1
|
Iwata T, Yanagisawa T, Fukuma R, Ikegaya Y, Oshino S, Tani N, Khoo HM, Sugano H, Iimura Y, Suzuki H, Kishima H. Abnormal Synchronization Between Cortical Delta Power and Ripples in Hippocampal Sclerosis. Ann Clin Transl Neurol 2025. [PMID: 40110652 DOI: 10.1002/acn3.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/13/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
OBJECTIVE Discriminating between epileptogenic and physiological ripples in the hippocampus is important for identifying epileptogenic (EP) zones; however, distinguishing these ripples on the basis of their waveforms is difficult. We hypothesized that the nocturnal synchronization of hippocampal ripples and cortical delta power could be used to classify epileptogenic and physiological ripples in the hippocampus. METHODS We enrolled 38 patients with electrodes implanted in the hippocampus or parahippocampal gyrus between April 2014 and March 2023 at our institution. We divided 11 patients (11 hippocampi) who were pathologically diagnosed with hippocampal sclerosis into the EP group and five patients (six hippocampi) with no epileptogenicity in the hippocampus into the nonepileptogenic (NE) group. Hippocampal ripples were detected using intracranial electroencephalography with hippocampal or parahippocampal electrodes. Cortical delta power (0.5-4 Hz) was assessed using cortical electrodes. The Pearson correlation coefficient between the ripple rates and cortical delta power (Corr-RD) was calculated on the basis of the intracranial electroencephalographic signals recorded each night. RESULTS Although hippocampal ripples were similar among the EP and NE groups based on their waveforms and frequency properties, the Corr-RDs in the EP group (mean [standard deviation]: 0.20 [0.049]) were significantly lower than those in the NE group (0.67 [0.070]). On the basis of the minimum Corr-RDs, the two groups were classified with 94.1% accuracy. INTERPRETATION Our results demonstrate that the Corr-RD is a biomarker of hippocampal epileptogenicity.
Collapse
Affiliation(s)
- Takamitsu Iwata
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takufumi Yanagisawa
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Neuroinformatics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Ryohei Fukuma
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Neuroinformatics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
- National Institute of Information and Communications Technology, Center for Information and Neural Networks, Suita, Osaka, Japan
| | - Satoru Oshino
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Naoki Tani
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hui Ming Khoo
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hidenori Sugano
- Department of Neurosurgery, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Yasushi Iimura
- Department of Neurosurgery, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Hiroharu Suzuki
- Department of Neurosurgery, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
2
|
Chang BL, Walker MC, Kullmann DM, Schorge S. Deciphering temporal gene expression dynamics during epilepsy development using a rat model of focal neocortical epilepsy. Epilepsia 2025; 66:288-302. [PMID: 39526997 DOI: 10.1111/epi.18169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Epilepsy involves significant changes in neural cells during epileptogenesis. Although the molecular mechanism of epileptogenesis remains obscure, changes in gene regulation play a crucial role in the evolution of epilepsy. This study aimed to compare changes in a subset of specific genes during epilepsy development, focusing on the period after the first spontaneous seizure, to identify critical time windows for targeting different regulators. METHODS Using a rat model of acquired focal neocortical epilepsy induced by tetanus toxin, we characterized gene expression at acute, subacute, and chronic stages (48-72 h, 2 weeks, and 30 days after first spontaneous seizure, respectively), focusing on genes' potential contribution to epilepsy progression. RESULTS We observed dynamic changes in the expression of these genes throughout the period after the first spontaneous seizure. Astrocytic reactions primarily occur early, before epilepsy is well established. Changes in Mtor (mammalian target of rapamycin) and Rest (repressor element 1 silencing transcription factor) signaling pathways are highly dynamic and correlated with the progression of epilepsy development. Ccl2 (chemokine C-C-motif ligand) is upregulated at the chronic stage, indicating activation of the neuroinflammatory pathway. Finally, Gabra5 (γ-aminobutyric acidergic signaling) is downregulated at the late stage after epilepsy is established. Surprisingly, changes in the expression of specific genes are linked to the time since the first seizure, rather than seizure frequency or duration. SIGNIFICANCE These results suggest that the regulation of specific genes is essentially stage-dependent during the development of epilepsy, highlighting the importance of targeting specific genes at appropriate stages of epilepsy development.
Collapse
Grants
- MOST 110-2314-B-182-055 Ministry of Science and Technology, Taiwan
- CMRPG3P0131 Chang Gung Memorial Hospital, Taipei, Taiwan
- MOST 108-2314-B-182A-153 Ministry of Science and Technology, Taiwan
- MR/W005204/1 Medical Research Council
- CMRPG3K1021 Chang Gung Memorial Hospital, Taipei, Taiwan
- MR/L01095X/1 Medical Research Council
- MOST 109-2314-B-182-079 Ministry of Science and Technology, Taiwan
- MOST 109-2314-B-182A-086 Ministry of Science and Technology, Taiwan
- CMRPG3L0661-2 Chang Gung Memorial Hospital, Taipei, Taiwan
- CMRPG3M1991-2 Chang Gung Memorial Hospital, Taipei, Taiwan
- 212285/Z/18/Z Wellcome Trust
- MR/V013556/1 Medical Research Council
- WT093205MA Wellcome Trust, Epilepsy Research UK
- MR/V034758/1 Medical Research Council
Collapse
Affiliation(s)
- Bao-Luen Chang
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurology, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Stephanie Schorge
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| |
Collapse
|
3
|
Liška K, Pant A, Jefferys JGR. Diaphragm relaxation causes seizure-related apnoeas in chronic and acute seizure models in rats. Neurobiol Dis 2024; 203:106735. [PMID: 39547479 DOI: 10.1016/j.nbd.2024.106735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/16/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024] Open
Abstract
Ictal central apnoea is a feature of focal temporal seizures. It is implicated as a risk factor for sudden unexpected death in epilepsy (SUDEP). Here we study seizure-related apnoeas in two different models of experimental seizures, one chronic and one acute, in adult genetically-unmodified rats, to determine mechanisms of seizure-related apnoeas. Under general anaesthesia rats receive sensors for nasal temperature, hippocampal and/or neocortical potentials, and ECG or EMG for subsequent tethered video-telemetry. Tetanus neurotoxin (TeNT), injected into hippocampus during surgery, induces a chronic epileptic focus. Other implanted rats receive intraperitoneal pentylenetetrazol (PTZ) to evoke acute seizures. In chronically epileptic rats, convulsive seizures cause apnoeas (9.9 ± 5.3 s; 331 of 730 convulsive seizures in 15 rats), associated with bradyarrhythmias. Absence of EEG and ECG biomarkers exclude obstructive apnoeas. All eight TeNT-rats with diaphragm EMG have apnoeas with no evidence of obstruction, and have apnoea EMGs significantly closer to expiratory relaxation than inspiratory contraction during pre-apnoeic respiration, which we term "atonic diaphragm". Consistent with atonic diaphragm is that the pre-apnoeic nasal airflow is expiration, as it is in human ictal central apnoea. Two cases of rat sudden death occur. One, with telemetry to the end, reveals a lethal apnoea, the other only has video during the final days, which reveals cessation of breathing shortly after the last clonic epileptic movement. Telemetry following acute systemic PTZ reveals repeated seizures and seizure-related apnoeas, culminating in lethal apnoeas; ictal apnoeas are central - in 8 of 35 cases diaphragms initially contract tonically for 8.5 ± 15.0 s before relaxing, in the 27 remaining cases diaphragms are atonic throughout apnoeas. All terminal apnoeas are atonic. Differences in types of apnoea due to systemic PTZ in rats (mainly atonic) and mice (tonic) are likely species-specific. Certain genetic mouse models have apnoeas caused by tonic contraction, potentially due to expression of epileptogenic mutations throughout the brain, including in respiratory centres, in contrast with acquired focal epilepsies. We conclude that ictal apnoeas in the rat TeNT model result from atonic diaphragms. Relaxed diaphragms could be particularly helpful for therapeutic stimulation of the diaphragm to help restore respiration.
Collapse
Affiliation(s)
- Karolína Liška
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague 15000, Czech Republic
| | - Aakash Pant
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague 15000, Czech Republic
| | - John G R Jefferys
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague 15000, Czech Republic; Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK.
| |
Collapse
|
4
|
Chvojka J, Kudláček J, Liska K, Pant A, Jefferys JG, Jiruska P. Dissociation Between the Epileptogenic Lesion and Primary Seizure Onset Zone in the Tetanus Toxin Model of Temporal Lobe Epilepsy. Physiol Res 2024; 73:435-447. [PMID: 39027960 PMCID: PMC11299775 DOI: 10.33549/physiolres.935281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/13/2024] [Indexed: 07/27/2024] Open
Abstract
Despite extensive temporal lobe epilepsy (TLE) research, understanding the specific limbic structures' roles in seizures remains limited. This weakness can be attributed to the complex nature of TLE and the existence of various TLE subsyndromes, including non-lesional TLE. Conventional TLE models like kainate and pilocarpine hinder precise assessment of the role of individual limbic structures in TLE ictogenesis due to widespread limbic damage induced by the initial status epilepticus. In this study, we used a non-lesional TLE model characterized by the absence of initial status and cell damage to determine the spatiotemporal profile of seizure initiation and limbic structure recruitment in TLE. Epilepsy was induced by injecting a minute dose of tetanus toxin into the right dorsal hippocampus in seven animals. Following injection, animals were implanted with bipolar recording electrodes in the amygdala, dorsal hippocampus, ventral hippocampus, piriform, perirhinal, and entorhinal cortices of both hemispheres. The animals were video-EEG monitored for four weeks. In total, 140 seizures (20 seizures per animal) were analyzed. The average duration of each seizure was 53.2+/-3.9 s. Seizure could initiate in any limbic structure. Most seizures initiated in the ipsilateral (41 %) and contralateral (18 %) ventral hippocampi. These two structures displayed a significantly higher probability of seizure initiation than by chance. The involvement of limbic structures in seizure initiation varied between individual animals. Surprisingly, only 7 % of seizures initiated in the injected dorsal hippocampus. The limbic structure recruitment into the seizure activity wasn't random and displayed consistent patterns of early recruitment of hippocampi and entorhinal cortices. Although ventral hippocampus represented the primary seizure onset zone, the study demonstrated the involvement of multiple limbic structures in seizure initiation in a non-lesional TLE model. The study also revealed the dichotomy between the primary epileptogenic lesion and main seizure onset zones and points to the central role of ventral hippocampi in temporal lobe ictogenesis.
