1
|
Singer M, Codron D, Lechner I, Rudnik R, Barboza P, Hummel J, Clauss M. The effect of size and density on the mean retention time of particles in reindeer (Rangifer tarandus). Comp Biochem Physiol A Mol Integr Physiol 2024; 292:111621. [PMID: 38452969 DOI: 10.1016/j.cbpa.2024.111621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Particle passage from the reticulorumen (RR) depends on particle density and size. A classic way of assessing these effects is the use of plastic markers of varying density and size that are recovered in the faeces. Here, we report results of an experiment where four fistulated reindeer (Rangifer tarandus, 96 ± 12 kg) were fed two different diets (browse, voluntary dry matter intake [DMI] 70 ± 10 g/kg0.75/d; or a pelleted diet, DMI 124 ± 52 g/kg0.75/d) and dosed via fistula with 8 different particle types combining densities of 1.03, 1.22 and 1.44 g/ml and sizes of 1, 10 and 20 mm. Generally, particles that passed the digestive tract intact (not ruminated) did so relatively early after marker dosing, and therefore had shorter mean retention times (MRT) than ruminated particles. On the higher intake, the overall mean retention time (MRT) of particles was shorter, but this was not an effect of shorter MRT for either intact or ruminated particles, but due to a higher proportion of intact particles at the higher intake. This supports the concept that ruminants do not adjust chewing behaviour depending on intake, but that a lower proportion of digesta is submitted to rumination due to pressure-driven escape from the forestomach at higher gut fills. Compared to cattle (Bos primigenius taurus), muskoxen (Ovibos moschatus) and moose (Alces alces) that had received the same markers, reindeer had a lower proportion of 1 mm particles that passed intact. Our results support the concept that the critical size threshold for particles leaving the ruminant forestomach is dependent on body size. While the results likely do not represent findings peculiar for reindeer, they indicate fundamental mechanisms operating in the forestomach of ruminants.
Collapse
Affiliation(s)
- Martina Singer
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, 8057 Zurich, Switzerland.
| | - Daryl Codron
- Department of Zoology and Entomology, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa.
| | - Isabel Lechner
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, 8057 Zurich, Switzerland.
| | - Rebecca Rudnik
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, 8057 Zurich, Switzerland.
| | - Perry Barboza
- Institute of Arctic Biology and Department of Biology and Wildlife, University of Alaska Fairbanks, PO Box 756100, Fairbanks, AK, USA.
| | - Jürgen Hummel
- Ruminant Nutrition, Department of Animal Sciences, University of Goettingen, Kellnerweg 6, 37077 Goettingen, Germany.
| | - Marcus Clauss
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, 8057 Zurich, Switzerland.
| |
Collapse
|
2
|
Furrer M, Meier SA, Jan M, Franken P, Sundset MA, Brown SA, Wagner GC, Huber R. Reindeer in the Arctic reduce sleep need during rumination. Curr Biol 2024; 34:427-433.e5. [PMID: 38141616 DOI: 10.1016/j.cub.2023.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 12/25/2023]
Abstract
Timing and quantity of sleep depend on a circadian (∼24-h) rhythm and a specific sleep requirement.1 Sleep curtailment results in a homeostatic rebound of more and deeper sleep, the latter reflected in increased electroencephalographic (EEG) slow-wave activity (SWA) during non-rapid eye movement (NREM) sleep.2 Circadian rhythms are synchronized by the light-dark cycle but persist under constant conditions.3,4,5 Strikingly, arctic reindeer behavior is arrhythmic during the solstices.6 Moreover, the Arctic's extreme seasonal environmental changes cause large variations in overall activity and food intake.7 We hypothesized that the maintenance of optimal functioning under these extremely fluctuating conditions would require adaptations not only in daily activity patterns but also in the homeostatic regulation of sleep. We studied sleep using non-invasive EEG in four Eurasian tundra reindeer (Rangifer tarandus tarandus) in Tromsø, Norway (69°N) during the fall equinox and both solstices. As expected, sleep-wake rhythms paralleled daily activity distribution, and sleep deprivation resulted in a homeostatic rebound in all seasons. Yet, these sleep rebounds were smaller in summer and fall than in winter. Surprisingly, SWA decreased not only during NREM sleep but also during rumination. Quantitative modeling revealed that sleep pressure decayed at similar rates during the two behavioral states. Finally, reindeer spent less time in NREM sleep the more they ruminated. These results suggest that they can sleep during rumination. The ability to reduce sleep need during rumination-undisturbed phases for both sleep recovery and digestion-might allow for near-constant feeding in the arctic summer.
Collapse
Affiliation(s)
- Melanie Furrer
- Child Development Center and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | - Sara A Meier
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Maxime Jan
- Center for Integrative Genomics, University of Lausanne, Génopode building, 1015 Lausanne, Switzerland; Bioinformatics Competence Center, University of Lausanne, Génopode building, 1015 Lausanne, Switzerland
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, Génopode building, 1015 Lausanne, Switzerland
| | - Monica A Sundset
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Framstredet 39, 9019 Tromsø, Norway
| | - Steven A Brown
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Gabriela C Wagner
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Framstredet 39, 9019 Tromsø, Norway; Division of Forest and Forest Resources, Norwegian Institute of Bioeconomy Research, Holtvegen 66, 9016 Tromsø, Norway.
| | - Reto Huber
- Child Development Center and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland; Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital Zurich, University of Zurich, Lenggstrasse 31, 8032 Zurich, Switzerland.
| |
Collapse
|
3
|
Eaton SL, Murdoch F, Rzechorzek NM, Thompson G, Hartley C, Blacklock BT, Proudfoot C, Lillico SG, Tennant P, Ritchie A, Nixon J, Brennan PM, Guido S, Mitchell NL, Palmer DN, Whitelaw CBA, Cooper JD, Wishart TM. Modelling Neurological Diseases in Large Animals: Criteria for Model Selection and Clinical Assessment. Cells 2022; 11:cells11172641. [PMID: 36078049 PMCID: PMC9454934 DOI: 10.3390/cells11172641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Issue: The impact of neurological disorders is recognised globally, with one in six people affected in their lifetime and few treatments to slow or halt disease progression. This is due in part to the increasing ageing population, and is confounded by the high failure rate of translation from rodent-derived therapeutics to clinically effective human neurological interventions. Improved translation is demonstrated using higher order mammals with more complex/comparable neuroanatomy. These animals effectually span this translational disparity and increase confidence in factors including routes of administration/dosing and ability to scale, such that potential therapeutics will have successful outcomes when moving to patients. Coupled with advancements in genetic engineering to produce genetically tailored models, livestock are increasingly being used to bridge this translational gap. Approach: In order to aid in standardising characterisation of such models, we provide comprehensive neurological assessment protocols designed to inform on neuroanatomical dysfunction and/or lesion(s) for large animal species. We also describe the applicability of these exams in different large animals to help provide a better understanding of the practicalities of cross species neurological disease modelling. Recommendation: We would encourage the use of these assessments as a reference framework to help standardise neurological clinical scoring of large animal models.
Collapse
Affiliation(s)
- Samantha L. Eaton
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
- Correspondence: (S.L.E.); (T.M.W.); Tel.: +44-(0)-131-651-9125 (S.L.E.); +44-(0)-131-651-9233 (T.M.W.)
| | - Fraser Murdoch
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Nina M. Rzechorzek
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Gerard Thompson
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- Department of Clinical Neurosciences, NHS Lothian, 50 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Claudia Hartley
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Benjamin Thomas Blacklock
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Chris Proudfoot
- The Large Animal Research & Imaging Facility, Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Simon G. Lillico
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Peter Tennant
- The Large Animal Research & Imaging Facility, Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Adrian Ritchie
- The Large Animal Research & Imaging Facility, Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - James Nixon
- The Large Animal Research & Imaging Facility, Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Paul M. Brennan
- Translational Neurosurgery, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Stefano Guido
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
- Bioresearch & Veterinary Services, University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Nadia L. Mitchell
- Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 85084, Lincoln 7647, New Zealand
| | - David N. Palmer
- Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 85084, Lincoln 7647, New Zealand
| | - C. Bruce A. Whitelaw
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Jonathan D. Cooper
- Departments of Pediatrics, Genetics, and Neurology, Washington University School of Medicine in St. Louis, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Thomas M. Wishart
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
- Correspondence: (S.L.E.); (T.M.W.); Tel.: +44-(0)-131-651-9125 (S.L.E.); +44-(0)-131-651-9233 (T.M.W.)
| |
Collapse
|
4
|
The Sheep as a Large Animal Model for the Investigation and Treatment of Human Disorders. BIOLOGY 2022; 11:biology11091251. [PMID: 36138730 PMCID: PMC9495394 DOI: 10.3390/biology11091251] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 12/19/2022]
Abstract
Simple Summary We review the value of large animal models for improving the translation of biomedical research for human application, focusing primarily on sheep. Abstract An essential aim of biomedical research is to translate basic science information obtained from preclinical research using small and large animal models into clinical practice for the benefit of humans. Research on rodent models has enhanced our understanding of complex pathophysiology, thus providing potential translational pathways. However, the success of translating drugs from pre-clinical to clinical therapy has been poor, partly due to the choice of experimental model. The sheep model, in particular, is being increasingly applied to the field of biomedical research and is arguably one of the most influential models of human organ systems. It has provided essential tools and insights into cardiovascular disorder, orthopaedic examination, reproduction, gene therapy, and new insights into neurodegenerative research. Unlike the widely adopted rodent model, the use of the sheep model has an advantage over improving neuroscientific translation, in particular due to its large body size, gyrencephalic brain, long lifespan, more extended gestation period, and similarities in neuroanatomical structures to humans. This review aims to summarise the current status of sheep to model various human diseases and enable researchers to make informed decisions when considering sheep as a human biomedical model.
