1
|
Sutter PA, Dhari Z, Crocker SJ. Neuroimmunology in globoid cell leukodystrophy: A comprehensive review including treatments, models, and neuroimmune mechanisms underlying neuropathology. J Neuroimmunol 2025; 402:578573. [PMID: 40058166 DOI: 10.1016/j.jneuroim.2025.578573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/26/2025] [Accepted: 03/02/2025] [Indexed: 04/01/2025]
Abstract
Globoid cell leukodystrophy (GLD), or Krabbe's disease, is a fatal genetic demyelinating disease of the central nervous system (CNS) caused by loss-of-function mutations in galactosylceramidase (GALC). As a result of the loss of GALC enzymatic activity, there is an accumulation of a toxic lipid called galactosylsphingosine, or psychosine. Current treatments have focused on restoring GALC function as a means to reduce psychosine accumulation, which show promise, however, still have limited success at improving behavioral or cognitive deficits in infants with GLD. Recent studies have discovered a role for T cells in GLD, indicating that there is a previously understudied role for the adaptive immune system as a contributing factor to GLD pathophysiology. This review aims to provide a comprehensive discussion of the current field of GLD research including treatment advances and GLD pathophysiology, with a focus on the role of neuroimmunological mechanisms contributing to GLD.
Collapse
Affiliation(s)
- Pearl A Sutter
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Zaenab Dhari
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06032, USA; Mandell Center for Multiple Sclerosis, Mount Sinai Rehabilitation Hospital, Trinity Health of New England, Hartford, CT 06105, USA; Departemnt of Rehabilitative Medicine, Frank H. Netter MD School of Medicine, North Haven, CT 06473, USA
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06032, USA; Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06032, USA.
| |
Collapse
|
2
|
Moore TL, Pannuzzo G, Costabile G, Palange AL, Spanò R, Ferreira M, Graziano ACE, Decuzzi P, Cardile V. Nanomedicines to treat rare neurological disorders: The case of Krabbe disease. Adv Drug Deliv Rev 2023; 203:115132. [PMID: 37918668 DOI: 10.1016/j.addr.2023.115132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
The brain remains one of the most challenging therapeutic targets due to the low and selective permeability of the blood-brain barrier and complex architecture of the brain tissue. Nanomedicines, despite their relatively large size compared to small molecules and nucleic acids, are being heavily investigated as vehicles to delivery therapeutics into the brain. Here we elaborate on how nanomedicines may be used to treat rare neurodevelopmental disorders, using Krabbe disease (globoid cell leukodystrophy) to frame the discussion. As a monogenetic disorder and lysosomal storage disease affecting the nervous system, the lessons learned from examining nanoparticle delivery to the brain in the context of Krabbe disease can have a broader impact on the treatment of various other neurodevelopmental and neurodegenerative disorders. In this review, we introduce the epidemiology and genetic basis of Krabbe disease, discuss current in vitro and in vivo models of the disease, as well as current therapeutic approaches either approved or at different stage of clinical developments. We then elaborate on challenges in particle delivery to the brain, with a specific emphasis on methods to transport nanomedicines across the blood-brain barrier. We highlight nanoparticles for delivering therapeutics for the treatment of lysosomal storage diseases, classified by the therapeutic payload, including gene therapy, enzyme replacement therapy, and small molecule delivery. Finally, we provide some useful hints on the design of nanomedicines for the treatment of rare neurological disorders.
Collapse
Affiliation(s)
- Thomas Lee Moore
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, GE, Italy.
| | - Giovanna Pannuzzo
- Department of Biomedical and Biotechnological Sciences, Università di Catania, Catania 95123, CT, Italy
| | - Gabriella Costabile
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, GE, Italy; Department of Pharmacy, Università degli Studi di Napoli Federico II, Naples 80131, NA, Italy
| | - Anna Lisa Palange
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, GE, Italy
| | - Raffaele Spanò
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, GE, Italy
| | - Miguel Ferreira
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, GE, Italy
| | - Adriana Carol Eleonora Graziano
- Department of Biomedical and Biotechnological Sciences, Università di Catania, Catania 95123, CT, Italy; Facolta di Medicina e Chirurgia, Università degli Studi di Enna "Kore", Enna 94100, EN, Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, GE, Italy
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, Università di Catania, Catania 95123, CT, Italy.
| |
Collapse
|
3
|
Capoferri D, Chiodelli P, Corli M, Belleri M, Scalvini E, Mignani L, Guerra J, Grillo E, De Giorgis V, Manfredi M, Presta M. The Pro-Oncogenic Sphingolipid-Metabolizing Enzyme β-Galactosylceramidase Modulates the Proteomic Landscape in BRAF(V600E)-Mutated Human Melanoma Cells. Int J Mol Sci 2023; 24:10555. [PMID: 37445731 DOI: 10.3390/ijms241310555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
β-Galactosylceramidase (GALC) is a lysosomal enzyme involved in sphingolipid metabolism by removing β-galactosyl moieties from β-galactosylceramide and β-galactosylsphingosine. Previous observations have shown that GALC may exert pro-oncogenic functions in melanoma and Galc silencing, leading to decreased oncogenic activity in murine B16 melanoma cells. The tumor-driving BRAF(V600E) mutation is present in approximately 50% of human melanomas and represents a major therapeutic target. However, such mutation is missing in melanoma B16 cells. Thus, to assess the impact of GALC in human melanoma in a more relevant BRAF-mutated background, we investigated the effect of GALC overexpression on the proteomic landscape of A2058 and A375 human melanoma cells harboring the BRAF(V600E) mutation. The results obtained by liquid chromatography-tandem mass spectrometry (LC-MS/MS) demonstrate that significant differences exist in the protein landscape expressed under identical cell culture conditions by A2058 and A375 human melanoma cells, both harboring the same BRAF(V600E)-activating mutation. GALC overexpression resulted in a stronger impact on the proteomic profile of A375 cells when compared to A2058 cells (261 upregulated and 184 downregulated proteins versus 36 and 14 proteins for the two cell types, respectively). Among them, 25 proteins appeared to be upregulated in both A2058-upGALC and A375-upGALC cells, whereas two proteins were significantly downregulated in both GALC-overexpressing cell types. These proteins appear to be involved in melanoma biology, tumor invasion and metastatic dissemination, tumor immune escape, mitochondrial antioxidant activity, endoplasmic reticulum stress responses, autophagy, and/or apoptosis. Notably, analysis of the expression of the corresponding genes in human skin cutaneous melanoma samples (TCGA, Firehose Legacy) using the cBioPortal for Cancer Genomics platform demonstrated a positive correlation between GALC expression and the expression levels of 14 out of the 27 genes investigated, thus supporting the proteomic findings. Overall, these data indicate for the first time that the expression of the lysosomal sphingolipid-metabolizing enzyme GALC may exert a pro-oncogenic impact on the proteomic landscape in BRAF-mutated human melanoma.