Collapse
Affiliation(s)
- J Chvojka
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague 5, Czech Republic. or
| | | | | | | | | | | |
Collapse
|
5
|
Chvojka J, Prochazkova N, Rehorova M, Kudlacek J, Kylarova S, Kralikova M, Buran P, Weissova R, Balastik M, Jefferys JGR, Novak O, Jiruska P. Mouse model of focal cortical dysplasia type II generates a wide spectrum of high-frequency activities. Neurobiol Dis 2024; 190:106383. [PMID: 38114051 DOI: 10.1016/j.nbd.2023.106383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023] Open
Abstract
High-frequency oscillations (HFOs) represent an electrographic biomarker of endogenous epileptogenicity and seizure-generating tissue that proved clinically useful in presurgical planning and delineating the resection area. In the neocortex, the clinical observations on HFOs are not sufficiently supported by experimental studies stemming from a lack of realistic neocortical epilepsy models that could provide an explanation of the pathophysiological substrates of neocortical HFOs. In this study, we explored pathological epileptiform network phenomena, particularly HFOs, in a highly realistic murine model of neocortical epilepsy due to focal cortical dysplasia (FCD) type II. FCD was induced in mice by the expression of the human pathogenic mTOR gene mutation during embryonic stages of brain development. Electrographic recordings from multiple cortical regions in freely moving animals with FCD and epilepsy demonstrated that the FCD lesion generates HFOs from all frequency ranges, i.e., gamma, ripples, and fast ripples up to 800 Hz. Gamma-ripples were recorded almost exclusively in FCD animals, while fast ripples occurred in controls as well, although at a lower rate. Gamma-ripple activity is particularly valuable for localizing the FCD lesion, surpassing the utility of fast ripples that were also observed in control animals, although at significantly lower rates. Propagating HFOs occurred outside the FCD, and the contralateral cortex also generated HFOs independently of the FCD, pointing to a wider FCD network dysfunction. Optogenetic activation of neurons carrying mTOR mutation and expressing Channelrhodopsin-2 evoked fast ripple oscillations that displayed spectral and morphological profiles analogous to spontaneous oscillations. This study brings experimental evidence that FCD type II generates pathological HFOs across all frequency bands and provides information about the spatiotemporal properties of each HFO subtype in FCD. The study shows that mutated neurons represent a functionally interconnected and active component of the FCD network, as they can induce interictal epileptiform phenomena and HFOs.
Collapse
Affiliation(s)
- Jan Chvojka
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Natalie Prochazkova
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Monika Rehorova
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Kudlacek
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Salome Kylarova
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michaela Kralikova
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Peter Buran
- Laboratory of Molecular Neurobiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Romana Weissova
- Laboratory of Molecular Neurobiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Balastik
- Laboratory of Molecular Neurobiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - John G R Jefferys
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ondrej Novak
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Premysl Jiruska
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
6
|
Lévesque M, Wang S, Macey-Dare ADB, Salami P, Avoli M. Evolution of interictal activity in models of mesial temporal lobe epilepsy. Neurobiol Dis 2023; 180:106065. [PMID: 36907521 DOI: 10.1016/j.nbd.2023.106065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
Interictal activity and seizures are the hallmarks of focal epileptic disorders (which include mesial temporal lobe epilepsy, MTLE) in humans and in animal models. Interictal activity, which is recorded with cortical and intracerebral EEG recordings, comprises spikes, sharp waves and high-frequency oscillations, and has been used in clinical practice to identify the epileptic zone. However, its relation with seizures remains debated. Moreover, it is unclear whether specific EEG changes in interictal activity occur during the time preceding the appearance of spontaneous seizures. This period, which is termed "latent", has been studied in rodent models of MTLE in which spontaneous seizures start to occur following an initial insult (most often a status epilepticus induced by convulsive drugs such as kainic acid or pilocarpine) and may mirror epileptogenesis, i.e., the process leading the brain to develop an enduring predisposition to seizure generation. Here, we will address this topic by reviewing experimental studies performed in MTLE models. Specifically, we will review data highlighting the dynamic changes in interictal spiking activity and high-frequency oscillations occurring during the latent period, and how optogenetic stimulation of specific cell populations can modulate them in the pilocarpine model. These findings indicate that interictal activity: (i) is heterogeneous in its EEG patterns and thus, presumably, in its underlying neuronal mechanisms; and (ii) can pinpoint to the epileptogenic processes occurring in focal epileptic disorders in animal models and, perhaps, in epileptic patients.
Collapse
Affiliation(s)
- Maxime Lévesque
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montreal, H3A 2B4, QC, Canada.
| | - Siyan Wang
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montreal, H3A 2B4, QC, Canada
| | - Anežka D B Macey-Dare
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montreal, H3A 2B4, QC, Canada; Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Pariya Salami
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montreal, H3A 2B4, QC, Canada; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA 02114, USA
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montreal, H3A 2B4, QC, Canada; Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, H3G 1Y6, QC, Canada
| |
Collapse
|
7
|
Lai N, Li Z, Xu C, Wang Y, Chen Z. Diverse nature of interictal oscillations: EEG-based biomarkers in epilepsy. Neurobiol Dis 2023; 177:105999. [PMID: 36638892 DOI: 10.1016/j.nbd.2023.105999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023] Open
Abstract
Interictal electroencephalogram (EEG) patterns, including high-frequency oscillations (HFOs), interictal spikes (ISs), and slow wave activities (SWAs), are defined as specific oscillations between seizure events. These interictal oscillations reflect specific dynamic changes in network excitability and play various roles in epilepsy. In this review, we briefly describe the electrographic characteristics of HFOs, ISs, and SWAs in the interictal state, and discuss the underlying cellular and network mechanisms. We also summarize representative evidence from experimental and clinical epilepsy to address their critical roles in ictogenesis and epileptogenesis, indicating their potential as electrophysiological biomarkers of epilepsy. Importantly, we put forwards some perspectives for further research in the field.
Collapse
Affiliation(s)
- Nanxi Lai
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhisheng Li
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Wang
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China; Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
8
|
Richardson A, Morris G. Cross Talk opposing view: Animal models of epilepsy are more useful than human tissue-based approaches. J Physiol 2022; 600:4575-4578. [PMID: 36148995 DOI: 10.1113/jp282186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 06/22/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Amy Richardson
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
| | - Gareth Morris
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.,Department of Physiology and Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, Ireland.,FutureNeuro, the SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine & Health Sciences
| |
Collapse
|
9
|
Acerbo E, Jegou A, Luff C, Dzialecka P, Botzanowski B, Missey F, Ngom I, Lagarde S, Bartolomei F, Cassara A, Neufeld E, Jirsa V, Carron R, Grossman N, Williamson A. Focal non-invasive deep-brain stimulation with temporal interference for the suppression of epileptic biomarkers. Front Neurosci 2022; 16:945221. [PMID: 36061593 PMCID: PMC9431367 DOI: 10.3389/fnins.2022.945221] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/12/2022] [Indexed: 11/15/2022] Open
Abstract
Introduction Neurostimulation applied from deep brain stimulation (DBS) electrodes is an effective therapeutic intervention in patients suffering from intractable drug-resistant epilepsy when resective surgery is contraindicated or failed. Inhibitory DBS to suppress seizures and associated epileptogenic biomarkers could be performed with high-frequency stimulation (HFS), typically between 100 and 165 Hz, to various deep-seated targets, such as the Mesio-temporal lobe (MTL), which leads to changes in brain rhythms, specifically in the hippocampus. The most prominent alterations concern high-frequency oscillations (HFOs), namely an increase in ripples, a reduction in pathological Fast Ripples (FRs), and a decrease in pathological interictal epileptiform discharges (IEDs). Materials and methods In the current study, we use Temporal Interference (TI) stimulation to provide a non-invasive DBS (130 Hz) of the MTL, specifically the hippocampus, in both mouse models of epilepsy, and scale the method using human cadavers to demonstrate the potential efficacy in human patients. Simulations for both mice and human heads were performed to calculate the best coordinates to reach the hippocampus. Results This non-invasive DBS increases physiological ripples, and decreases the number of FRs and IEDs in a mouse model of epilepsy. Similarly, we show the inability of 130 Hz transcranial current stimulation (TCS) to achieve similar results. We therefore further demonstrate the translatability to human subjects via measurements of the TI stimulation vs. TCS in human cadavers. Results show a better penetration of TI fields into the human hippocampus as compared with TCS. Significance These results constitute the first proof of the feasibility and efficiency of TI to stimulate at depth an area without impacting the surrounding tissue. The data tend to show the sufficiently focal character of the induced effects and suggest promising therapeutic applications in epilepsy.
Collapse
Affiliation(s)
- Emma Acerbo
- Aix Marseille University:, INSERM, Institut de Neurosciences des Systèmes, Marseille, France
| | - Aude Jegou
- Aix Marseille University:, INSERM, Institut de Neurosciences des Systèmes, Marseille, France
| | - Charlotte Luff
- Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Patrycja Dzialecka
- Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Boris Botzanowski
- Aix Marseille University:, INSERM, Institut de Neurosciences des Systèmes, Marseille, France
| | - Florian Missey
- Aix Marseille University:, INSERM, Institut de Neurosciences des Systèmes, Marseille, France
| | - Ibrahima Ngom
- Aix Marseille University:, INSERM, Institut de Neurosciences des Systèmes, Marseille, France
| | - Stanislas Lagarde
- Aix Marseille University:, INSERM, Institut de Neurosciences des Systèmes, Marseille, France
- Department of Epileptology, APHM, Timone Hospital, Marseille, France
| | - Fabrice Bartolomei
- Aix Marseille University:, INSERM, Institut de Neurosciences des Systèmes, Marseille, France
- Department of Epileptology, APHM, Timone Hospital, Marseille, France
| | - Antonino Cassara
- Foundation for Research on Information Technologies in Society, Zurich, Switzerland
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society, Zurich, Switzerland
| | - Viktor Jirsa
- Aix Marseille University:, INSERM, Institut de Neurosciences des Systèmes, Marseille, France
| | - Romain Carron
- Aix Marseille University:, INSERM, Institut de Neurosciences des Systèmes, Marseille, France
- Department of Functional and Stereotactic Neurosurgery, Timone University Hospital, Marseille, France
| | - Nir Grossman
- Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Adam Williamson
- Aix Marseille University:, INSERM, Institut de Neurosciences des Systèmes, Marseille, France
- Department of Medicine, Center for Bioelectronic Medicine, Karolinska Institute, Stockholm, Sweden
- *Correspondence: Adam Williamson, ;
| |
Collapse
|
10
|
Wang Y, Wei P, Yan F, Luo Y, Zhao G. Animal Models of Epilepsy: A Phenotype-oriented Review. Aging Dis 2022; 13:215-231. [PMID: 35111370 PMCID: PMC8782545 DOI: 10.14336/ad.2021.0723] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/23/2021] [Indexed: 12/26/2022] Open
Abstract
Epilepsy is a serious neurological disorder characterized by abnormal, recurrent, and synchronous discharges in the brain. Long-term recurrent seizure attacks can cause serious damage to brain function, which is usually observed in patients with temporal lobe epilepsy. Controlling seizure attacks is vital for the treatment and prognosis of epilepsy. Animal models, such as the kindling model, which was the most widely used model in the past, allow the understanding of the potential epileptogenic mechanisms and selection of antiepileptic drugs. In recent years, various animal models of epilepsy have been established to mimic different seizure types, without clear merits and demerits. Accordingly, this review provides a summary of the views mentioned above, aiming to provide a reference for animal model selection.