Collapse
|
5
|
El Allali K, Beniaich Y, Farsi H, M′hani MEM, Jabal MS, Piro M, Achaâban MR, Ouassat M, Challet E, Besson M, Mounach J, Pévet P, Satté A. Sleep pattern in the dromedary camel: a behavioral and polysomnography study. Sleep 2022; 45:6580315. [DOI: 10.1093/sleep/zsac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 04/16/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Study Objectives
To investigate sleep patterns in the camel by combining behavioral and polysomnography (PSG) methods.
Methods
A noninvasive PSG study was conducted over four nights on four animals. Additionally, video recordings were used to monitor the sleep behaviors associated with different vigilance states.
Results
During the night, short periods of sporadic sleep-like behavior corresponding to a specific posture, sternal recumbency (SR) with the head lying down on the ground, were observed. The PSG results showed rapid shifts between five vigilance states, including wakefulness, drowsiness, rapid eye movement (REM) sleep, non-REM (NREM) sleep, and rumination. The camels typically slept only 1.7 hours per night, subdivided into 0.5 hours of REM sleep and 1.2 hours of NREM sleep. Camels spent most of the night being awake (2.3 hours), ruminating (2.4 hours), or drowsing (1.9 hours). Various combinations of transitions between the different vigilance states were observed, with a notable transition into REM sleep directly from drowsiness (9%) or wakefulness (4%). Behavioral postures were found to correlate with PSG vigilance states, thereby allowing a reliable prediction of the sleep stage based on SR and the head position (erected, motionless, or lying down on the ground). Notably, 100% of REM sleep occurred during the Head Lying Down-SR posture.
Conclusions
The camel is a diurnal species with a polyphasic sleep pattern at night. The best correlation between PSG and ethogram data indicates that sleep duration can be predicted by the behavioral method, provided that drowsiness is considered a part of sleep.
Collapse
Affiliation(s)
- Khalid El Allali
- Comparative Anatomy Unit, Department of Biological and Pharmaceutical Veterinary Sciences, Hassan II Agronomy and Veterinary Medicine Institute , Rabat , Morocco
| | - Younes Beniaich
- Comparative Anatomy Unit, Department of Biological and Pharmaceutical Veterinary Sciences, Hassan II Agronomy and Veterinary Medicine Institute , Rabat , Morocco
| | - Hicham Farsi
- Comparative Anatomy Unit, Department of Biological and Pharmaceutical Veterinary Sciences, Hassan II Agronomy and Veterinary Medicine Institute , Rabat , Morocco
| | - Mohammed El Mehdi M′hani
- Comparative Anatomy Unit, Department of Biological and Pharmaceutical Veterinary Sciences, Hassan II Agronomy and Veterinary Medicine Institute , Rabat , Morocco
| | - Mohamed Sobhi Jabal
- Comparative Anatomy Unit, Department of Biological and Pharmaceutical Veterinary Sciences, Hassan II Agronomy and Veterinary Medicine Institute , Rabat , Morocco
| | - Mohammed Piro
- Medicine and Surgical Unit of Domestic Animals, Department of Medicine, Surgery and Reproduction, Hassan II Agronomy and Veterinary Medicine Institute , Rabat , Morocco
| | - Mohamed Rachid Achaâban
- Comparative Anatomy Unit, Department of Biological and Pharmaceutical Veterinary Sciences, Hassan II Agronomy and Veterinary Medicine Institute , Rabat , Morocco
| | - Mohammed Ouassat
- Comparative Anatomy Unit, Department of Biological and Pharmaceutical Veterinary Sciences, Hassan II Agronomy and Veterinary Medicine Institute , Rabat , Morocco
| | - Etienne Challet
- Institute of Cellular and Integrative Neurosciences, CNRS and University of Strasbourg , Strasbourg , France
| | - Mireille Besson
- Cognitive Neurosciences Laboratory, CNRS and Aix-Marseille University , Marseille , France
| | - Jamal Mounach
- Department of Neurophysiology, Military Hospital Mohammed V , Rabat , Morocco
| | - Paul Pévet
- Institute of Cellular and Integrative Neurosciences, CNRS and University of Strasbourg , Strasbourg , France
| | - Amal Satté
- Department of Neurophysiology, Military Hospital Mohammed V , Rabat , Morocco
| |
Collapse
|
6
|
Simonati A, Williams RE. Neuronal Ceroid Lipofuscinosis: The Multifaceted Approach to the Clinical Issues, an Overview. Front Neurol 2022; 13:811686. [PMID: 35359645 PMCID: PMC8961688 DOI: 10.3389/fneur.2022.811686] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/11/2022] [Indexed: 01/04/2023] Open
Abstract
The main aim of this review is to summarize the current state-of-art in the field of childhood Neuronal Ceroid Lipofuscinosis (NCL), a group of rare neurodegenerative disorders. These are genetic diseases associated with the formation of toxic endo-lysosomal storage. Following a brief historical review of the evolution of NCL definition, a clinically-oriented approach is used describing how the early symptoms and signs affecting motor, visual, cognitive domains, and including seizures, may lead clinicians to a rapid molecular diagnosis, avoiding the long diagnostic odyssey commonly observed. We go on to focus on recent advances in NCL research and summarize contributions to knowledge of the pathogenic mechanisms underlying NCL. We describe the large variety of experimental models which have aided this research, as well as the most recent technological developments which have shed light on the main mechanisms involved in the cellular pathology, such as apoptosis and autophagy. The search for innovative therapies is described. Translation of experimental data into therapeutic approaches is being established for several of the NCLs, and one drug is now commercially available. Lastly, we show the importance of palliative care and symptomatic treatments which are still the main therapeutic interventions.
Collapse
Affiliation(s)
- Alessandro Simonati
- Departments of Surgery, Dentistry, Paediatrics, and Gynaecology, School of Medicine, University of Verona, Verona, Italy
- Department of Clinical Neuroscience, AOUI-VR, Verona, Italy
- *Correspondence: Alessandro Simonati
| | - Ruth E. Williams
- Department of Children's Neuroscience, Evelina London Children's Hospital, London, United Kingdom
- Ruth E. Williams
| |
Collapse
|
7
|
Mckean NE, Handley RR, Snell RG. A Review of the Current Mammalian Models of Alzheimer's Disease and Challenges That Need to Be Overcome. Int J Mol Sci 2021; 22:13168. [PMID: 34884970 PMCID: PMC8658123 DOI: 10.3390/ijms222313168] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 01/04/2023] Open
Abstract
Alzheimer's disease (AD) is one of the looming health crises of the near future. Increasing lifespans and better medical treatment for other conditions mean that the prevalence of this disease is expected to triple by 2050. The impact of AD includes both the large toll on individuals and their families as well as a large financial cost to society. So far, we have no way to prevent, slow, or cure the disease. Current medications can only alleviate some of the symptoms temporarily. Many animal models of AD have been created, with the first transgenic mouse model in 1995. Mouse models have been beset by challenges, and no mouse model fully captures the symptomatology of AD without multiple genetic mutations and/or transgenes, some of which have never been implicated in human AD. Over 25 years later, many mouse models have been given an AD-like disease and then 'cured' in the lab, only for the treatments to fail in clinical trials. This review argues that small animal models are insufficient for modelling complex disorders such as AD. In order to find effective treatments for AD, we need to create large animal models with brains and lifespan that are closer to humans, and underlying genetics that already predispose them to AD-like phenotypes.
Collapse
Affiliation(s)
- Natasha Elizabeth Mckean
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland 1010, New Zealand; (N.E.M.); (R.R.H.)
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Renee Robyn Handley
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland 1010, New Zealand; (N.E.M.); (R.R.H.)
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Russell Grant Snell
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland 1010, New Zealand; (N.E.M.); (R.R.H.)