Collapse
Affiliation(s)
- Davide Capoferri
- Unit of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Paola Chiodelli
- Unit of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Marzia Corli
- Unit of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Mirella Belleri
- Unit of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Elisa Scalvini
- Unit of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Luca Mignani
- Unit of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Jessica Guerra
- Unit of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Elisabetta Grillo
- Unit of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Veronica De Giorgis
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
- Center for Allergic and Autoimmune Diseases, University of Piemonte Orientale, 28100 Novara, Italy
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
- Center for Allergic and Autoimmune Diseases, University of Piemonte Orientale, 28100 Novara, Italy
| | - Marco Presta
- Unit of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Consorzio Interuniversitario Biotecnologie (CIB), Unit of Brescia, 25123 Brescia, Italy
| |
Collapse
|
4
|
Mechanotransduction Impairment in Primary Fibroblast Model of Krabbe Disease. Biomedicines 2023; 11:biomedicines11030927. [PMID: 36979906 PMCID: PMC10046230 DOI: 10.3390/biomedicines11030927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Krabbe disease (KD) is a genetic disorder caused by the absence of the galactosylceramidase (GALC) functional enzyme. No cure is currently available. Here, we investigate the mechanotransduction process in primary fibroblasts collected from the twitcher mouse, a natural KD murine model. Thanks to mechanotransduction, cells can sense their environment and convert external mechanical stimuli into biochemical signals that result in intracellular changes. In GALC-deficient fibroblasts, we show that focal adhesions (FAs), the protein clusters necessary to adhere and migrate, are increased, and that single-cell migration and wound healing are impaired. We also investigate the involvement of the autophagic process in this framework. We show a dysregulation in the FA turnover: here, the treatment with the autophagy activator rapamycin boosts cell migration and improves the clearance of FAs in GALC-deficient fibroblasts. We propose mechanosensing impairment as a novel potential pathological mechanism in twitcher fibroblasts, and more in general in Krabbe disease.
Collapse
|
5
|
Mignani L, Guerra J, Corli M, Capoferri D, Presta M. Zebra-Sphinx: Modeling Sphingolipidoses in Zebrafish. Int J Mol Sci 2023; 24:ijms24054747. [PMID: 36902174 PMCID: PMC10002607 DOI: 10.3390/ijms24054747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Sphingolipidoses are inborn errors of metabolism due to the pathogenic mutation of genes that encode for lysosomal enzymes, transporters, or enzyme cofactors that participate in the sphingolipid catabolism. They represent a subgroup of lysosomal storage diseases characterized by the gradual lysosomal accumulation of the substrate(s) of the defective proteins. The clinical presentation of patients affected by sphingolipid storage disorders ranges from a mild progression for some juvenile- or adult-onset forms to severe/fatal infantile forms. Despite significant therapeutic achievements, novel strategies are required at basic, clinical, and translational levels to improve patient outcomes. On these bases, the development of in vivo models is crucial for a better understanding of the pathogenesis of sphingolipidoses and for the development of efficacious therapeutic strategies. The teleost zebrafish (Danio rerio) has emerged as a useful platform to model several human genetic diseases owing to the high grade of genome conservation between human and zebrafish, combined with precise genome editing and the ease of manipulation. In addition, lipidomic studies have allowed the identification in zebrafish of all of the main classes of lipids present in mammals, supporting the possibility to model diseases of the lipidic metabolism in this animal species with the advantage of using mammalian lipid databases for data processing. This review highlights the use of zebrafish as an innovative model system to gain novel insights into the pathogenesis of sphingolipidoses, with possible implications for the identification of more efficacious therapeutic approaches.
Collapse
|
6
|
Wu G, Li Z, Li J, Li X, Wang M, Zhang J, Liu G, Zhang P. A neglected neurodegenerative disease: Adult-onset globoid cell leukodystrophy. Front Neurosci 2022; 16:998275. [PMID: 36161165 PMCID: PMC9490374 DOI: 10.3389/fnins.2022.998275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Globoid cell leukodystrophy (GLD), or Krabbe disease (KD) is a rare neurodegenerative disease, and adult-onset GLD is more even neglected by clinicians. This review provides detailed discussions of the serum enzymes, genes, clinical manifestations, neuroimaging features, and therapies of GLD, with particular emphasis on the characteristics of adult-onset GLD, in an attempt to provide clinicians with in-depth insights into this disease.
Collapse
Affiliation(s)
- Guode Wu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhenhua Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jing Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Xin Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
- *Correspondence: Manxia Wang,
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
| | - Guangyao Liu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
| | - Pengfei Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
7
|
Coltrini D, Chandran AMK, Belleri M, Poliani PL, Cominelli M, Pagani F, Capra M, Calza S, Prioni S, Mauri L, Prinetti A, Kofler JK, Escolar ML, Presta M. β-Galactosylceramidase Deficiency Causes Upregulation of Long Pentraxin-3 in the Central Nervous System of Krabbe Patients and Twitcher Mice. Int J Mol Sci 2022; 23:ijms23169436. [PMID: 36012705 PMCID: PMC9409448 DOI: 10.3390/ijms23169436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022] Open
Abstract
Globoid cell leukodystrophy (GLD), or Krabbe disease, is a neurodegenerative sphingolipidosis caused by genetic deficiency of lysosomal β-galactosylceramidase (GALC), characterized by neuroinflammation and demyelination of the central (CNS) and peripheral nervous system. The acute phase protein long pentraxin-3 (PTX3) is a soluble pattern recognition receptor and a regulator of innate immunity. Growing evidence points to the involvement of PTX3 in neurodegeneration. However, the expression and role of PTX3 in the neurodegenerative/neuroinflammatory processes that characterize GLD remain unexplored. Here, immunohistochemical analysis of brain samples from Krabbe patients showed that macrophages and globoid cells are intensely immunoreactive for PTX3. Accordingly, Ptx3 expression increases throughout the course of the disease in the cerebrum, cerebellum, and spinal cord of GALC-deficient twitcher (Galctwi/twi) mice, an authentic animal model of GLD. This was paralleled by the upregulation of proinflammatory genes and M1-polarized macrophage/microglia markers and of the levels of PTX3 protein in CNS and plasma of twitcher animals. Crossing of Galctwi/twi mice with transgenic PTX3 overexpressing animals (hPTX3 mice) demonstrated that constitutive PTX3 overexpression reduced the severity of clinical signs and the upregulation of proinflammatory genes in the spinal cord of P35 hPTX3/Galctwi/twi mice when compared to Galctwi/twi littermates, leading to a limited increase of their life span. However, this occurred in the absence of a significant impact on the histopathological findings and on the accumulation of the neurotoxic metabolite psychosine when evaluated at this late time point of the disease. In conclusion, our results provide the first evidence that PTX3 is produced in the CNS of GALC-deficient Krabbe patients and twitcher mice. PTX3 may exert a protective role by reducing the neuroinflammatory response that occurs in the spinal cord of GALC-deficient animals.
Collapse
Affiliation(s)
- Daniela Coltrini
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italymarco.prestanibs.it (M.P.)
| | - Adwaid Manu Krishna Chandran
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italymarco.prestanibs.it (M.P.)
| | - Mirella Belleri
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italymarco.prestanibs.it (M.P.)
| | - Pietro L. Poliani
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italymarco.prestanibs.it (M.P.)
| | - Manuela Cominelli
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italymarco.prestanibs.it (M.P.)
| | - Francesca Pagani
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italymarco.prestanibs.it (M.P.)
| | - Miriam Capra
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italymarco.prestanibs.it (M.P.)
| | - Stefano Calza
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italymarco.prestanibs.it (M.P.)
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Julia K. Kofler
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224-1334, USA
| | - Maria L. Escolar
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224-1334, USA
| | - Marco Presta
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italymarco.prestanibs.it (M.P.)
