1
|
Findlay AR. Dominantly inherited muscle disorders: understanding their complexity and exploring therapeutic approaches. Dis Model Mech 2024; 17:dmm050720. [PMID: 39501809 PMCID: PMC11574355 DOI: 10.1242/dmm.050720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Treatments for disabling and life-threatening hereditary muscle disorders are finally close to becoming a reality. Research has thus far focused primarily on recessive forms of muscle disease. The gene replacement strategies that are commonly employed for recessive, loss-of-function disorders are not readily translatable to most dominant myopathies owing to the presence of a normal chromosome in each nucleus, hindering the development of novel treatments for these dominant disorders. This is largely due to their complex, heterogeneous disease mechanisms that require unique therapeutic approaches. However, as viral and RNA interference-based therapies enter clinical use, key tools are now in place to develop treatments for dominantly inherited disorders of muscle. This article will review what is known about dominantly inherited disorders of muscle, specifically their genetic basis, how mutations lead to disease, and the pathomechanistic implications for therapeutic approaches.
Collapse
Affiliation(s)
- Andrew R Findlay
- Washington University Saint Louis, Neuromuscular Disease Center, 660 S. Euclid Ave., St Louis, MO 63110, USA
| |
Collapse
|
2
|
Johnson AN. Myotube Guidance: Shaping up the Musculoskeletal System. J Dev Biol 2024; 12:25. [PMID: 39311120 PMCID: PMC11417883 DOI: 10.3390/jdb12030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/20/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Myofibers are highly specialized contractile cells of skeletal muscles, and dysregulation of myofiber morphogenesis is emerging as a contributing cause of myopathies and structural birth defects. Myotubes are the myofiber precursors and undergo a dramatic morphological transition into long bipolar myofibers that are attached to tendons on two ends. Similar to axon growth cones, myotube leading edges navigate toward target cells and form cell-cell connections. The process of myotube guidance connects myotubes with the correct tendons, orients myofiber morphology with the overall body plan, and generates a functional musculoskeletal system. Navigational signaling, addition of mass and volume, and identification of target cells are common events in myotube guidance and axon guidance, but surprisingly, the mechanisms regulating these events are not completely overlapping in myotubes and axons. This review summarizes the strategies that have evolved to direct myotube leading edges to predetermined tendon cells and highlights key differences between myotube guidance and axon guidance. The association of myotube guidance pathways with developmental disorders is also discussed.
Collapse
Affiliation(s)
- Aaron N Johnson
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Abood A, Mesner LD, Jeffery ED, Murali M, Lehe MD, Saquing J, Farber CR, Sheynkman GM. Long-read proteogenomics to connect disease-associated sQTLs to the protein isoform effectors of disease. Am J Hum Genet 2024; 111:1914-1931. [PMID: 39079539 PMCID: PMC11393689 DOI: 10.1016/j.ajhg.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
A major fraction of loci identified by genome-wide association studies (GWASs) mediate alternative splicing, but mechanistic interpretation is hindered by the technical limitations of short-read RNA sequencing (RNA-seq), which cannot directly link splicing events to full-length protein isoforms. Long-read RNA-seq represents a powerful tool to characterize transcript isoforms, and recently, infer protein isoform existence. Here, we present an approach that integrates information from GWASs, splicing quantitative trait loci (sQTLs), and PacBio long-read RNA-seq in a disease-relevant model to infer the effects of sQTLs on the ultimate protein isoform products they encode. We demonstrate the utility of our approach using bone mineral density (BMD) GWAS data. We identified 1,863 sQTLs from the Genotype-Tissue Expression (GTEx) project in 732 protein-coding genes that colocalized with BMD associations (H4PP ≥ 0.75). We generated PacBio Iso-Seq data (N = ∼22 million full-length reads) on human osteoblasts, identifying 68,326 protein-coding isoforms, of which 17,375 (25%) were unannotated. By casting the sQTLs onto protein isoforms, we connected 809 sQTLs to 2,029 protein isoforms from 441 genes expressed in osteoblasts. Overall, we found that 74 sQTLs influenced isoforms likely impacted by nonsense-mediated decay and 190 that potentially resulted in the expression of unannotated protein isoforms. Finally, we functionally validated colocalizing sQTLs in TPM2, in which siRNA-mediated knockdown in osteoblasts showed two TPM2 isoforms with opposing effects on mineralization but exhibited no effect upon knockdown of the entire gene. Our approach should be to generalize across diverse clinical traits and to provide insights into protein isoform activities modulated by GWAS loci.
Collapse
Affiliation(s)
- Abdullah Abood
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Larry D Mesner
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA
| | - Erin D Jeffery
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Mayank Murali
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Micah D Lehe
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Jamie Saquing
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Charles R Farber
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA.
| | - Gloria M Sheynkman
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA; UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
4
|
Zhang H, Chang M, Chen D, Yang J, Zhang Y, Sun J, Yao X, Sun H, Gu X, Li M, Shen Y, Dai B. Congenital myopathies: pathophysiological mechanisms and promising therapies. J Transl Med 2024; 22:815. [PMID: 39223631 PMCID: PMC11370226 DOI: 10.1186/s12967-024-05626-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Congenital myopathies (CMs) are a kind of non-progressive or slow-progressive muscle diseases caused by genetic mutations, which are currently defined and categorized mainly according to their clinicopathological features. CMs exhibit pleiotropy and genetic heterogeneity. Currently, supportive treatment and pharmacological remission are the mainstay of treatment, with no cure available. Some adeno-associated viruses show promising prospects in the treatment of MTM1 and BIN1-associated myopathies; however, such gene-level therapeutic interventions target only specific mutation types and are not generalizable. Thus, it is particularly crucial to identify the specific causative genes. Here, we outline the pathogenic mechanisms based on the classification of causative genes: excitation-contraction coupling and triadic assembly (RYR1, MTM1, DNM2, BIN1), actin-myosin interaction and production of myofibril forces (NEB, ACTA1, TNNT1, TPM2, TPM3), as well as other biological processes. Furthermore, we provide a comprehensive overview of recent therapeutic advancements and potential treatment modalities of CMs. Despite ongoing research endeavors, targeted strategies and collaboration are imperative to address diagnostic uncertainties and explore potential treatments.
Collapse
Affiliation(s)
- Han Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Mengyuan Chang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Daiyue Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Jiawen Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Yijie Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Jiacheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Meiyuan Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| | - Bin Dai
- Department of Orthopedics, Binhai County People's Hospital, Binhai, Jiangsu Province, 224500, P. R. China.
| |
Collapse
|
5
|
Donkervoort S, van de Locht M, Ronchi D, Reunert J, McLean CA, Zaki M, Orbach R, de Winter JM, Conijn S, Hoomoedt D, Neto OLA, Magri F, Viaene AN, Foley AR, Gorokhova S, Bolduc V, Hu Y, Acquaye N, Napoli L, Park JH, Immadisetty K, Miles LB, Essawi M, McModie S, Ferreira LF, Zanotti S, Neuhaus SB, Medne L, ElBagoury N, Johnson KR, Zhang Y, Laing NG, Davis MR, Bryson-Richardson RJ, Hwee DT, Hartman JJ, Malik FI, Kekenes-Huskey PM, Comi GP, Sharaf-Eldin W, Marquardt T, Ravenscroft G, Bönnemann CG, Ottenheijm CAC. Pathogenic TNNI1 variants disrupt sarcomere contractility resulting in hypo- and hypercontractile muscle disease. Sci Transl Med 2024; 16:eadg2841. [PMID: 38569017 DOI: 10.1126/scitranslmed.adg2841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
Troponin I (TnI) regulates thin filament activation and muscle contraction. Two isoforms, TnI-fast (TNNI2) and TnI-slow (TNNI1), are predominantly expressed in fast- and slow-twitch myofibers, respectively. TNNI2 variants are a rare cause of arthrogryposis, whereas TNNI1 variants have not been conclusively established to cause skeletal myopathy. We identified recessive loss-of-function TNNI1 variants as well as dominant gain-of-function TNNI1 variants as a cause of muscle disease, each with distinct physiological consequences and disease mechanisms. We identified three families with biallelic TNNI1 variants (F1: p.R14H/c.190-9G>A, F2 and F3: homozygous p.R14C), resulting in loss of function, manifesting with early-onset progressive muscle weakness and rod formation on histology. We also identified two families with a dominantly acting heterozygous TNNI1 variant (F4: p.R174Q and F5: p.K176del), resulting in gain of function, manifesting with muscle cramping, myalgias, and rod formation in F5. In zebrafish, TnI proteins with either of the missense variants (p.R14H; p.R174Q) incorporated into thin filaments. Molecular dynamics simulations suggested that the loss-of-function p.R14H variant decouples TnI from TnC, which was supported by functional studies showing a reduced force response of sarcomeres to submaximal [Ca2+] in patient myofibers. This contractile deficit could be reversed by a slow skeletal muscle troponin activator. In contrast, patient myofibers with the gain-of-function p.R174Q variant showed an increased force to submaximal [Ca2+], which was reversed by the small-molecule drug mavacamten. Our findings demonstrated that TNNI1 variants can cause muscle disease with variant-specific pathomechanisms, manifesting as either a hypo- or a hypercontractile phenotype, suggesting rational therapeutic strategies for each mechanism.
Collapse
Affiliation(s)
- Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martijn van de Locht
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam, 1081 HV Netherlands
| | - Dario Ronchi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, 20135, Italy
| | - Janine Reunert
- Department of General Pediatrics, University of Münster, Münster, 48149, Germany
| | - Catriona A McLean
- Department of Anatomical Pathology, Alfred Hospital, Melbourne, Victoria, 3004, Australia
- Faculty of Medicine, Nursing, and Health Sciences, Monash University, Melbourne, Victoria, 3168, Australia
| | - Maha Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Rotem Orbach
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Josine M de Winter
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam, 1081 HV Netherlands
| | - Stefan Conijn
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam, 1081 HV Netherlands
| | - Daan Hoomoedt
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam, 1081 HV Netherlands
| | - Osorio Lopes Abath Neto
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Francesca Magri
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, 20122, Italy
| | - Angela N Viaene
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104 PA, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Svetlana Gorokhova
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Medical Genetics, Timone Children's Hospital, APHM, Marseille, 13005, France
- INSERM, U1251-MMG, Aix-Marseille Université, Marseille, 13009, France
| | - Véronique Bolduc
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ying Hu
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole Acquaye
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laura Napoli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, 20122, Italy
| | - Julien H Park
- Department of General Pediatrics, University Hospital Münster, Münster, 48149 Germany
| | - Kalyan Immadisetty
- Department of Cell and Molecular Physiology, Loyola University, Chicago, IL 60153, USA
| | - Lee B Miles
- School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - Mona Essawi
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Salar McModie
- Department of Neurology, Alfred Health, Melbourne, Victoria, 3004, Australia
| | - Leonardo F Ferreira
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam, 1081 HV Netherlands
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Simona Zanotti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, 20122, Italy
| | - Sarah B Neuhaus
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Livija Medne
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nagham ElBagoury
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Kory R Johnson
- Bioinformatics Core, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yong Zhang
- Bioinformatics Core, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nigel G Laing
- Neurogenetics Unit, Department of Diagnostic Genomics, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia
- Centre for Medical Research University of Western Australia, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia
| | - Mark R Davis
- Neurogenetics Unit, Department of Diagnostic Genomics, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia
| | | | - Darren T Hwee
- Research and Development, Cytokinetics Inc., South San Francisco, CA 94080, USA
| | - James J Hartman
- Research and Development, Cytokinetics Inc., South San Francisco, CA 94080, USA
| | - Fady I Malik
- Research and Development, Cytokinetics Inc., South San Francisco, CA 94080, USA
| | | | - Giacomo Pietro Comi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, 20135, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, 20122, Italy
| | - Wessam Sharaf-Eldin
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Thorsten Marquardt
- Department of General Pediatrics, University of Münster, Münster, 48149, Germany
| | - Gianina Ravenscroft
- Centre for Medical Research University of Western Australia, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Coen A C Ottenheijm
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam, 1081 HV Netherlands
| |
Collapse
|
6
|
Wallgren-Pettersson C, Jokela M, Lehtokari VL, Tyynismaa H, Sainio MT, Ylikallio E, Tynninen O, Pelin K, Auranen M. Variants in tropomyosins TPM2 and TPM3 causing muscle hypertonia. Neuromuscul Disord 2024; 35:29-32. [PMID: 38219297 DOI: 10.1016/j.nmd.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024]
Abstract
Patients with myopathies caused by pathogenic variants in tropomyosin genes TPM2 and TPM3 usually have muscle hypotonia and weakness, their muscle biopsies often showing fibre size disproportion and nemaline bodies. Here, we describe a series of patients with hypercontractile molecular phenotypes, high muscle tone, and mostly non-specific myopathic biopsy findings without nemaline bodies. Three of the patients had trismus, whilst in one patient, the distal joints of her fingers flexed on extension of the wrists. In one biopsy from a patient with a rare TPM3 pathogenic variant, cores and minicores were observed, an unusual finding in TPM3-caused myopathy. The variants alter conserved contact sites between tropomyosin and actin.
