1
|
Klishko AN, Harnie J, Hanson CE, Rahmati SM, Rybak IA, Frigon A, Prilutsky BI. Effects of spinal transection and locomotor speed on muscle synergies of the cat hindlimb. J Physiol 2025; 603:3061-3088. [PMID: 40321018 DOI: 10.1113/jp288089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/25/2025] [Indexed: 05/14/2025] Open
Abstract
It has been suggested that during locomotion, the nervous system controls movement by activating groups of muscles, or muscle synergies. Analysis of muscle synergies can reveal the organization of spinal locomotor networks and how it depends on the state of the nervous system, such as before and after spinal cord injury, and on different locomotor conditions, including a change in speed. The goal of this study was to investigate the effects of spinal transection and locomotor speed on hindlimb muscle synergies and their time-dependent activity patterns in adult cats. EMG activities of 15 hindlimb muscles were recorded in nine adult cats of either sex during tied-belt treadmill locomotion at speeds of 0.4, 0.7 and 1.0 m/s before and after recovery from a low thoracic spinal transection. We determined EMG burst groups using cluster analysis of EMG burst onset and offset times and muscle synergies using non-negative matrix factorization (NNMF). We found five major EMG burst groups and five muscle synergies in each of six experimental conditions (2 states × 3 speeds). In each case, the synergies accounted for at least 90% of muscle EMG variance. Both spinal transection and locomotion speed modified subgroups of EMG burst groups and the composition and activation patterns of selected synergies. However, these changes did not modify the general organization of muscle synergies. Based on the obtained results, we propose an organization for a pattern formation network of a two-level central pattern generator that can be tested in neuromechanical simulations of spinal circuits controlling cat locomotion. KEY POINTS: Analysis of muscle synergies during locomotion can reveal the organization of spinal locomotor networks. We recorded EMG activity of 15 hindlimb muscles in cats locomoting on a treadmill at speeds 0.4, 0.7 and 1.0 m/s before and after recovery from spinal cord transection at low thoracic level. We found five muscle synergies in all six experimental conditions (2 spinal states x 3 speeds) that include two flexor synergies operating in the swing phase and three extensor synergies operating in the stance phase. Major features of found synergies (the number, muscle composition and activation patterns) were not substantially affected by spinal transection and locomotion speed, suggesting that spinal control mechanism operates muscle synergies. Based on the obtained results, we proposed an organization of a pattern formation network of a two-level central pattern generator controlling locomotor activity of hindlimb muscles.
Collapse
Affiliation(s)
- Alexander N Klishko
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Claire E Hanson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Ilya A Rybak
- Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA, USA
| | - Alain Frigon
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
2
|
Forouzan EJ, Rashid MY, Nasr NF, Abd-Elsayed A, Knezevic NN. The Potential of Spinal Cord Stimulation in Treating Spinal Cord Injury. Curr Pain Headache Rep 2025; 29:35. [PMID: 39869234 DOI: 10.1007/s11916-024-01311-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/28/2025]
Abstract
PURPOSE OF THE REVIEW In the United States, spinal cord injuries affect approximately 18,000 individuals annually, most commonly resulting from mechanical trauma. The consequent paraplegia severely impairs motor functions, creating an urgent need for innovative therapeutic strategies that extend beyond traditional rehabilitation and pharmacotherapy. This review assesses the effectiveness of Spinal Cord Stimulation (SCS) in improving motor function in patients with spinal cord injuries, with a particular focus on paraplegia. SCS, an emerging intervention, has gained attention for its ability to activate paralyzed muscles and enhance the effects of physical therapy. RECENT FINDINGS Our review demonstrates that SCS can lead to significant functional improvements when optimally combined with rehabilitation strategies. The success of SCS depends largely on the precise placement of electrodes with individualized parameters and the integration of stimulation with intensive physical training. This review underscores the considerable potential of SCS to improve motor outcomes in individuals with paraplegia caused by spinal cord injury, emphasizing the need for further research to optimize SCS parameters, electrode placement, and its integration with rehabilitation protocols. This review highlights the potential of SCS as a therapeutic intervention for improving motor function in individuals with paraplegia caused by spinal cord injuries.
Collapse
Affiliation(s)
- Eli Justin Forouzan
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, 60657, USA
| | - Mohammed Yousif Rashid
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, 60657, USA
| | - Ned F Nasr
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, 60657, USA
| | - Alaa Abd-Elsayed
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, 60657, USA.
- Department of Anesthesiology, University of Illinois, Chicago, IL, 60612, USA.
- Department of Surgery, University of Illinois, Chicago, IL, 60612, USA.
| |
Collapse
|
3
|
Lagos-Hausheer L, Vergara S, Munoz-Martel V, Pequera G, Bona RL, Biancardi CM. Muscle synergies during the walk-run and run-walk transitions. PeerJ 2024; 12:e18162. [PMID: 39465151 PMCID: PMC11505887 DOI: 10.7717/peerj.18162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/02/2024] [Indexed: 10/29/2024] Open
Abstract
Background Muscular synergies could represent the patterns of muscular activation used by the central nervous system (CNS) to simplify the production of movement. Studies in walking-running transitions described up to nine synergy modules, and an earlier activation of flexor and extension ankle muscular groups compared to running or walking. Our project aims to study the behaviour of muscle synergies in different stance and swing variations of walking-running (WRT) and running-walking (RWT) transitions. Methods Twenty-four trained men participated in this study. A variable speed protocol on a treadmill was developed to record the activity of 14 muscle during walking, running and relative transitions. The protocol was based on five ramps of 50 seconds each around ± 10 and 20% of the WRT speed. WRT and RWT were identified according to an abrupt change of the duty factor. Analysing surface electromyography using non-negative matrix factorization (NMF) we obtained synergy modules and temporal activation profiles. Alpha threshold for statistical tests set at 0.05. Results We described four different transition strides, two for increasing speed transitions, and two for decreasing speed transitions. Four to six synergy modules were found in each condition. According to the maximum cosine similarity results, the two identified WRT conditions shared five modules, while the two RWT conditions shared four modules. WRT and RWT overall shared 4.33 ± 0.58 modules. The activation profiles and centres of activation revealed differences among conditions. Discussion Transition occurred at step level, and transition strides were composed by walk-like and run-like steps. Compared with previous studies in running and walking, both transitions needed earlier activation of a comparable number of synergy modules. Synergies were affected by acceleration: during RWT the need to dissipate energy, to decrease the speed, was achieved by increasing the number of co-activating muscles. This was reflected in fewer synergy modules and different activation profiles compared to WRT. We believe that our results could be enforced in different applied fields, like clinical gait analysis, physiotherapy and rehabilitation, where plans including co-activation of specific muscular groups could be useful. Gait transitions are common in different sports, and therefore also application in training and sport science would be possible.
Collapse
Affiliation(s)
- Leonardo Lagos-Hausheer
- Biomechanics and Movement Analysis Research Laboratory, Department of Biological Sciences, CENUR Litoral Norte, Universidad de la República, Paysandú, Paysandú, Uruguay
- Department of Physiotherapy, Faculty of Medicine, Movement Physiology Laboratory, Universidad de Concepción, Concepción, Chile
| | - Samuel Vergara
- Electrical Engineering Department, Faculty of Engineering, Universidad Católica de la Santísima Concepción, Concepción, Concepción, Chile
| | - Victor Munoz-Martel
- Department of Training and Movement Sciences, Humboldt Universität zu Berlin, Humboldt Universität Berlin, Berlin, Berlin, Germany
| | - Germán Pequera
- Biomechanics and Movement Analysis Research Laboratory, Department of Biological Sciences, CENUR Litoral Norte, Universidad de la República, Paysandú, Paysandú, Uruguay
- Ingeniería Biológica, Universidad de la República, CENUR Litoral Norte, Uruguay
| | - Renata L. Bona
- Biomechanics and Movement Analysis Research Laboratory, Department of Biological Sciences, CENUR Litoral Norte, Universidad de la República, Paysandú, Paysandú, Uruguay
| | - Carlo M. Biancardi
- Biomechanics and Movement Analysis Research Laboratory, Department of Biological Sciences, CENUR Litoral Norte, Universidad de la República, Paysandú, Paysandú, Uruguay
| |
Collapse
|
4
|
Rybak IA, Shevtsova NA, Markin SN, Prilutsky BI, Frigon A. Operation regimes of spinal circuits controlling locomotion and the role of supraspinal drives and sensory feedback. eLife 2024; 13:RP98841. [PMID: 39401073 PMCID: PMC11473106 DOI: 10.7554/elife.98841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Locomotion in mammals is directly controlled by the spinal neuronal network, operating under the control of supraspinal signals and somatosensory feedback that interact with each other. However, the functional architecture of the spinal locomotor network, its operation regimes, and the role of supraspinal and sensory feedback in different locomotor behaviors, including at different speeds, remain unclear. We developed a computational model of spinal locomotor circuits receiving supraspinal drives and limb sensory feedback that could reproduce multiple experimental data obtained in intact and spinal-transected cats during tied-belt and split-belt treadmill locomotion. We provide evidence that the spinal locomotor network operates in different regimes depending on locomotor speed. In an intact system, at slow speeds (<0.4 m/s), the spinal network operates in a non-oscillating state-machine regime and requires sensory feedback or external inputs for phase transitions. Removing sensory feedback related to limb extension prevents locomotor oscillations at slow speeds. With increasing speed and supraspinal drives, the spinal network switches to a flexor-driven oscillatory regime and then to a classical half-center regime. Following spinal transection, the model predicts that the spinal network can only operate in the state-machine regime. Our results suggest that the spinal network operates in different regimes for slow exploratory and fast escape locomotor behaviors, making use of different control mechanisms.
Collapse
Affiliation(s)
- Ilya A Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel UniversityPhiladelphiaUnited States
| | - Natalia A Shevtsova
- Department of Neurobiology and Anatomy, College of Medicine, Drexel UniversityPhiladelphiaUnited States
| | - Sergey N Markin
- Department of Neurobiology and Anatomy, College of Medicine, Drexel UniversityPhiladelphiaUnited States
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de SherbrookeSherbrookeCanada
| |
Collapse
|
5
|
Klishko AN, Harnie J, Hanson CE, Rahmati SM, Rybak IA, Frigon A, Prilutsky BI. EFFECTS OF SPINAL TRANSECTION AND LOCOMOTOR SPEED ON MUSCLE SYNERGIES OF THE CAT HINDLIMB. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613891. [PMID: 39345603 PMCID: PMC11429932 DOI: 10.1101/2024.09.19.613891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
It was suggested that during locomotion, the nervous system controls movement by activating groups of muscles, or muscle synergies. Analysis of muscle synergies can reveal the organization of spinal locomotor networks and how it depends on the state of the nervous system, such as before and after spinal cord injury, and on different locomotor conditions, including a change in speed. The goal of this study was to investigate the effects of spinal transection and locomotor speed on hindlimb muscle synergies and their time-dependent activity patterns in adult cats. EMG activities of 15 hindlimb muscles were recorded in 9 adult cats of either sex during tied-belt treadmill locomotion at speeds of 0.4, 0.7, and 1.0 m/s before and after recovery from a low thoracic spinal transection. We determined EMG burst groups using cluster analysis of EMG burst onset and offset times and muscle synergies using non-negative matrix factorization. We found five major EMG burst groups and five muscle synergies in each of six experimental conditions (2 states × 3 speeds). In each case, the synergies accounted for at least 90% of muscle EMG variance. Both spinal transection and locomotion speed modified subgroups of EMG burst groups and the composition and activation patterns of selected synergies. However, these changes did not modify the general organization of muscle synergies. Based on the obtained results, we propose an organization for a pattern formation network of a two-level central pattern generator that can be tested in neuromechanical simulations of spinal circuits controlling cat locomotion.
Collapse
Affiliation(s)
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Claire E Hanson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | | | - Ilya A Rybak
- Department of Neurobiology and Anatomy; Drexel University, Philadelphia, PA
| | - Alain Frigon
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
6
|
Angelin LG, Carreño MNP, Otoch JP, de Resende JCF, Arévalo A, Motta-Teixeira LC, Seelaender MCL, Lepski G. Regeneration and Plasticity Induced by Epidural Stimulation in a Rodent Model of Spinal Cord Injury. Int J Mol Sci 2024; 25:9043. [PMID: 39201729 PMCID: PMC11354918 DOI: 10.3390/ijms25169043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 09/03/2024] Open
Abstract
Traumatic spinal cord injury is a major cause of disability for which there are currently no fully effective treatments. Recent studies using epidural electrical stimulation have shown significant advances in motor rehabilitation, even when applied during chronic phases of the disease. The present study aimed to investigate the effectiveness of epidural electric stimulation in the motor recovery of rats with spinal cord injury. Furthermore, we aimed to elucidate the neurophysiological mechanisms underlying motor recovery. First, we improved upon the impact spinal cord injury model to cause severe and permanent motor deficits lasting up to 2 months. Next, we developed and tested an implantable epidural spinal cord stimulator device for rats containing an electrode and an implantable generator. Finally, we evaluated the efficacy of epidural electrical stimulation on motor recovery after spinal cord injury in Wistar rats. A total of 60 animals were divided into the following groups: (i) severe injury with epidural electrical stimulation (injury + stim, n = 15), (ii) severe injury without stimulation (group injury, n = 15), (iii) sham implantation without battery (sham, n = 15), and (iv) a control group, without surgical intervention (control, n = 15). All animals underwent weekly evaluations using the Basso, Beattie, Bresnahan (BBB) locomotor rating scale index, inclined plane, and OpenField test starting one week before the lesion and continuing for eight weeks. After this period, the animals were sacrificed and their spinal cords were explanted and prepared for histological analysis (hematoxylin-eosin) and immunohistochemistry for NeuN, β-III-tubulin, synaptophysin, and Caspase 3. Finally, NeuN-positive neuronal nuclei were quantified through stereology; fluorescence signal intensities for β-tubulin, synaptophyin, and Caspase 3 were quantified using an epifluorescence microscope. The injury + stim group showed significant improvement on the BBB scale compared with the injured group after the 5th week (p < 0.05). Stereological analysis showed a significantly higher average count of neural cells in the injury + stim group in relation to the injury group (1783 ± 2 vs. 897 ± 3, p < 0.001). Additionally, fluorescence signal intensity for synaptophysin was significantly higher in the injury + stim group in relation to the injury group (1294 ± 46 vs. 1198 ± 23, p < 0.01); no statistically significant difference was found in β-III-tubulin signal intensity. Finally, Caspase 3 signal intensity was significantly lower in the stim group (727 ± 123) compared with the injury group (1225 ± 87 p < 0.05), approaching levels observed in the sham and control groups. Our data suggest a regenerative and protective effect of epidural electrical stimulation in rats subjected to impact-induced traumatic spinal cord injury.
