1
|
Claus JJ, Rosbergen MT, Labrecque JA, Vernooij MW, Wolters FJ, Ikram MA. Mediation of the Association Between APOE ε4 Genotype, Cognition, and Dementia by Neuropathology Imaging Markers in the Rotterdam Study. Neurology 2025; 104:e213679. [PMID: 40344552 PMCID: PMC12063243 DOI: 10.1212/wnl.0000000000213679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 03/19/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Insight into APOE-related pathways is important to unravel pathophysiology and identify therapeutic targets against late-life cognitive decline. We aimed to estimate mediators of APOE ε4 on cognition and dementia through different disease markers on structural in vivo brain imaging. METHODS All participants from the population-based Rotterdam Study who underwent brain MRI between 2005 and 2009 were included. Cognition was assessed cross-sectionally during center visits, and participants were followed up for incident dementia until January 1, 2020. Imaging markers included hippocampal volume (HV), volume of white matter hyperintensities (WMHs), Alzheimer disease-specific regional cortical thickness, and presence of ≥2 cerebral microbleeds. We performed causal mediation analyses to decompose the total effect of APOE ε4 carriership on cognition and dementia into natural direct and indirect effects and corresponding percentage mediated. We adjusted models for potential confounders. RESULTS Among 5,510 participants (mean age at time of MRI scan: 65.0 [±10.9] years, 55.0% women), 349 developed dementia, of whom 148 were ε4 carriers. Carriers of ε4 had slightly lower Z-scores for global cognition (β = -0.02 [-0.07 to 0.02], age-related cognitive decline = 4.4 months), with 7% (β = -0.00 [0.00-0.00]) of this association mediated by HV and 4% (β = -0.00 [-0.01 to 0.00]) by cortical thickness. In total, an estimated 25% of the effect of ε4 on cognition was mediated by microbleeds (p value = 0.24, [β = -0.00 {-0.01 to 0.00}]) and 12% by WMHs (p value = 0.44, [β = -0.00 {-0.01 to 0.00}]). In multiple mediator analyses, WMHs and microbleeds together accounted for 27% of the mediated effect of APOE ε4 on cognition (p value = 0.48). Carriers of ε4 had higher risk of incident dementia (HR 2.35 [95% CI 2.06-2.65]). For dementia, there was little to no evidence of mediation by either HV (3%, p value = 0.09, OR = 1.01 [1.00-1.03]) or regional cortical thickness (0%, p value = 0.79, OR = 1.00 [0.99-1.02]). In total, 1% of the effect of ε4 on dementia was mediated by WMHs (p value 0.29, OR = 1.00 [1.00-1.02]) and 5% by microbleeds (p value = 0.06), OR = 1.03 (1.00-1.07). In multiple mediator analyses, all 4 imaging markers together explained 6% of the mediated effect on incident dementia (p value = 0.04). DISCUSSION In this population-based cohort study, we found that an estimated one-fourth of the effect of APOE ε4 on cognition is mediated by structural brain imaging markers, driven mainly by cerebral microbleeds. For dementia, mediation by these markers was limited.
Collapse
Affiliation(s)
- Jacqueline J Claus
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands; and
- Department of Radiology & Nuclear Medicine and Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Mathijs T Rosbergen
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands; and
- Department of Radiology & Nuclear Medicine and Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Jeremy A Labrecque
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands; and
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands; and
- Department of Radiology & Nuclear Medicine and Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Frank J Wolters
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands; and
- Department of Radiology & Nuclear Medicine and Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Mohammad Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands; and
| |
Collapse
|
2
|
Siddiqui F, Mishra P, Khanam S, Ranjan S, Alam P, Albalawi T, Khan S, Mir SS. Nano-Chaperones: Bridging Therapeutics for Amyloid Aggregation in Alzheimer's Disease and Type-2 Diabetes Mellitus. Eur J Neurosci 2025; 61:e70142. [PMID: 40384055 DOI: 10.1111/ejn.70142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/12/2025] [Accepted: 05/01/2025] [Indexed: 05/20/2025]
Abstract
Nano-chaperones represent an innovative therapeutic approach targeting amyloid aggregation in Alzheimer's disease (AD) and Type-2 diabetes mellitus (T2DM), two diseases linked by similar pathogenic mechanisms involving protein misfolding and insulin resistance. Current treatments primarily address symptoms, yet nano-chaperones can potentially intervene at the molecular level by mimicking natural chaperone proteins to prevent or reverse amyloid aggregation. In AD, nano-chaperones target amyloid-beta (Aβ) peptides, reducing neurotoxicity and preserving neuronal function, while in T2DM, they inhibit islet amyloid polypeptide (IAPP) aggregation, alleviating cytotoxic stress on pancreatic β-cells. These nanoparticles exhibit a dual capacity for cellular penetration and selectivity in interacting with misfolded proteins, showing promise in mitigating the shared amyloidogenic pathways of both diseases. Preclinical studies have demonstrated significant reductions in amyloid toxicity with potential applications in crossing the blood-brain barrier (BBB) to enhance central nervous system (CNS) delivery. Nano-chaperones transformative role in developing multi-targeted precision therapies for complex diseases is highlighted, underscoring their capacity to modulate disease progression through targeted biomimetic interactions. Nano-chaperone designs for clinical application focus on enhancing therapeutic efficacy and safety. This innovative approach may redefine treatment paradigms for amyloid-related diseases, offering a new frontier in personalized medicine.
Collapse
Affiliation(s)
- Faiza Siddiqui
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Pooja Mishra
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Sheeba Khanam
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Sachin Ranjan
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Thamer Albalawi
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Salman Khan
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Snober S Mir
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
3
|
McGeachan RI, Meftah S, Taylor LW, Catterson JH, Negro D, Bonthron C, Holt K, Tulloch J, Rose JL, Gobbo F, Chang YY, Elliott J, McLay L, King D, Liaquat I, Spires-Jones TL, Booker SA, Brennan PM, Durrant CS. Divergent actions of physiological and pathological amyloid-β on synapses in live human brain slice cultures. Nat Commun 2025; 16:3753. [PMID: 40307257 PMCID: PMC12044016 DOI: 10.1038/s41467-025-58879-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
In Alzheimer's disease, amyloid beta (Aβ) and tau pathology are thought to drive synapse loss. However, there is limited information on how endogenous levels of tau, Aβ and other biomarkers relate to patient characteristics, or how manipulating physiological levels of Aβ impacts synapses in living adult human brain. Using live human brain slice cultures, we report that Aβ1-40 and tau release levels vary with donor age and brain region, respectively. Release of other biomarkers such as KLK-6, NCAM-1, and Neurogranin vary between brain region, while TDP-43 and NCAM-1 release is impacted by sex. Pharmacological manipulation of Aβ in either direction results in a loss of synaptophysin puncta, with increased physiological Aβ triggering potentially compensatory synaptic transcript changes. In contrast, treatment with Aβ-containing Alzheimer's disease brain extract results in post-synaptic Aβ uptake and pre-synaptic puncta loss without affecting synaptic transcripts. These data reveal distinct effects of physiological and pathological Aβ on synapses in human brain tissue.
Collapse
Affiliation(s)
- Robert I McGeachan
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
- The Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
| | - Soraya Meftah
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Lewis W Taylor
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - James H Catterson
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Danilo Negro
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Calum Bonthron
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Kristján Holt
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Jane Tulloch
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Jamie L Rose
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Francesco Gobbo
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Ya Yin Chang
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Jamie Elliott
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Lauren McLay
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Declan King
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Imran Liaquat
- Department of Clinical Neuroscience, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, UK
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Sam A Booker
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, The University of Edinburgh, Edinburgh, UK
| | - Paul M Brennan
- Department of Clinical Neuroscience, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, UK
- Translational Neurosurgery, The Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Cancer Research UK Brain Tumour Centre of Excellence, CRUK Edinburgh Centre, The University of Edinburgh, Edinburgh, UK
| | - Claire S Durrant
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK.
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
4
|
Zhou X, Jing XJ, Zhang H. The Potential Role of Neurogranin in Alzheimer's Disease. J Integr Neurosci 2025; 24:25368. [PMID: 40152561 DOI: 10.31083/jin25368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/29/2024] [Accepted: 09/23/2024] [Indexed: 03/29/2025] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is characterized by the excessive deposition of amyloid-β (Aβ) plaques and the formation of neurofibrillary tangles. Numerous new studies also indicate that synaptic damage and loss play crucial roles in AD and form the basis of cognitive impairment. In recent years, synaptic-related proteins have emerged as important biomarkers for the early diagnosis of AD. Among these proteins, neurogranin (Ng), a postsynaptic protein widely present in the dendritic spines of the associative cortex in the brain, plays a significant role in memory, learning, synaptic plasticity, and long-term potentiation (LTP). This review aims to reveal the link between Ng and AD, as well as the potential for the diagnosis of AD, the prediction of the development of the disease, and the identification of a therapeutic target for AD.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China
| | - Xiao-Jun Jing
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China
| | - Hua Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China
| |
Collapse
|
5
|
Hadzibegovic S, Bontempi B, Nicole O. Investigating the Impact of NMDA Receptor Organization and Biological Sex in the APPswe/PS1dE9 Mouse Model of Alzheimer's Disease. Int J Mol Sci 2025; 26:1737. [PMID: 40004200 PMCID: PMC11855313 DOI: 10.3390/ijms26041737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by memory loss and cognitive decline, with women being disproportionately affected in both prevalence and severity. A key feature of AD is synaptic loss, particularly around amyloid-β (Aβ) aggregates, which correlates strongly with the severity of dementia. Oligomeric Aβ is believed to be the primary driver of synaptic dysfunction by impairing excitatory neurotransmission through interactions with synaptic receptors, including N-methyl-D-aspartate (NMDA) receptors. However, the influence of sex on these synaptic changes and NMDA receptor mislocalization in AD is not well understood. This study examined potential sex-specific differences in synaptotoxicity and the role of extrasynaptic GluN2B-containing NMDA receptors in AD pathogenesis using the APP/PS1 double transgenic mouse model. Although both male and female mice showed a similar amyloid burden and cognitive impairments, synaptic alterations were slightly less severe in females, suggesting subtle sex differences in synaptic pathology. Both sexes exhibited the mislocalization of GluN2B subunits to extrasynaptic areas, which was linked to reduced PSD-95 levels and the synaptic accumulation of Aβ1-42. Intrahippocampal injections of DL-TBOA confirmed the role of extrasynaptic GluN2B-containing NMDA receptors in memory dysfunction. These findings emphasize the importance of targeting synaptic receptor trafficking to address AD-related memory deficits, potentially offering a therapeutic approach for both sexes.
Collapse
Affiliation(s)
- Senka Hadzibegovic
- Neurocentre Magendie, INSERM U1215, 33077 Bordeaux, France;
- University of Bordeaux, 33077 Bordeaux, France;
| | - Bruno Bontempi
- University of Bordeaux, 33077 Bordeaux, France;
- Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, CNRS UMR 5287, 33000 Bordeaux, France
| | - Olivier Nicole
- University of Bordeaux, 33077 Bordeaux, France;
- Institut Interdisciplinaire de Neurosciences, CNRS, UMR 5297, 33077 Bordeaux, France
| |
Collapse
|
6
|
Mikkelsen JD, Linde-Atkins P, Pazarlar BA. Higher level of [ 3H]UCB-J binding in ApoE Ɛ4 allele carriers with Alzheimer disease. Neurosci Lett 2025; 849:138135. [PMID: 39900278 DOI: 10.1016/j.neulet.2025.138135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/05/2025]
Abstract
Neuronal and synapse losses are seen under the progression of Alzheimer's disease (AD). Accordingly, the binding to the synaptic vesicle glycoprotein 2A (SV2A) using the selective radioligand [3H]UCB-J was found to be reduced in frontal cortex from patients with AD. We report here that the reduction in SV2A binding is highly significant only in patients not carrying the ApoE ɛ4 allele. By contrast, those individuals with one or two ApoE ɛ4 alleles had SV2A binding levels not different from controls. Because ApoE4 is an important genetic risk and strongly linked to late-onset AD, this study raises an interesting new and unexpected association to SV2A, synapse loss, and function.
Collapse
Affiliation(s)
- Jens D Mikkelsen
- Neurobiology Research Unit University Hospital Rigshospitalet Copenhagen Denmark; Institute of Neuroscience University of Copenhagen Denmark.
| | - Phoebe Linde-Atkins
- Neurobiology Research Unit University Hospital Rigshospitalet Copenhagen Denmark
| | - Burcu A Pazarlar
- Neurobiology Research Unit University Hospital Rigshospitalet Copenhagen Denmark; Institute of Neuroscience University of Copenhagen Denmark
| |
Collapse
|
7
|
Krishnamurthy HK, Jayaraman V, Krishna K, Wang T, Bei K, Changalath C, Rajasekaran JJ. An overview of the genes and biomarkers in Alzheimer's disease. Ageing Res Rev 2025; 104:102599. [PMID: 39612989 DOI: 10.1016/j.arr.2024.102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Alzheimer's disease (AD) is the most common type of dementia and neurodegenerative disease characterized by neurofibrillary tangles (NFTs) and amyloid plaque. Familial AD is caused by mutations in the APP, PSEN1, and PSEN2 genes and these mutations result in the early onset of the disease. Sporadic AD usually affects older adults over the age of 65 years and is, therefore classified as late-onset AD (LOAD). Several risk factors associated with LOAD including the APOE gene have been identified. Moreover, GWAS studies have identified a wide array of genes and polymorphisms that are associated with LOAD risk. Currently, the diagnosis of AD involves the evaluation of memory and personality changes, cognitive impairment, and medical and family history to rule out other diseases. Laboratory tests to assess the biomarkers in the body fluids as well as MRI, CT, and PET scans to analyze the presence of plaques and NFTs are also included in the diagnosis of AD. It is important to diagnose AD before the onset of clinical symptoms, i.e. during the preclinical stage, to delay the progression and for better management of the disease. Research has been conducted to identify biomarkers of AD in the CSF, serum, saliva, and urine during the preclinical stage. Current research has identified several biomarkers and potential biomarkers in the body fluids that enhance diagnostic accuracy. Aside from genetics, other factors such as diet, physical activity, and lifestyle factors may influence the risk of developing AD. Clinical trials are underway to find potential biomarkers, diagnostic measures, and treatments for AD mainly in the preclinical stage. This review provides an overview of the genes and biomarkers of AD.