Collapse
Affiliation(s)
- Carina Wallgren-Pettersson
- The Folkhälsan Institute of Genetics, the Folkhälsan Research Center, Helsinki, Finland, and the Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland.
| | - Manu Jokela
- Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Vilma-Lotta Lehtokari
- The Folkhälsan Institute of Genetics, the Folkhälsan Research Center, Helsinki, Finland, and the Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Programme, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Markus T Sainio
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Emil Ylikallio
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Olli Tynninen
- Olli Tynninen, Department of Pathology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Katarina Pelin
- The Folkhälsan Institute of Genetics, the Folkhälsan Research Center, Helsinki, Finland, and the Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Mari Auranen
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
7
|
Robaszkiewicz K, Siatkowska M, Wadman RI, Kamsteeg EJ, Chen Z, Merve A, Parton M, Bugiardini E, de Bie C, Moraczewska J. A Novel Variant in TPM3 Causing Muscle Weakness and Concomitant Hypercontractile Phenotype. Int J Mol Sci 2023; 24:16147. [PMID: 38003336 PMCID: PMC10671854 DOI: 10.3390/ijms242216147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
A novel variant of unknown significance c.8A > G (p.Glu3Gly) in TPM3 was detected in two unrelated families. TPM3 encodes the transcript variant Tpm3.12 (NM_152263.4), the tropomyosin isoform specifically expressed in slow skeletal muscle fibers. The patients presented with slowly progressive muscle weakness associated with Achilles tendon contractures of early childhood onset. Histopathology revealed features consistent with a nemaline rod myopathy. Biochemical in vitro assays performed with reconstituted thin filaments revealed defects in the assembly of the thin filament and regulation of actin-myosin interactions. The substitution p.Glu3Gly increased polymerization of Tpm3.12, but did not significantly change its affinity to actin alone. Affinity of Tpm3.12 to actin in the presence of troponin ± Ca2+ was decreased by the mutation, which was due to reduced interactions with troponin. Altered molecular interactions affected Ca2+-dependent regulation of the thin filament interactions with myosin, resulting in increased Ca2+ sensitivity and decreased relaxation of the actin-activated myosin ATPase activity. The hypercontractile molecular phenotype probably explains the distal joint contractions observed in the patients, but additional research is needed to explain the relatively mild severity of the contractures. The slowly progressive muscle weakness is most likely caused by the lack of relaxation and prolonged contractions which cause muscle wasting. This work provides evidence for the pathogenicity of the TPM3 c.8A > G variant, which allows for its classification as (likely) pathogenic.
Collapse
Affiliation(s)
- Katarzyna Robaszkiewicz
- Department of Biochemistry and Cell Biology, Kazimierz Wielki University, 85-671 Bydgoszcz, Poland; (K.R.); (M.S.)
| | - Małgorzata Siatkowska
- Department of Biochemistry and Cell Biology, Kazimierz Wielki University, 85-671 Bydgoszcz, Poland; (K.R.); (M.S.)
| | - Renske I. Wadman
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands;
| | - Erik-Jan Kamsteeg
- Department of Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Zhiyong Chen
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, The National Hospital for Neurology, London WC1N 3BG, UK; (Z.C.); (M.P.); (E.B.)
- Department of Neurology, National Neuroscience Institute, Singapore 308433, Singapore
| | - Ashirwad Merve
- Department of Neuropathology, UCL Queen Square Institute of Neurology, The National Hospital for Neurology, London WC1N 3BG, UK;
| | - Matthew Parton
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, The National Hospital for Neurology, London WC1N 3BG, UK; (Z.C.); (M.P.); (E.B.)
| | - Enrico Bugiardini
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, The National Hospital for Neurology, London WC1N 3BG, UK; (Z.C.); (M.P.); (E.B.)
| | - Charlotte de Bie
- Department of Genetics, University Medical Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Joanna Moraczewska
- Department of Biochemistry and Cell Biology, Kazimierz Wielki University, 85-671 Bydgoszcz, Poland; (K.R.); (M.S.)
| |
Collapse
|
8
|
Bouchoucha S, Chikhaoui A, Najjar D, Zayoud K, Zouari M, Nessib MN, Kéfi R, Yacoub-Youssef H. Case report: Exome sequencing revealed disease-causing variants in a patient with spondylospinal thoracic dysostosis. Front Pediatr 2023; 11:1132023. [PMID: 37744435 PMCID: PMC10512740 DOI: 10.3389/fped.2023.1132023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Background Spondylocostal dysostosis is a rare genetic disorder caused by mutations in DLL3, MESP2, LFNG, HES7, TBX6, and RIPPLY2. A particular form of this disorder characterized by the association of spondylocostal dysostosis with multiple pterygia has been reported and called spondylospinal thoracic dysostosis. Both disorders affect the spine and ribs, leading to abnormal development of the spine. Spondylospinal thoracic dysostosis is a rare syndrome characterized by the association of multiple vertebral segmentation defects, thoracic cage deformity, and multiple pterygia. This syndrome can be considered a different form of the described spondylocostal dysostosis. However, no genetic testing has been conducted for this rare disorder so far. Methods We report here the case of an 18-month-old female patient presenting the clinical and radiological features of spondylospinal thoracic dysostosis. To determine the underlying genetic etiology, whole exome sequencing (WES) and Sanger sequencing were performed. Results Using WES, we identified a variant in the TPM2 gene c. 628C>T, already reported in the non-lethal form of multiple pterygium syndrome. In addition, following the analysis of WES data, using bioinformatic tools, for oligogenic diseases, we identified candidate modifier genes, CAP2 and ADCY6, that could impact the clinical manifestations. Conclusion We showed a potential association between TPM2 and the uncommon spondylocostal dysostosis phenotype that would require further validation on larger cohort.
Collapse
Affiliation(s)
- Sami Bouchoucha
- Service Orthopédie, Hôpital D’enfant Béchir Hamza,Tunis, Tunisia
| | - Asma Chikhaoui
- Laboratoire de Génomique Biomédicale et Oncogénétique, LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Dorra Najjar
- Laboratoire de Génomique Biomédicale et Oncogénétique, LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Khouloud Zayoud
- Laboratoire de Génomique Biomédicale et Oncogénétique, LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Mohamed Zouari
- Genomics Platform, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | | | - Rym Kéfi
- Laboratoire de Génomique Biomédicale et Oncogénétique, LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Houda Yacoub-Youssef
- Laboratoire de Génomique Biomédicale et Oncogénétique, LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
9
|
Claassen WJ, Baelde RJ, Galli RA, de Winter JM, Ottenheijm CAC. Small molecule drugs to improve sarcomere function in those with acquired and inherited myopathies. Am J Physiol Cell Physiol 2023; 325:C60-C68. [PMID: 37212548 PMCID: PMC10281779 DOI: 10.1152/ajpcell.00047.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
Muscle weakness is a hallmark of inherited or acquired myopathies. It is a major cause of functional impairment and can advance to life-threatening respiratory insufficiency. During the past decade, several small-molecule drugs that improve the contractility of skeletal muscle fibers have been developed. In this review, we provide an overview of the available literature and the mechanisms of action of small-molecule drugs that modulate the contractility of sarcomeres, the smallest contractile units in striated muscle, by acting on myosin and troponin. We also discuss their use in the treatment of skeletal myopathies. The first of three classes of drugs discussed here increase contractility by decreasing the dissociation rate of calcium from troponin and thereby sensitizing the muscle to calcium. The second two classes of drugs directly act on myosin and stimulate or inhibit the kinetics of myosin-actin interactions, which may be useful in patients with muscle weakness or stiffness.NEW & NOTEWORTHY During the past decade, several small molecule drugs that improve the contractility of skeletal muscle fibers have been developed. In this review, we provide an overview of the available literature and the mechanisms of action of small molecule drugs that modulate the contractility of sarcomeres, the smallest contractile units in striated muscle, by acting on myosin and troponin.
Collapse
Affiliation(s)
- Wout J Claassen
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan, Amsterdam, Netherlands
| | - Rianne J Baelde
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan, Amsterdam, Netherlands
| | - Ricardo A Galli
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan, Amsterdam, Netherlands
| | - Josine M de Winter
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan, Amsterdam, Netherlands
| | - Coen A C Ottenheijm
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan, Amsterdam, Netherlands
| |
Collapse
|
10
|
Liu Y, Atiq A, Peterson A, Moody M, Novin A, Deymier AC, Afzal J, Kshitiz. Metabolic Acidosis Results in Sexually Dimorphic Response in the Heart Tissue. Metabolites 2023; 13:549. [PMID: 37110207 PMCID: PMC10142987 DOI: 10.3390/metabo13040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Metabolic acidosis (MA) is a highly prevalent disorder in a significant proportion of the population, resulting from imbalance in blood pH homeostasis. The heart, being an organ with very low regenerative capacity and high metabolic activity, is vulnerable to chronic, although low-grade, MA. To systematically characterize the effect of low-grade MA on the heart, we treated male and female mice with NH4Cl supplementation for 2 weeks and analyzed their blood chemistry and transcriptomic signature of the heart tissue. The reduction of pH and plasma bicarbonate levels without an associated change in anion gap indicated a physiological manifestation of low-grade MA with minimal respiratory compensation. On transcriptomic analysis, we observed changes in cardiac-specific genes with significant gender-based differences due to MA. We found many genes contributing to dilated cardiomyopathy to be altered in males, more than in females, while cardiac contractility and Na/K/ATPase-Src signaling were affected in the opposite way. Our model presents a systems-level understanding of how the cardiovascular tissue is affected by MA. As low-grade MA is a common ailment with many dietary and pharmaceutical interventions, our work presents avenues to limit chronic cardiac damage and disease manifestation, as well as highlighting the sex differences in MA-induced cardiovascular damage.
