1
|
Scaravilli A, Negroni D, Senatore C, Santorelli FM, Cocozza S. Current and future applications of brain magnetic resonance imaging in ARSACS. CEREBELLUM (LONDON, ENGLAND) 2025; 24:91. [PMID: 40304869 PMCID: PMC12043731 DOI: 10.1007/s12311-025-01842-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/17/2025] [Indexed: 05/02/2025]
Abstract
Magnetic Resonance Imaging (MRI) is a tool with an unquestionable role in the study of neurodegenerative disorders, both for diagnostic purposes and for its ability of providing imaging-derived biomarkers with a growing central role as reliable outcomes in clinical trials. This is even more relevant when dealing with rare disorders such as the Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay (ARSACS), in which the search of diagnostic and prognostic biomarker is crucial. Due to the rarity of this condition, a comprehensive knowledge of MRI signs observed in ARSACS is lacking. Furthermore, many domains remain still unexplored in ARSACS, especially with reference to the application of advanced imaging techniques that could shed light on the pathophysiological mechanisms of brain damage in this disorder. In this review, after a brief introduction on the major conventional and advanced MRI techniques that can used for diagnostic and research purposes, we present current neuroradiological knowledge in ARSACS. Having discussed strength and weak points of conventional and advanced imaging findings, we also suggest possible future research in this neurologically complex clinical condition.
Collapse
Affiliation(s)
- Alessandra Scaravilli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, Naples, 80131, Italy
| | - Davide Negroni
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, Naples, 80131, Italy
| | - Claudio Senatore
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, Naples, 80131, Italy
| | | | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, Naples, 80131, Italy.
| |
Collapse
|
2
|
Vaccarino F, Quattrocchi CC, Parillo M. Susceptibility-Weighted Imaging (SWI): Technical Aspects and Applications in Brain MRI for Neurodegenerative Disorders. Bioengineering (Basel) 2025; 12:473. [PMID: 40428092 PMCID: PMC12109288 DOI: 10.3390/bioengineering12050473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/26/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) sequence sensitive to substances that alter the local magnetic field, such as calcium and iron, allowing phase information to distinguish between them. SWI is a 3D gradient-echo sequence with high spatial resolution that leverages both phase and magnitude effects. The interaction of paramagnetic (such as hemosiderin and deoxyhemoglobin), diamagnetic (including calcifications and minerals), and ferromagnetic substances with the local magnetic field distorts it, leading to signal changes. Neurodegenerative diseases are typically characterized by the progressive loss of neurons and their supporting cells within the neurovascular unit. This cellular decline is associated with a corresponding deterioration of both cognitive and motor abilities. Many neurodegenerative disorders are associated with increased iron accumulation or microhemorrhages in various brain regions, making SWI a valuable diagnostic tool in clinical practice. Suggestive SWI findings are known in Parkinson's disease, Lewy body dementia, atypical parkinsonian syndromes, multiple sclerosis, cerebral amyloid angiopathy, amyotrophic lateral sclerosis, hereditary ataxias, Huntington's disease, neurodegeneration with brain iron accumulation, and chronic traumatic encephalopathy. This review will assist radiologists in understanding the technical framework of SWI sequences for a correct interpretation of currently established MRI findings and for its potential future clinical applications.
Collapse
Affiliation(s)
- Federica Vaccarino
- Radiology, Multizonal Unit of Rovereto and Arco, APSS Provincia Autonoma Di Trento, 38123 Trento, Italy; (C.C.Q.); (M.P.)
- Research Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Carlo Cosimo Quattrocchi
- Radiology, Multizonal Unit of Rovereto and Arco, APSS Provincia Autonoma Di Trento, 38123 Trento, Italy; (C.C.Q.); (M.P.)