- Correspondence:
| |
Collapse
|
8
|
Belleri M, Presta M. β-Galactosylceramidase in cancer: more than a psychosine scavenger. Oncoscience 2022; 9:11-12. [PMID: 35340675 PMCID: PMC8946824 DOI: 10.18632/oncoscience.551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Indexed: 11/29/2022] Open
|
9
|
Oncosuppressive and oncogenic activity of the sphingolipid-metabolizing enzyme β-galactosylceramidase. Biochim Biophys Acta Rev Cancer 2021; 1877:188675. [PMID: 34974112 DOI: 10.1016/j.bbcan.2021.188675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/07/2021] [Accepted: 12/27/2021] [Indexed: 12/31/2022]
Abstract
β-galactosylceramidase (GALC) is a lysosomal enzyme that removes β-galactose from β-galactosylceramide, leading to the formation of the oncosuppressor metabolite ceramide. Recent observations have shown that GALC may exert opposite effects on tumor growth by acting as an oncosuppressive or oncogenic enzyme depending on the different experimental approaches, in vitro versus in vivo observations, preclinical versus clinical findings, and tumor type investigated. This review will recapitulate and discuss the contrasting experimental evidence related to the impact of GALC on the biological behavior of cancer and stromal cells and its contribution to tumor progression.
Collapse
|
10
|
Presta M. β-Galactosylceramidase in cancer: friend or foe? Trends Cancer 2021; 7:974-977. [PMID: 34456156 DOI: 10.1016/j.trecan.2021.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Lysosomal β-galactosylceramidase (GALC) removes β-galactose from β-galactosylceramide, thus generating the oncosuppressor metabolite ceramide. Recent observations have shown that GALC may exert opposite effects on tumor growth and differentiation, questioning its contribution to the sphingolipid metabolism in cancer cells and its role in tumor progression.
Collapse
Affiliation(s)
- Marco Presta
- Department of Molecular and Translational Medicine, Unity of Brescia, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; Italian Consortium for Biotechnology (CIB), Unity of Brescia, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| |
Collapse
|
11
|
Cachón-González MB, Wang S, Cox TM. Expression of Ripk1 and DAM genes correlates with severity and progression of Krabbe disease. Hum Mol Genet 2021; 30:2082-2099. [PMID: 34172992 PMCID: PMC8561423 DOI: 10.1093/hmg/ddab159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/22/2021] [Accepted: 06/08/2021] [Indexed: 01/02/2023] Open
Abstract
Krabbe disease, an inherited leukodystrophy, is a sphingolipidosis caused by deficiency of β-galactocerebrosidase: it is characterized by myelin loss, and pathological activation of macrophage/microglia and astrocytes. To define driving pathogenic factors, we explored the expression repertoire of candidate neuroinflammatory genes: upregulation of receptor interacting protein kinase 1 (Ripk1) and disease-associated microglia (DAM) genes, including Cst7 and Ch25h, correlated with severity of Krabbe disease genetically modelled in the twitcher mouse. Upregulation of Ripk1 in Iba1/Mac2-positive microglia/macrophage associated with the pathognomic hypertrophic/globoid phenotype of this disease. Widespread accumulation of ubiquitinin1 in white and grey matter co-localised with p62. In Sandhoff disease, another sphingolipid disorder, neuroinflammation, accumulation of p62 and increased Ripk1 expression was observed. The upregulated DAM genes and macrophage/microglia expression of Ripk1 in the authentic model of Krabbe disease strongly resemble those reported in Alzheimer disease associating with disturbed autophagosomal/lysosomal homeostasis. Activation of this shared molecular repertoire, suggests the potential for therapeutic interdiction at a common activation step, irrespective of proximal causation. To clarify the role of Ripk1 in the pathogenesis of Krabbe disease, we first explored the contribution of its kinase function, by intercrossing twitcher and the K45A kinase-dead Ripk1 mouse and breeding to homozygosity. Genetic ablation of Ripk1 kinase activity neither altered the neuropathological features nor the survival of twitcher mice. We conclude that Ripk1 kinase-dependent inflammatory and degenerative capabilities play no instrumental role in Krabbe disease; however, putative kinase-independent functions of Ripk1 remain formally to be explored in its molecular pathogenesis.
Collapse
Affiliation(s)
- María B Cachón-González
- Department of Medicine, University of Cambridge, Level 5, PO Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Susan Wang
- Department of Medicine, University of Cambridge, Level 5, PO Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Timothy M Cox
- Department of Medicine, University of Cambridge, Level 5, PO Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| |
Collapse
|
12
|
Wilson I, Vitelli C, Yu GK, Pacheco G, Vincelette J, Bunting S, Sisó S. Quantitative Assessment of Neuroinflammation, Myelinogenesis, Demyelination, and Nerve Fiber Regeneration in Immunostained Sciatic Nerves From Twitcher Mice With a Tissue Image Analysis Platform. Toxicol Pathol 2021; 49:950-962. [PMID: 33691530 DOI: 10.1177/0192623321991469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Scoring demyelination and regeneration in hematoxylin and eosin-stained nerves poses a challenge even for the trained pathologist. This article demonstrates how combinatorial multiplex immunohistochemistry (IHC) and quantitative digital pathology bring new insights into the peripheral neuropathogenesis of the Twitcher mouse, a model of Krabbe disease. The goal of this investigational study was to integrate modern pathology tools to traditional anatomic pathology microscopy workflows, in order to generate quantitative data in a large number of samples, and aid the understanding of complex disease pathomechanisms. We developed a novel IHC toolkit using a combination of CD68, periaxin-1, phosphorylated neurofilaments and SOX-10 to interrogate inflammation, myelination, axonal size, and Schwann cell counts in sciatic nerves from 17-, 21-, 25-, and 35-day-old wild-type and Twitcher mice using self-customized digital image algorithms. Our quantitative analyses highlight that nerve macrophage infiltration and interstitial expansion are the earliest detectable changes in Twitcher nerves. By 17 days of age, while the diameter of axons is small, the number of myelinated axons is still normal. However, from 21 days onward Twitcher nerves contain 75% of wild-type myelinated nerve fiber numbers despite containing 3 times more Schwann cells. In 35-day-old Twitcher mice when demyelination is detectable, nerve myelination drops to 50%.