Collapse
Affiliation(s)
- Leonidas Gomes Angelin
- Laboratory of Medical Investigation, LIM26, Department of Experimental Surgery, Medical School, University of Sao Paulo, Sao Paulo 01246-903, Brazil
| | - Marcelo Nelson Páez Carreño
- Microelectronics and Materials Laboratory, Polytechnic School, University of Sao Paulo, Sao Paulo 05508-010, Brazil
| | - Jose Pinhata Otoch
- Laboratory of Medical Investigation, LIM26, Department of Experimental Surgery, Medical School, University of Sao Paulo, Sao Paulo 01246-903, Brazil
| | - Joyce Cristina Ferreira de Resende
- Laboratory of Medical Investigation, LIM26, Department of Experimental Surgery, Medical School, University of Sao Paulo, Sao Paulo 01246-903, Brazil
| | - Analía Arévalo
- Laboratory of Medical Investigation, LIM26, Department of Experimental Surgery, Medical School, University of Sao Paulo, Sao Paulo 01246-903, Brazil
| | - Lívia Clemente Motta-Teixeira
- Laboratory of Neuroplasticity and Behaviour, Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo 01221-020, Brazil;
| | - Marilia Cerqueira Leite Seelaender
- Laboratory of Medical Investigation, LIM26, Department of Experimental Surgery, Medical School, University of Sao Paulo, Sao Paulo 01246-903, Brazil
| | - Guilherme Lepski
- Laboratory of Medical Investigation, LIM26, Department of Experimental Surgery, Medical School, University of Sao Paulo, Sao Paulo 01246-903, Brazil
| |
Collapse
|
7
|
Strohmer B, Najarro E, Ausborn J, Berg RW, Tolu S. Sparse Firing in a Hybrid Central Pattern Generator for Spinal Motor Circuits. Neural Comput 2024; 36:759-780. [PMID: 38658025 DOI: 10.1162/neco_a_01660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/02/2024] [Indexed: 04/26/2024]
Abstract
Central pattern generators are circuits generating rhythmic movements, such as walking. The majority of existing computational models of these circuits produce antagonistic output where all neurons within a population spike with a broad burst at about the same neuronal phase with respect to network output. However, experimental recordings reveal that many neurons within these circuits fire sparsely, sometimes as rarely as once within a cycle. Here we address the sparse neuronal firing and develop a model to replicate the behavior of individual neurons within rhythm-generating populations to increase biological plausibility and facilitate new insights into the underlying mechanisms of rhythm generation. The developed network architecture is able to produce sparse firing of individual neurons, creating a novel implementation for exploring the contribution of network architecture on rhythmic output. Furthermore, the introduction of sparse firing of individual neurons within the rhythm-generating circuits is one of the factors that allows for a broad neuronal phase representation of firing at the population level. This moves the model toward recent experimental findings of evenly distributed neuronal firing across phases among individual spinal neurons. The network is tested by methodically iterating select parameters to gain an understanding of how connectivity and the interplay of excitation and inhibition influence the output. This knowledge can be applied in future studies to implement a biologically plausible rhythm-generating circuit for testing biological hypotheses.
Collapse
Affiliation(s)
- Beck Strohmer
- Department of Electrical and Photonics Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Elias Najarro
- Department of Digital Design, IT University of Copenhagen, DK-2300 Copenhagen, Denmark
| | - Jessica Ausborn
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, U.S.A.
| | - Rune W Berg
- Department of Neuroscience, University of Copenhagen, DK-1165 Copenhagen, Denmark
| | - Silvia Tolu
- Department of Electrical and Photonics Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
8
|
Skiadopoulos A, Knikou M. Tapping into the human spinal locomotor centres with transspinal stimulation. Sci Rep 2024; 14:5990. [PMID: 38472313 PMCID: PMC10933285 DOI: 10.1038/s41598-024-56579-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/08/2024] [Indexed: 03/14/2024] Open
Abstract
Human locomotion is controlled by spinal neuronal networks of similar properties, function, and organization to those described in animals. Transspinal stimulation affects the spinal locomotor networks and is used to improve standing and walking ability in paralyzed people. However, the function of locomotor centers during transspinal stimulation at different frequencies and intensities is not known. Here, we document the 3D joint kinematics and spatiotemporal gait characteristics during transspinal stimulation at 15, 30, and 50 Hz at sub-threshold and supra-threshold stimulation intensities. We document the temporal structure of gait patterns, dynamic stability of joint movements over stride-to-stride fluctuations, and limb coordination during walking at a self-selected speed in healthy subjects. We found that transspinal stimulation (1) affects the kinematics of the hip, knee, and ankle joints, (2) promotes a more stable coordination at the left ankle, (3) affects interlimb coordination of the thighs, and (4) intralimb coordination between thigh and foot, (5) promotes greater dynamic stability of the hips, (6) increases the persistence of fluctuations in step length variability, and lastly (7) affects mechanical walking stability. These results support that transspinal stimulation is an important neuromodulatory strategy that directly affects gait symmetry and dynamic stability. The conservation of main effects at different frequencies and intensities calls for systematic investigation of stimulation protocols for clinical applications.
Collapse
Affiliation(s)
- Andreas Skiadopoulos
- Klab4Recovery Research Program, The City University of New York, New York, USA
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA
| | - Maria Knikou
- Klab4Recovery Research Program, The City University of New York, New York, USA.
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA.
- PhD Program in Biology and Collaborative Neuroscience Program, Graduate Center of The City University of New York and College of Staten Island, New York, USA.
- Klab4Recovery Research Program, Neurosciences/Graduate Center of CUNY, DPT Department/College of Staten Island, 2800 Victory Blvd, 5N-207, New York, 10314, USA.
| |
Collapse
|
9
|
Aune MA, Roaas TV, Lorås HW, Nynes A, Aune TK. Bilateral Force Deficit in Proximal Effectors Versus Distal Effectors in Lower Extremities. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2024; 95:140-148. [PMID: 37036383 DOI: 10.1080/02701367.2023.2166893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 01/05/2023] [Indexed: 06/19/2023]
Abstract
Purpose: Bilateral force deficit occurs when the maximal generated force during simultaneous bilateral muscle contractions is lower than the sum of forces generated unilaterally. Neural inhibition is stated as the main source for bilateral force deficit. Based on differences in bilateral neural organization, there might be a pronounced neural inhibition for proximal compared to distal effectors. The aim of the present experiment was to evaluate potential differences in bilateral force deficit in proximal compared to distal effectors in lower extremities. Methods: Fifteen young adults performed single-joint maximal voluntary contractions in isometric dorsiflexion of ankle (distal) and knee (proximal) extension unilaterally and bilaterally. Results: Results showed a significant absolute bilateral force deficit for both proximal (123.46 ± 59.51 N) and distal effectors (33.00 ± 35.60 N). Interestingly, the relative bilateral force deficit for knee extension was significantly larger compared to dorsiflexion of ankle, 19.98 ± 10.04% and 10.27 ± 9.57%, respectively. Our results indicate a significantly higher bilateral force deficit for proximal effectors compared to distal effectors. Conclusion: Plausible explanations are related to neuroanatomical and neurophysiological differences between proximal effectors and distal effectors where proximal muscles have a higher potential for bilateral communication compared to distal muscles. In addition, higher forces produced with proximal effectors could cause a higher perceived exertion and cause a more pronounced bilateral force deficit to proximal effectors.
Collapse
Affiliation(s)
| | | | - H W Lorås
- NTNU - Norwegian University of Science and Technology
| | | | | |
Collapse
|
10
|
Chalif JI, Chavarro VS, Mensah E, Johnston B, Fields DP, Chalif EJ, Chiang M, Sutton O, Yong R, Trumbower R, Lu Y. Epidural Spinal Cord Stimulation for Spinal Cord Injury in Humans: A Systematic Review. J Clin Med 2024; 13:1090. [PMID: 38398403 PMCID: PMC10889415 DOI: 10.3390/jcm13041090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
(1) Background: Spinal cord injury (SCI) represents a major health challenge, often leading to significant and permanent sensorimotor and autonomic dysfunctions. This study reviews the evolving role of epidural spinal cord stimulation (eSCS) in treating chronic SCI, focusing on its efficacy and safety. The objective was to analyze how eSCS contributes to the recovery of neurological functions in SCI patients. (2) Methods: We utilized the PRISMA guidelines and performed a comprehensive search across MEDLINE/PubMed, Embase, Web of Science, and IEEE Xplore databases up until September 2023. We identified studies relevant to eSCS in SCI and extracted assessments of locomotor, cardiovascular, pulmonary, and genitourinary functions. (3) Results: A total of 64 studies encompassing 306 patients were identified. Studies investigated various stimulation devices, parameters, and rehabilitation methods. Results indicated significant improvements in motor function: 44% of patients achieved assisted or independent stepping or standing; 87% showed enhanced muscle activity; 65% experienced faster walking speeds; and 80% improved in overground walking. Additionally, eSCS led to better autonomic function, evidenced by improvements in bladder and sexual functions, airway pressures, and bowel movements. Notable adverse effects included device migration, infections, and post-implant autonomic dysreflexia, although these were infrequent. (4) Conclusion: Epidural spinal cord stimulation is emerging as an effective and generally safe treatment for chronic SCI, particularly when combined with intensive physical rehabilitation. Future research on standardized stimulation parameters and well-defined therapy regimens will optimize benefits for specific patient populations.
Collapse
Affiliation(s)
- J. I. Chalif
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.I.C.); (V.S.C.); (B.J.)
- Harvard Medical School, Boston, MA 02115, USA; (M.C.); (R.Y.); (R.T.)
| | - V. S. Chavarro
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.I.C.); (V.S.C.); (B.J.)
- Harvard Medical School, Boston, MA 02115, USA; (M.C.); (R.Y.); (R.T.)
- Department of Physical Medicine and Rehabilitation, Spaulding Hospital Cambridge, Cambridge, MA 02115, USA
| | - E. Mensah
- Chan School of Public Health, Harvard University, Boston, MA 02115, USA;
| | - B. Johnston
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.I.C.); (V.S.C.); (B.J.)
- Harvard Medical School, Boston, MA 02115, USA; (M.C.); (R.Y.); (R.T.)
| | - D. P. Fields
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - E. J. Chalif
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.I.C.); (V.S.C.); (B.J.)
- Harvard Medical School, Boston, MA 02115, USA; (M.C.); (R.Y.); (R.T.)
| | - M. Chiang
- Harvard Medical School, Boston, MA 02115, USA; (M.C.); (R.Y.); (R.T.)
- Department of Physical Medicine and Rehabilitation, Spaulding Hospital Cambridge, Cambridge, MA 02115, USA
- Department of Anesthesiology Perioperative and Pain Management, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - O. Sutton
- Department of Anesthesiology Perioperative and Pain Management, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - R. Yong
- Harvard Medical School, Boston, MA 02115, USA; (M.C.); (R.Y.); (R.T.)
- Department of Anesthesiology Perioperative and Pain Management, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - R. Trumbower
- Harvard Medical School, Boston, MA 02115, USA; (M.C.); (R.Y.); (R.T.)
- Department of Physical Medicine and Rehabilitation, Spaulding Hospital Cambridge, Cambridge, MA 02115, USA
| | - Y. Lu
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.I.C.); (V.S.C.); (B.J.)