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
8
|
Kick GR, Meiman EJ, Sabol JC, Whiting REH, Ota-Kuroki J, Castaner LJ, Jensen CA, Katz ML. Visual system pathology in a canine model of CLN5 neuronal ceroid lipofuscinosis. Exp Eye Res 2021; 210:108686. [PMID: 34216614 PMCID: PMC8429270 DOI: 10.1016/j.exer.2021.108686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 10/21/2022]
Abstract
CLN5 neuronal ceroid lipofuscinosis is a hereditary neurodegenerative disease characterized by progressive neurological decline, vision loss and seizures. Visual impairment in children with CLN5 disease is attributed to a progressive decline in retinal function accompanied by retinal degeneration as well as impaired central nervous system function associated with global brain atrophy. We studied visual system pathology in five Golden Retriever littermates homozygous for the CLN5 disease allele previously identified in the breed. The dogs exhibited signs of pronounced visual impairment by 21-22 months of age. Electroretinogram recordings showed a progressive decline in retinal function primarily affecting cone neural pathways. Altered visual evoked potential recordings indicated that disease progression affected visual signal processing in the brain. Aside from several small retinal detachment lesions, no gross retinal abnormalities were observed with in vivo ocular imaging and histologically the retinas did not exhibit apparent abnormalities by 23 months of age. However, there was extensive accumulation of autofluorescent membrane-bound lysosomal storage bodies in almost all retinal layers, as well as in the occipital cortex, by 20 months of age. In the retina, storage was particularly pronounced in retinal ganglion cells, the retinal pigment epithelium and in photoreceptor cells just interior to the outer limiting membrane. The visual system pathology of CLN5-affected Golden Retrievers is similar to that seen early in the human disease. It was not possible to follow the dogs to an advanced stage of disease progression due to the severity of behavioral and motor disease signs by 23 months of age. The findings reported here indicate that canine CLN5 disease will be a useful model of visual system disease in CLN5 neuronal ceroid lipofuscinosis. The baseline data obtained in this investigation will be useful in future therapeutic intervention studies. The findings indicate that there is a fairly broad time frame after disease onset within which treatments could be effective in preserving vision.
Collapse
Affiliation(s)
- Grace Robinson Kick
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO, 65212, USA
| | - Elizabeth J Meiman
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO, 65212, USA
| | - Julianna C Sabol
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO, 65212, USA
| | | | - Juri Ota-Kuroki
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO, 65212, USA
| | - Leilani J Castaner
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO, 65212, USA
| | - Cheryl A Jensen
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO, 65212, USA
| | - Martin L Katz
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
9
|
Basak I, Wicky HE, McDonald KO, Xu JB, Palmer JE, Best HL, Lefrancois S, Lee SY, Schoderboeck L, Hughes SM. A lysosomal enigma CLN5 and its significance in understanding neuronal ceroid lipofuscinosis. Cell Mol Life Sci 2021; 78:4735-4763. [PMID: 33792748 PMCID: PMC8195759 DOI: 10.1007/s00018-021-03813-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 01/09/2023]
Abstract
Neuronal Ceroid Lipofuscinosis (NCL), also known as Batten disease, is an incurable childhood brain disease. The thirteen forms of NCL are caused by mutations in thirteen CLN genes. Mutations in one CLN gene, CLN5, cause variant late-infantile NCL, with an age of onset between 4 and 7 years. The CLN5 protein is ubiquitously expressed in the majority of tissues studied and in the brain, CLN5 shows both neuronal and glial cell expression. Mutations in CLN5 are associated with the accumulation of autofluorescent storage material in lysosomes, the recycling units of the cell, in the brain and peripheral tissues. CLN5 resides in the lysosome and its function is still elusive. Initial studies suggested CLN5 was a transmembrane protein, which was later revealed to be processed into a soluble form. Multiple glycosylation sites have been reported, which may dictate its localisation and function. CLN5 interacts with several CLN proteins, and other lysosomal proteins, making it an important candidate to understand lysosomal biology. The existing knowledge on CLN5 biology stems from studies using several model organisms, including mice, sheep, cattle, dogs, social amoeba and cell cultures. Each model organism has its advantages and limitations, making it crucial to adopt a combinatorial approach, using both human cells and model organisms, to understand CLN5 pathologies and design drug therapies. In this comprehensive review, we have summarised and critiqued existing literature on CLN5 and have discussed the missing pieces of the puzzle that need to be addressed to develop an efficient therapy for CLN5 Batten disease.
Collapse
Affiliation(s)
- I Basak
- Neurodegenerative and Lysosomal Disease Laboratory, Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, 710 Cumberland Street, Dunedin, 9016, New Zealand
| | - H E Wicky
- Neurodegenerative and Lysosomal Disease Laboratory, Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, 710 Cumberland Street, Dunedin, 9016, New Zealand
| | - K O McDonald
- Neurodegenerative and Lysosomal Disease Laboratory, Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, 710 Cumberland Street, Dunedin, 9016, New Zealand
| | - J B Xu
- Neurodegenerative and Lysosomal Disease Laboratory, Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, 710 Cumberland Street, Dunedin, 9016, New Zealand
| | - J E Palmer
- Neurodegenerative and Lysosomal Disease Laboratory, Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, 710 Cumberland Street, Dunedin, 9016, New Zealand
| | - H L Best
- Neurodegenerative and Lysosomal Disease Laboratory, Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, 710 Cumberland Street, Dunedin, 9016, New Zealand
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Wales, CF10 3AX, United Kingdom
| | - S Lefrancois
- Centre INRS-Institut Armand-Frappier, INRS, Laval, H7V 1B7, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, H3A 2B2, Canada
| | - S Y Lee
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - L Schoderboeck
- Neurodegenerative and Lysosomal Disease Laboratory, Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, 710 Cumberland Street, Dunedin, 9016, New Zealand
| | - S M Hughes
- Neurodegenerative and Lysosomal Disease Laboratory, Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, 710 Cumberland Street, Dunedin, 9016, New Zealand.
| |
Collapse
|
10
|
Vas S, Nicol AU, Kalmar L, Miles J, Morton AJ. Abnormal patterns of sleep and EEG power distribution during non-rapid eye movement sleep in the sheep model of Huntington's disease. Neurobiol Dis 2021; 155:105367. [PMID: 33848636 DOI: 10.1016/j.nbd.2021.105367] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 01/18/2023] Open
Abstract
Sleep disruption is a common invisible symptom of neurological dysfunction in Huntington's disease (HD) that takes an insidious toll on well-being of patients. Here we used electroencephalography (EEG) to examine sleep in 6 year old OVT73 transgenic sheep (Ovis aries) that we used as a presymptomatic model of HD. We hypothesized that despite the lack of overt symptoms of HD at this age, early alterations of the sleep-wake pattern and EEG powers may already be present. We recorded EEG from female transgenic and normal sheep (5/group) during two undisturbed 'baseline' nights with different lighting conditions. We then recorded continuously through a night of sleep disruption and the following 24 h (recovery day and night). On baseline nights, regardless of whether the lights were on or off, transgenic sheep spent more time awake than normal sheep particularly at the beginning of the night. Furthermore, there were significant differences between transgenic and normal sheep in both EEG power and its pattern of distribution during non-rapid eye movement (NREM) sleep. In particular, there was a significant decrease in delta (0.5-4 Hz) power across the night in transgenic compared to normal sheep, and the distributions of delta, theta and alpha oscillations that typically dominate the EEG in the first half of the night of normal sheep were skewed so they were predominant in the second, rather than the first half of the night in transgenic sheep. Interestingly, the effect of sleep disruption on normal sheep was also to skew the pattern of distribution of EEG powers so they looked more like that of transgenic sheep under baseline conditions. Thus it is possible that transgenic sheep exist in a state that resemble a chronic state of physiological sleep deprivation. During the sleep recovery period, normal sheep showed a significant 'rebound' increase in delta power with frontal dominance. A similar rebound was not seen in transgenic sheep, suggesting that their homeostatic response to sleep deprivation is abnormal. Although sleep abnormalities in early stage HD patients are subtle, with patients often unaware of their existence, they may contribute to impairment of neurological function that herald the onset of disease. A better understanding of the mechanisms underlying EEG abnormalities in early stage HD would give insight into how, and when, they progress into the sleep disorder. The transgenic sheep model is ideally positioned for studies of the earliest phase of disease when sleep abnormalities first emerge.