Collapse
Affiliation(s)
- Irene Wilson
- Research and Early Development, 10926BioMarin Pharmaceutical Inc., San Rafael, CA, USA.,Dominican University of California, San Rafael, CA, USA
| | - Cathy Vitelli
- Research and Early Development, 10926BioMarin Pharmaceutical Inc., San Rafael, CA, USA
| | - Guoying Karen Yu
- Research and Early Development, 10926BioMarin Pharmaceutical Inc., San Rafael, CA, USA
| | - Glenn Pacheco
- Research and Early Development, 10926BioMarin Pharmaceutical Inc., San Rafael, CA, USA
| | - Jon Vincelette
- Research and Early Development, 10926BioMarin Pharmaceutical Inc., San Rafael, CA, USA
| | - Stuart Bunting
- Research and Early Development, 10926BioMarin Pharmaceutical Inc., San Rafael, CA, USA
| | - Sílvia Sisó
- Research and Early Development, 10926BioMarin Pharmaceutical Inc., San Rafael, CA, USA.,Dominican University of California, San Rafael, CA, USA
| |
Collapse
|
13
|
Belleri M, Paganini G, Coltrini D, Ronca R, Zizioli D, Corsini M, Barbieri A, Grillo E, Calza S, Bresciani R, Maiorano E, Mastropasqua MG, Annese T, Giacomini A, Ribatti D, Casas J, Levade T, Fabrias G, Presta M. β-Galactosylceramidase Promotes Melanoma Growth via Modulation of Ceramide Metabolism. Cancer Res 2020; 80:5011-5023. [PMID: 32998995 DOI: 10.1158/0008-5472.can-19-3382] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 07/15/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022]
Abstract
Disturbance of sphingolipid metabolism may represent a novel therapeutic target in metastatic melanoma, the most lethal form of skin cancer. β-Galactosylceramidase (GALC) removes β-galactose from galactosylceramide and other sphingolipids. In this study, we show that downregulation of galcb, a zebrafish ortholog of human GALC, affects melanoblast and melanocyte differentiation in zebrafish embryos, suggesting a possible role for GALC in melanoma. On this basis, the impact of GALC expression in murine B16-F10 and human A2058 melanoma cells was investigated following its silencing or upregulation. Galc knockdown hampered growth, motility, and invasive capacity of B16-F10 cells and their tumorigenic and metastatic activity when grafted in syngeneic mice or zebrafish embryos. Galc-silenced cells displayed altered sphingolipid metabolism and increased intracellular levels of ceramide, paralleled by a nonredundant upregulation of Smpd3, which encodes for the ceramide-generating enzyme neutral sphingomyelinase 2. Accordingly, GALC downregulation caused SMPD3 upregulation, increased ceramide levels, and inhibited the tumorigenic activity of human melanoma A2058 cells, whereas GALC upregulation exerted opposite effects. In concordance with information from melanoma database mining, RNAscope analysis demonstrated a progressive increase of GALC expression from common nevi to stage IV human melanoma samples that was paralleled by increases in microphthalmia transcription factor and tyrosinase immunoreactivity inversely related to SMPD3 and ceramide levels. Overall, these findings indicate that GALC may play an oncogenic role in melanoma by modulating the levels of intracellular ceramide, thus providing novel opportunities for melanoma therapy. SIGNIFICANCE: Data from zebrafish embryos, murine and human cell melanoma lines, and patient-derived tumor specimens indicate that β-galactosylceramidase plays an oncogenic role in melanoma and may serve as a therapeutic target.
Collapse
Affiliation(s)
- Mirella Belleri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Giuseppe Paganini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniela Coltrini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniela Zizioli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Andrea Barbieri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Stefano Calza
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Roberto Bresciani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Eugenio Maiorano
- Department of Emergency and Transplantation, Pathology Section, University of Bari Medical School, Bari, Italy
| | - Mauro G Mastropasqua
- Department of Emergency and Transplantation, Pathology Section, University of Bari Medical School, Bari, Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Council for Scientific Research (CSIC), Barcelona, and Liver and Digestive Diseases Networking Biomedical Research Centre (CIBER-EHD), Madrid, Spain
| | - Thierry Levade
- INSERM U1037, CRCT (Cancer Research Center of Toulouse) and Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
| | - Gemma Fabrias
- Research Unit on BioActive Molecules (RUBAM), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Council for Scientific Research (CSIC), Barcelona, and Liver and Digestive Diseases Networking Biomedical Research Centre (CIBER-EHD), Madrid, Spain
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy. .,Italian Consortium for Biotechnology (CIB), Unit of Brescia, Brescia, Italy
| |
Collapse
|
14
|
Nawaz MI, Rezzola S, Tobia C, Coltrini D, Belleri M, Mitola S, Corsini M, Sandomenico A, Caporale A, Ruvo M, Presta M. D-Peptide analogues of Boc-Phe-Leu-Phe-Leu-Phe-COOH induce neovascularization via endothelial N-formyl peptide receptor 3. Angiogenesis 2020; 23:357-369. [PMID: 32152757 DOI: 10.1007/s10456-020-09714-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
N-formyl peptide receptors (FPRs) are G protein-coupled receptors involved in the recruitment and activation of immune cells in response to pathogen-associated molecular patterns. Three FPRs have been identified in humans (FPR1-FPR3), characterized by different ligand properties, biological function and cellular distribution. Recent findings from our laboratory have shown that the peptide BOC-FLFLF (L-BOC2), related to the FPR antagonist BOC2, acts as an angiogenesis inhibitor by binding to various angiogenic growth factors, including vascular endothelial growth factor-A165 (VEGF). Here we show that the all-D-enantiomer of L-BOC2 (D-BOC2) is devoid of any VEGF antagonist activity. At variance, D-BOC2, as well as the D-FLFLF and succinimidyl (Succ)-D-FLFLF (D-Succ-F3) D-peptide variants, is endowed with a pro-angiogenic potential. In particular, the D-peptide D-Succ-F3 exerts a pro-angiogenic activity in a variety of in vitro assays on human umbilical vein endothelial cells (HUVECs) and in ex vivo and in vivo assays in chick and zebrafish embryos and adult mice. This activity is related to the capacity of D-Succ-F3 to bind FRP3 expressed by HUVECs. Indeed, the effects exerted by D-Succ-F3 on HUVECs are fully suppressed by the G protein-coupled receptor inhibitor pertussis toxin, the FPR2/FPR3 antagonist WRW4 and by an anti-FPR3 antibody. A similar inhibition was observed following WRW4-induced FPR3 desensitization in HUVECs. Finally, D-Succ-F3 prevented the binding of the anti-FPR3 antibody to the cell surface of HUVECs. In conclusion, our data demonstrate that the angiogenic activity of D-Succ-F3 is due to the engagement and activation of FPR3 expressed by endothelial cells, thus shedding a new light on the biological function of this chemoattractant receptor.
Collapse
Affiliation(s)
- Mohd I Nawaz
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Department of Ophthalmology, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Chiara Tobia
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniela Coltrini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mirella Belleri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Andrea Caporale
- Istituto Di Biostrutture e Bioimmagini, CNR, Napoli, Italy
- Istituto Di Cristallografia, CNR, Trieste, Italy
| | - Menotti Ruvo
- Istituto Di Biostrutture e Bioimmagini, CNR, Napoli, Italy
- AnBition srl, Napoli, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
- Italian Consortium for Biotechnology (CIB), Unit of Brescia, Trieste, Italy.
| |
Collapse
|
15
|
β-Galactosylceramidase Deficiency Causes Bone Marrow Vascular Defects in an Animal Model of Krabbe Disease. Int J Mol Sci 2019; 21:ijms21010251. [PMID: 31905906 PMCID: PMC6982065 DOI: 10.3390/ijms21010251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/13/2019] [Accepted: 12/28/2019] [Indexed: 01/04/2023] Open
Abstract
Krabbe disease (KD) is an autosomal recessive sphingolipidosis caused by the deficiency of the lysosomal hydrolase β-galactosylceramidase (GALC). Oligodendroglia degeneration and demyelination of the nervous system lead to neurological dysfunctions which are usually lethal by two years of age. At present, the only clinical treatment with any proven efficacy is hematopoietic stem-cell transplantation, which is more effective when administered in the neonatal period to presymptomatic recipients. Bone marrow (BM) sinusoidal endothelial cells (SECs) play a pivotal role in stem cell engraftment and reconstitution of hematopoiesis. Previous observations had shown significant alterations of microvascular endothelial cells in the brain of KD patients and in Galc mutant twitcher mice, an authentic model of the disease. In the present study, we investigated the vascular component of the BM in the femurs of symptomatic homozygous twitcher mice at postnatal day P36. Histological, immunohistochemical, and two-photon microscopy imaging analyses revealed the presence of significant alterations of the diaphyseal BM vasculature, characterized by enlarged, discontinuous, and hemorrhagic SECs that express the endothelial marker vascular endothelial growth factor receptor-2 (VEGFR2) but lack platelet/endothelial cell adhesion molecule-1 (CD31) expression. In addition, computer-aided image analysis indicates that twitcher CD31-/VEGFR2+ SECs show a significant increase in lumen size and in the number and size of endothelial gaps compared to BM SECs of wild type littermates. These results suggest that morphofunctional defects in the BM vascular niche may contribute to the limited therapeutic efficacy of hematopoietic stem-cell transplantation in KD patients at symptomatic stages of the disease.
