1
|
Allen J, Ermine CM, Lin R, Cloud GC, Shultz SR, Casillas-Espinosa PM. Proteinopathies and the Neurodegenerative Aftermath of Stroke: Potential Biomarkers and Treatment Targets. Stroke 2025; 56:1600-1611. [PMID: 40145137 DOI: 10.1161/strokeaha.124.049279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Stroke remains a predominant cause of death and long-term disability among adults worldwide. Emerging evidence suggests that proteinopathies, characterized by the aggregation and accumulation of misfolded proteins, may play a significant role in the aftermath of stroke and the progression of neurodegenerative disorders. In this review, we explore preclinical and clinical research on key proteinopathies associated with stroke, including tau, Aβ (amyloid-β), TDP-43 (TAR DNA-binding protein 43), α-synuclein, and UCH-L1 (ubiquitin C-terminal hydrolase-L1). We focus on their potential as biomarkers for recovery management and as novel treatment targets that may enhance neuronal repair and mitigate secondary neurodegeneration. The involvement of these proteinopathies in various aspects of stroke, including neuroinflammation, oxidative stress, neuronal damage, and vascular dysfunction, underscores their potential. However, further investigations are essential to validate the clinical utility of these biomarkers, elucidate the mechanisms connecting proteinopathies to poststroke neurodegeneration, and develop targeted interventions. Identifying specific protein signatures associated with stroke outcomes could facilitate the advancement of precision medicine tailored to individual patient needs, significantly enhancing the quality of life for stroke survivors.
Collapse
Affiliation(s)
- Josh Allen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia (J.A., R.L., G.C.C., S.R.S., P.M.C.-E.)
| | - Charlotte M Ermine
- The Florey Institute of Neuroscience and Mental Health (C.M.E.), The University of Melbourne, Parkville, Australia
| | - Runxuan Lin
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia (J.A., R.L., G.C.C., S.R.S., P.M.C.-E.)
| | - Geoffrey C Cloud
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia (J.A., R.L., G.C.C., S.R.S., P.M.C.-E.)
- Department of Neurology, The Alfred Hospital, Melbourne, Victoria, Australia (G.C.C., S.R.S., P.M.C.-E.)
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia (J.A., R.L., G.C.C., S.R.S., P.M.C.-E.)
- Department of Medicine, The Royal Melbourne Hospital (S.R.S., P.M.C.-E.), The University of Melbourne, Parkville, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Victoria, Australia (G.C.C., S.R.S., P.M.C.-E.)
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia (J.A., R.L., G.C.C., S.R.S., P.M.C.-E.)
- Department of Medicine, The Royal Melbourne Hospital (S.R.S., P.M.C.-E.), The University of Melbourne, Parkville, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Victoria, Australia (G.C.C., S.R.S., P.M.C.-E.)
| |
Collapse
|
2
|
Donison N, Palik J, Volkening K, Strong MJ. Cellular and molecular mechanisms of pathological tau phosphorylation in traumatic brain injury: implications for chronic traumatic encephalopathy. Mol Neurodegener 2025; 20:56. [PMID: 40349043 PMCID: PMC12065185 DOI: 10.1186/s13024-025-00842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025] Open
Abstract
Tau protein plays a critical role in the physiological functioning of the central nervous system by providing structural integrity to the cytoskeletal architecture of neurons and glia through microtubule assembly and stabilization. Under certain pathological conditions, tau is aberrantly phosphorylated and aggregates into neurotoxic fibrillary tangles. The aggregation and cell-to-cell propagation of pathological tau leads to the progressive deterioration of the nervous system. The clinical entity of traumatic brain injury (TBI) ranges from mild to severe and can promote tau aggregation by inducing cellular mechanisms and signalling pathways that increase tau phosphorylation and aggregation. Chronic traumatic encephalopathy (CTE), which is a consequence of repetitive TBI, is a unique tauopathy characterized by pathological tau aggregates located at the depths of the sulci and surrounding blood vessels. The mechanisms leading to increased tau phosphorylation and aggregation in CTE remain to be fully defined but are likely the result of the primary and secondary injury sequelae associated with TBI. The primary injury includes physical and mechanical damage resulting from the head impact and accompanying forces that cause blood-brain barrier disruption and axonal shearing, which primes the central nervous system to be more vulnerable to the subsequent secondary injury mechanisms. A complex interplay of neuroinflammation, oxidative stress, excitotoxicity, and mitochondrial dysfunction activate kinase and cell death pathways, increasing tau phosphorylation, aggregation and neurodegeneration. In this review, we explore the most recent insights into the mechanisms of tau phosphorylation associated with TBI and propose how multiple cellular pathways converge on tau phosphorylation, which may contribute to CTE progression.
Collapse
Affiliation(s)
- Neil Donison
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada
- Neuroscience Graduate Program, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jacqueline Palik
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada
| | - Kathryn Volkening
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada
- Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada.
- Neuroscience Graduate Program, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
3
|
Leung WL, Shad A, Perucca P, O'Brien TJ, Semple BD, Casillas-Espinosa PM. Chronic outcomes after mild-moderate traumatic brain injury in adult seizure-prone (FAST) and seizure-resistant (SLOW) rats: A model for understanding genetic contributions to acquired epileptogenesis? Epilepsy Behav 2025; 166:110347. [PMID: 40022952 DOI: 10.1016/j.yebeh.2025.110347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/31/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
Post-traumatic epilepsy (PTE) is a common, serious, long-term complication of traumatic brain injury (TBI). However, only a minority of individuals will develop epilepsy after a TBI, and the contribution of genetic predisposition to the risk of acquired epilepsy warrants further exploration. In this study, we examined whether innate, genetically determined differences in seizure susceptibility between seizure-prone FAST and seizure-resistant SLOW rat strains would influence chronic behavioral and PTE outcomes after experimental TBI. We hypothesized that FAST rats would show increased vulnerability to PTE and poorer neurobehavioral outcomes. Using the lateral fluid percussion injury model, we first determined the optimal injury parameters to generate a mild-moderate TBI in young adult FAST rats, which had previously shown high mortality to severe TBI. Then, FAST and SLOW rats underwent TBI or sham surgery, and a series of behavioral tests were performed either acutely (within 4 weeks) or chronically (more than 22 weeks) post-injury. Acutely, FAST rats showed an increased physiological response to TBI with a longer apnea duration, delayed pain response, and delayed self-righting, as well as increased acute seizure-like behavior compared to SLOW rats. Conversely, SLOW rats showed greater neuromotor deficits and weight loss sub-acutely compared to FAST rats. Chronically, while strain-specific phenotypes were observed (e.g., FAST rats showing increased anxiety-like behavior, altered nociceptive responses, and polydipsia), no TBI effects were detected. Analysis of continuous video-electroencephalographic recordings over a 1-month period starting at 6 months post-TBI did not reveal any spontaneous seizures. However, periodic epileptiform discharges were only found in FAST rats that had a TBI. Together, these findings reflect fundamental differences in chronic behavior and epileptiform discharges as a result of innate distinctions in epileptogenic susceptibility in FAST versus SLOW rats. However, a lack of spontaneous seizure activity or chronic neurobehavioral deficits in TBI animals confounded our ability to address the initial hypothesis, such that alternative injury models may be more suitable to study genetic contributions to the development of PTE.
Collapse
Affiliation(s)
- Wai Lam Leung
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Ali Shad
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia; Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia; Department of Immunology & Pathology, Monash University, Melbourne, VIC 3004, Australia
| | - Piero Perucca
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia; Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia; Epilepsy Research Centre, Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, VIC 3084, Australia; Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Heidelberg, VIC 3084, Australia; Department of Neurology, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Terence J O'Brien
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia; Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia; Department of Neurology, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC 3050, Australia
| | - Bridgette D Semple
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia; Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia; Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC 3050, Australia.
| |
Collapse
|
4
|
Giesler LP, O'Brien WT, Bain J, Spitz G, Jaehne EJ, van den Buuse M, Shultz SR, Mychasiuk R, McDonald SJ. Investigating the role of the brain-derived neurotrophic factor Val66Met polymorphism in repetitive mild traumatic brain injury outcomes in rats. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2025; 21:5. [PMID: 40045366 PMCID: PMC11884142 DOI: 10.1186/s12993-025-00270-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/24/2025] [Indexed: 03/09/2025]
Abstract
BACKGROUND Mild traumatic brain injury (mTBI) poses a significant public health concern, particularly regarding repetitive injury, with outcomes ranging from acute neurobehavioral deficits to long-term impairments. While demographic factors like age and sex influence outcomes, the understanding of genetic contributions, particularly the role of the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism, remains limited. This study aimed to characterize acute effects of repetitive mTBI (rmTBI) in rats with the Val68Met SNP, the rodent equivalent of the human Val66Met, focusing on behavioral, fluid biomarker, and histological changes. METHODS Using a closed-head injury model, rats underwent five mTBIs over consecutive days. Behavioral assessments included sensorimotor function, anxiety-like behavior, spatial learning and memory, and nociceptive response. Plasma neurofilament light (NfL) levels served as a biomarker of axonal injury and immunohistochemistry evaluated microglial activation. RESULTS Sensorimotor deficits and increased anxiety-like behavior were found in rats with rmTBI, but these changes were not affected by sex or genotype. Plasma NfL levels were higher in rmTBI compared with sham rats, with levels greater in female rmTBI when compared with male rmTBI rats. Microglial activation was observed in the hypothalamus of injured rats, but was not influenced by genotype or sex. CONCLUSIONS While the Val68Met SNP did not significantly influence acute responses to rmTBI in this study, further investigation into alternative functional and pathophysiological outcomes, as well as long-term effects, is required.
Collapse
Affiliation(s)
- Lauren P Giesler
- Department of Neuroscience, Monash University, Melbourne, Australia
| | | | - Jesse Bain
- Department of Neuroscience, Monash University, Melbourne, Australia
| | - Gershon Spitz
- Department of Neuroscience, Monash University, Melbourne, Australia
- Monash-Epworth Rehabilitation Research Centre, Monash University, Melbourne, Australia
| | - Emily J Jaehne
- Department of Psychology Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Maarten van den Buuse
- Department of Psychology Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, Melbourne, Australia
- Health Sciences, Vancouver Island University, Nanaimo, BC, Canada
- Department of Neurology, The Alfred Hospital, Melbourne, Australia
| | | | - Stuart J McDonald
- Department of Neuroscience, Monash University, Melbourne, Australia.
- Department of Neurology, The Alfred Hospital, Melbourne, Australia.
- Department of Neuroscience, School of Translational Medicine, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
5
|
Li C, Casillas‐Espinosa PM, Saletti PG, Chi T, Yamakawa G, Silva J, Hudson M, Liu W, Jones NC, Shultz SR, Ali I, Mishra U, Cloyd JC, Moshe ́ SL, Galanopoulou AS, O'Brien TJ, Coles LD. Pharmacokinetics and brain uptake of sodium selenate and selenium in naïve rats and a lateral fluid percussion injury rat model. Pharmacol Res Perspect 2024; 12:e1256. [PMID: 39506350 PMCID: PMC11540874 DOI: 10.1002/prp2.1256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/14/2024] [Accepted: 07/16/2024] [Indexed: 11/08/2024] Open
Abstract
Post-traumatic epilepsy (PTE) is a life-long complication of traumatic brain injury (TBI). The development of PTE is associated with neurological morbidity and increases the risk of mortality. An aim of EpiBioS4Rx (Epilepsy Bioinformatics Study for Antiepileptogenic Therapy) was to test potential therapies to prevent the development of PTE in the lateral fluid percussion injury (LFPI) rat model of TBI, in which rats were subjected to injury at the left parietal cortex. Sodium selenate has been reported to be antiepileptogenic post-TBI in rodent models by activating protein phosphatase 2A and reducing phosphorylated tau (p-tau) protein. We aimed to characterize the pharmacokinetics (PK) and brain uptake of sodium selenate using naïve control and LFPI rats. Rats received either a single bolus dose or a single bolus dose followed by a 7-day subcutaneous minipump infusion of sodium selenate. Sodium selenate and selenium concentrations in plasma and brain were analyzed and used for PK estimation and brain exposure assessment. Selenium concentrations rapidly increased after sodium selenate administration, demonstrating biotransformation from sodium selenate to selenium. Sodium selenate and selenium PK parameters were estimated using non-compartmental analysis. Sodium selenate clearance (CL/F) and volume of distribution (Vd/F) varied by dose and route of administration, suggesting differences in bioavailability and nonlinear pharmacokinetics at the doses tested. Brain-to-plasma partition coefficients (AUCbrain/AUCplasma) for sodium selenate and selenium were found to be 0.7-1.3 and 0.1-0.3 following single-dose injection, respectively, indicating active transport of sodium selenate across the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Chenxu Li
- College of Pharmacy, University of Minnesota Twin CitiesMinneapolisMinnesotaUSA
| | - Pablo M. Casillas‐Espinosa
- Department of MedicineThe Royal Melbourne Hospital, The University of MelbourneParkvilleVictoriaAustralia
- Department of NeuroscienceCentral Clinical School, Monash UniversityMelbourneVictoriaAustralia
- Department of NeurologyThe Alfred HospitalMelbourneVictoriaAustralia
| | - Patricia Grandizoli Saletti
- Laboratory of Developmental Epilepsy, Saul R. Korey Department of NeurologyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Tina Chi
- College of Pharmacy, University of Minnesota Twin CitiesMinneapolisMinnesotaUSA
| | - Glenn Yamakawa
- Department of NeuroscienceCentral Clinical School, Monash UniversityMelbourneVictoriaAustralia
| | - Juliana Silva
- Department of MedicineThe Royal Melbourne Hospital, The University of MelbourneParkvilleVictoriaAustralia
| | - Matt Hudson
- Department of MedicineThe Royal Melbourne Hospital, The University of MelbourneParkvilleVictoriaAustralia
- Department of NeuroscienceCentral Clinical School, Monash UniversityMelbourneVictoriaAustralia
| | - Wei Liu
- Laboratory of Developmental Epilepsy, Saul R. Korey Department of NeurologyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Nigel C. Jones
- Department of MedicineThe Royal Melbourne Hospital, The University of MelbourneParkvilleVictoriaAustralia
- Department of NeuroscienceCentral Clinical School, Monash UniversityMelbourneVictoriaAustralia
- Department of NeurologyThe Alfred HospitalMelbourneVictoriaAustralia
| | - Sandy R. Shultz
- Department of MedicineThe Royal Melbourne Hospital, The University of MelbourneParkvilleVictoriaAustralia
- Department of NeuroscienceCentral Clinical School, Monash UniversityMelbourneVictoriaAustralia
- Department of NeurologyThe Alfred HospitalMelbourneVictoriaAustralia
| | - Idrish Ali
- Department of MedicineThe Royal Melbourne Hospital, The University of MelbourneParkvilleVictoriaAustralia
- Department of NeuroscienceCentral Clinical School, Monash UniversityMelbourneVictoriaAustralia
| | - Usha Mishra
- College of Pharmacy, University of Minnesota Twin CitiesMinneapolisMinnesotaUSA
| | - James C. Cloyd
- College of Pharmacy, University of Minnesota Twin CitiesMinneapolisMinnesotaUSA
| | - Solomon L. Moshe ́
- Laboratory of Developmental Epilepsy, Saul R. Korey Department of NeurologyAlbert Einstein College of MedicineBronxNew YorkUSA
- Dominick P. Purpura Department of NeuroscienceAlbert Einstein College of MedicineBronxNew YorkUSA
- Department of PediatricsAlbert Einstein College of MedicineBronxNew YorkUSA
- Isabelle Rapin Division of Child NeurologyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Aristea S. Galanopoulou
- Laboratory of Developmental Epilepsy, Saul R. Korey Department of NeurologyAlbert Einstein College of MedicineBronxNew YorkUSA
- Dominick P. Purpura Department of NeuroscienceAlbert Einstein College of MedicineBronxNew YorkUSA
- Isabelle Rapin Division of Child NeurologyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Terence J. O'Brien
- Department of MedicineThe Royal Melbourne Hospital, The University of MelbourneParkvilleVictoriaAustralia
- Department of NeuroscienceCentral Clinical School, Monash UniversityMelbourneVictoriaAustralia
- Department of NeurologyThe Alfred HospitalMelbourneVictoriaAustralia
| | - Lisa D. Coles
- College of Pharmacy, University of Minnesota Twin CitiesMinneapolisMinnesotaUSA
| |
Collapse
|
6
|
Li J, Yao D, Zhang T, Tong T, Shen J, Yan S, Zeng J, Aslam MS, Li M, You Z, Li J, Li Z, Li Y, Hao C, Meng X. GABA B modulate NF-κB/NLRP3 pathways in electroacupuncture prevention of depression in CUMS rats. Brain Res Bull 2024; 218:111108. [PMID: 39447764 DOI: 10.1016/j.brainresbull.2024.111108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Our previous research has demonstrated that electroacupuncture (EA) has the potential to mitigate depression-like symptoms resulting from chronic stress. However, further investigation is required to fully understand the underlying mechanisms. The regulatory role of γ-aminobutyric acid type B (GABAB) in synaptic plasticity and the involvement of NF-κB/NLRP3-mediated inflammation in the lateral habenula nucleus (LHb) are key factors in the development of depression. This study sought to investigate the potential of EA in mitigating depression-like symptoms induced by chronic stress through mechanisms such as enhancing GABAB levels, regulating synaptic plasticity in the LHb, and suppressing NF-κB/NLRP3-mediated inflammation. METHODS Sprague-Dawley rats were exposed to chronic unpredictable mild stress (CUMS) in order to create a model of depression. Subsequently, the weight and behavioral assessments of all rats were monitored, and samples of the lateral habenula and serum were collected. The protein expression levels were analyzed using western blotting. The 5-hydroxytryptophan (5-HT), Dopamine (DA), and Norepinephrine (NE) in the LHb and serum were measured using ELISA. The alterations in GABAB and NF-κB in the LHb were observed through immunofluorescence. The neuronal damage in the LHb was assessed using Nissl staining. RESULTS EA upregulated the expression of GABAB in the LHb of rats subjected to CUMS. Subsequent behavioral assessments indicated that blocking GABAB attenuated the antidepressant effects of EA in CUMS-exposed rats. Furthermore, EA enhanced synaptic plasticity in the LHb of CUMS-exposed rats and mitigated NF-κB/NLRP3-mediated inflammatory responses, with these effects potentially being reversed by GABAB inhibition. CONCLUSION Through the promotion of GABAB levels, regulation of synaptic plasticity within the LHb, and inhibition of NF-κB/NLRP3-mediated neuroinflammation in the same region, electroacupuncture at Shangxing and Fengfu acupoints demonstrates efficacy in mitigating depression-like behaviors induced by CUMS.
