1
|
Tan SL, Neumann D, Trim PJ, Hewson LJ, Mustaffar NF, He QQ, Wimmer N, Snel MF, Ferro V, O'Keefe LV, Hemsley KM, Lau AA. Substrate reduction using a glucosamine analogue in Drosophila melanogaster and mouse models of Sanfilippo syndrome. Mol Genet Metab 2025; 145:109112. [PMID: 40288156 DOI: 10.1016/j.ymgme.2025.109112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/04/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Mucopolysaccharidosis (MPS) types III A and C are inherited neurodegenerative disorders resulting from the lack of a specific enzyme involved in heparan sulfate (HS) catabolism, leading to the accumulation of partially-degraded HS fragments. At present, there are no approved treatments and death is commonly in the second decade of life. Several therapies have undergone pre-clinical evaluation for these conditions, including substrate reduction therapy, with the most studied compound of this class being the isoflavone genistein. However, findings from a Phase III clinical trial demonstrated that high dose oral genistein did not significantly improve neurodevelopmental outcomes in patients with MPS III (Sanfilippo syndrome). Here, we have tested an N-acetylglucosamine analogue, 4-deoxy-N-acetylglucosamine peracetate, as a novel substrate reduction therapy for HS-storing lysosomal storage disorders such as MPS III. Treatment with this compound significantly reduced HS levels in cultured MPS IIIA patient and mouse fibroblasts in a time- and dose-dependent manner. MPS IIIC Drosophila fed 4-deoxy-N-acetylglucosamine peracetate contained significantly less HS relative to those raised on control diets. Likewise, improvements in HS load within the MPS IIIA mouse brain suggests that the compound crossed the blood-brain barrier after oral administration. Although long-term studies are needed, these findings indicate that 4-deoxy-GlcNAc peracetate may be beneficial in slowing the accumulation of HS and may represent a novel substrate reduction therapeutic for MPS III and potentially other HS-storing disorders.
Collapse
Affiliation(s)
- Sher Li Tan
- Formerly Childhood Dementia Research Group, Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Daniel Neumann
- Formerly Childhood Dementia Research Group, Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; Childhood Dementia Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, SA 5042, Australia
| | - Paul J Trim
- Proteomics, Metabolomics and MS-Imaging Core Facility, South Australian Health and Medical Research Institute, Adelaide 5000, Australia
| | - Laura J Hewson
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
| | | | - Qi Qi He
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Norbert Wimmer
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Marten F Snel
- Proteomics, Metabolomics and MS-Imaging Core Facility, South Australian Health and Medical Research Institute, Adelaide 5000, Australia
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Louise V O'Keefe
- Formerly Childhood Dementia Research Group, Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Kim M Hemsley
- Formerly Childhood Dementia Research Group, Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; Childhood Dementia Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, SA 5042, Australia
| | - Adeline A Lau
- Formerly Childhood Dementia Research Group, Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; Childhood Dementia Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, SA 5042, Australia.
| |
Collapse
|
2
|
Pinheiro CV, Ribeiro RT, Roginski AC, Brondani M, Zemniaçak ÂB, Hoffmann CIH, Vizuete AFK, Gonçalves CA, Amaral AU, Wajner M, Baldo G, Leipnitz G. Disturbances in mitochondrial quality control and mitochondria-lysosome contact underlie the cerebral cortex and heart damage of mucopolysaccharidosis type II mice. Metab Brain Dis 2025; 40:177. [PMID: 40220021 DOI: 10.1007/s11011-025-01605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 04/05/2025] [Indexed: 04/14/2025]
Abstract
Mucopolysaccharidosis type II (or Hunter syndrome) is a lysosomal disease caused by mutations in the IDS gene, which encodes the enzyme iduronate 2-sulfatase. MPS II patients present with systemic clinical manifestations and, in the most severe cases, with severe central nervous system abnormalities. Cardiac alterations are also commonly observed. In this study, we evaluated the communication between mitochondria and lysosomes, as well as mitochondrial dynamics and bioenergetics, mitophagy/autophagy, and redox homeostasis in the cerebral cortex and heart of 6-month-old MPS II mice. Our findings showed a reduction in the content of protein TBC1D15 in the cerebral cortex and heart of MPS II mice and an increase in Rab7 in the heart of these animals, suggesting disturbances in the communication between mitochondria and lysosomes. Furthermore, decreased Drp1 levels, indicative of reduced fission, and increased VDAC1 and COX IV, suggesting an increase in mitochondrial mass, were seen in both tissues. Tom20 was also augmented in the cortex. Changes in parkin levels were also verified, indicating disrupted mitophagy. In the field of bioenergetics, we observed reduced activities of citrate synthase and malate dehydrogenase in the cortex, as well as decreased activities of isocitrate dehydrogenase, creatine kinase, and pyruvate kinase, along with diminished mitochondrial respiration in the cardiac tissue of deficient mice. However, a mild increase in lipid peroxidation was seen only in the heart. Our findings suggest that mitochondria-lysosome crosstalk disruption and bioenergetic failure contribute to the pathophysiology of brain and heart alterations in MPS II.
Collapse
Affiliation(s)
- Camila Vieira Pinheiro
- Postgraduation Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90050-170, Rio Grande do Sul, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
| | - Rafael Teixeira Ribeiro
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
| | - Ana Cristina Roginski
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
| | - Morgana Brondani
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
| | - Ângela Beatris Zemniaçak
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
| | - Chrístofer Ian Hernandez Hoffmann
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
| | - Adriana Fernanda K Vizuete
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
| | - Carlos-Alberto Gonçalves
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
| | - Alexandre Umpierrez Amaral
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
- Postgraduation Program in Integral Health Care, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, 99709-910, Rio Grande do Sul, Brazil
| | - Moacir Wajner
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, 90035-903, Rio Grande do Sul, Brazil
| | - Guilherme Baldo
- Postgraduation Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90050-170, Rio Grande do Sul, Brazil
- Tecidos e Genes, Hospital de Clínicas de Porto Alegre, Células, Porto Alegre, 90035-903, Rio Grande do Sul, Brazil
| | - Guilhian Leipnitz
- Postgraduation Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90050-170, Rio Grande do Sul, Brazil.
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil.
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil.
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil.
| |
Collapse
|
3
|
Larribau M, Rouahi M, Santiago C, Ausseil J, Karim Z. Identification of a neuron-specific ferroptosis in the neurodegenerative mucopolysaccharidosis III model. Front Mol Biosci 2025; 12:1476513. [PMID: 40171043 PMCID: PMC11959000 DOI: 10.3389/fmolb.2025.1476513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/25/2025] [Indexed: 04/03/2025] Open
Abstract
Sanfilippo syndrome (MPSIII) is a neurodegenerative disorder caused by enzyme deficiencies, leading to the toxic accumulation of heparan sulfate oligosaccharides in the brain. Emerging evidence suggests that ferroptosis, an iron-dependent form of cell death, contribute to neurodegeneration. To investigate ferroptosis in MPSIIIB, we examined its regulatory mechanisms and markers in MPSIIIB brains. Our results showed elevated iron levels, decreased mRNA expression of TFR1 and ZIP14 (involved in iron uptake) at 9 months of age, and increased protein levels of FTH (which stores intracellular iron) in MPSIIIB brains, indicating a potential link to ferroptosis. We also observed diminished levels of ferroptosis-neutralizing proteins (xc-/GPX4), while the protective pathway (Keap1-Nrf2) was activated. Oxidative homeostasis disruption was revealed by increased expression of genes encoding SOD2, SIRT3, iNOS, and nNOS enzymes. Increased expression of lipid peroxidation genes (ascl4 and lpcat3) further supported ferroptosis involvement. Furthermore, we analyzed protein abundance and brain immunostaining of the iron exporter FPN. Despite its high expression levels, this protein appeared misfolded and was insufficiently targeted to cellular plasma membrane, which might contribute to cellular iron retention. The co-localization of FPN with NeuN, a marker of neurons, demonstrates that only neurons are affected by this targeting defect, suggesting neuronal ferroptosis specifically in MPSIIIB. Overall, our findings evidenced of the involvement of ferroptosis in MPSIIIB pathogenesis, highlighting dysregulation in iron homeostasis, antioxidant defenses, and lipid peroxidation as key features of the disease.
Collapse
Affiliation(s)
- Mathilde Larribau
- University of Toulouse, INFINITY, INSERM UMR1291, CNRS UMR5051, Toulouse, France
| | - Myriam Rouahi
- University of Toulouse, INFINITY, INSERM UMR1291, CNRS UMR5051, Toulouse, France
| | - Christophe Santiago
- University of Toulouse, INFINITY, INSERM UMR1291, CNRS UMR5051, Toulouse, France
| | - Jérôme Ausseil
- University of Toulouse, INFINITY, INSERM UMR1291, CNRS UMR5051, Toulouse, France
- Laboratory of Biochemistry and Molecular Biology, Centre Hospitalo-Universitaire (CHU) Toulouse, Toulouse, France
| | - Zoubida Karim
- University of Toulouse, INFINITY, INSERM UMR1291, CNRS UMR5051, Toulouse, France
| |
Collapse
|
4
|
Viana GM, Pan X, Fan S, Xu T, Wyatt A, Pshezhetsky AV. Cathepsin B inhibition blocks amyloidogenesis in the mouse models of neurological lysosomal diseases MPS IIIC and sialidosis. Mol Ther Methods Clin Dev 2025; 33:101432. [PMID: 40092638 PMCID: PMC11910108 DOI: 10.1016/j.omtm.2025.101432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 02/07/2025] [Indexed: 03/19/2025]
Abstract
Neuronal accumulation of amyloid aggregates is a hallmark of brain pathology in neurological lysosomal storage diseases (LSDs), including mucopolysaccharidoses (MPS); however, the molecular mechanism underlying this pathology has not been understood. We demonstrate that elevated lysosomal cathepsin B (CTSB) levels and CTSB leakage to the cytoplasm triggers amyloidogenesis in two neurological LSDs. CTSB levels were elevated 3- to 5-fold in the cortices of mouse models of MPS IIIC (Hgsnat-Geo and Hgsnat P304L ) and sialidosis (Neu1 ΔEx3 ), as well as in cortical samples of MPS I, IIIA, IIIC, and IIID patients. CTSB was found in the cytoplasm of pyramidal layer IV-V cortical neurons containing thioflavin-S+, β-amyloid+ aggregates consistent with a pro-senile phenotype. In contrast, CTSB-deficient MPS IIIC (Hgsnat P304L /Ctsb -/- ) mice as well as Hgsnat P304L and Neu1 ΔEx3 mice chronically treated with irreversible brain-penetrable CTSB inhibitor E64 showed a drastic reduction in neuronal thioflavin-S+/APP+ deposits. Neurons of Hgsnat P304L /Ctsb -/- mice and E64-treated Hgsnat P304L mice also showed reduced levels of P62+, LC3+ puncta, GM2 ganglioside, and misfolded subunit C of mitochondrial ATP synthase, consistent with restored autophagy. E64 treatment also rescued hyperactivity and reduced anxiety in Hgsnat P304L mice, implying that CTSB may become a novel pharmacological target for MPS III and similar LSDs.
Collapse
Affiliation(s)
- Gustavo M Viana
- Division of Medical Genetics, Centre Hospitalier Universitaire (CHU) Ste-Justine Research Centre, Montreal, QC H3A 0C7, Canada
| | - Xuefang Pan
- Division of Medical Genetics, Centre Hospitalier Universitaire (CHU) Ste-Justine Research Centre, Montreal, QC H3A 0C7, Canada
| | - Shuxian Fan
- Division of Medical Genetics, Centre Hospitalier Universitaire (CHU) Ste-Justine Research Centre, Montreal, QC H3A 0C7, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3T 1C5, Canada
| | - TianMeng Xu
- Division of Medical Genetics, Centre Hospitalier Universitaire (CHU) Ste-Justine Research Centre, Montreal, QC H3A 0C7, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3T 1C5, Canada
| | - Alexandra Wyatt
- Division of Medical Genetics, Centre Hospitalier Universitaire (CHU) Ste-Justine Research Centre, Montreal, QC H3A 0C7, Canada
| | - Alexey V Pshezhetsky
- Division of Medical Genetics, Centre Hospitalier Universitaire (CHU) Ste-Justine Research Centre, Montreal, QC H3A 0C7, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3T 1C5, Canada
| |
Collapse
|
5
|
Mandal N, Das A, Datta R. Unravelling a mechanistic link between mitophagy defect, mitochondrial malfunction, and apoptotic neurodegeneration in Mucopolysaccharidosis VII. Neurobiol Dis 2025; 206:106825. [PMID: 39909083 DOI: 10.1016/j.nbd.2025.106825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025] Open
Abstract
Cognitive disability and neurodegeneration are prominent symptoms of Mucopolysaccharidosis VII (MPS VII), a lysosomal storage disorder caused by β-glucuronidase enzyme deficiency. Yet, the mechanism of neurodegeneration in MPS VII remains unclear thereby limiting the scope of targeted therapy. We aimed to bridge this knowledge gap by employing the β-glucuronidase-deficient (CG2135-/-) Drosophila model of MPS VII. Taking cues from our initial observation that the adult CG2135-/- flies displayed enhanced susceptibility to starvation, we investigated potential impairments in the autophagy-lysosomal clearance machinery in their brain to dissect the underlying cause of neurodegeneration. We found that both autophagosome biogenesis and lysosome-mediated autophagosomal turnover were impaired in the CG2135-/- fly brain. This was evidenced by lower Atg8a-II levels, reduced Atg1 and Ref(2)P expression along with accumulation of lipofuscin-like inclusions and multilamellar bodies. Mitophagy was also found to be defective in their brain, resulting in buildup of enlarged mitochondria with distorted cristae and reduced membrane potential. This, in turn, compromised mitochondrial function, as reflected by drastically reduced brain ATP levels. Energy depletion triggered apoptosis in neuronal as well as non-neuronal cells of the CG2135-/- fly brain, where apoptotic dopaminergic neurons were also detected. Interestingly, resveratrol treatment corrected the mitophagy defect and prevented ATP depletion in the CG2135-/- fly brain, providing an explanation for its neuroprotective effects. Collectively, our study reveals a pharmacologically targetable mechanistic link between mitophagy defect, mitochondrial malfunction, and apoptotic neurodegeneration in MPS VII.