Collapse
Affiliation(s)
| | | | - Karthik Krishna
- Vibrant Sciences LLC., San Carlos, CA, United States of America.
| | - Tianhao Wang
- Vibrant Sciences LLC., San Carlos, CA, United States of America.
| | - Kang Bei
- Vibrant Sciences LLC., San Carlos, CA, United States of America.
| | | | | |
Collapse
|
8
|
Zheng Q, Wang X. Alzheimer's disease: insights into pathology, molecular mechanisms, and therapy. Protein Cell 2025; 16:83-120. [PMID: 38733347 PMCID: PMC11786724 DOI: 10.1093/procel/pwae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Alzheimer's disease (AD), the leading cause of dementia, is characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. This condition casts a significant shadow on global health due to its complex and multifactorial nature. In addition to genetic predispositions, the development of AD is influenced by a myriad of risk factors, including aging, systemic inflammation, chronic health conditions, lifestyle, and environmental exposures. Recent advancements in understanding the complex pathophysiology of AD are paving the way for enhanced diagnostic techniques, improved risk assessment, and potentially effective prevention strategies. These discoveries are crucial in the quest to unravel the complexities of AD, offering a beacon of hope for improved management and treatment options for the millions affected by this debilitating disease.
Collapse
Affiliation(s)
- Qiuyang Zheng
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Xin Wang
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| |
Collapse
|
9
|
Wu H, Gu X, Liu S, Wang P, Lu H, Guan Y, Shi Z, Ji Y. ApoE Genotype, Age, and Cognitive Decline in Old Chinese Individuals Without Dementia: A Population-Based Study With Five-Year Follow-Up. Int J Geriatr Psychiatry 2025; 40:e70045. [PMID: 39814697 DOI: 10.1002/gps.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Apolipoprotein E (ApoE) ε4 genotype is a well-known risk factor for Alzheimer's disease (AD). However, its effect on predicting cognitive decline in individuals without dementia and its association with age are unclear. OBJECTIVE To investigate the relationship between ApoE polymorphism and risk of cognitive decline and dementia incidence in the elderly without dementia. METHODS This population-based prospective study was conducted between 2011 and 2016. The study involved 767 dementia-free individuals who had undergone ApoE genotype analysis, were aged ≥ 60 years, and lived in rural China. Participants were divided into three ApoE groups: E3 (genotype 3/3), E4 (genotypes 3/4 and 4/4), and E2 (genotype 2/3) groups. RESULTS After 5 years, 666 (86.8%) individuals were followed up. The rate of change in MMSE score was faster in the E4 group than in the E3 and E2 groups (5.0 ± 4.4 vs. 3.5 ± 3.8 vs. 3.9 ± 3.9, p = 0.001), after adjusting for age, sex, educational level and baseline MMSE scores, especially in the 70-79 years age group. In the same age group, the incidence rate of dementia was higher in the E4 group than in the E3 group (OR = 2.850; 95% CI: 1.146-7.090). After adjusting for age, sex, hypertensive status, educational level, marital status, engagement in social activities, and past history of stroke, the ApoE ε4 allele remained an independent risk factor for dementia incidence (OR = 3.070; 95% CI: 1.162-8.110) in individuals aged 70-79 years after follow-up. CONCLUSIONS ApoE ε4 carriers with age ≥ 60 years had faster cognitive decline. The ApoE ε4 allele was an independent risk factor for dementia incidence in extremely old individuals.
Collapse
Affiliation(s)
- Hao Wu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Xingzhong Gu
- Department of Psychiatry, Tianjin Jianhua Hospital, Tianjin, China
| | - Shuai Liu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Pan Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Hui Lu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Yalin Guan
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Zhihong Shi
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Yong Ji
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| |
Collapse
|
10
|
Ren P, Cui X, Liang X. Connectome-based biophysical models of pathological protein spreading in neurodegenerative diseases. PLoS Comput Biol 2025; 21:e1012743. [PMID: 39836660 PMCID: PMC11750110 DOI: 10.1371/journal.pcbi.1012743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
Neurodegenerative diseases are a group of disorders characterized by progressive degeneration or death of neurons. The complexity of clinical symptoms and irreversibility of disease progression significantly affects individual lives, leading to premature mortality. The prevalence of neurodegenerative diseases keeps increasing, yet the specific pathogenic mechanisms remain incompletely understood and effective treatment strategies are lacking. In recent years, convergent experimental evidence supports the "prion-like transmission" assumption that abnormal proteins induce misfolding of normal proteins, and these misfolded proteins propagate throughout the neural networks to cause neuronal death. To elucidate this dynamic process in vivo from a computational perspective, researchers have proposed three connectome-based biophysical models to simulate the spread of pathological proteins: the Network Diffusion Model, the Epidemic Spreading Model, and the agent-based Susceptible-Infectious-Removed model. These models have demonstrated promising predictive capabilities. This review focuses on the explanations of their fundamental principles and applications. Then, we compare the strengths and weaknesses of the models. Building upon this foundation, we introduce new directions for model optimization and propose a unified framework for the evaluation of connectome-based biophysical models. We expect that this review could lower the entry barrier for researchers in this field, accelerate model optimization, and thereby advance the clinical translation of connectome-based biophysical models.
Collapse
Affiliation(s)
- Peng Ren
- Research Center for Social Computing and Information Retrieval, Harbin Institute of Technology, Harbin, China
- Institute of Science and Technology for Brain-Inspired Intelligence and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuehua Cui
- Research Center for Social Computing and Information Retrieval, Harbin Institute of Technology, Harbin, China
- Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin, China
| | - Xia Liang
- Research Center for Social Computing and Information Retrieval, Harbin Institute of Technology, Harbin, China
- Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
11
|
Tripathi S, Sharma Y, Kumar D. Unraveling APOE4's Role in Alzheimer's Disease: Pathologies and Therapeutic Strategies. Curr Protein Pept Sci 2025; 26:259-281. [PMID: 39722484 DOI: 10.2174/0113892037326839241014054430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 12/28/2024]
Abstract
Alzheimer's disease (AD), the most common kind of dementia worldwide, is characterized by elevated levels of the amyloid-β (Aβ) peptide and hyperphosphorylated tau protein in the neurons. The complexity of AD makes the development of treatments infamously challenging. Apolipoprotein E (APOE) genes's ε4 allele is one of the main genetic risk factors for AD. While the APOE gene's ε4 allele considerably increases the chance of developing AD, the ε2 allele is protective compared to the prevalent ε3 variant. It is fiercely discussed how APOE affects the development and course of disease since it has a variety of activities that influence both neuronal and non-neuronal cells. ApoE4 contributes to the formation of tau tangles, deposition of Aβ, neuroinflammation, and other processes. Four decades of research have provided a significant understanding of the structure of APOE and how this may affect the neuropathology and pathogenesis of AD. APOE is a crucial lipid transporter essential for the growth of the central nervous system (CNS), upkeep, and repair. The mechanisms by which APOE contributes to the pathophysiology of AD are still up for discussion, though. Evidence suggests that APOE affects the brain's clearance and deposition of Aβ. Additionally, APOE has Aβ-independent pathways in AD, which has led to the identification of new functions for APOE, including mitochondrial dysfunction. This study summarizes important studies that describe how APOE4 affects well-known AD pathologies, including tau pathology, Aβ, neuroinflammation, and dysfunction of neural networks. This study also envisions some of the therapeutic approaches being used to target APOE4 in the hopes of preventing or treating AD.
Collapse
Affiliation(s)
- Siddhant Tripathi
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Yashika Sharma
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
12
|
Preman P, Moechars D, Fertan E, Wolfs L, Serneels L, Shah D, Lamote J, Poovathingal S, Snellinx A, Mancuso R, Balusu S, Klenerman D, Arranz AM, Fiers M, De Strooper B. APOE from astrocytes restores Alzheimer's Aβ-pathology and DAM-like responses in APOE deficient microglia. EMBO Mol Med 2024; 16:3113-3141. [PMID: 39528861 PMCID: PMC11628604 DOI: 10.1038/s44321-024-00162-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
The major genetic risk factor for Alzheimer's disease (AD), APOE4, accelerates beta-amyloid (Aβ) plaque formation, but whether this is caused by APOE expressed in microglia or astrocytes is debated. We express here the human APOE isoforms in astrocytes in an Apoe-deficient AD mouse model. This is not only sufficient to restore the amyloid plaque pathology but also induces the characteristic transcriptional pathological responses in Apoe-deficient microglia surrounding the plaques. We find that both APOE4 and the protective APOE2 from astrocytes increase fibrillar plaque deposition, but differentially affect soluble Aβ aggregates. Microglia and astrocytes show specific alterations in function of APOE genotype expressed in astrocytes. Our experiments indicate a central role of the astrocytes in APOE mediated amyloid plaque pathology and in the induction of associated microglia responses.
Collapse
Affiliation(s)
- Pranav Preman
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Daan Moechars
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Emre Fertan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Leen Wolfs
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Lutgarde Serneels
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Disha Shah
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Jochen Lamote
- VIB FACS Expertise Center, Center for Cancer Biology, Leuven, Belgium
| | | | - An Snellinx
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB-UAntwerp, Centre for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sriram Balusu
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Amaia M Arranz
- Laboratory of Humanized Models of Disease, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque Basque Foundation for Science, Bilbao, Spain
| | - Mark Fiers
- VIB Center for Brain & Disease Research, Leuven, Belgium.
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium.
| | - Bart De Strooper
- VIB Center for Brain & Disease Research, Leuven, Belgium.
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium.
- UK Dementia Research Institute, University College London, London, UK.
| |
Collapse
|
13
|
Meng D, Lai Y, Zhang L, Hu W, Wei H, Guo C, Jing X, Zhou H, Xiao R, Zhu L, Luo S, Xu Z, Chen Y, Wang X, Liu R, Zeng J. Helicobacter pylori outer membrane vesicles directly promote Aβ aggregation and enhance Aβ toxicity in APP/PS1 mice. Commun Biol 2024; 7:1474. [PMID: 39516239 PMCID: PMC11549467 DOI: 10.1038/s42003-024-07125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Helicobacter pylori (H. pylori) infection has been found associated with Alzheimer's disease (AD) with unclear mechanisms. Outer Membrane Vesicles (OMVs) are spherical particles secreted by Gram-negative bacteria. Here we explore the effect of H. pylori OMVs on Aβ aggregation and toxicity. We show intraperitoneally-injected H. pylori OMVs enter the brain and co-localize with Aβ plaques in APP/PS1 mice, accompanied by aggravated Aβ pathology, exacerbated cognitive deficits and synaptic impairment, indicating that H. pylori OMVs promote β-amyloidosis and AD development. The in vitro results further identify that H. pylori OMVs significantly accelerate Aβ aggregation and increase Aβ-induced neurotoxicity. Through lipidomic analysis, we reveal that lipid components, particularly LPC 18:0 in H. pylori OMVs accelerate Aβ aggregation and enhance Aβ neurotoxicity. Moreover, H. pylori OMVs-enhanced Aβ neurotoxicity is mediated by Ca2+. These findings reveal a mechanism of H. pylori OMVs in accelerating AD development in which the bacterial OMVs-originated lipid components play a key role in promoting Aβ aggregation and neurotoxicity.
Collapse
Affiliation(s)
- Dongli Meng
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - Yiwen Lai
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lun Zhang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Wuhan, China
| | - Wenting Hu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hui Wei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cuiping Guo
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaopeng Jing
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Wuhan, China
| | - Huan Zhou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Xiao
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liping Zhu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengquan Luo
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhendong Xu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Chen
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China.
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, China.
| | - Ji Zeng
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Wuhan, China.
| |
Collapse
|
14
|
Heuer SE, Bloss EB, Howell GR. Strategies to dissect microglia-synaptic interactions during aging and in Alzheimer's disease. Neuropharmacology 2024; 254:109987. [PMID: 38705570 DOI: 10.1016/j.neuropharm.2024.109987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Age is the largest risk factor for developing Alzheimer's disease (AD), a neurodegenerative disorder that causes a progressive and severe dementia. The underlying cause of cognitive deficits seen in AD is thought to be the disconnection of neural circuits that control memory and executive functions. Insight into the mechanisms by which AD diverges from normal aging will require identifying precisely which cellular events are driven by aging and which are impacted by AD-related pathologies. Since microglia, the brain-resident macrophages, are known to have critical roles in the formation and maintenance of neural circuits through synaptic pruning, they are well-positioned to modulate synaptic connectivity in circuits sensitive to aging or AD. In this review, we provide an overview of the current state of the field and on emerging technologies being employed to elucidate microglia-synaptic interactions in aging and AD. We also discuss the importance of leveraging genetic diversity to study how these interactions are shaped across more realistic contexts. We propose that these approaches will be essential to define specific aging- and disease-relevant trajectories for more personalized therapeutics aimed at reducing the effects of age or AD pathologies on the brain. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Sarah E Heuer
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Erik B Bloss
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04469, USA.
| | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04469, USA.
| |
Collapse
|
15
|
Jackson RJ, Hyman BT, Serrano-Pozo A. Multifaceted roles of APOE in Alzheimer disease. Nat Rev Neurol 2024; 20:457-474. [PMID: 38906999 DOI: 10.1038/s41582-024-00988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 06/23/2024]
Abstract
For the past three decades, apolipoprotein E (APOE) has been known as the single greatest genetic modulator of sporadic Alzheimer disease (AD) risk, influencing both the average age of onset and the lifetime risk of developing AD. The APOEε4 allele significantly increases AD risk, whereas the ε2 allele is protective relative to the most common ε3 allele. However, large differences in effect size exist across ethnoracial groups that are likely to depend on both global genetic ancestry and local genetic ancestry, as well as gene-environment interactions. Although early studies linked APOE to amyloid-β - one of the two culprit aggregation-prone proteins that define AD - in the past decade, mounting work has associated APOE with other neurodegenerative proteinopathies and broader ageing-related brain changes, such as neuroinflammation, energy metabolism failure, loss of myelin integrity and increased blood-brain barrier permeability, with potential implications for longevity and resilience to pathological protein aggregates. Novel mouse models and other technological advances have also enabled a number of therapeutic approaches aimed at either attenuating the APOEε4-linked increased AD risk or enhancing the APOEε2-linked AD protection. This Review summarizes this progress and highlights areas for future research towards the development of APOE-directed therapeutics.