- Harvard Medical School, Boston, MA 02115, USA; (M.C.); (R.Y.); (R.T.)
| |
Collapse
|
11
|
Zhou K, Wei W, Yang D, Zhang H, Yang W, Zhang Y, Nie Y, Hao M, Wang P, Ruan H, Zhang T, Wang S, Liu Y. Dual electrical stimulation at spinal-muscular interface reconstructs spinal sensorimotor circuits after spinal cord injury. Nat Commun 2024; 15:619. [PMID: 38242904 PMCID: PMC10799086 DOI: 10.1038/s41467-024-44898-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
The neural signals produced by varying electrical stimulation parameters lead to characteristic neural circuit responses. However, the characteristics of neural circuits reconstructed by electrical signals remain poorly understood, which greatly limits the application of such electrical neuromodulation techniques for the treatment of spinal cord injury. Here, we develop a dual electrical stimulation system that combines epidural electrical and muscle stimulation to mimic feedforward and feedback electrical signals in spinal sensorimotor circuits. We demonstrate that a stimulus frequency of 10-20 Hz under dual stimulation conditions is required for structural and functional reconstruction of spinal sensorimotor circuits, which not only activates genes associated with axonal regeneration of motoneurons, but also improves the excitability of spinal neurons. Overall, the results provide insights into neural signal decoding during spinal sensorimotor circuit reconstruction, suggesting that the combination of epidural electrical and muscle stimulation is a promising method for the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Kai Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University; Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215123, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Wei Wei
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University; Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215123, China
| | - Dan Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University; Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215123, China
- Department of Anatomy, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China
| | - Hui Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University; Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215123, China
| | - Wei Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University; Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215123, China
| | - Yunpeng Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Yingnan Nie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Mingming Hao
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, China
- Ningbo Medical Centre Lihuili Hospital, Ningbo, Zhejiang, 315048, China
| | - Pengcheng Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Hang Ruan
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ting Zhang
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, China
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Yaobo Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University; Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215123, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
12
|
Taitano RI, Yakovenko S, Gritsenko V. Muscle anatomy is reflected in the spatial organization of the spinal motoneuron pools. Commun Biol 2024; 7:97. [PMID: 38225362 PMCID: PMC10789783 DOI: 10.1038/s42003-023-05742-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 12/26/2023] [Indexed: 01/17/2024] Open
Abstract
Neural circuits embed limb dynamics for motor control and sensorimotor integration. The somatotopic organization of motoneuron pools in the spinal cord may support these computations. Here, we tested if the spatial organization of motoneurons is related to the musculoskeletal anatomy. We created a 3D model of motoneuron locations within macaque spinal cord and compared the spatial distribution of motoneurons to the anatomical organization of the muscles they innervate. We demonstrated that the spatial distribution of motoneuron pools innervating the upper limb and the anatomical relationships between the muscles they innervate were similar between macaque and human species. Using comparative analysis, we found that the distances between motoneuron pools innervating synergistic muscles were the shortest, followed by those innervating antagonistic muscles. Such spatial organization can support the co-activation of synergistic muscles and reciprocal inhibition of antagonistic muscles. The spatial distribution of motoneurons may play an important role in embedding musculoskeletal dynamics.
Collapse
|
13
|
Capogrosso M, Balaguer JM, Prat-Ortega G, Verma N, Yadav P, Sorensen E, de Freitas R, Ensel S, Borda L, Donadio S, Liang L, Ho J, Damiani A, Grigsby E, Fields D, Gonzalez-Martinez J, Gerszten P, Weber D, Pirondini E. Supraspinal control of motoneurons after paralysis enabled by spinal cord stimulation. RESEARCH SQUARE 2024:rs.3.rs-3650257. [PMID: 38260333 PMCID: PMC10802737 DOI: 10.21203/rs.3.rs-3650257/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Spinal cord stimulation (SCS) restores motor control after spinal cord injury (SCI) and stroke. This evidence led to the hypothesis that SCS facilitates residual supraspinal inputs to spinal motoneurons. Instead, here we show that SCS does not facilitate residual supraspinal inputs but directly triggers motoneurons action potentials. However, supraspinal inputs can shape SCS-mediated activity, mimicking volitional control of motoneuron firing. Specifically, by combining simulations, intraspinal electrophysiology in monkeys and single motor unit recordings in humans with motor paralysis, we found that residual supraspinal inputs transform subthreshold SCS-induced excitatory postsynaptic potentials into suprathreshold events. We then demonstrated that only a restricted set of stimulation parameters enables volitional control of motoneuron firing and that lesion severity further restricts the set of effective parameters. Our results explain the facilitation of voluntary motor control during SCS while predicting the limitations of this neurotechnology in cases of severe loss of supraspinal axons.
Collapse
Affiliation(s)
| | - Josep-Maria Balaguer
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhao H, Li Y, Zhang Y, Zhang C. Changes in myelinated nerve fibers induced by pulsed electrical stimulation: A microstructural perspective on the causes of electrical stimulation side effects. Biochem Biophys Res Commun 2024; 691:149331. [PMID: 38039835 DOI: 10.1016/j.bbrc.2023.149331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/17/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Electrical brain stimulation technology is widely used in the clinic to treat brain neurological disorders. However, during treatment, patients may experience side effects such as pain, poor limb coordination, and skin rash. Previous reports have focused on the brilliant chapter on electrical brain stimulation technology and have not paid attention to patients' suffering caused by side effects during treatment. In this study, electrodes were arranged on the medulla oblongata. Pulsed electric fields of different frequencies were used to perform electrical stimulation to study the impact of electric fields on myelinated nerve fibers and reveal the possible microstructural origin of side effects. Transmission electron microscopy was used to analyze and quantify the changes in microstructure. The results illustrated that myelinated nerve fibers underwent atrophy under pulsed electric fields, with the mildest degree of atrophy under high-frequency (400 Hz) electric fields. Myelin sheaths experienced plate separation under pulsed electric fields, and a distinct laminar structure appeared. The microstructure changes may be related to the side effects of clinical electrical stimulation. This study can provide pathological possibilities for exploring the causes of the side effects of electrical stimulation and supply guidance for selecting electrical parameters for clinical electrical stimulation therapy from a distinctive perspective.
Collapse
Affiliation(s)
- Hongwei Zhao
- Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, Changchun, 130025, PR China; School of Mechanical & Aerospace Engineering, Jilin University, Changchun, 130025, PR China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, PR China; Chongqing Research Institute of Jilin University, Chongqing, 401120, PR China
| | - Yiqiang Li
- Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, Changchun, 130025, PR China; School of Mechanical & Aerospace Engineering, Jilin University, Changchun, 130025, PR China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, PR China; Chongqing Research Institute of Jilin University, Chongqing, 401120, PR China
| | - Yibo Zhang
- Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, Changchun, 130025, PR China; School of Mechanical & Aerospace Engineering, Jilin University, Changchun, 130025, PR China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, PR China; Chongqing Research Institute of Jilin University, Chongqing, 401120, PR China
| | - Chi Zhang
- Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, Changchun, 130025, PR China; School of Mechanical & Aerospace Engineering, Jilin University, Changchun, 130025, PR China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, PR China; Chongqing Research Institute of Jilin University, Chongqing, 401120, PR China.
| |
Collapse
|
15
|
Skiadopoulos A, Knikou M. Tapping Into the Human Spinal Locomotor Centres With Transspinal Stimulation. RESEARCH SQUARE 2024:rs.3.rs-3818499. [PMID: 38260677 PMCID: PMC10802712 DOI: 10.21203/rs.3.rs-3818499/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Human locomotion is controlled by spinal neuronal networks of similar properties, function, and organization to those described in animals. Transspinal stimulation affects the spinal locomotor networks and is used to improve standing and walking ability in paralyzed people. However, the function of locomotor centers during transspinal stimulation at different frequencies and intensities is not known. Here, we document the 3D joint kinematics and spatiotemporal gait characteristics during transspinal stimulation at 15, 30, and 50 Hz at sub-threshold and supra-threshold stimulation intensities. We document the temporal structure of gait patterns, dynamic stability of joint movements over stride-to-stride fluctuations, and limb coordination during walking at a self-selected speed in healthy subjects. We found that transspinal stimulation 1) affects the kinematics of the hip, knee, and ankle joints, 2) promotes a more stable coordination at the left ankle, 3) improves interlimb coordination of the thighs, 4) improves intralimb coordination between thigh and foot, 5) promotes greater dynamic stability of the hips, and lastly 6) affects the mechanical stability of the joints. These results support that transspinal stimulation is an important neuromodulatory strategy that directly affects gait symmetry and dynamic stability. The conservation of main effects at different frequencies and intensities calls for systematic investigation of stimulation protocols for clinical applications.
Collapse
Affiliation(s)
| | - Maria Knikou
- City University of New York and College of Staten Island
| |
Collapse
|
16
|
Martínez-Rubio C, Baena-Raya A, Díez-Fernández DM, Rodríguez-Pérez MA, Pareja-Blanco F. Examining Unilateral and Bilateral Exercises through the Load-velocity Relationship. Int J Sports Med 2024; 45:41-47. [PMID: 37557918 DOI: 10.1055/a-2151-0661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
This study aimed to examine the load-velocity (L-V) relationship in the bench-press (BP) and leg-press (LP) exercises performed unilaterally, and compared this unilateral L-V relationship with the bilateral variants. Nineteen men (age=23.5±2.1 years) completed two incremental tests in BP and LP, performed bilaterally and unilaterally, across two sessions with a 48-hour rest period. We found a close relationship between medium propulsive velocity (MPV) and %1RM in unilateral BP (R2 =0.97, SEE=0.06 m·s-1) and LP (R2=0.96, SEE=0.06 m·s-1). No significant differences were observed between the preferred and non-preferred sides in the L-V relationship for either exercise. Additionally, higher velocities were achieved in unilateral exercises compared to bilateral exercises, particularly with light and moderate loads (30-70%1RM) in BP (p<0.05) and with light loads (30-45%1RM) in LP (p<0.05). Close L-V relationships were observed in unilateral exercises, without differences in the L-V relationships between preferred and non-preferred sides despite the interlimb asymmetries in the absolute strength values. Interestingly, lower velocities were observed at light loads (~30-45% 1RM) for bilateral compared to unilateral exercises, which could be explained by different strength deficits for these exercises.
Collapse
Affiliation(s)
- Carlos Martínez-Rubio
- Department of Education, Faculty of Education Sciences, University of Almeria, Almería, Spain
- CERNEP Research Center, SPORT Research Group (CTS1024), Almería, Spain
| | - Andrés Baena-Raya
- Department of Education, Faculty of Education Sciences, University of Almeria, Almería, Spain
- CERNEP Research Center, SPORT Research Group (CTS1024), Almería, Spain
| | - David M Díez-Fernández
- Department of Education, Faculty of Education Sciences, University of Almeria, Almería, Spain
- CERNEP Research Center, SPORT Research Group (CTS1024), Almería, Spain
| | - Manuel Antonio Rodríguez-Pérez
- Department of Education, Faculty of Education Sciences, University of Almeria, Almería, Spain
- CERNEP Research Center, SPORT Research Group (CTS1024), Almería, Spain
| | - Fernando Pareja-Blanco
- Department of Sports and Computers Sciences, Pablo de Olavide University, Sevilla, Spain
| |
Collapse
|
17
|
Balaguer JM, Prat-Ortega G, Verma N, Yadav P, Sorensen E, de Freitas R, Ensel S, Borda L, Donadio S, Liang L, Ho J, Damiani A, Grigsby E, Fields DP, Gonzalez-Martinez JA, Gerszten PC, Fisher LE, Weber DJ, Pirondini E, Capogrosso M. SUPRASPINAL CONTROL OF MOTONEURONS AFTER PARALYSIS ENABLED BY SPINAL CORD STIMULATION. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.29.23298779. [PMID: 38076797 PMCID: PMC10705627 DOI: 10.1101/2023.11.29.23298779] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Spinal cord stimulation (SCS) restores motor control after spinal cord injury (SCI) and stroke. This evidence led to the hypothesis that SCS facilitates residual supraspinal inputs to spinal motoneurons. Instead, here we show that SCS does not facilitate residual supraspinal inputs but directly triggers motoneurons action potentials. However, supraspinal inputs can shape SCS-mediated activity, mimicking volitional control of motoneuron firing. Specifically, by combining simulations, intraspinal electrophysiology in monkeys and single motor unit recordings in humans with motor paralysis, we found that residual supraspinal inputs transform subthreshold SCS-induced excitatory postsynaptic potentials into suprathreshold events. We then demonstrated that only a restricted set of stimulation parameters enables volitional control of motoneuron firing and that lesion severity further restricts the set of effective parameters. Our results explain the facilitation of voluntary motor control during SCS while predicting the limitations of this neurotechnology in cases of severe loss of supraspinal axons.
Collapse
Affiliation(s)
- Josep-Maria Balaguer
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, US
| | - Genis Prat-Ortega
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- Dept. of Neurological Surgery, University of Pittsburgh, Pittsburgh, US
| | - Nikhil Verma
- Dept. of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, US
| | - Prakarsh Yadav
- Dept. of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, US
| | - Erynn Sorensen
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, US
| | - Roberto de Freitas
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- Dept. of Neurological Surgery, University of Pittsburgh, Pittsburgh, US
| | - Scott Ensel
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, US
| | - Luigi Borda
- Dept. of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, US
| | - Serena Donadio
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
| | - Lucy Liang
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, US
| | - Jonathan Ho
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- School of Medicine, University of Pittsburgh, Pittsburgh, US
| | - Arianna Damiani
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, US
| | - Erinn Grigsby
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- Dept. of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, US
| | - Daryl P. Fields
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- Dept. of Neurological Surgery, University of Pittsburgh, Pittsburgh, US
| | | | - Peter C. Gerszten
- Dept. of Neurological Surgery, University of Pittsburgh, Pittsburgh, US
| | - Lee E. Fisher
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, US
- Dept. of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, US
- Dept. of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, US
| | - Douglas J. Weber
- Dept. of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, US
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, US
| | - Elvira Pirondini
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, US
- Dept. of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, US
| | - Marco Capogrosso
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, US
- Dept. of Neurological Surgery, University of Pittsburgh, Pittsburgh, US
| |
Collapse
|
18
|
Zou S, Zheng Y, Jiang X, Lan YL, Chen Z, Xu C. Shed a New Light on Spinal Cord Injury-induced Permanent Paralysis with the Brain-spine Interface. Neurosci Bull 2023; 39:1898-1900. [PMID: 37768518 PMCID: PMC10661654 DOI: 10.1007/s12264-023-01127-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Affiliation(s)
- Shuang Zou
- Xinhua Hospital of Zhejiang Province, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yang Zheng
- Xinhua Hospital of Zhejiang Province, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Neurology, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China
| | - Xuhong Jiang
- Xinhua Hospital of Zhejiang Province, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Neurology, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China
| | - Yu-Long Lan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Zhong Chen
- Xinhua Hospital of Zhejiang Province, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Cenglin Xu
- Xinhua Hospital of Zhejiang Province, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
19
|
Di Russo A, Stanev D, Sabnis A, Danner SM, Ausborn J, Armand S, Ijspeert A. Investigating the roles of reflexes and central pattern generators in the control and modulation of human locomotion using a physiologically plausible neuromechanical model. J Neural Eng 2023; 20:066006. [PMID: 37757805 DOI: 10.1088/1741-2552/acfdcc] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/27/2023] [Indexed: 09/29/2023]
Abstract
Objective.Studying the neural components regulating movement in human locomotion is obstructed by the inability to perform invasive experimental recording in the human neural circuits. Neuromechanical simulations can provide insights by modeling the locomotor circuits. Past neuromechanical models proposed control of locomotion either driven by central pattern generators (CPGs) with simple sensory commands or by a purely reflex-based network regulated by state-machine mechanisms, which activate and deactivate reflexes depending on the detected gait cycle phases. However, the physiological interpretation of these state machines remains unclear. Here, we present a physiologically plausible model to investigate spinal control and modulation of human locomotion.Approach.We propose a bio-inspired controller composed of two coupled CPGs that produce the rhythm and pattern, and a reflex-based network simulating low-level reflex pathways and Renshaw cells. This reflex network is based on leaky-integration neurons, and the whole system does not rely on changing reflex gains according to the gait cycle state. The musculoskeletal model is composed of a skeletal structure and nine muscles per leg generating movement in sagittal plane.Main results.Optimizing the open parameters for effort minimization and stability, human kinematics and muscle activation naturally emerged. Furthermore, when CPGs were not activated, periodic motion could not be achieved through optimization, suggesting the necessity of this component to generate rhythmic behavior without a state machine mechanism regulating reflex activation. The controller could reproduce ranges of speeds from 0.3 to 1.9 m s-1. The results showed that the net influence of feedback on motoneurons (MNs) during perturbed locomotion is predominantly inhibitory and that the CPGs provide the timing of MNs' activation by exciting or inhibiting muscles in specific gait phases.Significance.The proposed bio-inspired controller could contribute to our understanding of locomotor circuits of the intact spinal cord and could be used to study neuromotor disorders.