Collapse
Affiliation(s)
- Jianguo Li
- Department of Traditional Chinese Medicine, Xiangan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, PR China; Second Clinical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, PR China
| | - Dong Yao
- The Fifth Hospital of Xiamen, Xiamen, Fujian, PR China
| | - Tiansheng Zhang
- Shanxi Acupuncture and moxibustion Hospital, Taiyuan, Shanxi, PR China
| | - Tao Tong
- Second Clinical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, PR China
| | - Junliang Shen
- Longyan Hospital of Traditional Chinese Medicine Affiliated to Xiamen University, Longyan, Fujian, PR China
| | - Simin Yan
- Department of Traditional Chinese Medicine, Xiangan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, PR China
| | - Jingyu Zeng
- Department of Traditional Chinese Medicine, Xiangan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, PR China
| | - Muhammad Shahzad Aslam
- Department of Traditional Chinese Medicine, Xiangan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, PR China; School of Traditional Chinese Medicine, Xiamen University Malaysia, Sepang, Malaysia
| | - Meng Li
- Second Clinical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, PR China
| | - Zhuoran You
- Second Clinical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, PR China
| | - Jingxuan Li
- Department of Traditional Chinese Medicine, Xiangan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, PR China
| | - Zhongwen Li
- Department of Traditional Chinese Medicine, Xiangan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, PR China
| | - Yizheng Li
- Department of Traditional Chinese Medicine, Xiangan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, PR China
| | - Chongyao Hao
- Second Clinical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, PR China.
| | - Xianjun Meng
- Department of Traditional Chinese Medicine, Xiangan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, PR China; Shenzhen Research Institute of Xiamen University, Shenzhen, PR China.
| |
Collapse
|
7
|
Turovsky EA, Plotnikov EY, Varlamova EG. Regulatory Role and Cytoprotective Effects of Exogenous Recombinant SELENOM under Ischemia-like Conditions and Glutamate Excitotoxicity in Cortical Cells In Vitro. Biomedicines 2024; 12:1756. [PMID: 39200220 PMCID: PMC11351740 DOI: 10.3390/biomedicines12081756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
Despite the successes in the prevention and treatment of strokes, it is still necessary to search for effective cytoprotectors that can suppress the damaging factors of cerebral ischemia. Among the known neuroprotectors, there are a number of drugs with a protein nature. In the present study, we were able to obtain recombinant SELENOM, a resident of the endoplasmic reticulum that exhibits antioxidant properties in its structure and functions. The resulting SELENOM was tested in two brain injury (in vitro) models: under ischemia-like conditions (oxygen-glucose deprivation/reoxygenation, OGD/R) and glutamate excitotoxicity (GluTox). Using molecular biology methods, fluorescence microscopy, and immunocytochemistry, recombinant SELENOM was shown to dose-dependently suppress ROS production in cortical cells in toxic models, reduce the global increase in cytosolic calcium ([Ca2+]i), and suppress necrosis and late stages of apoptosis. Activation of SELENOM's cytoprotective properties occurs due to its penetration into cortical cells through actin-dependent transport and activation of the Ca2+ signaling system. The use of SELENOM resulted in increased antioxidant protection of cortical cells and suppression of the proinflammatory factors and cytokines expression.
Collapse
Affiliation(s)
- Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| |
Collapse
|
8
|
Quach M, Ali I, Shultz SR, Casillas-Espinosa PM, Hudson MR, Jones NC, Silva JC, Yamakawa GR, Braine EL, Immonen R, Staba RJ, Tohka J, Harris NG, Gröhn O, O'Brien TJ, Wright DK. ComBating inter-site differences in field strength: harmonizing preclinical traumatic brain injury MRI data. NMR IN BIOMEDICINE 2024; 37:e5142. [PMID: 38494895 DOI: 10.1002/nbm.5142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/09/2023] [Accepted: 02/15/2024] [Indexed: 03/19/2024]
Abstract
Integrating datasets from multiple sites and scanners can increase statistical power for neuroimaging studies but can also introduce significant inter-site confounds. We evaluated the effectiveness of ComBat, an empirical Bayes approach, to combine longitudinal preclinical MRI data acquired at 4.7 or 9.4 T at two different sites in Australia. Male Sprague Dawley rats underwent MRI on Days 2, 9, 28, and 150 following moderate/severe traumatic brain injury (TBI) or sham injury as part of Project 1 of the NIH/NINDS-funded Centre Without Walls EpiBioS4Rx project. Diffusion-weighted and multiple-gradient-echo images were acquired, and outcomes included QSM, FA, and ADC. Acute injury measures including apnea and self-righting reflex were consistent between sites. Mixed-effect analysis of ipsilateral and contralateral corpus callosum (CC) summary values revealed a significant effect of site on FA and ADC values, which was removed following ComBat harmonization. Bland-Altman plots for each metric showed reduced variability across sites following ComBat harmonization, including for QSM, despite appearing to be largely unaffected by inter-site differences and no effect of site observed. Following harmonization, the combined inter-site data revealed significant differences in the imaging metrics consistent with previously reported outcomes. TBI resulted in significantly reduced FA and increased susceptibility in the ipsilateral CC, and significantly reduced FA in the contralateral CC compared with sham-injured rats. Additionally, TBI rats also exhibited a reversal in ipsilateral CC ADC values over time with significantly reduced ADC at Day 9, followed by increased ADC 150 days after injury. Our findings demonstrate the need for harmonizing multi-site preclinical MRI data and show that this can be successfully achieved using ComBat while preserving phenotypical changes due to TBI.
Collapse
Affiliation(s)
- Mara Quach
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
- Melbourne Brain Centre Imaging Unit, The University of Melbourne, Melbourne, Victoria, Australia
| | - Idrish Ali
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Sandy R Shultz
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
- Health Sciences, Vancouver Island University, Nanaimo, British Columbia, Canada
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Matthew R Hudson
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Nigel C Jones
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Juliana C Silva
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Emma L Braine
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Riikka Immonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Richard J Staba
- Department of Neurology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California, USA
| | - Jussi Tohka
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Neil G Harris
- Department of Neurology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California, USA
| | - Olli Gröhn
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Terence J O'Brien
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - David K Wright
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Razia R, Majeed F, Amin R, Ayub MN, Mukhtar S, Mahmood K, Shabbir HR, Bashir S, Noreen Baig D. Analysis of the expression patterns of AVP, IGF-1, and TNF-α, APP, CD44, IFN-β IFN A β-6, α-syn, and NFL and CLU genes in generalized and focal seizures. Heliyon 2024; 10:e34912. [PMID: 39149049 PMCID: PMC11325377 DOI: 10.1016/j.heliyon.2024.e34912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
Objective The aim of our study was to investigate the relationship between clinical indicators and gene dysregulation in different types of epilepsy, while also seeking to identify a diagnostic model capable of distinguishing between focal and generalized seizures. This highlights the critical importance of understanding clinical indicators and gene dysregulation for targeted therapeutic interventions to effectively address the specific seizure types effectively. Materials and methods In this study, we conducted a comprehensive analysis of the peripheral blood of epilepsy patients (n = 100) and a control group (n = 51) to determine the differential gene expression. Our analysis involved a range of statistical approaches, including correlation analysis to establish the association between clinical indicators and gene dysregulation, and principal component analysis to highlight distinct disease group from control group. Furthermore, we developed diagnostic models using logistic regression to aid in the accurate diagnosis of epilepsy. Results Among several selected genes in this study such as AVP (AUC = 0.832, p < 0.0001), IGF-1 (AUC = 0.658, p = 0.0015), TNF-α (AUC = 0.8970, p < 0.0001), APP (AUC = 0.742, p < 0.0001), CD44 (AUC = 0.614, p = 0.021) and NfL (AUC = 0.937, p < 0.0001), and CLU (AUC = 0.923, p < 0.0001) have shown the outstanding discrimination. In addition to this, when all genes were included in the model, the overall diagnostic power increased significantly (AUC = 0.9968). A differential diagnostic model for focal and generalized seizures was established which discloses AUC = 0.7027, (95 % CL, 0.5765 to 0.8289, p = 0.0019). Conclusion The conclusions drawn from these findings represented that this is the first study to highlight the distinctive gene patterns of both focal and generalized seizures, implying that peripheral blood can serve as a diagnostic source to distinguish between these seizures types, aiding in the accurate classification of epilepsy. The findings from this study indicate a promising direction for investigating more targeted pharmacological interventions directed to address the distinct needs of both focal and generalized epilepsy, which offers advancements in treatment strategies for distinctive seizure types.
Collapse
Affiliation(s)
- Rabat Razia
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, 54600, Pakistan
| | | | - Rehab Amin
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, 54600, Pakistan
| | | | - Shahid Mukhtar
- Punjab Institute of Neuro Sciences, Ferozpur Road, Lahore, Punjab, 54000, Pakistan
| | - Khalid Mahmood
- Punjab Institute of Neuro Sciences, Ferozpur Road, Lahore, Punjab, 54000, Pakistan
| | | | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Deeba Noreen Baig
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, 54600, Pakistan
| |
Collapse
|
10
|
Sindi G, Ismael S, Uddin R, Slepchenko KG, Colvin RA, Lee D. Endogenous tau released from human ReNCell VM cultures by neuronal activity is phosphorylated at multiple sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.597022. [PMID: 38854111 PMCID: PMC11160771 DOI: 10.1101/2024.06.02.597022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Tau is an intracellular protein but also known to be released into the extracellular fluid. Tau release mechanisms have drawn intense attention as these are known to play a key role in Alzheimer's disease (AD) pathology. However, tau can also be released under physiological conditions although its physiological function and release mechanisms have been poorly characterized, especially in human neuronal cells. We investigated endogenous tau release in ReNCell VM, a human neuroprogenitor cell line, under physiological conditions and found that tau is spontaneously released from cells. To study activity-dependent release of endogenous tau, human ReNCell VM culture was stimulated by 100μM AMPA or 50mM KCl for one-hour, tau was actively released to the culture medium. The released tau was highly phosphorylated at nine phosphorylation sites (pSites) detected by phospho-specific tau antibodies including AT270 (T175/T181), AT8 (S202/T205), AT100 (T212/S214), AT180 (T231), and PHF-1 (S396/S404), showing that these pSites are important for activity-dependent tau release from human ReNCell VM. Intracellular tau showed various phosphorylation status across these sites, with AT270 and PHF-1 highly phosphorylated while AT8 and AT180 were minimally phosphorylated, suggesting that AT8 and AT180 pSites exhibit a propensity for secretion rather than being retained intracellularly. This activity-dependent tau release was significantly decreased by inhibition of GSK-3β, demonstrating that GSK3β-dependent phosphorylation of tau plays an important role in its release by neuronal activity. In this study, we showed that ReNCell VM serves as a valuable model for studying endogenous physiological tau release. Further, ReNCell model can be also used to study pathological release of human tau that will contribute to our understanding of the progression of AD and related dementias.
Collapse
Affiliation(s)
| | - Sazan Ismael
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Reaz Uddin
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Kira G. Slepchenko
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Robert A. Colvin
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Daewoo Lee
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
11
|
Sinclair D, Canty AJ, Ziebell JM, Woodhouse A, Collins JM, Perry S, Roccati E, Kuruvilla M, Leung J, Atkinson R, Vickers JC, Cook AL, King AE. Experimental laboratory models as tools for understanding modifiable dementia risk. Alzheimers Dement 2024; 20:4260-4289. [PMID: 38687209 PMCID: PMC11180874 DOI: 10.1002/alz.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 05/02/2024]
Abstract
Experimental laboratory research has an important role to play in dementia prevention. Mechanisms underlying modifiable risk factors for dementia are promising targets for dementia prevention but are difficult to investigate in human populations due to technological constraints and confounds. Therefore, controlled laboratory experiments in models such as transgenic rodents, invertebrates and in vitro cultured cells are increasingly used to investigate dementia risk factors and test strategies which target them to prevent dementia. This review provides an overview of experimental research into 15 established and putative modifiable dementia risk factors: less early-life education, hearing loss, depression, social isolation, life stress, hypertension, obesity, diabetes, physical inactivity, heavy alcohol use, smoking, air pollution, anesthetic exposure, traumatic brain injury, and disordered sleep. It explores how experimental models have been, and can be, used to address questions about modifiable dementia risk and prevention that cannot readily be addressed in human studies. HIGHLIGHTS: Modifiable dementia risk factors are promising targets for dementia prevention. Interrogation of mechanisms underlying dementia risk is difficult in human populations. Studies using diverse experimental models are revealing modifiable dementia risk mechanisms. We review experimental research into 15 modifiable dementia risk factors. Laboratory science can contribute uniquely to dementia prevention.