Collapse
Affiliation(s)
- Nishan Mandal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, INDIA
| | - Apurba Das
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, INDIA
| | - Rupak Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, INDIA.
| |
Collapse
|
6
|
Barthelson K, Protzman RA, Snel MF, Hemsley K, Lardelli M. Multi-omics analyses of early-onset familial Alzheimer's disease and Sanfilippo syndrome zebrafish models reveal commonalities in disease mechanisms. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167651. [PMID: 39798820 DOI: 10.1016/j.bbadis.2024.167651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 12/03/2024] [Accepted: 12/27/2024] [Indexed: 01/15/2025]
Abstract
Sanfilippo syndrome (mucopolysaccharidosis type III, MPSIII) causes childhood dementia, while Alzheimer's disease is the most common type of adult-onset dementia. There is no cure for either of these diseases, and therapeutic options are extremely limited. Increasing evidence suggests commonalities in the pathogenesis of these diseases. However, a direct molecular-level comparison of these diseases has never been performed. Here, we exploited the power of zebrafish reproduction (large families of siblings from single mating events raised together in consistent environments) to conduct sensitive, internally controlled, comparative transcriptome and proteome analyses of zebrafish models of early-onset familial Alzheimer's disease (EOfAD, psen1Q96_K97del/+) and MPSIIIB (nagluA603fs/A603fs) within single families. We examined larval zebrafish (7 days post fertilisation), representing early disease stages. We also examined the brains of 6-month-old zebrafish, which are approximately equivalent to young adults in humans. We identified substantially more differentially expressed genes and pathways in MPS III zebrafish than in EOfAD-like zebrafish. This is consistent with MPS III being a rapidly progressing and earlier onset form of dementia. Similar changes in expression were detected between the two disease models in gene sets representing extracellular matrix receptor interactions in larvae, and the ribosome and lysosome pathways in 6-month-old adult brains. Cell type-specific changes were detected in MPSIIIB brains at 6 months of age, likely reflecting significant disturbances of oligodendrocyte, neural stem cell, and inflammatory cell functions and/or numbers. Our 'omics analyses have illuminated similar disease pathways between EOfAD and MPS III indicating where efforts to find mutually effective therapeutic strategies can be targeted.
Collapse
Affiliation(s)
- Karissa Barthelson
- Childhood Dementia Research Group, College of Medicine & Public Health, Flinders Health and Medical Research Institute, Flinders University, Sturt Road, Bedford Park, SA 5042, Australia; Alzheimer's Disease Genetics Laboratory, School of Molecular and Biomedical Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia.
| | - Rachael A Protzman
- Proteomics, Metabolomics and MS-Imaging Facility, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| | - Marten F Snel
- Proteomics, Metabolomics and MS-Imaging Facility, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia; School of Physics, Chemistry and Earth Science, Faculty of Sciences, Engineering and Technology, The University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia
| | - Kim Hemsley
- Childhood Dementia Research Group, College of Medicine & Public Health, Flinders Health and Medical Research Institute, Flinders University, Sturt Road, Bedford Park, SA 5042, Australia
| | - Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, School of Molecular and Biomedical Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia
| |
Collapse
|
7
|
Pinheiro CV, Ribeiro RT, Roginski AC, Brondani M, Zemniaçak ÂB, Hoffmann CIH, Amaral AU, Wajner M, Baldo G, Leipnitz G. Disturbances in mitochondrial bioenergetics and control quality and unbalanced redox homeostasis in the liver of a mouse model of mucopolysaccharidosis type II. Mol Cell Biochem 2025; 480:411-424. [PMID: 38498105 DOI: 10.1007/s11010-024-04952-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/26/2024] [Indexed: 03/20/2024]
Abstract
Mucopolysaccharidosis type II (MPS II; Hunter syndrome) is a lysosomal storage disease caused by mutations in the gene encoding the enzyme iduronate 2-sulfatase (IDS) and biochemically characterized by the accumulation of glycosaminoglycans (GAGs) in different tissues. It is a multisystemic disorder that presents liver abnormalities, the pathophysiology of which is not yet established. In the present study, we evaluated bioenergetics, redox homeostasis, and mitochondrial dynamics in the liver of 6-month-old MPS II mice (IDS-). Our findings show a decrease in the activity of α-ketoglutarate dehydrogenase and an increase in the activities of succinate dehydrogenase and malate dehydrogenase. The activity of mitochondrial complex I was also increased whereas the other complex activities were not affected. In contrast, mitochondrial respiration, membrane potential, ATP production, and calcium retention capacity were not altered. Furthermore, malondialdehyde levels and 2',7'-dichlorofluorescein oxidation were increased in the liver of MPS II mice, indicating lipid peroxidation and increased ROS levels, respectively. Sulfhydryl and reduced glutathione levels, as well as glutathione S-transferase, glutathione peroxidase (GPx), superoxide dismutase, and catalase activities were also increased. Finally, the levels of proteins involved in mitochondrial mass and dynamics were decreased in knockout mice liver. Taken together, these data suggest that alterations in energy metabolism, redox homeostasis, and mitochondrial dynamics can be involved in the pathophysiology of liver abnormalities observed in MPS II.
Collapse
Affiliation(s)
- Camila Vieira Pinheiro
- Postgraduation Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Rafael Teixeira Ribeiro
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Ana Cristina Roginski
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Morgana Brondani
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Ângela Beatris Zemniaçak
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Chrístofer Ian Hernandez Hoffmann
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Alexandre Umpierrez Amaral
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
- Postgraduation Program in Integral Health Care, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, Rio Grande do Sul, 99709-910, Brazil
| | - Moacir Wajner
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, 90035-903, Brazil
| | - Guilherme Baldo
- Postgraduation Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, 90035-903, Brazil
| | - Guilhian Leipnitz
- Postgraduation Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil.
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil.
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil.
| |
Collapse
|
8
|
Badell-Grau RA, Pakravesh K, Thai KE, Son F, Chen R, Rainaldi J, Duong K, Losay P, Sivakumar A, Khare V, Corl AN, Pithia R, Tran C, Esko JD, Cherqui S. Transplantation of Wild-Type Hematopoietic Stem and Progenitor Cells Improves Disease Phenotypes in a Mucopolysaccharidosis IIIC Mouse Model. Cell Transplant 2025; 34:9636897251323966. [PMID: 40126917 PMCID: PMC11938874 DOI: 10.1177/09636897251323966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 03/26/2025] Open
Abstract
Mucopolysaccharidosis type IIIC (MPS IIIC) is a severe neurodegenerative lysosomal storage disease caused by the loss-of-function of the lysosomal transmembrane protein acetyl-CoA: heparan-α-glucosamine N-acetyltransferase. MPS IIIC is characterized by the accumulation of the glycosaminoglycan (GAG) heparan sulfate. There is no treatment for this disease. We generated a new MPS IIIC mouse model and confirmed disease phenotypes such as GAG accumulation, splenomegaly, neurological defects, and presence of disease-specific non-reducing end carbohydrates. To explore a new therapeutic strategy for this condition, we transplanted wild-type (WT) hematopoietic stem and progenitor cells (HSPCs) into lethally irradiated 2-month-old Hgsnat-/- mice and analyzed the resulting impact 6 months later. Transplanted HSPCs differentiated into macrophages in tissues and microglia-like cells in the brain. This resulted in a partial restoration of Hgsnat expression and enzymatic activity along with a significant reduction of the MPS IIIC-specific non-reducing end carbohydrate in the treated Hgsnat-/- mice compared to untreated Hgsnat-/- mice or Hgsnat-/- mice transplanted with Hgsnat-/- HPSCs. In addition, WT HSPC transplant resulted in improved neurological defects, reduction in splenomegaly, and urine retention in the Hgsnat-/- mice. Furthermore, presence of glomerular hyaline bodies with focal fibrosis and sclerosis was observed in the kidney of the disease controls, whereas these abnormalities were improved in the Hgsnat-/- mice treated with WT HSPCs. These data support that HSPC transplantation presents a promising therapeutic avenue for MPS IIIC and represents the first step toward the clinical translation of an HSPC-mediated therapy strategy for MPS IIIC.
Collapse
Affiliation(s)
| | - Kasra Pakravesh
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Kevin Eric Thai
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Frankie Son
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Rola Chen
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Joseph Rainaldi
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Kalvin Duong
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Pauline Losay
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Anusha Sivakumar
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Veenita Khare
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Alexis N. Corl
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Rushil Pithia
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Christine Tran
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Jefferey D. Esko
- Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Stephanie Cherqui
- Division of Genetics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
9
|
Ludlaim AM, Waddington SN, McKay TR. Unifying biology of neurodegeneration in lysosomal storage diseases. J Inherit Metab Dis 2025; 48:e12833. [PMID: 39822020 PMCID: PMC11739831 DOI: 10.1002/jimd.12833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 01/19/2025]
Abstract
There are currently at least 70 characterised lysosomal storage diseases (LSD) resultant from inherited single-gene defects. Of these, at least 30 present with central nervous system (CNS) neurodegeneration and overlapping aetiology. Substrate accumulation and dysfunctional neuronal lysosomes are common denominator, but how variants in 30 different genes converge on this central cellular phenotype is unclear. Equally unresolved is how the accumulation of a diverse spectrum of substrates in the neuronal lysosomes results in remarkably similar neurodegenerative outcomes. Conversely, how is it that many other monogenic LSDs cause only visceral disease? Lysosomal substance accumulation in LSDs with CNS neurodegeneration (nLSD) includes lipofuscinoses, mucopolysaccharidoses, sphingolipidoses and glycoproteinoses. Here, we review the latest discoveries in the fundamental biology of four classes of nLSDs, comparing and contrasting new insights into disease mechanism with emerging evidence of unifying convergence.
Collapse
Affiliation(s)
- Anna M. Ludlaim
- Department of Life SciencesManchester Metropolitan UniversityManchesterUK
| | - Simon N. Waddington
- Gene Transfer Technology Group, EGA‐Institute for Women's HealthUniversity College LondonLondonUK
- Faculty of Health SciencesWits/SAMRC Antiviral Gene Therapy Research UnitJohannesburgSouth Africa
| | - Tristan R. McKay
- Department of Life SciencesManchester Metropolitan UniversityManchesterUK
| |
Collapse
|
10
|
Giaccio M, Monaco A, Galiano L, Parente A, Borzacchiello L, Rubino R, Klärner FG, Killa D, Perna C, Piccolo P, Marotta M, Pan X, Khijniak M, Siddique I, Schrader T, Pshezhetsky AV, Sorrentino NC, Bitan G, Fraldi A. Anti-amyloid treatment is broadly effective in neuronopathic mucopolysaccharidoses and synergizes with gene therapy in MPS-IIIA. Mol Ther 2024; 32:4108-4121. [PMID: 39342429 PMCID: PMC11573617 DOI: 10.1016/j.ymthe.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/20/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024] Open
Abstract
Mucopolysaccharidoses (MPSs) are childhood diseases caused by inherited deficiencies in glycosaminoglycan degradation. Most MPSs involve neurodegeneration, which to date is untreatable. Currently, most therapeutic strategies aim at correcting the primary genetic defect. Among these strategies, gene therapy has shown great potential, although its clinical application is challenging. We have shown previously in an MPS-IIIA mouse model that the molecular tweezer (MT) CLR01, a potent, broad-spectrum anti-amyloid small molecule, inhibits secondary amyloid storage, facilitates amyloid clearance, and protects against neurodegeneration. Here, we demonstrate that combining CLR01 with adeno-associated virus (AAV)-mediated gene therapy, targeting both the primary and secondary pathologic storage in MPS-IIIA mice, results in a synergistic effect that improves multiple therapeutic outcomes compared to each monotherapy. Moreover, we demonstrate that CLR01 is effective therapeutically in mouse models of other forms of neuronopathic MPS, MPS-I, and MPS-IIIC. These strongly support developing MTs as an effective treatment option for neuronopathic MPSs, both on their own and in combination with gene therapy, to improve therapeutic efficacy and translation into clinical application.
Collapse
Affiliation(s)
- Marianna Giaccio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore, 486 Napoli, Italy
| | - Antonio Monaco
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore, 486 Napoli, Italy
| | - Laura Galiano
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore, 486 Napoli, Italy
| | - Andrea Parente
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore, 486 Napoli, Italy; Dipartimento di Scienze Mediche Traslazionali, Università Degli Studi di Napoli "Federico II" Via S. Pansini, 5, Napoli, Italy
| | - Luigi Borzacchiello
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore, 486 Napoli, Italy; Dipartimento di Scienze Mediche Traslazionali, Università Degli Studi di Napoli "Federico II" Via S. Pansini, 5, Napoli, Italy
| | - Riccardo Rubino
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore, 486 Napoli, Italy
| | - Frank-Gerrit Klärner
- Department of Chemistry, University of Duisburg-Essen, Universitaetsstrasse 7, 45117 Essen, Germany
| | - Dennis Killa
- Department of Chemistry, University of Duisburg-Essen, Universitaetsstrasse 7, 45117 Essen, Germany
| | - Claudia Perna
- Telethon Institute of Genetics and Medicine (TIGEM), Via C. Flegrei, 34, Pozzuoli, Napoli, Italy
| | - Pasquale Piccolo
- Telethon Institute of Genetics and Medicine (TIGEM), Via C. Flegrei, 34, Pozzuoli, Napoli, Italy
| | - Marcello Marotta
- Dipartimento di Medicina Clinica e Chirurgia, Università Degli Studi di Napoli "Federico II" Via S. Pansini, 5, Napoli, Italy
| | - Xuefang Pan
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Marie Khijniak
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ibrar Siddique
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Thomas Schrader
- Department of Chemistry, University of Duisburg-Essen, Universitaetsstrasse 7, 45117 Essen, Germany
| | - Alexey V Pshezhetsky
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Nicolina Cristina Sorrentino
- Telethon Institute of Genetics and Medicine (TIGEM), Via C. Flegrei, 34, Pozzuoli, Napoli, Italy; Dipartimento di Medicina Clinica e Chirurgia, Università Degli Studi di Napoli "Federico II" Via S. Pansini, 5, Napoli, Italy
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Brain Research Institute and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alessandro Fraldi
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore, 486 Napoli, Italy; Dipartimento di Medicina Clinica e Chirurgia, Università Degli Studi di Napoli "Federico II" Via S. Pansini, 5, Napoli, Italy.
| |
Collapse
|
11
|
Wang Y, Yang Y, Cai Y, Aobulikasimu A, Wang Y, Hu C, Miao Z, Shao Y, Zhao M, Hu Y, Xu C, Chen X, Li Z, Chen J, Wang L, Chen S. Endo-Lysosomal Network Disorder Reprograms Energy Metabolism in SorL1-Null Rat Hippocampus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407709. [PMID: 39225620 PMCID: PMC11538633 DOI: 10.1002/advs.202407709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Indexed: 09/04/2024]
Abstract
Sortilin-related receptor 1 (SorL1) deficiency is a genetic predisposition to familial Alzheimer's disease (AD), but its pathology is poorly understood. In SorL1-null rats, a disorder of the global endosome-lysosome network (ELN) is found in hippocampal neurons. Deletion of amyloid precursor protein (APP) in SorL1-null rats could not completely rescue the neuronal abnormalities in the ELN of the hippocampus and the impairment of spatial memory in SorL1-null young rats. These in vivo observations indicated that APP is one of the cargoes of SorL1 in the regulation of the ELN, which affects hippocampal-dependent memory. When SorL1 is depleted, the endolysosome takes up more of the lysosome flux and damages lysosomal digestion, leading to pathological lysosomal storage and disturbance of cholesterol and iron homeostasis in the hippocampus. These disturbances disrupt the original homeostasis of the material-energy-subcellular structure and reprogram energy metabolism based on fatty acids in the SorL1-null hippocampus, instead of glucose. Although fatty acid oxidation increases ATP supply, it cannot reduce the levels of the harmful byproduct ROS during oxidative phosphorylation, as it does in glucose catabolism. Therefore, the SorL1-null rats exhibit hippocampal degeneration, and their spatial memory is impaired. Our research sheds light on the pathology of SorL1 deficiency in AD.