Collapse
Affiliation(s)
| | | | | | - Simon M Danner
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States of America
| | - Jessica Ausborn
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States of America
| | - Stéphane Armand
- Kinesiology Laboratory, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
20
|
Otani Y, Katagiri Y, Imai E, Kowa H. Action-rule-based cognitive control enables efficient execution of stimulus-response conflict tasks: a model validation of Simon task performance. Front Hum Neurosci 2023; 17:1239207. [PMID: 38034070 PMCID: PMC10687480 DOI: 10.3389/fnhum.2023.1239207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction The human brain can flexibly modify behavioral rules to optimize task performance (speed and accuracy) by minimizing cognitive load. To show this flexibility, we propose an action-rule-based cognitive control (ARC) model. The ARC model was based on a stochastic framework consistent with an active inference of the free energy principle, combined with schematic brain network systems regulated by the dorsal anterior cingulate cortex (dACC), to develop several hypotheses for demonstrating the validity of the ARC model. Methods A step-motion Simon task was developed involving congruence or incongruence between important symbolic information (illustration of a foot labeled "L" or "R," where "L" requests left and "R" requests right foot movement) and irrelevant spatial information (whether the illustration is actually of a left or right foot). We made predictions for behavioral and brain responses to testify to the theoretical predictions. Results Task responses combined with event-related deep-brain activity (ER-DBA) measures demonstrated a key contribution of the dACC in this process and provided evidence for the main prediction that the dACC could reduce the Shannon surprise term in the free energy formula by internally reversing the irrelevant rapid anticipatory postural adaptation. We also found sequential effects with modulated dip depths of ER-DBA waveforms that support the prediction that repeated stimuli with the same congruency can promote remodeling of the internal model through the information gain term while counterbalancing the surprise term. Discussion Overall, our results were consistent with experimental predictions, which may support the validity of the ARC model. The sequential effect accompanied by dip modulation of ER-DBA waveforms suggests that cognitive cost is saved while maintaining cognitive performance in accordance with the framework of the ARC based on 1-bit congruency-dependent selective control.
Collapse
Affiliation(s)
- Yoshitaka Otani
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
- Faculty of Rehabilitation, Kobe International University, Kobe, Japan
| | - Yoshitada Katagiri
- Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyō, Japan
| | - Emiko Imai
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Hisatomo Kowa
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|
21
|
Minassian K, Bayart A, Lackner P, Binder H, Freundl B, Hofstoetter US. Rare phenomena of central rhythm and pattern generation in a case of complete spinal cord injury. Nat Commun 2023; 14:3276. [PMID: 37280242 DOI: 10.1038/s41467-023-39034-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 05/26/2023] [Indexed: 06/08/2023] Open
Abstract
Lumbar central pattern generators (CPGs) control the basic rhythm and coordinate muscle activation underlying hindlimb locomotion in quadrupedal mammals. The existence and function of CPGs in humans have remained controversial. Here, we investigated a case of a male individual with complete thoracic spinal cord injury who presented with a rare form of self-sustained rhythmic spinal myoclonus in the legs and rhythmic activities induced by epidural electrical stimulation (EES). Analysis of muscle activation patterns suggested that the myoclonus tapped into spinal circuits that generate muscle spasms, rather than reflecting locomotor CPG activity as previously thought. The EES-induced patterns were fundamentally different in that they included flexor-extensor and left-right alternations, hallmarks of locomotor CPGs, and showed spontaneous errors in rhythmicity. These motor deletions, with preserved cycle frequency and period when rhythmic activity resumed, were previously reported only in animal studies and suggest a separation between rhythm generation and pattern formation. Spinal myoclonus and the EES-induced activity demonstrate that the human lumbar spinal cord contains distinct mechanisms for generating rhythmic multi-muscle patterns.
Collapse
Affiliation(s)
- Karen Minassian
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Aymeric Bayart
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Peter Lackner
- Neurological Center, Clinic Penzing, Vienna, Austria
- Department of Neurology, Clinic Floridsdorf, Vienna, Austria
| | | | | | - Ursula S Hofstoetter
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
22
|
Cheng J, Guan NN. A fresh look at propriospinal interneurons plasticity and intraspinal circuits remodeling after spinal cord injury. IBRO Neurosci Rep 2023. [DOI: 10.1016/j.ibneur.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
|
23
|
Tan S, Faull RLM, Curtis MA. The tracts, cytoarchitecture, and neurochemistry of the spinal cord. Anat Rec (Hoboken) 2023; 306:777-819. [PMID: 36099279 DOI: 10.1002/ar.25079] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/01/2022] [Accepted: 09/11/2022] [Indexed: 11/06/2022]
Abstract
The human spinal cord can be described using a range of nomenclatures with each providing insight into its structure and function. Here we have comprehensively reviewed the key literature detailing the general structure, configuration of tracts, the cytoarchitecture of Rexed's laminae, and the neurochemistry at the spinal segmental level. The purpose of this review is to detail current anatomical understanding of how the spinal cord is structured and to aid researchers in identifying gaps in the literature that need to be studied to improve our knowledge of the spinal cord which in turn will improve the potential of therapeutic intervention for disorders of the spinal cord.
Collapse
Affiliation(s)
- Sheryl Tan
- Centre for Brain Research and Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research and Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research and Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| |
Collapse
|
24
|
Powell MP, Verma N, Sorensen E, Carranza E, Boos A, Fields DP, Roy S, Ensel S, Barra B, Balzer J, Goldsmith J, Friedlander RM, Wittenberg GF, Fisher LE, Krakauer JW, Gerszten PC, Pirondini E, Weber DJ, Capogrosso M. Epidural stimulation of the cervical spinal cord for post-stroke upper-limb paresis. Nat Med 2023; 29:689-699. [PMID: 36807682 DOI: 10.1038/s41591-022-02202-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 12/22/2022] [Indexed: 02/22/2023]
Abstract
Cerebral strokes can disrupt descending commands from motor cortical areas to the spinal cord, which can result in permanent motor deficits of the arm and hand. However, below the lesion, the spinal circuits that control movement remain intact and could be targeted by neurotechnologies to restore movement. Here we report results from two participants in a first-in-human study using electrical stimulation of cervical spinal circuits to facilitate arm and hand motor control in chronic post-stroke hemiparesis ( NCT04512690 ). Participants were implanted for 29 d with two linear leads in the dorsolateral epidural space targeting spinal roots C3 to T1 to increase excitation of arm and hand motoneurons. We found that continuous stimulation through selected contacts improved strength (for example, grip force +40% SCS01; +108% SCS02), kinematics (for example, +30% to +40% speed) and functional movements, thereby enabling participants to perform movements that they could not perform without spinal cord stimulation. Both participants retained some of these improvements even without stimulation and no serious adverse events were reported. While we cannot conclusively evaluate safety and efficacy from two participants, our data provide promising, albeit preliminary, evidence that spinal cord stimulation could be an assistive as well as a restorative approach for upper-limb recovery after stroke.
Collapse
Affiliation(s)
- Marc P Powell
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nikhil Verma
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Erynn Sorensen
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erick Carranza
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amy Boos
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daryl P Fields
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | - Souvik Roy
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | - Scott Ensel
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatrice Barra
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey Balzer
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeff Goldsmith
- Department of Biostatistics, Columbia University, New York, NY, USA
| | - Robert M Friedlander
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - George F Wittenberg
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Veterans Affairs HS, Pittsburgh, PA, USA
| | - Lee E Fisher
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - John W Krakauer
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, USA
- The Santa Fe Institute, Santa Fe, NM, USA
| | - Peter C Gerszten
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elvira Pirondini
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Douglas J Weber
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, PA, USA
- The Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Marco Capogrosso
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
25
|
Lou X, Wu Y, Lu S, Shen X. Control strategy for intraspinal microstimulation based on central pattern generator. Comput Methods Biomech Biomed Engin 2023; 26:305-314. [PMID: 35400261 DOI: 10.1080/10255842.2022.2062230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Intraspinal microstimulation (ISMS) is considered as a special functional electrical stimulation (FES) method. This method can restore the movement of paralyzed limbs in patients with spinal cord injury (SCI) using electrical stimulation of spinal cord. There is a special site for central pattern generator (CPG) in the spinal cord. The ISMS acts on the CPG site, and single electrode stimulation produces alternating motion in the hindlimbs of SCI rats. Based on the long short-term memory network (LSTM), a mapping model was established between the stimulation intensity of specific CPG sites and the angle of the knee joint to reflect the motor characteristics of the rat hindlimb. We proposed an LSTM-iterative learning control (ILC) strategy to form a closed-loop control to accurately control hindlimb movement. The proposed LSTM model fits the actual joint angle curve well, and the LSTM-ILC strategy can accurately regulate the hindlimb movement, allowing rats to perform rehabilitation training based on pre-set knee trajectories.
Collapse
Affiliation(s)
- Xiongjie Lou
- School of Information Science and Technology, Nantong University, Nantong, China
| | - Yan Wu
- School of Information Science and Technology, Nantong University, Nantong, China
| | - Song Lu
- School of Information Science and Technology, Nantong University, Nantong, China
| | - Xiaoyan Shen
- School of Information Science and Technology, Nantong University, Nantong, China.,Collaborative Innovation Center for Nerve Regeneration, Nantong University, Nantong, China
| |
Collapse
|
26
|
Neuromodulation with transcutaneous spinal stimulation reveals different groups of motor profiles during robot-guided stepping in humans with incomplete spinal cord injury. Exp Brain Res 2023; 241:365-382. [PMID: 36534141 PMCID: PMC10278039 DOI: 10.1007/s00221-022-06521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
Neuromodulation via spinal stimulation has been investigated for improving motor function and reducing spasticity after spinal cord injury (SCI) in humans. Despite the reported heterogeneity of outcomes, few investigations have attempted to discern commonalities among individual responses to neuromodulation, especially the impact of stimulation frequencies. Here, we examined how exposure to continuous lumbosacral transcutaneous spinal stimulation (TSS) across a range of frequencies affects robotic torques and EMG patterns during stepping in a robotic gait orthosis on a motorized treadmill. We studied nine chronic motor-incomplete SCI individuals (8/1 AIS-C/D, 8 men) during robot-guided stepping with body-weight support without and with TSS applied at random frequencies between 1 and up to 100 Hz at a constant, individually selected stimulation intensity below the common motor threshold for posterior root reflexes. The hip and knee robotic torques needed to maintain the predefined stepping trajectory and EMG in eight bilateral leg muscles were recorded. We calculated the standardized mean difference between the stimulation conditions grouped into frequency bins and the no stimulation condition to determine changes in the normalized torques and the average EMG envelopes. We found heterogeneous changes in robotic torques across individuals. Agglomerative clustering of robotic torques identified four groups wherein the patterns of changes differed in magnitude and direction depending mainly on the stimulation frequency and stance/swing phase. On one end of the spectrum, the changes in robotic torques were greater with increasing stimulation frequencies (four participants), which coincided with a decrease in EMG, mainly due to the reduction of clonogenic motor output in the lower leg muscles. On the other end, we found an inverted u-shape change in torque over the mid-frequency range along with an increase in EMG, reflecting the augmentation of gait-related physiological (two participants) or pathophysiological (one participant) output. We conclude that TSS during robot-guided stepping reveals different frequency-dependent motor profiles among individuals with chronic motor incomplete SCI. This suggests the need for a better understanding and characterization of motor control profiles in SCI when applying TSS as a therapeutic intervention for improving gait.
Collapse
|
27
|
Liu F, Huang Y, Wang H. Rodent Models of Spinal Cord Injury: From Pathology to Application. Neurochem Res 2023; 48:340-361. [PMID: 36303082 DOI: 10.1007/s11064-022-03794-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 02/04/2023]
Abstract
Spinal cord injury (SCI) often has devastating consequences for the patient's physical, mental and occupational health. At present, there is no effective treatment for SCI, and appropriate animal models are very important for studying the pathological manifestations, injury mechanisms, and corresponding treatment. However, the pathological changes in each injury model are different, which creates difficulties in selecting appropriate models for different research purposes. In this article, we analyze various SCI models and introduce their pathological features, including inflammation, glial scar formation, axon regeneration, ischemia-reperfusion injury, and oxidative stress, and evaluate the advantages and disadvantages of each model, which is convenient for selecting suitable models for different injury mechanisms to study therapeutic methods.
