- Paediatric Neurology Unit, Department of Paediatrics, Hospital Universitari i Politècnic La Fe, 46026 València, Spain
| | - Sergio Aguilera-Albesa
- Paediatric Neurology Unit, Department of Paediatrics, Hospital Universitario de Navarra, Navarrabiomed, 31008 Pamplona, Spain
| | - Carmen Espinós
- Rare Neurodegenerative Diseases Laboratory, Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF), 46012 València, Spain
- Joint Unit CIPF-IIS La Fe Rare Diseases, 46012 València, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
- Biotechnology Department, Universitat Politècnica de València, 46022 València, Spain
| |
Collapse
|
18
|
Novis LE, Frezatti RS, Pellerin D, Tomaselli PJ, Alavi S, Della Coleta MV, Spitz M, Dicaire MJ, Iruzubieta P, Pedroso JL, Barsottini O, Cortese A, Danzi MC, França MC, Brais B, Zuchner S, Houlden H, Raskin S, Marques W, Teive HA. Frequency of GAA- FGF14 Ataxia in a Large Cohort of Brazilian Patients With Unsolved Adult-Onset Cerebellar Ataxia. Neurol Genet 2023; 9:e200094. [PMID: 37646005 PMCID: PMC10461713 DOI: 10.1212/nxg.0000000000200094] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
Objectives Intronic FGF14 GAA repeat expansions have recently been found to be a common cause of hereditary ataxia (GAA-FGF14 ataxia; SCA27B). The global epidemiology and regional prevalence of this newly reported disorder remain to be established. In this study, we investigated the frequency of GAA-FGF14 ataxia in a large cohort of Brazilian patients with unsolved adult-onset ataxia. Methods We recruited 93 index patients with genetically unsolved adult-onset ataxia despite extensive genetic investigation and genotyped the FGF14 repeat locus. Patients were recruited across 4 different regions of Brazil. Results Of the 93 index patients, 8 (9%) carried an FGF14 (GAA)≥250 expansion. The expansion was also identified in 1 affected relative. Seven patients were of European descent, 1 was of African descent, and 1was of admixed American ancestry. One patient carrying a (GAA)376 expansion developed ataxia at age 28 years, confirming that GAA-FGF14 ataxia can occur before the age of 30 years. One patient displayed episodic symptoms, while none had downbeat nystagmus. Cerebellar atrophy was observed on brain MRI in 7 of 8 patients (87%). Discussion Our results suggest that GAA-FGF14 ataxia is a common cause of adult-onset ataxia in the Brazilian population, although larger studies are needed to fully define its epidemiology.
Collapse
Affiliation(s)
- Luiz Eduardo Novis
- From the Pós-graduação Em Medicina Interna e Ciências da Saúde (L.E.N., H.A.T.), Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Brazil; Department of Neuromuscular Diseases (L.E.N., D.P., S.A., P.I., A.C., H.H.), UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK; Department of Neurology (R.S.F., P.J.T., W.M.), School of Medicine at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Departments of Neurology and Neurosurgery (D.P., M.-J.D., B.B.), Montreal Neurological Hospital and Institute, McGill University, Canada; Departamento de Neurologia (M.V.D.C.), Universidade do Estado do Amazonas, Manaus; Departamento de Especialidades Médicas (M.S.), Serviço de Neurologia, Universidade Estadual do Rio de Janeiro, Brazil; Department of Neurology (P.I.), Donostia University Hospital; Neuroscience Area (P.I.), Biodonostia Health Research Institute, San Sebastian; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED) (P.I.), Spain; Department of Neurology (J.L.P., O.B.), Ataxia Unit, Universidade Federal de São Paulo, SP, Brazil; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics (M.C.D., S.Z.), University of Miami Miller School of Medicine; Department of Neurology (M.C.F.), School of Medical Sciences-University of Campinas (UNICAMP), São Paulo, Brazil; Department of Human Genetics (B.B.), McGill University, Montreal, Canada; and Laboratório Genetika (S.R.), Curitiba, PR, Brazil
| | - Rodrigo S Frezatti
- From the Pós-graduação Em Medicina Interna e Ciências da Saúde (L.E.N., H.A.T.), Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Brazil; Department of Neuromuscular Diseases (L.E.N., D.P., S.A., P.I., A.C., H.H.), UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK; Department of Neurology (R.S.F., P.J.T., W.M.), School of Medicine at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Departments of Neurology and Neurosurgery (D.P., M.-J.D., B.B.), Montreal Neurological Hospital and Institute, McGill University, Canada; Departamento de Neurologia (M.V.D.C.), Universidade do Estado do Amazonas, Manaus; Departamento de Especialidades Médicas (M.S.), Serviço de Neurologia, Universidade Estadual do Rio de Janeiro, Brazil; Department of Neurology (P.I.), Donostia University Hospital; Neuroscience Area (P.I.), Biodonostia Health Research Institute, San Sebastian; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED) (P.I.), Spain; Department of Neurology (J.L.P., O.B.), Ataxia Unit, Universidade Federal de São Paulo, SP, Brazil; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics (M.C.D., S.Z.), University of Miami Miller School of Medicine; Department of Neurology (M.C.F.), School of Medical Sciences-University of Campinas (UNICAMP), São Paulo, Brazil; Department of Human Genetics (B.B.), McGill University, Montreal, Canada; and Laboratório Genetika (S.R.), Curitiba, PR, Brazil
| | - David Pellerin
- From the Pós-graduação Em Medicina Interna e Ciências da Saúde (L.E.N., H.A.T.), Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Brazil; Department of Neuromuscular Diseases (L.E.N., D.P., S.A., P.I., A.C., H.H.), UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK; Department of Neurology (R.S.F., P.J.T., W.M.), School of Medicine at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Departments of Neurology and Neurosurgery (D.P., M.-J.D., B.B.), Montreal Neurological Hospital and Institute, McGill University, Canada; Departamento de Neurologia (M.V.D.C.), Universidade do Estado do Amazonas, Manaus; Departamento de Especialidades Médicas (M.S.), Serviço de Neurologia, Universidade Estadual do Rio de Janeiro, Brazil; Department of Neurology (P.I.), Donostia University Hospital; Neuroscience Area (P.I.), Biodonostia Health Research Institute, San Sebastian; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED) (P.I.), Spain; Department of Neurology (J.L.P., O.B.), Ataxia Unit, Universidade Federal de São Paulo, SP, Brazil; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics (M.C.D., S.Z.), University of Miami Miller School of Medicine; Department of Neurology (M.C.F.), School of Medical Sciences-University of Campinas (UNICAMP), São Paulo, Brazil; Department of Human Genetics (B.B.), McGill University, Montreal, Canada; and Laboratório Genetika (S.R.), Curitiba, PR, Brazil
| | - Pedro J Tomaselli
- From the Pós-graduação Em Medicina Interna e Ciências da Saúde (L.E.N., H.A.T.), Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Brazil; Department of Neuromuscular Diseases (L.E.N., D.P., S.A., P.I., A.C., H.H.), UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK; Department of Neurology (R.S.F., P.J.T., W.M.), School of Medicine at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Departments of Neurology and Neurosurgery (D.P., M.-J.D., B.B.), Montreal Neurological Hospital and Institute, McGill University, Canada; Departamento de Neurologia (M.V.D.C.), Universidade do Estado do Amazonas, Manaus; Departamento de Especialidades Médicas (M.S.), Serviço de Neurologia, Universidade Estadual do Rio de Janeiro, Brazil; Department of Neurology (P.I.), Donostia University Hospital; Neuroscience Area (P.I.), Biodonostia Health Research Institute, San Sebastian; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED) (P.I.), Spain; Department of Neurology (J.L.P., O.B.), Ataxia Unit, Universidade Federal de São Paulo, SP, Brazil; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics (M.C.D., S.Z.), University of Miami Miller School of Medicine; Department of Neurology (M.C.F.), School of Medical Sciences-University of Campinas (UNICAMP), São Paulo, Brazil; Department of Human Genetics (B.B.), McGill University, Montreal, Canada; and Laboratório Genetika (S.R.), Curitiba, PR, Brazil
| | - Shahryar Alavi
- From the Pós-graduação Em Medicina Interna e Ciências da Saúde (L.E.N., H.A.T.), Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Brazil; Department of Neuromuscular Diseases (L.E.N., D.P., S.A., P.I., A.C., H.H.), UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK; Department of Neurology (R.S.F., P.J.T., W.M.), School of Medicine at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Departments of Neurology and Neurosurgery (D.P., M.-J.D., B.B.), Montreal Neurological Hospital and Institute, McGill University, Canada; Departamento de Neurologia (M.V.D.C.), Universidade do Estado do Amazonas, Manaus; Departamento de Especialidades Médicas (M.S.), Serviço de Neurologia, Universidade Estadual do Rio de Janeiro, Brazil; Department of Neurology (P.I.), Donostia University Hospital; Neuroscience Area (P.I.), Biodonostia Health Research Institute, San Sebastian; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED) (P.I.), Spain; Department of Neurology (J.L.P., O.B.), Ataxia Unit, Universidade Federal de São Paulo, SP, Brazil; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics (M.C.D., S.Z.), University of Miami Miller School of Medicine; Department of Neurology (M.C.F.), School of Medical Sciences-University of Campinas (UNICAMP), São Paulo, Brazil; Department of Human Genetics (B.B.), McGill University, Montreal, Canada; and Laboratório Genetika (S.R.), Curitiba, PR, Brazil
| | - Marcus Vinícius Della Coleta
- From the Pós-graduação Em Medicina Interna e Ciências da Saúde (L.E.N., H.A.T.), Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Brazil; Department of Neuromuscular Diseases (L.E.N., D.P., S.A., P.I., A.C., H.H.), UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK; Department of Neurology (R.S.F., P.J.T., W.M.), School of Medicine at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Departments of Neurology and Neurosurgery (D.P., M.-J.D., B.B.), Montreal Neurological Hospital and Institute, McGill University, Canada; Departamento de Neurologia (M.V.D.C.), Universidade do Estado do Amazonas, Manaus; Departamento de Especialidades Médicas (M.S.), Serviço de Neurologia, Universidade Estadual do Rio de Janeiro, Brazil; Department of Neurology (P.I.), Donostia University Hospital; Neuroscience Area (P.I.), Biodonostia Health Research Institute, San Sebastian; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED) (P.I.), Spain; Department of Neurology (J.L.P., O.B.), Ataxia Unit, Universidade Federal de São Paulo, SP, Brazil; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics (M.C.D., S.Z.), University of Miami Miller School of Medicine; Department of Neurology (M.C.F.), School of Medical Sciences-University of Campinas (UNICAMP), São Paulo, Brazil; Department of Human Genetics (B.B.), McGill University, Montreal, Canada; and Laboratório Genetika (S.R.), Curitiba, PR, Brazil
| | - Mariana Spitz
- From the Pós-graduação Em Medicina Interna e Ciências da Saúde (L.E.N., H.A.T.), Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Brazil; Department of Neuromuscular Diseases (L.E.N., D.P., S.A., P.I., A.C., H.H.), UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK; Department of Neurology (R.S.F., P.J.T., W.M.), School of Medicine at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Departments of Neurology and Neurosurgery (D.P., M.-J.D., B.B.), Montreal Neurological Hospital and Institute, McGill University, Canada; Departamento de Neurologia (M.V.D.C.), Universidade do Estado do Amazonas, Manaus; Departamento de Especialidades Médicas (M.S.), Serviço de Neurologia, Universidade Estadual do Rio de Janeiro, Brazil; Department of Neurology (P.I.), Donostia University Hospital; Neuroscience Area (P.I.), Biodonostia Health Research Institute, San Sebastian; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED) (P.I.), Spain; Department of Neurology (J.L.P., O.B.), Ataxia Unit, Universidade Federal de São Paulo, SP, Brazil; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics (M.C.D., S.Z.), University of Miami Miller School of Medicine; Department of Neurology (M.C.F.), School of Medical Sciences-University of Campinas (UNICAMP), São Paulo, Brazil; Department of Human Genetics (B.B.), McGill University, Montreal, Canada; and Laboratório Genetika (S.R.), Curitiba, PR, Brazil
| | - Marie-Josée Dicaire
- From the Pós-graduação Em Medicina Interna e Ciências da Saúde (L.E.N., H.A.T.), Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Brazil; Department of Neuromuscular Diseases (L.E.N., D.P., S.A., P.I., A.C., H.H.), UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK; Department of Neurology (R.S.F., P.J.T., W.M.), School of Medicine at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Departments of Neurology and Neurosurgery (D.P., M.-J.D., B.B.), Montreal Neurological Hospital and Institute, McGill University, Canada; Departamento de Neurologia (M.V.D.C.), Universidade do Estado do Amazonas, Manaus; Departamento de Especialidades Médicas (M.S.), Serviço de Neurologia, Universidade Estadual do Rio de Janeiro, Brazil; Department of Neurology (P.I.), Donostia University Hospital; Neuroscience Area (P.I.), Biodonostia Health Research Institute, San Sebastian; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED) (P.I.), Spain; Department of Neurology (J.L.P., O.B.), Ataxia Unit, Universidade Federal de São Paulo, SP, Brazil; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics (M.C.D., S.Z.), University of Miami Miller School of Medicine; Department of Neurology (M.C.F.), School of Medical Sciences-University of Campinas (UNICAMP), São Paulo, Brazil; Department of Human Genetics (B.B.), McGill University, Montreal, Canada; and Laboratório Genetika (S.R.), Curitiba, PR, Brazil
| | - Pablo Iruzubieta
- From the Pós-graduação Em Medicina Interna e Ciências da Saúde (L.E.N., H.A.T.), Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Brazil; Department of Neuromuscular Diseases (L.E.N., D.P., S.A., P.I., A.C., H.H.), UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK; Department of Neurology (R.S.F., P.J.T., W.M.), School of Medicine at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Departments of Neurology and Neurosurgery (D.P., M.-J.D., B.B.), Montreal Neurological Hospital and Institute, McGill University, Canada; Departamento de Neurologia (M.V.D.C.), Universidade do Estado do Amazonas, Manaus; Departamento de Especialidades Médicas (M.S.), Serviço de Neurologia, Universidade Estadual do Rio de Janeiro, Brazil; Department of Neurology (P.I.), Donostia University Hospital; Neuroscience Area (P.I.), Biodonostia Health Research Institute, San Sebastian; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED) (P.I.), Spain; Department of Neurology (J.L.P., O.B.), Ataxia Unit, Universidade Federal de São Paulo, SP, Brazil; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics (M.C.D., S.Z.), University of Miami Miller School of Medicine; Department of Neurology (M.C.F.), School of Medical Sciences-University of Campinas (UNICAMP), São Paulo, Brazil; Department of Human Genetics (B.B.), McGill University, Montreal, Canada; and Laboratório Genetika (S.R.), Curitiba, PR, Brazil
| | - José Luiz Pedroso
- From the Pós-graduação Em Medicina Interna e Ciências da Saúde (L.E.N., H.A.T.), Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Brazil; Department of Neuromuscular Diseases (L.E.N., D.P., S.A., P.I., A.C., H.H.), UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK; Department of Neurology (R.S.F., P.J.T., W.M.), School of Medicine at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Departments of Neurology and Neurosurgery (D.P., M.-J.D., B.B.), Montreal Neurological Hospital and Institute, McGill University, Canada; Departamento de Neurologia (M.V.D.C.), Universidade do Estado do Amazonas, Manaus; Departamento de Especialidades Médicas (M.S.), Serviço de Neurologia, Universidade Estadual do Rio de Janeiro, Brazil; Department of Neurology (P.I.), Donostia University Hospital; Neuroscience Area (P.I.), Biodonostia Health Research Institute, San Sebastian; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED) (P.I.), Spain; Department of Neurology (J.L.P., O.B.), Ataxia Unit, Universidade Federal de São Paulo, SP, Brazil; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics (M.C.D., S.Z.), University of Miami Miller School of Medicine; Department of Neurology (M.C.F.), School of Medical Sciences-University of Campinas (UNICAMP), São Paulo, Brazil; Department of Human Genetics (B.B.), McGill University, Montreal, Canada; and Laboratório Genetika (S.R.), Curitiba, PR, Brazil
| | - Orlando Barsottini
- From the Pós-graduação Em Medicina Interna e Ciências da Saúde (L.E.N., H.A.T.), Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Brazil; Department of Neuromuscular Diseases (L.E.N., D.P., S.A., P.I., A.C., H.H.), UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK; Department of Neurology (R.S.F., P.J.T., W.M.), School of Medicine at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Departments of Neurology and Neurosurgery (D.P., M.-J.D., B.B.), Montreal Neurological Hospital and Institute, McGill University, Canada; Departamento de Neurologia (M.V.D.C.), Universidade do Estado do Amazonas, Manaus; Departamento de Especialidades Médicas (M.S.), Serviço de Neurologia, Universidade Estadual do Rio de Janeiro, Brazil; Department of Neurology (P.I.), Donostia University Hospital; Neuroscience Area (P.I.), Biodonostia Health Research Institute, San Sebastian; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED) (P.I.), Spain; Department of Neurology (J.L.P., O.B.), Ataxia Unit, Universidade Federal de São Paulo, SP, Brazil; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics (M.C.D., S.Z.), University of Miami Miller School of Medicine; Department of Neurology (M.C.F.), School of Medical Sciences-University of Campinas (UNICAMP), São Paulo, Brazil; Department of Human Genetics (B.B.), McGill University, Montreal, Canada; and Laboratório Genetika (S.R.), Curitiba, PR, Brazil
| | - Andrea Cortese
- From the Pós-graduação Em Medicina Interna e Ciências da Saúde (L.E.N., H.A.T.), Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Brazil; Department of Neuromuscular Diseases (L.E.N., D.P., S.A., P.I., A.C., H.H.), UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK; Department of Neurology (R.S.F., P.J.T., W.M.), School of Medicine at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Departments of Neurology and Neurosurgery (D.P., M.-J.D., B.B.), Montreal Neurological Hospital and Institute, McGill University, Canada; Departamento de Neurologia (M.V.D.C.), Universidade do Estado do Amazonas, Manaus; Departamento de Especialidades Médicas (M.S.), Serviço de Neurologia, Universidade Estadual do Rio de Janeiro, Brazil; Department of Neurology (P.I.), Donostia University Hospital; Neuroscience Area (P.I.), Biodonostia Health Research Institute, San Sebastian; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED) (P.I.), Spain; Department of Neurology (J.L.P., O.B.), Ataxia Unit, Universidade Federal de São Paulo, SP, Brazil; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics (M.C.D., S.Z.), University of Miami Miller School of Medicine; Department of Neurology (M.C.F.), School of Medical Sciences-University of Campinas (UNICAMP), São Paulo, Brazil; Department of Human Genetics (B.B.), McGill University, Montreal, Canada; and Laboratório Genetika (S.R.), Curitiba, PR, Brazil
| | - Matt C Danzi
- From the Pós-graduação Em Medicina Interna e Ciências da Saúde (L.E.N., H.A.T.), Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Brazil; Department of Neuromuscular Diseases (L.E.N., D.P., S.A., P.I., A.C., H.H.), UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK; Department of Neurology (R.S.F., P.J.T., W.M.), School of Medicine at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Departments of Neurology and Neurosurgery (D.P., M.-J.D., B.B.), Montreal Neurological Hospital and Institute, McGill University, Canada; Departamento de Neurologia (M.V.D.C.), Universidade do Estado do Amazonas, Manaus; Departamento de Especialidades Médicas (M.S.), Serviço de Neurologia, Universidade Estadual do Rio de Janeiro, Brazil; Department of Neurology (P.I.), Donostia University Hospital; Neuroscience Area (P.I.), Biodonostia Health Research Institute, San Sebastian; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED) (P.I.), Spain; Department of Neurology (J.L.P., O.B.), Ataxia Unit, Universidade Federal de São Paulo, SP, Brazil; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics (M.C.D., S.Z.), University of Miami Miller School of Medicine; Department of Neurology (M.C.F.), School of Medical Sciences-University of Campinas (UNICAMP), São Paulo, Brazil; Department of Human Genetics (B.B.), McGill University, Montreal, Canada; and Laboratório Genetika (S.R.), Curitiba, PR, Brazil
| | - Marcondes C França
- From the Pós-graduação Em Medicina Interna e Ciências da Saúde (L.E.N., H.A.T.), Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Brazil; Department of Neuromuscular Diseases (L.E.N., D.P., S.A., P.I., A.C., H.H.), UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK; Department of Neurology (R.S.F., P.J.T., W.M.), School of Medicine at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Departments of Neurology and Neurosurgery (D.P., M.-J.D., B.B.), Montreal Neurological Hospital and Institute, McGill University, Canada; Departamento de Neurologia (M.V.D.C.), Universidade do Estado do Amazonas, Manaus; Departamento de Especialidades Médicas (M.S.), Serviço de Neurologia, Universidade Estadual do Rio de Janeiro, Brazil; Department of Neurology (P.I.), Donostia University Hospital; Neuroscience Area (P.I.), Biodonostia Health Research Institute, San Sebastian; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED) (P.I.), Spain; Department of Neurology (J.L.P., O.B.), Ataxia Unit, Universidade Federal de São Paulo, SP, Brazil; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics (M.C.D., S.Z.), University of Miami Miller School of Medicine; Department of Neurology (M.C.F.), School of Medical Sciences-University of Campinas (UNICAMP), São Paulo, Brazil; Department of Human Genetics (B.B.), McGill University, Montreal, Canada; and Laboratório Genetika (S.R.), Curitiba, PR, Brazil
| | - Bernard Brais
- From the Pós-graduação Em Medicina Interna e Ciências da Saúde (L.E.N., H.A.T.), Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Brazil; Department of Neuromuscular Diseases (L.E.N., D.P., S.A., P.I., A.C., H.H.), UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK; Department of Neurology (R.S.F., P.J.T., W.M.), School of Medicine at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Departments of Neurology and Neurosurgery (D.P., M.-J.D., B.B.), Montreal Neurological Hospital and Institute, McGill University, Canada; Departamento de Neurologia (M.V.D.C.), Universidade do Estado do Amazonas, Manaus; Departamento de Especialidades Médicas (M.S.), Serviço de Neurologia, Universidade Estadual do Rio de Janeiro, Brazil; Department of Neurology (P.I.), Donostia University Hospital; Neuroscience Area (P.I.), Biodonostia Health Research Institute, San Sebastian; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED) (P.I.), Spain; Department of Neurology (J.L.P., O.B.), Ataxia Unit, Universidade Federal de São Paulo, SP, Brazil; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics (M.C.D., S.Z.), University of Miami Miller School of Medicine; Department of Neurology (M.C.F.), School of Medical Sciences-University of Campinas (UNICAMP), São Paulo, Brazil; Department of Human Genetics (B.B.), McGill University, Montreal, Canada; and Laboratório Genetika (S.R.), Curitiba, PR, Brazil
| | - Stephan Zuchner
- From the Pós-graduação Em Medicina Interna e Ciências da Saúde (L.E.N., H.A.T.), Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Brazil; Department of Neuromuscular Diseases (L.E.N., D.P., S.A., P.I., A.C., H.H.), UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK; Department of Neurology (R.S.F., P.J.T., W.M.), School of Medicine at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Departments of Neurology and Neurosurgery (D.P., M.-J.D., B.B.), Montreal Neurological Hospital and Institute, McGill University, Canada; Departamento de Neurologia (M.V.D.C.), Universidade do Estado do Amazonas, Manaus; Departamento de Especialidades Médicas (M.S.), Serviço de Neurologia, Universidade Estadual do Rio de Janeiro, Brazil; Department of Neurology (P.I.), Donostia University Hospital; Neuroscience Area (P.I.), Biodonostia Health Research Institute, San Sebastian; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED) (P.I.), Spain; Department of Neurology (J.L.P., O.B.), Ataxia Unit, Universidade Federal de São Paulo, SP, Brazil; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics (M.C.D., S.Z.), University of Miami Miller School of Medicine; Department of Neurology (M.C.F.), School of Medical Sciences-University of Campinas (UNICAMP), São Paulo, Brazil; Department of Human Genetics (B.B.), McGill University, Montreal, Canada; and Laboratório Genetika (S.R.), Curitiba, PR, Brazil
| | - Henry Houlden
- From the Pós-graduação Em Medicina Interna e Ciências da Saúde (L.E.N., H.A.T.), Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Brazil; Department of Neuromuscular Diseases (L.E.N., D.P., S.A., P.I., A.C., H.H.), UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK; Department of Neurology (R.S.F., P.J.T., W.M.), School of Medicine at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Departments of Neurology and Neurosurgery (D.P., M.-J.D., B.B.), Montreal Neurological Hospital and Institute, McGill University, Canada; Departamento de Neurologia (M.V.D.C.), Universidade do Estado do Amazonas, Manaus; Departamento de Especialidades Médicas (M.S.), Serviço de Neurologia, Universidade Estadual do Rio de Janeiro, Brazil; Department of Neurology (P.I.), Donostia University Hospital; Neuroscience Area (P.I.), Biodonostia Health Research Institute, San Sebastian; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED) (P.I.), Spain; Department of Neurology (J.L.P., O.B.), Ataxia Unit, Universidade Federal de São Paulo, SP, Brazil; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics (M.C.D., S.Z.), University of Miami Miller School of Medicine; Department of Neurology (M.C.F.), School of Medical Sciences-University of Campinas (UNICAMP), São Paulo, Brazil; Department of Human Genetics (B.B.), McGill University, Montreal, Canada; and Laboratório Genetika (S.R.), Curitiba, PR, Brazil