Collapse
Affiliation(s)
- Duncan Sinclair
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Alison J. Canty
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
- Global Brain Health Institute, Trinity CollegeDublinIreland
| | - Jenna M. Ziebell
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Adele Woodhouse
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Jessica M. Collins
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Sharn Perry
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Eddy Roccati
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Maneesh Kuruvilla
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Jacqueline Leung
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Rachel Atkinson
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - James C. Vickers
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Anthony L. Cook
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Anna E. King
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| |
Collapse
|
12
|
Tomas-Sanchez C, Blanco-Alvarez VM, Gonzalez-Barrios JA, Martinez-Fong D, Soto-Rodriguez G, Brambila E, Gonzalez-Vazquez A, Aguilar-Peralta AK, Limón DI, Vargas-Castro V, Cebada J, Alatriste-Bueno V, Leon-Chavez BA. Prophylactic zinc and therapeutic selenium administration in adult rats prevents long-term cognitive and behavioral sequelae by a transient ischemic attack. Heliyon 2024; 10:e30017. [PMID: 38707461 PMCID: PMC11068621 DOI: 10.1016/j.heliyon.2024.e30017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
The transient hypoxic-ischemic attack, also known as a minor stroke, can result in long-term neurological issues such as memory loss, depression, and anxiety due to an increase in nitrosative stress. The individual or combined administration of chronic prophylactic zinc and therapeutic selenium is known to reduce nitrosative stress in the first seven days post-reperfusion and, due to an antioxidant effect, prevent cell death. Besides, zinc or selenium, individually administered, also causes antidepressant and anxiolytic effects. Therefore, this work evaluated whether combining zinc and selenium could prevent stroke-elicited cognition and behavior deficits after 30 days post-reperfusion. Accordingly, we assessed the expression of growth factors at 7 days post-reperfusion, a four-time course of memory (from 7 to 28 days post-learning test), and cell proliferation, depression, and anxiety-like behavior at 30 days post-reperfusion. Male Wistar rats with a weight between 190 and 240 g) were treated with chronic prophylactic zinc administration with a concentration of 0.2 mg/kg for 15 days before common carotid artery occlusion (10 min) and then with therapeutic selenium (6 μg/kg) for 7 days post-reperfusion. Compared with individual administrations, the administration combined of prophylactic zinc and therapeutic selenium decreased astrogliosis, increased growth factor expression, and improved cell proliferation and survival in two regions, the hippocampus, and cerebral cortex. These effects prevented memory loss, depression, and anxiety-like behaviors. In conclusion, these results demonstrate that the prophylactic zinc administration combined with therapeutic selenium can reduce the long-term sequelae caused by the transient ischemic attack. Significance statement. A minor stroke caused by a transient ischemic attack can result in psychomotor sequelae that affect not only the living conditions of patients and their families but also the economy. The incidence of these micro-events among young people has increased in the world. Nonetheless, there is no deep understanding of how this population group responds to regular treatments (Ekker and et al., 2018) [1]. On the basis that zinc and selenium have antioxidant, anti-inflammatory, and regenerative properties in stroke animal models, our work explored whether the chronic combined administration of prophylactic zinc and therapeutic selenium could prevent neurological sequelae in the long term in a stroke rat model of unilateral common carotid artery occlusion (CCAO) by 10-min. Our results showed that this combined treatment provided a long-term neuroprotective effect by decreasing astrogliosis, memory loss, anxiety, and depression-like behavior.
Collapse
Affiliation(s)
- Constantino Tomas-Sanchez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, 72570, Puebla, Mexico
| | - Victor Manuel Blanco-Alvarez
- Facultad de Enfermería, Benemérita Universidad Autónoma de Puebla, Av 25 Pte 1304, Colonia Volcanes, Puebla, Mexico
| | - Juan Antonio Gonzalez-Barrios
- Laboratorio de Medicina Genómica, Hospital regional 1° de Octubre, ISSSTE, Avenida Instituto Politécnico Nacional #1669, 07760, México D. F., Mexico
| | - Daniel Martinez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, 07000, México D.F., Mexico
- Nanoparticle Therapy Institute, 404 Avenida Monte Blanco, Aguascalientes, 20120, Mexico
| | - Guadalupe Soto-Rodriguez
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, 13 Sur 2702, Col. Volcanes, 72410, Puebla, Mexico
| | - Eduardo Brambila
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, 72570, Puebla, Mexico
| | - Alejandro Gonzalez-Vazquez
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, 13 Sur 2702, Col. Volcanes, 72410, Puebla, Mexico
| | - Ana Karina Aguilar-Peralta
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, 13 Sur 2702, Col. Volcanes, 72410, Puebla, Mexico
| | - Daniel I. Limón
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, 72570, Puebla, Mexico
| | - Viridiana Vargas-Castro
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, 72570, Puebla, Mexico
| | - Jorge Cebada
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, 13 Sur 2702, Col. Volcanes, 72410, Puebla, Mexico
| | - Victorino Alatriste-Bueno
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, 72570, Puebla, Mexico
| | - Bertha Alicia Leon-Chavez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, 72570, Puebla, Mexico
| |
Collapse
|
13
|
Pease M, Gupta K, Moshé SL, Correa DJ, Galanopoulou AS, Okonkwo DO, Gonzalez-Martinez J, Shutter L, Diaz-Arrastia R, Castellano JF. Insights into epileptogenesis from post-traumatic epilepsy. Nat Rev Neurol 2024; 20:298-312. [PMID: 38570704 DOI: 10.1038/s41582-024-00954-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Post-traumatic epilepsy (PTE) accounts for 5% of all epilepsies. The incidence of PTE after traumatic brain injury (TBI) depends on the severity of injury, approaching one in three in groups with the most severe injuries. The repeated seizures that characterize PTE impair neurological recovery and increase the risk of poor outcomes after TBI. Given this high risk of recurrent seizures and the relatively short latency period for their development after injury, PTE serves as a model disease to understand human epileptogenesis and trial novel anti-epileptogenic therapies. Epileptogenesis is the process whereby previously normal brain tissue becomes prone to recurrent abnormal electrical activity, ultimately resulting in seizures. In this Review, we describe the clinical course of PTE and highlight promising research into epileptogenesis and treatment using animal models of PTE. Clinical, imaging, EEG and fluid biomarkers are being developed to aid the identification of patients at high risk of PTE who might benefit from anti-epileptogenic therapies. Studies in preclinical models of PTE have identified tractable pathways and novel therapeutic strategies that can potentially prevent epilepsy, which remain to be validated in humans. In addition to improving outcomes after TBI, advances in PTE research are likely to provide therapeutic insights that are relevant to all epilepsies.
Collapse
Affiliation(s)
- Matthew Pease
- Department of Neurosurgery, Indiana University, Bloomington, IN, USA.
| | - Kunal Gupta
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Solomon L Moshé
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, New York, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
- Department of Paediatrics, Albert Einstein College of Medicine, New York, NY, USA
| | - Daniel J Correa
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, New York, NY, USA
| | - Aristea S Galanopoulou
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, New York, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - David O Okonkwo
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Lori Shutter
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | |
Collapse
|
14
|
Sun M, Baker TL, Wilson CT, Brady RD, Yamakawa GR, Wright DK, Mychasiuk R, Vo A, Wilson T, Allen J, McDonald SJ, Shultz SR. Treatment with the vascular endothelial growth factor-A antibody, bevacizumab, has sex-specific effects in a rat model of mild traumatic brain injury. J Cereb Blood Flow Metab 2024; 44:542-555. [PMID: 37933736 PMCID: PMC10981407 DOI: 10.1177/0271678x231212377] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023]
Abstract
Mild traumatic brain injury (mTBI) involves damage to the cerebrovascular system. Vascular endothelial growth factor-A (VEGF-A) is an important modulator of vascular health and VEGF-A promotes the brain's ability to recover after more severe forms of brain injury; however, the role of VEGF-A in mTBI remains poorly understood. Bevacizumab (BEV) is a monoclonal antibody that binds to VEGF-A and neutralises its actions. To better understand the role of VEGF-A in mTBI recovery, this study examined how BEV treatment affected outcomes in rats given a mTBI. Adult Sprague-Dawley rats were assigned to sham-injury + vehicle treatment (VEH), sham-injury + BEV treatment, mTBI + VEH treatment, mTBI + BEV treatment groups. Treatment was administered intracerebroventricularly via a cannula beginning at the time of injury and continuing until the end of the study. Rats underwent behavioral testing after injury and were euthanized on day 11. In both females and males, BEV had a negative impact on cognitive function. mTBI and BEV treatment increased the expression of inflammatory markers in females. In males, BEV treatment altered markers related to hypoxia and vascular health. These novel findings of sex-specific responses to BEV and mTBI provide important insights into the role of VEGF-A in mTBI.
Collapse
Affiliation(s)
- Mujun Sun
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Tamara L Baker
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Campbell T Wilson
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Rhys D Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Anh Vo
- Monash Health Translation Precinct, Monash University, Melbourne, VIC, Australia
| | - Trevor Wilson
- Monash Health Translation Precinct, Monash University, Melbourne, VIC, Australia
| | - Josh Allen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Health Sciences, Vancouver Island University, Nanaimo, BC, Canada
| |
Collapse
|
15
|
Grandizoli Saletti P, Casillas-Espinosa PM, Panagiotis Lisgaras C, Bi Mowrey W, Li Q, Liu W, Brady RD, Ali I, Silva J, Yamakawa G, Hudson M, Li C, Braine EL, Coles L, Cloyd JC, Jones NC, Shultz SR, Moshé SL, O'Brien TJ, Galanopoulou AS. Tau Phosphorylation Patterns in the Rat Cerebral Cortex After Traumatic Brain Injury and Sodium Selenate Effects: An Epibios4rx Project 2 Study. J Neurotrauma 2024; 41:222-243. [PMID: 36950806 PMCID: PMC11079442 DOI: 10.1089/neu.2022.0219] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
Sodium selenate (SS) activates protein phosphatase 2 (PP2A) and reduces phosphorylated tau (pTAU) and late post-traumatic seizures after lateral fluid percussion injury (LFPI). In EpiBioS4Rx Project 2, a multi-center international study for post-traumatic targets, biomarkers, and treatments, we tested the target relevance and modification by SS of pTAU forms and PP2A and in the LFPI model, at two sites: Einstein and Melbourne. In Experiment 1, adult male rats were assigned to LFPI and sham (both sites) and naïve controls (Einstein). Motor function was monitored by neuroscores. Brains were studied with immunohistochemistry (IHC), Western blots (WBs), or PP2A activity assay, from 2 days to 8 weeks post-operatively. In Experiment 2, LFPI rats received SS for 7 days (SS0.33: 0.33 mg/kg/day; SS1: 1 mg/kg/day, subcutaneously) or vehicle (Veh) post-LFPI and pTAU, PR55 expression, or PP2A activity were studied at 2 days and 1 week (on treatment), or 2 weeks (1 week off treatment). Plasma selenium and SS levels were measured. In Experiment 1 IHC, LFPI rats had higher cortical pTAU-Ser202/Thr205-immunoreactivity (AT8-ir) and pTAU-Ser199/202-ir at 2 days, and pTAU-Thr231-ir (AT180-ir) at 2 days, 2 weeks, and 8 weeks, ipsilaterally to LFPI, than controls. LFPI-2d rats also had higher AT8/total-TAU5-ir in cortical extracts ipsilateral to the lesion (WB). PP2A (PR55-ir) showed time- and region-dependent changes in IHC, but not in WB. PP2A activity was lower in LFPI-1wk than in sham rats. In Experiment 2, SS did not affect neuroscores or cellular AT8-ir, AT180-ir, or PR55-ir in IHC. In WB, total cortical AT8/total-TAU-ir was lower in SS0.33 and SS1 LFPI rats than in Veh rats (2 days, 1 week); total cortical PR55-ir (WB) and PP2A activity were higher in SS1 than Veh rats (2 days). SS dose dependently increased plasma selenium and SS levels. Concordant across-sites data confirm time and pTAU form-specific cortical increases ipsilateral to LFPI. The discordant SS effects may either suggest SS-induced reduction in the numbers of cells with increased pTAU-ir, need for longer treatment, or the involvement of other mechanisms of action.
Collapse
Affiliation(s)
- Patricia Grandizoli Saletti
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx New York, USA
| | - Pablo M. Casillas-Espinosa
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, Australia
- Department of Neurology, Alfred Health, Melbourne, Australia
| | - Christos Panagiotis Lisgaras
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx New York, USA
| | - Wenzhu Bi Mowrey
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx New York, USA
| | - Qianyun Li
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx New York, USA
| | - Wei Liu
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx New York, USA
| | - Rhys D. Brady
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, Australia
| | - Idrish Ali
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, Australia
| | - Juliana Silva
- Department of Neuroscience, Monash University, Melbourne, Australia
| | - Glenn Yamakawa
- Department of Medicine, The University of Melbourne, Parkville, Australia
| | - Matt Hudson
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, Australia
| | - Crystal Li
- Department of Neuroscience, Monash University, Melbourne, Australia
| | - Emma L. Braine
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, Australia
| | - Lisa Coles
- University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - James C. Cloyd
- University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Nigel C. Jones
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, Australia
- Department of Neurology, Alfred Health, Melbourne, Australia
| | - Sandy R. Shultz
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, Australia
- Department of Neurology, Alfred Health, Melbourne, Australia
| | - Solomon L. Moshé
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx New York, USA
- Isabelle Rapin Division of Child Neurology, Albert Einstein College of Medicine, Bronx New York, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx New York, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx New York, USA
| | - Terence J. O'Brien
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, Australia
- Department of Neurology, Alfred Health, Melbourne, Australia
| | - Aristea S. Galanopoulou
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx New York, USA
- Isabelle Rapin Division of Child Neurology, Albert Einstein College of Medicine, Bronx New York, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx New York, USA
| |
Collapse
|
16
|
Leung WL, Dill LK, Perucca P, O'Brien TJ, Casillas-Espinosa PM, Semple BD. Inherent Susceptibility to Acquired Epilepsy in Selectively Bred Rats Influences the Acute Response to Traumatic Brain Injury. J Neurotrauma 2023; 40:2174-2192. [PMID: 37221897 DOI: 10.1089/neu.2022.0463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Traumatic brain injury (TBI) often causes seizures associated with a neuroinflammatory response and neurodegeneration. TBI responses may be influenced by differences between individuals at a genetic level, yet this concept remains understudied. Here, we asked whether inherent differences in one's vulnerability to acquired epilepsy would determine acute physiological and neuroinflammatory responses acutely after experimental TBI, by comparing selectively bred "seizure-prone" (FAST) rats with "seizure-resistant" (SLOW) rats, as well as control parental strains (Long Evans and Wistar rats). Eleven-week-old male rats received a moderate-to-severe lateral fluid percussion injury (LFPI) or sham surgery. Rats were assessed for acute injury indicators and neuromotor performance, and blood was serially collected. At 7 days post-injury, brains were collected for quantification of tissue atrophy by cresyl violet (CV) histology, and immunofluorescent staining of activated inflammatory cells. FAST rats showed an exacerbated physiological response acutely post-injury, with a 100% seizure rate and mortality within 24 h. Conversely, SLOW rats showed no acute seizures and a more rapid neuromotor recovery compared with controls. Brains from SLOW rats also showed only modest immunoreactivity for microglia/macrophages and astrocytes in the injured hemisphere compared with controls. Further, group differences were apparent between the control strains, with greater neuromotor deficits observed in Long Evans rats compared with Wistars post-TBI. Brain-injured Long Evans rats also showed the most pronounced inflammatory response to TBI across multiple brain regions, whereas Wistar rats showed the greatest extent of regional brain atrophy. These findings indicate that differential genetic predisposition to develop acquired epilepsy (i.e., FAST vs. SLOW rat strains) determines acute responses after experimental TBI. Differences in the neuropathological response to TBI between commonly used control rat strains is also a novel finding, and an important consideration for future study design. Our results support further investigation into whether genetic predisposition to acute seizures predicts the chronic outcomes after TBI, including the development of post-traumatic epilepsy.