Collapse
Affiliation(s)
- Yilin Wang
- 2Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Penghu Wei
- 1Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China.,4Clinical Research Center for Epilepsy Capital Medical University, Beijing, China
| | - Feng Yan
- 2Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yumin Luo
- 2Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,3Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,4Clinical Research Center for Epilepsy Capital Medical University, Beijing, China
| | - Guoguang Zhao
- 1Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China.,3Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,4Clinical Research Center for Epilepsy Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Li L, Kumar U, You J, Zhou Y, Weiss SA, Engel J, Bragin A. Spatial and temporal profile of high-frequency oscillations in posttraumatic epileptogenesis. Neurobiol Dis 2021; 161:105544. [PMID: 34742877 PMCID: PMC9075674 DOI: 10.1016/j.nbd.2021.105544] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/18/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
We studied the role of temporal and spatial changes in high-frequency oscillation (HFO, 80-500 Hz) generation in epileptogenesis following traumatic brain injury (TBI). Experiments were conducted on adult male Sprague Dawley rats. For the TBI group, fluid percussion injury (FPI) on the left sensorimotor area was performed to induce posttraumatic epileptogenesis. For the sham control group, only the craniotomy was performed. After TBI, 8 bipolar micro-electrodes were implanted bilaterally in the prefrontal cortex, perilesional area and homotopic contralateral site, striatum, and hippocampus. Long-term video/local field potential (LFP) recordings were performed for up to 21 weeks to identify and characterize seizures and capture HFOs. The electrode tip locations and the volume of post TBI brain lesions were further estimated by ex-vivo MRI scans. HFOs were detected during slow-wave sleep and categorized as ripple (80-200 Hz) and fast ripple (FR, 250-500 Hz) events. HFO rates and the HFO peak frequencies were compared in the 8 recording locations and across 8-weeks following TBI. Data from 48 rats (8 sham controls and 40 TBI rats) were analyzed. Within the TBI group, 22 rats (55%) developed recurrent spontaneous seizures (E+ group), at an average of 62.2 (+17.1) days, while 18 rats (45%) did not (E- group). We observed that the HFOs in the E+ group had a higher mean peak frequency than the E- group and the sham group (P < 0.05). Furthermore, the FR rate of the E+ group showed a significant increase compared to the E-group (P < 0.01) and sham control group (P < 0.01), specifically in the perilesional area, homotopic contralateral site, bilateral hippocampus, and to a lesser degree bilateral striatum. When compared across time, the increased FR rate in the E+ group occurred immediately after the insult and remained stable across the duration of the experiment. In addition, lesion size was not statistically different in the E+ and E- group and was not correlated with HFO rates. Our results suggest that TBI results in the formation of a widespread epileptogenic network. FR rates serve as a biomarker of network formation and predict the future development of epilepsy, however FR are not a temporally specific biomarker of TBI sequelae responsible for epileptogenesis. These results suggest that in patients, future risk of post-TBI epilepsy can be predicted early using FR.
Collapse
Affiliation(s)
- Lin Li
- Department of Neurology, University of California Los Angeles, CA 90095, USA; Department of Biomedical Engineering, University of North Texas, TX 76207, USA.
| | - Udaya Kumar
- Department of Neurology, University of California Los Angeles, CA 90095, USA
| | - Jing You
- Department of Biomedical Engineering, University of North Texas, TX 76207, USA
| | - Yufeng Zhou
- Department of Biomedical Engineering, University of North Texas, TX 76207, USA
| | - Shennan A Weiss
- Depts. of Neurology, Dept. of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, New York 11203, USA; Department of Neurology, New York City Health + Hospitals/Kings County, Brooklyn, NY 11203, USA
| | - Jerome Engel
- Department of Neurology, University of California Los Angeles, CA 90095, USA; Brain Research Institute, University of California, Los Angeles, CA 90095, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Anatol Bragin
- Department of Neurology, University of California Los Angeles, CA 90095, USA; Brain Research Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
12
|
Chvojka J, Kudlacek J, Chang WC, Novak O, Tomaska F, Otahal J, Jefferys JGR, Jiruska P. The role of interictal discharges in ictogenesis - A dynamical perspective. Epilepsy Behav 2021; 121:106591. [PMID: 31806490 DOI: 10.1016/j.yebeh.2019.106591] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
Interictal epileptiform discharge (IED) is a traditional hallmark of epileptic tissue that is generated by the synchronous activity of a population of neurons. Interictal epileptiform discharges represent a heterogeneous group of pathological activities that differ in shape, duration, spatiotemporal distribution, underlying cellular and network mechanisms, and their relationship to seizure genesis. The exact role of IEDs in epilepsy is still not well understood, and there remains a persistent dichotomy about the impact on IEDs on seizures. Proseizure, antiseizure, and no impact on ictogenesis have all been described in previous studies. In this article, we review the existing knowledge on the role of interictal discharges in seizure genesis, and we discuss how dynamical approaches to ictogenesis can explain the existing dichotomy about the multifaceted role of IEDs in ictogenesis. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Jan Chvojka
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic; Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Jan Kudlacek
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic; Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Wei-Chih Chang
- Faculty of Veterinary Medicine and Neuroscience Center, University of Helsinki, Helsinki 00014, Finland
| | - Ondrej Novak
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Filip Tomaska
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jakub Otahal
- Department of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - John G R Jefferys
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Premysl Jiruska
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
13
|
Vannini E, Restani L, Dilillo M, McDonnell LA, Caleo M, Marra V. Synaptic Vesicles Dynamics in Neocortical Epilepsy. Front Cell Neurosci 2020; 14:606142. [PMID: 33362472 PMCID: PMC7758433 DOI: 10.3389/fncel.2020.606142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/30/2020] [Indexed: 11/30/2022] Open
Abstract
Neuronal hyperexcitability often results from an unbalance between excitatory and inhibitory neurotransmission, but the synaptic alterations leading to enhanced seizure propensity are only partly understood. Taking advantage of a mouse model of neocortical epilepsy, we used a combination of photoconversion and electron microscopy to assess changes in synaptic vesicles pools in vivo. Our analyses reveal that epileptic networks show an early onset lengthening of active zones at inhibitory synapses, together with a delayed spatial reorganization of recycled vesicles at excitatory synapses. Proteomics of synaptic content indicate that specific proteins were increased in epileptic mice. Altogether, our data reveal a complex landscape of nanoscale changes affecting the epileptic synaptic release machinery. In particular, our findings show that an altered positioning of release-competent vesicles represent a novel signature of epileptic networks.
Collapse
Affiliation(s)
- Eleonora Vannini
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy.,Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom.,Fondazione Umberto Veronesi, Milan, Italy
| | - Laura Restani
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy
| | | | | | - Matteo Caleo
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Vincenzo Marra
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
14
|
Impaired θ-γ Coupling Indicates Inhibitory Dysfunction and Seizure Risk in a Dravet Syndrome Mouse Model. J Neurosci 2020; 41:524-537. [PMID: 33234612 DOI: 10.1523/jneurosci.2132-20.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/02/2020] [Accepted: 11/12/2020] [Indexed: 01/24/2023] Open
Abstract
Dravet syndrome (DS) is an epileptic encephalopathy that still lacks biomarkers for epileptogenesis and its treatment. Dysfunction of NaV1.1 sodium channels, which are chiefly expressed in inhibitory interneurons, explains the epileptic phenotype. Understanding the network effects of these cellular deficits may help predict epileptogenesis. Here, we studied θ-γ coupling as a potential marker for altered inhibitory functioning and epileptogenesis in a DS mouse model. We found that cortical θ-γ coupling was reduced in both male and female juvenile DS mice and persisted only if spontaneous seizures occurred. θ-γ Coupling was partly restored by cannabidiol (CBD). Locally disrupting NaV1.1 expression in the hippocampus or cortex yielded early attenuation of θ-γ coupling, which in the hippocampus associated with fast ripples, and which was replicated in a computational model when voltage-gated sodium currents were impaired in basket cells (BCs). Our results indicate attenuated θ-γ coupling as a promising early indicator of inhibitory dysfunction and seizure risk in DS.
Collapse
|
15
|
San-Juan D, Rodríguez-Méndez DA. Epilepsy as a disease affecting neural networks: A neurophysiological perspective. Neurologia 2020; 38:S0213-4853(20)30213-9. [PMID: 32912747 DOI: 10.1016/j.nrl.2020.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/09/2020] [Accepted: 06/12/2020] [Indexed: 10/23/2022] Open
Abstract
INTRODUCTION The brain is a series of networks of functionally and anatomically connected, bilaterally represented structures; in epilepsy, activity of any part of the brain affects activity in the other parts. This is relevant for understanding the pathophysiology, diagnosis, and prognosis of the disease. OBJECTIVE In this study, we present a state-of-the-art review of the neurophysiological view of epilepsy as a disease affecting neural networks. RESULTS We describe the basic and advanced principles of epilepsy as a disease affecting neural networks, based on the use of different clinical and mathematical techniques from a neurophysiological perspective, and signal the limitations of these findings in the clinical context. CONCLUSIONS Epilepsy is a disease affecting complex neural networks. Understanding these will enable better management and prognostic confidence.
Collapse
Affiliation(s)
- D San-Juan
- Departamento de Investigación Clínica, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, México.
| | - D A Rodríguez-Méndez
- Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca de Lerdo, México
| |
Collapse
|
16
|
Altered Dynamics of Canonical Feedback Inhibition Predicts Increased Burst Transmission in Chronic Epilepsy. J Neurosci 2019; 39:8998-9012. [PMID: 31519822 DOI: 10.1523/jneurosci.2594-18.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 11/21/2022] Open
Abstract
Inhibitory interneurons, organized into canonical feedforward and feedback motifs, play a key role in controlling normal and pathological neuronal activity. We demonstrate prominent quantitative changes in the dynamics of feedback inhibition in a rat model of chronic epilepsy (male Wistar rats). Systematic interneuron recordings revealed a large decrease in intrinsic excitability of basket cells and oriens-lacunosum moleculare interneurons in epileptic animals. Additionally, the temporal dynamics of interneuron recruitment by recurrent feedback excitation were strongly altered, resulting in a profound loss of initial feedback inhibition during synchronous CA1 pyramidal activity. Biophysically constrained models of the complete feedback circuit motifs of normal and epileptic animals revealed that, as a consequence of altered feedback inhibition, burst activity arising in CA3 is more strongly converted to a CA1 output. This suggests that altered dynamics of feedback inhibition promote the transmission of epileptiform bursts to hippocampal projection areas.SIGNIFICANCE STATEMENT We quantitatively characterized changes of the CA1 feedback inhibitory circuit in a model of chronic temporal lobe epilepsy. This study shows, for the first time, that dynamic recruitment of inhibition in feedback circuits is altered and establishes the cellular mechanisms for this change. Computational modeling revealed that the observed changes are likely to systematically alter CA1 input-output properties leading to (1) increased seizure propagation through CA1 and (2) altered computation of synchronous CA3 input.