- Centre for Medical Sciences-CISMed, University of Trento, 38122 Trento, Italy
| | - Marco Parillo
- Radiology, Multizonal Unit of Rovereto and Arco, APSS Provincia Autonoma Di Trento, 38123 Trento, Italy; (C.C.Q.); (M.P.)
| |
Collapse
|
3
|
Joseph DJ, Mercado-Ayon E, Flatley L, Viaene AN, Hordeaux J, Marsh ED, Lynch DR. Functional Characterization of Parallel Fiber-Purkinje Cell Synapses in Two Friedreich's Ataxia Mouse Models. CEREBELLUM (LONDON, ENGLAND) 2025; 24:42. [PMID: 39907933 PMCID: PMC11799031 DOI: 10.1007/s12311-025-01796-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Friedreich ataxia (FRDA) is an autosomal recessive disorder caused by GAA expansions in the FXN gene, which codes for the protein frataxin (FXN). These mutations reduce FXN expression, leading to mitochondrial dysfunction and multisystemic disease. Accumulating evidence suggests that neuronal dysfunction, rather than neuronal death, may drive the neurological phenotypes of FRDA, but the mechanisms underlying such neurological phenotypes remain unclear. To investigate the neural circuit basis of this dysfunction, we employed field recordings to measure Purkinje cell (PC) function and synaptic properties along with western blotting and immunohistochemistry to determine their density and structure in two established FRDA mouse models, the shRNA-frataxin (FRDAkd) and the frataxin knock in-knockout (KIKO) mice. Western blotting demonstrated subtle changes in mitochondrial proteins and only a modest reduction in the density of calbindin positive cells PCs in the cerebellar cortex of the FRDAkd mice, with no change in the density of PCs in the KIKO mice. Though PC density differed slightly in the two models, field recordings of parallel fiber-PC synapses in the molecular layer demonstrated concordant hypo-excitability of basal synaptic transmission and impairments of long-term plasticity using induction protocols associated with both potentiation and depression of synaptic strength. These results indicate that synaptic instability might be a common feature in FRDA mouse models.
Collapse
Affiliation(s)
- Donald J Joseph
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elizabeth Mercado-Ayon
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Liam Flatley
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Angela N Viaene
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Juliette Hordeaux
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Eric D Marsh
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David R Lynch
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Pediatrics and Neurology, Perelman School of Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Scaravilli A, Tranfa M, Pontillo G, Brais B, De Michele G, La Piana R, Saccà F, Santorelli FM, Synofzik M, Brunetti A, Cocozza S. CHARON: An Imaging-Based Diagnostic Algorithm to Navigate Through the Sea of Hereditary Degenerative Ataxias. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2122-2129. [PMID: 38436911 PMCID: PMC11489197 DOI: 10.1007/s12311-024-01677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
The complexity in diagnosing hereditary degenerative ataxias lies not only in their rarity, but also in the variety of different genetic conditions that can determine sometimes similar and overlapping clinical findings. In this light, Magnetic Resonance Imaging (MRI) plays a key role in the evaluation of these conditions, being a fundamental diagnostic tool needed not only to exclude other causes determining the observed clinical phenotype, but also to proper guide to an adequate genetic testing. Here, we propose an MRI-based diagnostic algorithm named CHARON (Characterization of Hereditary Ataxias Relying On Neuroimaging), to help in disentangling among the numerous, and apparently very similar, hereditary degenerative ataxias. Being conceived from a neuroradiological standpoint, it is based primarily on an accurate evaluation of the observed MRI findings, with the first and most important being the pattern of cerebellar atrophy. Along with the evaluation of the presence, or absence, of additional signal changes and/or supratentorial involvement, CHARON allows for the identification of a small groups of ataxias sharing similar imaging features. The integration of additional MRI findings, demographic, clinical and laboratory data allow then for the identification of typical, and in some cases pathognomonic, phenotypes of hereditary ataxias.