Collapse
Affiliation(s)
- Yamin Liu
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; (Y.L.)
| | - Amina Atiq
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; (Y.L.)
| | - Anna Peterson
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; (Y.L.)
| | - Mikayla Moody
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; (Y.L.)
| | - Ashkan Novin
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; (Y.L.)
| | - Alix C. Deymier
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; (Y.L.)
| | - Junaid Afzal
- Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| | - Kshitiz
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; (Y.L.)
| |
Collapse
|
11
|
Abood A, Mesner LD, Jeffery ED, Murali M, Lehe M, Saquing J, Farber CR, Sheynkman GM. Long-read proteogenomics to connect disease-associated sQTLs to the protein isoform effectors of disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.531557. [PMID: 36993769 PMCID: PMC10055087 DOI: 10.1101/2023.03.17.531557] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
A major fraction of loci identified by genome-wide association studies (GWASs) lead to alterations in alternative splicing, but interpretation of how such alterations impact proteins is hindered by the technical limitations of short-read RNA-seq, which cannot directly link splicing events to full-length transcript or protein isoforms. Long-read RNA-seq represents a powerful tool to define and quantify transcript isoforms, and recently, infer protein isoform existence. Here we present a novel approach that integrates information from GWAS, splicing QTL (sQTL), and PacBio long-read RNA-seq in a disease-relevant model to infer the effects of sQTLs on the ultimate protein isoform products they encode. We demonstrate the utility of our approach using bone mineral density (BMD) GWAS data. We identified 1,863 sQTLs from the Genotype-Tissue Expression (GTEx) project in 732 protein-coding genes which colocalized with BMD associations (H 4 PP ≥ 0.75). We generated deep coverage PacBio long-read RNA-seq data (N=∼22 million full-length reads) on human osteoblasts, identifying 68,326 protein-coding isoforms, of which 17,375 (25%) were novel. By casting the colocalized sQTLs directly onto protein isoforms, we connected 809 sQTLs to 2,029 protein isoforms from 441 genes expressed in osteoblasts. Using these data, we created one of the first proteome-scale resources defining full-length isoforms impacted by colocalized sQTLs. Overall, we found that 74 sQTLs influenced isoforms likely impacted by nonsense mediated decay (NMD) and 190 that potentially resulted in the expression of new protein isoforms. Finally, we identified colocalizing sQTLs in TPM2 for splice junctions between two mutually exclusive exons, and two different transcript termination sites, making it impossible to interpret without long-read RNA-seq data. siRNA mediated knockdown in osteoblasts showed two TPM2 isoforms with opposing effects on mineralization. We expect our approach to be widely generalizable across diverse clinical traits and accelerate system-scale analyses of protein isoform activities modulated by GWAS loci.
Collapse
|
12
|
Cardone N, Moula M, Baelde RJ, Biquand A, Villanova M, Metay C, Fiorillo C, Baratto S, Merlini L, Sabatelli P, Romero NB, Relaix F, Authier FJ, Taglietti V, Savarese M, de Winter J, Ottenheijm C, Richard I, Malfatti E. Clinical and functional characterization of a long survivor congenital titinopathy patient with a novel metatranscript-only titin variant. Acta Neuropathol Commun 2023; 11:48. [PMID: 36945066 PMCID: PMC10031982 DOI: 10.1186/s40478-023-01539-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/03/2023] [Indexed: 03/23/2023] Open
Abstract
Congenital titinopathies are an emerging group of a potentially severe form of congenital myopathies caused by biallelic mutations in titin, encoding the largest existing human protein involved in the formation and stability of sarcomeres. In this study we describe a patient with a congenital myopathy characterized by multiple contractures, a rigid spine, non progressive muscular weakness, and a novel homozygous TTN pathogenic variant in a metatranscript-only exon: the c.36400A > T, p.Lys12134*. Muscle biopsies showed increased internalized nuclei, variability in fiber size, mild fibrosis, type 1 fiber predominance, and a slight increase in the number of satellite cells. RNA studies revealed the retention of intron 170 and 171 in the open reading frame, and immunoflourescence and western blot studies, a normal titin content. Single fiber functional studies showed a slight decrease in absolute maximal force and a cross-sectional area with no decreases in tension, suggesting that weakness is not sarcomere-based but due to hypotrophy. Passive properties of single fibers were not affected, but the observed increased calcium sensitivity of force generation might contribute to the contractural phenotype and rigid spine of the patient. Our findings provide evidence for a pathogenic, causative role of a metatranscript-only titin variant in a long survivor congenital titinopathy patient with distal arthrogryposis and rigid spine.
Collapse
Affiliation(s)
- Nastasia Cardone
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010, Créteil, France
| | - Melissa Moula
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010, Créteil, France
| | - Rianne J Baelde
- Amsterdam UMC location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, Netherlands
| | | | - Marcello Villanova
- Neuromuscular Unit, Presidio Ospedaliero Accreditato Villa Bellombra, Bologna, Italy
| | - Corinne Metay
- Unité Fonctionnelle de Cardiogénétique et Myogénétique moléculaire et cellulaire. Centre de Génétique Moléculaire et Chromosomique et INSERM UMRS 974, Institut de Myologie. Groupe Hospitalier La Pitié-Salpêtrière-Charles Foix, Paris, INSERM UMRS1166, Sorbonne Université, Paris, France
| | - Chiara Fiorillo
- Neurologia Pediatrica e Malattie Muscolari, Istituto G.Gaslini, Genoa, Italy
| | - Serena Baratto
- Neurologia Pediatrica e Malattie Muscolari, Istituto G.Gaslini, Genoa, Italy
| | - Luciano Merlini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
| | - Patrizia Sabatelli
- CNR, Institute of Molecular Genetics "Luigi Luca Cavalli Sforza" -Unit of Bologna, Bologna, Italy
- IRCCS-Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Norma B Romero
- Neuromuscular Morphology Unit, Myology Institute, GHU Pitié-Salpêtrière, Paris, France
| | - Frederic Relaix
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010, Créteil, France
| | - François Jérôme Authier
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010, Créteil, France
- APHP, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Henri Mondor Hospital, Créteil, France
| | | | | | - Josine de Winter
- Amsterdam UMC location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, Netherlands
| | - Coen Ottenheijm
- Amsterdam UMC location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, Netherlands
| | | | - Edoardo Malfatti
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010, Créteil, France.
- APHP, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Henri Mondor Hospital, Créteil, France.
| |
Collapse
|
13
|
Nemaline Myopathy in Brazilian Patients: Molecular and Clinical Characterization. Int J Mol Sci 2022; 23:ijms231911995. [PMID: 36233295 PMCID: PMC9569467 DOI: 10.3390/ijms231911995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/10/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
Nemaline myopathy (NM), a structural congenital myopathy, presents a significant clinical and genetic heterogeneity. Here, we compiled molecular and clinical data of 30 Brazilian patients from 25 unrelated families. Next-generation sequencing was able to genetically classify all patients: sixteen families (64%) with mutation in NEB, five (20%) in ACTA1, two (8%) in KLHL40, and one in TPM2 (4%) and TPM3 (4%). In the NEB-related families, 25 different variants, 11 of them novel, were identified; splice site (10/25) and frame shift (9/25) mutations were the most common. Mutation c.24579 G>C was recurrent in three unrelated patients from the same region, suggesting a common ancestor. Clinically, the “typical” form was the more frequent and caused by mutations in the different NM genes. Phenotypic heterogeneity was observed among patients with mutations in the same gene. Respiratory involvement was very common and often out of proportion with limb weakness. Muscle MRI patterns showed variability within the forms and genes, which was related to the severity of the weakness. Considering the high frequency of NEB mutations and the complexity of this gene, NGS tools should be combined with CNV identification, especially in patients with a likely non-identified second mutation.
Collapse
|
14
|
Fisher G, Mackels L, Markati T, Sarkozy A, Ochala J, Jungbluth H, Ramdas S, Servais L. Early clinical and pre-clinical therapy development in Nemaline myopathy. Expert Opin Ther Targets 2022; 26:853-867. [PMID: 36524401 DOI: 10.1080/14728222.2022.2157258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Nemaline myopathies (NM) represent a group of clinically and genetically heterogeneous congenital muscle disorders with the common denominator of nemaline rods on muscle biopsy. NEB and ACTA1 are the most common causative genes. Currently, available treatments are supportive. AREAS COVERED We explored experimental treatments for NM, identifying at least eleven mainly pre-clinical approaches utilizing murine and/or human muscle cells. These approaches target either i) the causative gene or associated genes implicated in the same pathway; ii) pathophysiologically relevant biochemical mechanisms such as calcium/myosin regulation of muscle contraction; iii) myogenesis; iv) other therapies that improve or optimize muscle function more generally; v) and/or combinations of the above. The scope and efficiency of these attempts is diverse, ranging from gene-specific effects to those widely applicable to all NM-associated genes. EXPERT OPINION The wide range of experimental therapies currently under consideration for NM is promising. Potential translation into clinical use requires consideration of additional factors such as the potential muscle type specificity as well as the possibility of gene expression remodeling. Challenges in clinical translation include the rarity and heterogeneity of genotypes, phenotypes, and disease trajectories, as well as the lack of longitudinal natural history data and validated outcomes and biomarkers.
Collapse
Affiliation(s)
- Gemma Fisher
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Laurane Mackels
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK.,Neuromuscular Reference Center, University and University Hospital of Liège, Liège, Belgium
| | - Theodora Markati
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Anna Sarkozy
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Hospital, Institute of Child Health, London, UK
| | - Julien Ochala
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Heinz Jungbluth
- Department of Paediatric Neurology - Neuromuscular Service, Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK.,Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, London, UK
| | - Sithara Ramdas
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK.,Department of Paediatric Neurology, John Radcliffe Hospital, Oxford, UK
| | - Laurent Servais
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK.,Neuromuscular Reference Center, University and University Hospital of Liège, Liège, Belgium
| |
Collapse
|
15
|
Najjar D, Chikhaoui A, Zarrouk S, Azouz S, Kamoun W, Nassib N, Bouchoucha S, Yacoub-Youssef H. Combining Gene Mutation with Expression of Candidate Genes to Improve Diagnosis of Escobar Syndrome. Genes (Basel) 2022; 13:genes13101748. [PMID: 36292632 PMCID: PMC9601381 DOI: 10.3390/genes13101748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Escobar syndrome is a rare, autosomal recessive disorder that affects the musculoskeletal system and the skin. Mutations in the CHRNG and TPM2 genes are associated with this pathology. In this study, we conducted a clinical and genetic investigation of five patients and also explored via in silico and gene expression analysis their phenotypic variability. In detail, we identified a patient with a novel composite heterozygous variant of the CHRNG gene and two recurrent mutations in both CHRNG and TPM2 in the rest of the patients. As for the clinical particularities, we reported a list of modifier genes in a patient suffering from myopathy. Moreover, we identified decreased expression of IGF-1, which could be related to the short stature of Escobar patients, and increased expression of POLG1 specific to patients with TPM2 mutation. Through this study, we identified the genetic spectrum of Escobar syndrome in the Tunisian population, which will allow setting up genetic counseling and prenatal diagnosis for families at risk. In addition, we highlighted relevant biomarkers that could differentiate between patients with different genetic defects.
Collapse
Affiliation(s)
- Dorra Najjar
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
| | - Asma Chikhaoui
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
| | - Sinda Zarrouk
- Genomics Platform, Institut Pasteur de Tunis (IPT), Tunis-Belvédère, Tunis 1002, Tunisia
| | - Saifeddine Azouz
- Genomics Platform, Institut Pasteur de Tunis (IPT), Tunis-Belvédère, Tunis 1002, Tunisia
| | - Wafa Kamoun
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
| | - Nabil Nassib
- Service Orthopédie Pédiatrique, Hôpital d’Enfant Béchir Hamza, Tunis 1000, Tunisia
| | - Sami Bouchoucha
- Service Orthopédie Pédiatrique, Hôpital d’Enfant Béchir Hamza, Tunis 1000, Tunisia
| | - Houda Yacoub-Youssef
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
- Correspondence:
| |
Collapse
|
16
|
McAdow J, Yang S, Ou T, Huang G, Dobbs MB, Gurnett CA, Greenberg MJ, Johnson AN. A pathogenic mechanism associated with myopathies and structural birth defects involves TPM2-directed myogenesis. JCI Insight 2022; 7:e152466. [PMID: 35579956 PMCID: PMC9309062 DOI: 10.1172/jci.insight.152466] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 05/13/2022] [Indexed: 11/18/2022] Open
Abstract
Nemaline myopathy (NM) is the most common congenital myopathy, characterized by extreme weakness of the respiratory, limb, and facial muscles. Pathogenic variants in Tropomyosin 2 (TPM2), which encodes a skeletal muscle-specific actin binding protein essential for sarcomere function, cause a spectrum of musculoskeletal disorders that include NM as well as cap myopathy, congenital fiber type disproportion, and distal arthrogryposis (DA). The in vivo pathomechanisms underlying TPM2-related disorders are unknown, so we expressed a series of dominant, pathogenic TPM2 variants in Drosophila embryos and found 4 variants significantly affected muscle development and muscle function. Transient overexpression of the 4 variants also disrupted the morphogenesis of mouse myotubes in vitro and negatively affected zebrafish muscle development in vivo. We used transient overexpression assays in zebrafish to characterize 2 potentially novel TPM2 variants and 1 recurring variant that we identified in patients with DA (V129A, E139K, A155T, respectively) and found these variants caused musculoskeletal defects similar to those of known pathogenic variants. The consistency of musculoskeletal phenotypes in our assays correlated with the severity of clinical phenotypes observed in our patients with DA, suggesting disrupted myogenesis is a potentially novel pathomechanism of TPM2 disorders and that our myogenic assays can predict the clinical severity of TPM2 variants.