Collapse
|
17
|
Chen YF, Wei R, Yuan GQ, Gao DD, Jin Q, Cui XY, Zhang GX, Guo J. A new role of 11 C-Choline PET in localizing the epileptogenic foci in insular cortex in the patients. CNS Neurosci Ther 2019; 26:144-147. [PMID: 31508896 PMCID: PMC6930826 DOI: 10.1111/cns.13215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/08/2019] [Accepted: 08/14/2019] [Indexed: 11/30/2022] Open
Affiliation(s)
- Yu-Feng Chen
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Ran Wei
- School of Sino-Dutch Biomedical and Information Engineering, Northeastern University, Shenyang, China
| | - Guan-Qian Yuan
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Dan-Dan Gao
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Qing Jin
- Department of Pathology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiao-Yu Cui
- School of Sino-Dutch Biomedical and Information Engineering, Northeastern University, Shenyang, China
| | - Guo-Xu Zhang
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Jia Guo
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
18
|
Park CJ, Hong SB. High Frequency Oscillations in Epilepsy: Detection Methods and Considerations in Clinical Application. J Epilepsy Res 2019; 9:1-13. [PMID: 31482052 PMCID: PMC6706641 DOI: 10.14581/jer.19001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 01/10/2023] Open
Abstract
High frequency oscillations (HFOs) is a brain activity observed in electroencephalography (EEG) in frequency ranges between 80–500 Hz. HFOs can be classified into ripples (80–200 Hz) and fast ripples (200–500 Hz) by their distinctive characteristics. Recent studies reported that both ripples and fast fipples can be regarded as a new biomarker of epileptogenesis and ictogenesis. Previous studies verified that HFOs are clinically important both in patients with mesial temporal lobe epilepsy and neocortical epilepsy. Also, in epilepsy surgery, patients with higher resection ratio of brain regions with HFOs showed better outcome than a group with lower resection ratio. For clinical application of HFOs, it is important to delineate HFOs accurately and discriminate them from artifacts. There have been technical improvements in detecting HFOs by developing various detection algorithms. Still, there is a difficult issue on discriminating clinically important HFOs among detected HFOs, where both quantitative and subjective approaches are suggested. This paper is a review on published HFO studies focused on clinical findings and detection techniques of HFOs as well as tips for clinical applications.
Collapse
Affiliation(s)
- Chae Jung Park
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Samsung Biomedical Research Institute (SBRI), Seoul, Korea
| | - Seung Bong Hong
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Samsung Biomedical Research Institute (SBRI), Seoul, Korea
| |
Collapse
|
19
|
Inhibition and oscillations in the human brain tissue in vitro. Neurobiol Dis 2019; 125:198-210. [DOI: 10.1016/j.nbd.2019.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/22/2018] [Accepted: 02/07/2019] [Indexed: 01/22/2023] Open
|
20
|
Řehulka P, Cimbálník J, Pail M, Chrastina J, Hermanová M, Brázdil M. Hippocampal high frequency oscillations in unilateral and bilateral mesial temporal lobe epilepsy. Clin Neurophysiol 2019; 130:1151-1159. [PMID: 31100580 DOI: 10.1016/j.clinph.2019.03.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 02/18/2019] [Accepted: 03/13/2019] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The main aim of this study was to investigate the potential differences in terms of interictal high frequency oscillations (HFOs) between both hippocampi in unilateral (U-MTLE) and bilateral mesial temporal lobe epilepsy (B-MTLE). METHODS Sixteen patients with MTLE underwent bilateral hippocampal depth electrode implantation as part of epilepsy surgery evaluation. Interictal HFOs were detected automatically. The analyses entail comparisons of the rates and spatial distributions of ripples and fast ripples (FR) in hippocampi and amygdalae, with respect to the eventual finding of hippocampal sclerosis (HS). RESULTS In U-MTLE, higher ripple and FR rates were found in the hippocampi ipsilateral to the seizure onset than in the contralateral hippocampi. Non-epileptic hippocampi in U-MTLE were distinguished by significantly lower ripple rate than in the remaining analyzed hippocampi. There were not differences between the hippocampi in B-MTLE. In the hippocampi with proven HS, higher FR rates were observed in the ventral than in the dorsal parts. CONCLUSIONS Non-epileptic hippocampi in U-MTLE demonstrated significantly lower ripple rates than those epileptic in U-MTLE and B-MTLE. SIGNIFICANCE Low interictal HFO occurrence might be considered as a marker of the non-epileptic hippocampi in MTLE.
Collapse
Affiliation(s)
- Pavel Řehulka
- Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Jan Cimbálník
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Martin Pail
- Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Chrastina
- Brno Epilepsy Center, Department of Neurosurgery, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Markéta Hermanová
- Brno Epilepsy Center, First Department of Pathology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Milan Brázdil
- Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic; Behavioral and Social Neuroscience Research Group, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
21
|
Li L, Bragin A, Staba R, Engel J. Unit firing and oscillations at seizure onset in epileptic rodents. Neurobiol Dis 2019; 127:382-389. [PMID: 30928646 DOI: 10.1016/j.nbd.2019.03.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/04/2019] [Accepted: 03/26/2019] [Indexed: 01/27/2023] Open
Abstract
Epileptic seizures result from a variety of pathophysiological processes, evidenced by different electrographic ictal onset patterns, as seen on direct brain recordings. The two most common electrographic patterns of focal ictal onset in patients are hypersynchronous (HYP) and low-voltage fast (LVF). Whereas LVF ictal onsets were believed to result from disinhibition; based on similarities with absence seizures, focal HYP ictal onsets were believed to result from increased synchronizing inhibition. Recent findings, however, suggest the differences between these seizure onset types are more complicated and, in some cases, the opposite of these concepts are true. The following review presents evidence that a reduction of tonic inhibition on small pathologically interconnected neuron (PIN) clusters generating pathological high-frequency oscillations (pHFOs), which reflect abnormal synchronously bursting neurons may be the cause of HYP ictal onsets. Increased inhibition preceding LVF ictal onsets are discussed in other reviews in this issue. We postulate that neuronal cell loss following epileptogenic insults can result in structural reorganization, giving rise to small PIN clusters, which generate pHFOs. These clusters have a heterogeneous distribution and are spatially stable over time. Studies have demonstrated that a transient reduction in tonic inhibition causes these clusters to increase in size. This could result in consolidation and synchronization of pHFOs until a critical mass leads to propagation of HYP ictal discharges. Viewed within a network neuroscience framework, local disturbances such as PIN clusters are likely to contribute to large-scale brain network alterations: a better understanding of these epileptogenic networks promises to elucidate mechanisms of ictogenesis, epileptogenesis, and certain comorbidities of epilepsy.
Collapse
Affiliation(s)
- Lin Li
- Department of Neurology, University of California, Los Angeles, CA, USA
| | - Anatol Bragin
- Department of Neurology, University of California, Los Angeles, CA, USA; Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Richard Staba
- Department of Neurology, University of California, Los Angeles, CA, USA
| | - Jerome Engel
- Department of Neurology, University of California, Los Angeles, CA, USA; Brain Research Institute, University of California, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Lévesque M, Avoli M. High-frequency oscillations and focal seizures in epileptic rodents. Neurobiol Dis 2018; 124:396-407. [PMID: 30590178 DOI: 10.1016/j.nbd.2018.12.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/26/2018] [Accepted: 12/22/2018] [Indexed: 01/09/2023] Open
Abstract
High-pass filtering (> 80 Hz) of EEG signals has enabled neuroscientists to analyze high-frequency oscillations (HFOs; i.e., ripples: 80-200 Hz and fast ripples: 250-500 Hz) in epileptic patients presenting with focal seizures and in animal models mimicking this condition. Evidence obtained from these studies indicate that HFOs mirror pathological network activity that may initiate and sustain ictogenesis and epileptogenesis. HFOs are observed in temporal lobe regions of epileptic animals during interictal periods but they also occur before seizure onset and during the ictal period, suggesting that they can pinpoint to the mechanisms of seizure generation. Accordingly, ripples and fast ripples predominate during two specific seizure onset patterns termed low-voltage fast and hypersynchronous, respectively. In this review we will: (i) summarize these experimental studies; (ii) consider the evolution of HFOs over time during epileptogenesis; (iii) address data obtained with optogenetic stimulating procedures both in vitro and in vivo, and (iv) take into account the impact of anti-epileptic drugs on HFOs. We expect these findings to contribute to understanding the neuronal mechanisms leading to ictogenesis and epileptogenesis thus leading to the development of mechanistically targeted anti-epileptic strategies.
Collapse
Affiliation(s)
| | - Massimo Avoli
- Montreal Neurological Institute, Canada; Departments of Neurology & Neurosurgery, and of Physiology, McGill University, Montréal, H3A 2B4 Québec, Canada; Department of Experimental Medicine, Facoltà di Medicina e Odontoiatria, Sapienza University of Rome, 00185 Roma, Italy
| |
Collapse
|
23
|
Chang BL, Leite M, Snowball A, Lieb A, Chabrol E, Walker MC, Kullmann DM, Schorge S, Wykes RC. Semiology, clustering, periodicity and natural history of seizures in an experimental occipital cortical epilepsy model. Dis Model Mech 2018; 11:dmm036194. [PMID: 30467223 PMCID: PMC6307909 DOI: 10.1242/dmm.036194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/12/2018] [Indexed: 12/27/2022] Open
Abstract
Focal neocortical epilepsy is a common form of epilepsy and there is a need to develop animal models that allow the evaluation of novel therapeutic strategies to treat this type of epilepsy. Tetanus toxin (TeNT) injection into the rat visual cortex induces focal neocortical epilepsy without preceding status epilepticus. The latency to first seizure ranged from 3 to 7 days. Seizure duration was bimodal, with both short (approximately 30 s) and long-lasting (>100 s) seizures occurring in the same animals. Seizures were accompanied by non-motor features such as behavioural arrest, or motor seizures with or without evolution to generalized tonic-clonic seizures. Seizures were more common during the sleep phase of a light-dark cycle. Seizure occurrence was not random, and tended to cluster with significantly higher probability of recurrence within 24 h of a previous seizure. Across animals, the number of seizures in the first week could be used to predict the number of seizures in the following 3 weeks. The TeNT model of occipital cortical epilepsy is a model of acquired focal neocortical epilepsy that is well-suited for preclinical evaluation of novel anti-epileptic strategies. We provide here a detailed analysis of the epilepsy phenotypes, seizure activity, electrographic features and the semiology. In addition, we provide a predictive framework that can be used to reduce variation and consequently animal use in preclinical studies of potential treatments.