Collapse
Affiliation(s)
- Szilvia Vas
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, United Kingdom.
| | - Alister U Nicol
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, United Kingdom.
| | - Lajos Kalmar
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom.
| | - Jack Miles
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, United Kingdom.
| | - A Jennifer Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, United Kingdom.
| |
Collapse
|
11
|
Alvites RD, Branquinho MV, Sousa AC, Lopes B, Sousa P, Mendonça C, Atayde LM, Maurício AC. Small Ruminants and Its Use in Regenerative Medicine: Recent Works and Future Perspectives. BIOLOGY 2021; 10:biology10030249. [PMID: 33810087 PMCID: PMC8004958 DOI: 10.3390/biology10030249] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary Small ruminants such as sheep and goats have been increasingly used as animal models due to their dimensions, physiology and anatomy identical to those of humans. Their low costs, ease of accommodation, great longevity and easy handling make them advantageous animals to be used in a wide range of research work. Although there is already a lot of scientific literature describing these species, their use still lacks some standardization. The purpose of this review is to summarize the general principles related to the use of small ruminants as animal models for scientific research. Abstract Medical and translational scientific research requires the use of animal models as an initial approach to the study of new therapies and treatments, but when the objective is an exploration of translational potentialities, classical models fail to adequately mimic problems in humans. Among the larger animal models that have been explored more intensely in recent decades, small ruminants, namely sheep and goats, have emerged as excellent options. The main advantages associated to the use of these animals in research works are related to their anatomy and dimensions, larger than conventional laboratory animals, but very similar to those of humans in most physiological systems, in addition to their low maintenance and feeding costs, tendency to be docile, long life expectancies and few ethical complications raised in society. The most obvious disadvantages are the significant differences in some systems such as the gastrointestinal, and the reduced amount of data that limits the comparison between works and the validation of the characterization essays. Despite everything, recently these species have been increasingly used as animal models for diseases in different systems, and the results obtained open doors for their more frequent and advantageous use in the future. The purpose of this review is to summarize the general principles related to the use of small ruminants as animal models, with a focus on regenerative medicine, to group the most relevant works and results published recently and to highlight the potentials for the near future in medical research.
Collapse
Affiliation(s)
- Rui Damásio Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Mariana Vieira Branquinho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Ana Catarina Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Bruna Lopes
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Patrícia Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Carla Mendonça
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Luís Miguel Atayde
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
- Correspondence: ; Tel.: +351-919-071-286 or +351-220-428-000
| |
Collapse
|
12
|
Sorby-Adams AJ, Schneider WT, Goncalves RP, Knolle F, Morton AJ. Measuring executive function in sheep (Ovis aries) using visual stimuli in a semi-automated operant system. J Neurosci Methods 2020; 351:109009. [PMID: 33340554 DOI: 10.1016/j.jneumeth.2020.109009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/27/2020] [Accepted: 11/19/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cognitive impairment is a distinguishing feature of many neurodegenerative diseases. The intra-dimensional (ID) extra-dimensional (ED) attentional set shift task is part of a clinical battery of tests used to evaluate executive function in Huntington's and Alzheimer's disease patients. The IDED task, however, has not translated well to pre-clinical rodent models of neurological disease. NEW METHOD The ability to perform executive tasks coupled with a long lifespan makes sheep (Ovis aries) an ideal species for modelling cognitive decline in progressive neurodegenerative conditions. We describe the methodology for testing the performance of sheep in the IDED task using a semi-automated system in which visual stimuli are presented as coloured letters on computer screens. RESULTS During each stage of IDED testing, all sheep (n = 12) learned successfully to discriminate between different colours and letters. Sheep were quick to learn the rules of acquisition at each stage. They required significantly more trials to reach criterion (p < 0.05) and made more errors (p < 0.05) following stimulus reversal, with the exception of the ED shift (p > 0.05). COMPARISON WITH EXISTING METHOD(S) Previous research shows that sheep can perform IDED set shifting in a walk-through maze using solid objects with two changeable dimensions (colour and shape) as the stimuli. Presenting the stimuli on computer screens provides better validity, greater task flexibility and higher throughput than the walk-through maze. CONCLUSION All sheep completed each stage of the task, with a range of abilities expected in an outbred population. The IDED task described is ideally suited as a quantifiable and clinically translatable measure of executive function in sheep.
Collapse
Affiliation(s)
- A J Sorby-Adams
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - W T Schneider
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - R P Goncalves
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - F Knolle
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom; Department of Neurology, Klinikum recht der Isar, Technical University Munich, Munich, Germany
| | - A J Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom.
| |
Collapse
|
13
|
Nicol AU, Morton AJ. Characteristic patterns of EEG oscillations in sheep (Ovis aries) induced by ketamine may explain the psychotropic effects seen in humans. Sci Rep 2020; 10:9440. [PMID: 32528071 PMCID: PMC7289807 DOI: 10.1038/s41598-020-66023-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/04/2020] [Indexed: 11/10/2022] Open
Abstract
Ketamine is a valuable anaesthetic and analgesic that in recent years has gained notoriety as a recreational drug. Recently, ketamine has also been proposed as a novel treatment for depression and post-traumatic stress disorder. Beyond its anaesthetic actions, however, the effects of ketamine on brain activity have rarely been probed. Here we examined the cortical electroencephalography (EEG) response to ketamine of 12 sheep. Following ketamine administration, EEG changes were immediate and widespread, affecting the full extent of the EEG frequency spectrum measured (0–125 Hz). After recovery from sedation during which low frequency activity dominated, the EEG was characterised by short periods (2–3 s) of alternating low (<14 Hz) and high (>35 Hz) frequency oscillation. This alternating EEG rhythm phase is likely to underlie the dissociative actions of ketamine, since it is during this phase that ketamine users report hallucinations. At the highest intravenous dose used (24 mg/kg), in 5/6 sheep we observed a novel effect of ketamine, namely the complete cessation of cortical EEG activity. This persisted for up to several minutes, after which cortical activity resumed. This phenomenon is likely to explain the ‘k-hole’, a state of oblivion likened to a near death experience that is keenly sought by ketamine abusers.
Collapse
Affiliation(s)
- A U Nicol
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - A J Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK.
| |
Collapse
|
14
|
Abstract
Sleep duration and lifespan vary greatly across Animalia. Human studies have demonstrated that ageing reduces the ability to obtain deep restorative sleep, and this may play a causative role in the development of age-related neurodegenerative disorders. Animal models are widely used in sleep and ageing studies. Importantly, in contrast to human studies, evidence from laboratory rodents suggests that sleep duration is increased with ageing, while evidence for reduced sleep intensity and consolidation is inconsistent. Here we discuss two possible explanations for these species differences. First, methodological differences between studies in humans and laboratory rodents may prevent straightforward comparison. Second, the role of ecological factors, which have a profound influence on both ageing and sleep, must be taken into account. We propose that the dynamics of sleep across the lifespan reflect both age-dependent changes in the neurobiological substrates of sleep as well as the capacity to adapt to the environment.
Collapse
|
15
|
Huber RJ, Hughes SM, Liu W, Morgan A, Tuxworth RI, Russell C. The contribution of multicellular model organisms to neuronal ceroid lipofuscinosis research. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165614. [PMID: 31783156 DOI: 10.1016/j.bbadis.2019.165614] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
The NCLs (neuronal ceroid lipofuscinosis) are forms of neurodegenerative disease that affect people of all ages and ethnicities but are most prevalent in children. Commonly known as Batten disease, this debilitating neurological disorder is comprised of 13 different subtypes that are categorized based on the particular gene that is mutated (CLN1-8, CLN10-14). The pathological mechanisms underlying the NCLs are not well understood due to our poor understanding of the functions of NCL proteins. Only one specific treatment (enzyme replacement therapy) is approved, which is for the treating the brain in CLN2 disease. Hence there remains a desperate need for further research into disease-modifying treatments. In this review, we present and evaluate the genes, proteins and studies performed in the social amoeba, nematode, fruit fly, zebrafish, mouse and large animals pertinent to NCL. In particular, we highlight the use of multicellular model organisms to study NCL protein function, pathology and pathomechanisms. Their use in testing novel therapeutic approaches is also presented. With this information, we highlight how future research in these systems may be able to provide new insight into NCL protein functions in human cells and aid in the development of new therapies.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Stephanie M Hughes
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre and Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Wenfei Liu
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Richard I Tuxworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Claire Russell
- Dept. Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| |
Collapse
|
16
|
Fürtbauer I, Solman C, Fry A. Sheep wool cortisol as a retrospective measure of long-term HPA axis activity and its links to body mass. Domest Anim Endocrinol 2019; 68:39-46. [PMID: 30797176 DOI: 10.1016/j.domaniend.2018.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/29/2018] [Accepted: 12/24/2018] [Indexed: 01/21/2023]
Abstract
Hair cortisol analysis has been suggested as a powerful retrospective measure of long-term hypothalamic-pituitary-adrenal (HPA) axis activity in numerous mammal species. In contrast, research evaluating the use of wool as a marker of long-term HPA axis activity is still scarce, and wool differs from hair in a number of ways. Here, we assess repeatability and differences in wool cortisol concentrations (WCCs) across (i) the wool shaft, (ii) two body locations, and (iii) time, in 33 barren Welsh mountain ewes (Ovis aries). We also (iv) investigated effects of grazing-related changes in body mass on WCCs and (v) assessed effects of the washing procedure during sample preparation on WCCs. Cortisol concentrations were repeatable but differed significantly across the wool shaft indicating that, provided wool growth rate is known, a single sample per individual could be used as a retrospective cortisol "timeline." WCCs were significantly higher in shoulder than in back samples, and no correlation between these two body locations was found, highlighting the importance of sampling from the same body location for repeated measures. An increase in body mass during grazing corresponded with a decrease in WCCs, which was significantly negatively correlated with body mass (and positively with age), suggesting that WCCs can be used as a marker of body condition and nutritional status in sheep. Interestingly, we found higher WCCs in washed compared with unwashed samples and discuss implications of this finding for future work. Overall, our study revealed significant within- and between-individual differences in WCCs and highlights a number of advantages but also methodological considerations of using WCCs as a retrospective measure of long-term HPA axis activity in sheep.