Collapse
|
16
|
Righi M, Belleri M, Presta M, Giacomini A. Quantification of 3D Brain Microangioarchitectures in an Animal Model of Krabbe Disease. Int J Mol Sci 2019; 20:E2384. [PMID: 31091708 PMCID: PMC6567268 DOI: 10.3390/ijms20102384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/08/2019] [Accepted: 05/11/2019] [Indexed: 12/16/2022] Open
Abstract
We performed a three-dimensional (3D) analysis of the microvascular network of the cerebral cortex of twitcher mice (an authentic model of Krabbe disease) using a restricted set of indexes that are able to describe the arrangement of the microvascular tree in CD31-stained sections. We obtained a near-linear graphical "fingerprint" of the microangioarchitecture of wild-type and twitcher animals that describes the amounts, spatial dispersion, and spatial relationships of adjacent classes of caliber-filtered microvessels. We observed significant alterations of the microangioarchitecture of the cerebral cortex of twitcher mice, whereas no alterations occur in renal microvessels, which is keeping with the observation that kidney is an organ that is not affected by the disease. This approach may represent an important starting point for the study of the microvascular changes that occur in the central nervous system (CNS) under different physiopathological conditions.
Collapse
Affiliation(s)
- Marco Righi
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, Via Vanvitelli 32, 20129 Milano, Italy.
| | - Mirella Belleri
- Unit of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Marco Presta
- Unit of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Arianna Giacomini
- Unit of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|
17
|
Vascular amounts and dispersion of caliber-classified vessels as key parameters to quantitate 3D micro-angioarchitectures in multiple myeloma experimental tumors. Sci Rep 2018; 8:17520. [PMID: 30504794 PMCID: PMC6269464 DOI: 10.1038/s41598-018-35788-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 11/05/2018] [Indexed: 12/26/2022] Open
Abstract
Blood vessel micro-angioarchitecture plays a pivotal role in tumor progression, metastatic dissemination and response to therapy. Thus, methods able to quantify microvascular trees and their anomalies may allow a better comprehension of the neovascularization process and evaluation of vascular-targeted therapies in cancer. To this aim, the development of a restricted set of indexes able to describe the arrangement of a microvascular tree is eagerly required. We addressed this goal through 3D analysis of the functional microvascular network in sulfo-biotin-stained human multiple myeloma KMS-11 xenografts in NOD/SCID mice. Using image analysis, we show that amounts, spatial dispersion and spatial relationships of adjacent classes of caliber-filtered microvessels provide a near-linear graphical “fingerprint” of tumor micro-angioarchitecture. Position, slope and axial projections of this graphical outcome reflect biological features and summarize the properties of tumor micro-angioarchitecture. Notably, treatment of KMS-11 xenografts with anti-angiogenic drugs affected position and slope of the specific curves without degrading their near-linear properties. The possibility offered by this procedure to describe and quantify the 3D features of the tumor micro-angioarchitecture paves the way to the analysis of the microvascular tree in human tumor specimens at different stages of tumor progression and after pharmacologic interventions, with possible diagnostic and prognostic implications.
Collapse
|
18
|
Lim SM, Choi BO, Oh SI, Choi WJ, Oh KW, Nahm M, Xue Y, Choi JH, Choi JY, Kim YE, Chung KW, Fu XD, Ki CS, Kim SH. Patient fibroblasts-derived induced neurons demonstrate autonomous neuronal defects in adult-onset Krabbe disease. Oncotarget 2018; 7:74496-74509. [PMID: 27780934 PMCID: PMC5342682 DOI: 10.18632/oncotarget.12812] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 10/14/2016] [Indexed: 01/29/2023] Open
Abstract
Krabbe disease (KD) is an autosomal recessive neurodegenerative disorder caused by defective β-galactosylceramidase (GALC), a lysosomal enzyme responsible for cleavage of several key substrates including psychosine. Accumulation of psychosine to the cytotoxic levels in KD patients is thought to cause dysfunctions in myelinating glial cells based on a comprehensive study of demyelination in KD. However, recent evidence suggests myelin-independent neuronal death in the murine model of KD, thus indicating defective GALC in neurons as an autonomous mechanism for neuronal cell death in KD. These observations prompted us to generate induced neurons (iNeurons) from two adult-onset KD patients carrying compound heterozygous mutations (p.[K563*];[L634S]) and (p.[N228_S232delinsTP];[G286D]) to determine the direct contribution of autonomous neuronal toxicity to KD. Here we report that directly converted KD iNeurons showed not only diminished GALC activity and increased psychosine levels, as expected, but also neurite fragmentation and abnormal neuritic branching. The lysosomal-associated membrane proteins 1 (LAMP1) was expressed at higher levels than controls, LAMP1-positive vesicles were significantly enlarged and fragmented, and mitochondrial morphology and its function were altered in KD iNeurons. Strikingly, we demonstrated that psychosine was sufficient to induce neurite defects, mitochondrial fragmentation, and lysosomal alterations in iNeurons derived in healthy individuals, thus establishing the causal effect of the cytotoxic GALC substrate in KD and the autonomous neuronal toxicity in KD pathology.