Collapse
Affiliation(s)
- Alessandra Scaravilli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Mario Tranfa
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, Montreal, Canada
| | - Giovanna De Michele
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Roberta La Piana
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, Montreal, Canada
| | - Francesco Saccà
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | | | - Matthis Synofzik
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Division Translational Genomics of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
5
|
Benarroch E. What Is the Role of the Dentate Nucleus in Normal and Abnormal Cerebellar Function? Neurology 2024; 103:e209636. [PMID: 38954796 DOI: 10.1212/wnl.0000000000209636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
|
6
|
Asemi-Rad A, Ghiyamihoor F, Consalez GG, Marzban H. Ablation of Projection Glutamatergic Neurons in the Lateral Cerebellar Nuclei Alters Motor Coordination in Vglut2-Cre+ Mice. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1313-1320. [PMID: 37289359 DOI: 10.1007/s12311-023-01575-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
Cerebellar nuclei (CN) constitute the sole cerebellar output to the rest of the central nervous system and play a central role in cerebellar circuits. Accumulating evidence from both human genetics and animal studies point to a crucial role for CN connectivity in neurological diseases, including several types of ataxia. However, because of the compact and restricted topography and close functional connection between the CN and the cerebellar cortex, identifying cerebellar deficits exclusively linked to CN is challenging. In this study, we have experimentally ablated large projection glutamatergic neurons of the lateral CN and evaluated the impact of this selective manipulation on motor coordination in mice. To this end, through stereotaxic surgery, we injected the lateral CN of Vglut2-Cre+ mice with an adeno-associated virus (AAV) encoding a Cre-dependent diphtheria toxin receptor (DTR), followed by an intraperitoneal injection of diphtheria toxin (DT) to ablate the glutamatergic neurons of the lateral nucleus. Double immunostaining of cerebellar sections with anti-SMI32 and -GFP antibodies revealed GFP expression and provided evidence of SMI32+ neuron degeneration at the site of AAV injection in the lateral nucleus of Vglut2-Cre+ mice. No changes were observed in Vglut2-Cre negative mice. Analysis of motor coordination by rotarod test indicated that the latency to fall was significantly different before and after AAV/DT injection in the Vglut2-Cre+ group. Elapsed time and number of steps in the beam walking test were significantly higher in AAV/DT injected Vglut2-Cre+ AAV/DT mice compared to controls. We demonstrate for the first time that partial degeneration of glutamatergic neurons in the lateral CN is sufficient to induce an ataxic phenotype.
Collapse
Affiliation(s)
- Azam Asemi-Rad
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health science, University of Manitoba, Winnipeg, MB, Canada
- The Children's Hospital Research Institute of Manitoba (CHRIM), Rady Faculty of Health science, University of Manitoba, Winnipeg, MB, Canada
| | - Farshid Ghiyamihoor
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health science, University of Manitoba, Winnipeg, MB, Canada
- The Children's Hospital Research Institute of Manitoba (CHRIM), Rady Faculty of Health science, University of Manitoba, Winnipeg, MB, Canada
| | - G Giacomo Consalez
- Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health science, University of Manitoba, Winnipeg, MB, Canada.
- The Children's Hospital Research Institute of Manitoba (CHRIM), Rady Faculty of Health science, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
7
|
Wang X, Chen H, Wen R, Ou P, Huang Y, Deng L, Shi L, Chen W, Chen H, Wang J, He C, Liu C. Exploring functional and structural connectivity disruptions in spinocerebellar ataxia type 3: Insights from gradient analysis. CNS Neurosci Ther 2024; 30:e14842. [PMID: 39014518 PMCID: PMC11251871 DOI: 10.1111/cns.14842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/30/2024] [Accepted: 06/23/2024] [Indexed: 07/18/2024] Open
Abstract
AIMS Spinocerebellar Ataxia Type 3 (SCA3) is a rare genetic ataxia that impacts the entire brain and is characterized as a neurodegenerative disorder affecting the neural network. This study explores how alterations in the functional hierarchy, connectivity, and structural changes within specific brain regions significantly contribute to the heterogeneity of symptom manifestations in patients with SCA3. METHODS We prospectively recruited 51 patients with SCA3 and 59 age-and sex-matched healthy controls. All participants underwent comprehensive multimodal neuroimaging and clinical assessments. In SCA3 patients, an innovative approach utilizing gradients in resting-state functional connectivity (FC) was employed to examine atypical patterns of hierarchical processing topology from sensorimotor to supramodal regions in the cerebellum and cerebrum. Coupling analyses of abnormal FC and structural connectivity among regions of interest (ROIs) in the brain were also performed to characterize connectivity alterations. Additionally, relationships between quantitative ROI values and clinical variables were explored. RESULTS Patients with SCA3 exhibited either compression or expansion within the primary sensorimotor-to-supramodal gradient through four distinct calculation methods, along with disruptions in FC and structural connectivity coupling. A comprehensive correlation was identified between the altered gradients and the clinical manifestations observed in patients. Notably, altered fractional anisotropy values were not significantly correlated with clinical variables. CONCLUSION Abnormal gradients and connectivity in the cerebellar and cerebral cortices in SCA3 patients may contribute to disrupted motor-to-supramodal functions. Moreover, these findings support the potential utility of FCG analysis as a biomarker for diagnosing SCA3 and assessing treatment efficacy.