Collapse
Affiliation(s)
- I Fürtbauer
- Department of Biosciences, Swansea University, Singleton Park, SA2 8PP Swansea, UK.
| | - C Solman
- Department of Biosciences, Swansea University, Singleton Park, SA2 8PP Swansea, UK
| | - A Fry
- Department of Biosciences, Swansea University, Singleton Park, SA2 8PP Swansea, UK
| |
Collapse
|
17
|
Villani NA, Bullock G, Michaels JR, Yamato O, O'Brien DP, Mhlanga-Mutangadura T, Johnson GS, Katz ML. A mixed breed dog with neuronal ceroid lipofuscinosis is homozygous for a CLN5 nonsense mutation previously identified in Border Collies and Australian Cattle Dogs. Mol Genet Metab 2019; 127:107-115. [PMID: 31101435 PMCID: PMC6555421 DOI: 10.1016/j.ymgme.2019.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 12/29/2022]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a group of inherited neurodegenerative disorders characterized by progressive declines in neurological functions following normal development. The NCLs are distinguished from similar disorders by the accumulation of autofluorescent lysosomal storage bodies in neurons and many other cell types, and are classified as lysosomal storage diseases. At least 13 genes contain pathogenic sequence variants that underlie different forms of NCL. Naturally occurring canine NCLs can serve as models to develop better understanding of the disease pathologies and for preclinical evaluation of therapeutic interventions for these disorders. To date 14 sequence variants in 8 canine orthologs of human NCL genes have been found to cause progressive neurological disorders similar to human NCLs in 12 different dog breeds. A mixed breed dog with parents of uncertain breed background developed progressive neurological signs consistent with NCL starting at approximately 11 to 12 months of age, and when evaluated with magnetic resonance imaging at 21 months of age exhibited diffuse brain atrophy. Due to the severity of neurological decline the dog was euthanized at 23 months of age. Cerebellar and cerebral cortical neurons contained massive accumulations of autofluorescent storage bodies the contents of which had the appearance of tightly packed membranes. A whole genome sequence, generated with DNA from the affected dog contained a homozygous C-to-T transition at position 30,574,637 on chromosome 22 which is reflected in the mature CLN5 transcript (CLN5: c.619C > T) and converts a glutamine codon to a termination codon (p.Gln207Ter). The identical nonsense mutation has been previously associated with NCL in Border Collies, Australian Cattle Dogs, and a German Shepherd-Australian Cattle Dog mix. The current whole genome sequence and a previously generated whole genome sequence for an Australian Cattle Dog with NCL share a rare homozygous haplotype that extends for 87 kb surrounding 22: 30, 574, 637 and includes 21 polymorphic sites. When genotyped at 7 of these polymorphic sites, DNA samples from the German Shepherd-Australian Cattle Dog mix and from 5 Border Collies with NCL that were homozygous for the CLN5: c.619 T allele also shared this homozygous haplotype, suggesting that the NCL in all of these dogs stems from the same founding mutation event that may have predated the establishment of the modern dog breeds. If so, the CLN5 nonsence allele is probably segregating in other, as yet unidentified, breeds. Thus, dogs exhibiting similar NCL-like signs should be screened for this CLN5 nonsense allele regardless of breed.
Collapse
Affiliation(s)
- Natalie A Villani
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Garrett Bullock
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | | | - Osamu Yamato
- Laboratory of Clinical Pathology, Kagoshima University, Kagoshima, Japan
| | - Dennis P O'Brien
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | | | - Gary S Johnson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Martin L Katz
- Mason Eye Institute, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
18
|
Murray SJ, Black BL, Reid SJ, Rudiger SR, Simon Bawden C, Snell RG, Waldvogel HJ, Faull RL. Chemical neuroanatomy of the substantia nigra in the ovine brain. J Chem Neuroanat 2019; 97:43-56. [DOI: 10.1016/j.jchemneu.2019.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 01/20/2023]
|
19
|
McBride SD, Morton AJ. Indices of comparative cognition: assessing animal models of human brain function. Exp Brain Res 2018; 236:3379-3390. [PMID: 30267138 PMCID: PMC6267686 DOI: 10.1007/s00221-018-5370-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 08/29/2018] [Indexed: 11/27/2022]
Abstract
Understanding the cognitive capacities of animals is important, because (a) several animal models of human neurodegenerative disease are considered poor representatives of the human equivalent and (b) cognitive capacities may provide insight into alternative animal models. We used a three-stage process of cognitive and neuroanatomical comparison (using sheep as an example) to assess the appropriateness of a species to model human brain function. First, a cognitive task was defined via a reinforcement-learning algorithm where values/constants in the algorithm were taken as indirect measures of neurophysiological attributes. Second, cognitive data (values/constants) were generated for the example species (sheep) and compared to other species. Third, cognitive data were compared with neuroanatomical metrics for each species (endocranial volume, gyrification index, encephalisation quotient, and number of cortical neurons). Four breeds of sheep (n = 15/sheep) were tested using the two-choice discrimination-reversal task. The 'reversal index' was used as a measure of constants within the learning algorithm. Reversal index data ranked sheep as third in a table of species that included primates, dogs, and pigs. Across all species, number of cortical neurons correlated strongest against the reversal index (r2 = 0.66, p = 0.0075) followed by encephalization quotient (r2 = 0.42, p = 0.03), endocranial volume (r2 = 0.30, p = 0.08), and gyrification index (r2 = 0.16, p = 0.23). Sheep have a high predicted level of cognitive capacity and are thus a valid alternative model for neurodegenerative research. Using learning algorithms within cognitive tasks increases the resolution of methods of comparative cognition and can help to identify the most relevant species to model human brain function and dysfunction.
Collapse
Affiliation(s)
- Sebastian D McBride
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3FG, UK.
| | - A Jennifer Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK
| |
Collapse
|
20
|
Ge L, Li HY, Hai Y, Min L, Xing L, Min J, Shu HX, Mei OY, Hua L. Novel Mutations in CLN5 of Chinese Patients With Neuronal Ceroid Lipofuscinosis. J Child Neurol 2018; 33:837-850. [PMID: 30264640 DOI: 10.1177/0883073818789024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neuronal ceroid lipofuscinosis is a hereditary disease, and ceroid-lipofuscinosis neuronal protein 5 (CLN5) has been proved to be associated with neuronal ceroid lipofuscinosis. Here we report 3 patients from 2 families diagnosed with CLN5 neuronal ceroid lipofuscinosis. Whole genome sequencing of DNAs from 3 patients and their families revealed 3 novel homozygous mutations, including 1 deletion CLN5.c718 719delAT and 2 missense mutations c.1082T>C and c.623G>A. We reviewed 278 papers about neuronal ceroid lipofuscinosis resulting from CLN5 mutations and compared Chinese cases with 27 European and American cases. The overall age of onset of European and American patients occur mainly at 3 to 6 years (66%, 18/27), 100% (27/27) of patients had psychomotor regression, 99% (26/27) patients presented vision decline, and 70% (19/27) of patients suffered seizures. In China, the age of onset in 3 patients was 5 years, but for 1 patient it was at 17 months. Four Chinese patients presented psychomotor deterioration and seizures; only 1 had visual problems.