Collapse
Affiliation(s)
- Yajie Wang
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Yuting Yang
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Ying Cai
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Ayikaimaier Aobulikasimu
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Yuexin Wang
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Chuanwei Hu
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Zhikang Miao
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Yue Shao
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Mengna Zhao
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Yue Hu
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Chang Xu
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Xinjun Chen
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China
| | - Zhiqiang Li
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China
| | - Jincao Chen
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China
| | - Lianrong Wang
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
- Department of Respiratory Diseases, Institute of PediatricsShenzhen Children's HospitalShenzhen518026China
| | - Shi Chen
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
- Department of Burn and Plastic SurgeryShenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and ApplicationShenzhen Institute of Translational MedicineMedical Innovation Technology Transformation CenterShenzhen University Medical School, Shenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityShenzhen518035China
| |
Collapse
|
12
|
Polgreen LE, Chen AH, Pak Y, Luzzi A, Morales Garval A, Acevedo J, Bitan G, Iacovino M, O'Neill C, Eisengart JB. Anakinra in Sanfilippo syndrome: a phase 1/2 trial. Nat Med 2024; 30:2473-2479. [PMID: 38907160 PMCID: PMC11405265 DOI: 10.1038/s41591-024-03079-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/19/2024] [Indexed: 06/23/2024]
Abstract
Sanfilippo syndrome is a fatal childhood neurodegenerative disorder involving neuroinflammation among multiple pathologies. We hypothesized that anakinra, a recombinant interleukin-1 receptor antagonist, could improve neurobehavioral and functional symptoms owing to its capacity to treat neuroinflammation. This phase 1/2 trial aimed to test the safety, tolerability and effects of anakinra on neurobehavioral, functional and quality-of-life outcomes in patients and their caregivers. The primary outcome was the percent of participants requiring a dose increase at week 8 or week 16. Secondary efficacy outcomes included a multi-domain responder index (MDRI). Twenty-three participants (6-26 years of age) were enrolled. Twenty continued treatment to week 8, and 15 (75%) required an increased dose at week 8 or week 16. There was an improvement in at least one domain in the MDRI in 18 of 21 (86%) at week 8 and in 15 of 16 (94%) at week 36. Seven participants withdrew (intolerability of daily injections and lost to follow-up) before week 36. Adverse events occurred in 22 of 23 (96%) participants, most commonly mild injection site reactions. No serious adverse events were related to anakinra. In conclusion, anakinra was safe and associated with improved neurobehavioral and functional outcomes, supporting continued investigation of anakinra in Sanfilippo syndrome and other mucopolysaccharidoses. ClinicalTrials.gov identifier: NCT04018755 .
Collapse
Affiliation(s)
- Lynda E Polgreen
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA.
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Agnes H Chen
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Youngju Pak
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anna Luzzi
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Adolfo Morales Garval
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jonathan Acevedo
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine, Brain Research Institute and Molecular Biology Institute University of California, Los Angeles, Los Angeles, CA, USA
| | - Michelina Iacovino
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Julie B Eisengart
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
13
|
Muenzer J, Ho C, Lau H, Dant M, Fuller M, Boulos N, Dickson P, Ellinwood NM, Jones SA, Zanelli E, O'Neill C. Community consensus for Heparan sulfate as a biomarker to support accelerated approval in Neuronopathic Mucopolysaccharidoses. Mol Genet Metab 2024; 142:108535. [PMID: 39018614 DOI: 10.1016/j.ymgme.2024.108535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
Mucopolysaccharidoses (MPS) disorders are a group of ultra-rare, inherited, lysosomal storage diseases caused by enzyme deficiencies that result in accumulation of glycosaminoglycans (GAGs) in cells throughout the body including the brain, typically leading to early death. Current treatments do not address the progressive cognitive impairment observed in patients with neuronopathic MPS disease. The rarity and clinical heterogeneity of these disorders as well as pre-existing brain disease in clinically diagnosed patients make the development of new therapeutics utilizing a traditional regulatory framework extremely challenging. Children with neuronopathic MPS disorders will likely sustain irreversible brain damage if randomized to a placebo or standard-of-care treatment arm that does not address brain disease. The United States Food and Drug Administration (FDA) recognized these challenges, and, in 2020, issued final guidance for industry on slowly progressive, low-prevalence, rare diseases with substrate deposition that result from single enzyme defects, outlining a path for generating evidence of effectiveness to support accelerated approval based on reduction of substrate accumulation [1]. Neuronopathic MPS disorders, which are characterized by the accumulation of the GAG heparan sulfate (HS) in the brain, fit the intended disease characteristics for which this guidance was written, but to date, this guidance has not yet been applied to any therapeutic candidate for MPS. In February 2024, the Reagan-Udall Foundation for the FDA convened a public workshop for representatives from the FDA, patient advocacy groups, clinical and basic science research, and industry to explore a case study of using cerebrospinal fluid (CSF) HS as a relevant biomarker to support accelerated approval of new therapeutics for neuronopathic MPS disorders. This review provides a summary of the MPS presentations at the workshop and perspective on the path forward for neuronopathic MPS disorders.
Collapse
Affiliation(s)
- Joseph Muenzer
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Carole Ho
- Denali Therapeutics, 161 Oyster Point Boulevard, South San Francisco, CA 94080, USA.
| | - Heather Lau
- Ultragenyx Pharmaceutical, Inc., 60 Leveroni Court, Novato, CA 94949. USA.
| | - Mark Dant
- The Ryan Foundation, Inc., 5309 McPherson Blvd. 105 #284, Fort Worth, Texas 76123, USA
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital and Adelaide Medical School and School of Biological Sciences, University of Adelaide, Adelaide, 5005, SA, Australia.
| | | | - Patricia Dickson
- Washington University School of Medicine, 4444 Forest Park, Suite 5400, St. Louis, MO 63108, USA.
| | | | - Simon A Jones
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK.
| | - Eric Zanelli
- Allievex Corp., PO Box 1056, Marblehead, MA 01945, USA.
| | - Cara O'Neill
- Cure Sanfilippo Foundation, PO Box 6901, Columbia, SC 29260, USA.
| |
Collapse
|
14
|
Pan X, Caillon A, Fan S, Khan S, Tomatsu S, Pshezhetsky AV. Heterologous HSPC Transplantation Rescues Neuroinflammation and Ameliorates Peripheral Manifestations in the Mouse Model of Lysosomal Transmembrane Enzyme Deficiency, MPS IIIC. Cells 2024; 13:877. [PMID: 38786099 PMCID: PMC11120110 DOI: 10.3390/cells13100877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Mucopolysaccharidosis III type C (MPS IIIC) is an untreatable neuropathic lysosomal storage disease caused by a genetic deficiency of the lysosomal N-acetyltransferase, HGSNAT, catalyzing a transmembrane acetylation of heparan sulfate. HGSNAT is a transmembrane enzyme incapable of free diffusion between the cells or their cross-correction, which limits development of therapies based on enzyme replacement and gene correction. Since our previous work identified neuroinflammation as a hallmark of the CNS pathology in MPS IIIC, we tested whether it can be corrected by replacement of activated brain microglia with neuroprotective macrophages/microglia derived from a heterologous HSPC transplant. Eight-week-old MPS IIIC (HgsnatP304L) mice were transplanted with HSPC from congenic wild type mice after myeloablation with Busulfan and studied using behavior test battery, starting from the age of 6 months. At the age of ~8 months, mice were sacrificed to study pathological changes in the brain, heparan sulfate storage, and other biomarkers of the disease. We found that the treatment corrected several behavior deficits including hyperactivity and reduction in socialization, but not memory decline. It also improved several features of CNS pathology such as microastroglyosis, expression of pro-inflammatory cytokine IL-1β, and accumulation of misfolded amyloid aggregates in cortical neurons. At the periphery, the treatment delayed development of terminal urinary retention, potentially increasing longevity, and reduced blood levels of heparan sulfate. However, we did not observe correction of lysosomal storage phenotype in neurons and heparan sulfate brain levels. Together, our results demonstrate that neuroinflammation in a neurological lysosomal storage disease, caused by defects in a transmembrane enzyme, can be effectively ameliorated by replacement of microglia bearing the genetic defect with cells from a normal healthy donor. They also suggest that heterologous HSPC transplant, if used together with other methods, such as chaperone therapy or substrate reduction therapy, may constitute an effective combination therapy for MPS IIIC and other disorders with a similar etiology.
Collapse
Affiliation(s)
- Xuefang Pan
- Department of Pediatrics and Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada; (X.P.); (A.C.); (S.F.)
| | - Antoine Caillon
- Department of Pediatrics and Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada; (X.P.); (A.C.); (S.F.)
| | - Shuxian Fan
- Department of Pediatrics and Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada; (X.P.); (A.C.); (S.F.)
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | - Shaukat Khan
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (S.K.); (S.T.)
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (S.K.); (S.T.)
| | - Alexey V. Pshezhetsky
- Department of Pediatrics and Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada; (X.P.); (A.C.); (S.F.)
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| |
Collapse
|
15
|
Xu T, Heon-Roberts R, Moore T, Dubot P, Pan X, Guo T, Cairo CW, Holley R, Bigger B, Durcan TM, Levade T, Ausseil J, Amilhon B, Gorelik A, Nagar B, Sturiale L, Palmigiano A, Röckle I, Thiesler H, Hildebrandt H, Garozzo D, Pshezhetsky AV. Secondary deficiency of neuraminidase 1 contributes to CNS pathology in neurological mucopolysaccharidoses via hypersialylation of brain glycoproteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.587986. [PMID: 38712143 PMCID: PMC11071461 DOI: 10.1101/2024.04.26.587986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Mucopolysaccharidoses (MPS) are lysosomal storage diseases caused by defects in catabolism of glycosaminoglycans. MPS I, II, III and VII are associated with lysosomal accumulation of heparan sulphate and manifest with neurological deterioration. Most of these neurological MPS currently lack effective treatments. Here, we report that, compared to controls, neuraminidase 1 (NEU1) activity is drastically reduced in brain tissues of neurological MPS patients and in mouse models of MPS I, II, IIIA, IIIB and IIIC, but not of other neurological lysosomal disorders not presenting with heparan sulphate storage. We further show that accumulated heparan sulphate disrupts the lysosomal multienzyme complex of NEU1 with cathepsin A (CTSA), β-galactosidase (GLB1) and glucosamine-6-sulfate sulfatase (GALNS) necessary to maintain enzyme activity, and that NEU1 deficiency is linked to partial deficiencies of GLB1 and GALNS in cortical tissues and iPSC-derived cortical neurons of neurological MPS patients. Increased sialylation of N-linked glycans in brain samples of human MPS III patients and MPS IIIC mice implicated insufficient processing of brain N-linked sialylated glycans, except for polysialic acid, which was reduced in the brains of MPS IIIC mice. Correction of NEU1 activity in MPS IIIC mice by lentiviral gene transfer ameliorated previously identified hallmarks of the disease, including memory impairment, behavioural traits, and reduced levels of the excitatory synapse markers VGLUT1 and PSD95. Overexpression of NEU1 also restored levels of VGLUT1-/PSD95-positive puncta in cortical neurons derived from iPSC of an MPS IIIA patient. Together, our data demonstrate that heparan sulphate-induced secondary NEU1 deficiency and aberrant sialylation of glycoproteins implicated in synaptogenesis, memory, and behaviour constitute a novel pathological pathway in neurological MPS spectrum crucially contributing to CNS pathology. Graphical abstract
Collapse
|
16
|
Scarcella M, Scerra G, Ciampa M, Caterino M, Costanzo M, Rinaldi L, Feliciello A, Anzilotti S, Fiorentino C, Renna M, Ruoppolo M, Pavone LM, D’Agostino M, De Pasquale V. Metabolic rewiring and autophagy inhibition correct lysosomal storage disease in mucopolysaccharidosis IIIB. iScience 2024; 27:108959. [PMID: 38361619 PMCID: PMC10864807 DOI: 10.1016/j.isci.2024.108959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/28/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Mucopolysaccharidoses (MPSs) are lysosomal disorders with neurological involvement for which no cure exists. Here, we show that recombinant NK1 fragment of hepatocyte growth factor rescues substrate accumulation and lysosomal defects in MPS I, IIIA and IIIB patient fibroblasts. We investigated PI3K/Akt pathway, which is of crucial importance for neuronal function and survival, and demonstrate that PI3K inhibition abolishes NK1 therapeutic effects. We identified that autophagy inhibition, by Beclin1 silencing, reduces MPS IIIB phenotype and that NK1 downregulates autophagic-lysosome (ALP) gene expression, suggesting a possible contribution of autophagosome biogenesis in MPS. Indeed, metabolomic analyses revealed defects of mitochondrial activity accompanied by anaerobic metabolism and inhibition of AMP-activated protein kinase (AMPK), which acts on metabolism and autophagy, rescues lysosomal defects. These results provide insights into the molecular mechanisms of MPS IIIB physiopathology, supporting the development of new promising approaches based on autophagy inhibition and metabolic rewiring to correct lysosomal pathology in MPSs.
Collapse
Affiliation(s)
- Melania Scarcella
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Gianluca Scerra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Mariangela Ciampa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80131 Naples, Italy
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80131 Naples, Italy
| | - Laura Rinaldi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Antonio Feliciello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Serenella Anzilotti
- Department of Science and Technology, University of Sannio, Via F. de Sanctis, 82100 Benevento, Italy
| | - Chiara Fiorentino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Maurizio Renna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80131 Naples, Italy
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Massimo D’Agostino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Valeria De Pasquale
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy
| |
Collapse
|
17
|
Hewson L, Choo A, Webber DL, Trim PJ, Snel MF, Fedele AO, Hopwood JJ, Hemsley KM, O'Keefe LV. Drosophila melanogaster models of MPS IIIC (Hgsnat-deficiency) highlight the role of glia in disease presentation. J Inherit Metab Dis 2024; 47:340-354. [PMID: 38238109 DOI: 10.1002/jimd.12712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 03/16/2024]
Abstract
Sanfilippo syndrome (Mucopolysaccharidosis type III or MPS III) is a recessively inherited neurodegenerative lysosomal storage disorder. Mutations in genes encoding enzymes in the heparan sulphate degradation pathway lead to the accumulation of partially degraded heparan sulphate, resulting ultimately in the development of neurological deficits. Mutations in the gene encoding the membrane protein heparan-α-glucosaminide N-acetyltransferase (HGSNAT; EC2.3.1.78) cause MPS IIIC (OMIM#252930), typified by impaired cognition, sleep-wake cycle changes, hyperactivity and early death, often before adulthood. The precise disease mechanism that causes symptom emergence remains unknown, posing a significant challenge in the development of effective therapeutics. As HGSNAT is conserved in Drosophila melanogaster, we now describe the creation and characterisation of the first Drosophila models of MPS IIIC. Flies with either an endogenous insertion mutation or RNAi-mediated knockdown of hgsnat were confirmed to have a reduced level of HGSNAT transcripts and age-dependent accumulation of heparan sulphate leading to engorgement of the endo/lysosomal compartment. This resulted in abnormalities at the pre-synapse, defective climbing and reduced overall activity. Altered circadian rhythms (shift in peak morning activity) were seen in hgsnat neuronal knockdown lines. Further, when hgsnat was knocked down in specific glial subsets (wrapping, cortical, astrocytes or subperineural glia), impaired climbing or reduced activity was noted, implying that hgsnat function in these specific glial subtypes contributes significantly to this behaviour and targeting treatments to these cell groups may be necessary to ameliorate or prevent symptom onset. These novel models of MPS IIIC provide critical research tools for delineating the key cellular pathways causal in the onset of neurodegeneration in this presently untreatable disorder.