Collapse
Affiliation(s)
- Xingang Wang
- Department of Radiology, 7T Magnetic Resonance Translational Medicine Research Center, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Hui Chen
- Department of Radiology, 7T Magnetic Resonance Translational Medicine Research Center, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Ru Wen
- Department of Radiology, 7T Magnetic Resonance Translational Medicine Research Center, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Peiling Ou
- Department of Radiology, 7T Magnetic Resonance Translational Medicine Research Center, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Yonghua Huang
- Department of Radiology, 7T Magnetic Resonance Translational Medicine Research Center, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Lihua Deng
- Department of Radiology, 7T Magnetic Resonance Translational Medicine Research Center, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Linfeng Shi
- Department of Radiology, 7T Magnetic Resonance Translational Medicine Research Center, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Wei Chen
- MR Research Collaboration TeamSiemens Healthineers Ltd.WuhanChina
| | - Huafu Chen
- Department of Radiology, 7T Magnetic Resonance Translational Medicine Research Center, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
- Biomedical EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Jian Wang
- Department of Radiology, 7T Magnetic Resonance Translational Medicine Research Center, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Changchun He
- College of Blockchain IndustryChengdu University of Information TechnologyChengduChina
| | - Chen Liu
- Department of Radiology, 7T Magnetic Resonance Translational Medicine Research Center, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| |
Collapse
|
8
|
Harding IH, Nur Karim MI, Selvadurai LP, Corben LA, Delatycki MB, Monti S, Saccà F, Georgiou-Karistianis N, Cocozza S, Egan GF. Localized Changes in Dentate Nucleus Shape and Magnetic Susceptibility in Friedreich Ataxia. Mov Disord 2024; 39:1109-1118. [PMID: 38644761 DOI: 10.1002/mds.29816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/07/2024] [Accepted: 04/01/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND The dentate nuclei of the cerebellum are key sites of neuropathology in Friedreich ataxia (FRDA). Reduced dentate nucleus volume and increased mean magnetic susceptibility, a proxy of iron concentration, have been reported by magnetic resonance imaging studies in people with FRDA. Here, we investigate whether these changes are regionally heterogeneous. METHODS Quantitative susceptibility mapping data were acquired from 49 people with FRDA and 46 healthy controls. The dentate nuclei were manually segmented and analyzed using three dimensional vertex-based shape modeling and voxel-based assessments to identify regional changes in morphometry and susceptibility, respectively. RESULTS Individuals with FRDA, relative to healthy controls, showed significant bilateral surface contraction most strongly at the rostral and caudal boundaries of the dentate nuclei. The magnitude of this surface contraction correlated with disease duration, and to a lesser extent, ataxia severity. Significantly greater susceptibility was also evident in the FRDA cohort relative to controls, but was instead localized to bilateral dorsomedial areas, and also correlated with disease duration and ataxia severity. CONCLUSIONS Changes in the structure of the dentate nuclei in FRDA are not spatially uniform. Atrophy is greatest in areas with high gray matter density, whereas increases in susceptibility-reflecting iron concentration, demyelination, and/or gliosis-predominate in the medial white matter. These findings converge with established histological reports and indicate that regional measures of dentate nucleus substructure are more sensitive measures of disease expression than full-structure averages. Biomarker development and therapeutic strategies that directly target the dentate nuclei, such as gene therapies, may be optimized by targeting these areas of maximal pathology. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ian H Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Muhammad Ikhsan Nur Karim
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Louisa P Selvadurai
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Louise A Corben
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, Australia
- Department of Pediatrics, University of Melbourne, Parkville, Australia
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Martin B Delatycki
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, Australia
- Department of Pediatrics, University of Melbourne, Parkville, Australia
| | - Serena Monti
- Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy
| | - Francesco Saccà
- Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Nellie Georgiou-Karistianis
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Gary F Egan
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
| |
Collapse
|
9
|
Cocozza S, Bosticardo S, Battocchio M, Corben L, Delatycki M, Egan G, Georgiou‐Karistianis N, Monti S, Palma G, Pane C, Saccà F, Schiavi S, Selvadurai L, Tranfa M, Daducci A, Brunetti A, Harding IH. Gradient of microstructural damage along the dentato-thalamo-cortical tract in Friedreich ataxia. Ann Clin Transl Neurol 2024; 11:1691-1702. [PMID: 38952134 PMCID: PMC11251475 DOI: 10.1002/acn3.52048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/29/2024] [Indexed: 07/03/2024] Open
Abstract
OBJECTIVE The dentato-thalamo-cortical tract (DTT) is the main cerebellar efferent pathway. Degeneration of the DTT is a core feature of Friedreich ataxia (FRDA). However, it remains unclear whether DTT disruption is spatially specific, with some segments being more impacted than others. This study aimed to investigate microstructural integrity along the DTT in FRDA using a profilometry diffusion MRI (dMRI) approach. METHODS MRI data from 45 individuals with FRDA (mean age: 33.2 ± 13.2, Male/Female: 26/19) and 37 healthy controls (mean age: 36.5 ± 12.7, Male/Female:18/19) were included in this cross-sectional multicenter study. A profilometry analysis was performed on dMRI data by first using tractography to define the DTT as the white matter pathway connecting the dentate nucleus to the contralateral motor cortex. The tract was then divided into 100 segments, and dMRI metrics of microstructural integrity (fractional anisotropy, mean diffusivity and radial diffusivity) at each segment were compared between groups. The process was replicated on the arcuate fasciculus for comparison. RESULTS Across all diffusion metrics, the region of the DTT connecting the dentate nucleus and thalamus was more impacted in FRDA than downstream cerebral sections from the thalamus to the cortex. The arcuate fasciculus was minimally impacted. INTERPRETATION Our study further expands the current knowledge about brain involvement in FRDA, showing that microstructural abnormalities within the DTT are weighted to early segments of the tract (i.e., the superior cerebellar peduncle). These findings are consistent with the hypothesis of DTT undergoing anterograde degeneration arising from the dentate nuclei and progressing to the primary motor cortex.
Collapse
Affiliation(s)
- Sirio Cocozza
- Department of Advanced Biomedical SciencesUniversity of Naples “Federico II”NaplesItaly
| | - Sara Bosticardo
- Department of Computer Science, Diffusion Imaging and Connectivity Estimation (DICE) LabUniversity of VeronaVeronaItaly
| | - Matteo Battocchio
- Department of Computer Science, Diffusion Imaging and Connectivity Estimation (DICE) LabUniversity of VeronaVeronaItaly
| | - Louise Corben
- Bruce Lefroy Centre for Genetic Health ResearchMurdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PediatricsUniversity of MelbourneParkvilleVictoriaAustralia
- School of Psychological Sciences, The Turner Institute for Brain and Mental HealthMonash UniversityClaytonVictoriaAustralia
| | - Martin Delatycki
- Bruce Lefroy Centre for Genetic Health ResearchMurdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PediatricsUniversity of MelbourneParkvilleVictoriaAustralia
- School of Psychological Sciences, The Turner Institute for Brain and Mental HealthMonash UniversityClaytonVictoriaAustralia
| | - Gary Egan
- Turner Institute for Brain and Mental Health, School of Psychological SciencesMonash UniversityClaytonVictoriaAustralia
- Monash Biomedical ImagingMonash UniversityClaytonVictoriaAustralia
| | - Nellie Georgiou‐Karistianis
- School of Psychological Sciences, The Turner Institute for Brain and Mental HealthMonash UniversityClaytonVictoriaAustralia
| | - Serena Monti
- Institute of Biostructures and BioimagingNational Research CouncilNapoliItaly
| | - Giuseppe Palma
- Institute of NanotechnologyNational Research CouncilLecceItaly
| | - Chiara Pane
- Department of Neurosciences Reproductive and Odontostomatological SciencesUniversity of Naples “Federico II”NaplesItaly
| | - Francesco Saccà
- Department of Neurosciences Reproductive and Odontostomatological SciencesUniversity of Naples “Federico II”NaplesItaly
| | - Simona Schiavi
- Department of Computer Science, Diffusion Imaging and Connectivity Estimation (DICE) LabUniversity of VeronaVeronaItaly
- ASG Superconductors SpAGenoaItaly
| | - Louisa Selvadurai
- School of Psychological Sciences, The Turner Institute for Brain and Mental HealthMonash UniversityClaytonVictoriaAustralia
| | - Mario Tranfa
- Department of Advanced Biomedical SciencesUniversity of Naples “Federico II”NaplesItaly
| | - Alessandro Daducci
- Department of Computer Science, Diffusion Imaging and Connectivity Estimation (DICE) LabUniversity of VeronaVeronaItaly