Collapse
Affiliation(s)
- Lv Ge
- 1 Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Han Yun Li
- 1 Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Yuan Hai
- 1 Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Liu Min
- 1 Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Li Xing
- 1 Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Jiang Min
- 1 Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Hu Xiang Shu
- 2 Department of Neurology, GuangDong 999 Brain Hospital, Guangzhou 510000, Guangdong, People's Republic of China
| | - Ou Yang Mei
- 2 Department of Neurology, GuangDong 999 Brain Hospital, Guangzhou 510000, Guangdong, People's Republic of China
| | - Li Hua
- 2 Department of Neurology, GuangDong 999 Brain Hospital, Guangzhou 510000, Guangdong, People's Republic of China
| |
Collapse
|
21
|
Abstract
The limitations of using small-brained rodents to model diseases that affect large-brain humans are becoming increasingly obvious as novel therapies emerge. Huntington's disease (HD) is one such disease. In recent years, the desirability of a large-brained, long-lived animal model of HD for preclinical testing has changed into a necessity. Treatment involving gene therapy in particular presents delivery challenges that are currently unsolved. Models using long-lived, large-brained animals would be useful, not only for refining methods of delivery (particularly for gene and other therapies that do not involve small molecules) but also for measuring long-term "off-target" effects, and assessing the efficacy of therapies. With their large brains and convoluted cortices, sheep are emerging as feasible experimental subjects that can be used to bridge the gap between rodents and humans in preclinical drug development. Sheep are readily available, economical to use, and easy to care for in naturalistic settings. With brains of a similar size to a large rhesus macaque, they have much to offer. The only thing that was missing until recently was the means of testing their neurological function and behavior using approaches and methods that are relevant to HD. In this chapter, I will outline the present and future possibilities of using sheep and testing as large animal models of HD.
Collapse
Affiliation(s)
- A J Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
22
|
Alzheimer's disease markers in the aged sheep (Ovis aries). Neurobiol Aging 2017; 58:112-119. [DOI: 10.1016/j.neurobiolaging.2017.06.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 11/22/2022]
|
23
|
Gray-Edwards HL, Randle AN, Maitland SA, Benatti HR, Hubbard SM, Canning PF, Vogel MB, Brunson BL, Hwang M, Ellis LE, Bradbury AM, Gentry AS, Taylor AR, Wooldridge AA, Wilhite DR, Winter RL, Whitlock BK, Johnson JA, Holland M, Salibi N, Beyers RJ, Sartin JL, Denney TS, Cox NR, Sena-Esteves M, Martin DR. Adeno-Associated Virus Gene Therapy in a Sheep Model of Tay-Sachs Disease. Hum Gene Ther 2017; 29:312-326. [PMID: 28922945 DOI: 10.1089/hum.2017.163] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Tay-Sachs disease (TSD) is a fatal neurodegenerative disorder caused by a deficiency of the enzyme hexosaminidase A (HexA). TSD also occurs in sheep, the only experimental model of TSD that has clinical signs of disease. The natural history of sheep TSD was characterized using serial neurological evaluations, 7 Tesla magnetic resonance imaging, echocardiograms, electrodiagnostics, and cerebrospinal fluid biomarkers. Intracranial gene therapy was also tested using AAVrh8 monocistronic vectors encoding the α-subunit of Hex (TSD α) or a mixture of two vectors encoding both the α and β subunits separately (TSD α + β) injected at high (1.3 × 1013 vector genomes) or low (4.2 × 1012 vector genomes) dose. Delay of symptom onset and/or reduction of acquired symptoms were noted in all adeno-associated virus-treated sheep. Postmortem evaluation showed superior HexA and vector genome distribution in the brain of TSD α + β sheep compared to TSD α sheep, but spinal cord distribution was low in all groups. Isozyme analysis showed superior HexA formation after treatment with both vectors (TSD α + β), and ganglioside clearance was most widespread in the TSD α + β high-dose sheep. Microglial activation and proliferation in TSD sheep-most prominent in the cerebrum-were attenuated after gene therapy. This report demonstrates therapeutic efficacy for TSD in the sheep brain, which is on the same order of magnitude as a child's brain.
Collapse
Affiliation(s)
- Heather L Gray-Edwards
- 1 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Ashley N Randle
- 1 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Stacy A Maitland
- 2 Department of Neurology and Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Hector R Benatti
- 1 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Spencer M Hubbard
- 1 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Peter F Canning
- 1 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Matthew B Vogel
- 1 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Brandon L Brunson
- 3 Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Misako Hwang
- 1 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Lauren E Ellis
- 1 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Allison M Bradbury
- 1 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama.,3 Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Atoska S Gentry
- 1 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Amanda R Taylor
- 4 Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Anne A Wooldridge
- 4 Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Dewey R Wilhite
- 3 Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Randolph L Winter
- 4 Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Brian K Whitlock
- 5 Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee , Knoxville, Tennessee
| | - Jacob A Johnson
- 4 Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Merilee Holland
- 4 Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Nouha Salibi
- 6 MR R&D Siemens Healthcare, Malvern, Pennsylvania
| | - Ronald J Beyers
- 7 Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama
| | - James L Sartin
- 3 Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Thomas S Denney
- 7 Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama
| | - Nancy R Cox
- 1 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama.,8 Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Miguel Sena-Esteves
- 2 Department of Neurology and Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Douglas R Martin
- 1 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama.,3 Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| |
Collapse
|
24
|
Nelvagal HR, Cooper JD. Translating preclinical models of neuronal ceroid lipofuscinosis: progress and prospects. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1360182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Hemanth R. Nelvagal
- Pediatric Storage Disorders Laboratory, Division of Medical Genetics, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine, UCLA, Torrance, CA, USA
| | - Jonathan D. Cooper
- Pediatric Storage Disorders Laboratory, Division of Medical Genetics, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine, UCLA, Torrance, CA, USA
| |
Collapse
|
25
|
An EEG Investigation of Sleep Homeostasis in Healthy and CLN5 Batten Disease Affected Sheep. J Neurosci 2017; 36:8238-49. [PMID: 27488642 DOI: 10.1523/jneurosci.4295-15.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 06/07/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Sheep have large brains with human-like anatomy, making them a useful species for studying brain function. Sleep homeostasis has not been studied in sheep. Here, we establish correlates of sleep homeostasis in sheep through a sleep deprivation experiment. We then use these correlates to elucidate the nature of sleep deficits in a naturally occurring ovine model of neuronal ceroid lipofuscinosis (NCL, Batten disease) caused by a mutation in CLN5 In humans, mutations in this gene lead to cortical atrophy and blindness, as well as sleep abnormalities. We recorded electroencephalograms (EEGs) from unaffected and early stage CLN5(-/-) (homozygous, affected) sheep over 3 consecutive days, the second day being the sleep deprivation day. In unaffected sheep, sleep deprivation led to increased EEG delta (0.5-4 Hz) power during non-rapid eye movement (NREM) sleep, increased time spent in the NREM sleep state, and increased NREM sleep bout length. CLN5(-/-) sheep showed comparable increases in time spent in NREM sleep and NREM sleep bout duration, verifying the presence of increased sleep pressure in both groups. Importantly, CLN5(-/-) sheep did not show the increase in NREM sleep delta power seen in unaffected sheep. This divergent delta power response is consistent with the known cortical degeneration in CLN5(-/-) sheep. We conclude that, whereas sleep homeostasis is present in CLN5(-/-) sheep, underlying CLN5(-/-) disease processes prevent its full expression, even at early stages. Such deficits may contribute to early abnormalities seen in sheep and patients and warrant further study. SIGNIFICANCE STATEMENT Sleep abnormalities pervade most neurological diseases, including the neuronal ceroid lipofuscinoses (NCLs). Here, we show that, in an ovine model of a variant late-infantile NCL, there is abnormal expression of sleep homeostasis. Whereas some sleep pressure correlates respond to sleep deprivation, the strongest electroencephalogram (EEG) correlate of sleep pressure, non-REM delta power, failed to increase. This highlights the relevance of sleep deficits in this disease, in which the drive for sleep exists but the underlying disease prevents its full expression. Sleep abnormalities could contribute to early disease symptoms such as behavioral disorder and cognitive decline. Our study also shows sleep homeostatic EEG correlates in sheep, opening up new opportunities for studying sleep in a large social mammal with complex human-like brain neuroanatomy.
Collapse
|
26
|
Leuchter MK, Donzis EJ, Cepeda C, Hunter AM, Estrada-Sánchez AM, Cook IA, Levine MS, Leuchter AF. Quantitative Electroencephalographic Biomarkers in Preclinical and Human Studies of Huntington's Disease: Are They Fit-for-Purpose for Treatment Development? Front Neurol 2017; 8:91. [PMID: 28424652 PMCID: PMC5371600 DOI: 10.3389/fneur.2017.00091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 02/27/2017] [Indexed: 01/30/2023] Open
Abstract
A major focus in development of novel therapies for Huntington's disease (HD) is identification of treatments that reduce the burden of mutant huntingtin (mHTT) protein in the brain. In order to identify and test the efficacy of such therapies, it is essential to have biomarkers that are sensitive to the effects of mHTT on brain function to determine whether the intervention has been effective at preventing toxicity in target brain systems before onset of clinical symptoms. Ideally, such biomarkers should have a plausible physiologic basis for detecting the effects of mHTT, be measureable both in preclinical models and human studies, be practical to measure serially in clinical trials, and be reliably measurable in HD gene expansion carriers (HDGECs), among other features. Quantitative electroencephalography (qEEG) fulfills many of these basic criteria of a "fit-for-purpose" biomarker. qEEG measures brain oscillatory activity that is regulated by the brain structures that are affected by mHTT in premanifest and early symptom individuals. The technology is practical to implement in the laboratory and is well tolerated by humans in clinical trials. The biomarkers are measureable across animal models and humans, with findings that appear to be detectable in HDGECs and translate across species. We review here the literature on recent developments in both preclinical and human studies of the use of qEEG biomarkers in HD, and the evidence for their usefulness as biomarkers to help guide development of novel mHTT lowering treatments.