| | - Salmo Raskin
- From the Pós-graduação Em Medicina Interna e Ciências da Saúde (L.E.N., H.A.T.), Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Brazil; Department of Neuromuscular Diseases (L.E.N., D.P., S.A., P.I., A.C., H.H.), UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK; Department of Neurology (R.S.F., P.J.T., W.M.), School of Medicine at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Departments of Neurology and Neurosurgery (D.P., M.-J.D., B.B.), Montreal Neurological Hospital and Institute, McGill University, Canada; Departamento de Neurologia (M.V.D.C.), Universidade do Estado do Amazonas, Manaus; Departamento de Especialidades Médicas (M.S.), Serviço de Neurologia, Universidade Estadual do Rio de Janeiro, Brazil; Department of Neurology (P.I.), Donostia University Hospital; Neuroscience Area (P.I.), Biodonostia Health Research Institute, San Sebastian; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED) (P.I.), Spain; Department of Neurology (J.L.P., O.B.), Ataxia Unit, Universidade Federal de São Paulo, SP, Brazil; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics (M.C.D., S.Z.), University of Miami Miller School of Medicine; Department of Neurology (M.C.F.), School of Medical Sciences-University of Campinas (UNICAMP), São Paulo, Brazil; Department of Human Genetics (B.B.), McGill University, Montreal, Canada; and Laboratório Genetika (S.R.), Curitiba, PR, Brazil
| | - Wilson Marques
- From the Pós-graduação Em Medicina Interna e Ciências da Saúde (L.E.N., H.A.T.), Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Brazil; Department of Neuromuscular Diseases (L.E.N., D.P., S.A., P.I., A.C., H.H.), UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK; Department of Neurology (R.S.F., P.J.T., W.M.), School of Medicine at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Departments of Neurology and Neurosurgery (D.P., M.-J.D., B.B.), Montreal Neurological Hospital and Institute, McGill University, Canada; Departamento de Neurologia (M.V.D.C.), Universidade do Estado do Amazonas, Manaus; Departamento de Especialidades Médicas (M.S.), Serviço de Neurologia, Universidade Estadual do Rio de Janeiro, Brazil; Department of Neurology (P.I.), Donostia University Hospital; Neuroscience Area (P.I.), Biodonostia Health Research Institute, San Sebastian; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED) (P.I.), Spain; Department of Neurology (J.L.P., O.B.), Ataxia Unit, Universidade Federal de São Paulo, SP, Brazil; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics (M.C.D., S.Z.), University of Miami Miller School of Medicine; Department of Neurology (M.C.F.), School of Medical Sciences-University of Campinas (UNICAMP), São Paulo, Brazil; Department of Human Genetics (B.B.), McGill University, Montreal, Canada; and Laboratório Genetika (S.R.), Curitiba, PR, Brazil
| | - Helio A Teive
- From the Pós-graduação Em Medicina Interna e Ciências da Saúde (L.E.N., H.A.T.), Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Brazil; Department of Neuromuscular Diseases (L.E.N., D.P., S.A., P.I., A.C., H.H.), UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK; Department of Neurology (R.S.F., P.J.T., W.M.), School of Medicine at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Departments of Neurology and Neurosurgery (D.P., M.-J.D., B.B.), Montreal Neurological Hospital and Institute, McGill University, Canada; Departamento de Neurologia (M.V.D.C.), Universidade do Estado do Amazonas, Manaus; Departamento de Especialidades Médicas (M.S.), Serviço de Neurologia, Universidade Estadual do Rio de Janeiro, Brazil; Department of Neurology (P.I.), Donostia University Hospital; Neuroscience Area (P.I.), Biodonostia Health Research Institute, San Sebastian; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED) (P.I.), Spain; Department of Neurology (J.L.P., O.B.), Ataxia Unit, Universidade Federal de São Paulo, SP, Brazil; Department of Brain and Behavioral Sciences (A.C.), University of Pavia, Italy; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics (M.C.D., S.Z.), University of Miami Miller School of Medicine; Department of Neurology (M.C.F.), School of Medical Sciences-University of Campinas (UNICAMP), São Paulo, Brazil; Department of Human Genetics (B.B.), McGill University, Montreal, Canada; and Laboratório Genetika (S.R.), Curitiba, PR, Brazil
| |
Collapse
|
19
|
Wirth T, Clément G, Delvallée C, Bonnet C, Bogdan T, Iosif A, Schalk A, Chanson JB, Pellerin D, Brais B, Roth V, Wandzel M, Fleury MC, Piton A, Calmels N, Namer IJ, Kremer S, Tranchant C, Renaud M, Anheim M. Natural History and Phenotypic Spectrum of GAA-FGF14 Sporadic Late-Onset Cerebellar Ataxia (SCA27B). Mov Disord 2023; 38:1950-1956. [PMID: 37470282 DOI: 10.1002/mds.29560] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/05/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Heterozygous GAA expansions in the FGF14 gene have been related to autosomal dominant cerebellar ataxia (SCA27B-MIM:620174). Whether they represent a common cause of sporadic late-onset cerebellar ataxia (SLOCA) remains to be established. OBJECTIVES To estimate the prevalence, characterize the phenotypic spectrum, identify discriminative features, and model longitudinal progression of SCA27B in a prospective cohort of SLOCA patients. METHODS FGF14 expansions screening combined with longitudinal deep-phenotyping in a prospective cohort of 118 SLOCA patients (onset >40 years of age, no family history of cerebellar ataxia) without a definite diagnosis. RESULTS Prevalence of SCA27B was 12.7% (15/118). Higher age of onset, higher Spinocerebellar Degeneration Functional Score, presence of vertigo, diplopia, nystagmus, orthostatic hypotension absence, and sensorimotor neuropathy were significantly associated with SCA27B. Ataxia progression was ≈0.4 points per year on the Scale for Assessment and Rating of Ataxia. CONCLUSIONS FGF14 expansion is a major cause of SLOCA. Our natural history data will inform future FGF14 clinical trials. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Thomas Wirth
- Neurology Department, Strasbourg University Hospital, Strasbourg, France
- Strasbourg Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- Institute of Genetics and Cellular and Molecular Biology, INSERM-U964; CNRS-UMR7104, University of Strasbourg, Illkirch-Graffenstaden, France
| | | | - Clarisse Delvallée
- Neurology Department, Strasbourg University Hospital, Strasbourg, France
- Strasbourg Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- Institute of Genetics and Cellular and Molecular Biology, INSERM-U964; CNRS-UMR7104, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Céline Bonnet
- Medical Genetics Laboratory, Nancy Regional University Hospital, Nancy, France
- INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Lorraine University, Nancy, France
| | - Thomas Bogdan
- Neurology Department, Strasbourg University Hospital, Strasbourg, France
| | - Andra Iosif
- Neurology Department, Hospital of Mulhouse, Mulhouse, France
| | - Audrey Schalk
- Strasbourg Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- Genetic Diagnosis Laboratory, Strasbourg University Hospital, Strasbourg, France
| | - Jean-Baptiste Chanson
- Neurology Department, Strasbourg University Hospital, Strasbourg, France
- Strasbourg Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- Neuromuscular Center Nord/Est/Ile-de-France, Strasbourg University Hospital, Strasbourg, France
| | - David Pellerin
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, Montreal, Canada
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, London, UK
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, Montreal, Canada
| | - Virginie Roth
- Medical Genetics Laboratory, Nancy Regional University Hospital, Nancy, France
| | - Marion Wandzel
- Medical Genetics Laboratory, Nancy Regional University Hospital, Nancy, France
| | - Marie-Céline Fleury
- Neurology Department, Strasbourg University Hospital, Strasbourg, France
- Strasbourg Federation of Translational Medicine, Strasbourg University, Strasbourg, France
| | - Amélie Piton
- Strasbourg Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- Institute of Genetics and Cellular and Molecular Biology, INSERM-U964; CNRS-UMR7104, University of Strasbourg, Illkirch-Graffenstaden, France
- Genetic Diagnosis Laboratory, Strasbourg University Hospital, Strasbourg, France
| | - Nadège Calmels
- Strasbourg Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- Genetic Diagnosis Laboratory, Strasbourg University Hospital, Strasbourg, France
| | - Izzie Jacques Namer
- MNMS Platform, University Hospitals of Strasbourg, Strasbourg, France
- ICube, University of Strasbourg/CNRS UMR 7357, Strasbourg, France
- Department of Nuclear Medicine and Molecular Imaging, Strasbourg, France
| | - Stéphane Kremer
- ICube, University of Strasbourg/CNRS UMR 7357, Strasbourg, France
- Neuroradiology Department, Strasbourg University Hospital, Strasbourg, France
| | - Christine Tranchant
- Neurology Department, Strasbourg University Hospital, Strasbourg, France
- Strasbourg Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- Institute of Genetics and Cellular and Molecular Biology, INSERM-U964; CNRS-UMR7104, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Mathilde Renaud
- Neurology Department, Nancy Regional University Hospital, Nancy, France
- INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Lorraine University, Nancy, France
- Clinical Genetics Department, Nancy Regional University Hospital, Nancy, France
| | - Mathieu Anheim
- Neurology Department, Strasbourg University Hospital, Strasbourg, France
- Strasbourg Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- Institute of Genetics and Cellular and Molecular Biology, INSERM-U964; CNRS-UMR7104, University of Strasbourg, Illkirch-Graffenstaden, France
| |
Collapse
|
20
|
Ogawa K, Hata Y, Ichimata S, Yoshida K, Nishida N. An autopsy case of late-onset spinocerebellar atrophy type 14. Neuropathol Appl Neurobiol 2023; 49:e12936. [PMID: 37705255 DOI: 10.1111/nan.12936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/04/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Affiliation(s)
- Kyoka Ogawa
- Medical Student, University of Toyama School of Medicine, Toyama, Japan
- Department of Legal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Yukiko Hata
- Department of Legal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Shojiro Ichimata
- Department of Legal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Koji Yoshida
- Department of Legal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Naoki Nishida
- Department of Legal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
21
|
Salih MA. The Meryon Lecture at the 24th annual meeting of the Meryon Society, St. Anne's College, Oxford, UK, 15th July 2022: Neuromuscular diseases in the Arab population. Neuromuscul Disord 2023; 33:792-799. [PMID: 37679229 DOI: 10.1016/j.nmd.2023.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Affiliation(s)
- Mustafa A Salih
- Consultant Pediatric Neurologist, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia.
| |
Collapse
|
22
|
Jeridi C, Rachdi A, Nabli F, Saied Z, Zouari R, Ben Mohamed D, Ben Said M, Masmoudi S, Ben Sassi S, Amouri R. Genetic heterogeneity within a consanguineous family involving TTPA and SETX genes. J Neurogenet 2023; 37:124-130. [PMID: 38109176 DOI: 10.1080/01677063.2023.2281916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/03/2023] [Indexed: 12/19/2023]
Abstract
Autosomal recessive cerebellar ataxias (ARCA) constitute a highly heterogeneous group of progressive neurodegenerative disorders that typically occur prior to adulthood. Despite some clinical resemblance between these disorders, different genes are involved. We report in this study four Tunisian patients belonging to the same large consanguineous family, sharing autosomal recessive cerebellar ataxia phenotypes but with clinical, biological, electrophysiological, and radiological differences leading to the diagnosis of two distinct ARCA caused by two distinct gene defects. Two of our patients presented ataxia with the vitamin E deficiency (AVED) phenotype, and the other two presented ataxia with oculo-motor apraxia 2 (AOA2). Genetic testing confirmed the clinical diagnosis by the detection of a frameshift c.744delA pathogenic variant in the TTPA gene, which is the most frequent in Tunisia, and a new variant c.1075dupT in the SETX gene. In Tunisia, data suggest that genetic disorders are common. The combined effects of the founder effect and inbreeding, added to genetic drift, may increase the frequency of detrimental rare disorders. The genetic heterogeneity observed in this family highlights the difficulty of genetic counseling in an inbred population. The examination and genetic testing of all affected patients, not just the index patient, is essential to not miss a treatable ataxia such as AVED, as in the case of this family.
Collapse
Affiliation(s)
- Cyrine Jeridi
- Molecular Neurobiology and Neuropathology Department, National Institute Mongi Ben Hamida of Neurology, Tunisia
| | - Amine Rachdi
- Molecular Neurobiology and Neuropathology Department, National Institute Mongi Ben Hamida of Neurology, Tunisia
| | - Fatma Nabli
- Molecular Neurobiology and Neuropathology Department, National Institute Mongi Ben Hamida of Neurology, Tunisia
| | - Zacharia Saied
- Molecular Neurobiology and Neuropathology Department, National Institute Mongi Ben Hamida of Neurology, Tunisia
| | - Rania Zouari
- Molecular Neurobiology and Neuropathology Department, National Institute Mongi Ben Hamida of Neurology, Tunisia
| | - Dina Ben Mohamed
- Molecular Neurobiology and Neuropathology Department, National Institute Mongi Ben Hamida of Neurology, Tunisia
| | - Mariem Ben Said
- Laboratoire Procédés de Criblage Moléculaire et Cellulaire, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Saber Masmoudi
- Laboratoire Procédés de Criblage Moléculaire et Cellulaire, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Samia Ben Sassi
- Molecular Neurobiology and Neuropathology Department, National Institute Mongi Ben Hamida of Neurology, Tunisia
| | - Rim Amouri
- Molecular Neurobiology and Neuropathology Department, National Institute Mongi Ben Hamida of Neurology, Tunisia
| |
Collapse
|
23
|
Cunha P, Petit E, Coutelier M, Coarelli G, Mariotti C, Faber J, Van Gaalen J, Damasio J, Fleszar Z, Tosi M, Rocca C, De Michele G, Minnerop M, Ewenczyk C, Santorelli FM, Heinzmann A, Bird T, Amprosi M, Indelicato E, Benussi A, Charles P, Stendel C, Romano S, Scarlato M, Le Ber I, Bassi MT, Serrano M, Schmitz-Hübsch T, Doss S, Van Velzen GAJ, Thomas Q, Trabacca A, Ortigoza-Escobar JD, D'Arrigo S, Timmann D, Pantaleoni C, Martinuzzi A, Besse-Pinot E, Marsili L, Cioffi E, Nicita F, Giorgetti A, Moroni I, Romaniello R, Casali C, Ponger P, Casari G, De Bot ST, Ristori G, Blumkin L, Borroni B, Goizet C, Marelli C, Boesch S, Anheim M, Filla A, Houlden H, Bertini E, Klopstock T, Synofzik M, Riant F, Zanni G, Magri S, Di Bella D, Nanetti L, Sequeiros J, Oliveira J, Van de Warrenburg B, Schöls L, Taroni F, Brice A, Durr A. Extreme phenotypic heterogeneity in non-expansion spinocerebellar ataxias. Am J Hum Genet 2023; 110:1098-1109. [PMID: 37301203 PMCID: PMC10357418 DOI: 10.1016/j.ajhg.2023.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Although the best-known spinocerebellar ataxias (SCAs) are triplet repeat diseases, many SCAs are not caused by repeat expansions. The rarity of individual non-expansion SCAs, however, has made it difficult to discern genotype-phenotype correlations. We therefore screened individuals who had been found to bear variants in a non-expansion SCA-associated gene through genetic testing, and after we eliminated genetic groups that had fewer than 30 subjects, there were 756 subjects bearing single-nucleotide variants or deletions in one of seven genes: CACNA1A (239 subjects), PRKCG (175), AFG3L2 (101), ITPR1 (91), STUB1 (77), SPTBN2 (39), or KCNC3 (34). We compared age at onset, disease features, and progression by gene and variant. There were no features that reliably distinguished one of these SCAs from another, and several genes-CACNA1A, ITPR1, SPTBN2, and KCNC3-were associated with both adult-onset and infantile-onset forms of disease, which also differed in presentation. Nevertheless, progression was overall very slow, and STUB1-associated disease was the fastest. Several variants in CACNA1A showed particularly wide ranges in age at onset: one variant produced anything from infantile developmental delay to ataxia onset at 64 years of age within the same family. For CACNA1A, ITPR1, and SPTBN2, the type of variant and charge change on the protein greatly affected the phenotype, defying pathogenicity prediction algorithms. Even with next-generation sequencing, accurate diagnosis requires dialogue between the clinician and the geneticist.
Collapse
Affiliation(s)
- Paulina Cunha
- Sorbonne Université, Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, CS21414, 75646 PARIS Cedex 13, France
| | - Emilien Petit
- Sorbonne Université, Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, CS21414, 75646 PARIS Cedex 13, France
| | - Marie Coutelier
- Sorbonne Université, Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, CS21414, 75646 PARIS Cedex 13, France
| | - Giulia Coarelli
- Sorbonne Université, Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, CS21414, 75646 PARIS Cedex 13, France
| | - Caterina Mariotti
- Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Jennifer Faber
- German Center for Neurodegenerative Disease (DZNE), 53127 Bonn, Germany; Department of Neurology, University Hospital of Bonn, 53111 Bonn, Germany
| | - Judith Van Gaalen
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, 6525 Nijmegen, the Netherlands
| | - Joana Damasio
- Neurology Department, Hospital de Santo António, Centro Hospitalar Universitário de Santo António, 4099-001 Porto, Portugal; CGPP, IBMC-Institute for Molecular and Cell Biology & UnIGENe, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Zofia Fleszar
- German Center for Neurodegenerative Disease (DZNE), 72076 Tübingen, Germany; Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research & Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Michele Tosi
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital, IRCCS, 00165 Rome, Italy
| | - Clarissa Rocca
- Department of Neuromuscular Diseases, UCL Queen's Square Institute of Neurology, Queen's Square House, Queen's Square, WC1N 3BG London, UK
| | - Giovanna De Michele
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Martina Minnerop
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52428 Jülich, Germany; Institute of Clinical Neuroscience and Medical Psychology and Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty & University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Claire Ewenczyk
- Sorbonne Université, Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, CS21414, 75646 PARIS Cedex 13, France
| | - Filippo M Santorelli
- Molecular Medicine & Neurogenetics, IRCCS Fondazione Stella Maris, 56128 Calambrone, Italy
| | - Anna Heinzmann
- Sorbonne Université, Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, CS21414, 75646 PARIS Cedex 13, France
| | - Thomas Bird
- University of Washington, Seattle, WA 98195, USA
| | - Matthias Amprosi
- Center for Rare Movement Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Elisabetta Indelicato
- Center for Rare Movement Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
| | - Perrine Charles
- Sorbonne Université, Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, CS21414, 75646 PARIS Cedex 13, France
| | - Claudia Stendel
- German Center for Neurodegenerative Disease (DZNE), München, Germany; Department of Neurology, Friedrich-Baur Institute, University Hospital of Ludwig-Maximilians-University, Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany
| | - Silvia Romano
- Neurosciences, Mental Health, and Sensory Organs (NESMOS) Department, S. Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Marina Scarlato
- San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, CS21414, 75646 PARIS Cedex 13, France
| | - Maria Teresa Bassi
- Scientific Institute I.R.C.C.S. Eugenio Medea, 23842 Bosisio Parini, Italy
| | - Mercedes Serrano
- Pediatric Neurology Department, Sant Joan de Déu Hospital, 08950 Barcelona, Spain
| | - Tanja Schmitz-Hübsch
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Sarah Doss
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Gijs A J Van Velzen
- Department of Neurology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Quentin Thomas
- Department of Clinical Genetics, Dijon University Hospital, 21000 Dijon, France
| | - Antonio Trabacca
- Scientific Institute I.R.C.C.S. Eugenio Medea, 23842 Bosisio Parini, Italy
| | | | - Stefano D'Arrigo
- Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Chiara Pantaleoni
- Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Andrea Martinuzzi
- Scientific Institute I.R.C.C.S. Eugenio Medea, 23842 Bosisio Parini, Italy
| | - Elsa Besse-Pinot
- Department of Neurology, Clermont-Ferrand University Hospital, 63000 Clermont-Ferrand, France
| | - Luca Marsili
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Ettore Cioffi
- Sapienza University of Rome, Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, 04100 Latina, Italy
| | - Francesco Nicita
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital, IRCCS, 00165 Rome, Italy
| | - Alejandro Giorgetti
- Computational Biomedicine, Institute for Advanced Simulations IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; Department of Biotechnology, Università degli Studi di Verona, 37134 Verona, Italy
| | - Isabella Moroni
- Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Romina Romaniello
- Scientific Institute I.R.C.C.S. Eugenio Medea, 23842 Bosisio Parini, Italy
| | - Carlo Casali
- Sapienza University of Rome, Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, 04100 Latina, Italy
| | - Penina Ponger
- Neurology Department, Tel-Aviv Sourasky Medical Center, 6329302 Tel-Aviv, Israel; Sackler School of Medicine, Tel-Aviv University, 6997801 Tel-Aviv, Israel
| | - Giorgio Casari
- San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Susanne T De Bot
- Department of Neurology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Giovanni Ristori
- Neurosciences, Mental Health, and Sensory Organs (NESMOS) Department, S. Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Lubov Blumkin
- Sackler School of Medicine, Tel-Aviv University, 6997801 Tel-Aviv, Israel; Pediatric Movement Disorders Clinic, Pediatric Neurology Unit, Wolfson Medical Center, 5822012 Holon, Israel
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
| | - Cyril Goizet
- University Bordeaux, Equipe « Neurogénétique Translationnelle - NRGEN », INCIA CNRS UMR5287 Université Bordeaux and Centre de Reference Maladies Rares « Neurogénétique », Service de Génétique Médicale, Bordeaux University Hospital (CHU Bordeaux), 33000 Bordeaux, France
| | - Cecilia Marelli
- MMDN, University Montpellier, EPHE, INSERM and Expert Center for Neurogenetic Diseases, CHU, 34095 Montpellier, France
| | - Sylvia Boesch
- Center for Rare Movement Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Mathieu Anheim
- Department of Neurology, Strasbourg University Hospital, 67098 Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964; CNRS-UMR7104; University of Strasbourg, 67400 Illkirch-Graffenstaden, France
| | - Alessandro Filla
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen's Square Institute of Neurology, Queen's Square House, Queen's Square, WC1N 3BG London, UK
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital, IRCCS, 00165 Rome, Italy
| | - Thomas Klopstock
- German Center for Neurodegenerative Disease (DZNE), München, Germany; Department of Neurology, Friedrich-Baur Institute, University Hospital of Ludwig-Maximilians-University, Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany
| | - Matthis Synofzik
- German Center for Neurodegenerative Disease (DZNE), 72076 Tübingen, Germany; Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research & Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Florence Riant
- Department of Neurovascular Molecular Genetics, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, 75010 Paris, France
| | - Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital, IRCCS, 00165 Rome, Italy
| | - Stefania Magri
- Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Daniela Di Bella
- Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Lorenzo Nanetti
- Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Jorge Sequeiros
- CGPP, IBMC-Institute for Molecular and Cell Biology & UnIGENe, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Jorge Oliveira
- CGPP, IBMC-Institute for Molecular and Cell Biology & UnIGENe, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Bart Van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, 6525 Nijmegen, the Netherlands
| | - Ludger Schöls
- German Center for Neurodegenerative Disease (DZNE), 72076 Tübingen, Germany; Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research & Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Franco Taroni
- Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Alexis Brice
- Sorbonne Université, Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, CS21414, 75646 PARIS Cedex 13, France
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, CS21414, 75646 PARIS Cedex 13, France.
| |
Collapse
|
24
|
Masingue M, Fernández-Eulate G, Debs R, Tard C, Labeyrie C, Leonard-Louis S, Dhaenens CM, Masson MA, Latour P, Stojkovic T. Strategy for genetic analysis in hereditary neuropathy. Rev Neurol (Paris) 2023; 179:10-29. [PMID: 36566124 DOI: 10.1016/j.neurol.2022.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
Inherited neuropathies are a heterogeneous group of slowly progressive disorders affecting either motor, sensory, and/or autonomic nerves. Peripheral neuropathy may be the major component of a disease such as Charcot-Marie-Tooth disease or a feature of a more complex multisystemic disease involving the central nervous system and other organs. The goal of this review is to provide the clinical clues orientating the genetic diagnosis in a patient with inherited peripheral neuropathy. This review focuses on primary inherited neuropathies, amyloidosis, inherited metabolic diseases, while detailing clinical, neurophysiological and potential treatment of these diseases.