| | - Arturo Brunetti
- Department of Advanced Biomedical SciencesUniversity of Naples “Federico II”NaplesItaly
| | - Ian H. Harding
- Monash Biomedical ImagingMonash UniversityClaytonVictoriaAustralia
- Department of Neuroscience, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
10
|
Konno A, Shinohara Y, Hirai H. Production of Spinocerebellar Ataxia Type 3 Model Mice by Intravenous Injection of AAV-PHP.B Vectors. Int J Mol Sci 2024; 25:7205. [PMID: 39000316 PMCID: PMC11241190 DOI: 10.3390/ijms25137205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
We aimed to produce a mouse model of spinocerebellar ataxia type 3 (SCA3) using the mouse blood-brain barrier (BBB)-penetrating adeno-associated virus (AAV)-PHP.B. Four-to-five-week-old C57BL/6 mice received injections of high-dose (2.0 × 1011 vg/mouse) or low-dose (5.0 × 1010 vg/mouse) AAV-PHP.B encoding a SCA3 causative gene containing abnormally long 89 CAG repeats [ATXN3(Q89)] under the control of the ubiquitous chicken β-actin hybrid (CBh) promoter. Control mice received high doses of AAV-PHP.B encoding ATXN3 with non-pathogenic 15 CAG repeats [ATXN3(Q15)] or phosphate-buffered saline (PBS) alone. More than half of the mice injected with high doses of AAV-PHP.B encoding ATXN3(Q89) died within 4 weeks after the injection. No mice in other groups died during the 12-week observation period. Mice injected with low doses of AAV-PHP.B encoding ATXN3(Q89) exhibited progressive motor uncoordination starting 4 weeks and a shorter stride in footprint analysis performed at 12 weeks post-AAV injection. Immunohistochemistry showed thinning of the molecular layer and the formation of nuclear inclusions in Purkinje cells from mice injected with low doses of AAV-PHP.B encoding ATXN3(Q89). Moreover, ATXN3(Q89) expression significantly reduced the number of large projection neurons in the cerebellar nuclei to one third of that observed in mice expressing ATXN3(Q15). This AAV-based approach is superior to conventional methods in that the required number of model mice can be created simply by injecting AAV, and the expression levels of the responsible gene can be adjusted by changing the amount of AAV injected. Moreover, this method may be applied to produce SCA3 models in non-human primates.
Collapse
Affiliation(s)
- Ayumu Konno
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi 371-8511, Gunma, Japan
- Viral Vector Core, Gunma University, Initiative for Advanced Research, Maebashi 371-8511, Gunma, Japan
| | - Yoichiro Shinohara
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi 371-8511, Gunma, Japan
- Department of Ophthalmology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Gunma, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi 371-8511, Gunma, Japan
- Viral Vector Core, Gunma University, Initiative for Advanced Research, Maebashi 371-8511, Gunma, Japan
| |
Collapse
|
11
|
Jao CW, Wu HM, Wang TY, Duan CA, Wang PS, Wu YT. Morphological changes of cerebral gray matter in spinocerebellar ataxia type 3 using fractal dimension analysis. PROGRESS IN BRAIN RESEARCH 2024; 290:1-21. [PMID: 39448107 DOI: 10.1016/bs.pbr.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 10/26/2024]
Abstract
Spinocerebellar ataxia type 3 (SCA3), or Machado-Joseph disease, presents as a cerebellar cognitive affective syndrome (CCAS) and represents the predominant SCA genotype in Taiwan. Beyond cerebellar involvement, SCA3 patients exhibit cerebral atrophy. While prior neurodegenerative disease studies relied on voxel-based morphometry (VBM) for brain atrophy assessment, its qualitative nature limits individual and region-specific evaluations. To address this, we employed fractal dimension (FD) analysis to quantify cortical complexity changes in SCA3 patients. We examined 50 SCA3 patients and 50 age- and sex-matched healthy controls (HC), dividing MRI cerebral gray matter (GM) into 68 auto-anatomical subregions. Using three-dimensional FD analysis, we identified GM atrophy manifestations in SCA3 patients. Results revealed lateral atrophy symptoms in the left frontal, parietal, and occipital lobes, and fewer symptoms in the right hemisphere's parietal and occipital lobes. Focal areas of atrophy included regions previously identified in SCA3 studies, alongside additional regions with decreased FD values. Bilateral postcentral gyrus and inferior parietal gyrus exhibited pronounced atrophy, correlating with Scale for the Assessment and Rating of Ataxia (SARA) scores and disease duration. Notably, the most notable focal areas were the bilateral postcentral gyrus and the left superior temporal gyrus, serving as imaging biomarkers for SCA3. Our study enhances understanding of regional brain atrophy in SCA3, corroborating known clinical features while offering new insights into disease progression.