Collapse
Affiliation(s)
- Laura Hewson
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Amanda Choo
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Dani L Webber
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Paul J Trim
- Proteomics, Metabolomics & MS-Imaging Core, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Marten F Snel
- Proteomics, Metabolomics & MS-Imaging Core, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Anthony O Fedele
- Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - John J Hopwood
- Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Kim M Hemsley
- Childhood Dementia Research Group, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - Louise V O'Keefe
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
18
|
Delgado CA, Poletto E, Vera LNP, Jacques CED, Vianna P, Reinhardt LS, Baldo G, Vargas CR. Effect of genistein and coenzyme Q10 in oxidative damage and mitochondrial membrane potential in an attenuated type II mucopolysaccharidosis cellular model. Cell Biochem Funct 2024; 42:e3932. [PMID: 38332678 DOI: 10.1002/cbf.3932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
Mucopolysaccharidosis type II (MPS II) is an inborn error of the metabolism resulting from several possible mutations in the gene coding for iduronate-2-sulfatase (IDS), which leads to a great clinical heterogeneity presented by these patients. Many studies demonstrate the involvement of oxidative stress in the pathogenesis of inborn errors of metabolism, and mitochondrial dysfunction and oxidative stress can be related since most of reactive oxygen species come from mitochondria. Cellular models have been used to study different diseases and are useful in biochemical research to investigate them in a new promising way. The aim of this study is to develop a heterozygous cellular model for MPS II and analyze parameters of oxidative stress and mitochondrial dysfunction and investigate the in vitro effect of genistein and coenzyme Q10 on these parameters for a better understanding of the pathophysiology of this disease. The HP18 cells (heterozygous c.261_266del6/c.259_261del3) showed almost null results in the activity of the IDS enzyme and presented accumulation of glycosaminoglycans (GAGs), allowing the characterization of this knockout cellular model by MPS II gene editing. An increase in the production of reactive species was demonstrated (p < .05 compared with WT vehicle group) and genistein at concentrations of 25 and 50 µm decreased in vitro its production (p < .05 compared with HP18 vehicle group), but there was no effect of coenzyme Q10 in this parameter. There was a tendency for lysosomal pH change in HP18 cells in comparison to WT group and none of the antioxidants tested demonstrated any effect on this parameter. There was no increase in the activity of the antioxidant enzymes superoxide dismutase and catalase and oxidative damage to DNA in HP18 cells in comparison to WT group and neither genistein nor coenzyme q10 had any effect on these parameters. Regarding mitochondrial membrane potential, genistein induced mitochondrial depolarization in both concentrations tested (p < .05 compared with HP18 vehicle group and compared with WT vehicle group) and incubation with coenzyme Q10 demonstrated no effect on this parameter. In conclusion, it is hypothesized that our cellular model could be compared with a milder MPS II phenotype, given that the accumulation of GAGs in lysosomes is not as expressive as another cellular model for MPS II presented in the literature. Therefore, it is reasonable to expect that there is no mitochondrial depolarization and no DNA damage, since there is less lysosomal impairment, as well as less redox imbalance.
Collapse
Affiliation(s)
- Camila Aguilar Delgado
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Edina Poletto
- Programa de Pós-Graduação em Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Terapia Gênica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Luisa Natalia Pimentel Vera
- Programa de Pós-Graduação em Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Terapia Gênica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | - Priscila Vianna
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Guilherme Baldo
- Programa de Pós-Graduação em Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Terapia Gênica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Departamento de Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carmen Regla Vargas
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
19
|
Çopur O, Yazıcı H, Canbay E, Durmaz B, Canda E, Ucar SK, Coker M, Sozmen EY. Glycosaminoglycan-induced proinflammatory cytokine levels as disease marker in mucopolysaccharidosis. Cytokine 2024; 173:156410. [PMID: 37924740 DOI: 10.1016/j.cyto.2023.156410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023]
Abstract
Recently, it has been shown disturbances in oxidant/antioxidant system and increases in some inflammatory markers in animal studies and in some Mucopolysaccharidoses (MPSs) patients. In this study, we aimed to determine the oxidative stress/antioxidant parameters and pro-inflammatory cytokine levels in the serum of MPS patients, in order to evaluate the possible role of inflammation in these patient groups regarding to accumulated metabolites. MPS I (n = 3), MPS II (n = 8), MPS III (n = 4), MPS IVA (n = 3), MPS VI (n = 3), and VII (n = 1) patients and 20 age-matched healthy subjects were included into the study. There was no statistically significant change in activities of SOD, Catalase, GSH-Px and lipid peroxidation levels in erythrocytes between the MPS patients and healthy controls. While IL-1alpha (p = 0.054), IL-6 (p = 0.008) levels, and chitotriosidase activity (p = 0.003) elevated in MPS3 patients, IL1α (p = 0.006), IL-1β (p = 0.006), IL-6 (p = 0.006), IFNγ (p = 0.006), and NFκB (p = 0.006) levels increased in MPS-6 patients. Elevated levels of IL-6, IL1α and chitotriosidase activity demonstrated macrophage activation in MPSIII untreated with enzyme replacement. Our study showed for the first time that high levels of IL1α, IL-6, IL1β and NFκB were present in MPSVI patients, demonstrating the induction of inflammation by dermatan sulphate. The low level of paraoxonase in MPSVI patients may be a good marker for cardiac involvement. Overall, this study provides important insights into the relationship between lysosomal storage of glycosaminoglycan and inflammation in MPS patients. It highlights possible pathways for the increased release of inflammatory molecules and suggests new targets for the development of treatments.
Collapse
Affiliation(s)
- Oznur Çopur
- Ege University, Institute of Health Sciences, Department of Medical Biochemistry, Izmır, Turkiye; Ege University, Faculty of Medicine, Department of Medical Biochemistry, Izmır, Turkiye
| | - Havva Yazıcı
- Ege University, Faculty of Medicine, Department of Inherited Metabolic Disease, Izmır, Turkiye
| | - Erhan Canbay
- Ege University, Faculty of Medicine, Department of Medical Biochemistry, Izmır, Turkiye
| | - Burak Durmaz
- Ege University, Institute of Health Sciences, Department of Medical Biochemistry, Izmır, Turkiye; Ege University, Faculty of Medicine, Department of Medical Biochemistry, Izmır, Turkiye
| | - Ebru Canda
- Ege University, Faculty of Medicine, Department of Inherited Metabolic Disease, Izmır, Turkiye
| | - Sema Kalkan Ucar
- Ege University, Faculty of Medicine, Department of Inherited Metabolic Disease, Izmır, Turkiye
| | - Mahmut Coker
- Ege University, Faculty of Medicine, Department of Inherited Metabolic Disease, Izmır, Turkiye
| | - Eser Yıldırım Sozmen
- Ege University, Faculty of Medicine, Department of Medical Biochemistry, Izmır, Turkiye.
| |
Collapse
|
20
|
Taherzadeh M, Zhang E, Londono I, De Leener B, Wang S, Cooper JD, Kennedy TE, Morales CR, Chen Z, Lodygensky GA, Pshezhetsky AV. Severe central nervous system demyelination in Sanfilippo disease. Front Mol Neurosci 2023; 16:1323449. [PMID: 38163061 PMCID: PMC10756675 DOI: 10.3389/fnmol.2023.1323449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Chronic progressive neuroinflammation is a hallmark of neurological lysosomal storage diseases, including mucopolysaccharidosis III (MPS III or Sanfilippo disease). Since neuroinflammation is linked to white matter tract pathology, we analyzed axonal myelination and white matter density in the mouse model of MPS IIIC HgsnatP304L and post-mortem brain samples of MPS III patients. Methods Brain and spinal cord tissues of human MPS III patients, 6-month-old HgsnatP304L mice and age- and sex-matching wild type mice were analyzed by immunofluorescence to assess levels of myelin-associated proteins, primary and secondary storage materials, and levels of microgliosis. Corpus callosum (CC) region was studied by transmission electron microscopy to analyze axon myelination and morphology of oligodendrocytes and microglia. Mouse brains were analyzed ex vivo by high-filed MRI using Diffusion Basis Spectrum Imaging in Python-Diffusion tensor imaging algorithms. Results Analyses of CC and spinal cord tissues by immunohistochemistry revealed substantially reduced levels of myelin-associated proteins including Myelin Basic Protein, Myelin Associated Glycoprotein, and Myelin Oligodendrocyte Glycoprotein. Furthermore, ultrastructural analyses revealed disruption of myelin sheath organization and reduced myelin thickness in the brains of MPS IIIC mice and human MPS IIIC patients compared to healthy controls. Oligodendrocytes (OLs) in the CC of MPS IIIC mice were scarce, while examination of the remaining cells revealed numerous enlarged lysosomes containing heparan sulfate, GM3 ganglioside or "zebra bodies" consistent with accumulation of lipids and myelin fragments. In addition, OLs contained swollen mitochondria with largely dissolved cristae, resembling those previously identified in the dysfunctional neurons of MPS IIIC mice. Ex vivo Diffusion Basis Spectrum Imaging revealed compelling signs of demyelination (26% increase in radial diffusivity) and tissue loss (76% increase in hindered diffusivity) in CC of MPS IIIC mice. Discussion Our findings demonstrate an important role for white matter injury in the pathophysiology of MPS III. This study also defines specific parameters and brain regions for MRI analysis and suggests that it may become a crucial non-invasive method to evaluate disease progression and therapeutic response.
Collapse
Affiliation(s)
- Mahsa Taherzadeh
- Department of Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Centre, University of Montreal, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Erjun Zhang
- Department of Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Centre, University of Montreal, Montreal, QC, Canada
| | - Irene Londono
- Department of Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Centre, University of Montreal, Montreal, QC, Canada
| | - Benjamin De Leener
- Department of Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Centre, University of Montreal, Montreal, QC, Canada
- NeuroPoly Lab, Institute of Biomedical Engineering, Department of Computer Engineering and Software Engineering, École Polytechnique de Montréal, Montreal, QC, Canada
| | - Sophie Wang
- Pediatric Storage Disorders Laboratory (PSDL), Departments of Pediatrics, Genetics and Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Jonathan D. Cooper
- Pediatric Storage Disorders Laboratory (PSDL), Departments of Pediatrics, Genetics and Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Timothy E. Kennedy
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Carlos R. Morales
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Zesheng Chen
- Department of Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Centre, University of Montreal, Montreal, QC, Canada
| | - Gregory A. Lodygensky
- Department of Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Centre, University of Montreal, Montreal, QC, Canada
| | - Alexey V. Pshezhetsky
- Department of Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Centre, University of Montreal, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
21
|
Veraldi N, Quadri ID, van de Looij Y, Modernell LM, Sinquin C, Zykwinska A, Tournier BB, Dalonneau F, Li H, Li JP, Millet P, Vives R, Colliec-Jouault S, de Agostini A, Sanches EF, Sizonenko SV. Low-molecular weight sulfated marine polysaccharides: Promising molecules to prevent neurodegeneration in mucopolysaccharidosis IIIA? Carbohydr Polym 2023; 320:121214. [PMID: 37659814 DOI: 10.1016/j.carbpol.2023.121214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 09/04/2023]
Abstract
Mucopolysaccharidosis IIIA is a hereditary disease caused by mutations in the sulfamidase enzyme that participates in catabolism of heparan sulfate (HS), leading to HS fragment accumulation and multisystemic failure. No cure exists and death occurs around the second decade of life. Two low molecular weight highly sulfated compounds derived from marine diabolican and infernan exopolysaccharides (A5_3 and A5_4, respectively) with heparanase inhibiting properties were tested in a MPSIIIA cell line model, resulting in limited degradation of intracellular HS. Next, we observed the effects of intraperitoneal injections of the diabolican derivative A5_3 from 4 to 12 weeks of age on MPSIIIA mice. Brain metabolism and microstructure, levels of proteins and genes involved in MPSIIIA brain pathophysiology were also investigated. 1H-Magnetic Resonance Spectroscopy (MRS) indicated deficits in energetic metabolism, tissue integrity and neurotransmission at both 4 and 12 weeks in MPSIIIA mice, with partial protective effects of A5_3. Ex-vivo Diffusion Tensor Imaging (DTI) showed white matter microstructural damage in MPSIIIA, with noticeable protective effects of A5_3. Protein and gene expression assessments displayed both pro-inflammatory and pro-apoptotic profiles in MPSIIIA mice, with benefits of A5_3 counteracting neuroinflammation. Overall, derivative A5_3 was well tolerated and was shown to be efficient in preventing brain metabolism failure and inflammation, resulting in preserved brain microstructure in the context of MPSIIIA.
Collapse
Affiliation(s)
- Noemi Veraldi
- Division of Clinical Pathology, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland.
| | - Isabelle Dentand Quadri
- Department of Pathology and Immunology, Faculty of Medicine, Geneva University, Geneva, Switzerland.
| | - Yohan van de Looij
- Center for Biomedical Imaging, Animal Imaging Technology section, Federal Polytechnic School of Lausanne, Lausanne, Switzerland; Division of Development and Growth, Department of Pediatrics & Gynecology & Obstetrics, Children's Hospital, Geneva University Hospitals, Geneva, Switzerland.
| | - Laura Malaguti Modernell
- Division of Development and Growth, Department of Pediatrics & Gynecology & Obstetrics, Children's Hospital, Geneva University Hospitals, Geneva, Switzerland
| | | | | | - Benjamin B Tournier
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland.
| | | | - Honglian Li
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden.