Collapse
Affiliation(s)
- M Masingue
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France.
| | - G Fernández-Eulate
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - R Debs
- Service de neurophysiologie, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - C Tard
- CHU de Lille, clinique neurologique, centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, 59037 Lille cedex, France
| | - C Labeyrie
- Service de neurologie, hôpital Kremlin-Bicêtre, AP-HP, Le Kremlin-Bicêtre, France
| | - S Leonard-Louis
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - C-M Dhaenens
- Université de Lille, Inserm, CHU de Lille, U1172-LilNCog-Lille Neuroscience & Cognition, 59000 Lille, France
| | - M A Masson
- Inserm U1127, Paris Brain Institute, ICM, Sorbonne Université, CNRS UMR 7225, hôpital Pitié-Salpêtrière, Paris, France
| | - P Latour
- Service de biochimie biologie moléculaire, CHU de Lyon, centre de biologie et pathologie Est, 69677 Bron cedex, France
| | - T Stojkovic
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| |
Collapse
|
25
|
Zhang A, Xu H, Huang J, Gong H, Guo S, Lei X, He D. Coexisting amyotrophic lateral sclerosis and chorea: A case report and literature review. Medicine (Baltimore) 2022; 101:e32452. [PMID: 36596053 PMCID: PMC9803431 DOI: 10.1097/md.0000000000032452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) coexisting with chorea is very rare. CASE REPORT We present the case of a 48-year-old man with ALS and chorea; the diagnostic certainty was high based on clinical examination results. Combining the data from literature, we analyzed the characteristics of patients with ALS and chorea. We found that ALS coexisting with chorea is very rare, but is often hereditary with a genetic mutation. Most patients with ALS and chorea are caused by abnormal amplification of a CAG sequence in the HTT gene, and these patients have a mild course of disease. The FUS, VCP, and SETX genes also have low mutation frequencies in patients with ALS and chorea. CONCLUSION The abnormal amplification of a CAG sequence in the HTT gene in ALS with chorea has an obvious familial genetic tendency, and most patients have a mild disease course.
Collapse
Affiliation(s)
- Anni Zhang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Hongbei Xu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Jing Huang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Huilan Gong
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Shipeng Guo
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Xiaoyang Lei
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Dian He
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
- *Correspondence: Dian He, Department of Neurology, Affiliated Hospital of Guizhou Medical University, No.28, Guiyi Street, Yunyan District, Guiyang, Guizhou 550004, China (e-mail: )
| |
Collapse
|
26
|
Baviera-Muñoz R, Carretero-Vilarroig L, Vázquez-Costa JF, Morata-Martínez C, Campins-Romeu M, Muelas N, Sastre-Bataller I, Martínez-Torres I, Pérez-García J, Sivera R, Sevilla T, Vilchez JJ, Jaijo T, Espinós C, Millán JM, Bataller L, Aller E. Diagnostic Efficacy of Genetic Studies in a Series of Hereditary Cerebellar Ataxias in Eastern Spain. NEUROLOGY GENETICS 2022; 8:e200038. [DOI: 10.1212/nxg.0000000000200038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022]
Abstract
Background and ObjectivesTo determine the diagnostic efficacy of clinical exome-targeted sequencing (CES) and spinocerebellar ataxia 36 (SCA36) screening in a real-life cohort of patients with cerebellar ataxia (CA) from Eastern Spain.MethodsA total of 130 unrelated patients with CA, negative for common trinucleotide repeat expansions (SCA1, SCA2, SCA3, SCA6, SCA7, SCA8, SCA12, SCA17, dentatorubral pallidoluysian atrophy [DRPLA], and Friedreich ataxia), were studied with CES. Bioinformatic and genotype-phenotype analyses were performed to assess the pathogenicity of the variants encountered. Copy number variants were analyzed when appropriate. In undiagnosed dominant and sporadic cases, repeat primed PCR was used to screen for the presence of a repeat expansion in theNOP56gene.ResultsCES identified pathogenic or likely pathogenic variants in 50 families (39%), including 23 novel variants. Overall, there was a high genetic heterogeneity, and the most frequent genetic diagnosis wasSPG7(n = 15), followed bySETX(n = 6),CACNA1A(n = 5),POLR3A(n = 4), andSYNE1(n = 3). In addition, 17 families displayed likely pathogenic/pathogenic variants in 14 different genes:KCND3(n = 2),KIF1C(n = 2),CYP27A1A(n = 2),AFG3L2(n = 1),ANO10(n = 1),CAPN1(n = 1),CWF19L1(n = 1),ITPR1(n = 1),KCNA1(n = 1),OPA1(n = 1),PNPLA6(n = 1),SPG11(n = 1),SPTBN2(n = 1), andTPP1(n = 1). Twenty-two novel variants were characterized. SCA36 was diagnosed in 11 families, all with autosomal dominant (AD) presentation. SCA36 screening increased the total diagnostic rate to 47% (n = 61/130). Ultimately, undiagnosed patients showed delayed age at onset (p< 0.05) and were more frequently sporadic.DiscussionOur study provides insight into the genetic landscape of CA in Eastern Spain. Although CES was an effective approach to capture genetic heterogeneity, most patients remained undiagnosed. SCA36 was found to be a relatively frequent form and, therefore, should be tested prior to CES in familial AD presentations in particular geographical regions.
Collapse
|
27
|
Hohenfeld C, Terstiege U, Dogan I, Giunti P, Parkinson MH, Mariotti C, Nanetti L, Fichera M, Durr A, Ewenczyk C, Boesch S, Nachbauer W, Klopstock T, Stendel C, Rodríguez de Rivera Garrido FJ, Schöls L, Hayer SN, Klockgether T, Giordano I, Didszun C, Rai M, Pandolfo M, Rauhut H, Schulz JB, Reetz K. Prediction of the disease course in Friedreich ataxia. Sci Rep 2022; 12:19173. [PMID: 36357508 PMCID: PMC9649725 DOI: 10.1038/s41598-022-23666-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
We explored whether disease severity of Friedreich ataxia can be predicted using data from clinical examinations. From the database of the European Friedreich Ataxia Consortium for Translational Studies (EFACTS) data from up to five examinations of 602 patients with genetically confirmed FRDA was included. Clinical instruments and important symptoms of FRDA were identified as targets for prediction, while variables such as genetics, age of disease onset and first symptom of the disease were used as predictors. We used modelling techniques including generalised linear models, support-vector-machines and decision trees. The scale for rating and assessment of ataxia (SARA) and the activities of daily living (ADL) could be predicted with predictive errors quantified by root-mean-squared-errors (RMSE) of 6.49 and 5.83, respectively. Also, we were able to achieve reasonable performance for loss of ambulation (ROC-AUC score of 0.83). However, predictions for the SCA functional assessment (SCAFI) and presence of cardiological symptoms were difficult. In conclusion, we demonstrate that some clinical features of FRDA can be predicted with reasonable error; being a first step towards future clinical applications of predictive modelling. In contrast, targets where predictions were difficult raise the question whether there are yet unknown variables driving the clinical phenotype of FRDA.
Collapse
Affiliation(s)
- Christian Hohenfeld
- grid.1957.a0000 0001 0728 696XDepartment of Neurology, RWTH Aachen University, 52074 Aachen, Germany ,grid.1957.a0000 0001 0728 696XJARA Brain Institute Molecular Neuroscience and Neuroimaging, Research Centre Jülich and RWTH Aachen University, 52056 Aachen, Germany
| | - Ulrich Terstiege
- grid.1957.a0000 0001 0728 696XChair for Mathematics of Information Processing, RWTH Aachen University, 52062 Aachen, Germany
| | - Imis Dogan
- grid.1957.a0000 0001 0728 696XDepartment of Neurology, RWTH Aachen University, 52074 Aachen, Germany ,grid.1957.a0000 0001 0728 696XJARA Brain Institute Molecular Neuroscience and Neuroimaging, Research Centre Jülich and RWTH Aachen University, 52056 Aachen, Germany
| | - Paola Giunti
- grid.83440.3b0000000121901201Department of Clinical and Movement Neurosciences, Ataxia Centre, UCL-Queen Square Institute of Neurology, London, WC1N 3BG UK
| | - Michael H. Parkinson
- grid.83440.3b0000000121901201Department of Clinical and Movement Neurosciences, Ataxia Centre, UCL-Queen Square Institute of Neurology, London, WC1N 3BG UK
| | - Caterina Mariotti
- grid.417894.70000 0001 0707 5492Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Lorenzo Nanetti
- grid.417894.70000 0001 0707 5492Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Mario Fichera
- grid.417894.70000 0001 0707 5492Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy ,grid.7563.70000 0001 2174 1754PhD Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
| | - Alexandra Durr
- grid.411439.a0000 0001 2150 9058Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, 75646 Paris, France
| | - Claire Ewenczyk
- grid.411439.a0000 0001 2150 9058Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, 75646 Paris, France
| | - Sylvia Boesch
- grid.5361.10000 0000 8853 2677Department of Neurology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Wolfgang Nachbauer
- grid.5361.10000 0000 8853 2677Department of Neurology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Thomas Klopstock
- grid.5252.00000 0004 1936 973XDepartment of Neurology, Friedrich Baur Institute, University Hospital, LMU, 80336 Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Claudia Stendel
- grid.5252.00000 0004 1936 973XDepartment of Neurology, Friedrich Baur Institute, University Hospital, LMU, 80336 Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | | | - Ludger Schöls
- grid.10392.390000 0001 2190 1447Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Stefanie N. Hayer
- grid.10392.390000 0001 2190 1447Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - Thomas Klockgether
- grid.15090.3d0000 0000 8786 803XDepartment of Neurology, University Hospital of Bonn, 53127 Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Ilaria Giordano
- grid.15090.3d0000 0000 8786 803XDepartment of Neurology, University Hospital of Bonn, 53127 Bonn, Germany
| | - Claire Didszun
- grid.1957.a0000 0001 0728 696XDepartment of Neurology, RWTH Aachen University, 52074 Aachen, Germany
| | - Myriam Rai
- grid.4989.c0000 0001 2348 0746Laboratory of Experimental Neurology, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Massimo Pandolfo
- grid.4989.c0000 0001 2348 0746Laboratory of Experimental Neurology, Université Libre de Bruxelles, 1070 Brussels, Belgium ,grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 0G4 Canada
| | - Holger Rauhut
- grid.1957.a0000 0001 0728 696XChair for Mathematics of Information Processing, RWTH Aachen University, 52062 Aachen, Germany
| | - Jörg B. Schulz
- grid.1957.a0000 0001 0728 696XDepartment of Neurology, RWTH Aachen University, 52074 Aachen, Germany ,grid.1957.a0000 0001 0728 696XJARA Brain Institute Molecular Neuroscience and Neuroimaging, Research Centre Jülich and RWTH Aachen University, 52056 Aachen, Germany
| | - Kathrin Reetz
- grid.1957.a0000 0001 0728 696XDepartment of Neurology, RWTH Aachen University, 52074 Aachen, Germany ,grid.1957.a0000 0001 0728 696XJARA Brain Institute Molecular Neuroscience and Neuroimaging, Research Centre Jülich and RWTH Aachen University, 52056 Aachen, Germany
| |
Collapse
|
28
|
Chen S, Du J, Jiang H, Zhao W, Wang N, Ying A, Li J, Chen S, Shen B, Zhou Y. Ataxia with oculomotor apraxia type 2 caused by a novel homozygous mutation in SETX gene, and literature review. Front Mol Neurosci 2022; 15:1019974. [DOI: 10.3389/fnmol.2022.1019974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022] Open
Abstract
ObjectivesAutosomal recessive inherited ataxia with oculomotor apraxia type 2 (AOA2), caused by SETX gene mutations, is characterized by early-onset, progressive cerebellar ataxia, peripheral neuropathy, oculomotor apraxia and elevated serum α-fetoprotein (AFP). This study aimed to expand and summarize the clinical and genetic characteristics of SETX variants related to AOA2.MethodsThe biochemical parameters, electromyogram and radiological findings of the patient were evaluated. Whole-exome sequencing (WES) was performed on the patient using next-generation sequencing (NGS), the variants were confirmed by Sanger sequencing and the pathogenicity of the variants was classified according to the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines. We reviewed 57 studies of AOA2 patients with SETX mutations and collected clinical and genetic information.ResultsThe patient was a 40-year-old Chinese woman who primarily presented with numbness and weakness of the lower limbs in her teenage years. She had elevated AFP, increased serum follicle-stimulating hormone (FSH) and luteinizing hormone (LH) and decreased anti-Müllerian hormone (AMH) levels. We identified a novel homozygous missense mutation of the SETX gene, c.7118 C>T (p. Thr2373Ile), in the patient via Whole-exome and Sanger sequencing. The variant was located in the DNA/RNA helicase domain and is highly conserved. The protein prediction analysis verified the SETX variant as a damaging alteration and ACMG/AMP guidelines classified it as likely pathogenic. Through a literature review, we identified 229 AOA2 cases with SETX variants, and among the variants, 156 SETX variants were exonic. We found that 107 (46.7%) patients were European, 50 (21.8%) were African and 48 (21.0%) were Asian. Among the Asian patients, five from two families were Mainland Chinese. The main clinical features were cerebellar ataxia (100%), peripheral neuropathy (94.6%), cerebellar atrophy (95.3%) and elevated AFP concentration (92.0%). Most reported SETX mutations in AOA2 patients were missense, frameshift and nonsense mutations.ConclusionWe discovered a novel homozygous variant of the SETX gene as a cause of AOA2 in the current patient and expanded the genotypic spectrum of AOA2. Moreover, the clinical features of AOA2 and genetic findings in SETX were assessed in reported cohorts and are summarized in the present study.
Collapse
|
29
|
Ponger P, Kurolap A, Lerer I, Dagan J, Chai Gadot C, Mory A, Wilnai Y, Oniashvili N, Giladi N, Gurevich T, Meiner V, Lossos A, Baris Feldman H. Unique Ataxia-Oculomotor Apraxia 2 (AOA2) in Israel with Novel Variants, Atypical Late Presentation, and Possible Identification of a Poison Exon. J Mol Neurosci 2022; 72:1715-1723. [PMID: 35676594 DOI: 10.1007/s12031-022-02035-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
AOA2 is a rare progressive adolescent-onset disease characterised by cerebellar vermis atrophy, peripheral neuropathy and elevated serum alpha-fetoprotein (AFP) caused by pathogenic bi-allelic variants in SETX, encoding senataxin, involved in DNA repair and RNA maturation. Sanger sequencing of genomic DNA, co-segregation and oxidative stress functional studies were performed in Family 1. Trio whole-exome sequencing (WES), followed by SETX RNA and qRT-PCR analysis, were performed in Family 2. Sanger sequencing in Family 1 revealed two novel in-frame SETX deletion and duplication variants in trans (c.7009_7011del; p.Val2337del and c.7369_7371dup; p.His2457dup). Patients had increased induced chromosomal aberrations at baseline and following exposure to higher mitomycin-C concentration and increased sensitivity to oxidative stress at the lower mitomycin-C concentration in cell viability test. Trio WES in Family 2 revealed two novel SETX variants in trans, a nonsense variant (c.568C > T; p.Gln190*), and a deep intronic variant (c.5549-107A > G). Intronic variant analysis and SETX mRNA expression revealed activation of a cryptic exon introducing a premature stop codon (p.Met1850Lysfs*18) and resulting in aberrant splicing, as shown by qRT-PCR analysis, thus leading to higher levels of cryptic exon activation. Along with a second deleterious allele, this variant leads to low levels of SETX mRNA and disease manifestations. Our report expands the phenotypic spectrum of AOA2. Results provide initial support for the hypomorphic nature of the novel in-frame deletion and duplication variants in Family 1. Deep-intronic variant analysis of Family 2 variants potentially reveals a previously undescribed poison exon in the SETX gene, which may contribute to tailored therapy development.
Collapse
Affiliation(s)
- Penina Ponger
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel. .,The Genetics Institute and Genomics Center, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel.
| | - Alina Kurolap
- The Genetics Institute and Genomics Center, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Israela Lerer
- Department of Genetics, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Judith Dagan
- Department of Genetics, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Chofit Chai Gadot
- The Genetics Institute and Genomics Center, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Adi Mory
- The Genetics Institute and Genomics Center, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Yael Wilnai
- The Genetics Institute and Genomics Center, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nino Oniashvili
- Cytogenetic Laboratory, Oncology Department, Schneider Children's Medical Center in Israel, Petah Tikva, Israel
| | - Nir Giladi
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Tanya Gurevich
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Vardiella Meiner
- Department of Genetics, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Alexander Lossos
- Department of Neurology, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Hagit Baris Feldman
- The Genetics Institute and Genomics Center, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
30
|
Movement disorders and neuropathies: overlaps and mimics in clinical practice. J Neurol 2022; 269:4646-4662. [PMID: 35657406 DOI: 10.1007/s00415-022-11200-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
Movement disorders as well as peripheral neuropathies are extremely frequent in the general population; therefore, it is not uncommon to encounter patients with both these conditions. Often, the coexistence is coincidental, due to the high incidence of common causes of peripheral neuropathy, such as diabetes and other age-related disorders, as well as of Parkinson disease (PD), which has a typical late onset. Nonetheless, there is broad evidence that PD patients may commonly develop a sensory and/or autonomic polyneuropathy, triggered by intrinsic and/or extrinsic mechanisms. Similarly, some peripheral neuropathies may develop some movement disorders in the long run, such as tremor, and rarely dystonia and myoclonus, suggesting that central mechanisms may ensue in the pathogenesis of these diseases. Although rare, several acquired or hereditary causes may be responsible for the combination of movement and peripheral nerve disorders as a unique entity, some of which are potentially treatable, including paraneoplastic, autoimmune and nutritional aetiologies. Finally, genetic causes should be pursued in case of positive family history, young onset or multisystemic involvement, and examined for neuroacanthocytosis, spinocerebellar ataxias, mitochondrial disorders and less common causes of adult-onset cerebellar ataxias and spastic paraparesis. Deep phenotyping in terms of neurological and general examination, as well as laboratory tests, neuroimaging, neurophysiology, and next-generation genetic analysis, may guide the clinician toward the correct diagnosis and management.
Collapse
|
31
|
Krahe J, Dogan I, Didszun C, Mirzazade S, Haeger A, Joni Shah N, Giordano IA, Klockgether T, Madelin G, Schulz JB, Romanzetti S, Reetz K. Increased brain tissue sodium concentration in Friedreich ataxia: A multimodal MR imaging study. NEUROIMAGE: CLINICAL 2022; 34:103025. [PMID: 35500368 PMCID: PMC9065922 DOI: 10.1016/j.nicl.2022.103025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/01/2022] [Accepted: 04/24/2022] [Indexed: 11/28/2022] Open
Abstract
In patients with Friedreich ataxia, structural MRI is typically used to detect abnormalities primarily in the brainstem, cerebellum, and spinal cord. The aim of the present study was to additionally investigate possible metabolic changes in Friedreich ataxia using in vivo sodium MRI that may precede macroanatomical alterations, and to explore potential associations with clinical parameters of disease progression. Tissue sodium concentration across the whole brain was estimated from sodium MRI maps acquired at 3 T and compared between 24 patients with Friedreich ataxia (21-57 years old, 13 females) and 23 controls (21-60 years old, 12 females). Tensor-based morphometry was used to assess volumetric changes. Total sodium concentrations and volumetric data in brainstem and cerebellum were correlated with clinical parameters, such as severity of ataxia, activity of daily living and disability stage, age, age at onset, and disease duration. Compared to controls, patients showed reduced brain volume in the right cerebellar lobules I-V (difference in means: -0.039% of total intracranial volume [TICV]; Cohen's d = 0.83), cerebellar white matter (WM) (-0.105%TICV; d = 1.16), and brainstem (-0.167%TICV; d = 1.22), including pons (-0.102%TICV; d = 1.00), medulla (-0.036%TICV; d = 1.72), and midbrain (-0.028%TICV; d = 1.05). Increased sodium concentration was additionally detected in the total cerebellum (difference in means: 2.865 mmol; d = 0.68), and in several subregions with highest effect sizes in left (5.284 mmol; d = 1.01) and right cerebellar lobules I-V (5.456 mmol; d = 1.00), followed by increases in the vermis (4.261 mmol; d = 0.72), and in left (2.988 mmol; d = 0.67) and right lobules VI-VII (2.816 mmol; d = 0.68). In addition, sodium increases were also detected in all brainstem areas (3.807 mmol; d = 0.71 to 5.42 mmol; d = 1.19). After controlling for age, elevated total sodium concentrations in right cerebellar lobules IV were associated with younger age at onset (r = -0.43) and accordingly with longer disease duration in patients (r = 0.43). Our findings support the potential of in vivo sodium MRI to detect metabolic changes of increased total sodium concentration in the cerebellum and brainstem, the key regions in Friedreich ataxia. In addition to structural changes, sodium changes were present in cerebellar hemispheres and vermis without concomitant significant atrophy. Given the association with age at disease onset or disease duration, metabolic changes should be further investigated longitudinally and in larger cohorts of early disease stages to determine the usefulness of sodium MRI as a biomarker for early neuropathological changes in Friedreich ataxia and efficacy measure for future clinical trials.
Collapse
Affiliation(s)
- Janna Krahe
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Juelich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| | - Imis Dogan
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Juelich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| | - Claire Didszun
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Shahram Mirzazade
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Alexa Haeger
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Juelich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| | - Nadim Joni Shah
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Juelich GmbH and RWTH Aachen University, 52074 Aachen, Germany,Institute of Neuroscience and Medicine 4 (INM-4), Research Centre Juelich GmbH, 52428 Juelich, Germany,Monash Institute of Medical Engineering, Department of Electrical and Computer Systems Engineering, and Monash Biomedical Imaging, School of Psychological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Ilaria A. Giordano
- Department of Neurology, University Hospital of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany,German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Thomas Klockgether
- Department of Neurology, University Hospital of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany,German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Guillaume Madelin
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York NY10016, USA
| | - Jörg B. Schulz
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Juelich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| | - Sandro Romanzetti
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Juelich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Juelich GmbH and RWTH Aachen University, 52074 Aachen, Germany.
| |
Collapse
|
32
|
[Atypical Cogan syndrome as a differential diagnosis of sudden sensorineural hearing loss]. HNO 2022; 70:405-414. [PMID: 35420313 DOI: 10.1007/s00106-022-01168-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 11/04/2022]
Abstract
Cogan I syndrome is a rare disease consisting of vestibulocochlear symptoms and non-syphilitic interstitial keratitis. Although this disease was first described in 1945, its pathogenesis is still unknown. An autoimmune vasculitis etiology is currently discussed. Atypical manifestations are characterized by delayed ocular symptoms or variability of inflammatory eye symptoms. Physical examination often reveals bilateral sensorineural hearing loss. Intratympanic corticosteroid application can be successful.