Collapse
Affiliation(s)
- Wai Lam Leung
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Larissa K Dill
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- The Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Piero Perucca
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Epilepsy Research Centre, Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, Victoria, Australia
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Heidelberg, Victoria, Australia
- Department of Neurology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
17
|
Wong KR, Wright DK, Sgro M, Salberg S, Bain J, Li C, Sun M, McDonald SJ, Mychasiuk R, Brady RD, Shultz SR. Persistent Changes in Mechanical Nociception in Rats With Traumatic Brain Injury Involving Polytrauma. THE JOURNAL OF PAIN 2023; 24:1383-1395. [PMID: 36958460 DOI: 10.1016/j.jpain.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
Traumatic brain injury (TBI) survivors often experience debilitating consequences. Due to the high impact nature of TBI, patients often experience concomitant peripheral injuries (ie, polytrauma). A common, yet often overlooked, comorbidity of TBI is chronic pain. Therefore, this study investigated how common concomitant peripheral injuries (ie, femoral fracture and muscle crush) can affect long-term behavioral and structural TBI outcomes with a particular focus on nociception. Rats were randomly assigned to 1 of 4 groups: polytrauma (POLY; ie, fracture + muscle crush + TBI), peripheral injury (PERI; ie, fracture + muscle crush + sham TBI), TBI (ie, sham fracture + sham muscle crush + TBI), and sham-injured (SHAM; ie, sham fracture + sham muscle crush + sham TBI). Rats underwent behavioral testing at 3-, 6-, and 11-weeks postinjury, and were then euthanized for postmortem magnetic resonance imaging (MRI). POLY rats had a persisting increase in pain sensitivity compared to all groups on the von Frey test. MRI revealed that POLY rats also had abnormalities in the cortical and subcortical brain structures involved in nociceptive processing. These findings have important implications and provide a foundation for future studies to determine the underlying mechanisms and potential treatment strategies for chronic pain in TBI survivors. PERSPECTIVE: Rats with TBI and concomitant peripheral trauma displayed chronic nociceptive pain and MRI images also revealed damaged brain structures/pathways that are involved in chronic pain development. This study highlights the importance of polytrauma and the affected brain regions for developing chronic pain.
Collapse
Affiliation(s)
- Ker Rui Wong
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - David K Wright
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Marissa Sgro
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Sabrina Salberg
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Jesse Bain
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Crystal Li
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Mujun Sun
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Rhys D Brady
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Department of Medicine, The University of Melbourne, Parkville, VIC, Australia; Department of Nursing, Health and Human Services, Vancouver Island University, Nanaimo, BC, Canada.
| |
Collapse
|
18
|
Eagle SR, Puccio AM, Agoston DV, Soose R, Mancinelli M, Nwafo R, McIntyre P, Agnone A, Tollefson S, Collins M, Kontos AP, Schneider W, Okonkwo DO. Evaluating Targeted Therapeutic Response With Predictive Blood-Based Biomarkers in Patients With Chronic Mild Traumatic Brain Injury. Neurotrauma Rep 2023; 4:404-409. [PMID: 37360545 PMCID: PMC10288300 DOI: 10.1089/neur.2023.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Chronic consequences of mild traumatic brain injury (mTBI) are heterogeneous, but may be treatable with targeted medical and rehabilitation interventions. A biological signature for the likelihood of response to therapy (i.e., "predictive" biomarkers) would empower personalized medicine post-mTBI. The purpose of this study was to correlate pre-intervention blood biomarker levels and the likelihood of response to targeted interventions for patients with chronic issues attributable to mTBI. Patients with chronic symptoms and/or disorders secondary to mTBI >3 months previous (104 days to 15 years; n = 74) were enrolled. Participants completed pre-intervention assessments of symptom burden, comprehensive clinical evaluation, and blood-based biomarker measurements. Multi-domain targeted interventions for specific symptoms and impairments across a 6-month treatment period were prescribed. Participants completed a follow-up testing after the treatment period. An all-possible model's backward logistic regression was built to identify predictors of improvement in relation to blood biomarker levels before intervention. The minimum clinically important difference (MCID) of the change score (post-intervention subtracted from pre-intervention) for the Post-Concussion Symptom Scale (PCSS) to identify treatment responders from non-responders was the primary outcome. The MCID for total PCSS score was 10. The model to predict change in PCSS score over the 6-month intervention was significant (R2 = 0.09; p = 0.01) and identified ubiquitin C-terminal hydrolase L1 (odds ratio [OR] = 2.53; 95% confidence interval [CI], 1.18-5.46; p = 0.02) and hyperphosphorylated tau (p-tau; OR = 0.70; 95% CI, 0.51-0.96; p = 0.03) as significant predictors of symptom improvement beyond the PCSS MCID. In this cohort of chronic TBI subjects, blood biomarkers before rehabilitation intervention predicted the likelihood of response to targeted therapy for chronic disorders post-TBI.
Collapse
Affiliation(s)
- Shawn R. Eagle
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ava M. Puccio
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Denes V. Agoston
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Ryan Soose
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael Mancinelli
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rachel Nwafo
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Peyton McIntyre
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Allison Agnone
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Savannah Tollefson
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael Collins
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthony P. Kontos
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Walter Schneider
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David O. Okonkwo
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
19
|
Saletti PG, Mowrey WB, Liu W, Li Q, McCullough J, Aniceto R, Lin I, Eklund M, Casillas‐Espinosa PM, Ali I, Santana‐Gomez C, Coles L, Shultz SR, Jones N, Staba R, O'Brien TJ, Moshé SL, Agoston DV, Galanopoulou AS, for the EpiBioS4Rx Study Group. Early preclinical plasma protein biomarkers of brain trauma are influenced by early seizures and levetiracetam. Epilepsia Open 2023; 8:586-608. [PMID: 37026764 PMCID: PMC10235584 DOI: 10.1002/epi4.12738] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
OBJECTIVE We used the lateral fluid percussion injury (LFPI) model of moderate-to-severe traumatic brain injury (TBI) to identify early plasma biomarkers predicting injury, early post-traumatic seizures or neuromotor functional recovery (neuroscores), considering the effect of levetiracetam, which is commonly given after severe TBI. METHODS Adult male Sprague-Dawley rats underwent left parietal LFPI, received levetiracetam (200 mg/kg bolus, 200 mg/kg/day subcutaneously for 7 days [7d]) or vehicle post-LFPI, and were continuously video-EEG recorded (n = 14/group). Sham (craniotomy only, n = 6), and naïve controls (n = 10) were also used. Neuroscores and plasma collection were done at 2d or 7d post-LFPI or equivalent timepoints in sham/naïve. Plasma protein biomarker levels were determined by reverse phase protein microarray and classified according to injury severity (LFPI vs. sham/control), levetiracetam treatment, early seizures, and 2d-to-7d neuroscore recovery, using machine learning. RESULTS Low 2d plasma levels of Thr231 -phosphorylated tau protein (pTAU-Thr231 ) and S100B combined (ROC AUC = 0.7790) predicted prior craniotomy surgery (diagnostic biomarker). Levetiracetam-treated LFPI rats were differentiated from vehicle treated by the 2d-HMGB1, 2d-pTAU-Thr231 , and 2d-UCHL1 plasma levels combined (ROC AUC = 0.9394) (pharmacodynamic biomarker). Levetiracetam prevented the seizure effects on two biomarkers that predicted early seizures only among vehicle-treated LFPI rats: pTAU-Thr231 (ROC AUC = 1) and UCHL1 (ROC AUC = 0.8333) (prognostic biomarker of early seizures among vehicle-treated LFPI rats). Levetiracetam-resistant early seizures were predicted by high 2d-IFNγ plasma levels (ROC AUC = 0.8750) (response biomarker). 2d-to-7d neuroscore recovery was best predicted by higher 2d-S100B, lower 2d-HMGB1, and 2d-to-7d increase in HMGB1 or decrease in TNF (P < 0.05) (prognostic biomarkers). SIGNIFICANCE Antiseizure medications and early seizures need to be considered in the interpretation of early post-traumatic biomarkers.
Collapse
Affiliation(s)
- Patricia G. Saletti
- Saul R. Korey Department of Neurology, Laboratory of Developmental EpilepsyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Wenzhu B. Mowrey
- Department of Epidemiology & Population HealthAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Wei Liu
- Saul R. Korey Department of Neurology, Laboratory of Developmental EpilepsyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Qianyun Li
- Saul R. Korey Department of Neurology, Laboratory of Developmental EpilepsyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Jesse McCullough
- Department of Anatomy, Physiology and GeneticsUniformed Services UniversityBethesdaMarylandUSA
| | - Roxanne Aniceto
- Department of Anatomy, Physiology and GeneticsUniformed Services UniversityBethesdaMarylandUSA
| | - I‐Hsuan Lin
- Department of Anatomy, Physiology and GeneticsUniformed Services UniversityBethesdaMarylandUSA
| | - Michael Eklund
- Department of Anatomy, Physiology and GeneticsUniformed Services UniversityBethesdaMarylandUSA
| | - Pablo M. Casillas‐Espinosa
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
- Department of MedicineThe University of MelbourneParkvilleVictoriaAustralia
- Department of NeurologyAlfred HealthMelbourneVictoriaAustralia
| | - Idrish Ali
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
- Department of MedicineThe University of MelbourneParkvilleVictoriaAustralia
- Department of NeurologyAlfred HealthMelbourneVictoriaAustralia
| | | | - Lisa Coles
- University of Minnesota Twin CitiesMinneapolisMinnesotaUSA
| | - Sandy R. Shultz
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
- Department of MedicineThe University of MelbourneParkvilleVictoriaAustralia
- Department of NeurologyAlfred HealthMelbourneVictoriaAustralia
| | - Nigel Jones
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
- Department of MedicineThe University of MelbourneParkvilleVictoriaAustralia
- Department of NeurologyAlfred HealthMelbourneVictoriaAustralia
| | | | - Terence J. O'Brien
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
- Department of MedicineThe University of MelbourneParkvilleVictoriaAustralia
- Department of NeurologyAlfred HealthMelbourneVictoriaAustralia
| | - Solomon L. Moshé
- Saul R. Korey Department of Neurology, Laboratory of Developmental EpilepsyAlbert Einstein College of MedicineBronxNew YorkUSA
- Isabelle Rapin Division of Child NeurologyAlbert Einstein College of MedicineBronxNew YorkUSA
- Dominick P Purpura Department of NeuroscienceAlbert Einstein College of MedicineBronxNew YorkUSA
- Department of PediatricsAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Denes V. Agoston
- Department of Anatomy, Physiology and GeneticsUniformed Services UniversityBethesdaMarylandUSA
| | - Aristea S. Galanopoulou
- Saul R. Korey Department of Neurology, Laboratory of Developmental EpilepsyAlbert Einstein College of MedicineBronxNew YorkUSA
- Isabelle Rapin Division of Child NeurologyAlbert Einstein College of MedicineBronxNew YorkUSA
- Dominick P Purpura Department of NeuroscienceAlbert Einstein College of MedicineBronxNew YorkUSA
| | | |
Collapse
|
20
|
Barker S, Paul BD, Pieper AA. Increased Risk of Aging-Related Neurodegenerative Disease after Traumatic Brain Injury. Biomedicines 2023; 11:1154. [PMID: 37189772 PMCID: PMC10135798 DOI: 10.3390/biomedicines11041154] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Traumatic brain injury (TBI) survivors frequently suffer from chronically progressive complications, including significantly increased risk of developing aging-related neurodegenerative disease. As advances in neurocritical care increase the number of TBI survivors, the impact and awareness of this problem are growing. The mechanisms by which TBI increases the risk of developing aging-related neurodegenerative disease, however, are not completely understood. As a result, there are no protective treatments for patients. Here, we review the current literature surrounding the epidemiology and potential mechanistic relationships between brain injury and aging-related neurodegenerative disease. In addition to increasing the risk for developing all forms of dementia, the most prominent aging-related neurodegenerative conditions that are accelerated by TBI are amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Parkinson's disease (PD), and Alzheimer's disease (AD), with ALS and FTD being the least well-established. Mechanistic links between TBI and all forms of dementia that are reviewed include oxidative stress, dysregulated proteostasis, and neuroinflammation. Disease-specific mechanistic links with TBI that are reviewed include TAR DNA binding protein 43 and motor cortex lesions in ALS and FTD; alpha-synuclein, dopaminergic cell death, and synergistic toxin exposure in PD; and brain insulin resistance, amyloid beta pathology, and tau pathology in AD. While compelling mechanistic links have been identified, significantly expanded investigation in the field is needed to develop therapies to protect TBI survivors from the increased risk of aging-related neurodegenerative disease.
Collapse
Affiliation(s)
- Sarah Barker
- Center for Brain Health Medicines, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA;
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Bindu D. Paul
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21211, USA;
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21211, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21211, USA
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
| | - Andrew A. Pieper
- Center for Brain Health Medicines, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA;
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Translational Therapeutics Core, Cleveland Alzheimer’s Disease Research Center, Cleveland, OH 44106, USA
| |
Collapse
|
21
|
Casillas-Espinosa PM, Anderson A, Harutyunyan A, Li C, Lee J, Braine EL, Brady RD, Sun M, Huang C, Barlow CK, Shah AD, Schittenhelm RB, Mychasiuk R, Jones NC, Shultz SR, O'Brien TJ. Disease-modifying effects of sodium selenate in a model of drug-resistant, temporal lobe epilepsy. eLife 2023; 12:e78877. [PMID: 36892461 PMCID: PMC10208637 DOI: 10.7554/elife.78877] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 03/08/2023] [Indexed: 03/10/2023] Open
Abstract
There are no pharmacological disease-modifying treatments with an enduring effect to mitigate the seizures and comorbidities of established chronic temporal lobe epilepsy (TLE). This study aimed to evaluate for disease modifying effects of sodium selenate treatment in the chronically epileptic rat post-status epilepticus (SE) model of drug-resistant TLE. Wistar rats underwent kainic acid-induced SE or sham. Ten-weeks post-SE, animals received sodium selenate, levetiracetam, or vehicle subcutaneousinfusion continuously for 4 weeks. To evaluate the effects of the treatments, one week of continuous video-EEG was acquired before, during, and 4, 8 weeks post-treatment, followed by behavioral tests. Targeted and untargeted proteomics and metabolomics were performed on post-mortem brain tissue to identify potential pathways associated with modified disease outcomes. Telomere length was investigated as a novel surrogate marker of epilepsy disease severity in our current study. The results showed that sodium selenate treatment was associated with mitigation of measures of disease severity at 8 weeks post-treatment cessation; reducing the number of spontaneous seizures (p< 0.05), cognitive dysfunction (p< 0.05), and sensorimotor deficits (p< 0.01). Moreover, selenate treatment was associated with increased protein phosphatase 2A (PP2A) expression, reduced hyperphosphorylated tau, and reversed telomere length shortening (p< 0.05). Network medicine integration of multi-omics/pre-clinical outcomes identified protein-metabolite modules positively correlated with TLE. Our results provide evidence that treatment with sodium selenate results in a sustained disease-modifying effect in chronically epileptic rats in the post-KA SE model of TLE, including improved comorbid learning and memory deficits.