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden.
| | - Philippe Millet
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland.
| | - Romain Vives
- University of Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France.
| | | | - Ariane de Agostini
- Division of Clinical Pathology, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland; Department of Pathology and Immunology, Faculty of Medicine, Geneva University, Geneva, Switzerland.
| | - Eduardo Farias Sanches
- Division of Development and Growth, Department of Pediatrics & Gynecology & Obstetrics, Children's Hospital, Geneva University Hospitals, Geneva, Switzerland.
| | - Stéphane V Sizonenko
- Division of Development and Growth, Department of Pediatrics & Gynecology & Obstetrics, Children's Hospital, Geneva University Hospitals, Geneva, Switzerland.
| |
Collapse
|
22
|
Carvelli L, Hermo L, O’Flaherty C, Oko R, Pshezhetsky AV, Morales CR. Effects of Heparan sulfate acetyl-CoA: Alpha-glucosaminide N-acetyltransferase (HGSNAT) inactivation on the structure and function of epithelial and immune cells of the testis and epididymis and sperm parameters in adult mice. PLoS One 2023; 18:e0292157. [PMID: 37756356 PMCID: PMC10529547 DOI: 10.1371/journal.pone.0292157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Heparan sulfate (HS), an abundant component of the apical cell surface and basement membrane, belongs to the glycosaminoglycan family of carbohydrates covalently linked to proteins called heparan sulfate proteoglycans. After endocytosis, HS is degraded in the lysosome by several enzymes, including heparan-alpha-glucosaminide N-acetyltransferase (HGSNAT), and in its absence causes Mucopolysaccharidosis III type C (Sanfilippo type C). Since endocytosis occurs in epithelial cells of the testis and epididymis, we examined the morphological effects of Hgsnat inactivation in these organs. In the testis, Hgsnat knockout (Hgsnat-Geo) mice revealed statistically significant decrease in tubule and epithelial profile area of seminiferous tubules. Electron microscopy (EM) analysis revealed cross-sectional tubule profiles with normal and moderately to severely altered appearances. Abnormalities in Sertoli cells and blood-testis barrier and the absence of germ cells in some tubules were noted along with altered morphology of sperm, sperm motility parameters and a reduction in fertilization rates in vitro. Along with quantitatively increased epithelial and tubular profile areas in the epididymis, EM demonstrated significant accumulations of electrolucent lysosomes in the caput-cauda regions that were reactive for cathepsin D and prosaposin antibodies. Lysosomes with similar storage materials were also found in basal, clear and myoid cells. In the mid/basal region of the epithelium of caput-cauda regions of KO mice, large vacuolated cells, unreactive for cytokeratin 5, a basal cell marker, were identified morphologically as epididymal mononuclear phagocytes (eMPs). The cytoplasm of the eMPs was occupied by a gigantic lysosome suggesting an active role of these cells in removing debris from the epithelium. Some eMPs were found in proximity to T-lymphocytes, a feature of dendritic cells. Taken together, our results reveal that upon Hgsnat inactivation, morphological alterations occur to the testis affecting sperm morphology and motility parameters and abnormal lysosomes in epididymal epithelial cells, indicative of a lysosomal storage disease.
Collapse
Affiliation(s)
- Lorena Carvelli
- IHEM-CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Cristian O’Flaherty
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Department of Surgery (Urology Division), McGill University, Montréal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | - Alexey V. Pshezhetsky
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Carlos R. Morales
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
23
|
Rey F, Berardo C, Maghraby E, Mauri A, Messa L, Esposito L, Casili G, Ottolenghi S, Bonaventura E, Cuzzocrea S, Zuccotti G, Tonduti D, Esposito E, Paterniti I, Cereda C, Carelli S. Redox Imbalance in Neurological Disorders in Adults and Children. Antioxidants (Basel) 2023; 12:antiox12040965. [PMID: 37107340 PMCID: PMC10135575 DOI: 10.3390/antiox12040965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Oxygen is a central molecule for numerous metabolic and cytophysiological processes, and, indeed, its imbalance can lead to numerous pathological consequences. In the human body, the brain is an aerobic organ and for this reason, it is very sensitive to oxygen equilibrium. The consequences of oxygen imbalance are especially devastating when occurring in this organ. Indeed, oxygen imbalance can lead to hypoxia, hyperoxia, protein misfolding, mitochondria dysfunction, alterations in heme metabolism and neuroinflammation. Consequently, these dysfunctions can cause numerous neurological alterations, both in the pediatric life and in the adult ages. These disorders share numerous common pathways, most of which are consequent to redox imbalance. In this review, we will focus on the dysfunctions present in neurodegenerative disorders (specifically Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis) and pediatric neurological disorders (X-adrenoleukodystrophies, spinal muscular atrophy, mucopolysaccharidoses and Pelizaeus-Merzbacher Disease), highlighting their underlining dysfunction in redox and identifying potential therapeutic strategies.
Collapse
Affiliation(s)
- Federica Rey
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Clarissa Berardo
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Erika Maghraby
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Alessia Mauri
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Letizia Messa
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milano, Italy
| | - Letizia Esposito
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Sara Ottolenghi
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milano, Italy
| | - Eleonora Bonaventura
- Child Neurology Unit, Buzzi Children's Hospital, 20154 Milano, Italy
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), Buzzi Children's Hospital, 20154 Milano, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Davide Tonduti
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Child Neurology Unit, Buzzi Children's Hospital, 20154 Milano, Italy
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), Buzzi Children's Hospital, 20154 Milano, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Cristina Cereda
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Stephana Carelli
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| |
Collapse
|
24
|
Ludwig J, Sawant OB, Wood J, Singamsetty S, Pan X, Bonilha VL, Rao S, Pshezhetsky AV. Histological characterization of retinal degeneration in mucopolysaccharidosis type IIIC. Exp Eye Res 2023; 229:109433. [PMID: 36858249 PMCID: PMC10103010 DOI: 10.1016/j.exer.2023.109433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/14/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023]
Abstract
Heparan-α-glucosaminide N-acetyltransferase (HGSNAT) participates in lysosomal degradation of heparan sulfate. Mutations in the gene encoding this enzyme cause mucopolysaccharidosis IIIC (MPS IIIC) or Sanfilippo syndrome type C. MPS IIIC patients exhibit progressive neurodegeneration, leading to dementia and death in early adulthood. Currently there is no approved treatment for MPS IIIC. Incidences of non-syndromic retinitis pigmentosa and early signs of night blindness are reported in some MPS IIIC patients, however the majority of ocular phenotypes are not well characterized. The goal of this study was to investigate retinal degeneration phenotype in the Hgsnat knockout mouse model of MPS IIIC and a cadaveric human MPS IIIC eye. Cone and rod photoreceptors in the eyes of homozygous 6-month-old Hgsnat knockout mice and their wild-type counterparts were analyzed using cone arrestin, S-opsin, M-opsin and rhodopsin antibodies. Histological observation was performed on the eye from a 35-year-old MPS IIIC donor. We observed a nearly 50% reduction in the rod photoreceptors density in the Hgsnat knockout mice compared to the littermate wild-type controls. Cone photoreceptor density was unaltered at this age. Severe retinal degeneration was also observed in the MPS IIIC donor eye. To our knowledge, this is the first report characterizing ocular phenotypes arising from deleterious variants in the Hgsnat gene associated with MPS IIIC clinical phenotype. Our findings indicate retinal manifestations may be present even before behavioral manifestations. Thus, we speculate that ophthalmological evaluations could be used as diagnostic indicators of early disease, progression, and end-point evaluation for future MPS IIIC therapies.
Collapse
Affiliation(s)
- Jessica Ludwig
- Center for Vision and Eye Banking Research, Eversight, Cleveland, OH, 44103, USA
| | - Onkar B Sawant
- Center for Vision and Eye Banking Research, Eversight, Cleveland, OH, 44103, USA.
| | | | | | - Xuefang Pan
- Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Vera L Bonilha
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sujata Rao
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alexey V Pshezhetsky
- Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, Quebec, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
25
|
Pathogenic Roles of Heparan Sulfate and Its Use as a Biomarker in Mucopolysaccharidoses. Int J Mol Sci 2022; 23:ijms231911724. [PMID: 36233030 PMCID: PMC9570396 DOI: 10.3390/ijms231911724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Heparan sulfate (HS) is an essential glycosaminoglycan (GAG) as a component of proteoglycans, which are present on the cell surface and in the extracellular matrix. HS-containing proteoglycans not only function as structural constituents of the basal lamina but also play versatile roles in various physiological processes, including cell signaling and organ development. Thus, inherited mutations of genes associated with the biosynthesis or degradation of HS can cause various diseases, particularly those involving the bones and central nervous system (CNS). Mucopolysaccharidoses (MPSs) are a group of lysosomal storage disorders involving GAG accumulation throughout the body caused by a deficiency of GAG-degrading enzymes. GAGs are stored differently in different types of MPSs. Particularly, HS deposition is observed in patients with MPS types I, II, III, and VII, all which involve progressive neuropathy with multiple CNS system symptoms. While therapies are available for certain symptoms in some types of MPSs, significant unmet medical needs remain, such as neurocognitive impairment. This review presents recent knowledge on the pathophysiological roles of HS focusing on the pathogenesis of MPSs. We also discuss the possible use and significance of HS as a biomarker for disease severity and therapeutic response in MPSs.
Collapse
|
26
|
Secondary Mitochondrial Dysfunction as a Cause of Neurodegenerative Dysfunction in Lysosomal Storage Diseases and an Overview of Potential Therapies. Int J Mol Sci 2022; 23:ijms231810573. [PMID: 36142486 PMCID: PMC9503973 DOI: 10.3390/ijms231810573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 12/05/2022] Open
Abstract
Mitochondrial dysfunction has been recognised a major contributory factor to the pathophysiology of a number of lysosomal storage disorders (LSDs). The cause of mitochondrial dysfunction in LSDs is as yet uncertain, but appears to be triggered by a number of different factors, although oxidative stress and impaired mitophagy appear to be common inhibitory mechanisms shared amongst this group of disorders, including Gaucher’s disease, Niemann–Pick disease, type C, and mucopolysaccharidosis. Many LSDs resulting from defects in lysosomal hydrolase activity show neurodegeneration, which remains challenging to treat. Currently available curative therapies are not sufficient to meet patients’ needs. In view of the documented evidence of mitochondrial dysfunction in the neurodegeneration of LSDs, along with the reciprocal interaction between the mitochondrion and the lysosome, novel therapeutic strategies that target the impairment in both of these organelles could be considered in the clinical management of the long-term neurodegenerative complications of these diseases. The purpose of this review is to outline the putative mechanisms that may be responsible for the reported mitochondrial dysfunction in LSDs and to discuss the new potential therapeutic developments.
Collapse
|
27
|
Pan X, Taherzadeh M, Bose P, Heon-Roberts R, Nguyen AL, Xu T, Pará C, Yamanaka Y, Priestman DA, Platt FM, Khan S, Fnu N, Tomatsu S, Morales CR, Pshezhetsky AV. Glucosamine amends CNS pathology in mucopolysaccharidosis IIIC mouse expressing misfolded HGSNAT. J Exp Med 2022; 219:e20211860. [PMID: 35704026 PMCID: PMC9204472 DOI: 10.1084/jem.20211860] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/26/2022] [Accepted: 05/02/2022] [Indexed: 02/03/2023] Open
Abstract
The majority of mucopolysaccharidosis IIIC (MPS IIIC) patients have missense variants causing misfolding of heparan sulfate acetyl-CoA:α-glucosaminide N-acetyltransferase (HGSNAT), which are potentially treatable with pharmacological chaperones. To test this approach, we generated a novel HgsnatP304L mouse model expressing misfolded HGSNAT Pro304Leu variant. HgsnatP304L mice present deficits in short-term and working/spatial memory 2-4 mo earlier than previously described constitutive knockout Hgsnat-Geo mice. HgsnatP304L mice also show augmented severity of neuroimmune response, synaptic deficits, and neuronal storage of misfolded proteins and gangliosides compared with Hgsnat-Geo mice. Expression of misfolded human Pro311Leu HGSNAT protein in cultured hippocampal Hgsnat-Geo neurons further reduced levels of synaptic proteins. Memory deficits and majority of brain pathology were rescued in mice receiving HGSNAT chaperone, glucosamine. Our data for the first time demonstrate dominant-negative effects of misfolded HGSNAT Pro304Leu variant and show that they are treatable by oral administration of glucosamine. This suggests that patients affected with mutations preventing normal folding of the enzyme can benefit from chaperone therapy.
Collapse
Affiliation(s)
- Xuefang Pan
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Mahsa Taherzadeh
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Poulomee Bose
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Rachel Heon-Roberts
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Annie L.A. Nguyen
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - TianMeng Xu
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Camila Pará
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Yojiro Yamanaka
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | | | | | - Shaukat Khan
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE
| | - Nidhi Fnu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE
| | - Carlos R. Morales
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Alexey V. Pshezhetsky
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
28
|
Del Grosso A, Parlanti G, Mezzena R, Cecchini M. Current treatment options and novel nanotechnology-driven enzyme replacement strategies for lysosomal storage disorders. Adv Drug Deliv Rev 2022; 188:114464. [PMID: 35878795 DOI: 10.1016/j.addr.2022.114464] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/26/2022] [Accepted: 07/19/2022] [Indexed: 11/01/2022]
Abstract
Lysosomal storage disorders (LSDs) are a vast group of more than 50 clinically identified metabolic diseases. They are singly rare, but they affect collectively 1 on 5,000 live births. They result in most of the cases from an enzymatic defect within lysosomes, which causes the subsequent augmentation of unwanted substrates. This accumulation process leads to plenty of clinical signs, determined by the specific substrate and accumulation area. The majority of LSDs present a broad organ and tissue engagement. Brain, connective tissues, viscera and bones are usually afflicted. Among them, brain disease is markedly frequent (two-thirds of LSDs). The most clinically employed approach to treat LSDs is enzyme replacement therapy (ERT), which is practiced by administering systemically the missed or defective enzyme. It represents a healthful strategy for 11 LSDs at the moment, but it solves the pathology only in the case of Gaucher disease. This approach, in fact, is not efficacious in the case of LSDs that have an effect on the central nervous system (CNS) due to the existence of the blood-brain barrier (BBB). Additionally, ERT suffers from several other weak points, such as low penetration of the exogenously administered enzyme to poorly vascularized areas, the development of immunogenicity and infusion-associated reactions (IARs), and, last but not least, the very high cost and lifelong needed. To ameliorate these weaknesses lot of efforts have been recently spent around the development of innovative nanotechnology-driven ERT strategies. They may boost the power of ERT and minimize adverse reactions by loading enzymes into biodegradable nanomaterials. Enzyme encapsulation into biocompatible liposomes, micelles, and polymeric nanoparticles, for example, can protect enzymatic activity, eliminating immunologic reactions and premature enzyme degradation. It can also permit a controlled release of the payload, ameliorating pharmacokinetics and pharmacodynamics of the drug. Additionally, the potential to functionalize the surface of the nanocarrier with targeting agents (antibodies or peptides), could promote the passage through biological barriers. In this review we examined the clinically applied ERTs, highlighting limitations that do not allow to completely cure the specific LSD. Later, we critically consider the nanotechnology-based ERT strategies that have beenin-vitroand/orin-vivotested to improve ERT efficacy.
Collapse
Affiliation(s)
- Ambra Del Grosso
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Gabriele Parlanti
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Roberta Mezzena
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Marco Cecchini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
29
|
Horii Y, Iniwa T, Onitsuka M, Tsukimoto J, Tanaka Y, Ike H, Fukushi Y, Ando H, Takeuchi Y, Nishioka SI, Tsuji D, Ikuo M, Yamazaki N, Takiguchi Y, Ishimaru N, Itoh K. Reversal of neuroinflammation in novel GS model mice by single i.c.v. administration of CHO-derived rhCTSA precursor protein. Mol Ther Methods Clin Dev 2022; 25:297-310. [PMID: 35573044 PMCID: PMC9062439 DOI: 10.1016/j.omtm.2022.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/10/2022] [Indexed: 11/29/2022]
Abstract
Galactosialidosis (GS) is a lysosomal cathepsin A (CTSA) deficiency. It associates with a simultaneous decrease of neuraminidase 1 (NEU1) activity and sialylglycan storage. Central nervous system (CNS) symptoms reduce the quality of life of juvenile/adult-type GS patients, but there is no effective therapy. Here, we established a novel GS model mouse carrying homozygotic Ctsa IVS6+1g→a mutation causing partial exon 6 skipping with concomitant deficiency of Ctsa/Neu1. The GS mice developed juvenile/adult GS-like symptoms, such as gargoyle-like face, edema, proctoprosia due to sialylglycan accumulation, and neurovisceral inflammation, including activated microglia/macrophage appearance and increase of inflammatory chemokines. We produced human CTSA precursor proteins (proCTSA), a homodimer carrying terminal mannose 6-phosphate (M6P)-type N-glycans. The CHO-derived proCTSA was taken up by GS patient-derived fibroblasts via M6P receptors and delivered to lysosomes. Catalytically active mature CTSA showed a shorter half-life due to intralysosomal proteolytic degradation. Following single i.c.v. administration, proCTSA was widely distributed, restored the Neu1 activity, and reduced the sialylglycans accumulated in brain regions. Moreover, proCTSA suppressed neuroinflammation associated with reduction of activated microglia/macrophage and up-regulated Mip1α. The results show therapeutic effects of intracerebrospinal enzyme replacement utilizing CHO-derived proCTSA and suggest suppression of CNS symptoms.