Collapse
Affiliation(s)
- Rosemary J Jackson
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.
| | - Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.
| |
Collapse
|
16
|
Dando O, McGeachan R, McQueen J, Baxter P, Rockley N, McAlister H, Prasad A, He X, King D, Rose J, Jones PB, Tulloch J, Chandran S, Smith C, Hardingham G, Spires-Jones TL. Synaptic gene expression changes in frontotemporal dementia due to the MAPT 10 + 16 mutation. Neuropathol Appl Neurobiol 2024; 50:e13006. [PMID: 39164997 DOI: 10.1111/nan.13006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024]
Abstract
AIMS Mutations in the MAPT gene encoding tau protein can cause autosomal dominant neurodegenerative tauopathies including frontotemporal dementia (often with Parkinsonism). In Alzheimer's disease, the most common tauopathy, synapse loss is the strongest pathological correlate of cognitive decline. Recently, Positron Emission Tomography (PET) imaging with synaptic tracers revealed clinically relevant loss of synapses in primary tauopathies; however, the molecular mechanisms leading to synapse degeneration in primary tauopathies remain largely unknown. In this study, we examined post-mortem brain tissue from people who died with frontotemporal dementia with tau pathology (FTDtau) caused by the MAPT intronic exon 10 + 16 mutation, which increases splice variants containing exon 10 resulting in higher levels of tau with four microtubule-binding domains. METHODS We used RNA sequencing and histopathology to examine temporal cortex and visual cortex, to look for molecular phenotypes compared to age, sex and RNA integrity matched participants who died without neurological disease (n = 12 FTDtau10 + 16 and 13 controls). RESULTS Bulk tissue RNA sequencing reveals substantial downregulation of gene expression associated with synaptic function. Upregulated biological pathways in human MAPT 10 + 16 brain included those involved in transcriptional regulation, DNA damage response and neuroinflammation. Histopathology confirmed increased pathological tau accumulation in FTDtau10 + 16 cortex as well as a loss of presynaptic protein staining and region-specific increased colocalization of phospho-tau with synapses in temporal cortex. CONCLUSIONS Our data indicate that synaptic pathology likely contributes to pathogenesis in FTDtau10 + 16 caused by the MAPT 10 + 16 mutation.
Collapse
Affiliation(s)
- Owen Dando
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Robert McGeachan
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Jamie McQueen
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Paul Baxter
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Nathan Rockley
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Hannah McAlister
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Adharsh Prasad
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Xin He
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Declan King
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Jamie Rose
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | | | - Jane Tulloch
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Siddharthan Chandran
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
- Queen Square Institute of Neurology, University College London, London, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Giles Hardingham
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Tara L Spires-Jones
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
17
|
Bagheri S, Saboury AA, Saso L. Sequence of Molecular Events in the Development of Alzheimer's Disease: Cascade Interactions from Beta-Amyloid to Other Involved Proteins. Cells 2024; 13:1293. [PMID: 39120323 PMCID: PMC11312137 DOI: 10.3390/cells13151293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Alzheimer's disease is the primary neurodegenerative disease affecting the elderly population. Despite the first description of its pathology over a century ago, its precise cause and molecular mechanism remain unknown. Numerous factors, including beta-amyloid, tau protein, the APOEε4 gene, and different metals, have been extensively investigated in relation to this disease. However, none of them have been proven to have a decisive causal relationship. Furthermore, no single theory has successfully integrated these puzzle pieces thus far. In this review article, we propose the most probable molecular mechanism for AD, which clearly shows the relationship between the main aspects of the disease, and addresses fundamental questions such as: Why is aging the major risk factor for the disease? Are amyloid plaques and tau tangles the causes or consequences of AD? Why are the distributions of senile plaques and tau tangles in the brain different and independent of each other? Why is the APOEε4 gene a risk factor for AD? Finally, why is the disease more prevalent in women?
Collapse
Affiliation(s)
- Soghra Bagheri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
18
|
Azargoonjahromi A. The duality of amyloid-β: its role in normal and Alzheimer's disease states. Mol Brain 2024; 17:44. [PMID: 39020435 PMCID: PMC11256416 DOI: 10.1186/s13041-024-01118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024] Open
Abstract
Alzheimer's disease (AD) is a degenerative neurological condition that gradually impairs cognitive abilities, disrupts memory retention, and impedes daily functioning by impacting the cells of the brain. A key characteristic of AD is the accumulation of amyloid-beta (Aβ) plaques, which play pivotal roles in disease progression. These plaques initiate a cascade of events including neuroinflammation, synaptic dysfunction, tau pathology, oxidative stress, impaired protein clearance, mitochondrial dysfunction, and disrupted calcium homeostasis. Aβ accumulation is also closely associated with other hallmark features of AD, underscoring its significance. Aβ is generated through cleavage of the amyloid precursor protein (APP) and plays a dual role depending on its processing pathway. The non-amyloidogenic pathway reduces Aβ production and has neuroprotective and anti-inflammatory effects, whereas the amyloidogenic pathway leads to the production of Aβ peptides, including Aβ40 and Aβ42, which contribute to neurodegeneration and toxic effects in AD. Understanding the multifaceted role of Aβ, particularly in AD, is crucial for developing effective therapeutic strategies that target Aβ metabolism, aggregation, and clearance with the aim of mitigating the detrimental consequences of the disease. This review aims to explore the mechanisms and functions of Aβ under normal and abnormal conditions, particularly in AD, by examining both its beneficial and detrimental effects.
Collapse
|
19
|
Narasimhan S, Holtzman DM, Apostolova LG, Cruchaga C, Masters CL, Hardy J, Villemagne VL, Bell J, Cho M, Hampel H. Apolipoprotein E in Alzheimer's disease trajectories and the next-generation clinical care pathway. Nat Neurosci 2024; 27:1236-1252. [PMID: 38898183 DOI: 10.1038/s41593-024-01669-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/18/2024] [Indexed: 06/21/2024]
Abstract
Alzheimer's disease (AD) is a complex, progressive primary neurodegenerative disease. Since pivotal genetic studies in 1993, the ε4 allele of the apolipoprotein E gene (APOE ε4) has remained the strongest single genome-wide associated risk variant in AD. Scientific advances in APOE biology, AD pathophysiology and ApoE-targeted therapies have brought APOE to the forefront of research, with potential translation into routine AD clinical care. This contemporary Review will merge APOE research with the emerging AD clinical care pathway and discuss APOE genetic risk as a conduit to genomic-based precision medicine in AD, including ApoE's influence in the ATX(N) biomarker framework of AD. We summarize the evidence for APOE as an important modifier of AD clinical-biological trajectories. We then illustrate the utility of APOE testing and the future of ApoE-targeted therapies in the next-generation AD clinical-diagnostic pathway. With the emergence of new AD therapies, understanding how APOE modulates AD pathophysiology will become critical for personalized AD patient care.
Collapse
Affiliation(s)
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight ADRC, Washington University in St. Louis, St. Louis, MO, USA
| | - Liana G Apostolova
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Neurosciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Colin L Masters
- Florey Institute and the University of Melbourne, Parkville, Victoria, Australia
| | - John Hardy
- Department of Neurodegenerative Disease and Dementia Research Institute, Reta Lila Weston Research Laboratories, UCL Institute of Neurology, Queen Square, London, UK
| | | | | | | | | |
Collapse
|
20
|
Rajendran K, Krishnan UM. Mechanistic insights and emerging therapeutic stratagems for Alzheimer's disease. Ageing Res Rev 2024; 97:102309. [PMID: 38615895 DOI: 10.1016/j.arr.2024.102309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Alzheimer's disease (AD), a multi-factorial neurodegenerative disorder has affected over 30 million individuals globally and these numbers are expected to increase in the coming decades. Current therapeutic interventions are largely ineffective as they focus on a single target. Development of an effective drug therapy requires a deep understanding of the various factors influencing the onset and progression of the disease. Aging and genetic factors exert a major influence on the development of AD. Other factors like post-viral infections, iron overload, gut dysbiosis, and vascular dysfunction also exacerbate the onset and progression of AD. Further, post-translational modifications in tau, DRP1, CREB, and p65 proteins increase the disease severity through triggering mitochondrial dysfunction, synaptic loss, and differential interaction of amyloid beta with different receptors leading to impaired intracellular signalling. With advancements in neuroscience tools, new inter-relations that aggravate AD are being discovered including pre-existing diseases and exposure to other pathogens. Simultaneously, new therapeutic strategies involving modulation of gene expression through targeted delivery or modulation with light, harnessing the immune response to promote clearance of amyloid deposits, introduction of stem cells and extracellular vesicles to replace the destroyed neurons, exploring new therapeutic molecules from plant, marine and biological sources delivered in the free state or through nanoparticles and use of non-pharmacological interventions like music, transcranial stimulation and yoga. Polypharmacology approaches involving combination of therapeutic agents are also under active investigation for superior therapeutic outcomes. This review elaborates on various disease-causing factors, their underlying mechanisms, the inter-play between different disease-causing players, and emerging therapeutic options including those under clinical trials, for treatment of AD. The challenges involved in AD therapy and the way forward have also been discussed.
Collapse
Affiliation(s)
- Kayalvizhi Rajendran
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India
| | - Uma Maheswari Krishnan
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India; School of Arts, Sciences, Humanities & Education, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India.
| |
Collapse
|
21
|
Xia Z, Prescott EE, Urbanek A, Wareing HE, King MC, Olerinyova A, Dakin H, Leah T, Barnes KA, Matuszyk MM, Dimou E, Hidari E, Zhang YP, Lam JYL, Danial JSH, Strickland MR, Jiang H, Thornton P, Crowther DC, Ohtonen S, Gómez-Budia M, Bell SM, Ferraiuolo L, Mortiboys H, Higginbottom A, Wharton SB, Holtzman DM, Malm T, Ranasinghe RT, Klenerman D, De S. Co-aggregation with Apolipoprotein E modulates the function of Amyloid-β in Alzheimer's disease. Nat Commun 2024; 15:4695. [PMID: 38824138 PMCID: PMC11144216 DOI: 10.1038/s41467-024-49028-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
Which isoforms of apolipoprotein E (apoE) we inherit determine our risk of developing late-onset Alzheimer's Disease (AD), but the mechanism underlying this link is poorly understood. In particular, the relevance of direct interactions between apoE and amyloid-β (Aβ) remains controversial. Here, single-molecule imaging shows that all isoforms of apoE associate with Aβ in the early stages of aggregation and then fall away as fibrillation happens. ApoE-Aβ co-aggregates account for ~50% of the mass of diffusible Aβ aggregates detected in the frontal cortices of homozygotes with the higher-risk APOE4 gene. We show how dynamic interactions between apoE and Aβ tune disease-related functions of Aβ aggregates throughout the course of aggregation. Our results connect inherited APOE genotype with the risk of developing AD by demonstrating how, in an isoform- and lipidation-specific way, apoE modulates the aggregation, clearance and toxicity of Aβ. Selectively removing non-lipidated apoE4-Aβ co-aggregates enhances clearance of toxic Aβ by glial cells, and reduces secretion of inflammatory markers and membrane damage, demonstrating a clear path to AD therapeutics.
Collapse
Affiliation(s)
- Zengjie Xia
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK
| | - Emily E Prescott
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Agnieszka Urbanek
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Hollie E Wareing
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Marianne C King
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Anna Olerinyova
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Helen Dakin
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK
- Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Tom Leah
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Katy A Barnes
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Martyna M Matuszyk
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Eleni Dimou
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK
| | - Eric Hidari
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK
| | - Yu P Zhang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK
| | - Jeff Y L Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK
| | - John S H Danial
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK
- SUPA School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, KY16 9SS, UK
| | - Michael R Strickland
- Department of Neurology, Hope Center for Neurological Disorders, Knight ADRC, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hong Jiang
- Department of Neurology, Hope Center for Neurological Disorders, Knight ADRC, Washington University School of Medicine, St. Louis, MO, USA
| | - Peter Thornton
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | - Sohvi Ohtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mireia Gómez-Budia
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Simon M Bell
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
- Healthy Lifespan Institute (HELSI), University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight ADRC, Washington University School of Medicine, St. Louis, MO, USA
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Rohan T Ranasinghe
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK.
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK.
| | - Suman De
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK.
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK.
- Healthy Lifespan Institute (HELSI), University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
22
|
He K, Li B, Wang J, Wang Y, You Z, Chen X, Chen H, Li J, Huang Q, Guo Q, Huang YH, Guan Y, Chen K, Zhao J, Deng Y, Xie F. APOE ε4 is associated with decreased synaptic density in cognitively impaired participants. Alzheimers Dement 2024; 20:3157-3166. [PMID: 38477490 PMCID: PMC11095422 DOI: 10.1002/alz.13775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024]
Abstract
INTRODUCTION We aimed to investigate the effect of apolipoprotein E4 (APOE) ε4 on synaptic density in cognitively impaired (CI) participants. METHODS One hundred ten CI participants underwent amyloid positron emission tomography (PET) with 18F-florbetapir and synaptic density PET with 18F-SynVesT-1. We evaluated the influence of APOE ε4 allele on synaptic density and investigated the effects of ε4 genotype on the associations of synaptic density with Alzheimer's disease (AD) biomarkers. The mediation effects of AD biomarkers on ε4-associated synaptic density loss were analyzed. RESULTS Compared with non-carriers, APOE ε4 allele carriers exhibited significant synaptic loss in the medial temporal lobe. Amyloid beta (Aβ) and tau pathology mediated the effects of APOE ε4 on synaptic density to different extents. The associations between synaptic density and tau pathology were regulated by the APOE ε4 genotype. DISCUSSION The APOE ε4 allele was associated with decreased synaptic density in CI individuals and may be driven by AD biomarkers.