Collapse
Affiliation(s)
- Jennifer McAdow
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Shuo Yang
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Tiffany Ou
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Gary Huang
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Matthew B. Dobbs
- Paley Orthopedic and Spine Institute, West Palm Beach, Florida, USA
| | - Christina A. Gurnett
- Department of Neurology
- Department of Orthopedic Surgery
- Department of Pediatrics, and
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Aaron N. Johnson
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
17
|
Bevilacqua JA, Malfatti E, Labasse C, Brochier G, Madelaine A, Lacène E, Doray B, Laforêt P, Eymard B, Rendu J, Romero NB. Congenital Nemaline Myopathy with Dense Protein Masses. J Neuropathol Exp Neurol 2022; 81:304-307. [PMID: 35139532 DOI: 10.1093/jnen/nlab139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jorge A Bevilacqua
- Laboratorio de Patología Muscular, Departamento de Neurología y Neurocirugía, Clínica Dávila, Santiago, Chile.,Departamento Neurología y Neurocirugía, Unidad Neuromuscular, Hospital Clínico Universidad de Chile, Santiago, Chile.,Departamento de Anatomía y Medicina Legal, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Edoardo Malfatti
- APHP, Neuromuscular Reference Center Nord-Est-Ile-de-France, Henri Mondor Hospital, Université Paris Est, U955, INSERM, Créteil, IMRB, France
| | - Clémence Labasse
- Institut de Myologie, Neuromuscular Morphology Unit, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Guy Brochier
- Institut de Myologie, Neuromuscular Morphology Unit, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.,AP-HP, Centre de Référence de Pathologie Neuromusculaire Nord/Est/Ile de France, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Angeline Madelaine
- Institut de Myologie, Neuromuscular Morphology Unit, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.,AP-HP, Centre de Référence de Pathologie Neuromusculaire Nord/Est/Ile de France, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Emmanuelle Lacène
- Institut de Myologie, Neuromuscular Morphology Unit, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.,AP-HP, Centre de Référence de Pathologie Neuromusculaire Nord/Est/Ile de France, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Bérénice Doray
- CHU de La Réunion, Hôpital Felix Guyon Pole Biologie Nord, Service Génétique Saint Denis, France
| | - Pascal Laforêt
- Service Neurologie Médicale, Centre de Référence Maladies Neuromusculaire Paris-Est-Ile de France, CHU Raymond-Poincaré Paris Ouest.,INSERM Handicap Neuromusculaire, UFR des sciences de la santé Simone Veil, Université Versailles-Saint-Quentin-en-Yvelines
| | - Bruno Eymard
- AP-HP, Centre de Référence de Pathologie Neuromusculaire Nord/Est/Ile de France, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - John Rendu
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, 38000, France
| | - Norma B Romero
- Institut de Myologie, Neuromuscular Morphology Unit, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.,AP-HP, Centre de Référence de Pathologie Neuromusculaire Nord/Est/Ile de France, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.,Sorbonne Université, INSERM, Institut de Myologie, Centre de recherche en Myologie, GHU Pitié-Salpêtrière, Paris, France
| |
Collapse
|
18
|
Zhang J, Zhang C, Miao L, Meng Z, Gu N, Song G. Abnormal TPM2 expression is involved in regulation of atherosclerosis progression via mediating RhoA signaling in vitro. Arch Med Sci 2021; 20:1197-1208. [PMID: 39439675 PMCID: PMC11493070 DOI: 10.5114/aoms/139235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/21/2021] [Indexed: 10/25/2024] Open
Abstract
Introduction Ox-LDL (oxidized low-density lipoprotein)-induced endothelial cell injury and dysfunction of vascular smooth muscle cells play critical roles in the development of atherosclerosis (AS). Tropomyosin 2 (TPM2) has been implicated in cardiac diseases, but its critical role and regulatory mechanism in AS progression have not yet been elucidated. Material and methods The expression of TPM2 was investigated in AS tissues. Ox-LDL was used to construct an AS in vitro model based on endothelial and vascular smooth muscle cells (HAECs and VSMCs). An overexpression assay was performed to evaluate the role of TPM2 in AS. Meanwhile, the involvement of the RhoA pathway in TPM2-mediated AS progression was evaluated using narciclasine. Results Tropomyosin 2 was dramatically upregulated in both AS tissues and ox-LDL-induced HAECs. Overexpression of TPM2 attenuated ox-LDL-stimulated cell growth depression, inflammatory and adhesive responses in HAECs, as well as oxidative stress and mitochondrial dysfunction. Additionally, VSMCs, impacted by TPM2-overexpressed HAECs, showed alleviated cellular processes which were abnormally activated by ox-LDL. Furthermore, depressed activation of the RhoA pathway was found in TPM2-overexpressed HAECs and activating the signaling rescued these effects of TPM2 exerted on ox-LDL-stimulated HAECs and VSMCs. Conclusions TPM2 had an advantageous impact on ox-LDL-induced AS progression in vitro by mediating the RhoA pathway. This evidence might contribute to the therapy of AS.
Collapse
Affiliation(s)
- Jimei Zhang
- Department of Material Supply, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Chonghong Zhang
- Department of Material Purchasing, Yantai Yeda Hospital, China
| | - Li Miao
- Department of Cardiology Second Ward, Shandong Weihai Central Hospital, Weihai, Shandong, China
| | - Zimin Meng
- Department of Cardiovascular Medicine, Weihai Municipal Hospital, Weihai, Shandong, China
| | - Ning Gu
- Department of Cardiovascular Medicine, Weihai Municipal Hospital, Weihai, Shandong, China
| | - Guifang Song
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
19
|
Clayton JS, McNamara EL, Goullee H, Conijn S, Muthsam K, Musk GC, Coote D, Kijas J, Testa AC, Taylor RL, O’Hara AJ, Groth D, Ottenheijm C, Ravenscroft G, Laing NG, Nowak KJ. Ovine congenital progressive muscular dystrophy (OCPMD) is a model of TNNT1 congenital myopathy. Acta Neuropathol Commun 2020; 8:142. [PMID: 32819427 PMCID: PMC7441672 DOI: 10.1186/s40478-020-01017-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022] Open
Abstract
Ovine congenital progressive muscular dystrophy (OCPMD) was first described in Merino sheep flocks in Queensland and Western Australia in the 1960s and 1970s. The most prominent feature of the disease is a distinctive gait with stiffness of the hind limbs that can be seen as early as 3 weeks after birth. The disease is progressive. Histopathological examination had revealed dystrophic changes specifically in type I (slow) myofibres, while electron microscopy had demonstrated abundant nemaline bodies. Therefore, it was never certain whether the disease was a dystrophy or a congenital myopathy with dystrophic features. In this study, we performed whole genome sequencing of OCPMD sheep and identified a single base deletion at the splice donor site (+ 1) of intron 13 in the type I myofibre-specific TNNT1 gene (KT218690 c.614 + 1delG). All affected sheep were homozygous for this variant. Examination of TNNT1 splicing by RT-PCR showed intron retention and premature termination, which disrupts the highly conserved 14 amino acid C-terminus. The variant did not reduce TNNT1 protein levels or affect its localization but impaired its ability to modulate muscle contraction in response to Ca2+ levels. Identification of the causative variant in TNNT1 finally clarifies that the OCPMD sheep is in fact a large animal model of TNNT1 congenital myopathy. This model could now be used for testing molecular or gene therapies.
Collapse
Affiliation(s)
- Joshua S. Clayton
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, 6009 WA Australia
- Centre for Medical Research, Queen Elizabeth II Medical Centre, University of Western Australia, Nedlands, 6009 WA Australia
| | - Elyshia L. McNamara
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, 6009 WA Australia
- Centre for Medical Research, Queen Elizabeth II Medical Centre, University of Western Australia, Nedlands, 6009 WA Australia
| | - Hayley Goullee
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, 6009 WA Australia
- Centre for Medical Research, Queen Elizabeth II Medical Centre, University of Western Australia, Nedlands, 6009 WA Australia
| | - Stefan Conijn
- Department of Physiology, Amsterdam University Medical Center (Location VUmc), Amsterdam, Netherlands
| | - Keren Muthsam
- Animal Care Services, University of Western Australia, Nedlands, 6009 WA Australia
| | - Gabrielle C. Musk
- Animal Care Services, University of Western Australia, Nedlands, 6009 WA Australia
| | - David Coote
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, 6009 WA Australia
- Centre for Medical Research, Queen Elizabeth II Medical Centre, University of Western Australia, Nedlands, 6009 WA Australia
| | - James Kijas
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Queensland Bioscience Precinct, Brisbane, 4067 QLD Australia
| | - Alison C. Testa
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, 6009 WA Australia
- Centre for Medical Research, Queen Elizabeth II Medical Centre, University of Western Australia, Nedlands, 6009 WA Australia
| | - Rhonda L. Taylor
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, 6009 WA Australia
- Centre for Medical Research, Queen Elizabeth II Medical Centre, University of Western Australia, Nedlands, 6009 WA Australia
- Faculty of Health and Medical Sciences, School of Biomedical Sciences, Queen Elizabeth II Medical Centre, University of Western Australia, Nedlands, 6009 WA Australia
| | - Amanda J. O’Hara
- School of Veterinary Medicine, Murdoch University, Murdoch, 6150 WA Australia
| | - David Groth
- School of Pharmacy and Biomedical Sciences, CHIRI Biosciences Research Precinct, Curtin University, Bentley, 6102 WA Australia
| | - Coen Ottenheijm
- Department of Physiology, Amsterdam University Medical Center (Location VUmc), Amsterdam, Netherlands
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, 6009 WA Australia
- Centre for Medical Research, Queen Elizabeth II Medical Centre, University of Western Australia, Nedlands, 6009 WA Australia
| | - Nigel G. Laing
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, 6009 WA Australia
- Centre for Medical Research, Queen Elizabeth II Medical Centre, University of Western Australia, Nedlands, 6009 WA Australia
| | - Kristen J. Nowak
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, 6009 WA Australia
- Centre for Medical Research, Queen Elizabeth II Medical Centre, University of Western Australia, Nedlands, 6009 WA Australia
- Faculty of Health and Medical Sciences, School of Biomedical Sciences, Queen Elizabeth II Medical Centre, University of Western Australia, Nedlands, 6009 WA Australia
- Office of Population Health Genomics, Public and Aboriginal Health Division, Western Australian Department of Health, East Perth, 6004 WA Australia
| |
Collapse
|
20
|
Papadimas GK, Xirou S, Kararizou E, Papadopoulos C. Update on Congenital Myopathies in Adulthood. Int J Mol Sci 2020; 21:ijms21103694. [PMID: 32456280 PMCID: PMC7279481 DOI: 10.3390/ijms21103694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Congenital myopathies (CMs) constitute a group of heterogenous rare inherited muscle diseases with different incidences. They are traditionally grouped based on characteristic histopathological findings revealed on muscle biopsy. In recent decades, the ever-increasing application of modern genetic technologies has not just improved our understanding of their pathophysiology, but also expanded their phenotypic spectrum and contributed to a more genetically based approach for their classification. Later onset forms of CMs are increasingly recognised. They are often considered milder with slower progression, variable clinical presentations and different modes of inheritance. We reviewed the key features and genetic basis of late onset CMs with a special emphasis on those forms that may first manifest in adulthood.