Collapse
Affiliation(s)
- Yuto Horii
- Department of Medicinal Biotechnology, Institute for Medicinal Research, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Toshiki Iniwa
- Department of Medicinal Biotechnology, Institute for Medicinal Research, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Masayoshi Onitsuka
- Division of Bioscience and Biotechnology, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Jun Tsukimoto
- Department of Medicinal Biotechnology, Institute for Medicinal Research, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Yuki Tanaka
- Department of Medicinal Biotechnology, Faculty of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Hironobu Ike
- Department of Medicinal Biotechnology, Institute for Medicinal Research, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Yuri Fukushi
- Department of Medicinal Biotechnology, Institute for Medicinal Research, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Haruna Ando
- Department of Medicinal Biotechnology, Institute for Medicinal Research, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Yoshie Takeuchi
- Department of Medicinal Biotechnology, Faculty of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - So-Ichiro Nishioka
- Department of Medicinal Biotechnology, Institute for Medicinal Research, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Daisuke Tsuji
- Department of Medicinal Biotechnology, Institute for Medicinal Research, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Mariko Ikuo
- Department of Medicinal Biotechnology, Institute for Medicinal Research, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Naoshi Yamazaki
- Department of Clinical Pharmacology, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Yoshiharu Takiguchi
- Department of Clinical Pharmacology, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kohji Itoh
- Department of Medicinal Biotechnology, Institute for Medicinal Research, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan.,Department of Medicinal Biotechnology, Faculty of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
30
|
Wiesinger AM, Bigger B, Giugliani R, Scarpa M, Moser T, Lampe C, Kampmann C, Lagler FB. The Inflammation in the Cytopathology of Patients With Mucopolysaccharidoses- Immunomodulatory Drugs as an Approach to Therapy. Front Pharmacol 2022; 13:863667. [PMID: 35645812 PMCID: PMC9136158 DOI: 10.3389/fphar.2022.863667] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/27/2022] [Indexed: 01/31/2023] Open
Abstract
Mucopolysaccharidoses (MPS) are a group of lysosomal storage diseases (LSDs), characterized by the accumulation of glycosaminoglycans (GAGs). GAG storage-induced inflammatory processes are a driver of cytopathology in MPS and pharmacological immunomodulation can bring improvements in brain, cartilage and bone pathology in rodent models. This manuscript reviews current knowledge with regard to inflammation in MPS patients and provides hypotheses for the therapeutic use of immunomodulators in MPS. Thus, we aim to set the foundation for a rational repurposing of the discussed molecules to minimize the clinical unmet needs still remaining despite enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT).
Collapse
Affiliation(s)
- Anna-Maria Wiesinger
- Institute of Congenital Metabolic Diseases, Paracelsus Medical University, Salzburg, Austria
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- *Correspondence: Anna-Maria Wiesinger,
| | - Brian Bigger
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Roberto Giugliani
- Department of Genetics, Medical Genetics Service and Biodiscovery Laboratory, HCPA, UFRGS, Porto Alegre, Brazil
| | - Maurizio Scarpa
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- Regional Coordinating Center for Rare Diseases, University Hospital Udine, Udine, Italy
| | - Tobias Moser
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Christina Lampe
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- Department of Child and Adolescent Medicine, Center of Rare Diseases, University Hospitals Giessen/Marburg, Giessen, Germany
| | - Christoph Kampmann
- Department of Pediatric Cardiology, University Hospital Mainz, Mainz, Germany
| | - Florian B. Lagler
- Institute of Congenital Metabolic Diseases, Paracelsus Medical University, Salzburg, Austria
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
| |
Collapse
|
31
|
Arbabi A, Spencer Noakes L, Vousden D, Dazai J, Spring S, Botelho O, Keshavarzian T, Mattingly M, Ellegood JE, Nutter LMJ, Wissmann R, Sled JG, Lerch JP, Henkelman RM, Nieman BJ. Multiple-mouse magnetic resonance imaging with cryogenic radiofrequency probes for evaluation of brain development. Neuroimage 2022; 252:119008. [PMID: 35245675 DOI: 10.1016/j.neuroimage.2022.119008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022] Open
Abstract
Multiple-mouse magnetic resonance imaging (MRI) increases scan throughput by imaging several mice simultaneously in the same magnet bore, enabling multiple images to be obtained in the same time as a single scan. This increase in throughput enables larger studies than otherwise feasible and is particularly advantageous in longitudinal study designs where frequent imaging time points result in high demand for MRI resources. Cryogenically-cooled radiofrequency probes (CryoProbes) have been demonstrated to have significant signal-to-noise ratio benefits over comparable room temperature coils for in vivo mouse imaging. In this work, we demonstrate implementation of a multiple-mouse MRI system using CryoProbes, achieved by mounting four such coils in a 30-cm, 7-Tesla magnet bore. The approach is demonstrated for longitudinal quantification of brain structure from infancy to early adulthood in a mouse model of Sanfilippo syndrome (mucopolysaccharidosis type III), generated by knockout of the Hgsnat gene. We find that Hgsnat-/- mice have regionally increased growth rates compared to Hgsnat+/+ mice in a number of brain regions, notably including the ventricles, amygdala and superior colliculus. A strong sex dependence was also noted, with the lateral ventricle volume growing at an accelerated rate in males, but several structures in the brain parenchyma growing faster in females. This approach is broadly applicable to other mouse models of human disease and the increased throughput may be particularly beneficial in studying mouse models of neurodevelopmental disorders.
Collapse
Affiliation(s)
- A Arbabi
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - L Spencer Noakes
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Pre-Therapeutic Target Discovery, Regeneron Pharmaceuticals, Tarrytown, NY, United States
| | - D Vousden
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; DataKind UK, London, UK
| | - J Dazai
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada
| | - S Spring
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada
| | - O Botelho
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada
| | - T Keshavarzian
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - M Mattingly
- Bruker BioSpin Corporation, Billerica, MA, United States
| | - J E Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada
| | - L M J Nutter
- The Centre for Phenogenomics, Hospital for Sick Children, Toronto, ON, Canada
| | - R Wissmann
- Bruker BioSpin Corporation, Ettlingen, Germany
| | - J G Sled
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - J P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON, Canada; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - R M Henkelman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - B J Nieman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Ontario Institute for Cancer Research, Toronto, ON, Canada.
| |
Collapse
|
32
|
Derrick-Roberts AL. Response to Letter to the Editor: Secondary ganglioside GM2 accumulation in mucopolysaccharidoses. Mol Genet Metab Rep 2022; 30:100831. [PMID: 34917476 PMCID: PMC8665401 DOI: 10.1016/j.ymgmr.2021.100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/09/2022] Open
|
33
|
Mandolfo O, Parker H, Bigger B. Innate Immunity in Mucopolysaccharide Diseases. Int J Mol Sci 2022; 23:1999. [PMID: 35216110 PMCID: PMC8879755 DOI: 10.3390/ijms23041999] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Mucopolysaccharidoses are rare paediatric lysosomal storage disorders, characterised by accumulation of glycosaminoglycans within lysosomes. This is caused by deficiencies in lysosomal enzymes involved in degradation of these molecules. Dependent on disease, progressive build-up of sugars may lead to musculoskeletal abnormalities and multi-organ failure, and in others, to cognitive decline, which is still a challenge for current therapies. The worsening of neuropathology, observed in patients following recovery from flu-like infections, suggests that inflammation is highly implicated in disease progression. This review provides an overview of the pathological features associated with the mucopolysaccharidoses and summarises current knowledge regarding the inflammatory responses observed in the central nervous system and periphery. We propose a model whereby progressive accumulation of glycosaminoglycans elicits an innate immune response, initiated by the Toll-like receptor 4 pathway, but also precipitated by secondary storage components. Its activation induces cells of the immune system to release pro-inflammatory cytokines, such as TNF-α and IL-1, which induce progression through chronic neuroinflammation. While TNF-α is mostly associated with bone and joint disease in mucopolysaccharidoses, increasing evidence implicates IL-1 as a main effector of innate immunity in the central nervous system. The (NOD)-like receptor protein 3 inflammasome is therefore implicated in chronic neuroinflammation and should be investigated further to identify novel anti-inflammatory treatments.
Collapse
Affiliation(s)
- Oriana Mandolfo
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3721 Stopford Building, Oxford Road, Manchester M13 9PT, UK;
| | - Helen Parker
- Division of Immunology, Immunity to Infection and Respiratory Medicine, The Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK;
| | - Brian Bigger
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3721 Stopford Building, Oxford Road, Manchester M13 9PT, UK;
| |
Collapse
|
34
|
Silva GCV, Grefenhagen AI, Borges P, Matte U. Hearing Impairment in Mucopolysaccharidosis: A Systems Biology Approach. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2022. [DOI: 10.1590/2326-4594-jiems-2021-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | - Pamella Borges
- Hospital de Clínicas de Porto Alegre, Brazil; University of Houston, United States of America
| | - Ursula Matte
- Hospital de Clínicas de Porto Alegre, Brazil; Universidade Federal do Rio Grande do Sul, Brazil
| |
Collapse
|
35
|
Takahashi K, Le SQ, Kan SH, Jansen MJ, Dickson PI, Cooper JD. Neuropathology of murine Sanfilippo D syndrome. Mol Genet Metab 2021; 134:323-329. [PMID: 34844863 DOI: 10.1016/j.ymgme.2021.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022]
Abstract
Sanfilippo D syndrome (mucopolysaccharidosis type IIID) is a lysosomal storage disorder caused by the deficiency of N-acetylglucosamine-6-sulfatase (GNS). A mouse model was generated by constitutive knockout of the Gns gene. We studied affected mice and controls at 12, 24, 36, and 48 weeks of age for neuropathological markers of disease in the somatosensory cortex, primary motor cortex, ventral posterior nuclei of the thalamus, striatum, hippocampus, and lateral and medial entorhinal cortex. We found significantly increased immunostaining for glial fibrillary associated protein (GFAP), CD68 (a marker of activated microglia), and lysosomal-associated membrane protein-1 (LAMP-1) in Sanfilippo D mice compared to controls at 12 weeks of age in all brain regions. Intergroup differences were marked for GFAP and CD68 staining, with levels in Sanfilippo D mice consistently above controls at all age groups. Intergroup differences in LAMP-1 staining were more pronounced in 12- and 24-week age groups compared to 36- and 48-week groups, as control animals showed some LAMP-1 staining at later timepoints in some brain regions. We also evaluated the somatosensory cortex, medial entorhinal cortex, reticular nucleus of the thalamus, medial amygdala, and hippocampal hilus for subunit c of mitochondrial ATP synthase (SCMAS). We found a progressive accumulation of SCMAS in most brain regions of Sanfilippo D mice compared to controls by 24 weeks of age. Cataloging the regional neuropathology of Sanfilippo D mice may aid in understanding the disease pathogenesis and designing preclinical studies to test brain-directed treatments.
Collapse
Affiliation(s)
- Keigo Takahashi
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Steven Q Le
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Shih-Hsin Kan
- Children's Hospital Orange County Research Institute, Orange, CA 92868, USA
| | - Matthew J Jansen
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Patricia I Dickson
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO 63110, USA.
| | - Jonathan D Cooper
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
36
|
Heide S, Jacquemont ML, Cheillan D, Renouil M, Tallot M, Schwartz CE, Miquel J, Bintner M, Rodriguez D, Darcel F, Buratti J, Haye D, Passemard S, Gras D, Perrin L, Capri Y, Gérard B, Piton A, Keren B, Thauvin-Robinet C, Duffourd Y, Faivre L, Poe C, Pervillé A, Héron D, Thévenon J, Arnaud L, LeGuern E, La Selva L, Vetro A, Guerrini R, Nava C, Mignot C. GM3 synthase deficiency in non-Amish patients. Genet Med 2021; 24:492-498. [PMID: 34906476 DOI: 10.1016/j.gim.2021.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/07/2021] [Accepted: 10/10/2021] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Biallelic loss-of-function variants in ST3GAL5 cause GM3 synthase deficiency (GM3SD) responsible for Amish infantile epilepsy syndrome. All Amish patients carry the homozygous p.(Arg288Ter) variant arising from a founder effect. To date only 10 patients from 4 non-Amish families have been reported. Thus, the phenotypical spectrum of GM3SD due to other variants and other genetic backgrounds is still poorly known. METHODS We collected clinical and molecular data from 16 non-Amish patients with pathogenic ST3GAL5 variants resulting in GM3SD. RESULTS We identified 12 families originating from Reunion Island, Ivory Coast, Italy, and Algeria and carrying 6 ST3GAL5 variants, 5 of which were novel. Genealogical investigations and/or haplotype analyses showed that 3 of these variants were founder alleles. Glycosphingolipids quantification in patients' plasma confirmed the pathogenicity of 4 novel variants. All patients (N = 16), aged 2 to 12 years, had severe to profound intellectual disability, 14 of 16 had a hyperkinetic movement disorder, 11 of 16 had epilepsy and 9 of 16 had microcephaly. Other main features were progressive skin pigmentation anomalies, optic atrophy or pale papillae, and hearing loss. CONCLUSION The phenotype of non-Amish patients with GM3SD is similar to the Amish infantile epilepsy syndrome, which suggests that GM3SD is associated with a narrow and severe clinical spectrum.