Collapse
Affiliation(s)
- Bao-Luen Chang
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Section of Epilepsy, Department of Neurology, Chang Gung Memorial Hospital at Linkou Medical Center and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Marco Leite
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Albert Snowball
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Andreas Lieb
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Elodie Chabrol
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Stephanie Schorge
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Robert C Wykes
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
24
|
Chang WC, Kudlacek J, Hlinka J, Chvojka J, Hadrava M, Kumpost V, Powell AD, Janca R, Maturana MI, Karoly PJ, Freestone DR, Cook MJ, Palus M, Otahal J, Jefferys JGR, Jiruska P. Loss of neuronal network resilience precedes seizures and determines the ictogenic nature of interictal synaptic perturbations. Nat Neurosci 2018; 21:1742-1752. [PMID: 30482946 PMCID: PMC7617160 DOI: 10.1038/s41593-018-0278-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 10/19/2018] [Indexed: 01/12/2023]
Abstract
The mechanism of seizure emergence and the role of brief interictal epileptiform discharges (IEDs) in seizure generation are two of the most important unresolved issues in modern epilepsy research. We found that the transition to seizure is not a sudden phenomenon, but is instead a slow process that is characterized by the progressive loss of neuronal network resilience. From a dynamical perspective, the slow transition is governed by the principles of critical slowing, a robust natural phenomenon that is observable in systems characterized by transitions between dynamical regimes. In epilepsy, this process is modulated by synchronous synaptic input from IEDs. IEDs are external perturbations that produce phasic changes in the slow transition process and exert opposing effects on the dynamics of a seizure-generating network, causing either anti-seizure or pro-seizure effects. We found that the multifaceted nature of IEDs is defined by the dynamical state of the network at the moment of the discharge occurrence.
Collapse
Affiliation(s)
- Wei-Chih Chang
- Neuronal Networks Group, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, UK
- Faculty of Veterinary Medicine and Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Jan Kudlacek
- Department of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Jaroslav Hlinka
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Chvojka
- Department of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Michal Hadrava
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Vojtech Kumpost
- Department of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrew D Powell
- Neuronal Networks Group, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, UK
- Department of Life Science, School of Health Sciences, Birmingham City University, Birmingham, UK
| | - Radek Janca
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
- Department of Pediatric Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Matias I Maturana
- The Graeme Clark Institute & Department of Medicine St. Vincent's Hospital, The University of Melbourne, Melbourne, Australia
| | - Philippa J Karoly
- The Graeme Clark Institute & Department of Medicine St. Vincent's Hospital, The University of Melbourne, Melbourne, Australia
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| | - Dean R Freestone
- The Graeme Clark Institute & Department of Medicine St. Vincent's Hospital, The University of Melbourne, Melbourne, Australia
| | - Mark J Cook
- The Graeme Clark Institute & Department of Medicine St. Vincent's Hospital, The University of Melbourne, Melbourne, Australia
| | - Milan Palus
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Otahal
- Department of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - John G R Jefferys
- Neuronal Networks Group, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, UK.
- Department of Pharmacology, University of Oxford, Oxford, UK.
| | - Premysl Jiruska
- Department of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
25
|
Jiang G, Pu T, Li Z, Zhang X, Zhou R, Cao X, Yu J, Wang X. Lithium affects rat hippocampal electrophysiology and epileptic seizures in a dose dependent manner. Epilepsy Res 2018; 146:112-120. [DOI: 10.1016/j.eplepsyres.2018.07.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/20/2018] [Accepted: 07/27/2018] [Indexed: 12/14/2022]
|
26
|
Engel J, Bragin A, Staba R. Nonictal EEG biomarkers for diagnosis and treatment. Epilepsia Open 2018; 3:120-126. [PMID: 30564770 PMCID: PMC6293068 DOI: 10.1002/epi4.12233] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2018] [Indexed: 12/11/2022] Open
Abstract
There are no reliable nonictal biomarkers for epilepsy, electroencephalography (EEG) or otherwise, but efforts to identify biomarkers that would predict the development of epilepsy after a potential epileptogenic insult, diagnose the existence of epilepsy, or assess the effects of antiseizure or antiepileptogenic interventions are relying heavily on electrophysiology. The most promising EEG biomarkers to date are pathologic high‐frequency oscillations (pHFOs), brief EEG events in the range of 100 to 600 Hz, which are believed to reflect summated action potentials from synchronously bursting neurons. Studies of patients with epilepsy, and experimental animal models, have been based primarily on direct brain recording, which makes pHFOs potentially useful for localizing the epileptogenic zone for surgical resection, but application for other diagnostic and therapeutic purposes is limited. Consequently, recent efforts have involved identification of HFOs recorded with scalp electrodes, and with magnetoencephalography, which may reflect the same pathophysiologic mechanisms as pHFOs recorded directly from the brain. The search is also on for other EEG changes that might serve as epilepsy biomarkers, and candidates include arcuate rhythms, which may reflect repetitive pHFOs, reduction in theta rhythm, which correlates with epileptogenesis in several rodent models of epilepsy, and shortened sleep spindles that correlate with ictogenesis.
Collapse
Affiliation(s)
- Jerome Engel
- Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaU.S.A.
- Brain Research InstituteUniversity of California Los AngelesLos AngelesCaliforniaU.S.A.
- Neurobiology and Psychiatry and Biobehavioral SciencesDavid Geffen School of Medicine at UCLALos AngelesCaliforniaU.S.A.
| | - Anatol Bragin
- Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaU.S.A.
- Brain Research InstituteUniversity of California Los AngelesLos AngelesCaliforniaU.S.A.
| | - Richard Staba
- Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaU.S.A.
| |
Collapse
|
27
|
Morris G, Brennan GP, Reschke CR, Henshall DC, Schorge S. Spared CA1 pyramidal neuron function and hippocampal performance following antisense knockdown of microRNA-134. Epilepsia 2018; 59:1518-1526. [PMID: 29978460 PMCID: PMC6099438 DOI: 10.1111/epi.14475] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2018] [Indexed: 01/05/2023]
Abstract
Objective Inhibition of microRNA‐134 by an oligonucleotide antagomir (ant‐134) has been shown to produce powerful antiseizure effects in multiple models of epilepsy. However, to successfully translate the treatment to the clinic, it is important to assess what potential adverse effects it may have on naive brain tissue. Methods To investigate this, adult male Sprague‐Dawley rats were treated with either ant‐134 or a scrambled control sequence. Animals were later assessed for spatial navigation, before ex vivo slices were taken to assess the effects of microRNA‐134 knockdown on well‐defined measures of intrinsic and synaptic properties. Results Hippocampal field potential recordings determined that silencing of microRNA‐134 by ant‐134 injection was associated with a reduction in epileptiform activity following application of 9 mmol/L K+. Nevertheless, rats performed normally in the novel object location test. Action potential waveforms and miniature excitatory synaptic currents recorded in CA1 pyramidal neurons were unaffected by ant‐134. Significance These results demonstrate that ant‐134 confers a seizure‐protective effect without obvious interference with hippocampal neuronal properties or network function. These findings support further development of this novel approach to epilepsy treatment.
Collapse
Affiliation(s)
- Gareth Morris
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK
| | - Gary P Brennan
- Department of Physiology, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro Research Centre, RCSI, Dublin, Ireland
| | - Cristina R Reschke
- Department of Physiology, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro Research Centre, RCSI, Dublin, Ireland
| | - David C Henshall
- Department of Physiology, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro Research Centre, RCSI, Dublin, Ireland
| | - Stephanie Schorge
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK.,School of Pharmacy, University College London, London, UK
| |
Collapse
|
28
|
Lévesque M, Salami P, Shiri Z, Avoli M. Interictal oscillations and focal epileptic disorders. Eur J Neurosci 2017. [DOI: 10.1111/ejn.13628] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Maxime Lévesque
- Department of Neurology & Neurosurgery; Montreal Neurological Institute; McGill University; 3801 University Street Montréal QC Canada H3A 2B4
| | - Pariya Salami
- Department of Neurology & Neurosurgery; Montreal Neurological Institute; McGill University; 3801 University Street Montréal QC Canada H3A 2B4
| | - Zahra Shiri
- Department of Neurology & Neurosurgery; Montreal Neurological Institute; McGill University; 3801 University Street Montréal QC Canada H3A 2B4
| | - Massimo Avoli
- Department of Neurology & Neurosurgery; Montreal Neurological Institute; McGill University; 3801 University Street Montréal QC Canada H3A 2B4
- Dipartimento di Medicina Sperimentale; Sapienza University of Rome; Roma Italy
| |
Collapse
|
29
|
Popova I, Malkov A, Ivanov AI, Samokhina E, Buldakova S, Gubkina O, Osypov A, Muhammadiev RS, Zilberter T, Molchanov M, Paskevich S, Zilberter M, Zilberter Y. Metabolic correction by pyruvate halts acquired epilepsy in multiple rodent models. Neurobiol Dis 2017; 106:244-254. [PMID: 28709994 DOI: 10.1016/j.nbd.2017.07.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/03/2017] [Accepted: 07/10/2017] [Indexed: 01/22/2023] Open
Abstract
Metabolic intervention strategy of epilepsy treatment has been gaining broader attention due to accumulated evidence that hypometabolism, manifested in humans as reduced brain glucose consumption, is a principal factor in acquired epilepsy. Therefore, targeting deficient energy metabolism may be an effective approach for treating epilepsy. To confront this pathology we utilized pyruvate, which besides being an anaplerotic mitochondrial fuel possesses a unique set of neuroprotective properties as it: (i) is a potent reactive oxygen species scavenger; (ii) abates overactivation of Poly [ADP-ribose] polymerase 1 (PARP-1); (iii) facilitates glutamate efflux from the brain; (iv) augments brain glycogen stores; (v) is anti-inflammatory; (vi) prevents neuronal hyperexcitability; and (vii) normalizes the cytosolic redox state. In vivo, chronic oral pyruvate administration completely abolished established epileptic phenotypes in three accepted and fundamentally different rodent acquired epilepsy models. Our study reports metabolic correction by pyruvate as a potentially highly effective treatment of acquired epilepsies.