Collapse
Affiliation(s)
- Fuze Liu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, People's Republic of China
| | - Yue Huang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, People's Republic of China
| | - Hai Wang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, People's Republic of China.
| |
Collapse
|
28
|
McIntosh JR, Joiner EF, Goldberg JL, Murray LM, Yasin B, Mendiratta A, Karceski SC, Thuet E, Modik O, Shelkov E, Lombardi JM, Sardar ZM, Lehman RA, Mandigo C, Riew KD, Harel NY, Virk MS, Carmel JB. Intraoperative electrical stimulation of the human dorsal spinal cord reveals a map of arm and hand muscle responses. J Neurophysiol 2023; 129:66-82. [PMID: 36417309 PMCID: PMC9799146 DOI: 10.1152/jn.00235.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/18/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Although epidural stimulation of the lumbar spinal cord has emerged as a powerful modality for recovery of movement, how it should be targeted to the cervical spinal cord to activate arm and hand muscles is not well understood, particularly in humans. We sought to map muscle responses to posterior epidural cervical spinal cord stimulation in humans. We hypothesized that lateral stimulation over the dorsal root entry zone would be most effective and responses would be strongest in the muscles innervated by the stimulated segment. Twenty-six people undergoing clinically indicated cervical spine surgery consented to mapping of motor responses. During surgery, stimulation was performed in midline and lateral positions at multiple exposed segments; six arm and three leg muscles were recorded on each side of the body. Across all segments and muscles tested, lateral stimulation produced stronger muscle responses than midline despite similar latency and shape of responses. Muscles innervated at a cervical segment had the largest responses from stimulation at that segment, but responses were also observed in muscles innervated at other cervical segments and in leg muscles. The cervical responses were clustered in rostral (C4-C6) and caudal (C7-T1) cervical segments. Strong responses to lateral stimulation are likely due to the proximity of stimulation to afferent axons. Small changes in response sizes to stimulation of adjacent cervical segments argue for local circuit integration, and distant muscle responses suggest activation of long propriospinal connections. This map can help guide cervical stimulation to improve arm and hand function.NEW & NOTEWORTHY A map of muscle responses to cervical epidural stimulation during clinically indicated surgery revealed strongest activation when stimulating laterally compared to midline and revealed differences to be weaker than expected across different segments. In contrast, waveform shapes and latencies were most similar when stimulating midline and laterally, indicating activation of overlapping circuitry. Thus, a map of the cervical spinal cord reveals organization and may help guide stimulation to activate arm and hand muscles strongly and selectively.
Collapse
Affiliation(s)
- James R McIntosh
- Department of Orthopedic Surgery, https://ror.org/00hj8s172Columbia University, New York, New York
- Department of Neurological Surgery, Weill Cornell Medicine-New York Presbyterian, Och Spine Hospital, New York, New York
| | - Evan F Joiner
- Department of Neurological Surgery, Columbia University, New York, New York
| | - Jacob L Goldberg
- Department of Neurological Surgery, Weill Cornell Medicine-New York Presbyterian, Och Spine Hospital, New York, New York
| | - Lynda M Murray
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York
- James J. Peters Veterans Affairs Medical Center, Bronx, New York
| | - Bushra Yasin
- Department of Orthopedic Surgery, https://ror.org/00hj8s172Columbia University, New York, New York
- Department of Neurological Surgery, Weill Cornell Medicine-New York Presbyterian, Och Spine Hospital, New York, New York
| | - Anil Mendiratta
- Department of Neurology, Columbia University, New York, New York
| | - Steven C Karceski
- Department of Neurology, Weill Cornell Medicine-New York Presbyterian, Och Spine Hospital, New York, New York
| | - Earl Thuet
- New York Presbyterian, Och Spine Hospital, New York, New York
| | - Oleg Modik
- Department of Neurology, Weill Cornell Medicine-New York Presbyterian, Och Spine Hospital, New York, New York
| | - Evgeny Shelkov
- Department of Neurology, Weill Cornell Medicine-New York Presbyterian, Och Spine Hospital, New York, New York
| | - Joseph M Lombardi
- Department of Orthopedic Surgery, https://ror.org/00hj8s172Columbia University, New York, New York
- New York Presbyterian, Och Spine Hospital, New York, New York
| | - Zeeshan M Sardar
- Department of Orthopedic Surgery, https://ror.org/00hj8s172Columbia University, New York, New York
- New York Presbyterian, Och Spine Hospital, New York, New York
| | - Ronald A Lehman
- Department of Orthopedic Surgery, https://ror.org/00hj8s172Columbia University, New York, New York
- New York Presbyterian, Och Spine Hospital, New York, New York
| | - Christopher Mandigo
- Department of Neurological Surgery, Columbia University, New York, New York
- New York Presbyterian, Och Spine Hospital, New York, New York
| | - K Daniel Riew
- Department of Orthopedic Surgery, https://ror.org/00hj8s172Columbia University, New York, New York
- Department of Neurological Surgery, Weill Cornell Medicine-New York Presbyterian, Och Spine Hospital, New York, New York
- New York Presbyterian, Och Spine Hospital, New York, New York
| | - Noam Y Harel
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York
- James J. Peters Veterans Affairs Medical Center, Bronx, New York
| | - Michael S Virk
- Department of Neurological Surgery, Weill Cornell Medicine-New York Presbyterian, Och Spine Hospital, New York, New York
| | - Jason B Carmel
- Department of Orthopedic Surgery, https://ror.org/00hj8s172Columbia University, New York, New York
- Department of Neurology, Columbia University, New York, New York
- Department of Neurological Surgery, Weill Cornell Medicine-New York Presbyterian, Och Spine Hospital, New York, New York
| |
Collapse
|
29
|
Sun SY, Giszter SF, Harkema SJ, Angeli CA. Modular organization of locomotor networks in people with severe spinal cord injury. Front Neurosci 2022; 16:1041015. [PMID: 36570830 PMCID: PMC9768556 DOI: 10.3389/fnins.2022.1041015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Previous studies support modular organization of locomotor circuitry contributing to the activation of muscles in a spatially and temporally organized manner during locomotion. Human spinal circuitry may reorganize after spinal cord injury; however, it is unclear if reorganization of spinal circuitry post-injury affects the modular organization. Here we characterize the modular synergy organization of locomotor muscle activity expressed during assisted stepping in subjects with complete and incomplete spinal cord injury (SCI) of varying chronicity, before any explicit training regimen. We also investigated whether the synergy characteristics changed in two subjects who achieved independent walking after training with spinal cord epidural stimulation. Methods To capture synergy structures during stepping, individuals with SCI were stepped on a body-weight supported treadmill with manual facilitation, while electromyography (EMGs) were recorded from bilateral leg muscles. EMGs were analyzed using non-negative matrix factorization (NMF) and independent component analysis (ICA) to identify synergy patterns. Synergy patterns from the SCI subjects were compared across different clinical characteristics and to non-disabled subjects (NDs). Results Results for both NMF and ICA indicated that the subjects with SCI were similar among themselves, but expressed a greater variability in the number of synergies for criterion variance capture compared to NDs, and weaker correlation to NDs. ICA yielded a greater number of muscle synergies than NMF. Further, the clinical characteristics of SCI subjects and chronicity did not predict any significant differences in the spatial synergy structures despite any neuroplastic changes. Further, post-training synergies did not become closer to ND synergies in two individuals. Discussion These findings suggest fundamental differences between motor modules expressed in SCIs and NDs, as well as a striking level of spatial and temporal synergy stability in motor modules in the SCI population, absent the application of specific interventions.
Collapse
Affiliation(s)
- Soo Yeon Sun
- Department of Physical Therapy, Alvernia University, Reading, PA, United States
| | - Simon F. Giszter
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States,School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Susan J. Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States,Department of Neurological Surgery, University of Louisville, Louisville, KY, United States,Frazier Rehab Institute, University of Louisville Health, Louisville, KY, United States
| | - Claudia A. Angeli
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States,Frazier Rehab Institute, University of Louisville Health, Louisville, KY, United States,Department of Bioengineering, University of Louisville, Louisville, KY, United States,*Correspondence: Claudia A. Angeli,
| |
Collapse
|
30
|
Chen C, Yu Q, Huang Y, Shen XQ, Ding ZZ, Chen GW, Yan J, Gu QG, Mao X. Research on the function of the Cend1 regulatory mechanism on p75NTR signaling in spinal cord injury. Neuropeptides 2022; 95:102264. [PMID: 35728483 DOI: 10.1016/j.npep.2022.102264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/02/2022] [Accepted: 06/02/2022] [Indexed: 12/01/2022]
Abstract
How to use NSC repair mechanisms, minimize the loss of neurons, and recover the damaged spinal cord functions are hotspots and difficulties in spinal cord injury research. Studies have shown that Cend1 signaling is involved in regulating the NSC differentiation, that p75NTR signaling is involved in the regulation of mature neuronal apoptosis and that NSC differentiation decreases mature neuron apoptosis. Our research group found an interaction between Cend1 and p75NTR, and there was a correlation with spinal cord injury. Therefore, we speculate that Cend1 regulates p75NTR signals and promotes the differentiation of NSCs, and inhibits neuronal apoptosis. Therefore, this study first analyzed the expression of p75NTR and Cend1 in spinal cord injury and its relationship with NSCs and neurons and then analyzed the regulatory mechanism and the mechanism of survival on neuronal apoptosis and differentiation of NSCs. Finally, we analyzed the effect of p75NTR and the regulation of Cend1 damage on functional recovery of the spinal cord with overall intervention. The completion of the subject will minimize the loss of neurons, innovative use of NSC repair mechanisms, and open up a new perspective for the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Chen Chen
- Department of Orthopedics, The Second Affiliated Hospital of soochow University, No 1055 Sanxiang Road, Soochow 215000, Jiangsu Province, China; Department of Orthopedics, Dongtai People's Hospital, Kangfu West Road 2, Dongtai 224000, Jiangsu Province, China
| | - Qin Yu
- Department of Imaging, Dongtai People's Hospital, Kangfu West Road 2, Dongtai 224000, Jiangsu Province, China
| | - Yunsheng Huang
- Center of Stomatology, The Second Affiliated Hospital of soochow University,No 1055 Sanxiang Road, Soochow 215000, Jiangsu Province, China
| | - Xiao-Qin Shen
- Department of Orthopedics, Dongtai People's Hospital, Kangfu West Road 2, Dongtai 224000, Jiangsu Province, China
| | - Zhen-Zhong Ding
- Department of Orthopedics, Dongtai People's Hospital, Kangfu West Road 2, Dongtai 224000, Jiangsu Province, China
| | - Gui-Wen Chen
- Department of Orthopedics, Dongtai People's Hospital, Kangfu West Road 2, Dongtai 224000, Jiangsu Province, China
| | - Jun Yan
- Department of Orthopedics, The Second Affiliated Hospital of soochow University, No 1055 Sanxiang Road, Soochow 215000, Jiangsu Province, China.
| | - Qing-Guo Gu
- Department of Orthopedics, Dongtai People's Hospital, Kangfu West Road 2, Dongtai 224000, Jiangsu Province, China.
| | - Xingxing Mao
- Department of Orthopedics, The Sixth People's Hospital of Nantong, Yonghe Road 500, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|
31
|
Harkema S, Angeli C, Gerasimenko Y. Historical development and contemporary use of neuromodulation in human spinal cord injury. Curr Opin Neurol 2022; 35:536-543. [PMID: 35856918 DOI: 10.1097/wco.0000000000001080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW There is a long history of neuromodulation of the spinal cord after injury in humans with recent momentum of studies showing evidence for therapeutic potential. Nonrandomized, mechanistic, hypothesis-driven, small cohort, epidural stimulation proof of principle studies provide insight into the human spinal circuitry functionality and support the pathway toward clinical treatments. RECENT FINDINGS Individuals living with spinal cord injury can recover motor, cardiovascular, and bladder function even years after injury using neuromodulation. Integration of continuous feedback from sensory information, task-specific training, and optimized excitability state of human spinal circuitry are critical spinal mechanisms. Neuromodulation activates previously undetectable residual supraspinal pathways to allow intentional (voluntary) control of motor movements. Further discovery unveiled the human spinal circuitry integrated regulatory control of motor and autonomic systems indicating the realistic potential of neuromodulation to improve the capacity incrementally, but significantly for recovery after severe spinal cord injury. SUMMARY The discovery that both motor and autonomic function recovers with lumbosacral spinal cord placement of the electrode reveals exciting avenues for a synergistic overall improvement in function, health, and quality of life for those who have been living with the consequences of spinal cord injury even for decades.
Collapse
Affiliation(s)
- Susan Harkema
- Department of Neurological Surgery, University of Louisville
- Frazier Rehabilitation Institute, University of Louisville Health
- Kentucky Spinal Cord Injury Research Center, University of Louisville
| | - Claudia Angeli
- Frazier Rehabilitation Institute, University of Louisville Health
- Kentucky Spinal Cord Injury Research Center, University of Louisville
- Department of Bioengineering
| | - Yury Gerasimenko
- Kentucky Spinal Cord Injury Research Center, University of Louisville
- Department of Physiology, University of Louisville, Louisville, Kentucky, USA
- Pavlov Institute of Physiology, St. Petersburg, Russia
| |
Collapse
|
32
|
Li S, Rong H, Hao Z, Tan R, Li H, Zhu T. Hypertrophy of paravertebral muscles after epidural electrical stimulation shifted: A case report. Front Surg 2022; 9:936259. [PMID: 35965878 PMCID: PMC9363764 DOI: 10.3389/fsurg.2022.936259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Epidural electrical stimulation (EES) has been used to improve motor function in patients with chronic spinal cord injury (SCI). The effect of EES on paravertebral muscles in patients with SCI has been unnoticed. We reported a case of paravertebral muscles hypertrophy after the electrode shifted in a patient with spinal cord injury. We also discussed possible mechanistic accounts for this occurs.