Collapse
|
21
|
Vaughan M, Lamia KA. Isolation and Differentiation of Primary Myoblasts from Mouse Skeletal Muscle Explants. J Vis Exp 2019. [PMID: 31680669 DOI: 10.3791/60310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Primary myoblasts are undifferentiated proliferating precursors of skeletal muscle. They can be cultured and studied as muscle precursors or induced to differentiate into later stages of muscle development. The protocol provided here describes a robust method for the isolation and culture of a highly proliferative population of myoblast cells from young adult mouse skeletal muscle explants. These cells are useful for the study of the metabolic properties of skeletal muscle of different mouse models, as well as in other downstream applications such as transfection with exogenous DNA or transduction with viral expression vectors. The level of differentiation and metabolic profile of these cells depends on the length of exposure, and composition of the media used to induce myoblast differentiation. These methods provide a robust system for the study of mouse muscle cell metabolism ex vivo. Importantly, unlike in vivo models, the methods described here provide a cell population that can be expanded and studied with high levels of reproducibility.
Collapse
|
22
|
Abstract
Nemaline myopathy (NM) is among the most common non-dystrophic congenital myopathies (incidence 1:50.000). Hallmark features of NM are skeletal muscle weakness and the presence of nemaline bodies in the muscle fiber. The clinical phenotype of NM patients is quite diverse, ranging from neonatal death to normal lifespan with almost normal motor function. As the respiratory muscles are involved as well, severely affected patients are ventilator-dependent. The mechanisms underlying muscle weakness in NM are currently poorly understood. Therefore, no therapeutic treatment is available yet. Eleven implicated genes have been identified: ten genes encode proteins that are either components of thin filament, or are thought to contribute to stability or turnover of thin filament proteins. The thin filament is a major constituent of the sarcomere, the smallest contractile unit in muscle. It is at this level of contraction – thin-thick filament interaction – where muscle weakness originates in NM patients. This review focusses on how sarcomeric gene mutations directly compromise sarcomere function in NM. Insight into the contribution of sarcomeric dysfunction to muscle weakness in NM, across the genes involved, will direct towards the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
| | - Coen A.C. Ottenheijm
- Correspondence to: Coen Ottenheijm, PhD, Department of Physiology, VU University Medical Center, O|2 building, 12W-51, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands. Tel.: +31 20 4448123; Fax: +31 20 4448124; E-mail:
| |
Collapse
|
23
|
Gonorazky HD, Dowling JJ, Volpatti JR, Vajsar J. Signs and Symptoms in Congenital Myopathies. Semin Pediatr Neurol 2019; 29:3-11. [PMID: 31060723 DOI: 10.1016/j.spen.2019.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Congenital myopathies (CM) represent a continuously growing group of disorders with a wide range of clinical and histopathologic presentations. The refinement and application of new technologies for genetic diagnosis have broadened our understanding of the genetic causes of CM. Our growing knowledge has revealed that there are no clear limits between each subgroup of CM, and thus the clinical overlap between genes has become more evident. The implementation of next generation sequencing has produced vast amounts of genomic data that may be difficult to interpret. With an increasing number of reports revealing variants of unknown significance, it is essential to support the genetic diagnosis with a well characterized clinical description of the patient. Phenotype-genotype correlation should be a priority at the moment of disclosing the genetic results. Thus, a detailed physical examination can provide us with subtle differences that are not only key in order to arrive at a correct diagnosis, but also in the characterization of new myopathies and candidate genes.
Collapse
Affiliation(s)
- Hernan D Gonorazky
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - James J Dowling
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Molecular Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jonathan R Volpatti
- Department of Molecular Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jiri Vajsar
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
24
|
Gonorazky HD, Bönnemann CG, Dowling JJ. The genetics of congenital myopathies. HANDBOOK OF CLINICAL NEUROLOGY 2018; 148:549-564. [PMID: 29478600 DOI: 10.1016/b978-0-444-64076-5.00036-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Congenital myopathies are a clinically and genetically heterogeneous group of conditions that most commonly present at or around the time of birth with hypotonia, muscle weakness, and (often) respiratory distress. Historically, this group of disorders has been subclassified based on muscle histopathologic characteristics. There has been an explosion of gene discovery, and there are now at least 32 different genetic causes of disease. With this increased understanding of the genetic basis of disease has come the knowledge that the mutations in congenital myopathy genes can present with a wide variety of clinical phenotypes and can result in a broad spectrum of histopathologic findings on muscle biopsy. In addition, mutations in several genes can share the same histopathologic features. The identification of new genes and interpretation of different pathomechanisms at a molecular level have helped us to understand the clinical and histopathologic similarities that this group of disorders share. In this review, we highlight the genetic understanding for each subtype, its pathogenesis, and the future key issues in congenital myopathies.
Collapse
Affiliation(s)
- Hernan D Gonorazky
- Division of Neurology and Program of Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, United States
| | - James J Dowling
- Division of Neurology and Program of Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
25
|
Joureau B, de Winter JM, Conijn S, Bogaards SJP, Kovacevic I, Kalganov A, Persson M, Lindqvist J, Stienen GJM, Irving TC, Ma W, Yuen M, Clarke NF, Rassier DE, Malfatti E, Romero NB, Beggs AH, Ottenheijm CAC. Dysfunctional sarcomere contractility contributes to muscle weakness in ACTA1-related nemaline myopathy (NEM3). Ann Neurol 2018; 83:269-282. [PMID: 29328520 DOI: 10.1002/ana.25144] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Nemaline myopathy (NM) is one of the most common congenital nondystrophic myopathies and is characterized by muscle weakness, often from birth. Mutations in ACTA1 are a frequent cause of NM (ie, NEM3). ACTA1 encodes alpha-actin 1, the main constituent of the sarcomeric thin filament. The mechanisms by which mutations in ACTA1 contribute to muscle weakness in NEM3 are incompletely understood. We hypothesized that sarcomeric dysfunction contributes to muscle weakness in NEM3 patients. METHODS To test this hypothesis, we performed contractility measurements in individual muscle fibers and myofibrils obtained from muscle biopsies of 14 NEM3 patients with different ACTA1 mutations. To identify the structural basis for impaired contractility, low angle X-ray diffraction and stimulated emission-depletion microscopy were applied. RESULTS Our findings reveal that muscle fibers of NEM3 patients display a reduced maximal force-generating capacity, which is caused by dysfunctional sarcomere contractility in the majority of patients, as revealed by contractility measurements in myofibrils. Low angle X-ray diffraction and stimulated emission-depletion microscopy indicate that dysfunctional sarcomere contractility in NEM3 patients involves a lower number of myosin heads binding to actin during muscle activation. This lower number is not the result of reduced thin filament length. Interestingly, the calcium sensitivity of force is unaffected in some patients, but decreased in others. INTERPRETATION Dysfunctional sarcomere contractility is an important contributor to muscle weakness in the majority of NEM3 patients. This information is crucial for patient stratification in future clinical trials. Ann Neurol 2018;83:269-282.
Collapse
Affiliation(s)
- Barbara Joureau
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | | | - Stefan Conijn
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Sylvia J P Bogaards
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Igor Kovacevic
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Albert Kalganov
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Malin Persson
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada.,Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Johan Lindqvist
- Department of Molecular and Cellular Biology and Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ
| | - Ger J M Stienen
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Thomas C Irving
- Biophysics Collaborative Access Team, Center for Synchrotron Radiation Research and Instrumentation, and Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL
| | - Weikang Ma
- Biophysics Collaborative Access Team, Center for Synchrotron Radiation Research and Instrumentation, and Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL
| | - Michaela Yuen
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands.,Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Nigel F Clarke
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Edoardo Malfatti
- Pierre and Marie Curie University/University of Paris VI, Sorbonne Universities, National Institute of Health and Medical Research UMRS974, National Center for Scientific Research FRE3617, Center for Research in Myology, Pitié-Salpêtrière Hospital Group, Paris, France
| | - Norma B Romero
- Pierre and Marie Curie University/University of Paris VI, Sorbonne Universities, National Institute of Health and Medical Research UMRS974, National Center for Scientific Research FRE3617, Center for Research in Myology, Pitié-Salpêtrière Hospital Group, Paris, France
| | - Alan H Beggs
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Coen A C Ottenheijm
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands.,Department of Molecular and Cellular Biology and Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ
| |
Collapse
|
26
|
Nguyen S, Siu R, Dewey S, Cui Z, Gomes AV. Amino Acid Changes at Arginine 204 of Troponin I Result in Increased Calcium Sensitivity of Force Development. Front Physiol 2016; 7:520. [PMID: 27895589 PMCID: PMC5108889 DOI: 10.3389/fphys.2016.00520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/20/2016] [Indexed: 11/26/2022] Open
Abstract
Mutations in human cardiac troponin I (cTnI) have been associated with restrictive, dilated, and hypertrophic cardiomyopathies. The most commonly occurring residue on cTnI associated with familial hypertrophic cardiomyopathy (FHC) is arginine (R), which is also the most common residue at which multiple mutations occur. Two FHC mutations are known to occur at cTnI arginine 204, R204C and R204H, and both are associated with poor clinical prognosis. The R204H mutation has also been associated with restrictive cardiomyopathy (RCM). To characterize the effects of different mutations at the same residue (R204) on the physiological function of cTnI, six mutations at R204 (C, G, H, P, Q, W) were investigated in skinned fiber studies. Skinned fiber studies showed that all tested mutations at R204 caused significant increases in Ca2+ sensitivity of force development (ΔpCa50 = 0.22–0.35) when compared to wild-type (WT) cTnI. Investigation of the interactions between the cTnI mutants and WT cardiac troponin C (cTnC) or WT cardiac troponin T (cTnT) showed that all the mutations investigated, except R204G, affected either or both cTnI:cTnT and cTnI:cTnC interactions. The R204H mutation affected both cTnI:cTnT and cTnI:cTnC interactions while the R204C mutation affected only the cTnI:cTnC interaction. These results suggest that different mutations at the same site on cTnI could have varying effects on thin filament interactions. A mutation in fast skeletal TnI (R174Q, homologous to cTnI R204Q) also significantly increased Ca2+ sensitivity of force development (ΔpCa50 = 0.16). Our studies indicate that known cTnI mutations associated with poor prognosis (R204C and R204H) exhibit large increases in Ca2+ sensitivity of force development. Therefore, other R204 mutations that cause similar increases in Ca2+ sensitivity are also likely to have poor prognoses.
Collapse
Affiliation(s)
- Susan Nguyen
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis Davis, CA, USA
| | - Rylie Siu
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis Davis, CA, USA
| | - Shannamar Dewey
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis Davis, CA, USA
| | - Ziyou Cui
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis Davis, CA, USA
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California, DavisDavis, CA, USA; Department of Physiology and Membrane Biology, University of California, DavisDavis, CA, USA
| |
Collapse
|
27
|
Jeffries CM, Graewert MA, Blanchet CE, Langley DB, Whitten AE, Svergun DI. Preparing monodisperse macromolecular samples for successful biological small-angle X-ray and neutron-scattering experiments. Nat Protoc 2016; 11:2122-2153. [PMID: 27711050 PMCID: PMC5402874 DOI: 10.1038/nprot.2016.113] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) are techniques used to extract structural parameters and determine the overall structures and shapes of biological macromolecules, complexes and assemblies in solution. The scattering intensities measured from a sample contain contributions from all atoms within the illuminated sample volume, including the solvent and buffer components, as well as the macromolecules of interest. To obtain structural information, it is essential to prepare an exactly matched solvent blank so that background scattering contributions can be accurately subtracted from the sample scattering to obtain the net scattering from the macromolecules in the sample. In addition, sample heterogeneity caused by contaminants, aggregates, mismatched solvents, radiation damage or other factors can severely influence and complicate data analysis, so it is essential that the samples be pure and monodisperse for the duration of the experiment. This protocol outlines the basic physics of SAXS and SANS, and it reveals how the underlying conceptual principles of the techniques ultimately 'translate' into practical laboratory guidance for the production of samples of sufficiently high quality for scattering experiments. The procedure describes how to prepare and characterize protein and nucleic acid samples for both SAXS and SANS using gel electrophoresis, size-exclusion chromatography (SEC) and light scattering. Also included are procedures that are specific to X-rays (in-line SEC-SAXS) and neutrons, specifically preparing samples for contrast matching or variation experiments and deuterium labeling of proteins.