Collapse
Affiliation(s)
- I Popova
- Aix Marseille Université, Inserm, INS UMR_S 1106, 13005 Marseille, France; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - A Malkov
- Aix Marseille Université, Inserm, INS UMR_S 1106, 13005 Marseille, France; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - A I Ivanov
- Aix Marseille Université, Inserm, INS UMR_S 1106, 13005 Marseille, France
| | - E Samokhina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - S Buldakova
- Aix Marseille Université, Inserm, INS UMR_S 1106, 13005 Marseille, France
| | - O Gubkina
- Aix Marseille Université, Inserm, INS UMR_S 1106, 13005 Marseille, France
| | - A Osypov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - R S Muhammadiev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | | | - M Molchanov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - S Paskevich
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - M Zilberter
- Neuronal Oscillations Lab, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Y Zilberter
- Aix Marseille Université, Inserm, INS UMR_S 1106, 13005 Marseille, France.
| |
Collapse
|
30
|
Jiruska P, Alvarado-Rojas C, Schevon CA, Staba R, Stacey W, Wendling F, Avoli M. Update on the mechanisms and roles of high-frequency oscillations in seizures and epileptic disorders. Epilepsia 2017; 58:1330-1339. [PMID: 28681378 DOI: 10.1111/epi.13830] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2017] [Indexed: 12/11/2022]
Abstract
High-frequency oscillations (HFOs) are a type of brain activity that is recorded from brain regions capable of generating seizures. Because of the close association of HFOs with epileptogenic tissue and ictogenesis, understanding their cellular and network mechanisms could provide valuable information about the organization of epileptogenic networks and how seizures emerge from the abnormal activity of these networks. In this review, we summarize the most recent advances in the field of HFOs and provide a critical evaluation of new observations within the context of already established knowledge. Recent improvements in recording technology and the introduction of optogenetics into epilepsy research have intensified experimental work on HFOs. Using advanced computer models, new cellular substrates of epileptic HFOs were identified and the role of specific neuronal subtypes in HFO genesis was determined. Traditionally, the pathogenesis of HFOs was explored mainly in patients with temporal lobe epilepsy and in animal models mimicking this condition. HFOs have also been reported to occur in other epileptic disorders and models such as neocortical epilepsy, genetically determined epilepsies, and infantile spasms, which further support the significance of HFOs in the pathophysiology of epilepsy. It is increasingly recognized that HFOs are generated by multiple mechanisms at both the cellular and network levels. Future studies on HFOs combining novel high-resolution in vivo imaging techniques and precise control of neuronal behavior using optogenetics or chemogenetics will provide evidence about the causal role of HFOs in seizures and epileptogenesis. Detailed understanding of the pathophysiology of HFOs will propel better HFO classification and increase their information yield for clinical and diagnostic purposes.
Collapse
Affiliation(s)
- Premysl Jiruska
- Department of Developmental Epileptology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic
| | | | | | - Richard Staba
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, U.S.A
| | - William Stacey
- Department of Neurology, Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, U.S.A
| | - Fabrice Wendling
- Laboratory of Signal and Image Processing, INSERM U1099, Rennes, France.,Laboratoire de Traitement du Signal et de l'Image, University of Rennes 1, Rennes, France
| | - Massimo Avoli
- Montreal Neurological Institute and Departments of Neurology & Neurosurgery and of Physiology, McGill University, Montréal, Québec, Canada.,Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
31
|
Lévesque M, Shiri Z, Chen LY, Avoli M. High-frequency oscillations and mesial temporal lobe epilepsy. Neurosci Lett 2017; 667:66-74. [PMID: 28115239 DOI: 10.1016/j.neulet.2017.01.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 01/25/2023]
Abstract
The interest of epileptologists has recently shifted from the macroscopic analysis of interictal spikes and seizures to the microscopic analysis of short events in the EEG that are not visible to the naked eye but are observed once the signal has been filtered in specific frequency bands. With the use of new technologies that allow multichannel recordings at high sampling rates and the development of computer algorithms that permit the automated analysis of extensive amounts of data, it is now possible to extract high-frequency oscillations (HFOs) between 80 and 500Hz from the EEG; HFOs have been further categorised as ripples (80-200Hz) and fast ripples (250-500Hz). Within the context of epileptic disorders, HFOs should reflect the pathological activity of neural networks that sustain seizure generation, and could serve as biomarkers of epileptogenesis and ictogenesis. We review here the presumptive cellular mechanisms of ripples and fast ripples in mesial temporal lobe epilepsy. We also focus on recent findings regarding the occurrence of HFOs during epileptiform activity observed in in vitro models of epileptiform synchronization, in in vivo models of mesial temporal lobe epilepsy and in epileptic patients. Finally, we address the effects of anti-epileptic drugs on HFOs and raise some questions and issues related to the definition of HFOs.
Collapse
Affiliation(s)
- Maxime Lévesque
- Montreal Neurological Institute and Department of Neurology & Neurosurgery, McGill University, 3801 University Street, Montréal, QC, H3A 2B4, Canada
| | - Zahra Shiri
- Montreal Neurological Institute and Department of Neurology & Neurosurgery, McGill University, 3801 University Street, Montréal, QC, H3A 2B4, Canada
| | - Li-Yuan Chen
- Montreal Neurological Institute and Department of Neurology & Neurosurgery, McGill University, 3801 University Street, Montréal, QC, H3A 2B4, Canada
| | - Massimo Avoli
- Montreal Neurological Institute and Department of Neurology & Neurosurgery, McGill University, 3801 University Street, Montréal, QC, H3A 2B4, Canada.
| |
Collapse
|
32
|
Morris G, Jiruska P, Jefferys JGR, Powell AD. A New Approach of Modified Submerged Patch Clamp Recording Reveals Interneuronal Dynamics during Epileptiform Oscillations. Front Neurosci 2016; 10:519. [PMID: 27881950 PMCID: PMC5101843 DOI: 10.3389/fnins.2016.00519] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/26/2016] [Indexed: 01/22/2023] Open
Abstract
HighlightsSimultaneous epileptiform LFPs and single-cell activity can be recorded in the membrane chamber. Interneuron firing can be linked to epileptiform high frequency activity. Fast ripples, unique to chronic epilepsy, can be modeled in ex vivo tissue from TeNT-treated rats.
Traditionally, visually-guided patch clamp in brain slices using submerged recording conditions has been required to characterize the activity of individual neurons. However, due to limited oxygen availability, submerged conditions truncate fast network oscillations including epileptiform activity. Thus, it is technically challenging to study the contribution of individual identified neurons to fast network activity. The membrane chamber is a submerged-style recording chamber, modified to enhance oxygen supply to the slice, which we use to demonstrate the ability to record single-cell activity during in vitro epilepsy. We elicited epileptiform activity using 9 mM potassium and simultaneously recorded from fluorescently labeled interneurons. Epileptiform discharges were more reliable than in standard submerged conditions. During these synchronous discharges interneuron firing frequency increased and action potential amplitude progressively decreased. The firing of 15 interneurons was significantly correlated with epileptiform high frequency activity (HFA; ~100–500 Hz) cycles. We also recorded epileptiform activity in tissue prepared from chronically epileptic rats, treated with intrahippocampal tetanus neurotoxin. Four of these slices generated fast ripple activity, unique to chronic epilepsy. We showed the membrane chamber is a promising new in vitro environment facilitating patch clamp recordings in acute epilepsy models. Further, we showed that chronic epilepsy can be better modeled using ex vivo brain slices. These findings demonstrate that the membrane chamber facilitates previously challenging investigations into the neuronal correlates of epileptiform activity in vitro.
Collapse
Affiliation(s)
- Gareth Morris
- Neuronal Networks Group, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham Birmingham, UK
| | - Premysl Jiruska
- Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences Prague, Czechia
| | - John G R Jefferys
- Neuronal Networks Group, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham Birmingham, UK
| | - Andrew D Powell
- Neuronal Networks Group, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham Birmingham, UK
| |
Collapse
|
33
|
Shiri Z, Manseau F, Lévesque M, Williams S, Avoli M. Activation of specific neuronal networks leads to different seizure onset types. Ann Neurol 2016; 79:354-65. [PMID: 26605509 DOI: 10.1002/ana.24570] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/12/2015] [Accepted: 11/15/2015] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Ictal events occurring in temporal lobe epilepsy patients and in experimental models mimicking this neurological disorder can be classified, based on their onset pattern, into low-voltage, fast versus hypersynchronous onset seizures. It has been suggested that the low-voltage, fast onset pattern is mainly contributed by interneuronal (γ-aminobutyric acidergic) signaling, whereas the hypersynchronous onset involves the activation of principal (glutamatergic) cells. METHODS Here, we tested this hypothesis using the optogenetic control of parvalbumin-positive or somatostatin-positive interneurons and of calmodulin-dependent, protein kinase-positive, principal cells in the mouse entorhinal cortex in the in vitro 4-aminopyridine model of epileptiform synchronization. RESULTS We found that during 4-aminopyridine application, both spontaneous seizure-like events and those induced by optogenetic activation of interneurons displayed low-voltage, fast onset patterns that were associated with a higher occurrence of ripples than of fast ripples. In contrast, seizures induced by the optogenetic activation of principal cells had a hypersynchronous onset pattern with fast ripple rates that were higher than those of ripples. INTERPRETATION Our results firmly establish that under a similar experimental condition (ie, bath application of 4-aminopyridine), the initiation of low-voltage, fast and of hypersynchronous onset seizures in the entorhinal cortex depends on the preponderant involvement of interneuronal and principal cell networks, respectively.
Collapse
Affiliation(s)
- Zahra Shiri
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, and Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Frédéric Manseau
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Maxime Lévesque
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, and Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Sylvain Williams
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Massimo Avoli
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, and Department of Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
34
|
Ritaccio A, Matsumoto R, Morrell M, Kamada K, Koubeissi M, Poeppel D, Lachaux JP, Yanagisawa Y, Hirata M, Guger C, Schalk G. Proceedings of the Seventh International Workshop on Advances in Electrocorticography. Epilepsy Behav 2015; 51:312-20. [PMID: 26322594 PMCID: PMC4593746 DOI: 10.1016/j.yebeh.2015.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 10/23/2022]
Abstract
The Seventh International Workshop on Advances in Electrocorticography (ECoG) convened in Washington, DC, on November 13-14, 2014. Electrocorticography-based research continues to proliferate widely across basic science and clinical disciplines. The 2014 workshop highlighted advances in neurolinguistics, brain-computer interface, functional mapping, and seizure termination facilitated by advances in the recording and analysis of the ECoG signal. The following proceedings document summarizes the content of this successful multidisciplinary gathering.