Collapse
Affiliation(s)
- Sipeng Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongtao Rong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenghao Hao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Rui Tan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Haijun Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Zhu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Correspondence: Tao Zhu
| |
Collapse
|
33
|
Balbinot G, Joner Wiest M, Li G, Pakosh M, Cesar Furlan J, Kalsi-Ryan S, Zariffa J. The use of surface EMG in neurorehabilitation following traumatic spinal cord injury: A scoping review. Clin Neurophysiol 2022; 138:61-73. [PMID: 35364465 DOI: 10.1016/j.clinph.2022.02.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/06/2022] [Accepted: 02/27/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Surface electromyography (sEMG) is a common electrophysiological assessment used in clinical trials in individuals with spinal cord injury (SCI). This scoping review summarizes the most common sEMG techniques used to address clinically relevant neurorehabilitation questions. We focused on the role of sEMG assessments in the clinical practice and research studies on neurorehabilitation after SCI, and how sEMG reflects the changes observed with rehabilitation. Additionally, this review emphasizes the limitations and pitfalls of the sEMG assessments in the field of neurorehabilitation after SCI. METHODS A comprehensive search of Medline (Ovid), Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, Embase, Emcare, Cumulative Index to Nursing & Allied Health Literature, and PubMed was conducted to find peer-reviewed journal articles that included individuals post-SCI that participated in neurorehabilitation interventions using sEMG assessments. This is a scoping review using a systematic search (hybrid review). RESULTS Of 4522 references captured in the primary database searches, 100 references were selected and included in the scoping review. The main focus of the studies was on neurorehabilitation using sEMG biofeedback, brain stimulation, locomotor training, neuromuscular electrical stimulation (NMES), paired-pulse stimulation, pharmacology, posture and balance training, spinal cord stimulation, upper limb training, vibration, and photobiomodulation. CONCLUSIONS Most studies employed sEMG amplitude to understand the effects of neurorehabilitation on muscle activation during volitional efforts or reduction of spontaneous muscle activity (e.g., spasms, spasticity, and hypertonia). Further studies are needed to understand the long-term reliability of sEMG amplitude, to circumvent normalization issues, and to provide a deeper physiological background to the different sEMG analyses. SIGNIFICANCE This scoping review reveals the potential of sEMG in exploring promising neurorehabilitation strategies following SCI and discusses the barriers limiting its widespread use in the clinic.
Collapse
Affiliation(s)
- Gustavo Balbinot
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada.
| | - Matheus Joner Wiest
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada
| | - Guijin Li
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Maureen Pakosh
- Library & Information Services, Toronto Rehabilitation Institute, University Health Network, Canada
| | - Julio Cesar Furlan
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada; Rehabilitation Sciences Institute, University of Toronto, Canada; Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Canada; Division of Physical Medicine and Rehabilitation, Toronto Rehabilitation Institute, University Health Network, Canada; Institute of Medical Sciences, University of Toronto, Canada
| | - Sukhvinder Kalsi-Ryan
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada; Rehabilitation Sciences Institute, University of Toronto, Canada; Department of Physical Therapy, University of Toronto, Canada
| | - José Zariffa
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada; Institute of Biomedical Engineering, University of Toronto, Canada; Rehabilitation Sciences Institute, University of Toronto, Canada; Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Canada
| |
Collapse
|
34
|
Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis. Nat Med 2022; 28:260-271. [PMID: 35132264 DOI: 10.1038/s41591-021-01663-5] [Citation(s) in RCA: 210] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022]
Abstract
Epidural electrical stimulation (EES) targeting the dorsal roots of lumbosacral segments restores walking in people with spinal cord injury (SCI). However, EES is delivered with multielectrode paddle leads that were originally designed to target the dorsal column of the spinal cord. Here, we hypothesized that an arrangement of electrodes targeting the ensemble of dorsal roots involved in leg and trunk movements would result in superior efficacy, restoring more diverse motor activities after the most severe SCI. To test this hypothesis, we established a computational framework that informed the optimal arrangement of electrodes on a new paddle lead and guided its neurosurgical positioning. We also developed software supporting the rapid configuration of activity-specific stimulation programs that reproduced the natural activation of motor neurons underlying each activity. We tested these neurotechnologies in three individuals with complete sensorimotor paralysis as part of an ongoing clinical trial ( www.clinicaltrials.gov identifier NCT02936453). Within a single day, activity-specific stimulation programs enabled these three individuals to stand, walk, cycle, swim and control trunk movements. Neurorehabilitation mediated sufficient improvement to restore these activities in community settings, opening a realistic path to support everyday mobility with EES in people with SCI.
Collapse
|
35
|
Steele AG, Atkinson DA, Varghese B, Oh J, Markley RL, Sayenko DG. Characterization of Spinal Sensorimotor Network Using Transcutaneous Spinal Stimulation during Voluntary Movement Preparation and Performance. J Clin Med 2021; 10:jcm10245958. [PMID: 34945253 PMCID: PMC8709482 DOI: 10.3390/jcm10245958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Transcutaneous electrical spinal stimulation (TSS) can be used to selectively activate motor pools based on their anatomical arrangements in the lumbosacral enlargement. These spatial patterns of spinal motor activation may have important clinical implications, especially when there is a need to target specific muscle groups. However, our understanding of the net effects and interplay between the motor pools projecting to agonist and antagonist muscles during the preparation and performance of voluntary movements is still limited. The present study was designed to systematically investigate and differentiate the multi-segmental convergence of supraspinal inputs on the lumbosacral neural network before and during the execution of voluntary leg movements in neurologically intact participants. During the experiments, participants (N = 13) performed isometric (1) knee flexion and (2) extension, as well as (3) plantarflexion and (4) dorsiflexion. TSS consisting of a pair pulse with 50 ms interstimulus interval was delivered over the T12-L1 vertebrae during the muscle contractions, as well as within 50 to 250 ms following the auditory or tactile stimuli, to characterize the temporal profiles of net spinal motor output during movement preparation. Facilitation of evoked motor potentials in the ipsilateral agonists and contralateral antagonists emerged as early as 50 ms following the cue and increased prior to movement onset. These results suggest that the descending drive modulates the activity of the inter-neuronal circuitry within spinal sensorimotor networks in specific, functionally relevant spatiotemporal patterns, which has a direct implication for the characterization of the state of those networks in individuals with neurological conditions.
Collapse
Affiliation(s)
- Alexander G. Steele
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, USA; (A.G.S.); (D.A.A.); (B.V.); (J.O.); (R.L.M.)
- Department of Electrical and Computer Engineering, University of Houston, E413 Engineering Bldg 2, 4726 Calhoun Road, Houston, TX 77204, USA
| | - Darryn A. Atkinson
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, USA; (A.G.S.); (D.A.A.); (B.V.); (J.O.); (R.L.M.)
- College of Rehabilitative Sciences, University of St. Augustine for Health Sciences, 5401 La Crosse Avenue, Austin, TX 78739, USA
| | - Blesson Varghese
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, USA; (A.G.S.); (D.A.A.); (B.V.); (J.O.); (R.L.M.)
| | - Jeonghoon Oh
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, USA; (A.G.S.); (D.A.A.); (B.V.); (J.O.); (R.L.M.)
| | - Rachel L. Markley
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, USA; (A.G.S.); (D.A.A.); (B.V.); (J.O.); (R.L.M.)
| | - Dimitry G. Sayenko
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, USA; (A.G.S.); (D.A.A.); (B.V.); (J.O.); (R.L.M.)
- Correspondence: ; Tel.: +1-713-363-9910
| |
Collapse
|
36
|
Hachmann JT, Yousak A, Wallner JJ, Gad PN, Edgerton VR, Gorgey AS. Epidural spinal cord stimulation as an intervention for motor recovery after motor complete spinal cord injury. J Neurophysiol 2021; 126:1843-1859. [PMID: 34669485 DOI: 10.1152/jn.00020.2021] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 10/12/2021] [Indexed: 12/19/2022] Open
Abstract
Spinal cord injury (SCI) commonly results in permanent loss of motor, sensory, and autonomic function. Recent clinical studies have shown that epidural spinal cord stimulation may provide a beneficial adjunct for restoring lower extremity and other neurological functions. Herein, we review the recent clinical advances of lumbosacral epidural stimulation for restoration of sensorimotor function in individuals with motor complete SCI and we discuss the putative neural pathways involved in this promising neurorehabilitative approach. We focus on three main sections: review recent clinical results for locomotor restoration in complete SCI; discuss the contemporary understanding of electrical neuromodulation and signal transduction pathways involved in spinal locomotor networks; and review current challenges of motor system modulation and future directions toward integrative neurorestoration. The current understanding is that initial depolarization occurs at the level of large diameter dorsal root proprioceptive afferents that when integrated with interneuronal and latent residual supraspinal translesional connections can recruit locomotor centers and augment downstream motor units. Spinal epidural stimulation can initiate excitability changes in spinal networks and supraspinal networks. Different stimulation parameters can facilitate standing or stepping, and it may also have potential for augmenting myriad other sensorimotor and autonomic functions. More comprehensive investigation of the mechanisms that mediate the transformation of dysfunctional spinal networks to higher functional states with a greater focus on integrated systems-based control system may reveal the key mechanisms underlying neurological augmentation and motor restoration after severe paralysis.
Collapse
Affiliation(s)
- Jan T Hachmann
- Department of Neurological Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - Andrew Yousak
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, Richmond, Virginia
| | - Josephine J Wallner
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, Richmond, Virginia
| | - Parag N Gad
- Department of Neurobiology, University of California, Los Angeles, California
| | - V Reggie Edgerton
- Department of Neurobiology, University of California, Los Angeles, California
- Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació Badalona, Barcelona, Spain
| | - Ashraf S Gorgey
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, Richmond, Virginia
- Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
37
|
Seáñez I, Capogrosso M. Motor improvements enabled by spinal cord stimulation combined with physical training after spinal cord injury: review of experimental evidence in animals and humans. Bioelectron Med 2021; 7:16. [PMID: 34706778 PMCID: PMC8555080 DOI: 10.1186/s42234-021-00077-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022] Open
Abstract
Electrical spinal cord stimulation (SCS) has been gaining momentum as a potential therapy for motor paralysis in consequence of spinal cord injury (SCI). Specifically, recent studies combining SCS with activity-based training have reported unprecedented improvements in motor function in people with chronic SCI that persist even without stimulation. In this work, we first provide an overview of the critical scientific advancements that have led to the current uses of SCS in neurorehabilitation: e.g. the understanding that SCS activates dormant spinal circuits below the lesion by recruiting large-to-medium diameter sensory afferents within the posterior roots. We discuss how this led to the standardization of implant position which resulted in consistent observations by independent clinical studies that SCS in combination with physical training promotes improvements in motor performance and neurorecovery. While all reported participants were able to move previously paralyzed limbs from day 1, recovery of more complex motor functions was gradual, and the timeframe for first observations was proportional to the task complexity. Interestingly, individuals with SCI classified as AIS B and C regained motor function in paralyzed joints even without stimulation, but not individuals with motor and sensory complete SCI (AIS A). Experiments in animal models of SCI investigating the potential mechanisms underpinning this neurorecovery suggest a synaptic reorganization of cortico-reticulo-spinal circuits that correlate with improvements in voluntary motor control. Future experiments in humans and animal models of paralysis will be critical to understand the potential and limits for functional improvements in people with different types, levels, timeframes, and severities of SCI.
Collapse
Affiliation(s)
- Ismael Seáñez
- Biomedical Engineering, Washington University in St. Louis, St. Louis, USA. .,Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, USA.
| | - Marco Capogrosso
- Neurological Surgery, University of Pittsburgh, Pittsburgh, USA.,Department of Physical Medicine and Rehabilitation, Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
38
|
Shinozaki M, Nagoshi N, Nakamura M, Okano H. Mechanisms of Stem Cell Therapy in Spinal Cord Injuries. Cells 2021; 10:cells10102676. [PMID: 34685655 PMCID: PMC8534136 DOI: 10.3390/cells10102676] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022] Open
Abstract
Every year, 0.93 million people worldwide suffer from spinal cord injury (SCI) with irretrievable sequelae. Rehabilitation, currently the only available treatment, does not restore damaged tissues; therefore, the functional recovery of patients remains limited. The pathophysiology of spinal cord injuries is heterogeneous, implying that potential therapeutic targets differ depending on the time of injury onset, the degree of injury, or the spinal level of injury. In recent years, despite a significant number of clinical trials based on various types of stem cells, these aspects of injury have not been effectively considered, resulting in difficult outcomes of trials. In a specialty such as cancerology, precision medicine based on a patient’s characteristics has brought indisputable therapeutic advances. The objective of the present review is to promote the development of precision medicine in the field of SCI. Here, we first describe the multifaceted pathophysiology of SCI, with the temporal changes after injury, the characteristics of the chronic phase, and the subtypes of complete injury. We then detail the appropriate targets and related mechanisms of the different types of stem cell therapy for each pathological condition. Finally, we highlight the great potential of stem cell therapy in cervical SCI.
Collapse
Affiliation(s)
- Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
| | - Narihito Nagoshi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (N.N.); (M.N.)
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (N.N.); (M.N.)