Collapse
Affiliation(s)
- Su Min Lim
- Biomedical Research Institute, Hanyang University, Seoul, Republic of Korea.,Cell Therapy Center, Hanyang University Hospital, Seoul, Republic of Korea
| | - Byung-Ok Choi
- Department of Neurology and Neuroscience Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seong-Il Oh
- Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Won Jun Choi
- Department of Neurology, Sheikh Khalifa Specialty Hospital, Ras Al Khaimah, United Arab Emirates
| | - Ki-Wook Oh
- Cell Therapy Center, Hanyang University Hospital, Seoul, Republic of Korea.,Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Minyeop Nahm
- Cell Therapy Center, Hanyang University Hospital, Seoul, Republic of Korea
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jae Hyeok Choi
- Cell Therapy Center, Hanyang University Hospital, Seoul, Republic of Korea
| | - Ji Young Choi
- Cell Therapy Center, Hanyang University Hospital, Seoul, Republic of Korea
| | | | - Ki Wha Chung
- Department of Biological Sciences, Gongju National University, Gongju, Republic of Korea
| | - Xiang-Dong Fu
- Department of Cellular Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Chang-Seok Ki
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seung Hyun Kim
- Cell Therapy Center, Hanyang University Hospital, Seoul, Republic of Korea.,Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
19
|
Smith NJ, Fuller M, Saville JT, Cox TM. Reduced cerebral vascularization in experimental neuronopathic Gaucher disease. J Pathol 2018; 244:120-128. [PMID: 28981147 DOI: 10.1002/path.4992] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/15/2017] [Accepted: 09/12/2017] [Indexed: 11/10/2022]
Abstract
The glycosphingolipidosis, Gaucher disease, in which a range of neurological manifestations occur, results from a deficiency of acid β-glucocerebrosidase, with subsequent accumulation of β-glucocerebroside, its upstream substrates, and the non-acylated congener β-glucosylsphingosine. However, the mechanisms by which end-organ dysfunction arise are poorly understood. Here, we report strikingly diminished cerebral microvascular density in a murine model of disease, and provide a detailed analysis of the accompanying cerebral glycosphingolipidome in these animals, with marked elevations of β-glucosylsphingosine. Further in vitro studies confirmed a concentration-dependent impairment of endothelial cytokinesis upon exposure to quasi-pathological concentrations of β-glucosylsphingosine. These findings support a premise for pathogenic disruption of cerebral angiogenesis as an end-organ effect, with potential for therapeutic modulation in neuronopathic Gaucher disease. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nicholas Jc Smith
- Department of Neurology and Clinical Neurophysiology, Women's and Children's Health Network, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,Department of Medicine, University of Cambridge, Cambridge, UK
| | - Maria Fuller
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, Adelaide, South Australia, Australia
| | - Jennifer T Saville
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, Adelaide, South Australia, Australia
| | - Timothy M Cox
- Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
20
|
Ricca A, Gritti A. Perspective on innovative therapies for globoid cell leukodystrophy. J Neurosci Res 2017; 94:1304-17. [PMID: 27638612 DOI: 10.1002/jnr.23752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/25/2016] [Accepted: 03/30/2016] [Indexed: 12/24/2022]
Abstract
Globoid cell leukodystrophy (GLD), or Krabbe's disease, is a lysosomal storage disorder resulting from deficiency of the lysosomal hydrolase galactosylceramidase. The infantile forms are characterized by a unique relentless and aggressive progression with a wide range of neurological symptoms and complications. Here we review and discuss the basic concepts and the novel mechanisms identified as key contributors to the peculiar GLD pathology, highlighting their therapeutic implications. Then, we evaluate evidence from extensive experimental studies on GLD animal models that have highlighted fundamental requirements to obtain substantial therapeutic benefit, including early and timely intervention, high levels of enzymatic reconstitution, and global targeting of affected tissues. Continuous efforts in understanding GLD pathophysiology, the interplay between various therapies, and the mechanisms of disease correction upon intervention may allow advancing research with innovative approaches and prioritizing treatment strategies to develop more efficacious treatments. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alessandra Ricca
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
21
|
Lysosomal Re-acidification Prevents Lysosphingolipid-Induced Lysosomal Impairment and Cellular Toxicity. PLoS Biol 2016; 14:e1002583. [PMID: 27977664 PMCID: PMC5169359 DOI: 10.1371/journal.pbio.1002583] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 11/11/2016] [Indexed: 12/20/2022] Open
Abstract
Neurodegenerative lysosomal storage disorders (LSDs) are severe and untreatable, and mechanisms underlying cellular dysfunction are poorly understood. We found that toxic lipids relevant to three different LSDs disrupt multiple lysosomal and other cellular functions. Unbiased drug discovery revealed several structurally distinct protective compounds, approved for other uses, that prevent lysosomal and cellular toxicities of these lipids. Toxic lipids and protective agents show unexpected convergence on control of lysosomal pH and re-acidification as a critical component of toxicity and protection. In twitcher mice (a model of Krabbe disease [KD]), a central nervous system (CNS)-penetrant protective agent rescued myelin and oligodendrocyte (OL) progenitors, improved motor behavior, and extended lifespan. Our studies reveal shared principles relevant to several LSDs, in which diverse cellular and biochemical disruptions appear to be secondary to disruption of lysosomal pH regulation by specific lipids. These studies also provide novel protective strategies that confer therapeutic benefits in a mouse model of a severe LSD.
Collapse
|
22
|
Cappello V, Marchetti L, Parlanti P, Landi S, Tonazzini I, Cecchini M, Piazza V, Gemmi M. Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease. Sci Rep 2016; 6:1. [PMID: 28442746 PMCID: PMC5431369 DOI: 10.1038/s41598-016-0001-8] [Citation(s) in RCA: 6763] [Impact Index Per Article: 751.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 08/15/2016] [Indexed: 02/08/2023] Open
Abstract
Krabbe disease (KD) is a neurodegenerative disorder caused by the lack of β- galactosylceramidase enzymatic activity and by widespread accumulation of the cytotoxic galactosyl-sphingosine in neuronal, myelinating and endothelial cells. Despite the wide use of Twitcher mice as experimental model for KD, the ultrastructure of this model is partial and mainly addressing peripheral nerves. More details are requested to elucidate the basis of the motor defects, which are the first to appear during KD onset. Here we use transmission electron microscopy (TEM) to focus on the alterations produced by KD in the lower motor system at postnatal day 15 (P15), a nearly asymptomatic stage, and in the juvenile P30 mouse. We find mild effects on motorneuron soma, severe ones on sciatic nerves and very severe effects on nerve terminals and neuromuscular junctions at P30, with peripheral damage being already detectable at P15. Finally, we find that the gastrocnemius muscle undergoes atrophy and structural changes that are independent of denervation at P15. Our data further characterize the ultrastructural analysis of the KD mouse model, and support recent theories of a dying-back mechanism for neuronal degeneration, which is independent of demyelination.
Collapse
Affiliation(s)
- Valentina Cappello
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia Piazza San Silvestro, 12, 56127, Pisa, Italy.
| | - Laura Marchetti
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia Piazza San Silvestro, 12, 56127, Pisa, Italy
| | - Paola Parlanti
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia Piazza San Silvestro, 12, 56127, Pisa, Italy
- NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Silvia Landi
- NEST, Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Ilaria Tonazzini
- NEST, Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127, Pisa, Italy
- Fondazione Umberto Veronesi, Piazza Velasca 5, 20122, Milano, Italy
| | - Marco Cecchini
- NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
- NEST, Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Vincenzo Piazza
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia Piazza San Silvestro, 12, 56127, Pisa, Italy
| | - Mauro Gemmi
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia Piazza San Silvestro, 12, 56127, Pisa, Italy
| |
Collapse
|
23
|
Avola R, Graziano ACE, Pannuzzo G, Alvares E, Cardile V. Krabbe's leukodystrophy: Approaches and models in vitro. J Neurosci Res 2016; 94:1284-1292. [PMID: 27638610 DOI: 10.1002/jnr.23846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 01/12/2023]
Abstract
This Review describes some in vitro approaches used to investigate the mechanisms involved in Krabbe's disease, with particular regard to the cellular systems employed to study processes of inflammation, apoptosis, and angiogenesis. The aim was to update the knowledge on the results obtained from in vitro models of this neurodegenerative disorder and provide stimuli for future research. For a long time, the nonavailability of established neural cells has limited the understanding of neuropathogenic mechanisms in Krabbe's leukodystrophy. More recently, the development of new Krabbe's disease cell models has allowed the identification of neurologically relevant pathogenic cascades, including the major role of elevated psychosine levels. Thus, direct and/or indirect roles of psychosine in the release of cytokines, reactive oxygen species, and nitric oxide and in the activation of kinases, caspases, and angiogenic factors results should be clearer. In parallel, it is now understood that the presence of globoid cells precedes oligodendrocyte apoptosis and demyelination. The information described here will help to continue the research on Krabbe's leukodystrophy and on potential new therapeutic approaches for this disease that even today, despite numerous attempts, is without cure. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rosanna Avola
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | | | - Giovanna Pannuzzo
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Elisa Alvares
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy.