Collapse
Affiliation(s)
| | - Riki Matsumoto
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | - David Poeppel
- Max-Planck-Institute, Frankfurt, Germany,New York University, New York, NY, USA
| | - Jean-Philippe Lachaux
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, University Lyon I, Lyon, France
| | - Yakufumi Yanagisawa
- Graduate School of Medicine, Osaka University, Osaka, Japan,ATR Computational Neuroscience Laboratories, Kyoto, Japan
| | | | | | - Gerwin Schalk
- Albany Medical College, Albany, NY, USA,Wadsworth Center, New York State Department of Health, Albany, NY, USA
| |
Collapse
|
35
|
Ortiz F, Gutiérrez R. Entorhinal cortex lesions result in adenosine-sensitive high frequency oscillations in the hippocampus. Exp Neurol 2015; 271:319-28. [DOI: 10.1016/j.expneurol.2015.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/19/2015] [Accepted: 06/07/2015] [Indexed: 12/17/2022]
|
36
|
Desai SA, Rolston JD, McCracken CE, Potter SM, Gross RE. Asynchronous Distributed Multielectrode Microstimulation Reduces Seizures in the Dorsal Tetanus Toxin Model of Temporal Lobe Epilepsy. Brain Stimul 2015; 9:86-100. [PMID: 26607483 DOI: 10.1016/j.brs.2015.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/09/2015] [Accepted: 08/14/2015] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Electrical brain stimulation has shown promise for reducing seizures in drug-resistant epilepsy, but the electrical stimulation parameter space remains largely unexplored. New stimulation parameters, electrode types, and stimulation targets may be more effective in controlling seizures compared to currently available options. HYPOTHESIS We hypothesized that a novel electrical stimulation approach involving distributed multielectrode microstimulation at the epileptic focus would reduce seizure frequency in the tetanus toxin model of temporal lobe epilepsy. METHODS We explored a distributed multielectrode microstimulation (DMM) approach in which electrical stimulation was delivered through 15 33-µm-diameter electrodes implanted at the epileptic focus (dorsal hippocampus) in the rat tetanus toxin model of temporal lobe epilepsy. RESULTS We show that hippocampal theta (6-12 Hz brain oscillations) is decreased in this animal model during awake behaving conditions compared to control animals (p < 10(-4)). DMM with biphasic, theta-range (6-12 Hz/electrode) pulses delivered asynchronously on the 15 microelectrodes was effective in reducing seizures by 46% (p < 0.05). When theta pulses or sinusoidal stimulation was delivered synchronously and continuously on the 15 microelectrodes, or through a single macroelectrode, no effects on seizure frequency were observed. High frequency stimulation (>16.66 Hz/per electrode), in contrast, had a tendency to increase seizure frequency. CONCLUSIONS These results indicate that DMM could be a new effective approach to therapeutic brain stimulation for reducing seizures in epilepsy.
Collapse
Affiliation(s)
- Sharanya Arcot Desai
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, USA; Laboratory for Neuroengineering, Georgia Institute of Technology, Atlanta, USA
| | - John D Rolston
- Department of Neurological Surgery, University of California, San Francisco, USA
| | | | - Steve M Potter
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, USA; Laboratory for Neuroengineering, Georgia Institute of Technology, Atlanta, USA
| | - Robert E Gross
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, USA; Department of Neurosurgery, Emory University School of Medicine, Atlanta, USA.
| |
Collapse
|
37
|
Altered sensory processing and dendritic remodeling in hyperexcitable visual cortical networks. Brain Struct Funct 2015; 221:2919-36. [PMID: 26163822 DOI: 10.1007/s00429-015-1080-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 07/01/2015] [Indexed: 01/20/2023]
Abstract
Epilepsy is characterized by impaired circuit function and a propensity for spontaneous seizures, but how plastic rearrangements within the epileptic focus trigger cortical dysfunction and hyperexcitability is only partly understood. Here we have examined alterations in sensory processing and the underlying biochemical and neuroanatomical changes in tetanus neurotoxin (TeNT)-induced focal epilepsy in mouse visual cortex. We documented persistent epileptiform electrographic discharges and upregulation of GABAergic markers at the completion of TeNT effects. We also found a significant remodeling of the dendritic arbors of pyramidal neurons, with increased dendritic length and branching, and overall reduction in spine density but significant preservation of mushroom, mature spines. Functionally, spontaneous neuronal discharge was increased, visual responses were less reliable, and electrophysiological and behavioural visual acuity was consistently impaired in TeNT-injected mice. These data demonstrate robust, long-term remodeling of both inhibitory and excitatory circuitry associated with specific disturbances of network function in neocortical epilepsy.
Collapse
|
38
|
Frost JD, Le JT, Lee CL, Ballester-Rosado C, Hrachovy RA, Swann JW. Vigabatrin therapy implicates neocortical high frequency oscillations in an animal model of infantile spasms. Neurobiol Dis 2015; 82:1-11. [PMID: 26026423 DOI: 10.1016/j.nbd.2015.04.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 03/24/2015] [Accepted: 04/17/2015] [Indexed: 10/23/2022] Open
Abstract
Abnormal high frequency oscillations (HFOs) in EEG recordings are thought to be reflections of mechanisms responsible for focal seizure generation in the temporal lobe and neocortex. HFOs have also been recorded in patients and animal models of infantile spasms. If HFOs are important contributors to infantile spasms then anticonvulsant drugs that suppress these seizures should decrease the occurrence of HFOs. In experiments reported here, we used long-term video/EEG recordings with digital sampling rates capable of capturing HFOs. We tested the effectiveness of vigabatrin (VGB) in the TTX animal model of infantile spasms. VGB was found to be quite effective in suppressing spasms. In 3 of 5 animals, spasms ceased after a daily two week treatment. In the other 2 rats, spasm frequency dramatically decreased but gradually increased following treatment cessation. In all animals, hypsarrhythmia was abolished by the last treatment day. As VGB suppressed the frequency of spasms, there was a decrease in the intensity of the behavioral spasms and the duration of the ictal EEG event. Analysis showed that there was a burst of high frequency activity at ictal onset, followed by a later burst of HFOs. VGB was found to selectively suppress the late HFOs of ictal complexes. VGB also suppressed abnormal HFOs recorded during the interictal periods. Thus VGB was found to be effective in suppressing both the generation of spasms and hypsarrhythmia in the TTX model. Vigabatrin also appears to preferentially suppress the generation of abnormal HFOs, thus implicating neocortical HFOs in the infantile spasms disease state.
Collapse
Affiliation(s)
- James D Frost
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - John T Le
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Chong L Lee
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Carlos Ballester-Rosado
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Richard A Hrachovy
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA; The Michael E. Debakey Veterans Affairs Medical Center, Houston, TX, USA
| | - John W Swann
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
39
|
Abstract
PURPOSE Pharmacotherapy of epilepsies is limited due to low concentrations at epileptogenic foci, side effects of high systemic doses and that some potentially efficient substances do not pass the blood-brain barrier. To overcome these limitations, we tested the efficacy of local valproate (VPA)-containing polymer implants in a model of necocortical injected tetanus toxin (TeT) in the rat. METHODS Tetanus toxin was injected intracortically and cobalt (II) chloride (CoCl2) was applied on the cortical surface. Video-electrocorticography recordings with intracortical electrodes were performed. VPA-containing polymers were implanted above the cortical focus. Antiepileptic effects were evaluated as reductions of epileptiform potentials (EPs) per hour in comparison to saline (NaCl)-containing polymer implants. RESULTS Triple 50ng TeT injections plus CoCl2 application (20/10mg) showed consistent EPs. NaCl-implanted animals (n=6) showed a mean of 10.5EPs/h after the first week, the EP frequency increased to 53.5EPs/h after the second week. VPA-implant animals (n=5) showed a reduction in EP frequency from 71.6 to 4.8EPs/h after the second week. The EP frequency after the second week was higher in the NaCl-implanted animals than in the VPA-implanted (p=0.0303). The mean EPs/h increase in NaCl-implanted rats (+42.9EPs/h) was different (p=0.0087) from the mean EPs/h decrease in VPA-implanted rats (-66.8EPs/h). CONCLUSION Despite former publications no clear seizures could be reproduced but it was possible to establish focal EPs, which proved to be a reliable marker for epileptic activity. Local antiepileptic therapy with VPA has shown efficacy in decreasing EP frequency.
Collapse
|
40
|
Depaulis A, Hamelin S. Animal models for mesiotemporal lobe epilepsy: The end of a misunderstanding? Rev Neurol (Paris) 2015; 171:217-26. [DOI: 10.1016/j.neurol.2015.01.558] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/20/2015] [Indexed: 01/24/2023]
|
41
|
Nieto-Rostro M, Sandhu G, Bauer CS, Jiruska P, Jefferys JGR, Dolphin AC. Altered expression of the voltage-gated calcium channel subunit α₂δ-1: a comparison between two experimental models of epilepsy and a sensory nerve ligation model of neuropathic pain. Neuroscience 2014; 283:124-37. [PMID: 24641886 PMCID: PMC4259901 DOI: 10.1016/j.neuroscience.2014.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/03/2014] [Accepted: 03/09/2014] [Indexed: 12/20/2022]
Abstract
The auxiliary α2δ-1 subunit of voltage-gated calcium channels is up-regulated in dorsal root ganglion neurons following peripheral somatosensory nerve damage, in several animal models of neuropathic pain. The α2δ-1 protein has a mainly presynaptic localization, where it is associated with the calcium channels involved in neurotransmitter release. Relevant to the present study, α2δ-1 has been shown to be the therapeutic target of the gabapentinoid drugs in their alleviation of neuropathic pain. These drugs are also used in the treatment of certain epilepsies. In this study we therefore examined whether the level or distribution of α2δ-1 was altered in the hippocampus following experimental induction of epileptic seizures in rats, using both the kainic acid model of human temporal lobe epilepsy, in which status epilepticus is induced, and the tetanus toxin model in which status epilepticus is not involved. The main finding of this study is that we did not identify somatic overexpression of α2δ-1 in hippocampal neurons in either of the epilepsy models, unlike the upregulation of α2δ-1 that occurs following peripheral nerve damage to both somatosensory and motor neurons. However, we did observe local reorganization of α2δ-1 immunostaining in the hippocampus only in the kainic acid model, where it was associated with areas of neuronal cell loss, as indicated by absence of NeuN immunostaining, dendritic loss, as identified by areas where microtubule-associated protein-2 immunostaining was missing, and reactive gliosis, determined by regions of strong OX42 staining.