Collapse
|
33
|
Kassavetis P, Kaski D, Anderson T, Hallett M. Eye Movement Disorders in Movement Disorders. Mov Disord Clin Pract 2022; 9:284-295. [PMID: 35402641 PMCID: PMC8974874 DOI: 10.1002/mdc3.13413] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 11/05/2022] Open
Abstract
Oculomotor assessment is an essential element of the neurological clinical examination and is particularly important when evaluating patients with movements disorders. Most of the brain is involved in oculomotor control, and thus many neurological conditions present with oculomotor abnormalities. Each of the different classes of eye movements and their features can provide important information that can facilitate differential diagnosis. This educational review presents a clinical approach to eye movement abnormalities that are commonly seen in parkinsonism, ataxia, dystonia, myoclonus, tremor, and chorea. In parkinsonism, subtle signs such as prominent square wave jerks, impaired vertical optokinetic nystagmus, and/or the "round the houses" sign suggest early progressive supranuclear gaze palsy before vertical gaze is restricted. In ataxia, nystagmus is common, but other findings such as oculomotor apraxia, supranuclear gaze palsy, impaired fixation, or saccadic pursuit can contribute to diagnoses such as ataxia with oculomotor apraxia, Niemann-Pick type C, or ataxia telangiectasia. Opsoclonus myoclonus and oculopalatal myoclonus present with characteristic phenomenology and are usually easy to identify. The oculomotor exam is usually unremarkable in isolated dystonia, but oculogyric crisis is a medical emergency and should be recognized and treated in a timely manner. Gaze impersistence in a patient with chorea suggests Huntington's disease, but in a patient with dystonia or tremor, Wilson's disease is more likely. Finally, functional eye movements can reinforce the clinical impression of a functional movement disorder.
Collapse
Affiliation(s)
- Panagiotis Kassavetis
- National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
- Department of NeurologyUniversity of UtahSalt Lake CityUtahUSA
| | - Diego Kaski
- Centre for Vestibular and Behavioural Neurosciences, Department of Clinical and Movement NeurosciencesUniversity College London, Institute of NeurologyLondonUK
| | - Tim Anderson
- New Zealand Brain Research InstituteChristchurchNew Zealand
- Department of MedicineUniversity of OtagoChristchurchNew Zealand
| | - Mark Hallett
- National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
34
|
Beppu S, Ikenaka K, Yabumoto T, Todo K, Hashiguchi A, Takashima H, Mochizuki H. [A case of sporadic amyotrophic lateral sclerosis (ALS) with Senataxin (SETX) gene variant]. Rinsho Shinkeigaku 2022; 62:205-210. [PMID: 35228463 DOI: 10.5692/clinicalneurol.cn-001675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A 67-year-old man presented slowly progressive weakness of the extremities visited our hospital. Nerve conduction study showed axonal neuropathy and needle electromyography showed neurogenic changes with denervation findings in multiple limb muscles. While he was diagnosed as Probable amyotrophic lateral sclerosis (ALS), which is defined by the Awaji criteria for diagnosis of ALS, he did not develop either respiratory muscle paralysis or bulbar palsy, which are characteristic symptoms of sporadic ALS. Genetic testing revealed a novel gene variant in senataxin (SETX), the causative gene of ALS4. We could not make a definite diagnosis of ALS4 because he had no relatives who could perform genetic testing (segregation study). However, we considered the variant can be pathogenic because it was not previously reported and absent in at least 1,000 healthy control individuals, the variant site was highly conserved in mammals, and it may impair the function of senataxin protein (in silico analysis).
Collapse
Affiliation(s)
- Shohei Beppu
- Department of Neurology, Osaka University Graduate School of Medicine
| | - Kensuke Ikenaka
- Department of Neurology, Osaka University Graduate School of Medicine
| | - Taiki Yabumoto
- Department of Neurology, Osaka University Graduate School of Medicine
| | - Kenichi Todo
- Department of Neurology, Osaka University Graduate School of Medicine
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine
| |
Collapse
|
35
|
Recessive cerebellar and afferent ataxias - clinical challenges and future directions. Nat Rev Neurol 2022; 18:257-272. [PMID: 35332317 DOI: 10.1038/s41582-022-00634-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
Abstract
Cerebellar and afferent ataxias present with a characteristic gait disorder that reflects cerebellar motor dysfunction and sensory loss. These disorders are a diagnostic challenge for clinicians because of the large number of acquired and inherited diseases that cause cerebellar and sensory neuron damage. Among such conditions that are recessively inherited, Friedreich ataxia and RFC1-associated cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) include the characteristic clinical, neuropathological and imaging features of ganglionopathies, a distinctive non-length-dependent type of sensory involvement. In this Review, we discuss the typical and atypical phenotypes of Friedreich ataxia and CANVAS, along with the features of other recessive ataxias that present with a ganglionopathy or polyneuropathy, with an emphasis on recently described clinical features, natural history and genotype-phenotype correlations. We review the main developments in understanding the complex pathology that affects the sensory neurons and cerebellum, which seem to be most vulnerable to disorders that affect mitochondrial function and DNA repair mechanisms. Finally, we discuss disease-modifying therapeutic advances in Friedreich ataxia, highlighting the most promising candidate molecules and lessons learned from previous clinical trials.
Collapse
|
36
|
Molecular Characterization of Portuguese Patients with Hereditary Cerebellar Ataxia. Cells 2022; 11:cells11060981. [PMID: 35326432 PMCID: PMC8946949 DOI: 10.3390/cells11060981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 01/02/2023] Open
Abstract
Hereditary cerebellar ataxia (HCA) comprises a clinical and genetic heterogeneous group of neurodegenerative disorders characterized by incoordination of movement, speech, and unsteady gait. In this study, we performed whole-exome sequencing (WES) in 19 families with HCA and presumed autosomal recessive (AR) inheritance, to identify the causal genes. A phenotypic classification was performed, considering the main clinical syndromes: spastic ataxia, ataxia and neuropathy, ataxia and oculomotor apraxia (AOA), ataxia and dystonia, and ataxia with cognitive impairment. The most frequent causal genes were associated with spastic ataxia (SACS and KIF1C) and with ataxia and neuropathy or AOA (PNKP). We also identified three families with autosomal dominant (AD) forms arising from de novo variants in KIF1A, CACNA1A, or ATP1A3, reinforcing the importance of differential diagnosis (AR vs. AD forms) in families with only one affected member. Moreover, 10 novel causal-variants were identified, and the detrimental effect of two splice-site variants confirmed through functional assays. Finally, by reviewing the molecular mechanisms, we speculated that regulation of cytoskeleton function might be impaired in spastic ataxia, whereas DNA repair is clearly associated with AOA. In conclusion, our study provided a genetic diagnosis for HCA families and proposed common molecular pathways underlying cerebellar neurodegeneration.
Collapse
|
37
|
A Novel SETX Mutation in a Taiwanese Patient with Autosomal Recessive Cerebellar Ataxia Detected by Targeted Next-Generation Sequencing, and a Literature Review. Brain Sci 2022; 12:brainsci12020173. [PMID: 35203940 PMCID: PMC8869917 DOI: 10.3390/brainsci12020173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Ataxia with oculomotor apraxia type 2 (AOA2), also known as autosomal recessive spinocerebellar ataxia with axonal neuropathy-2 (SCAN2) (OMIM #606002), is a neurodegenerative disorder characterized by early-onset progressive cerebellar ataxia, polyneuropathy, and elevated levels of alpha-fetoprotein. It is caused by mutations in the SETX (OMIM #608465) gene. The prevalence of this disease is widely varied, from non-existent up to 1/150,000, depending on the region. Until now, no cases of AOA2/SCAN2 have been reported in Taiwan. Methods: Next-generation sequencing was used to detect disease-causing mutations of SETX in a Taiwanese patient presenting with autosomal recessive cerebellar ataxia, polyneuropathy, and elevated alpha-fetoprotein. The candidate mutations were further confirmed by polymerase chain reaction (PCR) and Sanger sequencing. Results: A compound heterozygous mutation of SETX c.6859C > T (p.R2287X) and c.7034-7036del was identified. The c.6859C > T (p.R2287X) has been previously found in a Saudi Arabia family, whereas c.7034-7036del is a novel mutation. Both mutations were predicted by bioinformatics programs to be likely pathogenic (having a damaging effect). We also reviewed the literature to address the reported clinical features of AOA2 from different populations. Conclusions: To our knowledge, we are the first to report a Taiwanese patient with AOA2/SCAN2, a result obtained by utilizing next-generation sequencing. The literature review shows that ataxia, polyneuropathy, and elevated AFP are common features and ocular motor apraxia (OMA) is a variable sign of AOA2 from different populations. OMA is rare and saccadic ocular pursuit and nystagmus are common in East Asian AOA2.
Collapse
|
38
|
Chang HJ, Kim R, Kim M, Moon J, Kim MJ, Kim HJ. A Case of AOA2 With Compound Heterozygous SETX Mutations. J Mov Disord 2021; 15:178-180. [PMID: 34937158 PMCID: PMC9171306 DOI: 10.14802/jmd.21139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/17/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
- Hee Jin Chang
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ryul Kim
- Department of Neurology, Inha University Hospital, Incheon, Korea
| | - Minchae Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jangsup Moon
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,Rare Disease Center, Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea
| | - Man Jin Kim
- Rare Disease Center, Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea.,Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Han-Joon Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
39
|
Perry MD, Evans MJ, Byrd PJ, Taylor MR. Biallelic Mutation of SETX and Additional Likely "In Cis" SETX Sequence Change in Ataxia with Oculomotor Apraxia Type 2. J Pediatr Genet 2021; 10:311-314. [PMID: 34849277 PMCID: PMC8608479 DOI: 10.1055/s-0040-1713909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/27/2020] [Indexed: 10/23/2022]
Abstract
Ataxia with oculomotor apraxia type 2 (AOA2) is a slowly progressive, autosomal recessive disease characterized by the triad of ataxia, oculomotor apraxia, and sensorimotor neuropathy. The genetic basis of AOA2 is biallelic mutation of the SETX gene, resulting in reduced or absent senataxin, a DNA/RNA repair protein essential for genomic stability. In this case report, we described a case of AOA2 with two clear pathogenic SETX mutations, one of which is novel. We then discussed two further likely "in cis" SETX sequence changes (previously reported in the literature as pathogenic), and presented the case that they are likely benign polymorphisms.
Collapse
Affiliation(s)
- Michael D. Perry
- Department of Medical Education, St George’s Hospital Medical School, University of London, London, United Kingdom
| | - Martin J. Evans
- Department of Medical Education, St George’s Hospital Medical School, University of London, London, United Kingdom
- Department of Postgraduate Medical Education, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Philip J. Byrd
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Malcolm R. Taylor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
40
|
Dragašević-Mišković N, Stanković I, Milovanović A, Kostić VS. Autosomal recessive adult onset ataxia. J Neurol 2021; 269:504-533. [PMID: 34499204 DOI: 10.1007/s00415-021-10763-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 11/24/2022]
Abstract
Autosomal recessive ataxias (ARCA) represent a complex group of diseases ranging from primary ataxias to rare and complex metabolic disorders in which ataxia is a part of the clinical picture. Small number of ARCA manifest exclusively in adulthood, while majority of typical childhood onset ARCA may also start later with atypical clinical presentation. We have systematically searched the literature for ARCA with adult onset, both in the group of primary ataxias including those that are less frequently described in isolated or in a small number of families, and also in the group of complex and metabolic diseases in which ataxia is only part of the clinical picture. We propose an algorithm that could be used when encountering a patient with adult onset sporadic or recessive ataxia in whom the acquired causes are excluded. ARCA are frequently neglected in the differential diagnosis of adult-onset ataxias. Rising awareness of their clinical significance is important, not only because some of these disorders may be potentially treatable, but also for prognostic implications and inclusion of patients to future clinical trials with disease modifying agents.
Collapse
Affiliation(s)
- Nataša Dragašević-Mišković
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Dr Subotića 6, 11000, Belgrade, Serbia.
| | - Iva Stanković
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Dr Subotića 6, 11000, Belgrade, Serbia
| | - Andona Milovanović
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Dr Subotića 6, 11000, Belgrade, Serbia
| | - Vladimir S Kostić
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Dr Subotića 6, 11000, Belgrade, Serbia
| |
Collapse
|
41
|
Jaques CS, Escorcio-Bezerra ML, Pedroso JL, Barsottini OGP. The Intersection Between Cerebellar Ataxia and Neuropathy: a Proposed Classification and a Diagnostic Approach. THE CEREBELLUM 2021; 21:497-513. [PMID: 34368935 DOI: 10.1007/s12311-021-01275-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/02/2021] [Indexed: 12/15/2022]
Abstract
Neuropathy is a common associated feature of different types of genetic or sporadic cerebellar ataxias. The pattern of peripheral nerve involvement and its associated clinical features can be an invaluable aspect for narrowing the etiologic diagnosis in the investigation of cerebellar ataxias. In this review, we discuss the differential diagnosis of the intersection between peripheral nerve and cerebellar involvement, and classify them in accordance with the predominant features. Genetics, clinical features, neuroimaging, and neurophysiologic characteristics are discussed. Furthermore, a diagnostic approach for cerebellar ataxia with neuropathy is proposed according to the different clinical characteristics. This is an Educational and Descriptive review with the aim of medical education for the approach to the patients with cerebellar ataxia and neuropathy. The diagnostic approach to the patient with cerebellar ataxia with neuropathy requires a detailed medical history, phenotyping, characterization of disease progression and family history. Neuroimaging features and the neurophysiological findings play pivotal roles in defining the diagnosis. Establishing an organized classification method for the disorders based on the clinical features may be very helpful, and could be divided as those with predominant cerebellar features, predominant neuropathic feature, or conditions with both cerebellar ataxia and neuropathy. Second, determining the mode of inheritance is critical on cerebellar ataxias: autosomal dominant and recessive cerebellar ataxias, mitochondrial or sporadic types. Third, one must carefully assess neurophysiologic findings in order to better characterize the predominant pattern of involvement: damage location, mechanism of lesion (axonal or demyelinating), motor, sensory or sensory motor compromise, large or small fibers, and autonomic system abnormalities.
Collapse
Affiliation(s)
- Cristina Saade Jaques
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), Pedro de Toledo Street, São Paulo, SP, 650, 04023-900, Brazil
| | - Marcio Luiz Escorcio-Bezerra
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), Pedro de Toledo Street, São Paulo, SP, 650, 04023-900, Brazil
| | - José Luiz Pedroso
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), Pedro de Toledo Street, São Paulo, SP, 650, 04023-900, Brazil.
| | - Orlando Graziani Povoas Barsottini
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), Pedro de Toledo Street, São Paulo, SP, 650, 04023-900, Brazil
| |
Collapse
|
42
|
Homer HA. Senataxin: A New Guardian of the Female Germline Important for Delaying Ovarian Aging. Front Genet 2021; 12:647996. [PMID: 33995483 PMCID: PMC8118517 DOI: 10.3389/fgene.2021.647996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/08/2021] [Indexed: 12/01/2022] Open
Abstract
Early decline in ovarian function known as premature ovarian aging (POA) occurs in around 10% of women and is characterized by a markedly reduced ovarian reserve. Premature ovarian insufficiency (POI) affects ~1% of women and refers to the severe end of the POA spectrum in which, accelerated ovarian aging leads to menopause before 40 years of age. Ovarian reserve refers to the total number of follicle-enclosed oocytes within both ovaries. Oocyte DNA integrity is a critical determinant of ovarian reserve since damage to DNA of oocytes within primordial-stage follicles triggers follicular apoptosis leading to accelerated follicle depletion. Despite the high prevalence of POA, very little is known regarding its genetic causation. Another little-investigated aspect of oocyte DNA damage involves low-grade damage that escapes apoptosis at the primordial follicle stage and persists throughout oocyte growth and later follicle development. Senataxin (SETX) is an RNA/DNA helicase involved in repair of oxidative stress-induced DNA damage and is well-known for its roles in preventing neurodegenerative disease. Recent findings uncover an important role for SETX in protecting oocyte DNA integrity against aging-induced increases in oxidative stress. Significantly, this newly identified SETX-mediated regulation of oocyte DNA integrity is critical for preventing POA and early-onset female infertility by preventing premature depletion of the ovarian follicular pool and reducing the burden of low-grade DNA damage both in primordial and fully-grown oocytes.
Collapse
Affiliation(s)
- Hayden A Homer
- The Christopher Chen Oocyte Biology Research Laboratory, UQ Centre for Clinical Research, The University of Queensland, Herston, QLD, Australia
| |
Collapse
|
43
|
Ataxia with oculomotor apraxia type 2 (AOA2): an eye movement study of two siblings. Neurol Sci 2021; 42:3039-3042. [PMID: 33770309 DOI: 10.1007/s10072-021-05206-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
|
44
|
Progression characteristics of the European Friedreich's Ataxia Consortium for Translational Studies (EFACTS): a 4-year cohort study. Lancet Neurol 2021; 20:362-372. [PMID: 33770527 DOI: 10.1016/s1474-4422(21)00027-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/18/2020] [Accepted: 01/13/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND The European Friedreich's Ataxia Consortium for Translational Studies (EFACTS) investigates the natural history of Friedreich's ataxia. We aimed to assess progression characteristics and to identify patient groups with differential progression rates based on longitudinal 4-year data to inform upcoming clinical trials in Friedreich's ataxia. METHODS EFACTS is a prospective, observational cohort study based on an ongoing and open-ended registry. Patients with genetically confirmed Friedreich's ataxia were seen annually at 11 clinical centres in seven European countries (Austria, Belgium, France, Germany, Italy, Spain, and the UK). Data from baseline to 4-year follow-up were included in the current analysis. Our primary endpoints were the Scale for the Assessment and Rating of Ataxia (SARA) and the activities of daily living (ADL). Linear mixed-effect models were used to analyse annual disease progression for the entire cohort and subgroups defined by age of onset and ambulatory abilities. Power calculations were done for potential trial designs. This study is registered with ClinicalTrials.gov, NCT02069509. FINDINGS Between Sept 15, 2010, and Nov 20, 2018, of 914 individuals assessed for eligibility, 602 patients were included. Of these, 552 (92%) patients contributed data with at least one follow-up visit. Annual progression rate for SARA was 0·82 points (SE 0·05) in the overall cohort, and higher in patients who were ambulatory (1·12 [0·07]) than non-ambulatory (0·50 [0·07]). ADL worsened by 0·93 (SE 0·05) points per year in the entire cohort, with similar progression rates in patients who were ambulatory (0·94 [0·07]) and non-ambulatory (0·91 [0·08]). Although both SARA and ADL showed slightly greater worsening in patients with typical onset (symptom onset at ≤24 years) than those with late onset (symptom onset ≥25 years), differences in progression slopes were not significant. For a 2-year parallel-group trial, 230 (115 per group) patients would be required to detect a 50% reduction in SARA progression at 80% power: 118 (59 per group) if only individuals who are ambulatory are included. With ADL as the primary outcome, 190 (95 per group) patients with Friedreich's ataxia would be needed, and fewer patients would be required if only individuals with early-onset are included. INTERPRETATION Our findings for stage-dependent progression rates have important implications for clinicians and researchers, as they provide reliable outcome measures to monitor disease progression, and enable tailored sample size calculation to guide upcoming clinical trial designs in Friedreich's ataxia. FUNDING European Commission, Voyager Therapeutics, and EuroAtaxia.
Collapse
|
45
|
Inherited Neuromuscular Disorders: Which Role for Serum Biomarkers? Brain Sci 2021; 11:brainsci11030398. [PMID: 33801069 PMCID: PMC8004068 DOI: 10.3390/brainsci11030398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited neuromuscular disorders (INMD) are a heterogeneous group of rare diseases that involve muscles, motor neurons, peripheral nerves or the neuromuscular junction. Several different lab abnormalities have been linked to INMD: sometimes they are typical of the disorder, but they usually appear to be less specific. Sometimes serum biomarkers can point out abnormalities in presymtomatic or otherwise asymptomatic patients (e.g., carriers). More often a biomarker of INMD is evaluated by multiple clinicians other than expert in NMD before the diagnosis, because of the multisystemic involvement in INMD. The authors performed a literature search on biomarkers in inherited neuromuscular disorders to provide a practical approach to the diagnosis and the correct management of INMD. A considerable number of biomarkers have been reported that support the diagnosis of INMD, but the role of an expert clinician is crucial. Hence, the complete knowledge of such abnormalities can accelerate the diagnostic workup supporting the referral to specialists in neuromuscular disorders.
Collapse
|
46
|
Cocozza S, Pontillo G, De Michele G, Di Stasi M, Guerriero E, Perillo T, Pane C, De Rosa A, Ugga L, Brunetti A. Conventional MRI findings in hereditary degenerative ataxias: a pictorial review. Neuroradiology 2021; 63:983-999. [PMID: 33733696 PMCID: PMC8213578 DOI: 10.1007/s00234-021-02682-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/25/2021] [Indexed: 12/15/2022]
Abstract
Purpose Cerebellar ataxias are a large and heterogeneous group of disorders. The evaluation of brain parenchyma via MRI plays a central role in the diagnostic assessment of these conditions, being mandatory to exclude the presence of other underlying causes in determining the clinical phenotype. Once these possible causes are ruled out, the diagnosis is usually researched in the wide range of hereditary or sporadic ataxias. Methods We here propose a review of the main clinical and conventional imaging findings of the most common hereditary degenerative ataxias, to help neuroradiologists in the evaluation of these patients. Results Hereditary degenerative ataxias are all usually characterized from a neuroimaging standpoint by the presence, in almost all cases, of cerebellar atrophy. Nevertheless, a proper assessment of imaging data, extending beyond the mere evaluation of cerebellar atrophy, evaluating also the pattern of volume loss as well as concomitant MRI signs, is crucial to achieve a proper diagnosis. Conclusion The integration of typical neuroradiological characteristics, along with patient’s clinical history and laboratory data, could allow the neuroradiologist to identify some conditions and exclude others, addressing the neurologist to the more appropriate genetic testing.
Collapse
Affiliation(s)
- Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy.
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy.,Department of Electrical Engineering and Information Technology, University of Naples "Federico II", Naples, Italy
| | - Giovanna De Michele
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Martina Di Stasi
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| | - Elvira Guerriero
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| | - Teresa Perillo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| | - Chiara Pane
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Anna De Rosa
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| |
Collapse
|
47
|
Phang MWL, Lew SY, Chung I, Lim WKS, Lim LW, Wong KH. Therapeutic roles of natural remedies in combating hereditary ataxia: A systematic review. Chin Med 2021; 16:15. [PMID: 33509239 PMCID: PMC7841890 DOI: 10.1186/s13020-020-00414-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/17/2020] [Accepted: 12/11/2020] [Indexed: 12/30/2022] Open
Abstract
Background Hereditary ataxia (HA) represents a group of genetically heterogeneous neurodegenerative diseases caused by dysfunction of the cerebellum or disruption of the connection between the cerebellum and other areas of the central nervous system. Phenotypic manifestation of HA includes unsteadiness of stance and gait, dysarthria, nystagmus, dysmetria and complaints of clumsiness. There are no specific treatments for HA. Management strategies provide supportive treatment to reduce symptoms. Objectives This systematic review aimed to identify, evaluate and summarise the published literature on the therapeutic roles of natural remedies in the treatment of HA to provide evidence for clinical practice. Methods A systematic literature search was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Web of Science, PubMed and Science Direct Scopus were thoroughly searched for relevant published articles from June 2007 to July 2020. Results Ten pre-clinical and two clinical studies were eligible for inclusion in this systematic review. We identified the therapeutic roles of medicinal plants Brassica napus, Gardenia jasminoides, Gastrodia elata, Ginkgo biloba, Glycyrrhiza inflata, Paeonia lactiflora, Pueraria lobata and Rehmannia glutinosa; herbal formulations Shaoyao Gancao Tang and Zhengan Xifeng Tang; and medicinal mushroom Hericium erinaceus in the treatment of HA. In this review, we evaluated the mode of actions contributing to their therapeutic effects, including activation of the ubiquitin–proteasome system, activation of antioxidant pathways, maintenance of intracellular calcium homeostasis and regulation of chaperones. We also briefly highlighted the integral cellular signalling pathways responsible for orchestrating the mode of actions. Conclusion We reviewed the therapeutic roles of natural remedies in improving or halting the progression of HA, which warrant further study for applications into clinical practice.