Collapse
Affiliation(s)
- Kun He
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Binyin Li
- Department of Neurology & Institute of Neurology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Clinical Neuroscience CenterRuijin Hospital LuWan BranchShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jie Wang
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Ying Wang
- Department of GerontologyShanghai Jiaotong University Affiliated Sixth People's HospitalShanghaiChina
| | - Zhiwen You
- Department of Nuclear MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Xing Chen
- Department of Nuclear MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Haijuan Chen
- Department of Neurology & Institute of Neurology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Junpeng Li
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Qi Huang
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Qihao Guo
- Department of GerontologyShanghai Jiaotong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yiyun Henry Huang
- PET CenterDepartment of Radiology and Biomedical ImagingYale University School of MedicineNew HavenUSA
| | - Yihui Guan
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Kewei Chen
- Banner Alzheimer InstituteArizona State University, University of Arizona and Arizona Alzheimer's ConsortiumPhoenixUSA
| | - Jun Zhao
- Department of Nuclear MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Yulei Deng
- Department of Neurology & Institute of Neurology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Clinical Neuroscience CenterRuijin Hospital LuWan BranchShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fang Xie
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
23
|
Jackson RJ, Keiser MS, Meltzer JC, Fykstra DP, Dierksmeier SE, Hajizadeh S, Kreuzer J, Morris R, Melloni A, Nakajima T, Tecedor L, Ranum PT, Carrell E, Chen Y, Nishtar MA, Holtzman DM, Haas W, Davidson BL, Hyman BT. APOE2 gene therapy reduces amyloid deposition and improves markers of neuroinflammation and neurodegeneration in a mouse model of Alzheimer disease. Mol Ther 2024; 32:1373-1386. [PMID: 38504517 PMCID: PMC11081918 DOI: 10.1016/j.ymthe.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/05/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
Epidemiological studies show that individuals who carry the relatively uncommon APOE ε2 allele rarely develop Alzheimer disease, and if they do, they have a later age of onset, milder clinical course, and less severe neuropathological findings than people without this allele. The contrast is especially stark when compared with the major genetic risk factor for Alzheimer disease, APOE ε4, which has an age of onset several decades earlier, a more aggressive clinical course and more severe neuropathological findings, especially in terms of the amount of amyloid deposition. Here, we demonstrate that brain exposure to APOE ε2 via a gene therapy approach, which bathes the entire cortical mantle in the gene product after transduction of the ependyma, reduces Aβ plaque deposition, neurodegenerative synaptic loss, and, remarkably, reduces microglial activation in an APP/PS1 mouse model despite continued expression of human APOE ε4. This result suggests a promising protective effect of exogenous APOE ε2 and reveals a cell nonautonomous effect of the protein on microglial activation, which we show is similar to plaque-associated microglia in the brain of Alzheimer disease patients who inherit APOE ε2. These data increase the potential that an APOE ε2 therapeutic could be effective in Alzheimer disease, even in individuals born with the risky ε4 allele.
Collapse
Affiliation(s)
- Rosemary J Jackson
- Alzheimer Research Unit, Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA; Department of Neurology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02114, USA.
| | - Megan S Keiser
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jonah C Meltzer
- Alzheimer Research Unit, Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA; Department of Neurology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02114, USA
| | - Dustin P Fykstra
- Alzheimer Research Unit, Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA; Department of Neurology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02114, USA
| | - Steven E Dierksmeier
- Alzheimer Research Unit, Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA; Department of Neurology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02114, USA; Medical Sciences Division, University of Oxford, Oxford OX3 9DU, UK
| | - Soroush Hajizadeh
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, UK; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Johannes Kreuzer
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, UK; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Robert Morris
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, UK
| | - Alexandra Melloni
- Alzheimer Research Unit, Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA
| | - Tsuneo Nakajima
- Alzheimer Research Unit, Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA; Department of Neurology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02114, USA
| | - Luis Tecedor
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Paul T Ranum
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ellie Carrell
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - YongHong Chen
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Maryam A Nishtar
- Alzheimer Research Unit, Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA; Department of Neurology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02114, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Wilhelm Haas
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, UK; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Beverly L Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bradley T Hyman
- Alzheimer Research Unit, Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA; Department of Neurology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
24
|
Dando O, McGeachan R, McQueen J, Baxter P, Rockley N, McAlister H, Prasad A, He X, King D, Rose J, Jones PB, Tulloch J, Chandran S, Smith C, Hardingham G, Spires-Jones TL. Synaptic gene expression changes in frontotemporal dementia due to the MAPT 10+16 mutation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.09.24305501. [PMID: 38645146 PMCID: PMC11030522 DOI: 10.1101/2024.04.09.24305501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Mutations in the MAPT gene encoding tau protein can cause autosomal dominant neurodegenerative tauopathies including frontotemporal dementia (often with Parkinsonism). In Alzheimer's disease, the most common tauopathy, synapse loss is the strongest pathological correlate of cognitive decline. Recently, PET imaging with synaptic tracers revealed clinically relevant loss of synapses in primary tauopathies; however, the molecular mechanisms leading to synapse degeneration in primary tauopathies remain largely unknown. In this study, we examined post-mortem brain tissue from people who died with frontotemporal dementia with tau pathology (FTDtau) caused by the MAPT intronic exon 10+16 mutation, which increases splice variants containing exon 10 resulting in higher levels of tau with four microtubule binding domains. We used RNA sequencing and histopathology to examine temporal cortex and visual cortex, to look for molecular phenotypes compared to age, sex, and RNA integrity matched participants who died without neurological disease (n=12 per group). Bulk tissue RNA sequencing reveals substantial downregulation of gene expression associated with synaptic function. Upregulated biological pathways in human MAPT 10+16 brain included those involved in transcriptional regulation, DNA damage response, and neuroinflammation. Histopathology confirmed increased pathological tau accumulation in FTDtau cortex as well as a loss of presynaptic protein staining, and region-specific increased colocalization of phospho-tau with synapses in temporal cortex. Our data indicate that synaptic pathology likely contributes to pathogenesis in FTDtau caused by the MAPT 10+16 mutation.
Collapse
Affiliation(s)
- Owen Dando
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, United Kingdom
| | - Robert McGeachan
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, United Kingdom
| | - Jamie McQueen
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, United Kingdom
| | - Paul Baxter
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, United Kingdom
| | - Nathan Rockley
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, United Kingdom
| | - Hannah McAlister
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, United Kingdom
| | - Adharsh Prasad
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, United Kingdom
| | - Xin He
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, United Kingdom
| | - Declan King
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, United Kingdom
| | - Jamie Rose
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, United Kingdom
| | | | - Jane Tulloch
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, United Kingdom
| | - Siddharthan Chandran
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Clinical Brain Sciences School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, United Kingdom
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Colin Smith
- Centre for Clinical Brain Sciences School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, United Kingdom
| | - Giles Hardingham
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, United Kingdom
| | - Tara L Spires-Jones
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, United Kingdom
| |
Collapse
|
25
|
Micheva KD, Burden JJ, Schifferer M. Array tomography: trails to discovery. METHODS IN MICROSCOPY 2024; 1:9-17. [PMID: 39119254 PMCID: PMC11308915 DOI: 10.1515/mim-2024-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/06/2024] [Indexed: 08/10/2024]
Abstract
Tissue slicing is at the core of many approaches to studying biological structures. Among the modern volume electron microscopy (vEM) methods, array tomography (AT) is based on serial ultramicrotomy, section collection onto solid support, imaging via light and/or scanning electron microscopy, and re-assembly of the serial images into a volume for analysis. While AT largely uses standard EM equipment, it provides several advantages, including long-term preservation of the sample and compatibility with multi-scale and multi-modal imaging. Furthermore, the collection of serial ultrathin sections improves axial resolution and provides access for molecular labeling, which is beneficial for light microscopy and immunolabeling, and facilitates correlation with EM. Despite these benefits, AT techniques are underrepresented in imaging facilities and labs, due to their perceived difficulty and lack of training opportunities. Here we point towards novel developments in serial sectioning and image analysis that facilitate the AT pipeline, and solutions to overcome constraints. Because no single vEM technique can serve all needs regarding field of view and resolution, we sketch a decision tree to aid researchers in navigating the plethora of options available. Lastly, we elaborate on the unexplored potential of AT approaches to add valuable insight in diverse biological fields.
Collapse
Affiliation(s)
| | | | - Martina Schifferer
- Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
26
|
Colom-Cadena M, Toombs J, Simzer E, Holt K, McGeachan R, Tulloch J, Jackson RJ, Catterson JH, Spires-Jones MP, Rose J, Waybright L, Caggiano AO, King D, Gobbo F, Davies C, Hooley M, Dunnett S, Tempelaar R, Meftah S, Tzioras M, Hamby ME, Izzo NJ, Catalano SM, Durrant CS, Smith C, Dando O, Spires-Jones TL. Transmembrane protein 97 is a potential synaptic amyloid beta receptor in human Alzheimer's disease. Acta Neuropathol 2024; 147:32. [PMID: 38319380 PMCID: PMC10847197 DOI: 10.1007/s00401-023-02679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/24/2023] [Accepted: 12/24/2023] [Indexed: 02/07/2024]
Abstract
Synapse loss correlates with cognitive decline in Alzheimer's disease, and soluble oligomeric amyloid beta (Aβ) is implicated in synaptic dysfunction and loss. An important knowledge gap is the lack of understanding of how Aβ leads to synapse degeneration. In particular, there has been difficulty in determining whether there is a synaptic receptor that binds Aβ and mediates toxicity. While many candidates have been observed in model systems, their relevance to human AD brain remains unknown. This is in part due to methodological limitations preventing visualization of Aβ binding at individual synapses. To overcome this limitation, we combined two high resolution microscopy techniques: array tomography and Förster resonance energy transfer (FRET) to image over 1 million individual synaptic terminals in temporal cortex from AD (n = 11) and control cases (n = 9). Within presynapses and post-synaptic densities, oligomeric Aβ generates a FRET signal with transmembrane protein 97. Further, Aβ generates a FRET signal with cellular prion protein, and post-synaptic density 95 within post synapses. Transmembrane protein 97 is also present in a higher proportion of post synapses in Alzheimer's brain compared to controls. We inhibited Aβ/transmembrane protein 97 interaction in a mouse model of amyloidopathy by treating with the allosteric modulator CT1812. CT1812 drug concentration correlated negatively with synaptic FRET signal between transmembrane protein 97 and Aβ. In human-induced pluripotent stem cell derived neurons, transmembrane protein 97 is present in synapses and colocalizes with Aβ when neurons are challenged with human Alzheimer's brain homogenate. Transcriptional changes are induced by Aβ including changes in genes involved in neurodegeneration and neuroinflammation. CT1812 treatment of these neurons caused changes in gene sets involved in synaptic function. These data support a role for transmembrane protein 97 in the synaptic binding of Aβ in human Alzheimer's disease brain where it may mediate synaptotoxicity.
Collapse
Affiliation(s)
- Martí Colom-Cadena
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Jamie Toombs
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Elizabeth Simzer
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Kristjan Holt
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Robert McGeachan
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Jane Tulloch
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Rosemary J Jackson
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
- MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - James H Catterson
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Maxwell P Spires-Jones
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Jamie Rose
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | | | | | - Declan King
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Francesco Gobbo
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Caitlin Davies
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Monique Hooley
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Sophie Dunnett
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Robert Tempelaar
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Soraya Meftah
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Makis Tzioras
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
- Scottish Brain Sciences, Edinburgh, EH12 9DQ, UK
| | - Mary E Hamby
- Cognition Therapeutics Inc., Pittsburgh, PA, 15203, USA
| | | | | | - Claire S Durrant
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences and Sudden Death Brain Bank, University of Edinburgh, Edinburgh, EH16 4HB, UK
| | - Owen Dando
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK.
| |
Collapse
|
27
|
Wen L, Bi D, Shen Y. Complement-mediated synapse loss in Alzheimer's disease: mechanisms and involvement of risk factors. Trends Neurosci 2024; 47:135-149. [PMID: 38129195 DOI: 10.1016/j.tins.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
The complement system is increasingly recognized as a key player in the synapse loss and cognitive impairments observed in Alzheimer's disease (AD). In particular, the process of complement-dependent synaptic pruning through phagocytosis is over-activated in AD brains, driving detrimental excessive synapse elimination and contributing to synapse loss, which is the strongest neurobiological correlate of cognitive impairments in AD. Herein we review recent advances in characterizing complement-mediated synapse loss in AD, summarize the underlying mechanisms, and discuss the possible involvement of AD risk factors such as aging and various risk genes. We conclude with an overview of key questions that remain to be addressed.
Collapse
Affiliation(s)
- Lang Wen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Danlei Bi
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, 230026, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230026, China; CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yong Shen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
28
|
Martin Flores N, Podpolny M, McLeod F, Workman I, Crawford K, Ivanov D, Leonenko G, Escott-Price V, Salinas PC. Downregulation of Dickkopf-3, a Wnt antagonist elevated in Alzheimer's disease, restores synapse integrity and memory in a disease mouse model. eLife 2024; 12:RP89453. [PMID: 38285009 PMCID: PMC10945611 DOI: 10.7554/elife.89453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024] Open
Abstract
Increasing evidence supports a role for deficient Wnt signaling in Alzheimer's disease (AD). Studies reveal that the secreted Wnt antagonist Dickkopf-3 (DKK3) colocalizes to amyloid plaques in AD patients. Here, we investigate the contribution of DKK3 to synapse integrity in healthy and AD brains. Our findings show that DKK3 expression is upregulated in the brains of AD subjects and that DKK3 protein levels increase at early stages in the disease. In hAPP-J20 and hAPPNL-G-F/NL-G-F mouse AD models, extracellular DKK3 levels are increased and DKK3 accumulates at dystrophic neuronal processes around plaques. Functionally, DKK3 triggers the loss of excitatory synapses through blockade of the Wnt/GSK3β signaling with a concomitant increase in inhibitory synapses via activation of the Wnt/JNK pathway. In contrast, DKK3 knockdown restores synapse number and memory in hAPP-J20 mice. Collectively, our findings identify DKK3 as a novel driver of synaptic defects and memory impairment in AD.