Collapse
Affiliation(s)
- M Nieto-Rostro
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - G Sandhu
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - C S Bauer
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - P Jiruska
- Neuronal Networks Group, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | - J G R Jefferys
- Neuronal Networks Group, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | - A C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
42
|
Pardo-Peña K, Medina-Ceja L, Morales-Villagrán A. Serotonin modulates fast ripple activity in rats with spontaneous recurrent seizures. Brain Res 2014; 1583:211-9. [DOI: 10.1016/j.brainres.2014.07.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 07/25/2014] [Accepted: 07/30/2014] [Indexed: 01/15/2023]
|
43
|
Cho JR, Koo DL, Joo EY, Seo DW, Hong SC, Jiruska P, Hong SB. Resection of individually identified high-rate high-frequency oscillations region is associated with favorable outcome in neocortical epilepsy. Epilepsia 2014; 55:1872-83. [DOI: 10.1111/epi.12808] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Jounhong Ryan Cho
- Department of Neurology; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
- Samsung Biomedical Research Institute; Seoul Korea
- Division of Computation and Neural Systems; California Institute of Technology; Pasadena California U.S.A
| | - Dae Lim Koo
- Department of Neurology; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
- Department of Neurology; Seoul National University Boramae Hospital; Seoul Korea
| | - Eun Yeon Joo
- Department of Neurology; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Dae Won Seo
- Department of Neurology; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Seung-Chyul Hong
- Department of Neurosurgery; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Premysl Jiruska
- Department of Developmental Epileptology; Institute of Physiology; Academy of Sciences of Czech Republic; Prague Czech Republic
- Department of Neurology; 2nd School of Medicine; University Hospital Motol Prague; Charles University; Prague Czech Republic
| | - Seung Bong Hong
- Department of Neurology; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
- Samsung Biomedical Research Institute; Seoul Korea
| |
Collapse
|
44
|
Park SC, Lee SK, Chung CK. Peri-ictal broadband electrocorticographic activities between 1 and 700 Hz and seizure onset zones in 18 patients. Clin Neurophysiol 2014; 125:1731-43. [PMID: 24581754 DOI: 10.1016/j.clinph.2014.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 12/08/2013] [Accepted: 01/14/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVE We investigated the relationship between locations of broadband peri-ictal electrocorticographic activities determined by a semi-automatic detection method and seizure onset zones in medically intractable epilepsy patients. METHODS We included 18 patients. Peri-ictal periods (-15 to +5s from the ictal onset) were divided into 4 periods of 5s duration each in bandwidth from 1 to 700 Hz divided into 11 bins. Thereafter, we calculated the mean overlapping percentage of the maximum amplitude activity electrodes with the seizure onset zone in the total number of seizures in each patient. Significance was considered at an adjusted p-value of 0.05. RESULTS By the maximum amplitude method with the Bonferroni correction, only high-frequency activities (>60 Hz) during -5 to 0 s from the ictal onset were significantly related to seizure onset zones. In post hoc analyses, bands in 60-139 Hz and 4-7 Hz were significantly related to seizure onset zones in the Bonferroni correction. However, after the less conservative Benjamini-Yekutieli correction and with the epileptogenicity index, other bands and periods after -10s from the ictal onset were also related with seizure onset zones. SIGNIFICANCE Detailed bands, timings and analytic methods of peri-ictal activities with high relationships to seizure onset zones were identified.
Collapse
Affiliation(s)
- Seong-Cheol Park
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang Kun Lee
- Department of Neurology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chun Kee Chung
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Magnetoencephalography Centre, Seoul National University Hospital, Seoul, Republic of Korea; Neuroscience Research Institute, Seoul National University Medical Research Centre, Seoul, Republic of Korea.
| |
Collapse
|
45
|
Patel KS, Zhao M, Ma H, Schwartz TH. Imaging preictal hemodynamic changes in neocortical epilepsy. Neurosurg Focus 2014; 34:E10. [PMID: 23544406 DOI: 10.3171/2013.1.focus12408] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The ability to predict seizure occurrence is extremely important to trigger abortive therapies and to warn patients and their caregivers. Optical imaging of hemodynamic parameters such as blood flow, blood volume, and tissue and hemoglobin oxygenation has already been shown to successfully localize epileptic events with high spatial and temporal resolution. The ability to actually predict seizure occurrence using hemodynamic parameters is less well explored. METHODS In this article, the authors critically review data from the literature on neocortical epilepsy and optical imaging, and they discuss the preictal hemodynamic changes and their application in neurosurgery. RESULTS Recent optical mapping studies have demonstrated preictal hemodynamic changes in both human and animal neocortex. CONCLUSIONS Optical measurements of blood flow and oxygenation may become increasingly important for predicting and localizing epileptic events. The ability to successfully predict ictal onsets may be useful to trigger closed-loop abortive therapies.
Collapse
Affiliation(s)
- Kunal S Patel
- Department of Neurological Surgery, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, New York 10065, USA
| | | | | | | |
Collapse
|
46
|
Ferecskó AS, Jiruska P, Foss L, Powell AD, Chang WC, Sik A, Jefferys JGR. Structural and functional substrates of tetanus toxin in an animal model of temporal lobe epilepsy. Brain Struct Funct 2014; 220:1013-29. [PMID: 24442865 PMCID: PMC4341026 DOI: 10.1007/s00429-013-0697-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 12/26/2013] [Indexed: 11/30/2022]
Abstract
The effects of tetanus toxin (TeNT) both in the spinal cord, in clinical tetanus, and in the brain, in experimental focal epilepsy, suggest disruption of inhibitory synapses. TeNT is a zinc protease with selectivity for Vesicle Associated Membrane Protein (VAMP; previously synaptobrevin), with a reported selectivity for VAMP2 in rats. We found spatially heterogeneous expression of VAMP1 and VAMP2 in the hippocampus. Inhibitory terminals in stratum pyramidale expressed significantly more VAMP1 than VAMP2, while glutamatergic terminals in stratum radiatum expressed significantly more VAMP2 than VAMP1. Intrahippocampal injection of TeNT at doses that induce epileptic foci cleaved both isoforms in tissue around the injection site. The cleavage was modest at 2 days after injection and more substantial and extensive at 8 and 16 days. Whole-cell recordings from CA1 pyramidal cells close to the injection site, made 8-16 days after injection, showed that TeNT decreases spontaneous EPSC frequency to 38 % of control and VAMP2 immunoreactive axon terminals to 37 %. In contrast, TeNT almost completely abolished both spontaneous and evoked IPSCs while decreasing VAMP1 axon terminals to 45 %. We conclude that due to the functional selectivity of the toxin to the relative sparing of excitatory synaptic transmission shifts the network to pathogenically excitable state causing epilepsy.
Collapse
Affiliation(s)
- Alex S Ferecskó
- Neuronal Networks Group, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | | | | | | | | | | | | |
Collapse
|
47
|
Jefferys JGR. Are Changes in Synaptic Function That Underlie Hyperexcitability Responsible for Seizure Activity? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 813:185-94. [DOI: 10.1007/978-94-017-8914-1_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
|
49
|
Simon A, Traub RD, Vladimirov N, Jenkins A, Nicholson C, Whittaker RG, Schofield I, Clowry GJ, Cunningham MO, Whittington MA. Gap junction networks can generate both ripple-like and fast ripple-like oscillations. Eur J Neurosci 2013; 39:46-60. [PMID: 24118191 DOI: 10.1111/ejn.12386] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 09/03/2013] [Accepted: 09/10/2013] [Indexed: 11/30/2022]
Abstract
Fast ripples (FRs) are network oscillations, defined variously as having frequencies of > 150 to > 250 Hz, with a controversial mechanism. FRs appear to indicate a propensity of cortical tissue to originate seizures. Here, we demonstrate field oscillations, at up to 400 Hz, in spontaneously epileptic human cortical tissue in vitro, and present a network model that could explain FRs themselves, and their relation to 'ordinary' (slower) ripples. We performed network simulations with model pyramidal neurons, having axons electrically coupled. Ripples (< 250 Hz) were favored when conduction of action potentials, axon to axon, was reliable. Whereas ripple population activity was periodic, firing of individual axons varied in relative phase. A switch from ripples to FRs took place when an ectopic spike occurred in a cell coupled to another cell, itself multiply coupled to others. Propagation could then start in one direction only, a condition suitable for re-entry. The resulting oscillations were > 250 Hz, were sustained or interrupted, and had little jitter in the firing of individual axons. The form of model FR was similar to spontaneously occurring FRs in excised human epileptic tissue. In vitro, FRs were suppressed by a gap junction blocker. Our data suggest that a given network can produce ripples, FRs, or both, via gap junctions, and that FRs are favored by clusters of axonal gap junctions. If axonal gap junctions indeed occur in epileptic tissue, and are mediated by connexin 26 (recently shown to mediate coupling between immature neocortical pyramidal cells), then this prediction is testable.
Collapse
Affiliation(s)
- Anna Simon
- Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Jiruska P, Shtaya AB, Bodansky DM, Chang WC, Gray WP, Jefferys JG. Dentate gyrus progenitor cell proliferation after the onset of spontaneous seizures in the tetanus toxin model of temporal lobe epilepsy. Neurobiol Dis 2013; 54:492-8. [PMID: 23439313 PMCID: PMC3635088 DOI: 10.1016/j.nbd.2013.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 01/18/2013] [Accepted: 02/06/2013] [Indexed: 12/20/2022] Open
Abstract
Temporal lobe epilepsy alters adult neurogenesis. Existing experimental evidence is mainly from chronic models induced by an initial prolonged status epilepticus associated with substantial cell death. In these models, neurogenesis increases after status epilepticus. To test whether status epilepticus is necessary for this increase, we examined precursor cell proliferation and neurogenesis after the onset of spontaneous seizures in a model of temporal lobe epilepsy induced by unilateral intrahippocampal injection of tetanus toxin, which does not cause status or, in most cases, detectable neuronal loss. We found a 4.5 times increase in BrdU labeling (estimating precursor cells proliferating during the 2nd week after injection of toxin and surviving at least up to 7days) in dentate gyri of both injected and contralateral hippocampi of epileptic rats. Radiotelemetry revealed that the rats experienced 112±24 seizures, lasting 88±11s each, over a period of 8.6±1.3days from the first electrographic seizure. On the first day of seizures, their duration was a median of 103s, and the median interictal period was 23min, confirming the absence of experimentally defined status epilepticus. The total increase in cell proliferation/survival was due to significant population expansions of: radial glial-like precursor cells (type I; 7.2×), non-radial type II/III neural precursors in the dentate gyrus stem cell niche (5.6×), and doublecortin-expressing neuroblasts (5.1×). We conclude that repeated spontaneous brief temporal lobe seizures are sufficient to promote increased hippocampal neurogenesis in the absence of status epilepticus.
Collapse
Affiliation(s)
- Premysl Jiruska
- Neuronal Networks Group, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
- Department of Developmental Epileptology, Institute of Physiology, Academy of Sciences of Czech Republic, Prague, CZ-14220, Czech Republic
- Department of Neurology, Charles University, 2nd School of Medicine, University Hospital Motol, Prague, CZ-15006, Czech Republic
| | - Anan B.Y. Shtaya
- Wessex Neurological Centre, Southampton University Hospital Trust, Southampton, SO16 6YD, UK
- School of Medicine (Clinical Neurosciences), Faculty of Medicine, Health and Life Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - David M.S. Bodansky
- Neuronal Networks Group, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | - Wei-Chih Chang
- Neuronal Networks Group, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | - William P. Gray
- School of Medicine (Clinical Neurosciences), Faculty of Medicine, Health and Life Sciences, University of Southampton, Southampton, SO16 6YD, UK
- National Institute of Neuroscience and Mental Health Research, LGF — Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK
| | - John G.R. Jefferys
- Neuronal Networks Group, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|