Collapse
Affiliation(s)
- Michael Weng Lok Phang
- Department of Anatomy, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Sze Yuen Lew
- Department of Anatomy, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Ivy Chung
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - William Kiong-Seng Lim
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kuching, Sarawak, 94300, Malaysia
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China.
| | - Kah Hui Wong
- Department of Anatomy, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| |
Collapse
|
48
|
Traschütz A, Cortese A, Reich S, Dominik N, Faber J, Jacobi H, Hartmann AM, Rujescu D, Montaut S, Echaniz-Laguna A, Erer S, Schütz VC, Tarnutzer AA, Sturm M, Haack TB, Vaucamps-Diedhiou N, Puccio H, Schöls L, Klockgether T, van de Warrenburg BP, Paucar M, Timmann D, Hilgers RD, Gazulla J, Strupp M, Moris G, Filla A, Houlden H, Anheim M, Infante J, Basak AN, Synofzik M. Natural History, Phenotypic Spectrum, and Discriminative Features of Multisystemic RFC1 Disease. Neurology 2021; 96:e1369-e1382. [PMID: 33495376 PMCID: PMC8055326 DOI: 10.1212/wnl.0000000000011528] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/21/2020] [Indexed: 12/29/2022] Open
Abstract
Objective To delineate the full phenotypic spectrum, discriminative features, piloting longitudinal progression data, and sample size calculations of replication factor complex subunit 1 (RFC1) repeat expansions, recently identified as causing cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS). Methods Multimodal RFC1 repeat screening (PCR, Southern blot, whole-exome/genome sequencing–based approaches) combined with cross-sectional and longitudinal deep phenotyping in (1) cross-European cohort A (70 families) with ≥2 features of CANVAS or ataxia with chronic cough (ACC) and (2) Turkish cohort B (105 families) with unselected late-onset ataxia. Results Prevalence of RFC1 disease was 67% in cohort A, 14% in unselected cohort B, 68% in clinical CANVAS, and 100% in ACC. RFC1 disease was also identified in Western and Eastern Asian individuals and even by whole-exome sequencing. Visual compensation, sensory symptoms, and cough were strong positive discriminative predictors (>90%) against RFC1-negative patients. The phenotype across 70 RFC1-positive patients was mostly multisystemic (69%), including dysautonomia (62%) and bradykinesia (28%) (overlap with cerebellar-type multiple system atrophy [MSA-C]), postural instability (49%), slow vertical saccades (17%), and chorea or dystonia (11%). Ataxia progression was ≈1.3 Scale for the Assessment and Rating of Ataxia points per year (32 cross-sectional, 17 longitudinal assessments, follow-up ≤9 years [mean 3.1 years]) but also included early falls, variable nonlinear phases of MSA-C–like progression (SARA points 2.5–5.5 per year), and premature death. Treatment trials require 330 (1-year trial) and 132 (2-year trial) patients in total to detect 50% reduced progression. Conclusions RFC1 disease is frequent and occurs across continents, with CANVAS and ACC as highly diagnostic phenotypes yet as variable, overlapping clusters along a continuous multisystemic disease spectrum, including MSA-C-overlap. Our natural history data help to inform future RFC1 treatment trials. Classification of Evidence This study provides Class II evidence that RFC1 repeat expansions are associated with CANVAS and ACC.
Collapse
Affiliation(s)
- Andreas Traschütz
- From the Department of Neurodegenerative Diseases (A.T., S.R., L.S., M. Synofzik), Hertie-Institute for Clinical Brain Research and Center of Neurology, and German Center for Neurodegenerative Diseases (DZNE) (A.T., S.R., L.S., M. Synofzik), University of Tübingen, Germany; MRC Centre for Neuromuscular Diseases (A.C., N.D., H.H.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behaviour Sciences (A.C.), University Pavia, Italy; Department of Neurology (J.F., T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., H.J., T.K.), Bonn; Department of Neurology (H.J.), University Hospital of Heidelberg; Department of Psychiatry, Psychotherapy and Psychosomatics (A.M.H., D.R.), University of Halle, Germany; Département de Neurologie (S.M., M.A.), Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; Department of Neurology (A.E.-L.), APHP, CHU de Bicêtre; French National Reference Center for Rare Neuropathies (NNERF) (A.E.-L.); Inserm U1195 and Paris-Sud University (A.E.-L.), Le Kremlin Bicêtre, France; Medical Faculty (S.E.), Department of Neurology, Uludag University, Bursa, Turkey; University of Zurich (V.C.S., A.A.T.); Department of Neurology (V.C.S., A.A.T.), University Hospital Zurich, Switzerland; Institute of Medical Genetics and Applied Genomics (M. Sturm, T.B.H.) and Center for Rare Diseases (T.B.H.), University of Tübingen, Germany; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (N.V.-D., H.P.); INSERM (N.V.-D., H.P.), U1258; CNRS (N.V.-D., H.P.), UMR7104, Illkirch; Université de Strasbourg (H.P.), France; Department of Neurology (B.P.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (M.P.), Karolinska University Hospital; Department of Clinical Neuroscience (M.P.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (D.T.), Essen University Hospital, University of Duisburg-Essen, Essen; Department of Medical Statistics (R.-D.H.), RWTH Aachen University, Germany; Department of Neurology (J.G.), Hospital Universitario Miguel Servet. Zaragoza, Spain; Department of Neurology (M. Strupp), University Hospital, and German Center for Vertigo and Balance Disorders (M.Strupp), Ludwig Maximilians University, Munich, Germany; Neurology Service (G.M.), Hospital Unversitario Central de Asturias (HUCA), SESPA, Oviedo, Spain; Department of Neurosciences and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Institute of Genetics and Molecular and Cellular Biology (M.A.), INSERM-U964/CNRS-UMR7104, University of Strasbourg, Illkirch; Strasbourg Federation of Translational Medicine (M.A.), University of Strasbourg, Strasbourg, France; Service of Neurology (J.I.), University Hospital "Marqués de Valdecilla (IDIVAL)," University of Cantabria, "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)," Santander, Spain; and Suna and Inan Kıraç Foundation (A.N.B.), Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - Andrea Cortese
- From the Department of Neurodegenerative Diseases (A.T., S.R., L.S., M. Synofzik), Hertie-Institute for Clinical Brain Research and Center of Neurology, and German Center for Neurodegenerative Diseases (DZNE) (A.T., S.R., L.S., M. Synofzik), University of Tübingen, Germany; MRC Centre for Neuromuscular Diseases (A.C., N.D., H.H.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behaviour Sciences (A.C.), University Pavia, Italy; Department of Neurology (J.F., T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., H.J., T.K.), Bonn; Department of Neurology (H.J.), University Hospital of Heidelberg; Department of Psychiatry, Psychotherapy and Psychosomatics (A.M.H., D.R.), University of Halle, Germany; Département de Neurologie (S.M., M.A.), Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; Department of Neurology (A.E.-L.), APHP, CHU de Bicêtre; French National Reference Center for Rare Neuropathies (NNERF) (A.E.-L.); Inserm U1195 and Paris-Sud University (A.E.-L.), Le Kremlin Bicêtre, France; Medical Faculty (S.E.), Department of Neurology, Uludag University, Bursa, Turkey; University of Zurich (V.C.S., A.A.T.); Department of Neurology (V.C.S., A.A.T.), University Hospital Zurich, Switzerland; Institute of Medical Genetics and Applied Genomics (M. Sturm, T.B.H.) and Center for Rare Diseases (T.B.H.), University of Tübingen, Germany; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (N.V.-D., H.P.); INSERM (N.V.-D., H.P.), U1258; CNRS (N.V.-D., H.P.), UMR7104, Illkirch; Université de Strasbourg (H.P.), France; Department of Neurology (B.P.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (M.P.), Karolinska University Hospital; Department of Clinical Neuroscience (M.P.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (D.T.), Essen University Hospital, University of Duisburg-Essen, Essen; Department of Medical Statistics (R.-D.H.), RWTH Aachen University, Germany; Department of Neurology (J.G.), Hospital Universitario Miguel Servet. Zaragoza, Spain; Department of Neurology (M. Strupp), University Hospital, and German Center for Vertigo and Balance Disorders (M.Strupp), Ludwig Maximilians University, Munich, Germany; Neurology Service (G.M.), Hospital Unversitario Central de Asturias (HUCA), SESPA, Oviedo, Spain; Department of Neurosciences and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Institute of Genetics and Molecular and Cellular Biology (M.A.), INSERM-U964/CNRS-UMR7104, University of Strasbourg, Illkirch; Strasbourg Federation of Translational Medicine (M.A.), University of Strasbourg, Strasbourg, France; Service of Neurology (J.I.), University Hospital "Marqués de Valdecilla (IDIVAL)," University of Cantabria, "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)," Santander, Spain; and Suna and Inan Kıraç Foundation (A.N.B.), Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - Selina Reich
- From the Department of Neurodegenerative Diseases (A.T., S.R., L.S., M. Synofzik), Hertie-Institute for Clinical Brain Research and Center of Neurology, and German Center for Neurodegenerative Diseases (DZNE) (A.T., S.R., L.S., M. Synofzik), University of Tübingen, Germany; MRC Centre for Neuromuscular Diseases (A.C., N.D., H.H.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behaviour Sciences (A.C.), University Pavia, Italy; Department of Neurology (J.F., T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., H.J., T.K.), Bonn; Department of Neurology (H.J.), University Hospital of Heidelberg; Department of Psychiatry, Psychotherapy and Psychosomatics (A.M.H., D.R.), University of Halle, Germany; Département de Neurologie (S.M., M.A.), Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; Department of Neurology (A.E.-L.), APHP, CHU de Bicêtre; French National Reference Center for Rare Neuropathies (NNERF) (A.E.-L.); Inserm U1195 and Paris-Sud University (A.E.-L.), Le Kremlin Bicêtre, France; Medical Faculty (S.E.), Department of Neurology, Uludag University, Bursa, Turkey; University of Zurich (V.C.S., A.A.T.); Department of Neurology (V.C.S., A.A.T.), University Hospital Zurich, Switzerland; Institute of Medical Genetics and Applied Genomics (M. Sturm, T.B.H.) and Center for Rare Diseases (T.B.H.), University of Tübingen, Germany; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (N.V.-D., H.P.); INSERM (N.V.-D., H.P.), U1258; CNRS (N.V.-D., H.P.), UMR7104, Illkirch; Université de Strasbourg (H.P.), France; Department of Neurology (B.P.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (M.P.), Karolinska University Hospital; Department of Clinical Neuroscience (M.P.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (D.T.), Essen University Hospital, University of Duisburg-Essen, Essen; Department of Medical Statistics (R.-D.H.), RWTH Aachen University, Germany; Department of Neurology (J.G.), Hospital Universitario Miguel Servet. Zaragoza, Spain; Department of Neurology (M. Strupp), University Hospital, and German Center for Vertigo and Balance Disorders (M.Strupp), Ludwig Maximilians University, Munich, Germany; Neurology Service (G.M.), Hospital Unversitario Central de Asturias (HUCA), SESPA, Oviedo, Spain; Department of Neurosciences and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Institute of Genetics and Molecular and Cellular Biology (M.A.), INSERM-U964/CNRS-UMR7104, University of Strasbourg, Illkirch; Strasbourg Federation of Translational Medicine (M.A.), University of Strasbourg, Strasbourg, France; Service of Neurology (J.I.), University Hospital "Marqués de Valdecilla (IDIVAL)," University of Cantabria, "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)," Santander, Spain; and Suna and Inan Kıraç Foundation (A.N.B.), Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - Natalia Dominik
- From the Department of Neurodegenerative Diseases (A.T., S.R., L.S., M. Synofzik), Hertie-Institute for Clinical Brain Research and Center of Neurology, and German Center for Neurodegenerative Diseases (DZNE) (A.T., S.R., L.S., M. Synofzik), University of Tübingen, Germany; MRC Centre for Neuromuscular Diseases (A.C., N.D., H.H.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behaviour Sciences (A.C.), University Pavia, Italy; Department of Neurology (J.F., T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., H.J., T.K.), Bonn; Department of Neurology (H.J.), University Hospital of Heidelberg; Department of Psychiatry, Psychotherapy and Psychosomatics (A.M.H., D.R.), University of Halle, Germany; Département de Neurologie (S.M., M.A.), Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; Department of Neurology (A.E.-L.), APHP, CHU de Bicêtre; French National Reference Center for Rare Neuropathies (NNERF) (A.E.-L.); Inserm U1195 and Paris-Sud University (A.E.-L.), Le Kremlin Bicêtre, France; Medical Faculty (S.E.), Department of Neurology, Uludag University, Bursa, Turkey; University of Zurich (V.C.S., A.A.T.); Department of Neurology (V.C.S., A.A.T.), University Hospital Zurich, Switzerland; Institute of Medical Genetics and Applied Genomics (M. Sturm, T.B.H.) and Center for Rare Diseases (T.B.H.), University of Tübingen, Germany; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (N.V.-D., H.P.); INSERM (N.V.-D., H.P.), U1258; CNRS (N.V.-D., H.P.), UMR7104, Illkirch; Université de Strasbourg (H.P.), France; Department of Neurology (B.P.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (M.P.), Karolinska University Hospital; Department of Clinical Neuroscience (M.P.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (D.T.), Essen University Hospital, University of Duisburg-Essen, Essen; Department of Medical Statistics (R.-D.H.), RWTH Aachen University, Germany; Department of Neurology (J.G.), Hospital Universitario Miguel Servet. Zaragoza, Spain; Department of Neurology (M. Strupp), University Hospital, and German Center for Vertigo and Balance Disorders (M.Strupp), Ludwig Maximilians University, Munich, Germany; Neurology Service (G.M.), Hospital Unversitario Central de Asturias (HUCA), SESPA, Oviedo, Spain; Department of Neurosciences and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Institute of Genetics and Molecular and Cellular Biology (M.A.), INSERM-U964/CNRS-UMR7104, University of Strasbourg, Illkirch; Strasbourg Federation of Translational Medicine (M.A.), University of Strasbourg, Strasbourg, France; Service of Neurology (J.I.), University Hospital "Marqués de Valdecilla (IDIVAL)," University of Cantabria, "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)," Santander, Spain; and Suna and Inan Kıraç Foundation (A.N.B.), Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - Jennifer Faber
- From the Department of Neurodegenerative Diseases (A.T., S.R., L.S., M. Synofzik), Hertie-Institute for Clinical Brain Research and Center of Neurology, and German Center for Neurodegenerative Diseases (DZNE) (A.T., S.R., L.S., M. Synofzik), University of Tübingen, Germany; MRC Centre for Neuromuscular Diseases (A.C., N.D., H.H.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behaviour Sciences (A.C.), University Pavia, Italy; Department of Neurology (J.F., T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., H.J., T.K.), Bonn; Department of Neurology (H.J.), University Hospital of Heidelberg; Department of Psychiatry, Psychotherapy and Psychosomatics (A.M.H., D.R.), University of Halle, Germany; Département de Neurologie (S.M., M.A.), Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; Department of Neurology (A.E.-L.), APHP, CHU de Bicêtre; French National Reference Center for Rare Neuropathies (NNERF) (A.E.-L.); Inserm U1195 and Paris-Sud University (A.E.-L.), Le Kremlin Bicêtre, France; Medical Faculty (S.E.), Department of Neurology, Uludag University, Bursa, Turkey; University of Zurich (V.C.S., A.A.T.); Department of Neurology (V.C.S., A.A.T.), University Hospital Zurich, Switzerland; Institute of Medical Genetics and Applied Genomics (M. Sturm, T.B.H.) and Center for Rare Diseases (T.B.H.), University of Tübingen, Germany; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (N.V.-D., H.P.); INSERM (N.V.-D., H.P.), U1258; CNRS (N.V.-D., H.P.), UMR7104, Illkirch; Université de Strasbourg (H.P.), France; Department of Neurology (B.P.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (M.P.), Karolinska University Hospital; Department of Clinical Neuroscience (M.P.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (D.T.), Essen University Hospital, University of Duisburg-Essen, Essen; Department of Medical Statistics (R.-D.H.), RWTH Aachen University, Germany; Department of Neurology (J.G.), Hospital Universitario Miguel Servet. Zaragoza, Spain; Department of Neurology (M. Strupp), University Hospital, and German Center for Vertigo and Balance Disorders (M.Strupp), Ludwig Maximilians University, Munich, Germany; Neurology Service (G.M.), Hospital Unversitario Central de Asturias (HUCA), SESPA, Oviedo, Spain; Department of Neurosciences and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Institute of Genetics and Molecular and Cellular Biology (M.A.), INSERM-U964/CNRS-UMR7104, University of Strasbourg, Illkirch; Strasbourg Federation of Translational Medicine (M.A.), University of Strasbourg, Strasbourg, France; Service of Neurology (J.I.), University Hospital "Marqués de Valdecilla (IDIVAL)," University of Cantabria, "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)," Santander, Spain; and Suna and Inan Kıraç Foundation (A.N.B.), Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - Heike Jacobi
- From the Department of Neurodegenerative Diseases (A.T., S.R., L.S., M. Synofzik), Hertie-Institute for Clinical Brain Research and Center of Neurology, and German Center for Neurodegenerative Diseases (DZNE) (A.T., S.R., L.S., M. Synofzik), University of Tübingen, Germany; MRC Centre for Neuromuscular Diseases (A.C., N.D., H.H.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behaviour Sciences (A.C.), University Pavia, Italy; Department of Neurology (J.F., T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., H.J., T.K.), Bonn; Department of Neurology (H.J.), University Hospital of Heidelberg; Department of Psychiatry, Psychotherapy and Psychosomatics (A.M.H., D.R.), University of Halle, Germany; Département de Neurologie (S.M., M.A.), Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; Department of Neurology (A.E.-L.), APHP, CHU de Bicêtre; French National Reference Center for Rare Neuropathies (NNERF) (A.E.-L.); Inserm U1195 and Paris-Sud University (A.E.-L.), Le Kremlin Bicêtre, France; Medical Faculty (S.E.), Department of Neurology, Uludag University, Bursa, Turkey; University of Zurich (V.C.S., A.A.T.); Department of Neurology (V.C.S., A.A.T.), University Hospital Zurich, Switzerland; Institute of Medical Genetics and Applied Genomics (M. Sturm, T.B.H.) and Center for Rare Diseases (T.B.H.), University of Tübingen, Germany; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (N.V.-D., H.P.); INSERM (N.V.-D., H.P.), U1258; CNRS (N.V.-D., H.P.), UMR7104, Illkirch; Université de Strasbourg (H.P.), France; Department of Neurology (B.P.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (M.P.), Karolinska University Hospital; Department of Clinical Neuroscience (M.P.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (D.T.), Essen University Hospital, University of Duisburg-Essen, Essen; Department of Medical Statistics (R.-D.H.), RWTH Aachen University, Germany; Department of Neurology (J.G.), Hospital Universitario Miguel Servet. Zaragoza, Spain; Department of Neurology (M. Strupp), University Hospital, and German Center for Vertigo and Balance Disorders (M.Strupp), Ludwig Maximilians University, Munich, Germany; Neurology Service (G.M.), Hospital Unversitario Central de Asturias (HUCA), SESPA, Oviedo, Spain; Department of Neurosciences and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Institute of Genetics and Molecular and Cellular Biology (M.A.), INSERM-U964/CNRS-UMR7104, University of Strasbourg, Illkirch; Strasbourg Federation of Translational Medicine (M.A.), University of Strasbourg, Strasbourg, France; Service of Neurology (J.I.), University Hospital "Marqués de Valdecilla (IDIVAL)," University of Cantabria, "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)," Santander, Spain; and Suna and Inan Kıraç Foundation (A.N.B.), Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - Annette M Hartmann
- From the Department of Neurodegenerative Diseases (A.T., S.R., L.S., M. Synofzik), Hertie-Institute for Clinical Brain Research and Center of Neurology, and German Center for Neurodegenerative Diseases (DZNE) (A.T., S.R., L.S., M. Synofzik), University of Tübingen, Germany; MRC Centre for Neuromuscular Diseases (A.C., N.D., H.H.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behaviour Sciences (A.C.), University Pavia, Italy; Department of Neurology (J.F., T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., H.J., T.K.), Bonn; Department of Neurology (H.J.), University Hospital of Heidelberg; Department of Psychiatry, Psychotherapy and Psychosomatics (A.M.H., D.R.), University of Halle, Germany; Département de Neurologie (S.M., M.A.), Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; Department of Neurology (A.E.-L.), APHP, CHU de Bicêtre; French National Reference Center for Rare Neuropathies (NNERF) (A.E.-L.); Inserm U1195 and Paris-Sud University (A.E.-L.), Le Kremlin Bicêtre, France; Medical Faculty (S.E.), Department of Neurology, Uludag University, Bursa, Turkey; University of Zurich (V.C.S., A.A.T.); Department of Neurology (V.C.S., A.A.T.), University Hospital Zurich, Switzerland; Institute of Medical Genetics and Applied Genomics (M. Sturm, T.B.H.) and Center for Rare Diseases (T.B.H.), University of Tübingen, Germany; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (N.V.-D., H.P.); INSERM (N.V.-D., H.P.), U1258; CNRS (N.V.-D., H.P.), UMR7104, Illkirch; Université de Strasbourg (H.P.), France; Department of Neurology (B.P.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (M.P.), Karolinska University Hospital; Department of Clinical Neuroscience (M.P.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (D.T.), Essen University Hospital, University of Duisburg-Essen, Essen; Department of Medical Statistics (R.-D.H.), RWTH Aachen University, Germany; Department of Neurology (J.G.), Hospital Universitario Miguel Servet. Zaragoza, Spain; Department of Neurology (M. Strupp), University Hospital, and German Center for Vertigo and Balance Disorders (M.Strupp), Ludwig Maximilians University, Munich, Germany; Neurology Service (G.M.), Hospital Unversitario Central de Asturias (HUCA), SESPA, Oviedo, Spain; Department of Neurosciences and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Institute of Genetics and Molecular and Cellular Biology (M.A.), INSERM-U964/CNRS-UMR7104, University of Strasbourg, Illkirch; Strasbourg Federation of Translational Medicine (M.A.), University of Strasbourg, Strasbourg, France; Service of Neurology (J.I.), University Hospital "Marqués de Valdecilla (IDIVAL)," University of Cantabria, "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)," Santander, Spain; and Suna and Inan Kıraç Foundation (A.N.B.), Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - Dan Rujescu
- From the Department of Neurodegenerative Diseases (A.T., S.R., L.S., M. Synofzik), Hertie-Institute for Clinical Brain Research and Center of Neurology, and German Center for Neurodegenerative Diseases (DZNE) (A.T., S.R., L.S., M. Synofzik), University of Tübingen, Germany; MRC Centre for Neuromuscular Diseases (A.C., N.D., H.H.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behaviour Sciences (A.C.), University Pavia, Italy; Department of Neurology (J.F., T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., H.J., T.K.), Bonn; Department of Neurology (H.J.), University Hospital of Heidelberg; Department of Psychiatry, Psychotherapy and Psychosomatics (A.M.H., D.R.), University of Halle, Germany; Département de Neurologie (S.M., M.A.), Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; Department of Neurology (A.E.-L.), APHP, CHU de Bicêtre; French National Reference Center for Rare Neuropathies (NNERF) (A.E.-L.); Inserm U1195 and Paris-Sud University (A.E.-L.), Le Kremlin Bicêtre, France; Medical Faculty (S.E.), Department of Neurology, Uludag University, Bursa, Turkey; University of Zurich (V.C.S., A.A.T.); Department of Neurology (V.C.S., A.A.T.), University Hospital Zurich, Switzerland; Institute of Medical Genetics and Applied Genomics (M. Sturm, T.B.H.) and Center for Rare Diseases (T.B.H.), University of Tübingen, Germany; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (N.V.-D., H.P.); INSERM (N.V.-D., H.P.), U1258; CNRS (N.V.-D., H.P.), UMR7104, Illkirch; Université de Strasbourg (H.P.), France; Department of Neurology (B.P.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (M.P.), Karolinska University Hospital; Department of Clinical Neuroscience (M.P.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (D.T.), Essen University Hospital, University of Duisburg-Essen, Essen; Department of Medical Statistics (R.-D.H.), RWTH Aachen University, Germany; Department of Neurology (J.G.), Hospital Universitario Miguel Servet. Zaragoza, Spain; Department of Neurology (M. Strupp), University Hospital, and German Center for Vertigo and Balance Disorders (M.Strupp), Ludwig Maximilians University, Munich, Germany; Neurology Service (G.M.), Hospital Unversitario Central de Asturias (HUCA), SESPA, Oviedo, Spain; Department of Neurosciences and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Institute of Genetics and Molecular and Cellular Biology (M.A.), INSERM-U964/CNRS-UMR7104, University of Strasbourg, Illkirch; Strasbourg Federation of Translational Medicine (M.A.), University of Strasbourg, Strasbourg, France; Service of Neurology (J.I.), University Hospital "Marqués de Valdecilla (IDIVAL)," University of Cantabria, "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)," Santander, Spain; and Suna and Inan Kıraç Foundation (A.N.B.), Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - Solveig Montaut