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
- Correspondence:
| |
Collapse
|
39
|
Malone IG, Nosacka RL, Nash MA, Otto KJ, Dale EA. Electrical epidural stimulation of the cervical spinal cord: implications for spinal respiratory neuroplasticity after spinal cord injury. J Neurophysiol 2021; 126:607-626. [PMID: 34232771 PMCID: PMC8409953 DOI: 10.1152/jn.00625.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/07/2021] [Accepted: 06/27/2021] [Indexed: 01/15/2023] Open
Abstract
Traumatic cervical spinal cord injury (cSCI) can lead to damage of bulbospinal pathways to the respiratory motor nuclei and consequent life-threatening respiratory insufficiency due to respiratory muscle paralysis/paresis. Reports of electrical epidural stimulation (EES) of the lumbosacral spinal cord to enable locomotor function after SCI are encouraging, with some evidence of facilitating neural plasticity. Here, we detail the development and success of EES in recovering locomotor function, with consideration of stimulation parameters and safety measures to develop effective EES protocols. EES is just beginning to be applied in other motor, sensory, and autonomic systems; however, there has only been moderate success in preclinical studies aimed at improving breathing function after cSCI. Thus, we explore the rationale for applying EES to the cervical spinal cord, targeting the phrenic motor nucleus for the restoration of breathing. We also suggest cellular/molecular mechanisms by which EES may induce respiratory plasticity, including a brief examination of sex-related differences in these mechanisms. Finally, we suggest that more attention be paid to the effects of specific electrical parameters that have been used in the development of EES protocols and how that can impact the safety and efficacy for those receiving this therapy. Ultimately, we aim to inform readers about the potential benefits of EES in the phrenic motor system and encourage future studies in this area.
Collapse
Affiliation(s)
- Ian G Malone
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida
- Breathing Research and Therapeutics Center (BREATHE), University of Florida, Gainesville, Florida
| | - Rachel L Nosacka
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Marissa A Nash
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Kevin J Otto
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida
- Breathing Research and Therapeutics Center (BREATHE), University of Florida, Gainesville, Florida
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
- Department of Neurology, University of Florida, Gainesville, Florida
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Erica A Dale
- Breathing Research and Therapeutics Center (BREATHE), University of Florida, Gainesville, Florida
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
40
|
Vargas Luna JL, Brown J, Krenn MJ, McKay B, Mayr W, Rothwell JC, Dimitrijevic MR. Neurophysiology of epidurally evoked spinal cord reflexes in clinically motor-complete posttraumatic spinal cord injury. Exp Brain Res 2021; 239:2605-2620. [PMID: 34213632 PMCID: PMC8354937 DOI: 10.1007/s00221-021-06153-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/13/2021] [Indexed: 11/24/2022]
Abstract
Increased use of epidural Spinal Cord Stimulation (eSCS) for the rehabilitation of spinal cord injury (SCI) has highlighted the need for a greater understanding of the properties of reflex circuits in the isolated spinal cord, particularly in response to repetitive stimulation. Here, we investigate the frequency-dependence of modulation of short- and long-latency EMG responses of lower limb muscles in patients with SCI at rest. Single stimuli could evoke short-latency responses as well as long-latency (likely polysynaptic) responses. The short-latency component was enhanced at low frequencies and declined at higher rates. In all muscles, the effects of eSCS were more complex if polysynaptic activity was elicited, making the motor output become an active process expressed either as suppression, tonic or rhythmical activity. The polysynaptic activity threshold is not constant and might vary with different stimulation frequencies, which speaks for its temporal dependency. Polysynaptic components can be observed as direct responses, neuromodulation of monosynaptic responses or driving the muscle activity by themselves, depending on the frequency level. We suggest that the presence of polysynaptic activity could be a potential predictor for appropriate stimulation conditions. This work studies the complex behaviour of spinal circuits deprived of voluntary motor control from the brain and in the absence of any other inputs. This is done by describing the monosynaptic responses, polysynaptic activity, and its interaction through its input–output interaction with sustain stimulation that, unlike single stimuli used to study the reflex pathway, can strongly influence the interneuron circuitry and reveal a broader spectrum of connectivity.
Collapse
Affiliation(s)
- Jose Luis Vargas Luna
- Center of Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20/4L, 1090, Vienna, Austria.
| | - Justin Brown
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA
| | - Matthias J Krenn
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.,Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, 1350 East Woodrow Wilson, Jackson, MS, 39216, USA
| | - Barry McKay
- Hulse S.C.I. Research Lab, Shepherd Center, 2020 Peachtree Rd NW, Atlanta, GA, 30309, USA
| | - Winfried Mayr
- Center of Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20/4L, 1090, Vienna, Austria
| | - John C Rothwell
- Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Milan R Dimitrijevic
- Department of Rehabilitation and Physical Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.,Foundation for Movement Recovery, Bolette Brygge 1, 0252, Oslo, Norway
| |
Collapse
|
41
|
Soloukey S, Drenthen J, Osterthun R, de Vos CC, De Zeeuw CI, Huygen FJPM, Harhangi BS. How to Identify Responders and Nonresponders to Dorsal Root Ganglion-Stimulation Aimed at Eliciting Motor Responses in Chronic Spinal Cord Injury: Post Hoc Clinical and Neurophysiological Tests in a Case Series of Five Patients. Neuromodulation 2021; 24:719-728. [PMID: 33749941 PMCID: PMC8359838 DOI: 10.1111/ner.13379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/11/2021] [Accepted: 01/28/2021] [Indexed: 11/29/2022]
Abstract
Objective While integrity of spinal pathways below injury is generally thought to be an important factor in the success‐rate of neuromodulation strategies for spinal cord injury (SCI), it is still unclear how the integrity of these pathways conveying the effects of stimulation should be assessed. In one of our institutional case series of five patients receiving dorsal root ganglion (DRG)‐stimulation for elicitation of immediate motor response in motor complete SCI, only two out of five patients presented as responders, showing immediate muscle activation upon DRG‐stimulation. The current study focuses on post hoc clinical‐neurophysiological tests performed within this patient series to illustrate their use for prediction of spinal pathway integrity, and presumably, responder‐status. Materials and Methods In a series of three nonresponders and two responders (all male, American Spinal Injury Association [ASIA] impairment scale [AIS] A/B), a test‐battery consisting of questionnaires, clinical measurements, as well as a series of neurophysiological measurements was performed less than eight months after participation in the initial study. Results Nonresponders presented with a complete absence of spasticity and absence of leg reflexes. Additionally, nonresponders presented with close to no compound muscle action potentials (CMAPs) or Hofmann(H)‐reflexes. In contrast, both responders presented with clear spasticity, elicitable leg reflexes, CMAPs, H‐reflexes, and sensory nerve action potentials, although not always consistent for all tested muscles. Conclusions Post hoc neurophysiological measurements were limited in clearly separating responders from nonresponders. Clinically, complete absence of spasticity‐related complaints in the nonresponders was a distinguishing factor between responders and nonresponders in this case series, which mimics prior reports of epidural electrical stimulation, potentially illustrating similarities in mechanisms of action between the two techniques. However, the problem remains that explicit use and report of preinclusion clinical‐neurophysiological measurements is missing in SCI literature. Identifying proper ways to assess these criteria might therefore be unnecessarily difficult, especially for nonestablished neuromodulation techniques.
Collapse
Affiliation(s)
- Sadaf Soloukey
- Department of Neurosurgery, Erasmus MC, Rotterdam, The Netherlands.,Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Judith Drenthen
- Department of Clinical Neurophysiology, Erasmus MC, Rotterdam, The Netherlands
| | - Rutger Osterthun
- Department of Rehabilitation Medicine, Erasmus MC, Rotterdam, The Netherlands.,Spinal Cord Injury Department, Rijndam Rehabilitation Center, Rotterdam, The Netherlands
| | - Cecile C de Vos
- Center for Pain Medicine, Department of Anesthesiology, Erasmus MC, Rotterdam, The Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - Frank J P M Huygen
- Center for Pain Medicine, Department of Anesthesiology, Erasmus MC, Rotterdam, The Netherlands
| | | |
Collapse
|
42
|
Gill ML, Linde MB, Hale RF, Lopez C, Fautsch KJ, Calvert JS, Veith DD, Beck LA, Garlanger KL, Sayenko DG, Lavrov IA, Thoreson AR, Grahn PJ, Zhao KD. Alterations of Spinal Epidural Stimulation-Enabled Stepping by Descending Intentional Motor Commands and Proprioceptive Inputs in Humans With Spinal Cord Injury. Front Syst Neurosci 2021; 14:590231. [PMID: 33584209 PMCID: PMC7875885 DOI: 10.3389/fnsys.2020.590231] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022] Open
Abstract
Background: Regaining control of movement following a spinal cord injury (SCI) requires utilization and/or functional reorganization of residual descending, and likely ascending, supraspinal sensorimotor pathways, which may be facilitated via task-specific training through body weight supported treadmill (BWST) training. Recently, epidural electrical stimulation (ES) combined with task-specific training demonstrated independence of standing and stepping functions in individuals with clinically complete SCI. The restoration of these functions may be dependent upon variables such as manipulation of proprioceptive input, ES parameter adjustments, and participant intent during step training. However, the impact of each variable on the degree of independence achieved during BWST stepping remains unknown. Objective: To describe the effects of descending intentional commands and proprioceptive inputs, specifically body weight support (BWS), on lower extremity motor activity and vertical ground reaction forces (vGRF) during ES-enabled BWST stepping in humans with chronic sensorimotor complete SCI. Furthermore, we describe perceived changes in the level of assistance provided by clinicians when intent and BWS are modified. Methods: Two individuals with chronic, mid thoracic, clinically complete SCI, enrolled in an IRB and FDA (IDE G150167) approved clinical trial. A 16-contact electrode array was implanted in the epidural space between the T11-L1 vertebral regions. Lower extremity motor output and vertical ground reaction forces were obtained during clinician-assisted ES-enabled treadmill stepping with BWS. Consecutive steps were achieved during various experimentally-controlled conditions, including intentional participation and varied BWS (60% and 20%) while ES parameters remain unchanged. Results: During ES-enabled BWST stepping, the knee extensors exhibited an increase in motor activation during trials in which stepping was passive compared to active or during trials in which 60% BWS was provided compared to 20% BWS. As a result of this increased motor activation, perceived clinician assistance increased during the transition from stance to swing. Intentional participation and 20% BWS resulted in timely and purposeful activation of the lower extremities muscles, which improved independence and decreased clinician assistance. Conclusion: Maximizing participant intention and optimizing proprioceptive inputs through BWS during ES-enabled BWST stepping may facilitate greater independence during BWST stepping for individuals with clinically complete SCI. Clinical Trial Registration:ClinicalTrials.gov identifier: NCT02592668.
Collapse
Affiliation(s)
- Megan L Gill
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Margaux B Linde
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Rena F Hale
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Cesar Lopez
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Kalli J Fautsch
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Jonathan S Calvert
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Daniel D Veith
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Lisa A Beck
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Kristin L Garlanger
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Dimitry G Sayenko
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Hospital, Houston, TX, United States
| | - Igor A Lavrov
- Department of Neurology, Mayo Clinic, Rochester, MN, United States.,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Andrew R Thoreson
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Peter J Grahn
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States.,Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States.,Office for Education Diversity, Equity and Inclusion, Mayo Clinic, Rochester, MN, United States
| | - Kristin D Zhao
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
43
|
Hofstoetter US, Danner SM, Freundl B, Binder H, Lackner P, Minassian K. Ipsi- and Contralateral Oligo- and Polysynaptic Reflexes in Humans Revealed by Low-Frequency Epidural Electrical Stimulation of the Lumbar Spinal Cord. Brain Sci 2021; 11:brainsci11010112. [PMID: 33467053 PMCID: PMC7830402 DOI: 10.3390/brainsci11010112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/16/2023] Open
Abstract
Epidural electrical stimulation (EES) applied over the human lumbosacral spinal cord provides access to afferent fibers from virtually all lower-extremity nerves. These afferents connect to spinal networks that play a pivotal role in the control of locomotion. Studying EES-evoked responses mediated through these networks can identify some of their functional components. We here analyzed electromyographic (EMG) responses evoked by low-frequency (2–6 Hz) EES derived from eight individuals with chronic, motor complete spinal cord injury. We identified and separately analyzed three previously undescribed response types: first, crossed reflexes with onset latencies of ~55 ms evoked in the hamstrings; second, oligosynaptic reflexes within 50 ms post-stimulus superimposed on the monosynaptic posterior root-muscle reflexes in the flexor muscle tibialis anterior, but with higher thresholds and no rate-sensitive depression; third, polysynaptic responses with variable EMG shapes within 50–450 ms post-stimulus evoked in the tibialis anterior and triceps surae, some of which demonstrated consistent changes in latencies with graded EES. Our observations suggest the activation of commissural neurons, lumbar propriospinal interneurons, and components of the late flexion reflex circuits through group I and II proprioceptive afferent inputs. These potential neural underpinnings have all been related to spinal locomotion in experimental studies.