Collapse
Affiliation(s)
- Cy M. Jeffries
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation, c/o
DESY. Hamburg, 22603, Germany
| | - Melissa A. Graewert
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation, c/o
DESY. Hamburg, 22603, Germany
| | - Clément E. Blanchet
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation, c/o
DESY. Hamburg, 22603, Germany
| | - David B. Langley
- Victor Chang Cardiac Research and Garvan Institutes, Darlinghurst,
NSW, Australia
| | - Andrew E. Whitten
- Australian Nuclear Science and Technology Organisation, Lucas
Heights, NSW, Australia
| | - Dmitri I Svergun
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation, c/o
DESY. Hamburg, 22603, Germany
| |
Collapse
|
28
|
Marston SB. Why Is there a Limit to the Changes in Myofilament Ca 2+-Sensitivity Associated with Myopathy Causing Mutations? Front Physiol 2016; 7:415. [PMID: 27725803 PMCID: PMC5035734 DOI: 10.3389/fphys.2016.00415] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/05/2016] [Indexed: 12/15/2022] Open
Abstract
Mutations in striated muscle contractile proteins have been found to be the cause of a number of inherited muscle diseases; in most cases the mechanism proposed for causing the disease is derangement of the thin filament-based Ca2+-regulatory system of the muscle. When considering the results of experiments reported over the last 15 years, one feature has been frequently noted, but rarely discussed: the magnitude of changes in myofilament Ca2+-sensitivity due to myopathy-causing mutations in skeletal or heart muscle seems to be always in the range 1.5-3x EC50. Such consistency suggests it may be related to a fundamental property of muscle regulation; in this article we will investigate whether this observation is true and consider why this should be so. A literature search found 71 independent measurements of HCM mutation-induced change of EC50 ranging from 1.15 to 3.8-fold with a mean of 1.87 ± 0.07 (sem). We also found 11 independent measurements of increased Ca2+-sensitivity due to mutations in skeletal muscle proteins ranging from 1.19 to 2.7-fold with a mean of 2.00 ± 0.16. Investigation of dilated cardiomyopathy-related mutations found 42 independent determinations with a range of EC50 wt/mutant from 0.3 to 2.3. In addition we found 14 measurements of Ca2+-sensitivity changes due skeletal muscle myopathy mutations ranging from 0.39 to 0.63. Thus, our extensive literature search, although not necessarily complete, found that, indeed, the changes in myofilament Ca2+-sensitivity due to disease-causing mutations have a bimodal distribution and that the overall changes in Ca2+-sensitivity are quite small and do not extend beyond a three-fold increase or decrease in Ca2+-sensitivity. We discuss two mechanism that are not necessarily mutually exclusive. Firstly, it could be that the limit is set by the capabilities of the excitation-contraction machinery that supplies activating Ca2+ and that striated muscle cannot work in a way compatible with life outside these limits; or it may be due to a fundamental property of the troponin system and the permitted conformational transitions compatible with efficient regulation.
Collapse
Affiliation(s)
- Steven B Marston
- National Heart & Lung Institute, Imperial College London London, UK
| |
Collapse
|
29
|
Winter JMD, Joureau B, Lee EJ, Kiss B, Yuen M, Gupta VA, Pappas CT, Gregorio CC, Stienen GJM, Edvardson S, Wallgren-Pettersson C, Lehtokari VL, Pelin K, Malfatti E, Romero NB, Engelen BGV, Voermans NC, Donkervoort S, Bönnemann CG, Clarke NF, Beggs AH, Granzier H, Ottenheijm CAC. Mutation-specific effects on thin filament length in thin filament myopathy. Ann Neurol 2016; 79:959-69. [PMID: 27074222 DOI: 10.1002/ana.24654] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 03/22/2016] [Accepted: 03/27/2016] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Thin filament myopathies are among the most common nondystrophic congenital muscular disorders, and are caused by mutations in genes encoding proteins that are associated with the skeletal muscle thin filament. Mechanisms underlying muscle weakness are poorly understood, but might involve the length of the thin filament, an important determinant of force generation. METHODS We investigated the sarcomere length-dependence of force, a functional assay that provides insights into the contractile strength of muscle fibers as well as the length of the thin filaments, in muscle fibers from 51 patients with thin filament myopathy caused by mutations in NEB, ACTA1, TPM2, TPM3, TNNT1, KBTBD13, KLHL40, and KLHL41. RESULTS Lower force generation was observed in muscle fibers from patients of all genotypes. In a subset of patients who harbor mutations in NEB and ACTA1, the lower force was associated with downward shifted force-sarcomere length relations, indicative of shorter thin filaments. Confocal microscopy confirmed shorter thin filaments in muscle fibers of these patients. A conditional Neb knockout mouse model, which recapitulates thin filament myopathy, revealed a compensatory mechanism; the lower force generation that was associated with shorter thin filaments was compensated for by increasing the number of sarcomeres in series. This allowed muscle fibers to operate at a shorter sarcomere length and maintain optimal thin-thick filament overlap. INTERPRETATION These findings might provide a novel direction for the development of therapeutic strategies for thin filament myopathy patients with shortened thin filament lengths. Ann Neurol 2016;79:959-969.
Collapse
Affiliation(s)
- Josine M de Winter
- Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Barbara Joureau
- Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Eun-Jeong Lee
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Balázs Kiss
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Michaela Yuen
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Discipline of Paediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Vandana A Gupta
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Christopher T Pappas
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Ger J M Stienen
- Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands.,Department of Physics and Astronomy, VU University, Amsterdam, the Netherlands
| | - Simon Edvardson
- Pediatric Neurology Unit, Hadassah University Hospital, Jerusalem, Israel
| | - Carina Wallgren-Pettersson
- Department of Medical and Clinical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland.,Folkhaelsan Institute of Genetics, Biomedicum Helsinki, Helsinki, Finland
| | - Vilma-Lotta Lehtokari
- Department of Medical and Clinical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland.,Folkhaelsan Institute of Genetics, Biomedicum Helsinki, Helsinki, Finland
| | - Katarina Pelin
- Folkhaelsan Institute of Genetics, Biomedicum Helsinki, Helsinki, Finland.,Division of Genetics, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Edoardo Malfatti
- Center for Research in Myology, Pitié-Salpêtrière Hospital Group, Paris, France
| | - Norma B Romero
- Center for Research in Myology, Pitié-Salpêtrière Hospital Group, Paris, France
| | - Baziel G van Engelen
- Department of Neurology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nicol C Voermans
- Department of Neurology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institutes of Health, Bethesda, MD
| | - C G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institutes of Health, Bethesda, MD
| | - Nigel F Clarke
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Discipline of Paediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Alan H Beggs
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Coen A C Ottenheijm
- Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands.,Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|
30
|
Lohmeier-Vogel EM, Heeley DH. Biochemical Comparison of Tpm1.1 (α) and Tpm2.2 (β) Tropomyosins from Rabbit Skeletal Muscle. Biochemistry 2016; 55:1418-27. [DOI: 10.1021/acs.biochem.5b01140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Elke M. Lohmeier-Vogel
- Department
of Biological Sciences, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | - David H. Heeley
- Department
of Biochemistry, Memorial University of Newfoundland, St. John’s, Newfoundland A1B 3X9, Canada
| |
Collapse
|
31
|
Karpicheva OE, Simonyan AO, Kuleva NV, Redwood CS, Borovikov YS. Myopathy-causing Q147P TPM2 mutation shifts tropomyosin strands further towards the open position and increases the proportion of strong-binding cross-bridges during the ATPase cycle. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:260-267. [PMID: 26708479 DOI: 10.1016/j.bbapap.2015.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/16/2015] [Accepted: 12/01/2015] [Indexed: 11/20/2022]
Abstract
The molecular mechanisms of skeletal muscle dysfunction in congenital myopathies remain unclear. The present study examines the effect of a myopathy-causing mutation Q147P in β-tropomyosin on the position of tropomyosin on troponin-free filaments and on the actin–myosin interaction at different stages of the ATP hydrolysis cycle using the technique of polarized fluorimetry. Wild-type and Q147P recombinant tropomyosins, actin, and myosin subfragment-1 were modified by 5-IAF, 1,5-IAEDANS or FITC-phalloidin, and 1,5-IAEDANS, respectively, and incorporated into single ghost muscle fibers, containing predominantly actin filaments which were free of troponin and tropomyosin. Despite its reduced affinity for actin in co-sedimentation assay, the Q147P mutant incorporates into the muscle fiber. However, compared to wild-type tropomyosin, it locates closer to the center of the actin filament. The mutant tropomyosin increases the proportion of the strong-binding myosin heads and disrupts the co-operation of actin and myosin heads during the ATPase cycle. These changes are likely to underlie the contractile abnormalities caused by this mutation.
Collapse
Affiliation(s)
- Olga E Karpicheva
- Laboratory of Mechanisms of Cell Motility, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St Petersburg, Russia
| | - Armen O Simonyan
- Laboratory of Mechanisms of Cell Motility, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St Petersburg, Russia; Saint Petersburg State University, 7/9 Universitetskaya nab., 199034 St Petersburg, Russia
| | - Nadezhda V Kuleva
- Saint Petersburg State University, 7/9 Universitetskaya nab., 199034 St Petersburg, Russia
| | - Charles S Redwood
- Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK
| | - Yurii S Borovikov
- Laboratory of Mechanisms of Cell Motility, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St Petersburg, Russia.
| |
Collapse
|
32
|
Donkervoort S, Papadaki M, de Winter JM, Neu MB, Kirschner J, Bolduc V, Yang ML, Gibbons MA, Hu Y, Dastgir J, Leach ME, Rutkowski A, Foley AR, Krüger M, Wartchow EP, McNamara E, Ong R, Nowak KJ, Laing NG, Clarke NF, Ottenheijm C, Marston SB, Bönnemann CG. TPM3 deletions cause a hypercontractile congenital muscle stiffness phenotype. Ann Neurol 2015; 78:982-994. [PMID: 26418456 DOI: 10.1002/ana.24535] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 09/02/2015] [Accepted: 09/05/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Mutations in TPM3, encoding Tpm3.12, cause a clinically and histopathologically diverse group of myopathies characterized by muscle weakness. We report two patients with novel de novo Tpm3.12 single glutamic acid deletions at positions ΔE218 and ΔE224, resulting in a significant hypercontractile phenotype with congenital muscle stiffness, rather than weakness, and respiratory failure in one patient. METHODS The effect of the Tpm3.12 deletions on the contractile properties in dissected patient myofibers was measured. We used quantitative in vitro motility assay to measure Ca(2+) sensitivity of thin filaments reconstituted with recombinant Tpm3.12 ΔE218 and ΔE224. RESULTS Contractility studies on permeabilized myofibers demonstrated reduced maximal active tension from both patients with increased Ca(2+) sensitivity and altered cross-bridge cycling kinetics in ΔE224 fibers. In vitro motility studies showed a two-fold increase in Ca(2+) sensitivity of the fraction of filaments motile and the filament sliding velocity concentrations for both mutations. INTERPRETATION These data indicate that Tpm3.12 deletions ΔE218 and ΔE224 result in increased Ca(2+) sensitivity of the troponin-tropomyosin complex, resulting in abnormally active interaction of the actin and myosin complex. Both mutations are located in the charged motifs of the actin-binding residues of tropomyosin 3, thus disrupting the electrostatic interactions that facilitate accurate tropomyosin binding with actin necessary to prevent the on-state. The mutations destabilize the off-state and result in excessively sensitized excitation-contraction coupling of the contractile apparatus. This work expands the phenotypic spectrum of TPM3-related disease and provides insights into the pathophysiological mechanisms of the actin-tropomyosin complex.