- From the Department of Neurodegenerative Diseases (A.T., S.R., L.S., M. Synofzik), Hertie-Institute for Clinical Brain Research and Center of Neurology, and German Center for Neurodegenerative Diseases (DZNE) (A.T., S.R., L.S., M. Synofzik), University of Tübingen, Germany; MRC Centre for Neuromuscular Diseases (A.C., N.D., H.H.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behaviour Sciences (A.C.), University Pavia, Italy; Department of Neurology (J.F., T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., H.J., T.K.), Bonn; Department of Neurology (H.J.), University Hospital of Heidelberg; Department of Psychiatry, Psychotherapy and Psychosomatics (A.M.H., D.R.), University of Halle, Germany; Département de Neurologie (S.M., M.A.), Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; Department of Neurology (A.E.-L.), APHP, CHU de Bicêtre; French National Reference Center for Rare Neuropathies (NNERF) (A.E.-L.); Inserm U1195 and Paris-Sud University (A.E.-L.), Le Kremlin Bicêtre, France; Medical Faculty (S.E.), Department of Neurology, Uludag University, Bursa, Turkey; University of Zurich (V.C.S., A.A.T.); Department of Neurology (V.C.S., A.A.T.), University Hospital Zurich, Switzerland; Institute of Medical Genetics and Applied Genomics (M. Sturm, T.B.H.) and Center for Rare Diseases (T.B.H.), University of Tübingen, Germany; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (N.V.-D., H.P.); INSERM (N.V.-D., H.P.), U1258; CNRS (N.V.-D., H.P.), UMR7104, Illkirch; Université de Strasbourg (H.P.), France; Department of Neurology (B.P.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (M.P.), Karolinska University Hospital; Department of Clinical Neuroscience (M.P.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (D.T.), Essen University Hospital, University of Duisburg-Essen, Essen; Department of Medical Statistics (R.-D.H.), RWTH Aachen University, Germany; Department of Neurology (J.G.), Hospital Universitario Miguel Servet. Zaragoza, Spain; Department of Neurology (M. Strupp), University Hospital, and German Center for Vertigo and Balance Disorders (M.Strupp), Ludwig Maximilians University, Munich, Germany; Neurology Service (G.M.), Hospital Unversitario Central de Asturias (HUCA), SESPA, Oviedo, Spain; Department of Neurosciences and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Institute of Genetics and Molecular and Cellular Biology (M.A.), INSERM-U964/CNRS-UMR7104, University of Strasbourg, Illkirch; Strasbourg Federation of Translational Medicine (M.A.), University of Strasbourg, Strasbourg, France; Service of Neurology (J.I.), University Hospital "Marqués de Valdecilla (IDIVAL)," University of Cantabria, "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)," Santander, Spain; and Suna and Inan Kıraç Foundation (A.N.B.), Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - Andoni Echaniz-Laguna
- From the Department of Neurodegenerative Diseases (A.T., S.R., L.S., M. Synofzik), Hertie-Institute for Clinical Brain Research and Center of Neurology, and German Center for Neurodegenerative Diseases (DZNE) (A.T., S.R., L.S., M. Synofzik), University of Tübingen, Germany; MRC Centre for Neuromuscular Diseases (A.C., N.D., H.H.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behaviour Sciences (A.C.), University Pavia, Italy; Department of Neurology (J.F., T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., H.J., T.K.), Bonn; Department of Neurology (H.J.), University Hospital of Heidelberg; Department of Psychiatry, Psychotherapy and Psychosomatics (A.M.H., D.R.), University of Halle, Germany; Département de Neurologie (S.M., M.A.), Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; Department of Neurology (A.E.-L.), APHP, CHU de Bicêtre; French National Reference Center for Rare Neuropathies (NNERF) (A.E.-L.); Inserm U1195 and Paris-Sud University (A.E.-L.), Le Kremlin Bicêtre, France; Medical Faculty (S.E.), Department of Neurology, Uludag University, Bursa, Turkey; University of Zurich (V.C.S., A.A.T.); Department of Neurology (V.C.S., A.A.T.), University Hospital Zurich, Switzerland; Institute of Medical Genetics and Applied Genomics (M. Sturm, T.B.H.) and Center for Rare Diseases (T.B.H.), University of Tübingen, Germany; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (N.V.-D., H.P.); INSERM (N.V.-D., H.P.), U1258; CNRS (N.V.-D., H.P.), UMR7104, Illkirch; Université de Strasbourg (H.P.), France; Department of Neurology (B.P.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (M.P.), Karolinska University Hospital; Department of Clinical Neuroscience (M.P.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (D.T.), Essen University Hospital, University of Duisburg-Essen, Essen; Department of Medical Statistics (R.-D.H.), RWTH Aachen University, Germany; Department of Neurology (J.G.), Hospital Universitario Miguel Servet. Zaragoza, Spain; Department of Neurology (M. Strupp), University Hospital, and German Center for Vertigo and Balance Disorders (M.Strupp), Ludwig Maximilians University, Munich, Germany; Neurology Service (G.M.), Hospital Unversitario Central de Asturias (HUCA), SESPA, Oviedo, Spain; Department of Neurosciences and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Institute of Genetics and Molecular and Cellular Biology (M.A.), INSERM-U964/CNRS-UMR7104, University of Strasbourg, Illkirch; Strasbourg Federation of Translational Medicine (M.A.), University of Strasbourg, Strasbourg, France; Service of Neurology (J.I.), University Hospital "Marqués de Valdecilla (IDIVAL)," University of Cantabria, "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)," Santander, Spain; and Suna and Inan Kıraç Foundation (A.N.B.), Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - Sevda Erer
- From the Department of Neurodegenerative Diseases (A.T., S.R., L.S., M. Synofzik), Hertie-Institute for Clinical Brain Research and Center of Neurology, and German Center for Neurodegenerative Diseases (DZNE) (A.T., S.R., L.S., M. Synofzik), University of Tübingen, Germany; MRC Centre for Neuromuscular Diseases (A.C., N.D., H.H.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behaviour Sciences (A.C.), University Pavia, Italy; Department of Neurology (J.F., T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., H.J., T.K.), Bonn; Department of Neurology (H.J.), University Hospital of Heidelberg; Department of Psychiatry, Psychotherapy and Psychosomatics (A.M.H., D.R.), University of Halle, Germany; Département de Neurologie (S.M., M.A.), Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; Department of Neurology (A.E.-L.), APHP, CHU de Bicêtre; French National Reference Center for Rare Neuropathies (NNERF) (A.E.-L.); Inserm U1195 and Paris-Sud University (A.E.-L.), Le Kremlin Bicêtre, France; Medical Faculty (S.E.), Department of Neurology, Uludag University, Bursa, Turkey; University of Zurich (V.C.S., A.A.T.); Department of Neurology (V.C.S., A.A.T.), University Hospital Zurich, Switzerland; Institute of Medical Genetics and Applied Genomics (M. Sturm, T.B.H.) and Center for Rare Diseases (T.B.H.), University of Tübingen, Germany; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (N.V.-D., H.P.); INSERM (N.V.-D., H.P.), U1258; CNRS (N.V.-D., H.P.), UMR7104, Illkirch; Université de Strasbourg (H.P.), France; Department of Neurology (B.P.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (M.P.), Karolinska University Hospital; Department of Clinical Neuroscience (M.P.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (D.T.), Essen University Hospital, University of Duisburg-Essen, Essen; Department of Medical Statistics (R.-D.H.), RWTH Aachen University, Germany; Department of Neurology (J.G.), Hospital Universitario Miguel Servet. Zaragoza, Spain; Department of Neurology (M. Strupp), University Hospital, and German Center for Vertigo and Balance Disorders (M.Strupp), Ludwig Maximilians University, Munich, Germany; Neurology Service (G.M.), Hospital Unversitario Central de Asturias (HUCA), SESPA, Oviedo, Spain; Department of Neurosciences and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Institute of Genetics and Molecular and Cellular Biology (M.A.), INSERM-U964/CNRS-UMR7104, University of Strasbourg, Illkirch; Strasbourg Federation of Translational Medicine (M.A.), University of Strasbourg, Strasbourg, France; Service of Neurology (J.I.), University Hospital "Marqués de Valdecilla (IDIVAL)," University of Cantabria, "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)," Santander, Spain; and Suna and Inan Kıraç Foundation (A.N.B.), Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - Valerie Cornelia Schütz
- From the Department of Neurodegenerative Diseases (A.T., S.R., L.S., M. Synofzik), Hertie-Institute for Clinical Brain Research and Center of Neurology, and German Center for Neurodegenerative Diseases (DZNE) (A.T., S.R., L.S., M. Synofzik), University of Tübingen, Germany; MRC Centre for Neuromuscular Diseases (A.C., N.D., H.H.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behaviour Sciences (A.C.), University Pavia, Italy; Department of Neurology (J.F., T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., H.J., T.K.), Bonn; Department of Neurology (H.J.), University Hospital of Heidelberg; Department of Psychiatry, Psychotherapy and Psychosomatics (A.M.H., D.R.), University of Halle, Germany; Département de Neurologie (S.M., M.A.), Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; Department of Neurology (A.E.-L.), APHP, CHU de Bicêtre; French National Reference Center for Rare Neuropathies (NNERF) (A.E.-L.); Inserm U1195 and Paris-Sud University (A.E.-L.), Le Kremlin Bicêtre, France; Medical Faculty (S.E.), Department of Neurology, Uludag University, Bursa, Turkey; University of Zurich (V.C.S., A.A.T.); Department of Neurology (V.C.S., A.A.T.), University Hospital Zurich, Switzerland; Institute of Medical Genetics and Applied Genomics (M. Sturm, T.B.H.) and Center for Rare Diseases (T.B.H.), University of Tübingen, Germany; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (N.V.-D., H.P.); INSERM (N.V.-D., H.P.), U1258; CNRS (N.V.-D., H.P.), UMR7104, Illkirch; Université de Strasbourg (H.P.), France; Department of Neurology (B.P.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (M.P.), Karolinska University Hospital; Department of Clinical Neuroscience (M.P.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (D.T.), Essen University Hospital, University of Duisburg-Essen, Essen; Department of Medical Statistics (R.-D.H.), RWTH Aachen University, Germany; Department of Neurology (J.G.), Hospital Universitario Miguel Servet. Zaragoza, Spain; Department of Neurology (M. Strupp), University Hospital, and German Center for Vertigo and Balance Disorders (M.Strupp), Ludwig Maximilians University, Munich, Germany; Neurology Service (G.M.), Hospital Unversitario Central de Asturias (HUCA), SESPA, Oviedo, Spain; Department of Neurosciences and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Institute of Genetics and Molecular and Cellular Biology (M.A.), INSERM-U964/CNRS-UMR7104, University of Strasbourg, Illkirch; Strasbourg Federation of Translational Medicine (M.A.), University of Strasbourg, Strasbourg, France; Service of Neurology (J.I.), University Hospital "Marqués de Valdecilla (IDIVAL)," University of Cantabria, "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)," Santander, Spain; and Suna and Inan Kıraç Foundation (A.N.B.), Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - Alexander A Tarnutzer
- From the Department of Neurodegenerative Diseases (A.T., S.R., L.S., M. Synofzik), Hertie-Institute for Clinical Brain Research and Center of Neurology, and German Center for Neurodegenerative Diseases (DZNE) (A.T., S.R., L.S., M. Synofzik), University of Tübingen, Germany; MRC Centre for Neuromuscular Diseases (A.C., N.D., H.H.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behaviour Sciences (A.C.), University Pavia, Italy; Department of Neurology (J.F., T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., H.J., T.K.), Bonn; Department of Neurology (H.J.), University Hospital of Heidelberg; Department of Psychiatry, Psychotherapy and Psychosomatics (A.M.H., D.R.), University of Halle, Germany; Département de Neurologie (S.M., M.A.), Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; Department of Neurology (A.E.-L.), APHP, CHU de Bicêtre; French National Reference Center for Rare Neuropathies (NNERF) (A.E.-L.); Inserm U1195 and Paris-Sud University (A.E.-L.), Le Kremlin Bicêtre, France; Medical Faculty (S.E.), Department of Neurology, Uludag University, Bursa, Turkey; University of Zurich (V.C.S., A.A.T.); Department of Neurology (V.C.S., A.A.T.), University Hospital Zurich, Switzerland; Institute of Medical Genetics and Applied Genomics (M. Sturm, T.B.H.) and Center for Rare Diseases (T.B.H.), University of Tübingen, Germany; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (N.V.-D., H.P.); INSERM (N.V.-D., H.P.), U1258; CNRS (N.V.-D., H.P.), UMR7104, Illkirch; Université de Strasbourg (H.P.), France; Department of Neurology (B.P.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (M.P.), Karolinska University Hospital; Department of Clinical Neuroscience (M.P.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (D.T.), Essen University Hospital, University of Duisburg-Essen, Essen; Department of Medical Statistics (R.-D.H.), RWTH Aachen University, Germany; Department of Neurology (J.G.), Hospital Universitario Miguel Servet. Zaragoza, Spain; Department of Neurology (M. Strupp), University Hospital, and German Center for Vertigo and Balance Disorders (M.Strupp), Ludwig Maximilians University, Munich, Germany; Neurology Service (G.M.), Hospital Unversitario Central de Asturias (HUCA), SESPA, Oviedo, Spain; Department of Neurosciences and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Institute of Genetics and Molecular and Cellular Biology (M.A.), INSERM-U964/CNRS-UMR7104, University of Strasbourg, Illkirch; Strasbourg Federation of Translational Medicine (M.A.), University of Strasbourg, Strasbourg, France; Service of Neurology (J.I.), University Hospital "Marqués de Valdecilla (IDIVAL)," University of Cantabria, "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)," Santander, Spain; and Suna and Inan Kıraç Foundation (A.N.B.), Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - Marc Sturm
- From the Department of Neurodegenerative Diseases (A.T., S.R., L.S., M. Synofzik), Hertie-Institute for Clinical Brain Research and Center of Neurology, and German Center for Neurodegenerative Diseases (DZNE) (A.T., S.R., L.S., M. Synofzik), University of Tübingen, Germany; MRC Centre for Neuromuscular Diseases (A.C., N.D., H.H.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behaviour Sciences (A.C.), University Pavia, Italy; Department of Neurology (J.F., T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., H.J., T.K.), Bonn; Department of Neurology (H.J.), University Hospital of Heidelberg; Department of Psychiatry, Psychotherapy and Psychosomatics (A.M.H., D.R.), University of Halle, Germany; Département de Neurologie (S.M., M.A.), Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; Department of Neurology (A.E.-L.), APHP, CHU de Bicêtre; French National Reference Center for Rare Neuropathies (NNERF) (A.E.-L.); Inserm U1195 and Paris-Sud University (A.E.-L.), Le Kremlin Bicêtre, France; Medical Faculty (S.E.), Department of Neurology, Uludag University, Bursa, Turkey; University of Zurich (V.C.S., A.A.T.); Department of Neurology (V.C.S., A.A.T.), University Hospital Zurich, Switzerland; Institute of Medical Genetics and Applied Genomics (M. Sturm, T.B.H.) and Center for Rare Diseases (T.B.H.), University of Tübingen, Germany; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (N.V.-D., H.P.); INSERM (N.V.-D., H.P.), U1258; CNRS (N.V.-D., H.P.), UMR7104, Illkirch; Université de Strasbourg (H.P.), France; Department of Neurology (B.P.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (M.P.), Karolinska University Hospital; Department of Clinical Neuroscience (M.P.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (D.T.), Essen University Hospital, University of Duisburg-Essen, Essen; Department of Medical Statistics (R.-D.H.), RWTH Aachen University, Germany; Department of Neurology (J.G.), Hospital Universitario Miguel Servet. Zaragoza, Spain; Department of Neurology (M. Strupp), University Hospital, and German Center for Vertigo and Balance Disorders (M.Strupp), Ludwig Maximilians University, Munich, Germany; Neurology Service (G.M.), Hospital Unversitario Central de Asturias (HUCA), SESPA, Oviedo, Spain; Department of Neurosciences and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Institute of Genetics and Molecular and Cellular Biology (M.A.), INSERM-U964/CNRS-UMR7104, University of Strasbourg, Illkirch; Strasbourg Federation of Translational Medicine (M.A.), University of Strasbourg, Strasbourg, France; Service of Neurology (J.I.), University Hospital "Marqués de Valdecilla (IDIVAL)," University of Cantabria, "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)," Santander, Spain; and Suna and Inan Kıraç Foundation (A.N.B.), Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - Tobias B Haack
- From the Department of Neurodegenerative Diseases (A.T., S.R., L.S., M. Synofzik), Hertie-Institute for Clinical Brain Research and Center of Neurology, and German Center for Neurodegenerative Diseases (DZNE) (A.T., S.R., L.S., M. Synofzik), University of Tübingen, Germany; MRC Centre for Neuromuscular Diseases (A.C., N.D., H.H.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behaviour Sciences (A.C.), University Pavia, Italy; Department of Neurology (J.F., T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., H.J., T.K.), Bonn; Department of Neurology (H.J.), University Hospital of Heidelberg; Department of Psychiatry, Psychotherapy and Psychosomatics (A.M.H., D.R.), University of Halle, Germany; Département de Neurologie (S.M., M.A.), Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; Department of Neurology (A.E.-L.), APHP, CHU de Bicêtre; French National Reference Center for Rare Neuropathies (NNERF) (A.E.-L.); Inserm U1195 and Paris-Sud University (A.E.-L.), Le Kremlin Bicêtre, France; Medical Faculty (S.E.), Department of Neurology, Uludag University, Bursa, Turkey; University of Zurich (V.C.S., A.A.T.); Department of Neurology (V.C.S., A.A.T.), University Hospital Zurich, Switzerland; Institute of Medical Genetics and Applied Genomics (M. Sturm, T.B.H.) and Center for Rare Diseases (T.B.H.), University of Tübingen, Germany; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (N.V.-D., H.P.); INSERM (N.V.-D., H.P.), U1258; CNRS (N.V.-D., H.P.), UMR7104, Illkirch; Université de Strasbourg (H.P.), France; Department of Neurology (B.P.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (M.P.), Karolinska University Hospital; Department of Clinical Neuroscience (M.P.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (D.T.), Essen University Hospital, University of Duisburg-Essen, Essen; Department of Medical Statistics (R.-D.H.), RWTH Aachen University, Germany; Department of Neurology (J.G.), Hospital Universitario Miguel Servet. Zaragoza, Spain; Department of Neurology (M. Strupp), University Hospital, and German Center for Vertigo and Balance Disorders (M.Strupp), Ludwig Maximilians University, Munich, Germany; Neurology Service (G.M.), Hospital Unversitario Central de Asturias (HUCA), SESPA, Oviedo, Spain; Department of Neurosciences and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Institute of Genetics and Molecular and Cellular Biology (M.A.), INSERM-U964/CNRS-UMR7104, University of Strasbourg, Illkirch; Strasbourg Federation of Translational Medicine (M.A.), University of Strasbourg, Strasbourg, France; Service of Neurology (J.I.), University Hospital "Marqués de Valdecilla (IDIVAL)," University of Cantabria, "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)," Santander, Spain; and Suna and Inan Kıraç Foundation (A.N.B.), Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - Nadège Vaucamps-Diedhiou
- From the Department of Neurodegenerative Diseases (A.T., S.R., L.S., M. Synofzik), Hertie-Institute for Clinical Brain Research and Center of Neurology, and German Center for Neurodegenerative Diseases (DZNE) (A.T., S.R., L.S., M. Synofzik), University of Tübingen, Germany; MRC Centre for Neuromuscular Diseases (A.C., N.D., H.H.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behaviour Sciences (A.C.), University Pavia, Italy; Department of Neurology (J.F., T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., H.J., T.K.), Bonn; Department of Neurology (H.J.), University Hospital of Heidelberg; Department of Psychiatry, Psychotherapy and Psychosomatics (A.M.H., D.R.), University of Halle, Germany; Département de Neurologie (S.M., M.A.), Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; Department of Neurology (A.E.-L.), APHP, CHU de Bicêtre; French National Reference Center for Rare Neuropathies (NNERF) (A.E.-L.); Inserm U1195 and Paris-Sud University (A.E.-L.), Le Kremlin Bicêtre, France; Medical Faculty (S.E.), Department of Neurology, Uludag University, Bursa, Turkey; University of Zurich (V.C.S., A.A.T.); Department of Neurology (V.C.S., A.A.T.), University Hospital Zurich, Switzerland; Institute of Medical Genetics and Applied Genomics (M. Sturm, T.B.H.) and Center for Rare Diseases (T.B.H.), University of Tübingen, Germany; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (N.V.-D., H.P.); INSERM (N.V.-D., H.P.), U1258; CNRS (N.V.-D., H.P.), UMR7104, Illkirch; Université de Strasbourg (H.P.), France; Department of Neurology (B.P.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (M.P.), Karolinska University Hospital; Department of Clinical Neuroscience (M.P.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (D.T.), Essen University Hospital, University of Duisburg-Essen, Essen; Department of Medical Statistics (R.-D.H.), RWTH Aachen University, Germany; Department of Neurology (J.G.), Hospital Universitario Miguel Servet. Zaragoza, Spain; Department of Neurology (M. Strupp), University Hospital, and German Center for Vertigo and Balance Disorders (M.Strupp), Ludwig Maximilians University, Munich, Germany; Neurology Service (G.M.), Hospital Unversitario Central de Asturias (HUCA), SESPA, Oviedo, Spain; Department of Neurosciences and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Institute of Genetics and Molecular and Cellular Biology (M.A.), INSERM-U964/CNRS-UMR7104, University of Strasbourg, Illkirch; Strasbourg Federation of Translational Medicine (M.A.), University of Strasbourg, Strasbourg, France; Service of Neurology (J.I.), University Hospital "Marqués de Valdecilla (IDIVAL)," University of Cantabria, "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)," Santander, Spain; and Suna and Inan Kıraç Foundation (A.N.B.), Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - Helene Puccio