Collapse
Affiliation(s)
- Nuria Martin Flores
- Department of Cell and Developmental Biology, Division of Biosciences, University College LondonLondonUnited Kingdom
| | - Marina Podpolny
- Department of Cell and Developmental Biology, Division of Biosciences, University College LondonLondonUnited Kingdom
| | - Faye McLeod
- Department of Cell and Developmental Biology, Division of Biosciences, University College LondonLondonUnited Kingdom
| | - Isaac Workman
- Department of Cell and Developmental Biology, Division of Biosciences, University College LondonLondonUnited Kingdom
| | - Karen Crawford
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff UniversityCardiffUnited Kingdom
| | - Dobril Ivanov
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff UniversityCardiffUnited Kingdom
| | - Ganna Leonenko
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff UniversityCardiffUnited Kingdom
| | - Valentina Escott-Price
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff UniversityCardiffUnited Kingdom
- UK Dementia Research Institute, Cardiff UniversityCardiffUnited Kingdom
| | - Patricia C Salinas
- Department of Cell and Developmental Biology, Division of Biosciences, University College LondonLondonUnited Kingdom
| |
Collapse
|
29
|
Xie L, Raj Y, Varathan P, He B, Yu M, Nho K, Salama P, Saykin AJ, Yan J. Deep Trans-Omic Network Fusion for Molecular Mechanism of Alzheimer's Disease. J Alzheimers Dis 2024; 99:715-727. [PMID: 38728189 DOI: 10.3233/jad-240098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Background There are various molecular hypotheses regarding Alzheimer's disease (AD) like amyloid deposition, tau propagation, neuroinflammation, and synaptic dysfunction. However, detailed molecular mechanism underlying AD remains elusive. In addition, genetic contribution of these molecular hypothesis is not yet established despite the high heritability of AD. Objective The study aims to enable the discovery of functionally connected multi-omic features through novel integration of multi-omic data and prior functional interactions. Methods We propose a new deep learning model MoFNet with improved interpretability to investigate the AD molecular mechanism and its upstream genetic contributors. MoFNet integrates multi-omic data with prior functional interactions between SNPs, genes, and proteins, and for the first time models the dynamic information flow from DNA to RNA and proteins. Results When evaluated using the ROS/MAP cohort, MoFNet outperformed other competing methods in prediction performance. It identified SNPs, genes, and proteins with significantly more prior functional interactions, resulting in three multi-omic subnetworks. SNP-gene pairs identified by MoFNet were mostly eQTLs specific to frontal cortex tissue where gene/protein data was collected. These molecular subnetworks are enriched in innate immune system, clearance of misfolded proteins, and neurotransmitter release respectively. We validated most findings in an independent dataset. One multi-omic subnetwork consists exclusively of core members of SNARE complex, a key mediator of synaptic vesicle fusion and neurotransmitter transportation. Conclusions Our results suggest that MoFNet is effective in improving classification accuracy and in identifying multi-omic markers for AD with improved interpretability. Multi-omic subnetworks identified by MoFNet provided insights of AD molecular mechanism with improved details.
Collapse
Affiliation(s)
- Linhui Xie
- Department of Electrical and Computer Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA
| | - Yash Raj
- Department of BioHealth Informatics, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Pradeep Varathan
- Department of BioHealth Informatics, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA
| | - Bing He
- Department of BioHealth Informatics, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA
| | - Meichen Yu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA
| | - Paul Salama
- Department of Electrical and Computer Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA
| | - Jingwen Yan
- Department of BioHealth Informatics, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA
| |
Collapse
|
30
|
Muñoz-Castro C, Serrano-Pozo A. Astrocyte-Neuron Interactions in Alzheimer's Disease. ADVANCES IN NEUROBIOLOGY 2024; 39:345-382. [PMID: 39190082 DOI: 10.1007/978-3-031-64839-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Besides its two defining misfolded proteinopathies-Aβ plaques and tau neurofibrillary tangles-Alzheimer's disease (AD) is an exemplar of a neurodegenerative disease with prominent reactive astrogliosis, defined as the set of morphological, molecular, and functional changes that astrocytes suffer as the result of a toxic exposure. Reactive astrocytes can be observed in the vicinity of plaques and tangles, and the relationship between astrocytes and these AD neuropathological lesions is bidirectional so that each AD neuropathological hallmark causes specific changes in astrocytes, and astrocytes modulate the severity of each neuropathological feature in a specific manner. Here, we will review both how astrocytes change as a result of their chronic exposure to AD neuropathology and how those astrocytic changes impact each AD neuropathological feature. We will emphasize the repercussions that AD-associated reactive astrogliosis has for the astrocyte-neuron interaction and highlight areas of uncertainty and priorities for future research.
Collapse
Affiliation(s)
- Clara Muñoz-Castro
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Departamento de Bioquímica y Biología Molecular, Universidad de Sevilla, Seville, Spain
| | - Alberto Serrano-Pozo
- Massachusetts General Hospital Neurology Department, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Huang Z. Evidence that Alzheimer's Disease Is a Disease of Competitive Synaptic Plasticity Gone Awry. J Alzheimers Dis 2024; 99:447-470. [PMID: 38669548 PMCID: PMC11119021 DOI: 10.3233/jad-240042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Mounting evidence indicates that a physiological function of amyloid-β (Aβ) is to mediate neural activity-dependent homeostatic and competitive synaptic plasticity in the brain. I have previously summarized the lines of evidence supporting this hypothesis and highlighted the similarities between Aβ and anti-microbial peptides in mediating cell/synapse competition. In cell competition, anti-microbial peptides deploy a multitude of mechanisms to ensure both self-protection and competitor elimination. Here I review recent studies showing that similar mechanisms are at play in Aβ-mediated synapse competition and perturbations in these mechanisms underpin Alzheimer's disease (AD). Specifically, I discuss evidence that Aβ and ApoE, two crucial players in AD, co-operate in the regulation of synapse competition. Glial ApoE promotes self-protection by increasing the production of trophic monomeric Aβ and inhibiting its assembly into toxic oligomers. Conversely, Aβ oligomers, once assembled, promote the elimination of competitor synapses via direct toxic activity and amplification of "eat-me" signals promoting the elimination of weak synapses. I further summarize evidence that neuronal ApoE may be part of a gene regulatory network that normally promotes competitive plasticity, explaining the selective vulnerability of ApoE expressing neurons in AD brains. Lastly, I discuss evidence that sleep may be key to Aβ-orchestrated plasticity, in which sleep is not only induced by Aβ but is also required for Aβ-mediated plasticity, underlining the link between sleep and AD. Together, these results strongly argue that AD is a disease of competitive synaptic plasticity gone awry, a novel perspective that may promote AD research.
Collapse
Affiliation(s)
- Zhen Huang
- Departments of Neuroscience and Neurology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
32
|
Lozupone M, Panza F. Impact of apolipoprotein E isoforms on sporadic Alzheimer's disease: beyond the role of amyloid beta. Neural Regen Res 2024; 19:80-83. [PMID: 37488848 PMCID: PMC10479857 DOI: 10.4103/1673-5374.375316] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/20/2022] [Accepted: 04/16/2023] [Indexed: 07/26/2023] Open
Abstract
The impact of apolipoprotein E (ApoE) isoforms on sporadic Alzheimer's disease has long been studied; however, the influences of apolipoprotein E gene (APOE) on healthy and pathological human brains are not fully understood. ApoE exists as three common isoforms (ApoE2, ApoE3, and ApoE4), which differ in two amino acid residues. Traditionally, ApoE binds cholesterol and phospholipids and ApoE isoforms display different affinities for their receptors, lipids transport and distribution in the brain and periphery. The role of ApoE in the human depends on ApoE isoforms, brain regions, aging, and neural injury. APOE ε4 is the strongest genetic risk factor for sporadic Alzheimer's disease, considering its role in influencing amyloid-beta metabolism. The exact mechanisms by which APOE gene variants may increase or decrease Alzheimer's disease risk are not fully understood, but APOE was also known to affect directly and indirectly tau-mediated neurodegeneration, lipids metabolism, neurovascular unit, and microglial function. Consistent with the biological function of ApoE, ApoE4 isoform significantly altered signaling pathways associated with cholesterol homeostasis, transport, and myelination. Also, the rare protective APOE variants confirm that ApoE plays an important role in Alzheimer's disease pathogenesis. The objectives of the present mini-review were to describe classical and new roles of various ApoE isoforms in Alzheimer's disease pathophysiology beyond the deposition of amyloid-beta and to establish a functional link between APOE, brain function, and memory, from a molecular to a clinical level. APOE genotype also exerted a heterogeneous effect on clinical Alzheimer's disease phenotype and its outcomes. Not only in learning and memory but also in neuropsychiatric symptoms that occur in a premorbid condition. Clarifying the relationships between Alzheimer's disease-related pathology with neuropsychiatric symptoms, particularly suicidal ideation in Alzheimer's disease patients, may be useful for elucidating also the underlying pathophysiological process and its prognosis. Also, the effects of anti-amyloid-beta drugs, recently approved for the treatment of Alzheimer's disease, could be influenced by the APOE genotype.
Collapse
Affiliation(s)
- Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Panza
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, Bari, Italy
| |
Collapse
|
33
|
Das S, Li Z, Wachter A, Alla S, Noori A, Abdourahman A, Tamm JA, Woodbury ME, Talanian RV, Biber K, Karran EH, Hyman BT, Serrano‐Pozo A. Distinct transcriptomic responses to Aβ plaques, neurofibrillary tangles, and APOE in Alzheimer's disease. Alzheimers Dement 2024; 20:74-90. [PMID: 37461318 PMCID: PMC10792109 DOI: 10.1002/alz.13387] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 07/28/2023]
Abstract
INTRODUCTION Omics studies have revealed that various brain cell types undergo profound molecular changes in Alzheimer's disease (AD) but the spatial relationships with plaques and tangles and APOE-linked differences remain unclear. METHODS We performed laser capture microdissection of amyloid beta (Aβ) plaques, the 50 μm halo around them, tangles with the 50 μm halo around them, and areas distant (> 50 μm) from plaques and tangles in the temporal cortex of AD and control donors, followed by RNA-sequencing. RESULTS Aβ plaques exhibited upregulated microglial (neuroinflammation/phagocytosis) and downregulated neuronal (neurotransmission/energy metabolism) genes, whereas tangles had mostly downregulated neuronal genes. Aβ plaques had more differentially expressed genes than tangles. We identified a gradient Aβ plaque > peri-plaque > tangle > distant for these changes. AD APOE ε4 homozygotes had greater changes than APOE ε3 across locations, especially within Aβ plaques. DISCUSSION Transcriptomic changes in AD consist primarily of neuroinflammation and neuronal dysfunction, are spatially associated mainly with Aβ plaques, and are exacerbated by the APOE ε4 allele.
Collapse
Affiliation(s)
- Sudeshna Das
- Neurology DepartmentMassachusetts General HospitalBostonMassachusettsUSA
- Massachusetts Alzheimer's Disease Research CenterCharlestownMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Zhaozhi Li
- Neurology DepartmentMassachusetts General HospitalBostonMassachusettsUSA
- Massachusetts Alzheimer's Disease Research CenterCharlestownMassachusettsUSA
| | - Astrid Wachter
- AbbVie Deutschland GmbH & Co. KGGenomics Research CenterLudwigshafenGermany
| | - Srinija Alla
- Neurology DepartmentMassachusetts General HospitalBostonMassachusettsUSA
| | - Ayush Noori
- Neurology DepartmentMassachusetts General HospitalBostonMassachusettsUSA
| | | | - Joseph A. Tamm
- AbbVie, Cambridge Research CenterCambridgeMassachusettsUSA
| | | | | | - Knut Biber
- AbbVie Deutschland GmbH & Co. KGNeuroscience Research CenterLudwigshafenGermany
| | - Eric H. Karran
- AbbVie, Cambridge Research CenterCambridgeMassachusettsUSA
| | - Bradley T. Hyman
- Neurology DepartmentMassachusetts General HospitalBostonMassachusettsUSA
- Massachusetts Alzheimer's Disease Research CenterCharlestownMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Alberto Serrano‐Pozo
- Neurology DepartmentMassachusetts General HospitalBostonMassachusettsUSA
- Massachusetts Alzheimer's Disease Research CenterCharlestownMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
34
|
Paradela RS, Justo AFO, Paes VR, Leite REP, Pasqualucci CA, Grinberg LT, Naslavsky MS, Zatz M, Nitrini R, Jacob-Filho W, Suemoto CK. Association between APOE-ε4 allele and cognitive function is mediated by Alzheimer's disease pathology: a population-based autopsy study in an admixed sample. Acta Neuropathol Commun 2023; 11:205. [PMID: 38115150 PMCID: PMC10731799 DOI: 10.1186/s40478-023-01681-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Apolipoprotein E ε4 allele (APOE-ε4) is the main genetic risk factor for late-onset Alzheimer's disease (AD) and may impact cognitive function also via other neuropathological lesions. However, there is limited evidence available from diverse populations, as APOE associations with dementia seem to differ by race. Therefore, we aimed to evaluate the pathways linking APOE-ε4 to cognitive abilities through AD and non-AD neuropathology in an autopsy study with an admixed sample. METHODS Neuropathological lesions were evaluated following international criteria using immunohistochemistry. Participants were classified into APOE-ε4 carriers (at least one ε4 allele) and non-carriers. Cognitive abilities were evaluated by the Clinical Dementia Rating Scale sum of boxes. Mediation analyses were conducted to assess the indirect association of APOE-ε4 with cognition through AD-pathology, lacunar infarcts, hyaline arteriosclerosis, cerebral amyloid angiopathy (CAA), Lewy body disease (LBD), and TAR DNA-binding protein 43 (TDP-43). RESULTS We included 648 participants (mean age 75 ± 12 years old, mean education 4.4 ± 3.7 years, 52% women, 69% White, and 28% APOE-ε4 carriers). The association between APOE-ε4 and cognitive abilities was mediated by neurofibrillary tangles (β = 0.88, 95% CI = 0.45; 1.38, p < 0.001) and neuritic plaques (β = 1.36, 95% CI = 0.86; 1.96, p < 0.001). Lacunar infarcts, hyaline arteriosclerosis, CAA, LBD, and TDP-43 were not mediators in the pathway from APOE-ε4 to cognition. CONCLUSION The association between APOE-ε4 and cognitive abilities was partially mediated by AD-pathology. On the other hand, cerebrovascular lesions and other neurodegenerative diseases did not mediate the association between APOE-ε4 and cognition.