Collapse
Affiliation(s)
- S Donkervoort
- National Institutes of Health, Neuromuscular and Neurogenetic Disorders of Childhood Section, Bethesda, MD, USA
| | - M Papadaki
- National Heart and Lung Institute, Imperial College London, London, UK
| | - J M de Winter
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | - M B Neu
- National Institutes of Health, Neuromuscular and Neurogenetic Disorders of Childhood Section, Bethesda, MD, USA
| | - J Kirschner
- Department of Neuropediatrics and Muscle Disorders, University Medical Center Freiburg, Freiburg, Germany
| | - V Bolduc
- National Institutes of Health, Neuromuscular and Neurogenetic Disorders of Childhood Section, Bethesda, MD, USA
| | - M L Yang
- University of Colorado School of Medicine, Department of Pediatrics and Neurology, Section of Child Neurology, Aurora, CO, USA
| | - M A Gibbons
- University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - Y Hu
- National Institutes of Health, Neuromuscular and Neurogenetic Disorders of Childhood Section, Bethesda, MD, USA
| | - J Dastgir
- National Institutes of Health, Neuromuscular and Neurogenetic Disorders of Childhood Section, Bethesda, MD, USA
| | - M E Leach
- National Institutes of Health, Neuromuscular and Neurogenetic Disorders of Childhood Section, Bethesda, MD, USA.,Children's National Health System, Washington DC, USA
| | - A Rutkowski
- Kaiser SCPMG, Cure CMD, P.O. Box 701, Olathe, KS 66051, USA
| | - A R Foley
- National Institutes of Health, Neuromuscular and Neurogenetic Disorders of Childhood Section, Bethesda, MD, USA
| | - M Krüger
- Department of General Pediatrics, Adolescent Medicine and Neonatology, University Medical Center Freiburg, Freiburg, Germany
| | - E P Wartchow
- Department of Pathology, Children's Hospital Colorado, Aurora, Colorado, USA
| | - E McNamara
- Neuromuscular Diseases Laboratory, Centre for Medical Research, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia Crawley, WA, Australia
| | - R Ong
- Neuromuscular Diseases Laboratory, Centre for Medical Research, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia Crawley, WA, Australia
| | - K J Nowak
- National Institutes of Health, Neuromuscular and Neurogenetic Disorders of Childhood Section, Bethesda, MD, USA
| | - N G Laing
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, Western Australia, Australia
| | - N F Clarke
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, University of Sydney, Sydney, Australia
| | - Cac Ottenheijm
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | - S B Marston
- National Heart and Lung Institute, Imperial College London, London, UK
| | - C G Bönnemann
- National Institutes of Health, Neuromuscular and Neurogenetic Disorders of Childhood Section, Bethesda, MD, USA
| |
Collapse
|
33
|
Cho Y, Hazen BC, Gandra PG, Ward SR, Schenk S, Russell AP, Kralli A. Perm1 enhances mitochondrial biogenesis, oxidative capacity, and fatigue resistance in adult skeletal muscle. FASEB J 2015; 30:674-87. [PMID: 26481306 DOI: 10.1096/fj.15-276360] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/28/2015] [Indexed: 12/14/2022]
Abstract
Skeletal muscle mitochondrial content and oxidative capacity are important determinants of muscle function and whole-body health. Mitochondrial content and function are enhanced by endurance exercise and impaired in states or diseases where muscle function is compromised, such as myopathies, muscular dystrophies, neuromuscular diseases, and age-related muscle atrophy. Hence, elucidating the mechanisms that control muscle mitochondrial content and oxidative function can provide new insights into states and diseases that affect muscle health. In past studies, we identified Perm1 (PPARGC1- and ESRR-induced regulator, muscle 1) as a gene induced by endurance exercise in skeletal muscle, and regulating mitochondrial oxidative function in cultured myotubes. The capacity of Perm1 to regulate muscle mitochondrial content and function in vivo is not yet known. In this study, we use adeno-associated viral (AAV) vectors to increase Perm1 expression in skeletal muscles of 4-wk-old mice. Compared to control vector, AAV1-Perm1 leads to significant increases in mitochondrial content and oxidative capacity (by 40-80%). Moreover, AAV1-Perm1-transduced muscles show increased capillary density and resistance to fatigue (by 33 and 31%, respectively), without prominent changes in fiber-type composition. These findings suggest that Perm1 selectively regulates mitochondrial biogenesis and oxidative function, and implicate Perm1 in muscle adaptations that also occur in response to endurance exercise.
Collapse
Affiliation(s)
- Yoshitake Cho
- *Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA; Department of Orthopedic Surgery, School of Medicine, University of California, San Diego, La Jolla, California, USA; and Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Bethany C Hazen
- *Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA; Department of Orthopedic Surgery, School of Medicine, University of California, San Diego, La Jolla, California, USA; and Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Paulo G Gandra
- *Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA; Department of Orthopedic Surgery, School of Medicine, University of California, San Diego, La Jolla, California, USA; and Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Samuel R Ward
- *Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA; Department of Orthopedic Surgery, School of Medicine, University of California, San Diego, La Jolla, California, USA; and Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Simon Schenk
- *Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA; Department of Orthopedic Surgery, School of Medicine, University of California, San Diego, La Jolla, California, USA; and Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Aaron P Russell
- *Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA; Department of Orthopedic Surgery, School of Medicine, University of California, San Diego, La Jolla, California, USA; and Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Anastasia Kralli
- *Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA; Department of Orthopedic Surgery, School of Medicine, University of California, San Diego, La Jolla, California, USA; and Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| |
Collapse
|
34
|
Yuen M, Cooper ST, Marston SB, Nowak KJ, McNamara E, Mokbel N, Ilkovski B, Ravenscroft G, Rendu J, de Winter JM, Klinge L, Beggs AH, North KN, Ottenheijm CAC, Clarke NF. Muscle weakness in TPM3-myopathy is due to reduced Ca2+-sensitivity and impaired acto-myosin cross-bridge cycling in slow fibres. Hum Mol Genet 2015; 24:6278-92. [PMID: 26307083 DOI: 10.1093/hmg/ddv334] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/10/2015] [Indexed: 11/13/2022] Open
Abstract
Dominant mutations in TPM3, encoding α-tropomyosinslow, cause a congenital myopathy characterized by generalized muscle weakness. Here, we used a multidisciplinary approach to investigate the mechanism of muscle dysfunction in 12 TPM3-myopathy patients. We confirm that slow myofibre hypotrophy is a diagnostic hallmark of TPM3-myopathy, and is commonly accompanied by skewing of fibre-type ratios (either slow or fast fibre predominance). Patient muscle contained normal ratios of the three tropomyosin isoforms and normal fibre-type expression of myosins and troponins. Using 2D-PAGE, we demonstrate that mutant α-tropomyosinslow was expressed, suggesting muscle dysfunction is due to a dominant-negative effect of mutant protein on muscle contraction. Molecular modelling suggested mutant α-tropomyosinslow likely impacts actin-tropomyosin interactions and, indeed, co-sedimentation assays showed reduced binding of mutant α-tropomyosinslow (R168C) to filamentous actin. Single fibre contractility studies of patient myofibres revealed marked slow myofibre specific abnormalities. At saturating [Ca(2+)] (pCa 4.5), patient slow fibres produced only 63% of the contractile force produced in control slow fibres and had reduced acto-myosin cross-bridge cycling kinetics. Importantly, due to reduced Ca(2+)-sensitivity, at sub-saturating [Ca(2+)] (pCa 6, levels typically released during in vivo contraction) patient slow fibres produced only 26% of the force generated by control slow fibres. Thus, weakness in TPM3-myopathy patients can be directly attributed to reduced slow fibre force at physiological [Ca(2+)], and impaired acto-myosin cross-bridge cycling kinetics. Fast myofibres are spared; however, they appear to be unable to compensate for slow fibre dysfunction. Abnormal Ca(2+)-sensitivity in TPM3-myopathy patients suggests Ca(2+)-sensitizing drugs may represent a useful treatment for this condition.
Collapse
Affiliation(s)
- Michaela Yuen
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Westmead, Australia, Discipline of Paediatrics and Child Health, University of Sydney, Sydney, Australia,
| | - Sandra T Cooper
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Westmead, Australia, Discipline of Paediatrics and Child Health, University of Sydney, Sydney, Australia
| | - Steve B Marston
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Kristen J Nowak
- Harry Perkins Institute of Medical Research and the Centre for Medical Research, University of Western Australia, Nedlands, Australia
| | - Elyshia McNamara
- Harry Perkins Institute of Medical Research and the Centre for Medical Research, University of Western Australia, Nedlands, Australia
| | - Nancy Mokbel
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Westmead, Australia, Faculty of Health Sciences, St. George Health Complex, The University of Balamand, Beirut, Lebanon
| | - Biljana Ilkovski
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Westmead, Australia
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research and the Centre for Medical Research, University of Western Australia, Nedlands, Australia
| | - John Rendu
- Département de Biochimie Toxicologie et Pharmacologie, Département de Biochimie Génétique et Moléculaire, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | - Josine M de Winter
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Lars Klinge
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, Faculty of Medicine, Georg August University, Göttingen, Germany
| | - Alan H Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kathryn N North
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Westmead, Australia, Discipline of Paediatrics and Child Health, University of Sydney, Sydney, Australia, Murdoch Children's Research Institute, the Royal Children's Hospital, Parkville, Australia and Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Coen A C Ottenheijm
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Nigel F Clarke
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Westmead, Australia, Discipline of Paediatrics and Child Health, University of Sydney, Sydney, Australia
| |
Collapse
|
35
|
Nowak KJ, Davis MR, Wallgren-Pettersson C, Lamont PJ, Laing NG. Clinical utility gene card for: Nemaline myopathy - update 2015. Eur J Hum Genet 2015; 23:ejhg201512. [PMID: 25712079 DOI: 10.1038/ejhg.2015.12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/16/2014] [Accepted: 01/13/2015] [Indexed: 11/09/2022] Open
Affiliation(s)
- Kristen J Nowak
- Centre for Medical Research, The University of Western Australia and the Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Mark R Davis
- Department of Diagnostic Genomics, Neurogenetics Laboratory, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Carina Wallgren-Pettersson
- Department of Medical Genetics, The Folkhälsan Institute of Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Phillipa J Lamont
- Department of Diagnostic Genomics, Neurogenetics Laboratory, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Nigel G Laing
- Centre for Medical Research, The University of Western Australia and the Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
| |
Collapse
|
36
|
Ravenscroft G, Laing NG, Bönnemann CG. Pathophysiological concepts in the congenital myopathies: blurring the boundaries, sharpening the focus. ACTA ACUST UNITED AC 2014; 138:246-68. [PMID: 25552303 DOI: 10.1093/brain/awu368] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The congenital myopathies are a diverse group of genetic skeletal muscle diseases, which typically present at birth or in early infancy. There are multiple modes of inheritance and degrees of severity (ranging from foetal akinesia, through lethality in the newborn period to milder early and later onset cases). Classically, the congenital myopathies are defined by skeletal muscle dysfunction and a non-dystrophic muscle biopsy with the presence of one or more characteristic histological features. However, mutations in multiple different genes can cause the same pathology and mutations in the same gene can cause multiple different pathologies. This is becoming ever more apparent now that, with the increasing use of next generation sequencing, a genetic diagnosis is achieved for a greater number of patients. Thus, considerable genetic and pathological overlap is emerging, blurring the classically established boundaries. At the same time, some of the pathophysiological concepts underlying the congenital myopathies are moving into sharper focus. Here we explore whether our emerging understanding of disease pathogenesis and underlying pathophysiological mechanisms, rather than a strictly gene-centric approach, will provide grounds for a different and perhaps complementary grouping of the congenital myopathies, that at the same time could help instil the development of shared potential therapeutic approaches. Stemming from recent advances in the congenital myopathy field, five key pathophysiology themes have emerged: defects in (i) sarcolemmal and intracellular membrane remodelling and excitation-contraction coupling; (ii) mitochondrial distribution and function; (iii) myofibrillar force generation; (iv) atrophy; and (v) autophagy. Based on numerous emerging lines of evidence from recent studies in cell lines and patient tissues, mouse models and zebrafish highlighting these unifying pathophysiological themes, here we review the congenital myopathies in relation to these emerging pathophysiological concepts, highlighting both areas of overlap between established entities, as well as areas of distinction within single gene disorders.