| |
Collapse
|
24
|
Won JS, Singh AK, Singh I. Biochemical, cell biological, pathological, and therapeutic aspects of Krabbe's disease. J Neurosci Res 2016; 94:990-1006. [PMID: 27638584 PMCID: PMC5812347 DOI: 10.1002/jnr.23873] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/01/2016] [Accepted: 07/14/2016] [Indexed: 12/14/2022]
Abstract
Krabbe's disease (KD; also called globoid cell leukodystrophy) is a genetic disorder involving demyelination of the central (CNS) and peripheral (PNS) nervous systems. The disease may be subdivided into three types, an infantile form, which is the most common and severe; a juvenile form; and a rare adult form. KD is an autosomal recessive disorder caused by a deficiency of galactocerebrosidase activity in lysosomes, leading to accumulation of galactoceramide and neurotoxic galactosylsphingosine (psychosine [PSY]) in macrophages (globoid cells) as well as neural cells, especially in oligodendrocytes and Schwann cells. This ultimately results in damage to myelin in both CNS and PNS with associated morbidity and mortality. Accumulation of PSY, a lysolipid with detergent-like properties, over a threshold level could trigger membrane destabilization, leading to cell lysis. Moreover, subthreshold concentrations of PSY trigger cell signaling pathways that induce oxidative stress, mitochondrial dysfunction, apoptosis, inflammation, endothelial/vascular dysfunctions, and neuronal and axonal damage. From the time the "psychosine hypothesis" was proposed, considerable efforts have been made in search of an effective therapy for lowering PSY load with pharmacological, gene, and stem cell approaches to attenuate PSY-induced neurotoxicity. This Review focuses on the recent advances and prospective research for understanding disease mechanisms and therapeutic approaches for KD. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Je-Seong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Avtar K. Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
- Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
25
|
Belleri M, Presta M. Endothelial cell dysfunction in globoid cell leukodystrophy. J Neurosci Res 2016; 94:1359-67. [PMID: 27037626 DOI: 10.1002/jnr.23744] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/04/2016] [Accepted: 03/10/2016] [Indexed: 11/08/2022]
Abstract
Angiogenesis plays a pivotal role in the physiology and pathology of the brain. Microvascular alterations have been observed in various neurodegenerative disorders, including genetic leukodystrophies. Globoid cell leukodystrophy (GLD) is a lysosomal storage disease caused by β-galactosylceramidase (GALC) deficiency and characterized by the accumulation of the neurotoxic metabolite psychosine in the central nervous system and peripheral tissues. Structural and functional alterations occur in the microvascular endothelium of the brain of GLD patients and twitcher mice, a murine model of the disease. In addition, increased vessel permeability and a reduced capacity to respond to proangiogenic stimuli characterize the endothelium of twitcher animals. On the one hand, these alterations may depend, at least in part, on the local and systemic angiostatic activity exerted by psychosine on endothelial cells. On the other hand, studies performed in vivo on zebrafish embryos and in vitro on human endothelial cells suggest that GALC downregulation may also lead to psychosine-independent neuronal and vascular defects. Together, experimental observations indicate that endothelial cell dysfunctions may represent a novel pathogenic mechanism in human leukodystrophies, including GLD. A better understanding of the molecular mechanisms responsible for these microvascular alterations may provide new insights for the therapy of GLD. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mirella Belleri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
26
|
Graziano ACE, Parenti R, Avola R, Cardile V. Krabbe disease: involvement of connexin43 in the apoptotic effects of sphingolipid psychosine on mouse oligodendrocyte precursors. Apoptosis 2016; 21:25-35. [PMID: 26459425 DOI: 10.1007/s10495-015-1183-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Krabbe disease is a genetic demyelinating syndrome characterized by deficiency of the enzyme β-galactosylceramidase, lysosomal psychosine accumulation, and loss of myelin-forming cells. In this study, some apoptotic markers such as apoptotic index (AI), DNA fragmentation, caspase-3, PTEN, Bad, and PI3K were determined in oligodendrocyte precursors from wild type or twitcher mice untreated or treated with psychosine. Twitcher is a natural mouse model of Krabbe disease containing a premature stop codon (W339X) in the β-galactosylceramidase gene. Moreover, a possible involvement of connexin (Cx)43 in cell death of oligodendrocyte precursors induced by psychosine was investigated with the final aim to provide a contribution to the knowledge of the molecular mechanisms and pathophysiological events that occur in Krabbe disease. Connexins are a multigene family of structurally related trans-membrane proteins able to modulate essential cellular processes such as proliferation, differentiation and migration. Among these, Cx43 is the predominant isoform in many cell types, including neural progenitor cells. Our results showed an increase of AI, DNA fragmentation, caspase-3, PTEN, Bad, and Cx43 associated to a decrease of PI3K, pAKT and pBad. Taken together, these findings suggest an involvement of Cx43 in the psychosine-mediated apoptosis of primary oligodendrocyte progenitors from wild type or twitcher mice, used for the first time as cell models in comparison. It could open unexplored perspective also for other demyelinating diseases.
Collapse
Affiliation(s)
- A C E Graziano
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - R Parenti
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - R Avola
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - V Cardile
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, V.le A. Doria 6, 95125, Catania, Italy.
| |
Collapse
|
27
|
Giacomini A, Ackermann M, Belleri M, Coltrini D, Nico B, Ribatti D, Konerding MA, Presta M, Righi M. Brain angioarchitecture and intussusceptive microvascular growth in a murine model of Krabbe disease. Angiogenesis 2015; 18:499-510. [DOI: 10.1007/s10456-015-9481-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/13/2015] [Indexed: 10/23/2022]
|
28
|
Lee JH, Cho MH, Hersh CP, McDonald MLN, Wells JM, Dransfield MT, Bowler RP, Lynch DA, Lomas DA, Crapo JD, Silverman EK. IREB2 and GALC are associated with pulmonary artery enlargement in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 2015; 52:365-76. [PMID: 25101718 DOI: 10.1165/rcmb.2014-0210oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pulmonary hypertension is associated with advanced chronic obstructive pulmonary disease (COPD), although pulmonary vascular changes occur early in the course of the disease. Pulmonary artery (PA) enlargement (PAE) measured by computed tomography correlates with pulmonary hypertension and COPD exacerbation frequency. Genome-wide association studies of PAE in subjects with COPD have not been reported. To investigate whether genetic variants are associated with PAE within subjects with COPD, we investigated data from current and former smokers from the COPDGene Study and the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints study. The ratio of the diameter of the PA to the diameter of the aorta (A) was measured using computed tomography. PAE was defined as PA/A greater than 1. A genome-wide association study for COPD with PAE was performed using subjects with COPD without PAE (PA/A ≤ 1) as a control group. A secondary analysis used smokers with normal spirometry as a control group. Genotyping was performed on Illumina platforms. The results were summarized using fixed-effect meta-analysis. Both meta-analyses revealed a genome-wide significant locus on chromosome 15q25.1 in IREB2 (COPD with versus without PAE, rs7181486; odds ratio [OR] = 1.32; P = 2.10 × 10(-8); versus smoking control subjects, rs2009746; OR = 1.42; P = 1.32 × 10(-9)). PAE was also associated with a region on 14q31.3 near the GALC gene (rs7140285; OR = 1.55; P = 3.75 × 10(-8)). Genetic variants near IREB2 and GALC likely contribute to genetic susceptibility to PAE associated with COPD. This study provides evidence for genetic heterogeneity associated with a clinically important COPD vascular subtype.