Collapse
Affiliation(s)
- Chi-Wen Jao
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Research, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Hsiu-Mei Wu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzu-Yun Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Quanta Computer, Taipei, Taiwan
| | - Chien-An Duan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Guishan, Taiwan
| | - Po-Shan Wang
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Neurology, Taipei Municipal Gan-Dau Hospital, Taipei, Taiwan.
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
12
|
Dong X, Liu B, Huang W, Chen H, Zhang Y, Yao Z, Shmuel A, Yang A, Dai Z, Ma G, Shu N. Disrupted cerebellar structural connectome in spinocerebellar ataxia type 3 and its association with transcriptional profiles. Cereb Cortex 2024; 34:bhae238. [PMID: 38850215 DOI: 10.1093/cercor/bhae238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is primarily characterized by progressive cerebellar degeneration, including gray matter atrophy and disrupted anatomical and functional connectivity. The alterations of cerebellar white matter structural network in SCA3 and the underlying neurobiological mechanism remain unknown. Using a cohort of 20 patients with SCA3 and 20 healthy controls, we constructed cerebellar structural networks from diffusion MRI and investigated alterations of topological organization. Then, we mapped the alterations with transcriptome data from the Allen Human Brain Atlas to identify possible biological mechanisms for regional selective vulnerability to white matter damage. Compared with healthy controls, SCA3 patients exhibited reduced global and nodal efficiency, along with a widespread decrease in edge strength, particularly affecting edges connected to hub regions. The strength of inter-module connections was lower in SCA3 group and negatively correlated with the Scale for the Assessment and Rating of Ataxia score, International Cooperative Ataxia Rating Scale score, and cytosine-adenine-guanine repeat number. Moreover, the transcriptome-connectome association study identified the expression of genes involved in synapse-related and metabolic biological processes. These findings suggest a mechanism of white matter vulnerability and a potential image biomarker for the disease severity, providing insights into neurodegeneration and pathogenesis in this disease.
Collapse
Affiliation(s)
- Xinyi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xiejiekouwai Street, Haidian District, Beijing 100875, China
- BABRI Centre, Beijing Normal University, 19 Xiejiekouwai Street, Haidian District, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, 19 Xiejiekouwai Street, Haidian District, Beijing 100875, China
| | - Bing Liu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-wu Road, Jinan, Shandong Province, 250021, China
| | - Weijie Huang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xiejiekouwai Street, Haidian District, Beijing 100875, China
- BABRI Centre, Beijing Normal University, 19 Xiejiekouwai Street, Haidian District, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, 19 Xiejiekouwai Street, Haidian District, Beijing 100875, China
- Department of Systems Science, Beijing Normal University, 19 Xiejiekouwai Street, Haidian District, Beijing 100875, China
| | - Haojie Chen
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xiejiekouwai Street, Haidian District, Beijing 100875, China
- BABRI Centre, Beijing Normal University, 19 Xiejiekouwai Street, Haidian District, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, 19 Xiejiekouwai Street, Haidian District, Beijing 100875, China
| | - Yunhao Zhang
- State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Haidian District, Beijing 100190, China
| | - Zeshan Yao
- Institute of Biomedical Engineering, Jingjinji National Center of Technology Innovation, Building 9, No. 6 Dongsheng Science Park North Street, Haidian District, Beijing 100094, China
| | - Amir Shmuel
- McConnell Brain Imaging Centre, Montreal Neurological Institute, 3801 University, Room NW261, Montreal, QC, Canada H3A 2B4
- Departments of Neurology and Neurosurgery, Physiology, and Biomedical Engineering, 3801 University, Room NW261, Montreal, QC, Canada H3A 2B4
| | - Aocai Yang
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang District, Beijing 100029, China
| | - Zhengjia Dai
- Department of Psychology, Sun Yat-sen University, 132 Outer Ring East Road, Panyu District, Guangzhou, Guangdong Province, 510275, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang District, Beijing 100029, China