- From the Department of Neurodegenerative Diseases (A.T., S.R., L.S., M. Synofzik), Hertie-Institute for Clinical Brain Research and Center of Neurology, and German Center for Neurodegenerative Diseases (DZNE) (A.T., S.R., L.S., M. Synofzik), University of Tübingen, Germany; MRC Centre for Neuromuscular Diseases (A.C., N.D., H.H.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behaviour Sciences (A.C.), University Pavia, Italy; Department of Neurology (J.F., T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., H.J., T.K.), Bonn; Department of Neurology (H.J.), University Hospital of Heidelberg; Department of Psychiatry, Psychotherapy and Psychosomatics (A.M.H., D.R.), University of Halle, Germany; Département de Neurologie (S.M., M.A.), Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; Department of Neurology (A.E.-L.), APHP, CHU de Bicêtre; French National Reference Center for Rare Neuropathies (NNERF) (A.E.-L.); Inserm U1195 and Paris-Sud University (A.E.-L.), Le Kremlin Bicêtre, France; Medical Faculty (S.E.), Department of Neurology, Uludag University, Bursa, Turkey; University of Zurich (V.C.S., A.A.T.); Department of Neurology (V.C.S., A.A.T.), University Hospital Zurich, Switzerland; Institute of Medical Genetics and Applied Genomics (M. Sturm, T.B.H.) and Center for Rare Diseases (T.B.H.), University of Tübingen, Germany; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (N.V.-D., H.P.); INSERM (N.V.-D., H.P.), U1258; CNRS (N.V.-D., H.P.), UMR7104, Illkirch; Université de Strasbourg (H.P.), France; Department of Neurology (B.P.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (M.P.), Karolinska University Hospital; Department of Clinical Neuroscience (M.P.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (D.T.), Essen University Hospital, University of Duisburg-Essen, Essen; Department of Medical Statistics (R.-D.H.), RWTH Aachen University, Germany; Department of Neurology (J.G.), Hospital Universitario Miguel Servet. Zaragoza, Spain; Department of Neurology (M. Strupp), University Hospital, and German Center for Vertigo and Balance Disorders (M.Strupp), Ludwig Maximilians University, Munich, Germany; Neurology Service (G.M.), Hospital Unversitario Central de Asturias (HUCA), SESPA, Oviedo, Spain; Department of Neurosciences and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Institute of Genetics and Molecular and Cellular Biology (M.A.), INSERM-U964/CNRS-UMR7104, University of Strasbourg, Illkirch; Strasbourg Federation of Translational Medicine (M.A.), University of Strasbourg, Strasbourg, France; Service of Neurology (J.I.), University Hospital "Marqués de Valdecilla (IDIVAL)," University of Cantabria, "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)," Santander, Spain; and Suna and Inan Kıraç Foundation (A.N.B.), Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - Ludger Schöls
- From the Department of Neurodegenerative Diseases (A.T., S.R., L.S., M. Synofzik), Hertie-Institute for Clinical Brain Research and Center of Neurology, and German Center for Neurodegenerative Diseases (DZNE) (A.T., S.R., L.S., M. Synofzik), University of Tübingen, Germany; MRC Centre for Neuromuscular Diseases (A.C., N.D., H.H.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behaviour Sciences (A.C.), University Pavia, Italy; Department of Neurology (J.F., T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., H.J., T.K.), Bonn; Department of Neurology (H.J.), University Hospital of Heidelberg; Department of Psychiatry, Psychotherapy and Psychosomatics (A.M.H., D.R.), University of Halle, Germany; Département de Neurologie (S.M., M.A.), Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; Department of Neurology (A.E.-L.), APHP, CHU de Bicêtre; French National Reference Center for Rare Neuropathies (NNERF) (A.E.-L.); Inserm U1195 and Paris-Sud University (A.E.-L.), Le Kremlin Bicêtre, France; Medical Faculty (S.E.), Department of Neurology, Uludag University, Bursa, Turkey; University of Zurich (V.C.S., A.A.T.); Department of Neurology (V.C.S., A.A.T.), University Hospital Zurich, Switzerland; Institute of Medical Genetics and Applied Genomics (M. Sturm, T.B.H.) and Center for Rare Diseases (T.B.H.), University of Tübingen, Germany; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (N.V.-D., H.P.); INSERM (N.V.-D., H.P.), U1258; CNRS (N.V.-D., H.P.), UMR7104, Illkirch; Université de Strasbourg (H.P.), France; Department of Neurology (B.P.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (M.P.), Karolinska University Hospital; Department of Clinical Neuroscience (M.P.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (D.T.), Essen University Hospital, University of Duisburg-Essen, Essen; Department of Medical Statistics (R.-D.H.), RWTH Aachen University, Germany; Department of Neurology (J.G.), Hospital Universitario Miguel Servet. Zaragoza, Spain; Department of Neurology (M. Strupp), University Hospital, and German Center for Vertigo and Balance Disorders (M.Strupp), Ludwig Maximilians University, Munich, Germany; Neurology Service (G.M.), Hospital Unversitario Central de Asturias (HUCA), SESPA, Oviedo, Spain; Department of Neurosciences and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Institute of Genetics and Molecular and Cellular Biology (M.A.), INSERM-U964/CNRS-UMR7104, University of Strasbourg, Illkirch; Strasbourg Federation of Translational Medicine (M.A.), University of Strasbourg, Strasbourg, France; Service of Neurology (J.I.), University Hospital "Marqués de Valdecilla (IDIVAL)," University of Cantabria, "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)," Santander, Spain; and Suna and Inan Kıraç Foundation (A.N.B.), Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - Thomas Klockgether
- From the Department of Neurodegenerative Diseases (A.T., S.R., L.S., M. Synofzik), Hertie-Institute for Clinical Brain Research and Center of Neurology, and German Center for Neurodegenerative Diseases (DZNE) (A.T., S.R., L.S., M. Synofzik), University of Tübingen, Germany; MRC Centre for Neuromuscular Diseases (A.C., N.D., H.H.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behaviour Sciences (A.C.), University Pavia, Italy; Department of Neurology (J.F., T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., H.J., T.K.), Bonn; Department of Neurology (H.J.), University Hospital of Heidelberg; Department of Psychiatry, Psychotherapy and Psychosomatics (A.M.H., D.R.), University of Halle, Germany; Département de Neurologie (S.M., M.A.), Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; Department of Neurology (A.E.-L.), APHP, CHU de Bicêtre; French National Reference Center for Rare Neuropathies (NNERF) (A.E.-L.); Inserm U1195 and Paris-Sud University (A.E.-L.), Le Kremlin Bicêtre, France; Medical Faculty (S.E.), Department of Neurology, Uludag University, Bursa, Turkey; University of Zurich (V.C.S., A.A.T.); Department of Neurology (V.C.S., A.A.T.), University Hospital Zurich, Switzerland; Institute of Medical Genetics and Applied Genomics (M. Sturm, T.B.H.) and Center for Rare Diseases (T.B.H.), University of Tübingen, Germany; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (N.V.-D., H.P.); INSERM (N.V.-D., H.P.), U1258; CNRS (N.V.-D., H.P.), UMR7104, Illkirch; Université de Strasbourg (H.P.), France; Department of Neurology (B.P.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (M.P.), Karolinska University Hospital; Department of Clinical Neuroscience (M.P.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (D.T.), Essen University Hospital, University of Duisburg-Essen, Essen; Department of Medical Statistics (R.-D.H.), RWTH Aachen University, Germany; Department of Neurology (J.G.), Hospital Universitario Miguel Servet. Zaragoza, Spain; Department of Neurology (M. Strupp), University Hospital, and German Center for Vertigo and Balance Disorders (M.Strupp), Ludwig Maximilians University, Munich, Germany; Neurology Service (G.M.), Hospital Unversitario Central de Asturias (HUCA), SESPA, Oviedo, Spain; Department of Neurosciences and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Institute of Genetics and Molecular and Cellular Biology (M.A.), INSERM-U964/CNRS-UMR7104, University of Strasbourg, Illkirch; Strasbourg Federation of Translational Medicine (M.A.), University of Strasbourg, Strasbourg, France; Service of Neurology (J.I.), University Hospital "Marqués de Valdecilla (IDIVAL)," University of Cantabria, "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)," Santander, Spain; and Suna and Inan Kıraç Foundation (A.N.B.), Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - Bart P van de Warrenburg
- From the Department of Neurodegenerative Diseases (A.T., S.R., L.S., M. Synofzik), Hertie-Institute for Clinical Brain Research and Center of Neurology, and German Center for Neurodegenerative Diseases (DZNE) (A.T., S.R., L.S., M. Synofzik), University of Tübingen, Germany; MRC Centre for Neuromuscular Diseases (A.C., N.D., H.H.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behaviour Sciences (A.C.), University Pavia, Italy; Department of Neurology (J.F., T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., H.J., T.K.), Bonn; Department of Neurology (H.J.), University Hospital of Heidelberg; Department of Psychiatry, Psychotherapy and Psychosomatics (A.M.H., D.R.), University of Halle, Germany; Département de Neurologie (S.M., M.A.), Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; Department of Neurology (A.E.-L.), APHP, CHU de Bicêtre; French National Reference Center for Rare Neuropathies (NNERF) (A.E.-L.); Inserm U1195 and Paris-Sud University (A.E.-L.), Le Kremlin Bicêtre, France; Medical Faculty (S.E.), Department of Neurology, Uludag University, Bursa, Turkey; University of Zurich (V.C.S., A.A.T.); Department of Neurology (V.C.S., A.A.T.), University Hospital Zurich, Switzerland; Institute of Medical Genetics and Applied Genomics (M. Sturm, T.B.H.) and Center for Rare Diseases (T.B.H.), University of Tübingen, Germany; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (N.V.-D., H.P.); INSERM (N.V.-D., H.P.), U1258; CNRS (N.V.-D., H.P.), UMR7104, Illkirch; Université de Strasbourg (H.P.), France; Department of Neurology (B.P.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (M.P.), Karolinska University Hospital; Department of Clinical Neuroscience (M.P.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (D.T.), Essen University Hospital, University of Duisburg-Essen, Essen; Department of Medical Statistics (R.-D.H.), RWTH Aachen University, Germany; Department of Neurology (J.G.), Hospital Universitario Miguel Servet. Zaragoza, Spain; Department of Neurology (M. Strupp), University Hospital, and German Center for Vertigo and Balance Disorders (M.Strupp), Ludwig Maximilians University, Munich, Germany; Neurology Service (G.M.), Hospital Unversitario Central de Asturias (HUCA), SESPA, Oviedo, Spain; Department of Neurosciences and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Institute of Genetics and Molecular and Cellular Biology (M.A.), INSERM-U964/CNRS-UMR7104, University of Strasbourg, Illkirch; Strasbourg Federation of Translational Medicine (M.A.), University of Strasbourg, Strasbourg, France; Service of Neurology (J.I.), University Hospital "Marqués de Valdecilla (IDIVAL)," University of Cantabria, "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)," Santander, Spain; and Suna and Inan Kıraç Foundation (A.N.B.), Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - Martin Paucar
- From the Department of Neurodegenerative Diseases (A.T., S.R., L.S., M. Synofzik), Hertie-Institute for Clinical Brain Research and Center of Neurology, and German Center for Neurodegenerative Diseases (DZNE) (A.T., S.R., L.S., M. Synofzik), University of Tübingen, Germany; MRC Centre for Neuromuscular Diseases (A.C., N.D., H.H.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behaviour Sciences (A.C.), University Pavia, Italy; Department of Neurology (J.F., T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., H.J., T.K.), Bonn; Department of Neurology (H.J.), University Hospital of Heidelberg; Department of Psychiatry, Psychotherapy and Psychosomatics (A.M.H., D.R.), University of Halle, Germany; Département de Neurologie (S.M., M.A.), Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; Department of Neurology (A.E.-L.), APHP, CHU de Bicêtre; French National Reference Center for Rare Neuropathies (NNERF) (A.E.-L.); Inserm U1195 and Paris-Sud University (A.E.-L.), Le Kremlin Bicêtre, France; Medical Faculty (S.E.), Department of Neurology, Uludag University, Bursa, Turkey; University of Zurich (V.C.S., A.A.T.); Department of Neurology (V.C.S., A.A.T.), University Hospital Zurich, Switzerland; Institute of Medical Genetics and Applied Genomics (M. Sturm, T.B.H.) and Center for Rare Diseases (T.B.H.), University of Tübingen, Germany; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (N.V.-D., H.P.); INSERM (N.V.-D., H.P.), U1258; CNRS (N.V.-D., H.P.), UMR7104, Illkirch; Université de Strasbourg (H.P.), France; Department of Neurology (B.P.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (M.P.), Karolinska University Hospital; Department of Clinical Neuroscience (M.P.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (D.T.), Essen University Hospital, University of Duisburg-Essen, Essen; Department of Medical Statistics (R.-D.H.), RWTH Aachen University, Germany; Department of Neurology (J.G.), Hospital Universitario Miguel Servet. Zaragoza, Spain; Department of Neurology (M. Strupp), University Hospital, and German Center for Vertigo and Balance Disorders (M.Strupp), Ludwig Maximilians University, Munich, Germany; Neurology Service (G.M.), Hospital Unversitario Central de Asturias (HUCA), SESPA, Oviedo, Spain; Department of Neurosciences and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Institute of Genetics and Molecular and Cellular Biology (M.A.), INSERM-U964/CNRS-UMR7104, University of Strasbourg, Illkirch; Strasbourg Federation of Translational Medicine (M.A.), University of Strasbourg, Strasbourg, France; Service of Neurology (J.I.), University Hospital "Marqués de Valdecilla (IDIVAL)," University of Cantabria, "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)," Santander, Spain; and Suna and Inan Kıraç Foundation (A.N.B.), Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - Dagmar Timmann
- From the Department of Neurodegenerative Diseases (A.T., S.R., L.S., M. Synofzik), Hertie-Institute for Clinical Brain Research and Center of Neurology, and German Center for Neurodegenerative Diseases (DZNE) (A.T., S.R., L.S., M. Synofzik), University of Tübingen, Germany; MRC Centre for Neuromuscular Diseases (A.C., N.D., H.H.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behaviour Sciences (A.C.), University Pavia, Italy; Department of Neurology (J.F., T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., H.J., T.K.), Bonn; Department of Neurology (H.J.), University Hospital of Heidelberg; Department of Psychiatry, Psychotherapy and Psychosomatics (A.M.H., D.R.), University of Halle, Germany; Département de Neurologie (S.M., M.A.), Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; Department of Neurology (A.E.-L.), APHP, CHU de Bicêtre; French National Reference Center for Rare Neuropathies (NNERF) (A.E.-L.); Inserm U1195 and Paris-Sud University (A.E.-L.), Le Kremlin Bicêtre, France; Medical Faculty (S.E.), Department of Neurology, Uludag University, Bursa, Turkey; University of Zurich (V.C.S., A.A.T.); Department of Neurology (V.C.S., A.A.T.), University Hospital Zurich, Switzerland; Institute of Medical Genetics and Applied Genomics (M. Sturm, T.B.H.) and Center for Rare Diseases (T.B.H.), University of Tübingen, Germany; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (N.V.-D., H.P.); INSERM (N.V.-D., H.P.), U1258; CNRS (N.V.-D., H.P.), UMR7104, Illkirch; Université de Strasbourg (H.P.), France; Department of Neurology (B.P.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (M.P.), Karolinska University Hospital; Department of Clinical Neuroscience (M.P.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (D.T.), Essen University Hospital, University of Duisburg-Essen, Essen; Department of Medical Statistics (R.-D.H.), RWTH Aachen University, Germany; Department of Neurology (J.G.), Hospital Universitario Miguel Servet. Zaragoza, Spain; Department of Neurology (M. Strupp), University Hospital, and German Center for Vertigo and Balance Disorders (M.Strupp), Ludwig Maximilians University, Munich, Germany; Neurology Service (G.M.), Hospital Unversitario Central de Asturias (HUCA), SESPA, Oviedo, Spain; Department of Neurosciences and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Institute of Genetics and Molecular and Cellular Biology (M.A.), INSERM-U964/CNRS-UMR7104, University of Strasbourg, Illkirch; Strasbourg Federation of Translational Medicine (M.A.), University of Strasbourg, Strasbourg, France; Service of Neurology (J.I.), University Hospital "Marqués de Valdecilla (IDIVAL)," University of Cantabria, "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)," Santander, Spain; and Suna and Inan Kıraç Foundation (A.N.B.), Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - Ralf-Dieter Hilgers
- From the Department of Neurodegenerative Diseases (A.T., S.R., L.S., M. Synofzik), Hertie-Institute for Clinical Brain Research and Center of Neurology, and German Center for Neurodegenerative Diseases (DZNE) (A.T., S.R., L.S., M. Synofzik), University of Tübingen, Germany; MRC Centre for Neuromuscular Diseases (A.C., N.D., H.H.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behaviour Sciences (A.C.), University Pavia, Italy; Department of Neurology (J.F., T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., H.J., T.K.), Bonn; Department of Neurology (H.J.), University Hospital of Heidelberg; Department of Psychiatry, Psychotherapy and Psychosomatics (A.M.H., D.R.), University of Halle, Germany; Département de Neurologie (S.M., M.A.), Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; Department of Neurology (A.E.-L.), APHP, CHU de Bicêtre; French National Reference Center for Rare Neuropathies (NNERF) (A.E.-L.); Inserm U1195 and Paris-Sud University (A.E.-L.), Le Kremlin Bicêtre, France; Medical Faculty (S.E.), Department of Neurology, Uludag University, Bursa, Turkey; University of Zurich (V.C.S., A.A.T.); Department of Neurology (V.C.S., A.A.T.), University Hospital Zurich, Switzerland; Institute of Medical Genetics and Applied Genomics (M. Sturm, T.B.H.) and Center for Rare Diseases (T.B.H.), University of Tübingen, Germany; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (N.V.-D., H.P.); INSERM (N.V.-D., H.P.), U1258; CNRS (N.V.-D., H.P.), UMR7104, Illkirch; Université de Strasbourg (H.P.), France; Department of Neurology (B.P.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (M.P.), Karolinska University Hospital; Department of Clinical Neuroscience (M.P.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (D.T.), Essen University Hospital, University of Duisburg-Essen, Essen; Department of Medical Statistics (R.-D.H.), RWTH Aachen University, Germany; Department of Neurology (J.G.), Hospital Universitario Miguel Servet. Zaragoza, Spain; Department of Neurology (M. Strupp), University Hospital, and German Center for Vertigo and Balance Disorders (M.Strupp), Ludwig Maximilians University, Munich, Germany; Neurology Service (G.M.), Hospital Unversitario Central de Asturias (HUCA), SESPA, Oviedo, Spain; Department of Neurosciences and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Institute of Genetics and Molecular and Cellular Biology (M.A.), INSERM-U964/CNRS-UMR7104, University of Strasbourg, Illkirch; Strasbourg Federation of Translational Medicine (M.A.), University of Strasbourg, Strasbourg, France; Service of Neurology (J.I.), University Hospital "Marqués de Valdecilla (IDIVAL)," University of Cantabria, "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)," Santander, Spain; and Suna and Inan Kıraç Foundation (A.N.B.), Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - Jose Gazulla
- From the Department of Neurodegenerative Diseases (A.T., S.R., L.S., M. Synofzik), Hertie-Institute for Clinical Brain Research and Center of Neurology, and German Center for Neurodegenerative Diseases (DZNE) (A.T., S.R., L.S., M. Synofzik), University of Tübingen, Germany; MRC Centre for Neuromuscular Diseases (A.C., N.D., H.H.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behaviour Sciences (A.C.), University Pavia, Italy; Department of Neurology (J.F., T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., H.J., T.K.), Bonn; Department of Neurology (H.J.), University Hospital of Heidelberg; Department of Psychiatry, Psychotherapy and Psychosomatics (A.M.H., D.R.), University of Halle, Germany; Département de Neurologie (S.M., M.A.), Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; Department of Neurology (A.E.-L.), APHP, CHU de Bicêtre; French National Reference Center for Rare Neuropathies (NNERF) (A.E.-L.); Inserm U1195 and Paris-Sud University (A.E.-L.), Le Kremlin Bicêtre, France; Medical Faculty (S.E.), Department of Neurology, Uludag University, Bursa, Turkey; University of Zurich (V.C.S., A.A.T.); Department of Neurology (V.C.S., A.A.T.), University Hospital Zurich, Switzerland; Institute of Medical Genetics and Applied Genomics (M. Sturm, T.B.H.) and Center for Rare Diseases (T.B.H.), University of Tübingen, Germany; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (N.V.-D., H.P.); INSERM (N.V.-D., H.P.), U1258; CNRS (N.V.-D., H.P.), UMR7104, Illkirch; Université de Strasbourg (H.P.), France; Department of Neurology (B.P.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (M.P.), Karolinska University Hospital; Department of Clinical Neuroscience (M.P.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (D.T.), Essen University Hospital, University of Duisburg-Essen, Essen; Department of Medical Statistics (R.-D.H.), RWTH Aachen University, Germany; Department of Neurology (J.G.), Hospital Universitario Miguel Servet. Zaragoza, Spain; Department of Neurology (M. Strupp), University Hospital, and German Center for Vertigo and Balance Disorders (M.Strupp), Ludwig Maximilians University, Munich, Germany; Neurology Service (G.M.), Hospital Unversitario Central de Asturias (HUCA), SESPA, Oviedo, Spain; Department of Neurosciences and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Institute of Genetics and Molecular and Cellular Biology (M.A.), INSERM-U964/CNRS-UMR7104, University of Strasbourg, Illkirch; Strasbourg Federation of Translational Medicine (M.A.), University of Strasbourg, Strasbourg, France; Service of Neurology (J.I.), University Hospital "Marqués de Valdecilla (IDIVAL)," University of Cantabria, "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)," Santander, Spain; and Suna and Inan Kıraç Foundation (A.N.B.), Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - Michael Strupp
- From the Department of Neurodegenerative Diseases (A.T., S.R., L.S., M. Synofzik), Hertie-Institute for Clinical Brain Research and Center of Neurology, and German Center for Neurodegenerative Diseases (DZNE) (A.T., S.R., L.S., M. Synofzik), University of Tübingen, Germany; MRC Centre for Neuromuscular Diseases (A.C., N.D., H.H.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behaviour Sciences (A.C.), University Pavia, Italy; Department of Neurology (J.F., T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., H.J., T.K.), Bonn; Department of Neurology (H.J.), University Hospital of Heidelberg; Department of Psychiatry, Psychotherapy and Psychosomatics (A.M.H., D.R.), University of Halle, Germany; Département de Neurologie (S.M., M.A.), Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; Department of Neurology (A.E.-L.), APHP, CHU de Bicêtre; French National Reference Center for Rare Neuropathies (NNERF) (A.E.-L.); Inserm U1195 and Paris-Sud University (A.E.-L.), Le Kremlin Bicêtre, France; Medical Faculty (S.E.), Department of Neurology, Uludag University, Bursa, Turkey; University of Zurich (V.C.S., A.A.T.); Department of Neurology (V.C.S., A.A.T.), University Hospital Zurich, Switzerland; Institute of Medical Genetics and Applied Genomics (M. Sturm, T.B.H.) and Center for Rare Diseases (T.B.H.), University of Tübingen, Germany; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (N.V.-D., H.P.); INSERM (N.V.-D., H.P.), U1258; CNRS (N.V.-D., H.P.), UMR7104, Illkirch; Université de Strasbourg (H.P.), France; Department of Neurology (B.P.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (M.P.), Karolinska University Hospital; Department of Clinical Neuroscience (M.P.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (D.T.), Essen University Hospital, University of Duisburg-Essen, Essen; Department of Medical Statistics (R.-D.H.), RWTH Aachen University, Germany; Department of Neurology (J.G.), Hospital Universitario Miguel Servet. Zaragoza, Spain; Department of Neurology (M. Strupp), University Hospital, and German Center for Vertigo and Balance Disorders (M.Strupp), Ludwig Maximilians University, Munich, Germany; Neurology Service (G.M.), Hospital Unversitario Central de Asturias (HUCA), SESPA, Oviedo, Spain; Department of Neurosciences and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Institute of Genetics and Molecular and Cellular Biology (M.A.), INSERM-U964/CNRS-UMR7104, University of Strasbourg, Illkirch; Strasbourg Federation of Translational Medicine (M.A.), University of Strasbourg, Strasbourg, France; Service of Neurology (J.I.), University Hospital "Marqués de Valdecilla (IDIVAL)," University of Cantabria, "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)," Santander, Spain; and Suna and Inan Kıraç Foundation (A.N.B.), Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - German Moris