Collapse
Affiliation(s)
- Pablo M Casillas-Espinosa
- Department of Medicine, The Royal Melbourne Hospital, The University of MelbourneMelbourneAustralia
- Department of Neuroscience, Central Clinical School, Monash UniversityMelbourneAustralia
- Monash Proteomics & Metabolomics Facility and Monash Biomedicine Discovery Institute, Monash UniversityClayton, VictoriaAustralia
| | - Alison Anderson
- Department of Medicine, The Royal Melbourne Hospital, The University of MelbourneMelbourneAustralia
- Department of Neuroscience, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Anna Harutyunyan
- Department of Medicine, The Royal Melbourne Hospital, The University of MelbourneMelbourneAustralia
- Department of Neuroscience, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Crystal Li
- Department of Neuroscience, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Jiyoon Lee
- Department of Medicine, The Royal Melbourne Hospital, The University of MelbourneMelbourneAustralia
| | - Emma L Braine
- Department of Medicine, The Royal Melbourne Hospital, The University of MelbourneMelbourneAustralia
- Department of Neuroscience, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Rhys D Brady
- Department of Medicine, The Royal Melbourne Hospital, The University of MelbourneMelbourneAustralia
- Department of Neuroscience, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Mujun Sun
- Department of Neuroscience, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Cheng Huang
- Department of Neurology, The Alfred Hospital, Commercial Road,Melbourne, VictoriaAustralia
| | - Christopher K Barlow
- Department of Neurology, The Alfred Hospital, Commercial Road,Melbourne, VictoriaAustralia
| | - Anup D Shah
- Department of Neurology, The Alfred Hospital, Commercial Road,Melbourne, VictoriaAustralia
| | - Ralf B Schittenhelm
- Department of Neurology, The Alfred Hospital, Commercial Road,Melbourne, VictoriaAustralia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Nigel C Jones
- Department of Medicine, The Royal Melbourne Hospital, The University of MelbourneMelbourneAustralia
- Department of Neuroscience, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Sandy R Shultz
- Department of Medicine, The Royal Melbourne Hospital, The University of MelbourneMelbourneAustralia
- Department of Neuroscience, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Terence J O'Brien
- Department of Medicine, The Royal Melbourne Hospital, The University of MelbourneMelbourneAustralia
- Department of Neuroscience, Central Clinical School, Monash UniversityMelbourneAustralia
- Monash Proteomics & Metabolomics Facility and Monash Biomedicine Discovery Institute, Monash UniversityClayton, VictoriaAustralia
| |
Collapse
|
22
|
Zheng P, Zhang N, Ren D, Yu C, Zhao B, Bai Q, Zhang Y, Sun W. Integrated single-cell multiomics reveals novel immune candidate markers for post-traumatic coagulopathy. Front Immunol 2023; 13:1095657. [PMID: 36846021 PMCID: PMC9946684 DOI: 10.3389/fimmu.2022.1095657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/23/2022] [Indexed: 02/10/2023] Open
Abstract
Introduction Post-traumatic coagulopathy (PTC) is a critical pathology in traumatic brain injury (TBI), however, its potential mechanism is not clear. To explore this in peripheral samples, we integrated single cell RNA-sequencing and T cell repertoire (TCR)-sequencing across a cohort of patients with TBI. Methods Clinical samples from patients with more brain severity demonstrated overexpression of T cell receptor-encoding genes and less TCR diversity. Results By mapping TCR clonality, we found patients with PTC have less TCR clones, and the TCR clones are mainly distributed in cytotoxic effector CD8+T cell. In addition, the counts of CD8+ T cell and natural killer (NK) cells are associated with the coagulation parameter by WGCNA, and the granzyme and lectin-like receptor profiles are also decreased in the peripheral blood from TBI patients, suggesting that reduced peripheral CD8+ clonality and cytotoxic profiles may be involved in PTC after TBI. Conclusion Our work systematically revealed the critical immune status in PTC patients at the single-cell level.
Collapse
Affiliation(s)
- Ping Zheng
- Department of Neurosurgery, Shanghai Pudong New area People’s Hospital, Shanghai, China,Key Laboratory, Shanghai Pudong New area People’s Hospital, Shanghai, China,*Correspondence: Ping Zheng,
| | - Ning Zhang
- Department of Neurosurgery, Shanghai Fengxian Hospital, Shanghai, China
| | - Dabin Ren
- Department of Neurosurgery, Shanghai Pudong New area People’s Hospital, Shanghai, China
| | - Cong Yu
- Department of Neurosurgery, Shanghai Pudong New area People’s Hospital, Shanghai, China
| | - Bin Zhao
- Department of Neurosurgery, Second Hospital affiliated to Anhui Medical University, Shanghai, China
| | - Qingke Bai
- Department of Neurology, Shanghai Pudong New area People’s Hospital, Shanghai, China
| | - Yisong Zhang
- Department of Neurosurgery, Shanghai Pudong New area People’s Hospital, Shanghai, China
| | - Wanju Sun
- Department of Emergency Medicine, Shanghai Pudong New area People’s Hospital, Shanghai, China
| |
Collapse
|
23
|
González-Madrid A, Calfío C, González A, Lüttges V, Maccioni RB. Toward Prevention and Reduction of Alzheimer's Disease. J Alzheimers Dis 2023; 96:439-457. [PMID: 37807781 DOI: 10.3233/jad-230454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Different investigations lead to the urgent need to generate validated clinical protocols as a tool for medical doctors to orientate patients under risk for a preventive approach to control Alzheimer's disease. Moreover, there is consensus that the combined effects of risk factors for the disease can be modified according to lifestyle, thus controlling at least 40% of cases. The other fraction of cases are derived from candidate genes and epigenetic components as a relevant factor in AD pathogenesis. At this point, it appears to be of critical relevance the search for molecular biomarkers that may provide information on probable pathological events and alert about early detectable risks to prevent symptomatic events of the disease. These precocious detection markers will then allow early interventions of non-symptomatic subjects at risk. Here, we summarize the status and potential avenues of prevention and highlight the usefulness of biological and reliable markers for AD.
Collapse
Affiliation(s)
- Antonia González-Madrid
- International Center for Biomedicine - ICC and Faculty of Sciences, University of Chile, Santiago, Chile
| | - Camila Calfío
- International Center for Biomedicine - ICC and Faculty of Sciences, University of Chile, Santiago, Chile
| | - Andrea González
- International Center for Biomedicine - ICC and Faculty of Sciences, University of Chile, Santiago, Chile
| | - Valentina Lüttges
- International Center for Biomedicine - ICC and Faculty of Sciences, University of Chile, Santiago, Chile
| | - Ricardo B Maccioni
- International Center for Biomedicine - ICC and Faculty of Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
24
|
Cytoprotective Properties of a New Nanocomplex of Selenium with Taxifolin in the Cells of the Cerebral Cortex Exposed to Ischemia/Reoxygenation. Pharmaceutics 2022; 14:pharmaceutics14112477. [PMID: 36432668 PMCID: PMC9697510 DOI: 10.3390/pharmaceutics14112477] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
The neuroprotective effect of the natural antioxidant taxifolin (TAX) is well known for ischemic pathologies. However, the limitations of taxifolin application are described-poor solubility, low ability to penetrate the blood-brain barrier, and side effects from high doses for stroke therapy. We proposed the problem of targeted delivery of taxifolin and achievement effective concentrations could be solved by developing a nanocomplex of selenium nanoparticles (SeNPs) with taxifolin (Se-TAX). In this study, we developed a selenium-taxifolin nanocomplex based on selenium nanoparticles with a 100 nm size. It was shown that TAX, SeNPs, and Se-TAX were all able to suppress the production of ROS in neurons and astrocytes under exposure to exogenous H2O2 and ischemia-like conditions. However, the Se-TAX nanocomplex appeared to be the most effective, displaying a lower working concentration range and negligible pro-oxidant effect compared with pure SeNPs. The mechanism of Se-TAX beneficial effects involved the activation of some antioxidant enzymes and the suppression of ROS-generating systems during OGD/reoxygenation, while TAX and "naked" SeNPs were less effective in regulating the cellular redox status. Naked SeNPs inhibited a global increase in Ca2+ ions in cytosol, but not OGD-induced hyperexcitation of the neuroglial network, while Se-TAX suppressed both [Ca2+]i rise and hyperexcitation. The effect of TAX at similar doses appeared exclusively in inhibiting OGD-induced hyperexcitation. Analysis of necrosis and apoptosis after OGD/reoxygenation revealed the highest efficiency of the Se-TAX nanocomplex as well. Se-TAX suppressed the expression of proinflammatory and proapoptotic proteins with simultaneous activation of protective genes. We conclude that the Se-TAX nanocomplex combines the antioxidative features taxifolin and the antiapoptotic effect of nanoselenium, involving the regulation of Ca2+ dynamics.
Collapse
|
25
|
Sun M, Baker TL, Wilson CT, Brady RD, Mychasiuk R, Yamakawa GR, Vo A, Wilson T, McDonald SJ, Shultz SR. Treatment with vascular endothelial growth factor-A worsens cognitive recovery in a rat model of mild traumatic brain injury. Front Mol Neurosci 2022; 15:937350. [PMID: 36385769 PMCID: PMC9643175 DOI: 10.3389/fnmol.2022.937350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/29/2022] [Indexed: 09/08/2023] Open
Abstract
Mild traumatic brain injury (mTBI) is a common and unmet clinical issue, with limited treatments available to improve recovery. The cerebrovascular system is vital to provide oxygen and nutrition to the brain, and a growing body of research indicates that cerebrovascular injury contributes to mTBI symptomatology. Vascular endothelial growth factor-A (VEGF-A) is a potent promoter of angiogenesis and an important modulator of vascular health. While indirect evidence suggests that increased bioavailability of VEGF-A may be beneficial after mTBI, the direct therapeutic effects of VEGF-A in this context remains unknown. This study therefore aimed to determine whether intracerebroventricular administration of recombinant VEGF-A could improve recovery from mTBI in a rat model. Male and female Sprague-Dawley rats were assigned to four groups: sham + vehicle (VEH), sham + VEGF-A, mTBI + VEH, mTBI + VEGF-A. The mTBI was induced using the lateral impact model, and treatment began at the time of the injury and continued until the end of the study. Rats underwent behavioral testing between days 1 and 10 post-injury, and were euthanized on day 11 for post-mortem analysis. In males, the mTBI + VEGF-A group had significantly worse cognitive recovery in the water maze than all other groups. In females, the VEGF treatment worsened cognitive performance in the water maze regardless of mTBI or sham injury. Analysis of hippocampal tissue found that these cognitive deficits occurred in the presence of gene expression changes related to neuroinflammation and hypoxia in both male and female rats. These findings indicate that the VEGF-A treatment paradigm tested in this study failed to improve mTBI outcomes in either male or female rats.
Collapse
Affiliation(s)
- Mujun Sun
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Tamara L. Baker
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Campbell T. Wilson
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Rhys D. Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Glenn R. Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Anh Vo
- Monash Health Translation Precinct, Monash University, Melbourne, VIC, Australia
| | - Trevor Wilson
- Monash Health Translation Precinct, Monash University, Melbourne, VIC, Australia
| | - Stuart J. McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Sandy R. Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
- Health and Human Services, Vancouver Island University, Nanaimo, BC, Canada
| |
Collapse
|
26
|
Dabin R, Wei C, Liang S, Ke C, Zhihan W, Ping Z. Astrocytic IGF-1 and IGF-1R Orchestrate Mitophagy in Traumatic Brain Injury via Exosomal miR-let-7e. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3504279. [PMID: 36062186 PMCID: PMC9433209 DOI: 10.1155/2022/3504279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/16/2022] [Accepted: 08/02/2022] [Indexed: 11/26/2022]
Abstract
Defective brain hormonal signaling and autophagy have been associated with neurodegeneration after brain insults, characterized by neuronal loss and cognitive dysfunction. However, few studies have linked them in the context of brain injury. Insulin-like growth factor-1 (IGF-1) is an important hormone that contributes to growth, cell proliferation, and autophagy and is also expressed in the brain. Here, we assessed the clinical data from TBI patients and performed both in vitro and in vivo experiments with proteomic and gene-chip analysis to assess the functions of IGF-1 in mitophagy following TBI. We show that reduced plasma IGF-1 is correlated with cognition in TBI patients. Overexpression of astrocytic IGF-1 improves cognitive dysfunction and mitophagy in TBI mice. Mechanically, proteomics data show that the IGF-1-related NF-κB pathway transcriptionally regulates decapping mRNA2 (Dcp2) and miR-let-7, together with IGF-1R to orchestrate mitophagy in TBI. Finally, we demonstrate that brain injury induces impaired mitophagy at the chronic stage and that IGF-1 treatment could facilitate the mitophagy markers via exosomal miR-let-7e. By showing that IGF-1 is an important mediator of the beneficial effect of the neural-endocrine network in TBI models, our findings place IGF-1/IGF-1R as a potential target capable of noncoding RNAs and opposing mitophagy failure and cognitive impairment in TBI.
Collapse
Affiliation(s)
- Ren Dabin
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Chen Wei
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Shu Liang
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai, China
| | - Cao Ke
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Wang Zhihan
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Zheng Ping
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| |
Collapse
|
27
|
Dilcher R, Malpas CB, Walterfang M, Velakoulis D, O’Brien TJ, Vivash L. Sodium selenate as a therapeutic for tauopathies: A hypothesis paper. Front Aging Neurosci 2022; 14:915460. [PMID: 35992608 PMCID: PMC9389397 DOI: 10.3389/fnagi.2022.915460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022] Open
Abstract
In a large proportion of individuals with fronto-temporal lobar degeneration (FTLD), the underlying pathology is associated with the misfolding and aggregation of the microtubule associated protein tau (FTLD-tau). With disease progression, widespread protein accumulation throughout cortical and subcortical brain regions may be responsible for neurodegeneration. One of the syndromes of FTLD is the behavioral variant of frontotemporal dementia (bvFTD), in which the underlying pathology is heterogenous, with half of the cases being related to FTLD-tau. Currently, there are no approved disease-modifying treatments for FTLD-tau, therefore representing a major unmet therapeutic need. These descriptive, preliminary findings of the phase 1 open-label trial provide data to support the potential of sodium selenate to halt the cognitive and behavioral decline, as well as to reduce tau levels in a small group of participants with bvFTD (N = 11). All participants were treated with sodium selenate over a period of 52 weeks. Cognition was assessed with the Neuropsychiatry Unit Cognitive Assessment Tool (NUCOG, total scores), social cognition with the Revised Self-Monitoring Scale (RSMS, total scores), behavior with the Cambridge Behavioral Inventory (CBI), and carer burden with the Caregiver Buden Scale (CBS). Fluid biomarker measures include cerebrospinal fluid of total tau (t-tau), phosphorylated tau (p-tau181), NfL, p-tau181/t-tau, t-tau/Aβ1-42, and p-tau181/Aβ1-42 levels. After treatment at follow-up, cognition and behavior showed further negative change (based on a reliable change criterion cut-off of annual NUCOG decline) in the "progressors," but not in the "non-progressors." "Non-progressors" also showed elevated baseline CSF tau levels and no increase after treatment, indicating underlying tau pathology and a positive response to sodium selenate treatment. Significant changes in MRI were not observed. The findings provide useful information for future clinical trials to systematically assess the disease-modifying treatment effects of sodium selenate in randomized controlled designs for bvFTD and FTLD-tau pathologies.