Collapse
Affiliation(s)
- Jin Hwa Lee
- 1 Channing Division of Network Medicine, and
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sabourdy F, Astudillo L, Colacios C, Dubot P, Mrad M, Ségui B, Andrieu-Abadie N, Levade T. Monogenic neurological disorders of sphingolipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1040-51. [PMID: 25660725 DOI: 10.1016/j.bbalip.2015.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/10/2015] [Accepted: 01/12/2015] [Indexed: 10/24/2022]
Abstract
Sphingolipids comprise a wide variety of molecules containing a sphingoid long-chain base that can be N-acylated. These lipids are particularly abundant in the central nervous system, being membrane components of neurons as well as non-neuronal cells. Direct evidence that these brain lipids play critical functions in brain physiology is illustrated by the dramatic consequences of genetic disturbances of their metabolism. Inherited defects of both synthesis and catabolism of sphingolipids are now identified in humans. These monogenic disorders are due to mutations in the genes encoding for the enzymes that catalyze either the formation or degradation of simple sphingolipids such as ceramides, or complex sphingolipids like glycolipids. They cause varying degrees of central nervous system dysfunction, quite similarly to the neurological disorders induced in mice by gene disruption of the corresponding enzymes. Herein, the enzyme deficiencies and metabolic alterations that underlie these diseases are reviewed. Their possible pathophysiological mechanisms and the functions played by sphingolipids one can deduce from these conditions are discussed. This article is part of a Special Issue entitled Brain Lipids.
Collapse
Affiliation(s)
- Frédérique Sabourdy
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Toulouse, France; Equipe Labellisée Ligue Nationale Contre le Cancer 2013, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse-III Paul Sabatier, Toulouse, France; Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
| | - Leonardo Astudillo
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Toulouse, France; Equipe Labellisée Ligue Nationale Contre le Cancer 2013, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse-III Paul Sabatier, Toulouse, France; Service de Médecine Interne, CHU Purpan, Toulouse, France
| | - Céline Colacios
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Toulouse, France; Equipe Labellisée Ligue Nationale Contre le Cancer 2013, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse-III Paul Sabatier, Toulouse, France
| | - Patricia Dubot
- Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
| | - Marguerite Mrad
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Toulouse, France; Equipe Labellisée Ligue Nationale Contre le Cancer 2013, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse-III Paul Sabatier, Toulouse, France
| | - Bruno Ségui
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Toulouse, France; Equipe Labellisée Ligue Nationale Contre le Cancer 2013, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse-III Paul Sabatier, Toulouse, France
| | - Nathalie Andrieu-Abadie
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Toulouse, France; Equipe Labellisée Ligue Nationale Contre le Cancer 2013, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse-III Paul Sabatier, Toulouse, France
| | - Thierry Levade
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Toulouse, France; Equipe Labellisée Ligue Nationale Contre le Cancer 2013, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse-III Paul Sabatier, Toulouse, France; Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, Toulouse, France.
| |
Collapse
|
30
|
Graziano ACE, Cardile V. History, genetic, and recent advances on Krabbe disease. Gene 2015; 555:2-13. [PMID: 25260228 DOI: 10.1016/j.gene.2014.09.046] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 12/20/2022]
Abstract
Krabbe disease or globoid cell leukodystrophy is one of the classic genetic lysosomal storage diseases with autosomal recessive inheritance that affects both central and peripheral nervous systems in several species including humans, rhesus macaques, dogs, mice, and sheep. Since its identification in 1916, lots of scientific investigations were made to define the cause, to evaluate the molecular mechanisms of the damage and to develop more efficient therapies inducing clinical benefit and ameliorating the patients' quality of life. This manuscript gives a historical overview and summarizes the new recent findings about Krabbe disease. Human symptoms and phenotypes, gene encoding for β-galactocerebrosidase and encoded protein were described. Indications about the classical mutations were reported and some specific mutations in restricted geographical area, like the north of Catania City (Italy), were added. Briefly, here we present a mix of past and present investigations on Krabbe disease in order to update the knowledge on its genetic history and molecular mechanisms and to move new scientific investigations.
Collapse
Affiliation(s)
| | - Venera Cardile
- Department of Bio-Medical Science - Physiology Section, University of Catania, Catania, Italy.
| |
Collapse
|
31
|
Pavlova EV, Archer J, Wang S, Dekker N, Aerts JM, Karlsson S, Cox TM. Inhibition of UDP-glucosylceramide synthase in mice prevents Gaucher disease-associated B-cell malignancy. J Pathol 2015; 235:113-24. [PMID: 25256118 DOI: 10.1002/path.4452] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/01/2014] [Accepted: 09/19/2014] [Indexed: 02/02/2023]
Abstract
Clonal B-cell proliferation is a frequent manifestation of Gaucher disease - a sphingolipidosis associated with a high risk of multiple myeloma and non-Hodgkin lymphoma. Gaucher disease is caused by genetic deficiency of acid β-glucosidase, the natural substrates of which (β-d-glucosylceramide and β-d-glucosylsphingosine) accumulate, principally in macrophages. Mice with inducible deficiency of β-glucosidase [Gba(tm1Karl/tm1Karl)Tg(MX1-cre)1Cgn/0] serve as an authentic model of human Gaucher disease; we have recently reported clonal B-cell proliferation accompanied by monoclonal serum paraproteins and cognate tumours in these animals. To explore the relationship between B-cell malignancy and the biochemical defect, we treated Gaucher mice with eliglustat tartrate (GENZ 112638), a potent and selective inhibitor of the first committed step in glycosphingolipid biosynthesis. Twenty-two Gaucher mice received 300 mg/kg of GENZ 112638 daily for 3-10 months from 6 weeks of age. Plasma concentrations of β-d-glucosylceramide and the unacylated glycosphingolipid, β-d-glucosylsphingosine, declined. After administration of GENZ 112638 to Gaucher mice for 3-10 months, serum paraproteins were not detected and there was a striking reduction in the malignant lymphoproliferation: neither lymphomas nor plasmacytomas were found in animals that had received the investigational agent. In contrast, 14 out of 60 Gaucher mice without GENZ 112638 treatment developed these tumours; monoclonal paraproteins were detected in plasma from 18 of the 44 age-matched mice with Gaucher disease that had not received GENZ 112638. Long-term inhibition of glycosphingolipid biosynthesis suppresses the development of spontaneous B-cell lymphoma and myeloma in Gaucher mice.
Collapse
Affiliation(s)
- Elena V Pavlova
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
32
|
Presta M, Belleri M, Cox TM. The role of the endothelium in globoid-cell leukodystrophy: unexpected revelations. FUTURE NEUROLOGY 2014. [DOI: 10.2217/fnl.13.75] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Marco Presta
- Department of Molecular & Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Mirella Belleri
- Department of Molecular & Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Timothy M Cox
- Department of Medicine, University of Cambridge, Box 157, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| |
Collapse
|
33
|
Rezzola S, Belleri M, Gariano G, Ribatti D, Costagliola C, Semeraro F, Presta M. In vitro and ex vivo retina angiogenesis assays. Angiogenesis 2013; 17:429-42. [DOI: 10.1007/s10456-013-9398-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/03/2013] [Indexed: 12/16/2022]
|