Collapse
Affiliation(s)
- Solveig Heide
- AP-HP.Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France; Centre de Référence Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Marie-Line Jacquemont
- Unité fonctionnelle de Génétique Médicale, Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, France
| | - David Cheillan
- Service de Biochimie et Biologie Moléculaire, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Bron, France
| | - Michel Renouil
- Service de Pédiatrie, Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, France
| | - Marilyn Tallot
- Service de Pédiatrie, Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, France
| | | | - Juliette Miquel
- Unité Fonctionnelle de Dermatologie Pédiatrique, Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, France
| | - Marc Bintner
- Service d'Imagerie Médicale, Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, France
| | - Diana Rodriguez
- AP-HP.Sorbonne Université, Service de Neuropédiatrie & Centre de Référence de Neurogénétique, Hôpital Armand Trousseau, Paris, France; INSERM U1141, FHU I2-D2, Paris, France
| | - Françoise Darcel
- Centre de Maladie Neurologiques Rares, Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, France
| | - Julien Buratti
- AP-HP.Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Damien Haye
- AP-HP.Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France; Centre de Référence Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Sandrine Passemard
- Service de Neuropédiatrie, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Nord-Université de Paris, Paris, France
| | - Domitille Gras
- Service de Neuropédiatrie, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Nord-Université de Paris, Paris, France
| | - Laurence Perrin
- Service de Génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, Nord-Université de Paris, Paris, France
| | - Yline Capri
- Service de Génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, Nord-Université de Paris, Paris, France
| | - Bénédicte Gérard
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Amélie Piton
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Boris Keren
- AP-HP.Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Christel Thauvin-Robinet
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Fédération Hospitalo-Universitaire Médecine TRANSLationnelle et Anomalies du Développement, Centre Hospitalier Universitaire Dijon, Equipe Genetics of Developmental Anomalies-INSERM UMR 1231, Dijon, France
| | - Yannis Duffourd
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Fédération Hospitalo-Universitaire Médecine TRANSLationnelle et Anomalies du Développement, Centre Hospitalier Universitaire Dijon, Equipe Genetics of Developmental Anomalies-INSERM UMR 1231, Dijon, France
| | - Laurence Faivre
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Fédération Hospitalo-Universitaire Médecine TRANSLationnelle et Anomalies du Développement, Centre Hospitalier Universitaire Dijon, Equipe Genetics of Developmental Anomalies-INSERM UMR 1231, Dijon, France
| | - Charlotte Poe
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Fédération Hospitalo-Universitaire Médecine TRANSLationnelle et Anomalies du Développement, Centre Hospitalier Universitaire Dijon, Equipe Genetics of Developmental Anomalies-INSERM UMR 1231, Dijon, France
| | - Anne Pervillé
- Service de Médecine Physique, Hôpital d'enfants de Saint-Denis, Saint-Denis, France
| | - Delphine Héron
- AP-HP.Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France; Centre de Référence Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Julien Thévenon
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Fédération Hospitalo-Universitaire Médecine TRANSLationnelle et Anomalies du Développement, Centre Hospitalier Universitaire Dijon, Equipe Genetics of Developmental Anomalies-INSERM UMR 1231, Dijon, France
| | - Lionel Arnaud
- AP-HP.Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Eric LeGuern
- AP-HP.Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France; Sorbonne Université, Institut du Cerveau, INSERM, Paris, France; EuroEPINOMICS RES Consortium
| | - Lorita La Selva
- Centre of Developmental Epilepsy and Electroencephalography, San Paolo Hospital, Bari, Italy
| | - Annalisa Vetro
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Renzo Guerrini
- EuroEPINOMICS RES Consortium; Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Caroline Nava
- AP-HP.Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France; Sorbonne Université, Institut du Cerveau, INSERM, Paris, France; EuroEPINOMICS RES Consortium
| | - Cyril Mignot
- AP-HP.Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France; Centre de Référence Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié-Salpêtrière, Paris, France; Sorbonne Université, Institut du Cerveau, INSERM, Paris, France; EuroEPINOMICS RES Consortium.
| |
Collapse
|
37
|
Oxidative Stress in Mucopolysaccharidoses: Pharmacological Implications. Molecules 2021; 26:molecules26185616. [PMID: 34577086 PMCID: PMC8468662 DOI: 10.3390/molecules26185616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022] Open
Abstract
Although mucopolysaccharidoses (MPS) are caused by mutations in genes coding for enzymes responsible for degradation of glycosaminoglycans, storage of these compounds is crucial but is not the only pathomechanism of these severe, inherited metabolic diseases. Among various factors and processes influencing the course of MPS, oxidative stress appears to be a major one. Oxidative imbalance, occurring in MPS and resulting in increased levels of reactive oxidative species, causes damage of various biomolecules, leading to worsening of symptoms, especially in the central nervous system (but not restricted to this system). A few therapeutic options are available for some types of MPS, including enzyme replacement therapy and hematopoietic stem cell transplantation, however, none of them are fully effective in reducing all symptoms. A possibility that molecules with antioxidative activities might be useful accompanying drugs, administered together with other therapies, is discussed in light of the potential efficacy of MPS treatment.
Collapse
|
38
|
De Pasquale V, Scerra G, Scarcella M, D'Agostino M, Pavone LM. Competitive binding of extracellular accumulated heparan sulfate reduces lysosomal storage defects and triggers neuronal differentiation in a model of Mucopolysaccharidosis IIIB. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119113. [PMID: 34329663 DOI: 10.1016/j.bbamcr.2021.119113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 12/26/2022]
Abstract
Mucopolysaccharidoses (MPSs) are a group of inherited lysosomal storage disorders associated with the deficiency of lysosomal enzymes involved in glycosaminoglycan (GAG) degradation. The resulting cellular accumulation of GAGs is responsible for widespread tissue and organ dysfunctions. The MPS III, caused by mutations in the genes responsible for the degradation of heparan sulfate (HS), includes four subtypes (A, B, C, and D) that present significant neurological manifestations such as progressive cognitive decline and behavioral disorders. The established treatments for the MPS III do not cure the disease but only ameliorate non-neurological clinical symptoms. We previously demonstrated that the natural variant of the hepatocyte growth factor NK1 reduces the lysosomal pathology and reactivates impaired growth factor signaling in fibroblasts from MPS IIIB patients. Here, we show that the recombinant NK1 is effective in rescuing the morphological and functional dysfunctions of lysosomes in a neuronal cellular model of the MPS IIIB. More importantly, NK1 treatment is able to stimulate neuronal differentiation of neuroblastoma SK-NBE cells stable silenced for the NAGLU gene causative of the MPS IIIB. These results provide the basis for the development of a novel approach to possibly correct the neurological phenotypes of the MPS IIIB as well as of other MPSs characterized by the accumulation of HS and progressive neurodegeneration.
Collapse
Affiliation(s)
- Valeria De Pasquale
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino 1, 80127 Naples, Italy
| | - Gianluca Scerra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Melania Scarcella
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Massimo D'Agostino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
39
|
Douek AM, Amiri Khabooshan M, Henry J, Stamatis SA, Kreuder F, Ramm G, Änkö ML, Wlodkowic D, Kaslin J. An Engineered sgsh Mutant Zebrafish Recapitulates Molecular and Behavioural Pathobiology of Sanfilippo Syndrome A/MPS IIIA. Int J Mol Sci 2021; 22:ijms22115948. [PMID: 34073041 PMCID: PMC8197930 DOI: 10.3390/ijms22115948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/29/2022] Open
Abstract
Mucopolysaccharidosis IIIA (MPS IIIA, Sanfilippo syndrome type A), a paediatric neurological lysosomal storage disease, is caused by impaired function of the enzyme N-sulfoglucosamine sulfohydrolase (SGSH) resulting in impaired catabolism of heparan sulfate glycosaminoglycan (HS GAG) and its accumulation in tissues. MPS IIIA represents a significant proportion of childhood dementias. This condition generally leads to patient death in the teenage years, yet no effective therapy exists for MPS IIIA and a complete understanding of the mechanisms of MPS IIIA pathogenesis is lacking. Here, we employ targeted CRISPR/Cas9 mutagenesis to generate a model of MPS IIIA in the zebrafish, a model organism with strong genetic tractability and amenity for high-throughput screening. The sgshΔex5-6 zebrafish mutant exhibits a complete absence of Sgsh enzymatic activity, leading to progressive accumulation of HS degradation products with age. sgshΔex5-6 zebrafish faithfully recapitulate diverse CNS-specific features of MPS IIIA, including neuronal lysosomal overabundance, complex behavioural phenotypes, and profound, lifelong neuroinflammation. We further demonstrate that neuroinflammation in sgshΔex5-6 zebrafish is largely dependent on interleukin-1β and can be attenuated via the pharmacological inhibition of Caspase-1, which partially rescues behavioural abnormalities in sgshΔex5-6 mutant larvae in a context-dependent manner. We expect the sgshΔex5-6 zebrafish mutant to be a valuable resource in gaining a better understanding of MPS IIIA pathobiology towards the development of timely and effective therapeutic interventions.
Collapse
Affiliation(s)
- Alon M. Douek
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; (A.M.D.); (M.A.K.); (S.-A.S.); (F.K.)
| | - Mitra Amiri Khabooshan
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; (A.M.D.); (M.A.K.); (S.-A.S.); (F.K.)
| | - Jason Henry
- Neurotoxicology Lab, School of Science (Biosciences), RMIT University, Bundoora, VIC 3083, Australia; (J.H.); (D.W.)
| | - Sebastian-Alexander Stamatis
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; (A.M.D.); (M.A.K.); (S.-A.S.); (F.K.)
| | - Florian Kreuder
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; (A.M.D.); (M.A.K.); (S.-A.S.); (F.K.)
| | - Georg Ramm
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC 3800, Australia;
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Minna-Liisa Änkö
- Centre for Reproductive Health and Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia;
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Donald Wlodkowic
- Neurotoxicology Lab, School of Science (Biosciences), RMIT University, Bundoora, VIC 3083, Australia; (J.H.); (D.W.)
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; (A.M.D.); (M.A.K.); (S.-A.S.); (F.K.)
- Correspondence: ; Tel.: +61-3-9902-9613; Fax: +61-3-9902-9729
| |
Collapse
|
40
|
Lund TC, Doherty TM, Eisengart JB, Freese RL, Rudser KD, Fung EB, Miller BS, White KK, Orchard PJ, Whitley CB, Polgreen LE. Biomarkers for prediction of skeletal disease progression in mucopolysaccharidosis type I. JIMD Rep 2021; 58:89-99. [PMID: 33728251 PMCID: PMC7932872 DOI: 10.1002/jmd2.12190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Orthopedic disease progresses in mucopolysaccharidosis type I (MPS I), even with approved therapies and remains a major factor in persistent suffering and disability. Novel therapies and accurate predictors of response are needed. The primary objective of this study was to identify surrogate biomarkers of future change in orthopedic disease. METHODS As part of a 9-year observational study of MPS I, range-of-motion (ROM), height, pelvic radiographs were measured annually. Biomarkers in year 1 were compared to healthy controls. Linear regression tested for associations of change in biomarkers over the first year with change in long-term outcomes. RESULTS MPS I participants (N = 19) were age 5 to 16 years and on average 6.9 ± 2.9 years post treatment initiation. Healthy controls (N = 51) were age 9 to 17 years. Plasma IL-1β, TNF-α, osteocalcin, pyridinolines, and deoxypyridinolines were higher in MPS than controls. Within MPS, progression of hip dysplasia was present in 46% to 77%. A 1 pg/mL increase in IL-6 was associated with -22°/year change in ROM (-28 to -15; P < .001), a 20 nmol/mmol creatinine/year increase in urine PYD was associated with a -0.024 Z-score/year change in height Z-score (-0.043 to -0.005; P = .016), and a 20 nmol/mmol creatinine/year increase in urine PYD was associated with a -2.0%/year change in hip dysplasia measured by Reimers migration index (-3.8 to -0.1; P = .037). CONCLUSIONS Inflammatory cytokines are high in MPS I. IL-6 and PYD were associated with progression in joint contracture, short stature, and hip dysplasia over time. Once validated, these biomarkers may prove useful for predicting response to treatment of skeletal disease in MPS I.
Collapse
Affiliation(s)
- Troy C. Lund
- Department of PediatricsUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Terence M. Doherty
- Department of PediatricsThe Lundquist Institute at Harbor‐UCLA Medical CenterTorranceCaliforniaUSA
| | | | - Rebecca L. Freese
- Biostatistical Design and Analysis Center, Clinical and Translational Science InstituteUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Kyle D. Rudser
- School of Public Health, Division of BiostatisticsUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Ellen B. Fung
- Department of HematologyUniversity of California, San Francisco Benioff Children's HospitalOaklandCaliforniaUSA
| | - Bradley S. Miller
- Department of PediatricsUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Klane K. White
- Department of Orthopaedics and Sports MedicineSeattle Children's HospitalSeattleWashingtonUSA
| | - Paul J. Orchard
- Department of PediatricsUniversity of MinnesotaMinneapolisMinnesotaUSA
| | | | - Lynda E. Polgreen
- Department of PediatricsThe Lundquist Institute at Harbor‐UCLA Medical CenterTorranceCaliforniaUSA
| |
Collapse
|
41
|
Kuk MU, Lee YH, Kim JW, Hwang SY, Park JT, Park SC. Potential Treatment of Lysosomal Storage Disease through Modulation of the Mitochondrial-Lysosomal Axis. Cells 2021; 10:cells10020420. [PMID: 33671306 PMCID: PMC7921977 DOI: 10.3390/cells10020420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/28/2022] Open
Abstract
Lysosomal storage disease (LSD) is an inherited metabolic disorder caused by enzyme deficiency in lysosomes. Some treatments for LSD can slow progression, but there are no effective treatments to restore the pathological phenotype to normal levels. Lysosomes and mitochondria interact with each other, and this crosstalk plays a role in the maintenance of cellular homeostasis. Deficiency of lysosome enzymes in LSD impairs the turnover of mitochondrial defects, leading to deterioration of the mitochondrial respiratory chain (MRC). Cells with MRC impairment are associated with reduced lysosomal calcium homeostasis, resulting in impaired autophagic and endolysosomal function. This malicious feedback loop between lysosomes and mitochondria exacerbates LSD. In this review, we assess the interactions between mitochondria and lysosomes and propose the mitochondrial-lysosomal axis as a research target to treat LSD. The importance of the mitochondrial-lysosomal axis has been systematically characterized in several studies, suggesting that proper regulation of this axis represents an important investigative guide for the development of therapeutics for LSD. Therefore, studying the mitochondrial-lysosomal axis will not only add knowledge of the essential physiological processes of LSD, but also provide new strategies for treatment of LSD.
Collapse
Affiliation(s)
- Myeong Uk Kuk
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (M.U.K.); (Y.H.L.); (J.W.K.); (S.Y.H.)
| | - Yun Haeng Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (M.U.K.); (Y.H.L.); (J.W.K.); (S.Y.H.)
| | - Jae Won Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (M.U.K.); (Y.H.L.); (J.W.K.); (S.Y.H.)
| | - Su Young Hwang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (M.U.K.); (Y.H.L.); (J.W.K.); (S.Y.H.)
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (M.U.K.); (Y.H.L.); (J.W.K.); (S.Y.H.)