Collapse
Affiliation(s)
- Roxane Dilcher
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Charles B. Malpas
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Medicine and Radiology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Neurology, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Clinical Outcomes Research Unit (CORe), Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Mark Walterfang
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Psychiatry and Melbourne Neuropsychiatry Center, University of Melbourne, Melbourne, VIC, Australia
| | - Dennis Velakoulis
- Department of Neurology, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Psychiatry and Melbourne Neuropsychiatry Center, University of Melbourne, Melbourne, VIC, Australia
| | - Terence J. O’Brien
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Medicine and Radiology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Neurology, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Neurology, Alfred Hospital, Melbourne, VIC, Australia
| | - Lucy Vivash
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Medicine and Radiology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Neurology, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Neurology, Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|
28
|
Size-Dependent Cytoprotective Effects of Selenium Nanoparticles during Oxygen-Glucose Deprivation in Brain Cortical Cells. Int J Mol Sci 2022; 23:ijms23137464. [PMID: 35806466 PMCID: PMC9267189 DOI: 10.3390/ijms23137464] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
It is known that selenium nanoparticles (SeNPs) obtained on their basis have a pleiotropic effect, inducing the process of apoptosis in tumor cells, on the one hand, and protecting healthy tissue cells from death under stress, on the other hand. It has been established that SeNPs protect brain cells from ischemia/reoxygenation through activation of the Ca2+ signaling system of astrocytes and reactive astrogliosis. At the same time, for a number of particles, the limitations of their use, associated with their size, are shown. The use of nanoparticles with a diameter of less than 10 nm leads to their short life-time in the bloodstream and rapid removal by the liver. Nanoparticles larger than 200 nm activate the complement system and are also quickly removed from the blood. The effects of different-sized SeNPs on brain cells have hardly been studied. Using the laser ablation method, we obtained SeNPs of various diameters: 50 nm, 100 nm, and 400 nm. Using fluorescence microscopy, vitality tests, PCR analysis, and immunocytochemistry, it was shown that all three types of the different-sized SeNPs have a cytoprotective effect on brain cortex cells under conditions of oxygen-glucose deprivation (OGD) and reoxygenation (R), suppressing the processes of necrotic death and inhibiting different efficiency processes of apoptosis. All of the studied SeNPs activate the Ca2+ signaling system of astrocytes, while simultaneously inducing different types of Ca2+ signals. SeNPs sized at 50 nm- induce Ca2+ responses of astrocytes in the form of a gradual irreversible increase in the concentration of cytosolic Ca2+ ([Ca2+]i), 100 nm-sized SeNPs induce stable Ca2+ oscillations without increasing the base level of [Ca2+]i, and 400 nm-sized SeNPs cause mixed patterns of Ca2+ signals. Such differences in the level of astrocyte Ca2+ signaling can explain the different cytoprotective efficacy of SeNPs, which is expressed in the expression of protective proteins and the activation of reactive astrogliosis. In terms of the cytoprotective efficiency under OGD/R conditions, different-sized SeNPs can be arranged in descending order: 100 nm-sized > 400 nm-sized > 50 nm-sized.
Collapse
|
29
|
Hicks A, Ponsford JL, Spitz G, Dore V, Krishnadas N, Roberts C, Rowe CC. Amyloid- and Tau Imaging in Chronic Traumatic Brain Injury: A Cross-sectional Study. Neurology 2022; 99:e1131-e1141. [PMID: 36096678 DOI: 10.1212/wnl.0000000000200857] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/02/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Traumatic brain injury (TBI) has been promoted as a risk factor for Alzheimer's disease. There is evidence of elevated amyloid-β and tau, the pathological hallmarks of Alzheimer's disease, immediately following TBI. It is not clear whether amyloid-β and tau remain elevated in the chronic period. To address this issue, we assessed amyloid-β and tau burden in long-term TBI survivors and healthy controls using PET imaging. METHODS Using a cross-sectional design, we recruited individuals following a single moderate to severe TBI at least 10 years previously from an inpatient rehabilitation program. A demographically similar healthy control group was recruited from the community. PET data were acquired using 18F-NAV4694 (amyloid-β) and 18F-MK6240 (tau) tracers. Amyloid-β deposition was quantified using the Centiloid scale. Tau deposition was quantified using the standardized uptake value ratio (SUVR) in four regions of interest (ROI). As a secondary measure, PET scans were also visually read as positive or negative. We examined PET data in relation to time since injury and age at injury. PET data were analysed in a series of regression analyses. RESULTS The sample comprised 87 individuals with TBI (71.3% male; 28.7% female; M = 57.53 years, SD = 11.53) and 59 controls (59.3% male; 40.7% female; M = 60.34 years, SD = 11.97). Individuals with TBI did not have significantly higher 18F-NAV4694 Centiloid values (p = 0.067) or 18F-MK6240 tau SUVRs in any ROI (p = ≤ 0.001; SUVR greater for controls). Visual assessment was consistent with the quantification; individuals with TBI were not more likely than controls to have a positive amyloid-β (p = 0.505) or tau scan (p = 0.221). No associations were identified for amyloid-β or tau burden with time since injury (p = 0.057 to 0.332) or age at injury. DISCUSSION A single moderate to severe TBI was not associated with higher burden of amyloid-β or tau pathologies in the chronic period relative to healthy controls. Amyloid-β and tau burden did not show a significant increase with years since injury, and burden did not appear to be greater for those who were older at the time of injury.
Collapse
Affiliation(s)
- Amelia Hicks
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, 3168, Australia.
| | - Jennie L Ponsford
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, 3168, Australia
| | - Gershon Spitz
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, 3168, Australia
| | - Vincent Dore
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, 3084, Australia.,CSIRO Health and Biosecurity Flagship, The Australian e-Health Research Centre, Parkville, 3052, Australia
| | - Natasha Krishnadas
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, 3084, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, 3052, Australia
| | - Caroline Roberts
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, 3168, Australia
| | - Christopher C Rowe
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, 3084, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, 3052, Australia
| |
Collapse
|
30
|
Gao F, Liu A, Qi X, Wang M, Chen X, Wei S, Gao S, Sun Y, Sun P, Li X, Sun W, Li J, Liu Q. Ppp4r3a deficiency leads to depression-like behaviors in mice by modulating the synthesis of synaptic proteins. Dis Model Mech 2022; 15:dmm049374. [PMID: 35314861 PMCID: PMC9150120 DOI: 10.1242/dmm.049374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/15/2022] [Indexed: 11/24/2022] Open
Abstract
Chronic stress is one of the main risk factors for the onset of major depressive disorder. Chronic unpredictable mild stress results in reduced expression of synaptic proteins and depression-like behaviors in rodent models. However, the upstream molecule that senses the demand for synaptic proteins and initiates their synthesis under chronic stress remains unknown. In this study, chronic unpredictable mild stress reduced the expression of PPP4R3A in the prefrontal cortex and hippocampus in mice. Selective knockout of Ppp4r3a in the cortex and hippocampus mimicked the depression- and anxiety-like behavioral effects of chronic stress in mice. Notably, Ppp4r3a deficiency led to downregulated mTORC1 signaling, which resulted in reduced synthesis of synaptic proteins and impaired synaptic functions. By contrast, overexpression of Ppp4r3a in the cortex and hippocampus protected against behavioral and synaptic deficits induced by chronic stress in a PPP4R3A-mTORC1-dependent manner. Rapamycin treatment of Ppp4r3a-overexpressing neurons blocked the regulatory effect of Ppp4r3a on the synthesis of synaptic proteins by directly inhibiting mTORC1. Overall, our results reveal a regulatory role of Ppp4r3a in driving synaptic protein synthesis in chronic stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Qiji Liu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
31
|
Nakhjiri E, Roqanian S, Zangbar HS, Seyedi Vafaee M, Mohammadnejad D, Ahmadian S, Zamanzadeh S, Ehsani E, Shahabi P, Shahpasand K. Spinal Cord Injury Causes Prominent Tau Pathology Associated with Brain Post-Injury Sequela. Mol Neurobiol 2022; 59:4197-4208. [PMID: 35501632 DOI: 10.1007/s12035-022-02843-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/20/2022] [Indexed: 12/14/2022]
Abstract
Spinal cord injury (SCI) can result in significant neurological impairment and functional and cognitive deficits. It is well established that SCI results in focal neurodegeneration that gradually spreads to other cord areas. On the other hand, traumatic brain injury (TBI) is strongly associated with tau protein pathology and neurodegeneration that can spread in areas throughout the brain. Tau is a microtubule-associated protein abundant in neurons and whose abnormalities result in neuronal cell death. While SCI and TBI have been extensively studied, there is limited research on the relationship between SCI and brain tau pathology. As a result, in this study, we examined tau pathology in spinal cord and brain samples obtained from severe SCI mouse models at various time points. The effects of severe SCI on locomotor function, spatial memory, anxiety/risk-taking behavior were investigated. Immunostaining and immunoblotting confirmed a progressive increase in tau pathology in the spinal cord and brain areas. Moreover, we used electron microscopy to examine brain samples and observed disrupted mitochondria and microtubule structure following SCI. SCI resulted in motor dysfunction, memory impairment, and abnormal risk-taking behavior. Notably, eliminating pathogenic cis P-tau via systemic administration of appropriate monoclonal antibodies restored SCI's pathological and functional consequences. Thus, our findings suggest that SCI causes severe tauopathy that spreads to brain areas, indicating brain dysfunction. Additionally, tau immunotherapy with an anti-cis P-tau antibody could suppress pathogenic outcomes in SCI mouse models, with significant clinical implications for SCI patients. SCI induces profound pathogenic cis p-tau, which diffuses into the brain through CSF, resulting in brain neurodegeneration and cognitive decline.
Collapse
Affiliation(s)
- Elnaz Nakhjiri
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shaqayeq Roqanian
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamid Soltani Zangbar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Selva Zamanzadeh
- Department of Biological Sciences, Islamic Azad University, Tehran, Iran
| | - Ehsan Ehsani
- Department of Biology, Roudehen Islamic Azad University, Roudehen, Iran
| | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Koorosh Shahpasand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
32
|
Giordano KR, Law LM, Henderson J, Rowe RK, Lifshitz J. Time Course of Remote Neuropathology Following Diffuse Traumatic Brain Injury in the Male Rat. Exp Neurobiol 2022; 31:105-115. [PMID: 35673999 PMCID: PMC9194637 DOI: 10.5607/en21027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/15/2021] [Accepted: 04/12/2022] [Indexed: 11/19/2022] Open
Abstract
Traumatic brain injury (TBI) can affect different regions throughout the brain. Regions near the site of impact are the most vulnerable to injury. However, damage to distal regions occurs. We investigated progressive neuropathology in the dorsal hippocampus (near the impact) and cerebellum (distal to the impact) after diffuse TBI. Adult male rats were subjected to midline fluid percussion injury or sham injury. Brain tissue was stained by the amino cupric silver stain. Neuropathology was quantified in sub-regions of the dorsal hippocampus at 1, 7, and 28 days post-injury (DPI) and coronal cerebellar sections at 1, 2, and 7 DPI. The highest observed neuropathology in the dentate gyrus occurred at 7 DPI which attenuated by 28 DPI, whereas the highest observed neuropathology was at 1 DPI in the CA3 region. There was no significant neuropathology in the CA1 region at any time point. Neuropathology was increased at 7 DPI in the cerebellum compared to shams and stripes of pathology were observed in the molecular layer perpendicular to the cerebellar cortical surface. Together these data show that diffuse TBI can result in neuropathology across the brain. By describing the time course of pathology in response to TBI, it is possible to build the temporal profile of disease progression.
Collapse
Affiliation(s)
- Katherine R Giordano
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ 85013, USA.,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ 85004, USA.,Phoenix Veterans Affairs Health Care System, Phoenix, AZ 85012, USA
| | - L Matthew Law
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ 85013, USA.,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ 85004, USA.,Phoenix Veterans Affairs Health Care System, Phoenix, AZ 85012, USA
| | - Jordan Henderson
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ 85013, USA.,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ 85004, USA
| | - Rachel K Rowe
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309, USA
| | - Jonathan Lifshitz
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ 85013, USA.,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ 85004, USA.,Phoenix Veterans Affairs Health Care System, Phoenix, AZ 85012, USA
| |
Collapse
|
33
|
Wang Z, Ren D, Zheng P. The role of Rho/ROCK in epileptic seizure-related neuronal damage. Metab Brain Dis 2022; 37:881-887. [PMID: 35119588 PMCID: PMC9042975 DOI: 10.1007/s11011-022-00909-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/06/2022] [Indexed: 01/09/2023]
Abstract
Epilepsy is one of the most severe neurological disorders characterized by spontaneous recurrent seizures. Although more than two-thirds of patients can be cured with anti-epileptic drugs (AEDs), the rest one-third of epilepsy patients are resistant to AEDs. A series of studies have demonstrated Rho/Rho-associated kinase (ROCK) pathway might be involved in the pathogenesis of epilepsy in the recent twenty years. Several related pathway inhibitors of Rho/ROCK have been used in the treatment of epilepsy. We searched PubMed from Jan 1, 2000 to Dec 31, 2020, using the terms "epilepsy AND Rho AND ROCK" and "seizure AND Rho AND ROCK". We selected articles that characterized Rho/ROCK in animal models of epilepsy and patients. We then chose the most relevant research studies including in-vitro, in-vivo and clinical trials. The expression of Rho/ROCK could be a potential non-invasive biomarker to apply in treatment for patients with epilepsy. RhoA and ROCK show significant upregulation in the acute and chronic stage of epilepsy. ROCK inhibitors can reduce the epilepsy, epileptic seizure-related neuronal death and comorbidities. These findings demonstrate the novel development for diagnosis and treatment for patients with epilepsy. Rho/ROCK signaling pathway inhibitors may show more promising effects in epilepsy and related neurological diseases.
Collapse
Affiliation(s)
- Zhihan Wang
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Dabin Ren
- Department of Neurusurgery & Key Laboratory, Shanghai Pudong New area People's Hospital, Shanghai, 201299, China
| | - Ping Zheng
- Department of Neurusurgery & Key Laboratory, Shanghai Pudong New area People's Hospital, Shanghai, 201299, China.
| |
Collapse
|
34
|
Mahamane Salissou MT, Razak MYA, Wang X, Magaji RA. The role of protein phosphatase 2A tau axis in traumatic brain injury therapy. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00223-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Traumatic brain injury (TBI) is a debilitating disorder due to trauma caused by an external mechanical force eventually leading to disruption in the normal function of the brain, with possible outcomes including permanent or temporary dysfunction of cognitive, physical, and psychosocial abilities. There have been several studies focusing on the search and innovation of neuroprotective agents that could have therapeutic relevance in TBI management. Due to its complexity, TBI is divided into two major components. The first initial event is known as the primary injury; it is a result of the mechanical insult itself and is known to be irreversible and resistant to a vast variety of therapeutics. The secondary event or secondary brain injury is viewed as a cellular injury that does not manifest immediately after the trauma but evolved after a delay period of hours or several days. This category of injury is known to respond favorably to different pharmacological treatment approaches.
Main body
Due to the complexity in the pathophysiology of the secondary injury, the therapeutic strategy needs to be in a multi-facets model and to have the ability to simultaneously regulate different cellular changes. Several studies have investigated in deep the possible approaches relying on natural compounds as an alternative therapeutic strategy for the management of TBI. In addition, many natural compounds have the potential to target numerous different components of the secondary injury including neuroinflammation, apoptosis, PP2A, tau, and Aβ among others. Here, we review past and current strategies in the therapeutic management of TBI, focusing on the PP2A-tau axis both in animal and human subjects. This review uncovers, in addition, a variety of compounds used in TBI therapy.
Conclusion
Despite beneficial therapeutic effects observed in animals for many compounds, studies are still needed to be conducted on human subjects to validate their therapeutic virtues. Furthermore, potential therapeutic virtues observed among studies might likely be dependent on the TBI animal model used and the type of induced injury. In addition, specificity and side effects are challenges in TBI therapy specifically which site of PP2A dysfunction to be targeted.