Collapse
Affiliation(s)
- Regina Silva Paradela
- Division of Geriatrics, University of São Paulo Medical School, 455 Doutor Arnaldo Avenue, room 1355, São Paulo, SP, Brazil.
| | | | - Vítor Ribeiro Paes
- Department of Pathology, University of Sao Paulo Medical School, São Paulo, Brazil
| | - Renata E P Leite
- Department of Pathology, University of Sao Paulo Medical School, São Paulo, Brazil
| | - Carlos A Pasqualucci
- Department of Pathology, University of Sao Paulo Medical School, São Paulo, Brazil
| | - Lea T Grinberg
- Memory and Aging Center, University of California, San Francisco, USA
| | - Michel Satya Naslavsky
- Human Genome and Stem Cell Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Ricardo Nitrini
- Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
| | - Wilson Jacob-Filho
- Division of Geriatrics, University of São Paulo Medical School, 455 Doutor Arnaldo Avenue, room 1355, São Paulo, SP, Brazil
| | - Claudia Kimie Suemoto
- Division of Geriatrics, University of São Paulo Medical School, 455 Doutor Arnaldo Avenue, room 1355, São Paulo, SP, Brazil
| |
Collapse
|
35
|
Liu W, Li Y, Zhao T, Gong M, Wang X, Zhang Y, Xu L, Li W, Li Y, Jia J. The role of N-methyl-D-aspartate glutamate receptors in Alzheimer's disease: From pathophysiology to therapeutic approaches. Prog Neurobiol 2023; 231:102534. [PMID: 37783430 DOI: 10.1016/j.pneurobio.2023.102534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
N-Methyl-D-aspartate glutamate receptors (NMDARs) are involved in multiple physiopathological processes, including synaptic plasticity, neuronal network activities, excitotoxic events, and cognitive impairment. Abnormalities in NMDARs can initiate a cascade of pathological events, notably in Alzheimer's disease (AD) and even other neuropsychiatric disorders. The subunit composition of NMDARs is plastic, giving rise to a diverse array of receptor subtypes. While they are primarily found in neurons, NMDAR complexes, comprising both traditional and atypical subunits, are also present in non-neuronal cells, influencing the functions of various peripheral tissues. Furthermore, protein-protein interactions within NMDAR complexes has been linked with Aβ accumulation, tau phosphorylation, neuroinflammation, and mitochondrial dysfunction, all of which potentially served as an obligatory relay of cognitive impairment. Nonetheless, the precise mechanistic link remains to be fully elucidated. In this review, we provided an in-depth analysis of the structure and function of NMDAR, investigated their interactions with various pathogenic proteins, discussed the current landscape of NMDAR-based therapeutics, and highlighted the remaining challenges during drug development.
Collapse
Affiliation(s)
- Wenying Liu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Tan Zhao
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Min Gong
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Xuechu Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Yue Zhang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Lingzhi Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China
| | - Wenwen Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China.
| |
Collapse
|
36
|
Bae H, Kang MJ, Ha SW, Jeong DE, Lee K, Lim S, Min JY, Min KB. Association of plasma amyloid-β oligomerization with theta/beta ratio in older adults. Front Aging Neurosci 2023; 15:1291881. [PMID: 38106526 PMCID: PMC10722169 DOI: 10.3389/fnagi.2023.1291881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
Background Oligomeric Aβ (OAβ) is a promising candidate marker for Alzheimer's disease (AD) diagnosis. Electroencephalography (EEG) is a potential tool for early detection of AD. Still, whether EEG power ratios, particularly the theta/alpha ratio (TAR) and theta/beta ratio (TBR), reflect Aβ burden-a primary mechanism underlying cognitive impairment and AD. This study investigated the association of TAR and TBR with amyloid burden in older adults based on MDS-OAβ levels. Methods 529 individuals (aged ≥60 years) were recruited. All participants underwent EEG (MINDD SCAN, Ybrain Inc., South Korea) and AlzOn™ test (PeopleBio Inc., Gyeonggi-do, Republic of Korea) for quantifying MDS-OAβ values in the plasma. EEG variables were log-transformed to normalize the data distribution. Using the MDS-OAβ cutoff value (0.78 ng/mL), all participants were classified into two groups: high MDS-OAβ and low MDS-OAβ. Results Participants with high MDS-OAβ levels had significantly higher TARs and TBRs than those with low MDS-OAβ levels. The log-transformed TBRs in the central lobe (β = 0.161, p = 0.0026), frontal lobe (β = 0.145, p = 0.0044), parietal lobe (β = 0.166, p = 0.0028), occipital lobe (β = 0.158, p = 0.0058), and temporal lobe (beta = 0.162, p = 0.0042) were significantly and positively associated with increases in MDS-OAβ levels. After adjusting for the Bonferroni correction, the TBRs in all lobe regions, except the occipital lobe, were significantly associated with increased MDS-OAβ levels. Conclusion We found a significant association of MDS-OAβ with TBR in older adults. This finding indicates that an increase in amyloid burden may be associated with an increase in the low-frequency band and a decrease in the relatively high-frequency band.
Collapse
Affiliation(s)
- Heewon Bae
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Min Ju Kang
- Department of Neurology, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Sang-Won Ha
- Department of Neurology, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Da-Eun Jeong
- Department of Neurology, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Kiwon Lee
- Ybrain Research Institute, Seongnam-si, Republic of Korea
| | - Seungui Lim
- Ybrain Research Institute, Seongnam-si, Republic of Korea
| | - Jin-Young Min
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Kyoung-Bok Min
- Department of Preventive Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Medical Research Center, Institute of Health Policy and Management, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
37
|
Lan G, Du J, Chen X, Wang Q, Han Y, Guo T. Association of APOE-ε4 and GAP-43-related presynaptic loss with β-amyloid, tau, neurodegeneration, and cognitive decline. Neurobiol Aging 2023; 132:209-219. [PMID: 37852045 DOI: 10.1016/j.neurobiolaging.2023.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023]
Abstract
Apolipoprotein E-ε4 (APOE-ε4) carriers had elevated cerebrospinal fluid (CSF) presynaptic protein growth-associated protein-43 (GAP-43), but the underlying mechanism is not fully understood. We investigated how the APOE-ε4 genotype affects the baseline and longitudinal changes in CSF GAP-43 and their associations with β-amyloid positron emission tomography (Aβ PET), CSF phosphorylated tau 181 (p-Tau181), neurodegeneration, and cognitive decline. Compared to APOE-ε4 non-carriers, APOE-ε4 carriers had higher baseline levels and faster rates of increases in Aβ PET, CSF p-Tau181, and CSF GAP-43. Both higher baseline levels and faster rates of increase in CSF GAP-43 were associated with greater baseline Aβ PET and CSF p-Tau181, which fully mediated the APOE-ε4 effect on CSF GAP-43 elevations. Independent of Aβ PET and CSF p-Tau181, APOE-ε4 carriage was associated with exacerbated GAP-43-related longitudinal hippocampal atrophy and cognitive decline, especially in Aβ+ participants (GAP-43 × time × APOE-ε4). These findings suggest that the APOE-ε4 effect on GAP-43-related presynaptic dysfunction is mediated by primary Alzheimer's pathologies and independently correlates to hippocampal atrophy and cognitive decline in the future.
Collapse
Affiliation(s)
- Guoyu Lan
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jing Du
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Xuhui Chen
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qingyong Wang
- Department of Neurology, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China
| | - Ying Han
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China; Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Tengfei Guo
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China; Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, China.
| |
Collapse
|
38
|
Akyol O, Akyol S, Chou MC, Chen S, Liu CK, Selek S, Soares JC, Chen CH. Lipids and lipoproteins may play a role in the neuropathology of Alzheimer's disease. Front Neurosci 2023; 17:1275932. [PMID: 38033552 PMCID: PMC10687420 DOI: 10.3389/fnins.2023.1275932] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Alzheimer's disease (AD) and other classes of dementia are important public health problems with overwhelming social, physical, and financial effects for patients, society, and their families and caregivers. The pathophysiology of AD is poorly understood despite the extensive number of clinical and experimental studies. The brain's lipid-rich composition is linked to disturbances in lipid homeostasis, often associated with glucose and lipid abnormalities in various neurodegenerative diseases, including AD. Moreover, elevated low-density lipoprotein (LDL) cholesterol levels may be related to a higher probability of AD. Here, we hypothesize that lipids, and electronegative LDL (L5) in particular, may be involved in the pathophysiology of AD. Although changes in cholesterol, triglyceride, LDL, and glucose levels are seen in AD, the cause remains unknown. We believe that L5-the most electronegative subfraction of LDL-may be a crucial factor in understanding the involvement of lipids in AD pathology. LDL and L5 are internalized by cells through different receptors and mechanisms that trigger separate intracellular pathways. One of the receptors involved in L5 internalization, LOX-1, triggers apoptotic pathways. Aging is associated with dysregulation of lipid homeostasis, and it is believed that alterations in lipid metabolism contribute to the pathogenesis of AD. Proposed mechanisms of lipid dysregulation in AD include mitochondrial dysfunction, blood-brain barrier disease, neuronal signaling, inflammation, and oxidative stress, all of which lead ultimately to memory loss through deficiency of synaptic integration. Several lipid species and their receptors have essential functions in AD pathogenesis and may be potential biomarkers.
Collapse
Affiliation(s)
- Omer Akyol
- Molecular Cardiology, Vascular and Medicinal Research, The Texas Heart Institute, Houston, TX, United States
| | | | - Mei-Chuan Chou
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shioulan Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Kuan Liu
- Institute of Precision Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Salih Selek
- Department of Psychiatry and Behavioral Sciences, UTHealth Houston McGovern Medical School, Houston, TX, United States
| | - Jair C. Soares
- Department of Psychiatry and Behavioral Sciences, UTHealth Houston McGovern Medical School, Houston, TX, United States
| | - Chu-Huang Chen
- Molecular Cardiology, Vascular and Medicinal Research, The Texas Heart Institute, Houston, TX, United States
| |
Collapse
|
39
|
Xie Z, Meng J, Wu Z, Nakanishi H, Hayashi Y, Kong W, Lan F, Narengaowa, Yang Q, Qing H, Ni J. The Dual Nature of Microglia in Alzheimer's Disease: A Microglia-Neuron Crosstalk Perspective. Neuroscientist 2023; 29:616-638. [PMID: 35348415 DOI: 10.1177/10738584211070273] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Microglia are critical players in the neuroimmune system, and their involvement in Alzheimer's disease (AD) pathogenesis is increasingly being recognized. However, whether microglia play a positive or negative role in AD remains largely controversial and the precise molecular targets for intervention are not well defined. This partly results from the opposing roles of microglia in AD pathology, and is mainly reflected in the microglia-neuron interaction. Microglia can prune synapses resulting in excessive synapse loss and neuronal dysfunction, but they can also promote synapse formation, enhancing neural network plasticity. Neuroimmune crosstalk accelerates microglial activation, which induces neuron death and enhances the microglial phagocytosis of β-amyloid to protect neurons. Moreover, microglia have dual opposing roles in developing the major pathological features in AD, such as amyloid deposition and blood-brain barrier permeability. This review summarizes the dual opposing role of microglia in AD from the perspective of the interaction between neurons and microglia. Additionally, current AD treatments targeting microglia and the advantages and disadvantages of developing microglia-targeted therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Zhen Xie
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Department of Biology, Beijing Institute of Technology, Beijing, China
- Research Center for Resource Peptide Drugs, Shanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yanan University, Yanan, China
| | - Jie Meng
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hiroshi Nakanishi
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Wei Kong
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Department of Biology, Beijing Institute of Technology, Beijing, China
| | - Fei Lan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Department of Biology, Beijing Institute of Technology, Beijing, China
| | - Narengaowa
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Department of Biology, Beijing Institute of Technology, Beijing, China
| | - Qinghu Yang
- Research Center for Resource Peptide Drugs, Shanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yanan University, Yanan, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Department of Biology, Beijing Institute of Technology, Beijing, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Department of Biology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
40
|
Tzioras M, Daniels MJD, Davies C, Baxter P, King D, McKay S, Varga B, Popovic K, Hernandez M, Stevenson AJ, Barrington J, Drinkwater E, Borella J, Holloway RK, Tulloch J, Moss J, Latta C, Kandasamy J, Sokol D, Smith C, Miron VE, Káradóttir RT, Hardingham GE, Henstridge CM, Brennan PM, McColl BW, Spires-Jones TL. Human astrocytes and microglia show augmented ingestion of synapses in Alzheimer's disease via MFG-E8. Cell Rep Med 2023; 4:101175. [PMID: 37652017 PMCID: PMC10518633 DOI: 10.1016/j.xcrm.2023.101175] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/30/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023]
Abstract
Synapse loss correlates with cognitive decline in Alzheimer's disease (AD). Data from mouse models suggests microglia are important for synapse degeneration, but direct human evidence for any glial involvement in synapse removal in human AD remains to be established. Here we observe astrocytes and microglia from human brains contain greater amounts of synaptic protein in AD compared with non-disease controls, and that proximity to amyloid-β plaques and the APOE4 risk gene exacerbate this effect. In culture, mouse and human astrocytes and primary mouse and human microglia phagocytose AD patient-derived synapses more than synapses from controls. Inhibiting interactions of MFG-E8 rescues the elevated engulfment of AD synapses by astrocytes and microglia without affecting control synapse uptake. Thus, AD promotes increased synapse ingestion by human glial cells at least in part via an MFG-E8 opsonophagocytic mechanism with potential for targeted therapeutic manipulation.