- Correspondence: (J.T.P.); ; (S.C.P.); Tel.: +82-32-835-8841 (J.T.P.); +82-10-5495-9200 (S.C.P.)
| | - Sang Chul Park
- The Future Life & Society Research Center, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (J.T.P.); ; (S.C.P.); Tel.: +82-32-835-8841 (J.T.P.); +82-10-5495-9200 (S.C.P.)
| |
Collapse
|
42
|
Parenti G, Medina DL, Ballabio A. The rapidly evolving view of lysosomal storage diseases. EMBO Mol Med 2021; 13:e12836. [PMID: 33459519 PMCID: PMC7863408 DOI: 10.15252/emmm.202012836] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
Lysosomal storage diseases are a group of metabolic disorders caused by deficiencies of several components of lysosomal function. Most commonly affected are lysosomal hydrolases, which are involved in the breakdown and recycling of a variety of complex molecules and cellular structures. The understanding of lysosomal biology has progressively improved over time. Lysosomes are no longer viewed as organelles exclusively involved in catabolic pathways, but rather as highly dynamic elements of the autophagic-lysosomal pathway, involved in multiple cellular functions, including signaling, and able to adapt to environmental stimuli. This refined vision of lysosomes has substantially impacted on our understanding of the pathophysiology of lysosomal disorders. It is now clear that substrate accumulation triggers complex pathogenetic cascades that are responsible for disease pathology, such as aberrant vesicle trafficking, impairment of autophagy, dysregulation of signaling pathways, abnormalities of calcium homeostasis, and mitochondrial dysfunction. Novel technologies, in most cases based on high-throughput approaches, have significantly contributed to the characterization of lysosomal biology or lysosomal dysfunction and have the potential to facilitate diagnostic processes, and to enable the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Giancarlo Parenti
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA.,SSM School for Advanced Studies, Federico II University, Naples, Italy
| |
Collapse
|
43
|
Seker Yilmaz B, Davison J, Jones SA, Baruteau J. Novel therapies for mucopolysaccharidosis type III. J Inherit Metab Dis 2021; 44:129-147. [PMID: 32944950 PMCID: PMC8436764 DOI: 10.1002/jimd.12316] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022]
Abstract
Mucopolysaccharidosis type III (MPS III) or Sanfilippo disease is an orphan inherited lysosomal storage disease and one of the most common MPS subtypes. The classical presentation is an infantile-onset neurodegenerative disease characterised by intellectual regression, behavioural and sleep disturbances, loss of ambulation, and early death. Unlike other MPS, no disease-modifying therapy has yet been approved. Here, we review the numerous approaches of curative therapy developed for MPS III from historical ineffective haematopoietic stem cell transplantation and substrate reduction therapy to the promising ongoing clinical trials based on enzyme replacement therapy or adeno-associated or lentiviral vectors mediated gene therapy. Preclinical studies are presented alongside the most recent translational first-in-man trials. In addition, we present experimental research with preclinical mRNA and gene editing strategies. Lessons from animal studies and clinical trials have highlighted the importance of an early therapy before extensive neuronal loss. A disease-modifying therapy for MPS III will undoubtedly mandate development of new strategies for early diagnosis.
Collapse
Affiliation(s)
- Berna Seker Yilmaz
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- Department of Paediatric Metabolic MedicineMersin UniversityMersinTurkey
| | - James Davison
- Metabolic Medicine DepartmentGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Simon A. Jones
- Metabolic MedicineManchester University NHS Foundation TrustManchesterUK
| | - Julien Baruteau
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- Metabolic Medicine DepartmentGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
- National Institute of Health Research Great Ormond Street Hospital Biomedical Research CentreLondonUK
| |
Collapse
|
44
|
Turton N, Rutherford T, Thijssen D, Hargreaves IP. Putative adjunct therapies to target mitochondrial dysfunction and oxidative stress in phenylketonuria, lysosomal storage disorders and peroxisomal disorders. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1850254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Affiliation(s)
- Nadia Turton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Tricia Rutherford
- Department of research and development, Vitaflo International Ltd, Liverpool, UK
| | - Dick Thijssen
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Iain P Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
45
|
Harm TA, Hostetter SJ, Nenninger AS, Valentine BN, Ellinwood NM, Smith JD. Temporospatial Development of Neuropathologic Findings in a Canine Model of Mucopolysaccharidosis IIIB. Vet Pathol 2020; 58:205-222. [PMID: 33205707 DOI: 10.1177/0300985820960128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mucopolysaccharidosis (MPS) IIIB is a neuropathic lysosomal storage disease characterized by the deficient activity of a lysosomal enzyme obligate for the degradation of the glycosaminoglycan (GAG) heparan sulfate (HS). The pathogenesis of neurodegeneration in MPS IIIB is incompletely understood. Large animal models are attractive for pathogenesis and therapeutic studies due to their larger size, outbred genetics, longer lifespan, and naturally occurring MPS IIIB disease. However, the temporospatial development of neuropathologic changes has not been reported for canine MPS IIIB. Here we describe lesions in 8 brain regions, cervical spinal cord, and dorsal root ganglion (DRG) in a canine model of MPS IIIB that includes dogs aged from 2 to 26 months of age. Pathological changes in the brain included early microscopic vacuolation of glial cells initially observed at 2 months, and vacuolation of neurons initially observed at 10 months. Inclusions within affected cells variably stained positively with PAS and LFB stains. Quantitative immunohistochemistry demonstrated increased glial expression of GFAP and Iba1 in dogs with MPS IIIB compared to age-matched controls at all time points, suggesting neuroinflammation occurs early in disease. Loss of Purkinje cells was initially observed at 10 months and was pronounced in 18- and 26-month-old dogs with MPS IIIB. Our results support the dog as a replicative model of MPS IIIB neurologic lesions and detail the pathologic and neuroinflammatory changes in the spinal cord and DRG of MPS IIIB-affected dogs.
Collapse
Affiliation(s)
| | - Shannon J Hostetter
- 70724Iowa State University, Ames, IA, USA.,Current address: Department of Veterinary Pathology, University of Georgia, Athens, GA, USA
| | | | | | | | | |
Collapse
|
46
|
Benetó N, Vilageliu L, Grinberg D, Canals I. Sanfilippo Syndrome: Molecular Basis, Disease Models and Therapeutic Approaches. Int J Mol Sci 2020; 21:E7819. [PMID: 33105639 PMCID: PMC7659972 DOI: 10.3390/ijms21217819] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
Sanfilippo syndrome or mucopolysaccharidosis III is a lysosomal storage disorder caused by mutations in genes responsible for the degradation of heparan sulfate, a glycosaminoglycan located in the extracellular membrane. Undegraded heparan sulfate molecules accumulate within lysosomes leading to cellular dysfunction and pathology in several organs, with severe central nervous system degeneration as the main phenotypical feature. The exact molecular and cellular mechanisms by which impaired degradation and storage lead to cellular dysfunction and neuronal degeneration are still not fully understood. Here, we compile the knowledge on this issue and review all available animal and cellular models that can be used to contribute to increase our understanding of Sanfilippo syndrome disease mechanisms. Moreover, we provide an update in advances regarding the different and most successful therapeutic approaches that are currently under study to treat Sanfilippo syndrome patients and discuss the potential of new tools such as induced pluripotent stem cells to be used for disease modeling and therapy development.
Collapse
Affiliation(s)
- Noelia Benetó
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, CIBERER, IBUB, IRSJD, E-08028 Barcelona, Spain; (N.B.); (L.V.); (D.G.)
| | - Lluïsa Vilageliu
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, CIBERER, IBUB, IRSJD, E-08028 Barcelona, Spain; (N.B.); (L.V.); (D.G.)
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, CIBERER, IBUB, IRSJD, E-08028 Barcelona, Spain; (N.B.); (L.V.); (D.G.)
| | - Isaac Canals
- Stem Cells, Aging and Neurodegeneration Group, Department of Clinical Sciences, Neurology, Lund Stem Cell Center, Lund University, SE-22184 Lund, Sweden
| |
Collapse
|
47
|
Rintz E, Pierzynowska K, Podlacha M, Węgrzyn G. Has resveratrol a potential for mucopolysaccharidosis treatment? Eur J Pharmacol 2020; 888:173534. [PMID: 32877657 DOI: 10.1016/j.ejphar.2020.173534] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/18/2022]
Abstract
Mucopolysaccharidoses (MPS) represent a devastating group of lysosomal storage diseases (LSD) affecting approximately 1 in 25,000 individuals, where degradation of glycosaminoglycans (GAG) by lysosomal enzymes is impaired due to mutations causing defects in one of GAG-degrading enzymes. The most commonly used therapy for MPS is enzyme replacement therapy, consisting of application of an active form of the missing enzyme. However, supply of the missing enzyme is not enough in case of MPS types whose symptoms are expressed in central nervous system (CNS), as enzyme does not cross the blood-brain barrier. Moreover, even though enzyme replacement therapy for non-neuronopathic MPS IVA type is approved, it has a limited impact on bone abnormalities, that are one of main symptoms in the disease. Therefore, research into alternative therapeutic approaches for these types of MPS is highly desirable. One such alternative strategy is accelerated degradation of GAG by induction of autophagy. Autophagy is a process of lysosomal degradation of macromolecules that become abnormal or unnecessary for cells. One of the latest discoveries is that GAGs can also be such molecules. Potential drug should also cross blood-brain barrier and be safe in long-term therapy. It seems that one of the polyphenols, resveratrol, can meet the requirements. The mechanism of its action in autophagy stimulation is pleiotropic. Therefore, in this review, we will briefly discuss potential of resveratrol treatment for mucopolysaccharidosis through autophagy stimulation based on research in diseases with similar outcome.
Collapse
Affiliation(s)
- Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308, Gdansk, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308, Gdansk, Poland
| | - Magdalena Podlacha
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308, Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308, Gdansk, Poland.
| |
Collapse
|
48
|
Stepien KM, Roncaroli F, Turton N, Hendriksz CJ, Roberts M, Heaton RA, Hargreaves I. Mechanisms of Mitochondrial Dysfunction in Lysosomal Storage Disorders: A Review. J Clin Med 2020; 9:jcm9082596. [PMID: 32796538 PMCID: PMC7463786 DOI: 10.3390/jcm9082596] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction is emerging as an important contributory factor to the pathophysiology of lysosomal storage disorders (LSDs). The cause of mitochondrial dysfunction in LSDs appears to be multifactorial, although impaired mitophagy and oxidative stress appear to be common inhibitory mechanisms shared amongst these heterogeneous disorders. Once impaired, dysfunctional mitochondria may impact upon the function of the lysosome by the generation of reactive oxygen species as well as depriving the lysosome of ATP which is required by the V-ATPase proton pump to maintain the acidity of the lumen. Given the reported evidence of mitochondrial dysfunction in LSDs together with the important symbiotic relationship between these two organelles, therapeutic strategies targeting both lysosome and mitochondrial dysfunction may be an important consideration in the treatment of LSDs. In this review we examine the putative mechanisms that may be responsible for mitochondrial dysfunction in reported LSDs which will be supplemented with morphological and clinical information.
Collapse
Affiliation(s)
- Karolina M. Stepien
- Adult Inherited Metabolic Diseases, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK
- Correspondence:
| | - Federico Roncaroli
- Division of Neuroscience and Experimental Psychology, School of Biology, Medicine and Health, University of Manchester and Manchester Centre for Clinical Neuroscience, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK;
| | - Nadia Turton
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, UK; (N.T.); (R.A.H.); (I.H.)
| | - Christian J. Hendriksz
- Paediatrics and Child Health, Steve Biko Academic Unit, University of Pretoria, 0002 Pretoria, South Africa;
| | - Mark Roberts
- Neurology Department, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK;
| | - Robert A. Heaton
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, UK; (N.T.); (R.A.H.); (I.H.)
| | - Iain Hargreaves
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, UK; (N.T.); (R.A.H.); (I.H.)
| |
Collapse
|
49
|
Liao H, Klaus C, Neumann H. Control of Innate Immunity by Sialic Acids in the Nervous Tissue. Int J Mol Sci 2020; 21:ijms21155494. [PMID: 32752058 PMCID: PMC7432451 DOI: 10.3390/ijms21155494] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Sialic acids (Sias) are the most abundant terminal sugar residues of glycoproteins and glycolipids on the surface of mammalian cells. The nervous tissue is the organ with the highest expression level of Sias. The ‘sialylation’ of glycoconjugates is performed via sialyltransferases, whereas ‘desialylation’ is done by sialidases or is a possible consequence of oxidative damage. Sialic acid residues on the neural cell surfaces inhibit complement and microglial activation, as well as phagocytosis of the underlying structures, via binding to (i) complement factor H (CFH) or (ii) sialic acid-binding immunoglobulin-like lectin (SIGLEC) receptors. In contrast, activated microglial cells show sialidase activity that desialylates both microglia and neurons, and further stimulates innate immunity via microglia and complement activation. The desialylation conveys neurons to become susceptible to phagocytosis, as well as triggers a microglial phagocytosis-associated oxidative burst and inflammation. Dysfunctions of the ‘Sia–SIGLEC’ and/or ‘Sia–complement’ axes often lead to neurological diseases. Thus, Sias on glycoconjugates of the intact glycocalyx and its desialylation are major regulators of neuroinflammation.
Collapse
Affiliation(s)
| | | | - Harald Neumann
- Correspondence: ; Tel.: +49-228-6885-500; Fax: +49-228-6885-501
| |
Collapse
|
50
|
De Pasquale V, Caterino M, Costanzo M, Fedele R, Ruoppolo M, Pavone LM. Targeted Metabolomic Analysis of a Mucopolysaccharidosis IIIB Mouse Model Reveals an Imbalance of Branched-Chain Amino Acid and Fatty Acid Metabolism. Int J Mol Sci 2020; 21:ijms21124211. [PMID: 32545699 PMCID: PMC7352355 DOI: 10.3390/ijms21124211] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
Mucopolysaccharidoses (MPSs) are inherited disorders of the glycosaminoglycan (GAG) metabolism. The defective digestion of GAGs within the intralysosomal compartment of affected patients leads to a broad spectrum of clinical manifestations ranging from cardiovascular disease to neurological impairment. The molecular mechanisms underlying the progression of the disease downstream of the genetic mutation of genes encoding for lysosomal enzymes still remain unclear. Here, we applied a targeted metabolomic approach to a mouse model of PS IIIB, using a platform dedicated to the diagnosis of inherited metabolic disorders, in order to identify amino acid and fatty acid metabolic pathway alterations or the manifestations of other metabolic phenotypes. Our analysis highlighted an increase in the levels of branched-chain amino acids (BCAAs: Val, Ile, and Leu), aromatic amino acids (Tyr and Phe), free carnitine, and acylcarnitines in the liver and heart tissues of MPS IIIB mice as compared to the wild type (WT). Moreover, Ala, Met, Glu, Gly, Arg, Orn, and Cit amino acids were also found upregulated in the liver of MPS IIIB mice. These findings show a specific impairment of the BCAA and fatty acid catabolism in the heart of MPS IIIB mice. In the liver of affected mice, the glucose-alanine cycle and urea cycle resulted in being altered alongside a deregulation of the BCAA metabolism. Thus, our data demonstrate that an accumulation of BCAAs occurs secondary to lysosomal GAG storage, in both the liver and the heart of MPS IIIB mice. Since BCAAs regulate the biogenesis of lysosomes and autophagy mechanisms through mTOR signaling, impacting on lipid metabolism, this condition might contribute to the progression of the MPS IIIB disease.
Collapse
Affiliation(s)
- Valeria De Pasquale
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (V.D.P.); (M.C.); (M.C.); (L.M.P.)
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (V.D.P.); (M.C.); (M.C.); (L.M.P.)
- CEINGE—Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy;
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (V.D.P.); (M.C.); (M.C.); (L.M.P.)
- CEINGE—Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy;
| | - Roberta Fedele
- CEINGE—Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy;
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (V.D.P.); (M.C.); (M.C.); (L.M.P.)
- CEINGE—Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy;
- Correspondence: ; Tel.: +39-081-3737850
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (V.D.P.); (M.C.); (M.C.); (L.M.P.)
| |
Collapse
|