Collapse
|
35
|
Rehman Z, Farooq T, Javaid S, Ashraf W, Fawad Rasool M, Samad N, Tariq M, Muhammad Muneeb Anjum S, Sivandzade F, Alotaibi F, Alqahtani F, Imran I. Combination of levetiracetam with sodium selenite prevents pentylenetetrazole-induced kindling and behavioral comorbidities in rats. Saudi Pharm J 2022; 30:494-507. [PMID: 35693436 PMCID: PMC9177457 DOI: 10.1016/j.jsps.2022.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/05/2022] [Indexed: 02/06/2023] Open
Affiliation(s)
- Zohabia Rehman
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Talha Farooq
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Sana Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
- Department of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Noreen Samad
- Department of Biochemistry, Faculty of Sciences, Bahauddin Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Maryam Tariq
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | | | - Farzane Sivandzade
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Faisal Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Corresponding authors at: Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. (F. Alqahtani). Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University 60800, Multan, Pakistan. (I. Imran)..
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
- Corresponding authors at: Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. (F. Alqahtani). Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University 60800, Multan, Pakistan. (I. Imran)..
| |
Collapse
|
36
|
Walker A, Chapin B, Abisambra J, DeKosky ST. Association between single moderate to severe traumatic brain injury and long-term tauopathy in humans and preclinical animal models: a systematic narrative review of the literature. Acta Neuropathol Commun 2022; 10:13. [PMID: 35101132 PMCID: PMC8805270 DOI: 10.1186/s40478-022-01311-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/22/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The initiation, anatomic pattern, and extent of tau spread in traumatic brain injury (TBI), and the mechanism by which TBI leads to long-term tau pathology, remain controversial. Some studies suggest that moderate to severe TBI is sufficient to promote tau pathology; however, others suggest that it is simply a consequence of aging. We therefore conducted a systematic narrative review of the literature addressing whether a single moderate to severe head injury leads to long-term development of tauopathy in both humans and animal models. METHODS Studies considered for inclusion in this review assessed a single moderate to severe TBI, assessed tau pathology at long-term timepoints post-injury, comprised experimental or observational studies, and were peer-reviewed and published in English. Databases searched included: PUBMED, NCBI-PMC, EMBASE, Web of Science, Academic Search Premiere, and APA Psychnet. Search results were uploaded to Covidence®, duplicates were removed, and articles underwent an abstract and full-text screening process. Data were then extracted and articles assessed for risk of bias. FINDINGS Of 4,150 studies screened, 26 were eligible for inclusion, of which 17 were human studies, 8 were preclinical animal studies, and 1 included both human and preclinical animal studies. Most studies had low to moderate risk of bias. Most human and animal studies (n = 12 and 9, respectively) suggested that a single moderate to severe TBI resulted in greater development of long-term tauopathy compared to no history of head injury. This conclusion should be interpreted with caution, however, due to several limitations: small sample sizes; inconsistencies in controlling for confounding factors that may have affected tau pathology (e.g., family history of dementia or neurological illnesses, apolipoprotein E genotype, etc.), inclusion of mostly males, and variation in reporting injury parameters. INTERPRETATION Results indicate that a single moderate to severe TBI leads to greater chronic development of tauopathy compared to no history of head injury. This implies that tau pathology induced may not be transient, but can progressively develop over time in both humans and animal models. Targeting these tau changes for therapeutic intervention should be further explored to elucidate if disease progression can be reversed or mitigated.
Collapse
Affiliation(s)
- Ariel Walker
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Ben Chapin
- Department of Neurology, University of Florida, Gainesville, FL, 32610, USA
| | - Jose Abisambra
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
- Brain Injury, Rehabilitation, and Neuroresilience (BRAIN) Center, University of Florida, Gainesville, FL, 32610, USA.
| | - Steven T DeKosky
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
- Brain Injury, Rehabilitation, and Neuroresilience (BRAIN) Center, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neurology, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
37
|
Vivash L, Bertram KL, Malpas CB, Marotta C, Harding IH, Kolbe S, Fielding J, Clough M, Lewis SJG, Tisch S, Evans AH, O'Sullivan JD, Kimber T, Darby D, Churilov L, Law M, Hovens CM, Velakoulis D, O'Brien TJ. Sodium selenate as a disease-modifying treatment for progressive supranuclear palsy: protocol for a phase 2, randomised, double-blind, placebo-controlled trial. BMJ Open 2021; 11:e055019. [PMID: 34916328 PMCID: PMC8679117 DOI: 10.1136/bmjopen-2021-055019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/14/2021] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Progressive supranuclear palsy (PSP) is a neurodegenerative disorder for which there are currently no disease-modifying therapies. The neuropathology of PSP is associated with the accumulation of hyperphosphorylated tau in the brain. We have previously shown that protein phosphatase 2 activity in the brain is upregulated by sodium selenate, which enhances dephosphorylation. Therefore, the objective of this study is to evaluate the efficacy and safety of sodium selenate as a disease-modifying therapy for PSP. METHODS AND ANALYSIS This will be a multi-site, phase 2b, double-blind, placebo-controlled trial of sodium selenate. 70 patients will be recruited at six Australian academic hospitals and research institutes. Following the confirmation of eligibility at screening, participants will be randomised (1:1) to receive 52 weeks of active treatment (sodium selenate; 15 mg three times a day) or matching placebo. Regular safety and efficacy visits will be completed throughout the study period. The primary study outcome is change in an MRI volume composite (frontal lobe+midbrain-3rd ventricle) over the treatment period. Analysis will be with a general linear model (GLM) with the MRI composite at 52 weeks as the dependent variable, treatment group as an independent variable and baseline MRI composite as a covariate. Secondary outcomes are change in PSP rating scale, clinical global impression of change (clinician) and change in midbrain mean diffusivity. These outcomes will also be analysed with a GLM as above, with the corresponding baseline measure entered as a covariate. Secondary safety and tolerability outcomes are frequency of serious adverse events, frequency of down-titration occurrences and frequency of study discontinuation. Additional, as yet unplanned, exploratory outcomes will include analyses of other imaging, cognitive and biospecimen measures. ETHICS AND DISSEMINATION The study was approved by the Alfred Health Ethics Committee (594/20). Each participant or their legally authorised representative and their study partner will provide written informed consent at trial commencement. The results of the study will be presented at national and international conferences and published in peer-reviewed journals. TRIAL REGISTRATION NUMBER Australian New Zealand Clinical Trials Registry (ACTRN12620001254987).
Collapse
Affiliation(s)
- Lucy Vivash
- Department of Neurosciences, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Kelly L Bertram
- Department of Neurosciences, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Charles B Malpas
- Department of Neurosciences, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Cassandra Marotta
- Department of Neurosciences, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Ian H Harding
- Department of Neurosciences, Monash University, Melbourne, Victoria, Australia
| | - Scott Kolbe
- Department of Neurosciences, Monash University, Melbourne, Victoria, Australia
| | - Joanne Fielding
- Department of Neurosciences, Monash University, Melbourne, Victoria, Australia
| | - Meaghan Clough
- Department of Neurosciences, Monash University, Melbourne, Victoria, Australia
| | - Simon J G Lewis
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Stephen Tisch
- Department of Neurology, St Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia
| | - Andrew H Evans
- Department of Neurology, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - John D O'Sullivan
- Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia
- Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia
| | - Thomas Kimber
- Department of Neurology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - David Darby
- Department of Neurosciences, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
- Eastern Cognitive Disorders Clinic, Box Hill Hospital, Melbourne, Victoria, Australia
| | - Leonid Churilov
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Meng Law
- Department of Neurosciences, Monash University, Melbourne, Victoria, Australia
- Department of Radiology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Christopher M Hovens
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Dennis Velakoulis
- Department of Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Melbourne Neuropsychiatry Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Terence J O'Brien
- Department of Neurosciences, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
38
|
Varlamova EG, Turovsky EA, Babenko VA, Plotnikov EY. The Mechanisms Underlying the Protective Action of Selenium Nanoparticles against Ischemia/Reoxygenation Are Mediated by the Activation of the Ca 2+ Signaling System of Astrocytes and Reactive Astrogliosis. Int J Mol Sci 2021; 22:ijms222312825. [PMID: 34884629 PMCID: PMC8657910 DOI: 10.3390/ijms222312825] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
In recent years, much attention has been paid to the study of the therapeutic effect of the microelement selenium, its compounds, especially selenium nanoparticles, with a large number of works devoted to their anticancer effects. Studies proving the neuroprotective properties of selenium nanoparticles in various neurodegenerative diseases began to appear only in the last 5 years. Nevertheless, the mechanisms of the neuroprotective action of selenium nanoparticles under conditions of ischemia and reoxygenation remain unexplored, especially for intracellular Ca2+ signaling and neuroglial interactions. This work is devoted to the study of the cytoprotective mechanisms of selenium nanoparticles in the neuroglial networks of the cerebral cortex under conditions of ischemia/reoxygenation. It was shown for the first time that selenium nanoparticles dose-dependently induce the generation of Ca2+ signals selectively in astrocytes obtained from different parts of the brain. The generation of these Ca2+ signals by astrocytes occurs through the release of Ca2+ ions from the endoplasmic reticulum through the IP3 receptor upon activation of the phosphoinositide signaling pathway. An increase in the concentration of cytosolic Ca2+ in astrocytes leads to the opening of connexin Cx43 hemichannels and the release of ATP and lactate into the extracellular medium, which trigger paracrine activation of the astrocytic network through purinergic receptors. Incubation of cerebral cortex cells with selenium nanoparticles suppresses ischemia-induced increase in cytosolic Ca2+ and necrotic cell death. Activation of A2 reactive astrocytes exclusively after ischemia/reoxygenation, a decrease in the expression level of a number of proapoptotic and proinflammatory genes, an increase in lactate release by astrocytes, and suppression of the hyperexcitation of neuronal networks formed the basis of the cytoprotective effect of selenium nanoparticles in our studies.
Collapse
Affiliation(s)
- Elena G. Varlamova
- Federal Research Center “Pushchino Scientific Center for Biological Research, Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
- Correspondence: (E.G.V.); (E.A.T.)
| | - Egor A. Turovsky
- Federal Research Center “Pushchino Scientific Center for Biological Research, Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
- Correspondence: (E.G.V.); (E.A.T.)
| | - Valentina A. Babenko
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.A.B.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.A.B.); (E.Y.P.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| |
Collapse
|
39
|
Varlamova EG, Turovsky EA, Blinova EV. Therapeutic Potential and Main Methods of Obtaining Selenium Nanoparticles. Int J Mol Sci 2021; 22:ijms221910808. [PMID: 34639150 PMCID: PMC8509153 DOI: 10.3390/ijms221910808] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023] Open
Abstract
This review presents the latest data on the importance of selenium nanoparticles in human health, their use in medicine, and the main known methods of their production by various methods. In recent years, a multifaceted study of nanoscale complexes in medicine, including selenium nanoparticles, has become very important in view of a number of positive features that make it possible to create new drugs based on them or significantly improve the properties of existing drugs. It is known that selenium is an essential trace element that is part of key antioxidant enzymes. In mammals, there are 25 selenoproteins, in which selenium is a key component of the active site. The important role of selenium in human health has been repeatedly proven by several hundred works in the past few decades; in recent years, the study of selenium nanocomplexes has become the focus of researchers. A large amount of accumulated data requires generalization and systematization in order to improve understanding of the key mechanisms and prospects for the use of selenium nanoparticles in medicine, which is the purpose of this review.
Collapse
Affiliation(s)
- Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
- Correspondence: (E.G.V.); (E.A.T.)
| | - Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
- Correspondence: (E.G.V.); (E.A.T.)
| | - Ekaterina V. Blinova
- Department of Clinical Anatomy and Operative Surgery, Department of Pharmacological Technology and Pharmacology, Sechenov University, 8/1 Trubetzkaya Street, 119991 Moscow, Russia;
| |
Collapse
|
40
|
Silva JC, Vivash L, Malpas CB, Hao Y, McLean C, Chen Z, O'Brien TJ, Jones NC, Kwan P. Low prevalence of amyloid and tau pathology in drug-resistant temporal lobe epilepsy. Epilepsia 2021; 62:3058-3067. [PMID: 34595752 DOI: 10.1111/epi.17086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/05/2021] [Accepted: 09/16/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Cognitive impairment is common in patients with chronic drug-resistant temporal lobe epilepsy (TLE). Hyperphosphorylated tau (pTau) and amyloid-β (Aβ) plaques, pathological hallmarks of Alzheimer disease, have been hypothesized to play a mechanistic role. We investigated Aβ plaques and pTau prevalence in TLE patients who underwent resective surgery and correlated their presence with preoperative psychometric test scores and clinical factors. METHODS Patients were retrospectively selected from the epilepsy surgery register of the Royal Melbourne Hospital, Australia. Sections from the resected temporal lobe were immunostained for pTau and Aβ plaques (antibodies: AT8, 1E8). The presence and severity of pathology were correlated with clinical characteristics, and verbal and visual learning functions as measured by the Verbal Pair Associates (VPA) test and Rey Complex Figure Test. RESULTS Fifty-six patients (55% female) aged 20-68 years (median = 34 years) at surgery were included. Aβ plaques were detected in four patients (7%), all at the moderate level. There was no difference in duration, age at onset of epilepsy, or side of resection between patients with and without Aβ plaques. Sparse pTau was found in two patients (3.5%). Both had moderate Aβ plaques and were >50 years of age. Patients with Aβ plaques had a lower median score for the VPA hard assessment compared to those without (0 vs. 4; p = .02). There was otherwise no correlation between pathology and psychometric test scores. SIGNIFICANCE Aβ plaques and pTau were uncommon in the resected brain tissue of patients who have undergone temporal lobectomy, and did not correlate with clinical characteristics or preoperative psychometric test scores, except for a lower VPA median score in patients with Aβ plaques. Therefore, considering the low prevalence of Aβ plaques and pTau herein observed, it is unlikely that cognitive impairment in TLE is driven by the same mechanisms as in Alzheimer disease.
Collapse
Affiliation(s)
- Juliana C Silva
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Lucy Vivash
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Charles B Malpas
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Yong Hao
- Department of Neurology, Renji Hospital, Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Catriona McLean
- Department of Anatomical Pathology, Alfred Health, Melbourne, Victoria, Australia
| | - Zhibin Chen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,School of Public Health & Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Nigel C Jones
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
41
|
Upaganlawar AB, Wankhede NL, Kale MB, Umare MD, Sehgal A, Singh S, Bhatia S, Al-Harrasi A, Najda A, Nurzyńska-Wierdak R, Bungau S, Behl T. Interweaving epilepsy and neurodegeneration: Vitamin E as a treatment approach. Biomed Pharmacother 2021; 143:112146. [PMID: 34507113 DOI: 10.1016/j.biopha.2021.112146] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
Epilepsy is the most common neurological disorder, affecting nearly 50 million people worldwide. The condition can be manifested either due to genetic predisposition or acquired from acute insult which leads to alteration of cellular and molecular mechanisms. Evaluating the latest and the current knowledge in regard to the mechanisms underlying molecular and cellular alteration, hyperexcitability is a consequence of an imbalanced state wherein enhance excitatory glutamatergic and reduced inhibitory GABAergic signaling is considered to be accountable for seizures associated damage. However, neurodegeneration contributing to epileptogenesis has become increasingly appreciated. The components at the helm of neurodegenerative alterations during epileptogenesis include GABAergic neuronal and receptor changes, neuroinflammation, alteration in axonal transport, oxidative stress, excitotoxicity, and other cellular as well as functional changes. Targeting neurodegeneration with vitamin E as an antioxidant, anti-inflammatory and neuroprotective may prove to be one of the therapeutic approaches useful in managing epilepsy. In this review, we discuss and converse about the seizure-induced episodes as a link for the development of neurodegenerative and pathological consequences of epilepsy. We also put forth a summary of the potential intervention with vitamin E therapy in the management of epilepsy.