Collapse
Affiliation(s)
- Michael K Leuchter
- David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Elissa J Donzis
- David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Carlos Cepeda
- David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Aimee M Hunter
- David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Neuromodulation Division, Laboratory of Brain, Behavior, and Pharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Ana María Estrada-Sánchez
- David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Ian A Cook
- David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Neuromodulation Division, Laboratory of Brain, Behavior, and Pharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Department of Bioengineering, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Michael S Levine
- David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Andrew F Leuchter
- David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Neuromodulation Division, Laboratory of Brain, Behavior, and Pharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
27
|
Perentos N, Nicol AU, Martins AQ, Stewart JE, Taylor P, Morton AJ. Techniques for chronic monitoring of brain activity in freely moving sheep using wireless EEG recording. J Neurosci Methods 2016; 279:87-100. [PMID: 27914975 DOI: 10.1016/j.jneumeth.2016.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/21/2016] [Accepted: 11/24/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Large mammals with complex central nervous systems offer new possibilities for translational research into basic brain function. Techniques for monitoring brain activity in large mammals, however, are not as well developed as they are in rodents. NEW METHOD We have developed a method for chronic monitoring of electroencephalographic (EEG) activity in unrestrained sheep. We describe the methods for behavioural training prior to implantation, surgical procedures for implantation, a protocol for reliable anaesthesia and recovery, methods for EEG data collection, as well as data pertaining to suitability and longevity of different types of electrodes. RESULTS Sheep tolerated all procedures well, and surgical complications were minimal. Electrode types used included epidural and subdural screws, intracortical needles and subdural disk electrodes, with the latter producing the best and most reliable results. The implants yielded longitudinal EEG data of consistent quality for periods of at least a year, and in some cases up to 2 years. COMPARISON WITH EXISTING METHODS This is the first detailed methodology to be described for chronic brain function monitoring in freely moving unrestrained sheep. CONCLUSIONS The developed method will be particularly useful in chronic investigations of brain activity during normal behaviour that can include sleep, learning and memory. As well, within the context of disease, the method can be used to monitor brain pathology or the progress of therapeutic trials in transgenic or natural disease models in sheep.
Collapse
Affiliation(s)
- N Perentos
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
| | - A U Nicol
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
| | - A Q Martins
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
| | - J E Stewart
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
| | - P Taylor
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
| | - A J Morton
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom.
| |
Collapse
|
28
|
Nicol AU, Perentos N, Martins AQ, Morton AJ. Automated detection and characterisation of rumination in sheep using in vivo electrophysiology. Physiol Behav 2016; 163:258-266. [DOI: 10.1016/j.physbeh.2016.05.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/13/2016] [Accepted: 05/16/2016] [Indexed: 10/21/2022]
|
29
|
Liyanage KA, Steward C, Moffat BA, Opie NL, Rind GS, John SE, Ronayne S, May CN, O’Brien TJ, Milne ME, Oxley TJ. Development and Implementation of a Corriedale Ovine Brain Atlas for Use in Atlas-Based Segmentation. PLoS One 2016; 11:e0155974. [PMID: 27285947 PMCID: PMC4902240 DOI: 10.1371/journal.pone.0155974] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/06/2016] [Indexed: 02/06/2023] Open
Abstract
Segmentation is the process of partitioning an image into subdivisions and can be applied to medical images to isolate anatomical or pathological areas for further analysis. This process can be done manually or automated by the use of image processing computer packages. Atlas-based segmentation automates this process by the use of a pre-labelled template and a registration algorithm. We developed an ovine brain atlas that can be used as a model for neurological conditions such as Parkinson's disease and focal epilepsy. 17 female Corriedale ovine brains were imaged in-vivo in a 1.5T (low-resolution) MRI scanner. 13 of the low-resolution images were combined using a template construction algorithm to form a low-resolution template. The template was labelled to form an atlas and tested by comparing manual with atlas-based segmentations against the remaining four low-resolution images. The comparisons were in the form of similarity metrics used in previous segmentation research. Dice Similarity Coefficients were utilised to determine the degree of overlap between eight independent, manual and atlas-based segmentations, with values ranging from 0 (no overlap) to 1 (complete overlap). For 7 of these 8 segmented areas, we achieved a Dice Similarity Coefficient of 0.5-0.8. The amygdala was difficult to segment due to its variable location and similar intensity to surrounding tissues resulting in Dice Coefficients of 0.0-0.2. We developed a low resolution ovine brain atlas with eight clinically relevant areas labelled. This brain atlas performed comparably to prior human atlases described in the literature and to intra-observer error providing an atlas that can be used to guide further research using ovine brains as a model and is hosted online for public access.
Collapse
Affiliation(s)
- Kishan Andre Liyanage
- Vascular Bionics Laboratory, Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Department of Radiology, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Christopher Steward
- Department of Radiology, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Bradford Armstrong Moffat
- Department of Radiology, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas Lachlan Opie
- Vascular Bionics Laboratory, Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Gil Simon Rind
- Vascular Bionics Laboratory, Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Sam Emmanuel John
- Vascular Bionics Laboratory, Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- NeuroEngineering Laboratory, Department of Electrical & Electronic Engineering, The University of Melbourne and Centre for Neural Engineering, Parkville, Victoria, Australia
| | - Stephen Ronayne
- Vascular Bionics Laboratory, Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Clive Newton May
- Vascular Bionics Laboratory, Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Terence John O’Brien
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Marjorie Eileen Milne
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Victoria, Australia
| | - Thomas James Oxley
- Vascular Bionics Laboratory, Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
30
|
Bao L, Si L, Wang Y, Wuyun G, Bo A. Effect of two GABA-ergic drugs on the cognitive functions of rapid eye movement in sleep-deprived and recovered rats. Exp Ther Med 2016; 12:1075-1084. [PMID: 27446323 DOI: 10.3892/etm.2016.3445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/16/2016] [Indexed: 01/05/2023] Open
Abstract
Rapid eye movement (REM) sleep is closely associated with nervous functions. The present study aimed to evaluate the effects of gabazine and tiagabine on the cognitive functions (CF) of REM sleep-deprived and sleep recovered rats. Rats were divided into REM sleep deprivation, blank control (CC) and environmental groups. The REM sleep deprivation group was further divided into non-operation (nonOP), sham-operated (Sham), gabazine (SR) and tiagabine groups. Each group was evaluated over five time points: Sleep deprived for 1 day (SD 1 day), SD 3 day, SD 5 day, sleep recovery 6 h (RS 6 h) and RS 12 h. A rat model of REM sleep deprivation was established by a modified multi-platform water method, with CF assessed by Morris water maze. Hypothalamic γ-aminobutyric acid (GABA) and glutamic acid contents were measured via high performance liquid chromatography. The number and morphology of hypocretin (Hcrt) neurons and Fos in the hypothalamus, and GABAARα1-induced integral optical density were detected by immunofluorescence. Compared to the CC group, the nonOP and Sham group rats CF were significantly diminished, Fos-positive and Fos-Hcrt double positive cells were significantly increased, and GABA content and GABAARα1 expression levels were significantly elevated (P<0.05). The tiagabine and CC groups exhibited similar results at three time points. The CF of rats in the SR group were diminished and the number of Fos-positive and Fos-Hcrt double positive cells were significantly increased (P<0.05) at RS 6 h and RS l2 h. GABA content and GABAARα1 expression levels were significantly increased in the SR group at all time points (P<0.05), whereas only GABAARα1 expression levels were significantly increased in the tiagabine group at SD 5 day (P<0.05). The results of the present study indicated that REM sleep deprivation diminished CF, increased the number of Hcrt neurons, GABA content and GABAARα1 expression. Furthermore, all alterations were positively correlated with deprivation time and corrected by sleep recovery, as demonstrated by single-factor multi-level variance analysis at the various time points in each group. Therefore, the Hcrt nervous system may be an eligible therapeutic target for the treatment of insomnia.