Collapse
Affiliation(s)
- Makis Tzioras
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Michael J D Daniels
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Caitlin Davies
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Paul Baxter
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Declan King
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Sean McKay
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Balazs Varga
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Karla Popovic
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Madison Hernandez
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Anna J Stevenson
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Jack Barrington
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Elizabeth Drinkwater
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Julia Borella
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Rebecca K Holloway
- MRC Centre for Reproductive Health, the University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Jane Tulloch
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Jonathan Moss
- MRC Centre for Reproductive Health, the University of Edinburgh, Edinburgh EH16 4TJ, UK; The Roslin Institute, the Royal (Dick) School of Veterinary Studies, the University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Clare Latta
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Jothy Kandasamy
- Department of Clinical Neurosciences, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Drahoslav Sokol
- Department of Clinical Neurosciences, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences, the University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Veronique E Miron
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; MRC Centre for Reproductive Health, the University of Edinburgh, Edinburgh EH16 4TJ, UK; Barlo Multiple Sclerosis Centre at St. Michael's Hospital, Keenan Research Centre for Biomedical Science, Toronto, ON M5B 1T8, Canada
| | | | - Giles E Hardingham
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | | | - Paul M Brennan
- Department of Clinical Neurosciences, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK; Centre for Clinical Brain Sciences, the University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Barry W McColl
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK.
| | - Tara L Spires-Jones
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK.
| |
Collapse
|
41
|
Cozachenco D, Zimmer ER, Lourenco MV. Emerging concepts towards a translational framework in Alzheimer's disease. Neurosci Biobehav Rev 2023; 152:105246. [PMID: 37236385 DOI: 10.1016/j.neubiorev.2023.105246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
Over the past decades, significant efforts have been made to understand the precise mechanisms underlying the pathogenesis of Alzheimer's disease (AD), the most common cause of dementia. However, clinical trials targeting AD pathological hallmarks have consistently failed. Refinement of AD conceptualization, modeling, and assessment is key to developing successful therapies. Here, we review critical findings and discuss emerging ideas to integrate molecular mechanisms and clinical approaches in AD. We further propose a refined workflow for animal studies incorporating multimodal biomarkers used in clinical studies - delineating critical paths for drug discovery and translation. Addressing unresolved questions with the proposed conceptual and experimental framework may accelerate the development of effective disease-modifying strategies for AD.
Collapse
Affiliation(s)
- Danielle Cozachenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eduardo R Zimmer
- Department of Pharmacology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Biochemistry (PPGBioq), UFRGS, Porto Alegre, RS, Brazil; Pharmacology and Therapeutics (PPGFT), UFRGS, Porto Alegre, RS, Brazil; McGill Centre for Studies in Aging, McGill University, Montreal, Canada; Brain Institute of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
42
|
Bouvet P, de Gea P, Aimard M, Chounlamountri N, Honnorat J, Delcros JG, Salin PA, Meissirel C. A novel peptide derived from vascular endothelial growth factor prevents amyloid beta aggregation and toxicity. Aging Cell 2023; 22:e13907. [PMID: 37415305 PMCID: PMC10497828 DOI: 10.1111/acel.13907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/10/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
Amyloid-β oligomers (Aβo) are the most pathologically relevant Aβ species in Alzheimer's disease (AD), because they induce early synaptic dysfunction that leads to learning and memory impairments. In contrast, increasing VEGF (Vascular Endothelial Growth Factor) brain levels have been shown to improve learning and memory processes, and to alleviate Aβ-mediated synapse dysfunction. Here, we designed a new peptide, the blocking peptide (BP), which is derived from an Aβo-targeted domain of the VEGF protein, and investigated its effect on Aβ-associated toxicity. Using a combination of biochemical, 3D and ultrastructural imaging, and electrophysiological approaches, we demonstrated that BP strongly interacts with Aβo and blocks Aβ fibrillar aggregation process, leading to the formation of Aβ amorphous aggregates. BP further impedes the formation of structured Aβo and prevents their pathogenic binding to synapses. Importantly, acute BP treatment successfully rescues long-term potentiation (LTP) in the APP/PS1 mouse model of AD, at an age when LTP is highly impaired in hippocampal slices. Moreover, BP is also able to block the interaction between Aβo and VEGF, which suggests a dual mechanism aimed at both trapping Aβo and releasing VEGF to alleviate Aβo-induced synaptic damage. Our findings provide evidence for a neutralizing effect of the BP on Aβ aggregation process and pathogenic action, highlighting a potential new therapeutic strategy.
Collapse
Affiliation(s)
- P. Bouvet
- MeLiS, Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1314Centre National de la Recherche Scientifique (CNRS), UMR5284LyonFrance
- Univ LyonUniversité Claude Bernard Lyon 1LyonFrance
| | - P. de Gea
- MeLiS, Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1314Centre National de la Recherche Scientifique (CNRS), UMR5284LyonFrance
- Univ LyonUniversité Claude Bernard Lyon 1LyonFrance
| | - M. Aimard
- MeLiS, Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1314Centre National de la Recherche Scientifique (CNRS), UMR5284LyonFrance
- Univ LyonUniversité Claude Bernard Lyon 1LyonFrance
| | - N. Chounlamountri
- MeLiS, Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1314Centre National de la Recherche Scientifique (CNRS), UMR5284LyonFrance
- Univ LyonUniversité Claude Bernard Lyon 1LyonFrance
| | - J. Honnorat
- MeLiS, Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1314Centre National de la Recherche Scientifique (CNRS), UMR5284LyonFrance
- Univ LyonUniversité Claude Bernard Lyon 1LyonFrance
| | - J. G. Delcros
- Univ LyonUniversité Claude Bernard Lyon 1LyonFrance
- Centre de Recherche en Cancérologie de Lyon, Apoptosis, Cancer and Development, Institut PLAsCAN, INSERM U1052, CNRS UMR5286Centre Léon BérardLyonFrance
- Centre de Recherche en Cancérologie de Lyon, Small Molecules for Biological TargetsINSERM U1052 – CNRS UMR5286, ISPB RockefellerLyonFrance
| | - P. A. Salin
- Univ LyonUniversité Claude Bernard Lyon 1LyonFrance
- Centre de Recherche en Neurosciences de Lyon, Forgetting Processes and Cortical DynamicsINSERM U1028, CNRS UMR5292BronFrance
| | - C. Meissirel
- MeLiS, Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1314Centre National de la Recherche Scientifique (CNRS), UMR5284LyonFrance
- Univ LyonUniversité Claude Bernard Lyon 1LyonFrance
| |
Collapse
|
43
|
Jackson RJ, Keiser MS, Meltzer JC, Fykstra DP, Dierksmeier SE, Melloni A, Nakajima T, Tecedor L, Ranum PT, Carrell E, Chen Y, Holtzman DM, Davidson BL, Hyman BT. APOE2 gene therapy reduces amyloid deposition, and improves markers of neuroinflammation and neurodegeneration in a mouse model of Alzheimer disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.552850. [PMID: 37645718 PMCID: PMC10461997 DOI: 10.1101/2023.08.14.552850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Epidemiological studies show that individuals who carry the relatively uncommon APOE ε2 allele rarely develop Alzheimer disease, and if they do they have a later age of onset, milder clinical course, and less severe neuropathological findings than others with Alzheimer disease. The contrast is especially stark in comparison to the phenotype associated with the major genetic risk factor for Alzheimer disease, APOE ε4, which has an age of onset several decades earlier, as well as a more aggressive clinical course and notably more severe neuropathological findings, especially in terms of the amount of amyloid deposition. Even one APOE ε2 allele improves phenotype, but it is uncertain if that is due to the replacement of a more toxic allele by APOE ε2, or if APOE ε2 has a protective, neuro-modulatory effect. Here, we demonstrate that brain exposure to APOE2 via a gene therapy approach which bathes the entire cortical mantle in the gene product after transduction of the ependyma, rapidly ameliorates established Aβ plaque deposition, neurodegenerative synaptic loss, and, remarkably, reduces microglial activation in an APP/PS1 mouse model despite continued expression of human APOE4. This result suggests a promising protective effect of exogenous APOE2, revealing a cell non-autonomous effect of the protein on microglial activation. We also show that plaque associated microglia in the brain of patients who inherit APOE2 similarly have less microglial reactivity to plaques. These data raise the potential that an APOE2 therapeutic could be effective in Alzheimer disease even in individuals born with the risk ε4 allele. One Sentence Summary Introduction of ApoE2 using an AAV that transduces the ependymal cells of the ventricle causes a reduction in amyloid load and plaque associated synapse loss, and reduces neuroinflammation by modulating microglial responsiveness to plaques.
Collapse
|
44
|
Konings SC, Nyberg E, Martinsson I, Torres-Garcia L, Klementieva O, Guimas Almeida C, Gouras GK. Apolipoprotein E intersects with amyloid-β within neurons. Life Sci Alliance 2023; 6:e202201887. [PMID: 37290814 PMCID: PMC10250689 DOI: 10.26508/lsa.202201887] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
Apolipoprotein E4 (ApoE4) is the most important genetic risk factor for Alzheimer's disease (AD). Among the earliest changes in AD is endosomal enlargement in neurons, which was reported as enhanced in ApoE4 carriers. ApoE is thought to be internalized into endosomes of neurons, whereas β-amyloid (Aβ) accumulates within neuronal endosomes early in AD. However, it remains unknown whether ApoE and Aβ intersect intracellularly. We show that internalized astrocytic ApoE localizes mostly to lysosomes in neuroblastoma cells and astrocytes, whereas in neurons, it preferentially localizes to endosomes-autophagosomes of neurites. In AD transgenic neurons, astrocyte-derived ApoE intersects intracellularly with amyloid precursor protein/Aβ. Moreover, ApoE4 increases the levels of endogenous and internalized Aβ42 in neurons. Taken together, we demonstrate differential localization of ApoE in neurons, astrocytes, and neuron-like cells, and show that internalized ApoE intersects with amyloid precursor protein/Aβ in neurons, which may be of considerable relevance to AD.
Collapse
Affiliation(s)
- Sabine C Konings
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Medical Microspectroscopy, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Emma Nyberg
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Isak Martinsson
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Laura Torres-Garcia
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Oxana Klementieva
- Medical Microspectroscopy, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Claudia Guimas Almeida
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Gunnar K Gouras
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
45
|
Cai W, Li L, Sang S, Pan X, Zhong C. Physiological Roles of β-amyloid in Regulating Synaptic Function: Implications for AD Pathophysiology. Neurosci Bull 2023; 39:1289-1308. [PMID: 36443453 PMCID: PMC10387033 DOI: 10.1007/s12264-022-00985-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
The physiological functions of endogenous amyloid-β (Aβ), which plays important role in the pathology of Alzheimer's disease (AD), have not been paid enough attention. Here, we review the multiple physiological effects of Aβ, particularly in regulating synaptic transmission, and the possible mechanisms, in order to decipher the real characters of Aβ under both physiological and pathological conditions. Some worthy studies have shown that the deprivation of endogenous Aβ gives rise to synaptic dysfunction and cognitive deficiency, while the moderate elevation of this peptide enhances long term potentiation and leads to neuronal hyperexcitability. In this review, we provide a new view for understanding the role of Aβ in AD pathophysiology from the perspective of physiological meaning.
Collapse
Affiliation(s)
- Wenwen Cai
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Linxi Li
- Basic Medical College, Nanchang University, Nanchang, 330031, China
| | - Shaoming Sang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoli Pan
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Chunjiu Zhong
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science & Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
46
|
Colom-Cadena M, Davies C, Sirisi S, Lee JE, Simzer EM, Tzioras M, Querol-Vilaseca M, Sánchez-Aced É, Chang YY, Holt K, McGeachan RI, Rose J, Tulloch J, Wilkins L, Smith C, Andrian T, Belbin O, Pujals S, Horrocks MH, Lleó A, Spires-Jones TL. Synaptic oligomeric tau in Alzheimer's disease - A potential culprit in the spread of tau pathology through the brain. Neuron 2023; 111:2170-2183.e6. [PMID: 37192625 DOI: 10.1016/j.neuron.2023.04.020] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/15/2023] [Accepted: 04/17/2023] [Indexed: 05/18/2023]
Abstract
In Alzheimer's disease, fibrillar tau pathology accumulates and spreads through the brain and synapses are lost. Evidence from mouse models indicates that tau spreads trans-synaptically from pre- to postsynapses and that oligomeric tau is synaptotoxic, but data on synaptic tau in human brain are scarce. Here we used sub-diffraction-limit microscopy to study synaptic tau accumulation in postmortem temporal and occipital cortices of human Alzheimer's and control donors. Oligomeric tau is present in pre- and postsynaptic terminals, even in areas without abundant fibrillar tau deposition. Furthermore, there is a higher proportion of oligomeric tau compared with phosphorylated or misfolded tau found at synaptic terminals. These data suggest that accumulation of oligomeric tau in synapses is an early event in pathogenesis and that tau pathology may progress through the brain via trans-synaptic spread in human disease. Thus, specifically reducing oligomeric tau at synapses may be a promising therapeutic strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Martí Colom-Cadena
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Caitlin Davies
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Sònia Sirisi
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ji-Eun Lee
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, UK; IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4 UU Edinburgh, UK
| | - Elizabeth M Simzer
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Makis Tzioras
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Marta Querol-Vilaseca
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Érika Sánchez-Aced
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ya Yin Chang
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Kristjan Holt
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Robert I McGeachan
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Jamie Rose
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Jane Tulloch
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Lewis Wilkins
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences and Sudden Death Brain Bank, The University of Edinburgh, Edinburgh, UK
| | - Teodora Andrian
- Nanoscopy for Nanomedicine Lab, Institute of Bioengineering of Catalonia (IBEC Barcelona Institute of Science and Technology), Barcelona, Spain
| | - Olivia Belbin
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Sílvia Pujals
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Mathew H Horrocks
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, UK; IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4 UU Edinburgh, UK
| | - Alberto Lleó
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Tara L Spires-Jones
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK.
| |
Collapse
|
47
|
Mouofo EN, Spires-Jones TL. Reeling from news that reelin defends the brain against Alzheimer's. Cell Rep Med 2023; 4:101111. [PMID: 37467729 PMCID: PMC10394162 DOI: 10.1016/j.xcrm.2023.101111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023]
Abstract
In a recent study, Lopera and colleagues investigate a person with extreme resilience to autosomal-dominant familial Alzheimer's disease, which they attribute to a rare variant in the RELN gene encoding reelin.1.