- From the Department of Neurodegenerative Diseases (A.T., S.R., L.S., M. Synofzik), Hertie-Institute for Clinical Brain Research and Center of Neurology, and German Center for Neurodegenerative Diseases (DZNE) (A.T., S.R., L.S., M. Synofzik), University of Tübingen, Germany; MRC Centre for Neuromuscular Diseases (A.C., N.D., H.H.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behaviour Sciences (A.C.), University Pavia, Italy; Department of Neurology (J.F., T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., H.J., T.K.), Bonn; Department of Neurology (H.J.), University Hospital of Heidelberg; Department of Psychiatry, Psychotherapy and Psychosomatics (A.M.H., D.R.), University of Halle, Germany; Département de Neurologie (S.M., M.A.), Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; Department of Neurology (A.E.-L.), APHP, CHU de Bicêtre; French National Reference Center for Rare Neuropathies (NNERF) (A.E.-L.); Inserm U1195 and Paris-Sud University (A.E.-L.), Le Kremlin Bicêtre, France; Medical Faculty (S.E.), Department of Neurology, Uludag University, Bursa, Turkey; University of Zurich (V.C.S., A.A.T.); Department of Neurology (V.C.S., A.A.T.), University Hospital Zurich, Switzerland; Institute of Medical Genetics and Applied Genomics (M. Sturm, T.B.H.) and Center for Rare Diseases (T.B.H.), University of Tübingen, Germany; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (N.V.-D., H.P.); INSERM (N.V.-D., H.P.), U1258; CNRS (N.V.-D., H.P.), UMR7104, Illkirch; Université de Strasbourg (H.P.), France; Department of Neurology (B.P.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (M.P.), Karolinska University Hospital; Department of Clinical Neuroscience (M.P.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (D.T.), Essen University Hospital, University of Duisburg-Essen, Essen; Department of Medical Statistics (R.-D.H.), RWTH Aachen University, Germany; Department of Neurology (J.G.), Hospital Universitario Miguel Servet. Zaragoza, Spain; Department of Neurology (M. Strupp), University Hospital, and German Center for Vertigo and Balance Disorders (M.Strupp), Ludwig Maximilians University, Munich, Germany; Neurology Service (G.M.), Hospital Unversitario Central de Asturias (HUCA), SESPA, Oviedo, Spain; Department of Neurosciences and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Institute of Genetics and Molecular and Cellular Biology (M.A.), INSERM-U964/CNRS-UMR7104, University of Strasbourg, Illkirch; Strasbourg Federation of Translational Medicine (M.A.), University of Strasbourg, Strasbourg, France; Service of Neurology (J.I.), University Hospital "Marqués de Valdecilla (IDIVAL)," University of Cantabria, "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)," Santander, Spain; and Suna and Inan Kıraç Foundation (A.N.B.), Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - Alessandro Filla
- From the Department of Neurodegenerative Diseases (A.T., S.R., L.S., M. Synofzik), Hertie-Institute for Clinical Brain Research and Center of Neurology, and German Center for Neurodegenerative Diseases (DZNE) (A.T., S.R., L.S., M. Synofzik), University of Tübingen, Germany; MRC Centre for Neuromuscular Diseases (A.C., N.D., H.H.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behaviour Sciences (A.C.), University Pavia, Italy; Department of Neurology (J.F., T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., H.J., T.K.), Bonn; Department of Neurology (H.J.), University Hospital of Heidelberg; Department of Psychiatry, Psychotherapy and Psychosomatics (A.M.H., D.R.), University of Halle, Germany; Département de Neurologie (S.M., M.A.), Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; Department of Neurology (A.E.-L.), APHP, CHU de Bicêtre; French National Reference Center for Rare Neuropathies (NNERF) (A.E.-L.); Inserm U1195 and Paris-Sud University (A.E.-L.), Le Kremlin Bicêtre, France; Medical Faculty (S.E.), Department of Neurology, Uludag University, Bursa, Turkey; University of Zurich (V.C.S., A.A.T.); Department of Neurology (V.C.S., A.A.T.), University Hospital Zurich, Switzerland; Institute of Medical Genetics and Applied Genomics (M. Sturm, T.B.H.) and Center for Rare Diseases (T.B.H.), University of Tübingen, Germany; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (N.V.-D., H.P.); INSERM (N.V.-D., H.P.), U1258; CNRS (N.V.-D., H.P.), UMR7104, Illkirch; Université de Strasbourg (H.P.), France; Department of Neurology (B.P.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (M.P.), Karolinska University Hospital; Department of Clinical Neuroscience (M.P.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (D.T.), Essen University Hospital, University of Duisburg-Essen, Essen; Department of Medical Statistics (R.-D.H.), RWTH Aachen University, Germany; Department of Neurology (J.G.), Hospital Universitario Miguel Servet. Zaragoza, Spain; Department of Neurology (M. Strupp), University Hospital, and German Center for Vertigo and Balance Disorders (M.Strupp), Ludwig Maximilians University, Munich, Germany; Neurology Service (G.M.), Hospital Unversitario Central de Asturias (HUCA), SESPA, Oviedo, Spain; Department of Neurosciences and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Institute of Genetics and Molecular and Cellular Biology (M.A.), INSERM-U964/CNRS-UMR7104, University of Strasbourg, Illkirch; Strasbourg Federation of Translational Medicine (M.A.), University of Strasbourg, Strasbourg, France; Service of Neurology (J.I.), University Hospital "Marqués de Valdecilla (IDIVAL)," University of Cantabria, "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)," Santander, Spain; and Suna and Inan Kıraç Foundation (A.N.B.), Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - Henry Houlden
- From the Department of Neurodegenerative Diseases (A.T., S.R., L.S., M. Synofzik), Hertie-Institute for Clinical Brain Research and Center of Neurology, and German Center for Neurodegenerative Diseases (DZNE) (A.T., S.R., L.S., M. Synofzik), University of Tübingen, Germany; MRC Centre for Neuromuscular Diseases (A.C., N.D., H.H.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behaviour Sciences (A.C.), University Pavia, Italy; Department of Neurology (J.F., T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., H.J., T.K.), Bonn; Department of Neurology (H.J.), University Hospital of Heidelberg; Department of Psychiatry, Psychotherapy and Psychosomatics (A.M.H., D.R.), University of Halle, Germany; Département de Neurologie (S.M., M.A.), Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; Department of Neurology (A.E.-L.), APHP, CHU de Bicêtre; French National Reference Center for Rare Neuropathies (NNERF) (A.E.-L.); Inserm U1195 and Paris-Sud University (A.E.-L.), Le Kremlin Bicêtre, France; Medical Faculty (S.E.), Department of Neurology, Uludag University, Bursa, Turkey; University of Zurich (V.C.S., A.A.T.); Department of Neurology (V.C.S., A.A.T.), University Hospital Zurich, Switzerland; Institute of Medical Genetics and Applied Genomics (M. Sturm, T.B.H.) and Center for Rare Diseases (T.B.H.), University of Tübingen, Germany; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (N.V.-D., H.P.); INSERM (N.V.-D., H.P.), U1258; CNRS (N.V.-D., H.P.), UMR7104, Illkirch; Université de Strasbourg (H.P.), France; Department of Neurology (B.P.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (M.P.), Karolinska University Hospital; Department of Clinical Neuroscience (M.P.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (D.T.), Essen University Hospital, University of Duisburg-Essen, Essen; Department of Medical Statistics (R.-D.H.), RWTH Aachen University, Germany; Department of Neurology (J.G.), Hospital Universitario Miguel Servet. Zaragoza, Spain; Department of Neurology (M. Strupp), University Hospital, and German Center for Vertigo and Balance Disorders (M.Strupp), Ludwig Maximilians University, Munich, Germany; Neurology Service (G.M.), Hospital Unversitario Central de Asturias (HUCA), SESPA, Oviedo, Spain; Department of Neurosciences and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Institute of Genetics and Molecular and Cellular Biology (M.A.), INSERM-U964/CNRS-UMR7104, University of Strasbourg, Illkirch; Strasbourg Federation of Translational Medicine (M.A.), University of Strasbourg, Strasbourg, France; Service of Neurology (J.I.), University Hospital "Marqués de Valdecilla (IDIVAL)," University of Cantabria, "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)," Santander, Spain; and Suna and Inan Kıraç Foundation (A.N.B.), Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - Mathieu Anheim
- From the Department of Neurodegenerative Diseases (A.T., S.R., L.S., M. Synofzik), Hertie-Institute for Clinical Brain Research and Center of Neurology, and German Center for Neurodegenerative Diseases (DZNE) (A.T., S.R., L.S., M. Synofzik), University of Tübingen, Germany; MRC Centre for Neuromuscular Diseases (A.C., N.D., H.H.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behaviour Sciences (A.C.), University Pavia, Italy; Department of Neurology (J.F., T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., H.J., T.K.), Bonn; Department of Neurology (H.J.), University Hospital of Heidelberg; Department of Psychiatry, Psychotherapy and Psychosomatics (A.M.H., D.R.), University of Halle, Germany; Département de Neurologie (S.M., M.A.), Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; Department of Neurology (A.E.-L.), APHP, CHU de Bicêtre; French National Reference Center for Rare Neuropathies (NNERF) (A.E.-L.); Inserm U1195 and Paris-Sud University (A.E.-L.), Le Kremlin Bicêtre, France; Medical Faculty (S.E.), Department of Neurology, Uludag University, Bursa, Turkey; University of Zurich (V.C.S., A.A.T.); Department of Neurology (V.C.S., A.A.T.), University Hospital Zurich, Switzerland; Institute of Medical Genetics and Applied Genomics (M. Sturm, T.B.H.) and Center for Rare Diseases (T.B.H.), University of Tübingen, Germany; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (N.V.-D., H.P.); INSERM (N.V.-D., H.P.), U1258; CNRS (N.V.-D., H.P.), UMR7104, Illkirch; Université de Strasbourg (H.P.), France; Department of Neurology (B.P.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (M.P.), Karolinska University Hospital; Department of Clinical Neuroscience (M.P.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (D.T.), Essen University Hospital, University of Duisburg-Essen, Essen; Department of Medical Statistics (R.-D.H.), RWTH Aachen University, Germany; Department of Neurology (J.G.), Hospital Universitario Miguel Servet. Zaragoza, Spain; Department of Neurology (M. Strupp), University Hospital, and German Center for Vertigo and Balance Disorders (M.Strupp), Ludwig Maximilians University, Munich, Germany; Neurology Service (G.M.), Hospital Unversitario Central de Asturias (HUCA), SESPA, Oviedo, Spain; Department of Neurosciences and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Institute of Genetics and Molecular and Cellular Biology (M.A.), INSERM-U964/CNRS-UMR7104, University of Strasbourg, Illkirch; Strasbourg Federation of Translational Medicine (M.A.), University of Strasbourg, Strasbourg, France; Service of Neurology (J.I.), University Hospital "Marqués de Valdecilla (IDIVAL)," University of Cantabria, "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)," Santander, Spain; and Suna and Inan Kıraç Foundation (A.N.B.), Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - Jon Infante
- From the Department of Neurodegenerative Diseases (A.T., S.R., L.S., M. Synofzik), Hertie-Institute for Clinical Brain Research and Center of Neurology, and German Center for Neurodegenerative Diseases (DZNE) (A.T., S.R., L.S., M. Synofzik), University of Tübingen, Germany; MRC Centre for Neuromuscular Diseases (A.C., N.D., H.H.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behaviour Sciences (A.C.), University Pavia, Italy; Department of Neurology (J.F., T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., H.J., T.K.), Bonn; Department of Neurology (H.J.), University Hospital of Heidelberg; Department of Psychiatry, Psychotherapy and Psychosomatics (A.M.H., D.R.), University of Halle, Germany; Département de Neurologie (S.M., M.A.), Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; Department of Neurology (A.E.-L.), APHP, CHU de Bicêtre; French National Reference Center for Rare Neuropathies (NNERF) (A.E.-L.); Inserm U1195 and Paris-Sud University (A.E.-L.), Le Kremlin Bicêtre, France; Medical Faculty (S.E.), Department of Neurology, Uludag University, Bursa, Turkey; University of Zurich (V.C.S., A.A.T.); Department of Neurology (V.C.S., A.A.T.), University Hospital Zurich, Switzerland; Institute of Medical Genetics and Applied Genomics (M. Sturm, T.B.H.) and Center for Rare Diseases (T.B.H.), University of Tübingen, Germany; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (N.V.-D., H.P.); INSERM (N.V.-D., H.P.), U1258; CNRS (N.V.-D., H.P.), UMR7104, Illkirch; Université de Strasbourg (H.P.), France; Department of Neurology (B.P.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (M.P.), Karolinska University Hospital; Department of Clinical Neuroscience (M.P.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (D.T.), Essen University Hospital, University of Duisburg-Essen, Essen; Department of Medical Statistics (R.-D.H.), RWTH Aachen University, Germany; Department of Neurology (J.G.), Hospital Universitario Miguel Servet. Zaragoza, Spain; Department of Neurology (M. Strupp), University Hospital, and German Center for Vertigo and Balance Disorders (M.Strupp), Ludwig Maximilians University, Munich, Germany; Neurology Service (G.M.), Hospital Unversitario Central de Asturias (HUCA), SESPA, Oviedo, Spain; Department of Neurosciences and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Institute of Genetics and Molecular and Cellular Biology (M.A.), INSERM-U964/CNRS-UMR7104, University of Strasbourg, Illkirch; Strasbourg Federation of Translational Medicine (M.A.), University of Strasbourg, Strasbourg, France; Service of Neurology (J.I.), University Hospital "Marqués de Valdecilla (IDIVAL)," University of Cantabria, "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)," Santander, Spain; and Suna and Inan Kıraç Foundation (A.N.B.), Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - A Nazli Basak
- From the Department of Neurodegenerative Diseases (A.T., S.R., L.S., M. Synofzik), Hertie-Institute for Clinical Brain Research and Center of Neurology, and German Center for Neurodegenerative Diseases (DZNE) (A.T., S.R., L.S., M. Synofzik), University of Tübingen, Germany; MRC Centre for Neuromuscular Diseases (A.C., N.D., H.H.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behaviour Sciences (A.C.), University Pavia, Italy; Department of Neurology (J.F., T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., H.J., T.K.), Bonn; Department of Neurology (H.J.), University Hospital of Heidelberg; Department of Psychiatry, Psychotherapy and Psychosomatics (A.M.H., D.R.), University of Halle, Germany; Département de Neurologie (S.M., M.A.), Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; Department of Neurology (A.E.-L.), APHP, CHU de Bicêtre; French National Reference Center for Rare Neuropathies (NNERF) (A.E.-L.); Inserm U1195 and Paris-Sud University (A.E.-L.), Le Kremlin Bicêtre, France; Medical Faculty (S.E.), Department of Neurology, Uludag University, Bursa, Turkey; University of Zurich (V.C.S., A.A.T.); Department of Neurology (V.C.S., A.A.T.), University Hospital Zurich, Switzerland; Institute of Medical Genetics and Applied Genomics (M. Sturm, T.B.H.) and Center for Rare Diseases (T.B.H.), University of Tübingen, Germany; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (N.V.-D., H.P.); INSERM (N.V.-D., H.P.), U1258; CNRS (N.V.-D., H.P.), UMR7104, Illkirch; Université de Strasbourg (H.P.), France; Department of Neurology (B.P.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (M.P.), Karolinska University Hospital; Department of Clinical Neuroscience (M.P.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (D.T.), Essen University Hospital, University of Duisburg-Essen, Essen; Department of Medical Statistics (R.-D.H.), RWTH Aachen University, Germany; Department of Neurology (J.G.), Hospital Universitario Miguel Servet. Zaragoza, Spain; Department of Neurology (M. Strupp), University Hospital, and German Center for Vertigo and Balance Disorders (M.Strupp), Ludwig Maximilians University, Munich, Germany; Neurology Service (G.M.), Hospital Unversitario Central de Asturias (HUCA), SESPA, Oviedo, Spain; Department of Neurosciences and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Institute of Genetics and Molecular and Cellular Biology (M.A.), INSERM-U964/CNRS-UMR7104, University of Strasbourg, Illkirch; Strasbourg Federation of Translational Medicine (M.A.), University of Strasbourg, Strasbourg, France; Service of Neurology (J.I.), University Hospital "Marqués de Valdecilla (IDIVAL)," University of Cantabria, "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)," Santander, Spain; and Suna and Inan Kıraç Foundation (A.N.B.), Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - Matthis Synofzik
- From the Department of Neurodegenerative Diseases (A.T., S.R., L.S., M. Synofzik), Hertie-Institute for Clinical Brain Research and Center of Neurology, and German Center for Neurodegenerative Diseases (DZNE) (A.T., S.R., L.S., M. Synofzik), University of Tübingen, Germany; MRC Centre for Neuromuscular Diseases (A.C., N.D., H.H.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behaviour Sciences (A.C.), University Pavia, Italy; Department of Neurology (J.F., T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., H.J., T.K.), Bonn; Department of Neurology (H.J.), University Hospital of Heidelberg; Department of Psychiatry, Psychotherapy and Psychosomatics (A.M.H., D.R.), University of Halle, Germany; Département de Neurologie (S.M., M.A.), Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; Department of Neurology (A.E.-L.), APHP, CHU de Bicêtre; French National Reference Center for Rare Neuropathies (NNERF) (A.E.-L.); Inserm U1195 and Paris-Sud University (A.E.-L.), Le Kremlin Bicêtre, France; Medical Faculty (S.E.), Department of Neurology, Uludag University, Bursa, Turkey; University of Zurich (V.C.S., A.A.T.); Department of Neurology (V.C.S., A.A.T.), University Hospital Zurich, Switzerland; Institute of Medical Genetics and Applied Genomics (M. Sturm, T.B.H.) and Center for Rare Diseases (T.B.H.), University of Tübingen, Germany; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (N.V.-D., H.P.); INSERM (N.V.-D., H.P.), U1258; CNRS (N.V.-D., H.P.), UMR7104, Illkirch; Université de Strasbourg (H.P.), France; Department of Neurology (B.P.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (M.P.), Karolinska University Hospital; Department of Clinical Neuroscience (M.P.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (D.T.), Essen University Hospital, University of Duisburg-Essen, Essen; Department of Medical Statistics (R.-D.H.), RWTH Aachen University, Germany; Department of Neurology (J.G.), Hospital Universitario Miguel Servet. Zaragoza, Spain; Department of Neurology (M. Strupp), University Hospital, and German Center for Vertigo and Balance Disorders (M.Strupp), Ludwig Maximilians University, Munich, Germany; Neurology Service (G.M.), Hospital Unversitario Central de Asturias (HUCA), SESPA, Oviedo, Spain; Department of Neurosciences and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Institute of Genetics and Molecular and Cellular Biology (M.A.), INSERM-U964/CNRS-UMR7104, University of Strasbourg, Illkirch; Strasbourg Federation of Translational Medicine (M.A.), University of Strasbourg, Strasbourg, France; Service of Neurology (J.I.), University Hospital "Marqués de Valdecilla (IDIVAL)," University of Cantabria, "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)," Santander, Spain; and Suna and Inan Kıraç Foundation (A.N.B.), Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey.
| | | |
Collapse
|
49
|
D’Arrigo S, Loiacono C, Ciaccio C, Pantaleoni C, Faccio F, Taddei M, Bulgheroni S. Clinical, Cognitive and Behavioural Assessment in Children with Cerebellar Disorder. APPLIED SCIENCES 2021; 11:544. [DOI: 10.3390/app11020544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Cerebellar disorders are characterised clinically by specific signs and symptoms, often associated with neurodevelopmental disorder. While the clinical signs of cerebellar disorders are clearly recognisable in adults and have a precise anatomo-functional correlation, in children the semiotics are less clear and vary with age because of the particular nature of the cerebellum’s maturation. Unlike other structures of the central nervous system, this begins at a later stage of foetal development and extends over a longer period of time, even after birth. As a result, the typical signs of cerebellar dysfunction will only become evident when the cerebellar functions have become integrated into the complex circuits of the central nervous system. This means that poor motor coordination in the very early years of life may not necessarily correlate with cerebellar dysfunction, and this may also be encountered in healthy children. The cerebellum’s role in cognitive and emotional functions relies on its structure and the complexity of its connections. Cognitive and behavioral impairment in cerebellar disorders can be the results of acquired lesions or the action of genetic and environmental risk factors, to which the cerebellum is particularly vulnerable considering its pattern of development. In the pathological setting, early evidence of cerebellar damage may be very vague, due, partly, to spontaneous compensation phenomena and the vicarious role of the connecting structures (an expression of the brain’s plasticity). Careful clinical assessment will nonetheless enable appropriate instrumental procedures to be arranged. It is common knowledge that the contribution of neuroimaging is crucial for diagnosis of cerebellar conditions, and neurophysiological investigations can also have a significant role. The ultimate goal of clinicians is to combine clinical data and instrumental findings to formulate a precise diagnostic hypothesis, and thus request a specific genetic test in order to confirm their findings, wherever possible.
Collapse
Affiliation(s)
- Stefano D’Arrigo
- Developmental Neurology Department, Fondazione IRCCS Istituto Neurologico C. Besta, 20133 Milan, Italy
| | - Carmela Loiacono
- Developmental Neurology Department, Fondazione IRCCS Istituto Neurologico C. Besta, 20133 Milan, Italy
| | - Claudia Ciaccio
- Developmental Neurology Department, Fondazione IRCCS Istituto Neurologico C. Besta, 20133 Milan, Italy
| | - Chiara Pantaleoni
- Developmental Neurology Department, Fondazione IRCCS Istituto Neurologico C. Besta, 20133 Milan, Italy
| | - Flavia Faccio
- Developmental Neurology Department, Fondazione IRCCS Istituto Neurologico C. Besta, 20133 Milan, Italy
| | - Matilde Taddei
- Developmental Neurology Department, Fondazione IRCCS Istituto Neurologico C. Besta, 20133 Milan, Italy
| | - Sara Bulgheroni
- Developmental Neurology Department, Fondazione IRCCS Istituto Neurologico C. Besta, 20133 Milan, Italy
| |
Collapse
|
50
|
Renaud M, Tranchant C, Koenig M, Anheim M. Autosomal Recessive Cerebellar Ataxias With Elevated Alpha-Fetoprotein: Uncommon Diseases, Common Biomarker. Mov Disord 2020; 35:2139-2149. [PMID: 33044027 DOI: 10.1002/mds.28307] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/23/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
alpha-Fetoprotein (AFP) is a biomarker of several autosomal recessive cerebellar ataxias (ARCAs), especially ataxia telangiectasia (AT) and ataxia with oculomotor apraxia (AOA) type 2 (AOA2). More recently, slightly elevated AFP has been reported in AOA1 and AOA4. Interestingly, AOA1, AOA2, AOA4, and AT are overlapping ARCAs characterized by oculomotor apraxia, with oculocephalic dissociation, choreo-dystonia, and/or axonal sensorimotor neuropathy, in addition to cerebellar ataxia with cerebellar atrophy. The genetic backgrounds in these disorders play central roles in nuclear maintenance through DNA repair [ATM (AT), APTX (AOA1), or PNKP (AOA4)] or RNA termination [SETX (AOA2)]. Partially discriminating thresholds of AFP have been proposed as a way to distinguish between ARCAs with elevated AFP. In these entities, elevated AFP may be an epiphenomenon as a result of liver transcriptional dysregulation. AFP is a simple and reliable biomarker for the diagnosis of ARCA in performance and interpretation of next-generation sequencing. Here, we evaluated clinical, laboratory, imaging, and molecular data of the group of ARCAs that share elevated AFP serum levels that have been described in the past two decades. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Mathilde Renaud
- Service de Génétique Clinique, CHRU de Nancy, Nancy, France.,INSERM-U1256 NGERE, Université de Lorraine, Nancy, France
| | - Christine Tranchant
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Michel Koenig
- Laboratoire de Génétique de Maladies Rares EA7402, Institut Universitaire de Recherche Clinique, Université de Montpellier, CHU Montpellier, Montpellier, France
| | - Mathieu Anheim
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| |
Collapse
|