Collapse
Affiliation(s)
- Ursula S. Hofstoetter
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria;
| | - Simon M. Danner
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA 19129, USA;
| | - Brigitta Freundl
- Neurological Center, Klinik Penzing—Wiener Gesundheitsverbund, 1140 Vienna, Austria; (B.F.); (H.B.); (P.L.)
| | - Heinrich Binder
- Neurological Center, Klinik Penzing—Wiener Gesundheitsverbund, 1140 Vienna, Austria; (B.F.); (H.B.); (P.L.)
| | - Peter Lackner
- Neurological Center, Klinik Penzing—Wiener Gesundheitsverbund, 1140 Vienna, Austria; (B.F.); (H.B.); (P.L.)
| | - Karen Minassian
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria;
- Correspondence:
| |
Collapse
|
44
|
Choi EH, Gattas S, Brown NJ, Hong JD, Limbo JN, Chan AY, Oh MY. Epidural electrical stimulation for spinal cord injury. Neural Regen Res 2021; 16:2367-2375. [PMID: 33907008 PMCID: PMC8374568 DOI: 10.4103/1673-5374.313017] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A long-standing goal of spinal cord injury research is to develop effective repair strategies, which can restore motor and sensory functions to near-normal levels. Recent advances in clinical management of spinal cord injury have significantly improved the prognosis, survival rate and quality of life in patients with spinal cord injury. In addition, a significant progress in basic science research has unraveled the underlying cellular and molecular events of spinal cord injury. Such efforts enabled the development of pharmacologic agents, biomaterials and stem-cell based therapy. Despite these efforts, there is still no standard care to regenerate axons or restore function of silent axons in the injured spinal cord. These challenges led to an increased focus on another therapeutic approach, namely neuromodulation. In multiple animal models of spinal cord injury, epidural electrical stimulation of the spinal cord has demonstrated a recovery of motor function. Emerging evidence regarding the efficacy of epidural electrical stimulation has further expanded the potential of epidural electrical stimulation for treating patients with spinal cord injury. However, most clinical studies were conducted on a very small number of patients with a wide range of spinal cord injury. Thus, subsequent studies are essential to evaluate the therapeutic potential of epidural electrical stimulation for spinal cord injury and to optimize stimulation parameters. Here, we discuss cellular and molecular events that continue to damage the injured spinal cord and impede neurological recovery following spinal cord injury. We also discuss and summarize the animal and human studies that evaluated epidural electrical stimulation in spinal cord injury.
Collapse
Affiliation(s)
- Elliot H Choi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH; Department of Ophthalmology, Gavin Herbert Eye Institute, School of Medicine; Department of Neurosurgery, University of California, Irvine, CA, USA
| | - Sandra Gattas
- Department of Neurosurgery, University of California, Irvine, CA, USA
| | - Nolan J Brown
- Department of Neurosurgery, University of California, Irvine, CA, USA
| | - John D Hong
- Department of Ophthalmology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, CA, USA
| | - Joshua N Limbo
- Department of Neurosurgery, University of California, Irvine, CA, USA
| | - Alvin Y Chan
- Department of Neurosurgery, University of California, Irvine, CA, USA
| | - Michael Y Oh
- Department of Neurosurgery, University of California, Irvine, CA, USA
| |
Collapse
|
45
|
Wang S, Zhang LC, Fu HT, Deng JH, Xu GX, Li T, Ji XR, Tang PF. Epidural electrical stimulation effectively restores locomotion function in rats with complete spinal cord injury. Neural Regen Res 2021; 16:573-579. [PMID: 32985490 PMCID: PMC7996032 DOI: 10.4103/1673-5374.290905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Epidural electrical stimulation can restore limb motor function after spinal cord injury by reactivating the surviving neural circuits. In previous epidural electrical stimulation studies, single electrode sites and continuous tetanic stimulation have often been used. With this stimulation, the body is prone to declines in tolerance and locomotion coordination. In the present study, rat models of complete spinal cord injury were established by vertically cutting the spinal cord at the T8 level to eliminate disturbance from residual nerve fibers, and were then subjected to epidural electrical stimulation. The flexible extradural electrode had good anatomical topology and matched the shape of the spinal canal of the implanted segment. Simultaneously, the electrode stimulation site was able to be accurately applied to the L2–3 and S1 segments of the spinal cord. To evaluate the biocompatibility of the implanted epidural electrical stimulation electrodes, GFAP/Iba-1 double-labeled immunofluorescence staining was performed on the spinal cord below the electrodes at 7 days after the electrode implantation. Immunofluorescence results revealed no significant differences in the numbers or morphologies of microglia and astrocytes in the spinal cord after electrode implantation, and there was no activated Iba-1+ cell aggregation, indicating that the implant did not cause an inflammatory response in the spinal cord. Rat gait analysis showed that, at 3 days after surgery, gait became coordinated in rats with spinal cord injury under burst stimulation. The regained locomotion could clearly distinguish the support phase and the swing phase and dynamically adjust with the frequency of stimulus distribution. To evaluate the matching degree between the flexible epidural electrode (including three stimulation contacts), vertebral morphology, and the level of the epidural site of the stimulation electrode, micro-CT was used to scan the thoracolumbar vertebrae of rats before and after electrode implantation. Based on the experimental results of gait recovery using three-site stimulation electrodes at L2–3 and S1 combined with burst stimulation in a rat model of spinal cord injury, epidural electrical stimulation is a promising protocol that needs to be further explored. This study was approved by the Animal Ethics Committee of Chinese PLA General Hospital (approval No. 2019-X15-39) on April 19, 2019.
Collapse
Affiliation(s)
- Song Wang
- School of Medicine, Nankai University, Tianjin; Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Li-Cheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Hai-Tao Fu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jun-Hao Deng
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Gao-Xiang Xu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Tong Li
- Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, China
| | - Xin-Ran Ji
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Pei-Fu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
46
|
Spatiotemporal dynamic changes, proliferation, and differentiation characteristics of Sox9-positive cells after severe complete transection spinal cord injury. Exp Neurol 2020; 337:113556. [PMID: 33326799 DOI: 10.1016/j.expneurol.2020.113556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/24/2020] [Accepted: 12/08/2020] [Indexed: 11/21/2022]
Abstract
Studying the spatiotemporal dynamic changes of various cells following spinal cord injury (SCI) is of great significance for understanding the pathological processes of SCI. Changes in the characteristics of Sox9-positive cells, which are widely present in the spinal cord, have rarely been studied following SCI. We found that Sox9-positive cells were widely distributed in the central canal and parenchyma of the uninjured adult spinal cord, with the greatest distribution in the central spinal cord and relatively few cells in the dorsal and ventral sides. Ranging between 14.20% ± 1.61% and 15.60% ± 0.36% of total cells in the spinal cord, almost all Sox9-positive cells were in a quiescent state. However, Sox9-positive cells activated following SCI exhibited different characteristics according to their distance from the lesion area. In the reactive region, Sox9-positive cells highly expressed nestin and exhibited a single-branching structure, whereas in the non-reactive region, cells showed low nestin expression and a multi-branching structure. In response to SCI, a large number of Sox9-positive cells in the spinal cord parenchyma proliferated to participate in the formation of glial scars, whereas Sox9-positive cells in the central canal located near the lesion site accumulated at its broken ends through proliferation. Finally, we found that approximately 6.30% ± 0.35% of Sox9-positive cells differentiated into oligodendrocytes within two weeks after SCI. By examining the spatiotemporal dynamic changes, proliferation and differentiation characteristics of Sox9-positive cells after SCI, our findings provide a theoretical basis for understanding the pathological process of SCI.
Collapse
|
47
|
Meyer C, Hofstoetter US, Hubli M, Hassani RH, Rinaldo C, Curt A, Bolliger M. Immediate Effects of Transcutaneous Spinal Cord Stimulation on Motor Function in Chronic, Sensorimotor Incomplete Spinal Cord Injury. J Clin Med 2020; 9:E3541. [PMID: 33147884 PMCID: PMC7694146 DOI: 10.3390/jcm9113541] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022] Open
Abstract
Deficient ankle control after incomplete spinal cord injury (iSCI) often accentuates walking impairments. Transcutaneous electrical spinal cord stimulation (tSCS) has been shown to augment locomotor activity after iSCI, presumably due to modulation of spinal excitability. However, the effects of possible excitability modulations induced by tSCS on ankle control have not yet been assessed. This study investigated the immediate (i.e., without training) effects during single-sessions of tonic tSCS on ankle control, spinal excitability, and locomotion in ten individuals with chronic, sensorimotor iSCI (American Spinal Injury Association Impairment Scale D). Participants performed rhythmic ankle movements (dorsi- and plantar flexion) at a given rate, and irregular ankle movements following a predetermined trajectory with and without tonic tSCS at 15 Hz, 30 Hz, and 50 Hz. In a subgroup of eight participants, the effects of tSCS on assisted over-ground walking were studied. Furthermore, the activity of a polysynaptic spinal reflex, associated with spinal locomotor networks, was investigated to study the effect of the stimulation on the dedicated spinal circuitry associated with locomotor function. Tonic tSCS at 30 Hz immediately improved maximum dorsiflexion by +4.6° ± 0.9° in the more affected lower limb during the rhythmic ankle movement task, resulting in an increase of +2.9° ± 0.9° in active range of motion. Coordination of ankle movements, assessed by the ability to perform rhythmic ankle movements at a given target rate and to perform irregular movements according to a trajectory, was unchanged during stimulation. tSCS at 30 Hz modulated spinal reflex activity, reflected by a significant suppression of pathological activity specific to SCI in the assessed polysynaptic spinal reflex. During walking, there was no statistical group effect of tSCS. In the subgroup of eight assessed participants, the three with the lowest as well as the one with the highest walking function scores showed positive stimulation effects, including increased maximum walking speed, or more continuous and faster stepping at a self-selected speed. Future studies need to investigate if multiple applications and individual optimization of the stimulation parameters can increase the effects of tSCS, and if the technique can improve the outcome of locomotor rehabilitation after iSCI.
Collapse
Affiliation(s)
- Christian Meyer
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008 Zurich, Switzerland; (C.M.); (M.H.); (R.H.H.); (C.R.); (A.C.); (M.B.)
| | - Ursula S. Hofstoetter
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008 Zurich, Switzerland; (C.M.); (M.H.); (R.H.H.); (C.R.); (A.C.); (M.B.)
| | - Roushanak H. Hassani
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008 Zurich, Switzerland; (C.M.); (M.H.); (R.H.H.); (C.R.); (A.C.); (M.B.)
| | - Carmen Rinaldo
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008 Zurich, Switzerland; (C.M.); (M.H.); (R.H.H.); (C.R.); (A.C.); (M.B.)
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008 Zurich, Switzerland; (C.M.); (M.H.); (R.H.H.); (C.R.); (A.C.); (M.B.)
| | - Marc Bolliger
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008 Zurich, Switzerland; (C.M.); (M.H.); (R.H.H.); (C.R.); (A.C.); (M.B.)
| |
Collapse
|
48
|
Forelimb force direction and magnitude independently controlled by spinal modules in the macaque. Proc Natl Acad Sci U S A 2020; 117:27655-27666. [PMID: 33060294 PMCID: PMC7959559 DOI: 10.1073/pnas.1919253117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Studies in frogs and rodents have shown that to deal with the complexity of controlling all the muscles in the body the brain can activate sets of neurons in the spinal cord with a single signal. Here, we provide confirmation of a similar system of “modular” output in nonhuman primates. Costimulation at two spinal sites resulted in force field directionality that was the linear sum of the fields from each site. However, unlike the frog and rodent, the magnitude of the force vectors was greater than the simple sum (supralinear). Thus, while force direction in primates is controlled by the linear sum of modular output, force amplitude might be adjusted by additional sources shared by those modules. Modular organization of the spinal motor system is thought to reduce the cognitive complexity of simultaneously controlling the large number of muscles and joints in the human body. Although modular organization has been confirmed in the hindlimb control system of several animal species, it has yet to be established in the forelimb motor system or in primates. Expanding upon experiments originally performed in the frog lumbar spinal cord, we examined whether costimulation of two sites in the macaque monkey cervical spinal cord results in motor activity that is a simple linear sum of the responses evoked by stimulating each site individually. Similar to previous observations in the frog and rodent hindlimb, our analysis revealed that in most cases (77% of all pairs) the directions of the force fields elicited by costimulation were highly similar to those predicted by the simple linear sum of those elicited by stimulating each site individually. A comparable simple summation of electromyography (EMG) output, especially in the proximal muscles, suggested that this linear summation of force field direction was produced by a spinal neural mechanism whereby the forelimb motor output recruited by costimulation was also summed linearly. We further found that the force field magnitudes exhibited supralinear (amplified) summation, which was also observed in the EMG output of distal forelimb muscles, implying a novel feature of primate forelimb control. Overall, our observations support the idea that complex movements in the primate forelimb control system are made possible by flexibly combined spinal motor modules.
Collapse
|
49
|
Cappellini G, Sylos-Labini F, MacLellan MJ, Assenza C, Libernini L, Morelli D, Lacquaniti F, Ivanenko Y. Locomotor patterns during obstacle avoidance in children with cerebral palsy. J Neurophysiol 2020; 124:574-590. [DOI: 10.1152/jn.00163.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Previous studies mainly evaluated the neuromuscular pattern generation in cerebral palsy (CP) during unobstructed gait. Here we characterized impairments in the obstacle task performance associated with a limited adaptation of the task-relevant muscle module timed to the foot lift during obstacle crossing. Impaired task performance in children with CP may reflect basic developmental deficits in the adaptable control of gait when the locomotor task is superimposed with the voluntary movement.
Collapse
Affiliation(s)
- G. Cappellini
- Laboratory of Neuromotor Physiology, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Santa Lucia Foundation, Rome, Italy
- Department of Pediatric Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - F. Sylos-Labini
- Laboratory of Neuromotor Physiology, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Santa Lucia Foundation, Rome, Italy
| | - M. J. MacLellan
- Department of Applied Human Sciences, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - C. Assenza
- Department of Pediatric Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - L. Libernini
- Department of Pediatric Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - D. Morelli
- Department of Pediatric Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - F. Lacquaniti
- Laboratory of Neuromotor Physiology, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Santa Lucia Foundation, Rome, Italy
- Centre of Space Bio-medicine and Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Y. Ivanenko
- Laboratory of Neuromotor Physiology, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
50
|
Nassour J, Duy Hoa T, Atoofi P, Hamker F. Concrete Action Representation Model: From Neuroscience to Robotics. IEEE Trans Cogn Dev Syst 2020. [DOI: 10.1109/tcds.2019.2896300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|