Collapse
Affiliation(s)
- Edmond N Mouofo
- Centre for Discovery Brain Sciences and UK Dementia Research Institute at the University of Edinburgh, Edinburgh, UK
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences and UK Dementia Research Institute at the University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
48
|
Vipin A, Kumar D, Soo SA, Zailan FZ, Leow YJ, Koh CL, Ng ASL, Ng KP, Kandiah N. APOE4 carrier status determines association between white matter disease and grey matter atrophy in early-stage dementia. Alzheimers Res Ther 2023; 15:103. [PMID: 37270543 DOI: 10.1186/s13195-023-01251-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND White matter hyperintensities, a neuroimaging marker of small-vessel cerebrovascular disease and apolipoprotein ε4 (APOE4) allele, are important dementia risk factors. However, APOE4 as a key effect modifier in the relationship between white matter hyperintensities and grey matter volume needs further exploration. METHODS One hundred ninety-two early-stage dementia (including mild cognitive impairment and mild dementia) and 259 cognitively unimpaired participants from a neurocognitive research cohort with neuroimaging data, APOE genotyping, and neuropsychological assessments were studied. We investigated independent and interactive effects of white matter hyperintensities and APOE4 on whole-brain voxel-wise grey matter volume using voxel-based morphometry (uncorrected p < 0.001; minimum cluster size = 100 voxels). We further assessed interactive effects between APOE4 and white matter hyperintensities on global cognition, memory, and executive function in early-stage dementia and cognitively unimpaired participants. RESULTS Independent of APOE4 status, higher white matter hyperintensity load was associated with greater grey matter atrophy across frontal, parietal, temporal, and occipital lobes in cognitively unimpaired and early-stage dementia subjects. However, interaction analyses and independent sample analyses revealed that APOE4 non-carriers demonstrated greater white matter hyperintensity-associated grey matter atrophy compared to APOE4 carriers in both cognitively unimpaired and early-stage dementia groups. Additional confirmatory analyses among APOE4 non-carriers demonstrated that white matter hyperintensities resulted in widespread grey matter loss. Analyses of cognitive function demonstrated that higher white matter hyperintensity load was associated with worse global (Mini-Mental State Examination, Montreal Cognitive Assessment) and executive function (Color Trails 2) in APOE4 non-carriers compared to APOE4 carriers in early-stage dementia but not cognitively unimpaired participants. CONCLUSIONS The association between white matter hyperintensities and grey matter loss is more pronounced in APOE4 non-carriers than APOE4 carriers in the cognitively unimpaired and early-stage dementia stages. Furthermore, white matter hyperintensity presence results in poorer executive function in APOE4 non-carriers compared to APOE4 carriers. This finding may have significant impact on the design of clinical trials with disease modifying therapies.
Collapse
Grants
- MOE AcRF Tier 3 Award MOE2017-T3-1-002 Ministry of Education - Singapore
- MOE AcRF Tier 3 Award MOE2017-T3-1-002 Ministry of Education - Singapore
- MOE AcRF Tier 3 Award MOE2017-T3-1-002 Ministry of Education - Singapore
- MOE AcRF Tier 3 Award MOE2017-T3-1-002 Ministry of Education - Singapore
- MOE AcRF Tier 3 Award MOE2017-T3-1-002 Ministry of Education - Singapore
- MOE AcRF Tier 3 Award MOE2017-T3-1-002 Ministry of Education - Singapore
- NMRC/CIRG/1415/2015, NMRC/CSA/063/2014, MOH-CSAINV18nov-0007, NMRC/CIRG/14MAY025 National Medical Research Council
- NMRC/CIRG/1415/2015, NMRC/CSA/063/2014, MOH-CSAINV18nov-0007, NMRC/CIRG/14MAY025 National Medical Research Council
- NMRC/CIRG/1415/2015, NMRC/CSA/063/2014, MOH-CSAINV18nov-0007, NMRC/CIRG/14MAY025 National Medical Research Council
- NMRC/CIRG/1415/2015, NMRC/CSA/063/2014, MOH-CSAINV18nov-0007, NMRC/CIRG/14MAY025 National Medical Research Council
- NMRC/CIRG/1415/2015, NMRC/CSA/063/2014, MOH-CSAINV18nov-0007, NMRC/CIRG/14MAY025 National Medical Research Council
- NMRC/CIRG/1415/2015, NMRC/CSA/063/2014, MOH-CSAINV18nov-0007, NMRC/CIRG/14MAY025 National Medical Research Council
- Reference Number: 991016 National Neuroscience Institute-Health Research Endowment Fund (NNI-HREF), Singapore
- Reference Number: 991016 National Neuroscience Institute-Health Research Endowment Fund (NNI-HREF), Singapore
- Reference Number: 991016 National Neuroscience Institute-Health Research Endowment Fund (NNI-HREF), Singapore
- Reference Number: 991016 National Neuroscience Institute-Health Research Endowment Fund (NNI-HREF), Singapore
- Reference Number: 991016 National Neuroscience Institute-Health Research Endowment Fund (NNI-HREF), Singapore
- Reference Number: 991016 National Neuroscience Institute-Health Research Endowment Fund (NNI-HREF), Singapore
- Reference Number: 991016 National Neuroscience Institute-Health Research Endowment Fund (NNI-HREF), Singapore
- Reference Number: 991016 National Neuroscience Institute-Health Research Endowment Fund (NNI-HREF), Singapore
- Reference Number: 991016 National Neuroscience Institute-Health Research Endowment Fund (NNI-HREF), Singapore
Collapse
Affiliation(s)
- Ashwati Vipin
- Dementia Research Centre - Lee Kong Chian School of Medicine, Nanyang Technology University, 11 Mandalay Road, Singapore, 308232, Singapore
- National Neuroscience Institute, Singapore, Singapore
| | - Dilip Kumar
- Dementia Research Centre - Lee Kong Chian School of Medicine, Nanyang Technology University, 11 Mandalay Road, Singapore, 308232, Singapore
- National Neuroscience Institute, Singapore, Singapore
| | - See Ann Soo
- Dementia Research Centre - Lee Kong Chian School of Medicine, Nanyang Technology University, 11 Mandalay Road, Singapore, 308232, Singapore
- National Neuroscience Institute, Singapore, Singapore
| | - Fatin Zahra Zailan
- Dementia Research Centre - Lee Kong Chian School of Medicine, Nanyang Technology University, 11 Mandalay Road, Singapore, 308232, Singapore
- National Neuroscience Institute, Singapore, Singapore
| | - Yi Jin Leow
- Dementia Research Centre - Lee Kong Chian School of Medicine, Nanyang Technology University, 11 Mandalay Road, Singapore, 308232, Singapore
- National Neuroscience Institute, Singapore, Singapore
| | - Chen Ling Koh
- National Neuroscience Institute, Singapore, Singapore
| | - Adeline Su Lyn Ng
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Kok Pin Ng
- Dementia Research Centre - Lee Kong Chian School of Medicine, Nanyang Technology University, 11 Mandalay Road, Singapore, 308232, Singapore
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Nagaendran Kandiah
- Dementia Research Centre - Lee Kong Chian School of Medicine, Nanyang Technology University, 11 Mandalay Road, Singapore, 308232, Singapore.
- National Neuroscience Institute, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
49
|
Nichols E, Brickman AM, Casaletto KB, Dams-O’Connor K, George KM, Kumar RG, Palta P, Rabin JS, Satizabal CL, Schneider J, Pa J, La Joie R. AD and non-AD mediators of the pathway between the APOE genotype and cognition. Alzheimers Dement 2023; 19:2508-2519. [PMID: 36516004 PMCID: PMC10264550 DOI: 10.1002/alz.12885] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The apolipoprotein E (APOE) genotype is a driver of cognitive decline and dementia. We used causal mediation methods to characterize pathways linking the APOE genotype to late-life cognition through Alzheimer's disease (AD) and non-AD neuropathologies. METHODS We analyzed autopsy data from 1671 individuals from the Religious Orders Study, Memory and Aging Project, and Minority Aging Research Study (ROS/MAP/MARS) studies with cognitive assessment within 5 years of death and autopsy measures of AD (amyloid beta (Aβ), neurofibrillary tangles), vascular (athero/arteriolo-sclerosis, micro-infarcts/macro-infarcts), and non-AD neurodegenerative neuropathologies (TAR DNA protein 43 [TDP-43], Lewy bodies, amyloid angiopathy, hippocampal sclerosis). RESULTS The detrimental effect of APOE ε4 on cognition was mediated by summary measures of AD and non-AD neurodegenerative neuropathologies but not vascular neuropathologies; effects were strongest in individuals with dementia. The protective effect of APOE ε2 was partly mediated by AD neuropathology and stronger in women than in men. DISCUSSION The APOE genotype influences cognition and dementia through multiple neuropathological pathways, with implications for different therapeutic strategies targeting people at increased risk for dementia. HIGHLIGHTS Both apolipoprotein E (APOE) ε2 and APOE ε4 effects on late-life cognition are mediated by AD neuropathology. The estimated mediated effects of most measures of AD neuropathology were similar. Non-Alzheimer's disease (AD) neurodegenerative pathologies mediate the effect of ε4 independently from AD. Non-AD vascular pathologies did not mediate the effect of the APOE genotype on cognition. The protective effect of APOE ε2 on cognition was stronger in women.
Collapse
Affiliation(s)
- Emma Nichols
- Department of Epidemiology, Johns Hopkins Bloomberg School
of Public Health, Baltimore, MD, USA
| | - Adam M. Brickman
- Taub Institute for Research on Alzheimer’s Disease
and the Aging Brain, Department of Neurology, College of Physicians and Surgeons,
Columbia University, New York, NY, USA
| | - Kaitlin B. Casaletto
- Memory and Aging Center, Department of Neurology, Weill
Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Kristen Dams-O’Connor
- Department of Rehabilitation and Human Performance, Icahn
School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount
Sinai, New York, NY, USA
| | - Kristen M. George
- Department of Public Health Sciences, University of
California Davis School of Medicine, Davis, CA, USA
| | - Raj G. Kumar
- Department of Rehabilitation and Human Performance, Icahn
School of Medicine at Mount Sinai, New York, NY, USA
| | - Priya Palta
- Departments of Medicine and Epidemiology, Columbia
University Irving Medical Center, New York, NY, USA
| | - Jennifer S. Rabin
- Division of Neurology, Department of Medicine, Sunnybrook
Health Sciences Centre, University of Toronto, Canada
- Harquail Centre for Neuromodulation, Hurvitz Brain
Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Rehabilitation Sciences Institute, University of
Toronto, Canada
| | - Claudia L. Satizabal
- Department of Population Health Science and Biggs
Institute for Alzheimer’s and Neurodegenerative Diseases, UT Health San
Antonio, San Antonio, TX, USA
- Department of Neurology, Boston University School of
Medicine, Boston, MA, USA
| | - Julie Schneider
- Rush Alzheimer’s Disease Center, Chicago, IL,
USA
- Rush University Medical Center, Chicago, IL, USA
| | - Judy Pa
- Department of Neuroscience, University of California San
Diego, San Diego, CA, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill
Institute for Neurosciences, University of California, San Francisco, CA, USA
| |
Collapse
|
50
|
King D, Holt K, Toombs J, HE X, Dando O, Okely JA, Tzioras M, Rose J, Gunn C, Correia A, Montero C, McAlister H, Tulloch J, Lamont D, Taylor AM, Harris SE, Redmond P, Cox SR, Henstridge CM, Deary IJ, Smith C, Spires‐Jones TL. Synaptic resilience is associated with maintained cognition during ageing. Alzheimers Dement 2023; 19:2560-2574. [PMID: 36547260 PMCID: PMC11497288 DOI: 10.1002/alz.12894] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/01/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION It remains unclear why age increases risk of Alzheimer's disease and why some people experience age-related cognitive decline in the absence of dementia. Here we test the hypothesis that resilience to molecular changes in synapses contribute to healthy cognitive ageing. METHODS We examined post-mortem brain tissue from people in mid-life (n = 15), healthy ageing with either maintained cognition (n = 9) or lifetime cognitive decline (n = 8), and Alzheimer's disease (n = 13). Synapses were examined with high resolution imaging, proteomics, and RNA sequencing. Stem cell-derived neurons were challenged with Alzheimer's brain homogenate. RESULTS Synaptic pathology increased, and expression of genes involved in synaptic signaling decreased between mid-life, healthy ageing and Alzheimer's. In contrast, brain tissue and neurons from people with maintained cognition during ageing exhibited decreases in synaptic signaling genes compared to people with cognitive decline. DISCUSSION Efficient synaptic networks without pathological protein accumulation may contribute to maintained cognition during ageing.
Collapse
Affiliation(s)
- Declan King
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Kris Holt
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Jamie Toombs
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Xin HE
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Owen Dando
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Judith A Okely
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
| | - Makis Tzioras
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Jamie Rose
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Ciaran Gunn
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Adele Correia
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Carmen Montero
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Hannah McAlister
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Jane Tulloch
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Douglas Lamont
- FingerPrints Proteomics FacilitySchool of Life SciencesUniversity of DundeeDundeeUK
| | - Adele M Taylor
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
| | - Sarah E Harris
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
| | - Paul Redmond
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
| | - Simon R Cox
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
| | | | - Ian J Deary
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
| | - Colin Smith
- NeuropathologyCentre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - Tara L Spires‐Jones
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| |
Collapse
|