Collapse
Affiliation(s)
- Gianina Ravenscroft
- 1 Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia
| | - Nigel G Laing
- 1 Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia
| | - Carsten G Bönnemann
- 2 National Institute of Neurological Disorders and Stroke/NIH, Porter Neuroscience Research Centre, Bethesda, MD, USA
| |
Collapse
|
37
|
Mason RR, Mokhtar R, Matzaris M, Selathurai A, Kowalski GM, Mokbel N, Meikle PJ, Bruce CR, Watt MJ. PLIN5 deletion remodels intracellular lipid composition and causes insulin resistance in muscle. Mol Metab 2014; 3:652-63. [PMID: 25161888 PMCID: PMC4142393 DOI: 10.1016/j.molmet.2014.06.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 05/30/2014] [Accepted: 06/05/2014] [Indexed: 01/28/2023] Open
Abstract
Defective control of lipid metabolism leading to lipotoxicity causes insulin resistance in skeletal muscle, a major factor leading to diabetes. Here, we demonstrate that perilipin (PLIN) 5 is required to couple intramyocellular triacylglycerol lipolysis with the metabolic demand for fatty acids. PLIN5 ablation depleted triacylglycerol stores but increased sphingolipids including ceramide, hydroxylceramides and sphingomyelin. We generated perilipin 5 (Plin5)(-/-) mice to determine the functional significance of PLIN5 in metabolic control and insulin action. Loss of PLIN5 had no effect on body weight, feeding or adiposity but increased whole-body carbohydrate oxidation. Plin5 (-/-) mice developed skeletal muscle insulin resistance, which was associated with ceramide accumulation. Liver insulin sensitivity was improved in Plin5 (-/-) mice, indicating tissue-specific effects of PLIN5 on insulin action. We conclude that PLIN5 plays a critical role in coordinating skeletal muscle triacylglycerol metabolism, which impacts sphingolipid metabolism, and is requisite for the maintenance of skeletal muscle insulin action.
Collapse
Affiliation(s)
- Rachael R. Mason
- Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Ruzaidi Mokhtar
- Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Maria Matzaris
- Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Ahrathy Selathurai
- Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Greg M. Kowalski
- Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Nancy Mokbel
- Garvan Institute of Medical Research, Darlinghurst., New South Wales, 2006, Australia
| | - Peter J. Meikle
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia
| | - Clinton R. Bruce
- Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Matthew J. Watt
- Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
38
|
Marttila M, Lehtokari VL, Marston S, Nyman TA, Barnerias C, Beggs AH, Bertini E, Ceyhan-Birsoy O, Cintas P, Gerard M, Gilbert-Dussardier B, Hogue JS, Longman C, Eymard B, Frydman M, Kang PB, Klinge L, Kolski H, Lochmüller H, Magy L, Manel V, Mayer M, Mercuri E, North KN, Peudenier-Robert S, Pihko H, Probst FJ, Reisin R, Stewart W, Taratuto AL, de Visser M, Wilichowski E, Winer J, Nowak K, Laing NG, Winder TL, Monnier N, Clarke NF, Pelin K, Grönholm M, Wallgren-Pettersson C. Mutation update and genotype-phenotype correlations of novel and previously described mutations in TPM2 and TPM3 causing congenital myopathies. Hum Mutat 2014; 35:779-90. [PMID: 24692096 DOI: 10.1002/humu.22554] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 03/17/2014] [Indexed: 01/14/2023]
Abstract
Mutations affecting skeletal muscle isoforms of the tropomyosin genes may cause nemaline myopathy, cap myopathy, core-rod myopathy, congenital fiber-type disproportion, distal arthrogryposes, and Escobar syndrome. We correlate the clinical picture of these diseases with novel (19) and previously reported (31) mutations of the TPM2 and TPM3 genes. Included are altogether 93 families: 53 with TPM2 mutations and 40 with TPM3 mutations. Thirty distinct pathogenic variants of TPM2 and 20 of TPM3 have been published or listed in the Leiden Open Variant Database (http://www.dmd.nl/). Most are heterozygous changes associated with autosomal-dominant disease. Patients with TPM2 mutations tended to present with milder symptoms than those with TPM3 mutations, DA being present only in the TPM2 group. Previous studies have shown that five of the mutations in TPM2 and one in TPM3 cause increased Ca(2+) sensitivity resulting in a hypercontractile molecular phenotype. Patients with hypercontractile phenotype more often had contractures of the limb joints (18/19) and jaw (6/19) than those with nonhypercontractile ones (2/22 and 1/22), whereas patients with the non-hypercontractile molecular phenotype more often (19/22) had axial contractures than the hypercontractile group (7/19). Our in silico predictions show that most mutations affect tropomyosin-actin association or tropomyosin head-to-tail binding.
Collapse
Affiliation(s)
- Minttu Marttila
- The Folkhälsan Institute of Genetics and the Department of Medical Genetics, University of Helsinki, Haartman Institute, Biomedicum Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW This article reviews recent advances in the understanding of nemaline myopathy, with a focus on the genetic basis of the disorder, histology, and pathogenesis. RECENT FINDINGS Pathogenic mutations have been identified in eight genes and there is evidence of further genetic heterogeneity in nemaline myopathy. Clinical presentation, histological features on skeletal muscle biopsy, and pattern of changes on muscle MRI may guide prioritization of molecular genetic testing. It is anticipated that use of new technologies such as whole exome sequencing and comparative genomic hybridization will increase the number of genes associated with nemaline myopathy and the proportion of patients in whom the genetic basis of the disorder is identified. Single fiber studies and animal models continue to add to understanding of the pathogenesis of this disorder. Current management focuses on supportive treatment; however, encouraging advances are emerging for the future. SUMMARY Recent advances in understanding of nemaline myopathy have important implications for clinical practice and for genetic diagnosis of patients with nemaline myopathy.
Collapse
|
40
|
Janco M, Suphamungmee W, Li X, Lehman W, Lehrer SS, Geeves MA. Polymorphism in tropomyosin structure and function. J Muscle Res Cell Motil 2013; 34:177-87. [PMID: 23832280 PMCID: PMC4509547 DOI: 10.1007/s10974-013-9353-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/28/2013] [Indexed: 12/18/2022]
Abstract
Tropomyosins (Tm) in humans are expressed from four distinct genes and by alternate splicing >40 different Tm polypeptide chains can be made. The functional Tm unit is a dimer of two parallel polypeptide chains and these can be assembled from identical (homodimer) or different (heterodimer) polypeptide chains provided both chains are of the same length. Since most cells express multiple isoforms of Tm, the number of different homo and heterodimers that can be assembled becomes very large. We review the mechanism of dimer assembly and how preferential assembly of some heterodimers is driven by thermodynamic stability. We examine how in vitro studies can reveal functional differences between Tm homo and heterodimers (stability, actin affinity, flexibility) and the implication for how there could be selection of Tm isomers in the assembly on to an actin filament. The role of Tm heterodimers becomes more complex when mutations in Tm are considered, such as those associated with cardiomyopathies, since mutations can appear in only one of the chains.
Collapse
Affiliation(s)
- Miro Janco
- School of Biosciences, University of Kent, Canterbury, Kent, UK
| | | | | | | | | | | |
Collapse
|
41
|
Eymard B, Ferreiro A, Ben Yaou R, Stojkovic T. Muscle diseases with prominent joint contractures: Main entities and diagnostic strategy. Rev Neurol (Paris) 2013; 169:546-63. [DOI: 10.1016/j.neurol.2013.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 01/13/2023]
|
42
|
Marston S, Memo M, Messer A, Papadaki M, Nowak K, McNamara E, Ong R, El-Mezgueldi M, Li X, Lehman W. Mutations in repeating structural motifs of tropomyosin cause gain of function in skeletal muscle myopathy patients. Hum Mol Genet 2013; 22:4978-87. [PMID: 23886664 DOI: 10.1093/hmg/ddt345] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The congenital myopathies include a wide spectrum of clinically, histologically and genetically variable neuromuscular disorders many of which are caused by mutations in genes for sarcomeric proteins. Some congenital myopathy patients have a hypercontractile phenotype. Recent functional studies demonstrated that ACTA1 K326N and TPM2 ΔK7 mutations were associated with hypercontractility that could be explained by increased myofibrillar Ca(2+) sensitivity. A recent structure of the complex of actin and tropomyosin in the relaxed state showed that both these mutations are located in the actin-tropomyosin interface. Tropomyosin is an elongated molecule with a 7-fold repeated motif of around 40 amino acids corresponding to the 7 actin monomers it interacts with. Actin binds to tropomyosin electrostatically at two points, through Asp25 and through a cluster of amino acids that includes Lys326, mutated in the gain-of-function mutation. Asp25 interacts with tropomyosin K6, next to K7 that was mutated in the other gain-of-function mutation. We identified four tropomyosin motifs interacting with Asp25 (K6-K7, K48-K49, R90-R91 and R167-K168) and three E-E/D-K/R motifs interacting with Lys326 (E139, E181 and E218), and we predicted that the known skeletal myopathy mutations ΔK7, ΔK49, R91G, ΔE139, K168E and E181K would cause a gain of function. Tests by an in vitro motility assay confirmed that these mutations increased Ca(2+) sensitivity, while mutations not in these motifs (R167H, R244G) decreased Ca(2+) sensitivity. The work reported here explains the molecular mechanism for 6 out of 49 known disease-causing mutations in the TPM2 and TPM3 genes, derived from structural data of the actin-tropomyosin interface.
Collapse
|
43
|
Memo M, Marston S. Skeletal muscle myopathy mutations at the actin tropomyosin interface that cause gain- or loss-of-function. J Muscle Res Cell Motil 2013; 34:165-9. [PMID: 23719967 DOI: 10.1007/s10974-013-9344-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/09/2013] [Indexed: 12/31/2022]
Abstract
It is well known that the regulation of muscle contraction relies on the ability of tropomyosin to switch between different positions on the actin filament, but it is still not well understood which amino acids are directly involved in the different states of the interaction. Recently the structure of the actin-tropomyosin interface has been determined both in the absence and presence of myosin heads. Interestingly, a number of mutations in tropomyosin that are associated with skeletal muscle myopathy are located within this interface. We first give an overview of the functional effect of mutations on amino acids that are involved in the contact with actin asp25, which represent a pattern repeated seven times along tropomyosin. It is explained how some of these amino acids (R167 and R244) which are thought to be involved in a salt bridge contact with actin in the closed state can produce a loss-of-function when mutated, while other positively charged tropomyosin amino acids positioned on the downstream side of the contact (K7, K49, R91, K168) can produce a gain-of-function when mutated. We then consider mutations of amino acids involved in another salt bridge contact between the two proteins in the closed state, actin K326N (which binds on five different points of tropomyosin) and tropomyosin ∆E139 and E181K, and we report how all of these mutations produce a gain-of-function. These observations can be important to validate the proposed structures and to understand more deeply how mutations affect the function of these proteins and to enable prediction of their outcomes.
Collapse
|