Collapse
Affiliation(s)
- Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India
| | - Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Mohit D Umare
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences, Lublin, Poland.
| | | | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Romania
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
42
|
Huibregtse ME, Bazarian JJ, Shultz SR, Kawata K. The biological significance and clinical utility of emerging blood biomarkers for traumatic brain injury. Neurosci Biobehav Rev 2021; 130:433-447. [PMID: 34474049 DOI: 10.1016/j.neubiorev.2021.08.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/17/2022]
Abstract
HUIBREGTSE, M.E, Bazarian, J.J., Shultz, S.R., and Kawata K. The biological significance and clinical utility of emerging blood biomarkers for traumatic brain injury. NEUROSCI BIOBEHAV REV XX (130) 433-447, 2021.- Blood biomarkers can serve as objective measures to gauge traumatic brain injury (TBI) severity, identify patients at risk for adverse outcomes, and predict recovery duration, yet the clinical use of blood biomarkers for TBI is limited to a select few and only to rule out the need for CT scanning. The biomarkers often examined in neurotrauma research are proteomic markers, which can reflect a range of pathological processes such as cellular damage, astrogliosis, or neuroinflammation. However, proteomic blood biomarkers are vulnerable to degradation, resulting in short half-lives. Emerging biomarkers for TBI may reflect the complex genetic and neurometabolic alterations that occur following TBI that are not captured by proteomics, are less vulnerable to degradation, and are comprised of microRNA, extracellular vesicles, and neurometabolites. Therefore, this review aims to summarize our understanding of how biomarkers for brain injury escape the brain parenchymal space and appear in the bloodstream, update recent research findings in several proteomic biomarkers, and characterize biological significance and examine clinical utility of microRNA, extracellular vesicles, and neurometabolites.
Collapse
Affiliation(s)
- Megan E Huibregtse
- Department of Kinesiology, School of Public Health, Indiana University, 1025 E 7th St, Suite 112, Bloomington, IN 47405, USA.
| | - Jeffrey J Bazarian
- Department of Emergency Medicine, University of Rochester Medical Center, 200 E River Rd, Rochester, NY 14623, USA.
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, The Alfred Centre, Level 6, 99 Commercial Road, Melbourne, VIC 3004, Australia; Department of Medicine, University of Melbourne, Clinical Sciences Building, 4th Floor, 300 Grattan St, Parkville, VIC 3050, Australia.
| | - Keisuke Kawata
- Department of Kinesiology, School of Public Health, Indiana University, 1025 E 7th St, Suite 112, Bloomington, IN 47405, USA; Program in Neuroscience, College of Arts and Sciences, Indiana University, 1101 E 10th St, Bloomington, IN 47405, USA.
| |
Collapse
|
43
|
Bomasang-Layno E, Bronsther R. Diagnosis and Treatment of Alzheimer's Disease:: An Update. Dela J Public Health 2021; 7:74-85. [PMID: 34604768 PMCID: PMC8482985 DOI: 10.32481/djph.2021.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
44
|
McDonald SJ, Sharkey JM, Sun M, Kaukas LM, Shultz SR, Turner RJ, Leonard AV, Brady RD, Corrigan F. Beyond the Brain: Peripheral Interactions after Traumatic Brain Injury. J Neurotrauma 2021; 37:770-781. [PMID: 32041478 DOI: 10.1089/neu.2019.6885] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability, and there are currently no pharmacological treatments known to improve patient outcomes. Unquestionably, contributing toward a lack of effective treatments is the highly complex and heterogenous nature of TBI. In this review, we highlight the recent surge of research that has demonstrated various central interactions with the periphery as a potential major contributor toward this heterogeneity and, in particular, the breadth of research from Australia. We describe the growing evidence of how extracranial factors, such as polytrauma and infection, can significantly alter TBI neuropathology. In addition, we highlight how dysregulation of the autonomic nervous system and the systemic inflammatory response induced by TBI can have profound pathophysiological effects on peripheral organs, such as the heart, lung, gastrointestinal tract, liver, kidney, spleen, and bone. Collectively, this review firmly establishes TBI as a systemic condition. Further, the central and peripheral interactions that can occur after TBI must be further explored and accounted for in the ongoing search for effective treatments.
Collapse
Affiliation(s)
- Stuart J McDonald
- Department Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Jessica M Sharkey
- Discipline of Anatomy and Pathology, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Mujun Sun
- Department Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Lola M Kaukas
- School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sandy R Shultz
- Department Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Renee J Turner
- Discipline of Anatomy and Pathology, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Anna V Leonard
- Discipline of Anatomy and Pathology, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Rhys D Brady
- Department Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Frances Corrigan
- School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
45
|
Yu TW, Lane HY, Lin CH. Novel Therapeutic Approaches for Alzheimer's Disease: An Updated Review. Int J Mol Sci 2021; 22:8208. [PMID: 34360973 PMCID: PMC8348485 DOI: 10.3390/ijms22158208] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and accounts for most cases of dementia. The prevalence of AD has increased in the current rapidly aging society and contributes to a heavy burden on families and society. Despite the profound impact of AD, current treatments are unable to achieve satisfactory therapeutic effects or stop the progression of the disease. Finding novel treatments for AD has become urgent. In this paper, we reviewed novel therapeutic approaches in five categories: anti-amyloid therapy, anti-tau therapy, anti-neuroinflammatory therapy, neuroprotective agents including N-methyl-D-aspartate (NMDA) receptor modulators, and brain stimulation. The trend of therapeutic development is shifting from a single pathological target to a more complex mechanism, such as the neuroinflammatory and neurodegenerative processes. While drug repositioning may accelerate pharmacological development, non-pharmacological interventions, especially repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), also have the potential for clinical application. In the future, it is possible for physicians to choose appropriate interventions individually on the basis of precision medicine.
Collapse
Affiliation(s)
- Tien-Wei Yu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Hsien-Yuan Lane
- Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung 41354, Taiwan
| | - Chieh-Hsin Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
46
|
Brady RD, Bird S, Sun M, Yamakawa GR, Major BP, Mychasiuk R, O'Brien TJ, McDonald SJ, Shultz SR. Activation of the Protein Kinase R-Like Endoplasmic Reticulum Kinase (PERK) Pathway of the Unfolded Protein Response after Experimental Traumatic Brain Injury and Treatment with a PERK Inhibitor. Neurotrauma Rep 2021; 2:330-342. [PMID: 34318301 PMCID: PMC8310749 DOI: 10.1089/neur.2021.0001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Neurodegeneration after traumatic brain injury (TBI) is increasingly recognized as a key factor contributing to poor chronic outcomes. Activation (i.e., phosphorylation) of the protein kinase R-like endoplasmic reticulum kinase (PERK) pathway has been implicated in neurodegenerative conditions with pathological similarities to TBI and may be a potential target to improve TBI outcomes. Here, we aimed to determine whether a moderate TBI would induce activation of the PERK pathway and whether treatment with the PERK inhibitor, GSK2606414, would improve TBI recovery. Male mice were administered a lateral fluid percussion injury (FPI) or sham injury and were euthanized at either 2 h, 24 h, or 1 week post-injury (n = 5 per injury group and time point) to assess changes in the PERK pathway. In the injured cortex, there was increased phosphorylated-PERK at 2 h post-FPI and increased phosphorylation of eukaryotic translation initiation factor α at 24 h post-FPI. We next examined the effect of acute treatment with GSK2606414 on pathological and behavioral outcomes at 4 weeks post-injury. Thus, there were a total of four groups: sham + VEH (n = 9); sham + GSK4606414 (n = 10); FPI + VEH (n = 9); and FPI + GSK2606414 (n = 9). GSK2606414 (50 mg/kg) or vehicle treatment was delivered by oral gavage beginning at 30 min post-injury, followed by two further treatments at 12-h increments. There were no significant effects of GSK2606414 on any of the outcomes assessed, which could be attributable to several reasons. For example, activation of PERK may not be a significant contributor to the neurological consequences 4 weeks post-FPI in mice. Further research is required to elucidate the role of the PERK pathway in TBI and whether interventions that target this pathway are beneficial.
Collapse
Affiliation(s)
- Rhys D Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Stefanie Bird
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Mujun Sun
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Brendan P Major
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
47
|
Contrast enhanced magnetic resonance imaging highlights neurovasculature changes following experimental traumatic brain injury in the rat. Sci Rep 2020; 10:21252. [PMID: 33277513 PMCID: PMC7718275 DOI: 10.1038/s41598-020-77975-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 11/10/2020] [Indexed: 11/08/2022] Open
Abstract
Neurovascular injury has been proposed as a universal pathological hallmark of traumatic brain injury (TBI) with molecular markers of angiogenesis and endothelial function associated with injury severity and morbidity. Sex differences in the neurovasculature response post-TBI may contribute to the differences seen in how males and females respond to injury. Steady-state contrast enhanced magnetic resonance imaging (SSCE-MRI) can be used to non-invasively assess the neurovasculature and may be a useful tool in understanding and predicting outcomes post-TBI. Here we used SSCE-MRI to investigate the neurovasculature of male and female rats at 48 h after an experimental TBI, and how these changes related to neuromotor function at 1-week post-TBI. In addition to TBI induced changes, we found that female rats had greater vessel density, greater cerebral blood volumes and performed better on a neuromotor task than their male counterparts. These results suggest that acute post-TBI cerebrovascular function is worse in males, and that this may contribute to the greater functional deficits observed post-injury. Furthermore, these results highlight the potential of SSCE-MRI to provide insights into the cerebral microvasculature post-TBI. Future studies, incorporating both males and females, are warranted to investigate the evolution of these changes and the underlying mechanisms.
Collapse
|
48
|
Vivash L, Malpas CB, Churilov L, Walterfang M, Brodtmann A, Piguet O, Ahmed RM, Bush AI, Hovens CM, Kalincik T, Darby D, Velakoulis D, O'Brien TJ. A study protocol for a phase II randomised, double-blind, placebo-controlled trial of sodium selenate as a disease-modifying treatment for behavioural variant frontotemporal dementia. BMJ Open 2020; 10:e040100. [PMID: 33199422 PMCID: PMC7670941 DOI: 10.1136/bmjopen-2020-040100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Behavioural variant frontotemporal dementia (bvFTD) is a neurodegenerative disorder often neuropathologically associated with the accumulation of abnormally hyperphosphorylated tau, for which there is currently no disease-modifying treatment. Previous work by our group has shown sodium selenate upregulates the activity of protein phosphatase 2 in the brain, increasing the rate of tau dephosphorylation. The objective of this study is to evaluate the efficacy and safety of sodium selenate as a disease-modifying treatment for bvFTD. METHODS AND ANALYSIS This will be a multisite, phase IIb, double-blind placebo-controlled trial of sodium selenate. One hundred and twenty participants will be enrolled across 4 Australian academic hospitals. Following screening eligible participants will be randomised (1:1) to sodium selenate (15 mg three times a day) or placebo for 52 weeks. Participants will have regular safety and efficacy visits throughout the study period. The primary study outcome will be percentage brain volume change (PBVC) as measured on MRI over 52 weeks of treatment. This will be analysed with a general linear model (analysis of covariance (ANCOVA)) with the PBVC as an output, the treatment as an input and the baseline brain volume as covariate for adjustment purposes. Secondary outcomes include safety and tolerability measures, and efficacy measures; change in cerebrospinal fluid total-tau, Addenbrooke's Cognitive Examination-III and Cambridge Behavioural Inventory-Revised scores over the 52 weeks of treatment. These will also be analysed with ANCOVA where the corresponding baseline measure will be incorporated in the model. Additional exploratory outcomes will include other imaging, cognitive and biospecimen analyses. ETHICS AND DISSEMINATION The study was approved by the Human Research and Ethics Committee of the lead site as part of the Australian Multisite Ethics approval system. The results of the study will be presented at national and international conferences and published in peer-reviewed journals. TRIAL REGISTRATION NUMBER ACTRN12620000236998 .
Collapse
Affiliation(s)
- Lucy Vivash
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
- Departments of Medicine and Radiology, University of Melbourne, Parkville, Victoria, Australia
| | - Charles B Malpas
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
- CORe, Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Leonid Churilov
- Departments of Medicine and Radiology, University of Melbourne, Parkville, Victoria, Australia
| | - Mark Walterfang
- Department of Neuropsychiatry, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Melbourne Neuropsychiatry Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Amy Brodtmann
- Department of Neurology, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
- Florey Institute for Neuroscience and Mental Health, Melbourne, Victoria, Australia
- Eastern Cognitive Disorders Clinic, Monash University, Box Hill, Victoria, Australia
- Melbourne Dementia Research Centre, University of Melbourne, Parkville, VIC, Australia
| | - Olivier Piguet
- School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Rebekah M Ahmed
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- Memory and Cognition Clinic, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Ashley I Bush
- Florey Institute for Neuroscience and Mental Health, Melbourne, Victoria, Australia
- Melbourne Dementia Research Centre, University of Melbourne, Parkville, VIC, Australia
| | - Christopher M Hovens
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - T Kalincik
- Department of Neurology, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
- CORe, Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - David Darby
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
- Departments of Medicine and Radiology, University of Melbourne, Parkville, Victoria, Australia
- Eastern Cognitive Disorders Clinic, Monash University, Box Hill, Victoria, Australia
| | - Dennis Velakoulis
- Department of Neuropsychiatry, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Melbourne Neuropsychiatry Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
- Departments of Medicine and Radiology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
49
|
Shultz SR, McDonald SJ, Corrigan F, Semple BD, Salberg S, Zamani A, Jones NC, Mychasiuk R. Clinical Relevance of Behavior Testing in Animal Models of Traumatic Brain Injury. J Neurotrauma 2020; 37:2381-2400. [DOI: 10.1089/neu.2018.6149] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sandy R. Shultz
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Stuart J. McDonald
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Frances Corrigan
- Department of Anatomy, University of South Australia, Adelaide, South Australia, Australia
| | - Bridgette D. Semple
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Sabrina Salberg
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Akram Zamani
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Nigel C. Jones
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
50
|
An update on the association between traumatic brain injury and Alzheimer's disease: Focus on Tau pathology and synaptic dysfunction. Neurosci Biobehav Rev 2020; 120:372-386. [PMID: 33171143 DOI: 10.1016/j.neubiorev.2020.10.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
L.P. Li, J.W. Liang and H.J. Fu. An update on the association between traumatic brain injury and Alzheimer's disease: Focus on Tau pathology and synaptic dysfunction. NEUROSCI BIOBEHAV REVXXX-XXX,2020.-Traumatic brain injury (TBI) and Alzheimer's disease (AD) are devastating conditions that have long-term consequences on individual's cognitive functions. Although TBI has been considered a risk factor for the development of AD, the link between TBI and AD is still in debate. Aggregation of hyperphosphorylated tau and intercorrelated synaptic dysfunction, two key pathological elements in both TBI and AD, play a pivotal role in mediating neurodegeneration and cognitive deficits, providing a mechanistic link between these two diseases. In the first part of this review, we analyze the experimental literatures on tau pathology in various TBI models and review the distribution, biological features and mechanisms of tau pathology following TBI with implications in AD pathogenesis. In the second part, we review evidences of TBI-mediated structural and functional impairments in synapses, with a focus on the overlapped mechanisms underlying synaptic abnormalities in both TBI and AD. Finally, future perspectives are proposed for uncovering the complex relationship between TBI and neurodegeneration, and developing potential therapeutic avenues for alleviating cognitive deficits after TBI.
Collapse
|