Collapse
Affiliation(s)
- Lidao Bao
- College of Traditional Mongolian Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010110, P.R. China; Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010059, P.R. China
| | - Lengge Si
- College of Traditional Mongolian Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010110, P.R. China
| | - Yuehong Wang
- College of Traditional Mongolian Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010110, P.R. China
| | - Gerile Wuyun
- College of Traditional Mongolian Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010110, P.R. China
| | - Agula Bo
- College of Traditional Mongolian Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010110, P.R. China
| |
Collapse
|
31
|
Kolicheski A, Johnson GS, O'Brien DP, Mhlanga-Mutangadura T, Gilliam D, Guo J, Anderson-Sieg TD, Schnabel RD, Taylor JF, Lebowitz A, Swanson B, Hicks D, Niman ZE, Wininger FA, Carpentier MC, Katz ML. Australian Cattle Dogs with Neuronal Ceroid Lipofuscinosis are Homozygous for a CLN5 Nonsense Mutation Previously Identified in Border Collies. J Vet Intern Med 2016; 30:1149-58. [PMID: 27203721 PMCID: PMC5084771 DOI: 10.1111/jvim.13971] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 04/17/2016] [Accepted: 04/28/2016] [Indexed: 12/13/2022] Open
Abstract
Background Neuronal ceroid lipofuscinosis (NCL), a fatal neurodegenerative disease, has been diagnosed in young adult Australian Cattle Dogs. Objective Characterize the Australian Cattle Dog form of NCL and determine its molecular genetic cause. Animals Tissues from 4 Australian Cattle Dogs with NCL‐like signs and buccal swabs from both parents of a fifth affected breed member. Archived DNA samples from 712 individual dogs were genotyped. Methods Tissues were examined by fluorescence, electron, and immunohistochemical microscopy. A whole‐genome sequence was generated for 1 affected dog. A TaqMan allelic discrimination assay was used for genotyping. Results The accumulation of autofluorescent cytoplasmic storage material with characteristic ultrastructure in tissues from the 4 affected dogs supported a diagnosis of NCL. The whole‐genome sequence contained a homozygous nonsense mutation: CLN5:c.619C>T. All 4 DNA samples from clinically affected dogs tested homozygous for the variant allele. Both parents of the fifth affected dog were heterozygotes. Archived DNA samples from 346 Australian Cattle Dogs, 188 Border Collies, and 177 dogs of other breeds were homozygous for the reference allele. One archived Australian Cattle Dog sample was from a heterozygote. Conclusions and Clinical Importance The homozygous CLN5 nonsense is almost certainly causal because the same mutation previously had been reported to cause a similar form of NCL in Border Collies. Identification of the molecular genetic cause of Australian Cattle Dog NCL will allow the use of DNA tests to confirm the diagnosis of NCL in this breed.
Collapse
Affiliation(s)
- A Kolicheski
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO
| | - G S Johnson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO
| | - D P O'Brien
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO
| | | | - D Gilliam
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO
| | - J Guo
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO
| | - T D Anderson-Sieg
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO
| | - R D Schnabel
- Division of Animal Sciences and Informatics Institute, University of Missouri, Columbia, MO
| | - J F Taylor
- Division of Animal Sciences, University of Missouri, Columbia, MO
| | - A Lebowitz
- Animal Medical Center of New York, New York, NY
| | - B Swanson
- Animal Medical Center of New York, New York, NY
| | - D Hicks
- Blue Pearl Veterinary Hospital, Tacoma, WA
| | - Z E Niman
- Chicago Veterinary Specialty Group, Chicago, IL
| | - F A Wininger
- Veterinary Specialty Services Neurology Department, Manchester, MO
| | - M C Carpentier
- Veterinary Specialty Services Neurology Department, Manchester, MO
| | - M L Katz
- Mason Eye Institute, University of Missouri, Columbia, MO
| |
Collapse
|
32
|
Amorim IS, Mitchell NL, Palmer DN, Sawiak SJ, Mason R, Wishart TM, Gillingwater TH. Molecular neuropathology of the synapse in sheep with CLN5 Batten disease. Brain Behav 2015; 5:e00401. [PMID: 26664787 PMCID: PMC4667763 DOI: 10.1002/brb3.401] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/25/2015] [Accepted: 09/02/2015] [Indexed: 12/26/2022] Open
Abstract
AIMS Synapses represent a major pathological target across a broad range of neurodegenerative conditions. Recent studies addressing molecular mechanisms regulating synaptic vulnerability and degeneration have relied heavily on invertebrate and mouse models. Whether similar molecular neuropathological changes underpin synaptic breakdown in large animal models and in human patients with neurodegenerative disease remains unclear. We therefore investigated whether molecular regulators of synaptic pathophysiology, previously identified in Drosophila and mouse models, are similarly present and modified in the brain of sheep with CLN5 Batten disease. METHODS Gross neuropathological analysis of CLN5 Batten disease sheep and controls was used alongside postmortem MRI imaging to identify affected brain regions. Synaptosome preparations were then generated and quantitative fluorescent Western blotting used to determine and compare levels of synaptic proteins. RESULTS The cortex was particularly affected by regional neurodegeneration and synaptic loss in CLN5 sheep, whilst the cerebellum was relatively spared. Quantitative assessment of the protein content of synaptosome preparations revealed significant changes in levels of seven out of eight synaptic neurodegeneration proteins investigated in the motor cortex, but not cerebellum, of CLN5 sheep (α-synuclein, CSP-α, neurofascin, ROCK2, calretinin, SIRT2, and UBR4). CONCLUSIONS Synaptic pathology is a robust correlate of region-specific neurodegeneration in the brain of CLN5 sheep, driven by molecular pathways similar to those reported in Drosophila and rodent models. Thus, large animal models, such as sheep, represent ideal translational systems to develop and test therapeutics aimed at delaying or halting synaptic pathology for a range of human neurodegenerative conditions.
Collapse
Affiliation(s)
- Inês S Amorim
- Centre for Integrative Physiology University of Edinburgh Hugh Robson Building Edinburgh UK ; Euan MacDonald Centre for Motor Neurone Disease Research University of Edinburgh Hugh Robson Building Edinburgh UK
| | - Nadia L Mitchell
- Department of Molecular Biosciences Faculty of Agricultural and Life Sciences and Batten Animal Research Network Lincoln University Christchurch New Zealand
| | - David N Palmer
- Department of Molecular Biosciences Faculty of Agricultural and Life Sciences and Batten Animal Research Network Lincoln University Christchurch New Zealand
| | - Stephen J Sawiak
- Department of Physiology, Development and Neuroscience University of Cambridge Downing Street Cambridge UK ; Wolfson Brain Imaging Centre University of Cambridge Box 65 Addenbrooke's Hospital Hills Road Cambridge UK
| | - Roger Mason
- Department of Physiology, Development and Neuroscience University of Cambridge Downing Street Cambridge UK
| | - Thomas M Wishart
- Euan MacDonald Centre for Motor Neurone Disease Research University of Edinburgh Hugh Robson Building Edinburgh UK ; Division of Neurobiology The Roslin Institute and Royal (Dick) School of Veterinary Studies University of Edinburgh Edinburgh UK
| | - Thomas H Gillingwater
- Centre for Integrative Physiology University of Edinburgh Hugh Robson Building Edinburgh UK ; Euan MacDonald Centre for Motor Neurone Disease Research University of Edinburgh Hugh Robson Building Edinburgh UK
| |
Collapse
|
33
|
Lentz L, Zhao Y, Kelly MT, Schindeldecker W, Goetz S, Nelson DE, Raike RS. Motor behaviors in the sheep evoked by electrical stimulation of the subthalamic nucleus. Exp Neurol 2015; 273:69-82. [DOI: 10.1016/j.expneurol.2015.07.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 07/22/2015] [Accepted: 07/25/2015] [Indexed: 12/25/2022]
|
34
|
Recent studies of ovine neuronal ceroid lipofuscinoses from BARN, the Batten Animal Research Network. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2279-86. [PMID: 26073432 DOI: 10.1016/j.bbadis.2015.06.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/26/2015] [Accepted: 06/08/2015] [Indexed: 12/19/2022]
Abstract
Studies on naturally occurring New Zealand and Australian ovine models of the neuronal ceroid-lipofuscinoses (Batten disease, NCLs) have greatly aided our understanding of these diseases. Close collaborations between the New Zealand groups at Lincoln University and the University of Otago, Dunedin, and a group at the University of Sydney, Australia, led to the formation of BARN, the Batten Animal Research Network. This review focusses on presentations at the 14th International Conference on Neuronal Ceroid Lipofuscinoses (Batten Disease), recent relevant background work, and previews of work in preparation for publication. Themes include CLN5 and CLN6 neuronal cell culture studies, studies on tissues from affected and control animals and whole animal in vivo studies. Topics include the effect of a CLN6 mutation on endoplasmic reticulum proteins, lysosomal function and the interactions of CLN6 with other lysosomal activities and trafficking, scoping gene-based therapies, a molecular dissection of neuroinflammation, identification of differentially expressed genes in brain tissue, an attempted therapy with an anti-inflammatory drug in vivo and work towards gene therapy in ovine models of the NCLs. This article is part of a Special Issue entitled: "Current Research on the Neuronal Ceroid Lipofuscinoses (Batten Disease)".
Collapse
|