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xiejiekouwai Street, Haidian District, Beijing 100875, China
- BABRI Centre, Beijing Normal University, 19 Xiejiekouwai Street, Haidian District, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, 19 Xiejiekouwai Street, Haidian District, Beijing 100875, China
| |
Collapse
|
13
|
Liu X, Guo J, Jiang Z, Liu X, Chen H, Zhang Y, Wang J, Liu C, Gao Q, Chen H. Compressed cerebellar functional connectome hierarchy in spinocerebellar ataxia type 3. Hum Brain Mapp 2024; 45:e26624. [PMID: 38376240 PMCID: PMC10878347 DOI: 10.1002/hbm.26624] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is an inherited movement disorder characterized by a progressive decline in motor coordination. Despite the extensive functional connectivity (FC) alterations reported in previous SCA3 studies in the cerebellum and cerebellar-cerebral pathways, the influence of these FC disturbances on the hierarchical organization of cerebellar functional regions remains unclear. Here, we compared 35 SCA3 patients with 48 age- and sex-matched healthy controls using a combination of voxel-based morphometry and resting-state functional magnetic resonance imaging to investigate whether cerebellar hierarchical organization is altered in SCA3. Utilizing connectome gradients, we identified the gradient axis of cerebellar hierarchical organization, spanning sensorimotor to transmodal (task-unfocused) regions. Compared to healthy controls, SCA3 patients showed a compressed hierarchical organization in the cerebellum at both voxel-level (p < .05, TFCE corrected) and network-level (p < .05, FDR corrected). This pattern was observed in both intra-cerebellar and cerebellar-cerebral gradients. We observed that decreased intra-cerebellar gradient scores in bilateral Crus I/II both negatively correlated with SARA scores (left/right Crus I/II: r = -.48/-.50, p = .04/.04, FDR corrected), while increased cerebellar-cerebral gradients scores in the vermis showed a positive correlation with disease duration (r = .48, p = .04, FDR corrected). Control analyses of cerebellar gray matter atrophy revealed that gradient alterations were associated with cerebellar volume loss. Further FC analysis showed increased functional connectivity in both unimodal and transmodal areas, potentially supporting the disrupted cerebellar functional hierarchy uncovered by the gradients. Our findings provide novel evidence regarding alterations in the cerebellar functional hierarchy in SCA3.
Collapse
Affiliation(s)
- Xinyuan Liu
- Department of Radiology, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Jing Guo
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Zhouyu Jiang
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xingli Liu
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Hui Chen
- Department of Radiology, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Yuhan Zhang
- Department of Radiology, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Jian Wang
- Department of Radiology, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Chen Liu
- Department of Radiology, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Qing Gao
- MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
- School of Mathematical SciencesUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Huafu Chen
- Department of Radiology, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
14
|
Pilotto F, Del Bondio A, Puccio H. Hereditary Ataxias: From Bench to Clinic, Where Do We Stand? Cells 2024; 13:319. [PMID: 38391932 PMCID: PMC10886822 DOI: 10.3390/cells13040319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Cerebellar ataxias are a wide heterogeneous group of movement disorders. Within this broad umbrella of diseases, there are both genetics and sporadic forms. The clinical presentation of these conditions can exhibit a diverse range of symptoms across different age groups, spanning from pure cerebellar manifestations to sensory ataxia and multisystemic diseases. Over the last few decades, advancements in our understanding of genetics and molecular pathophysiology related to both dominant and recessive ataxias have propelled the field forward, paving the way for innovative therapeutic strategies aimed at preventing and arresting the progression of these diseases. Nevertheless, the rarity of certain forms of ataxia continues to pose challenges, leading to limited insights into the etiology of the disease and the identification of target pathways. Additionally, the lack of suitable models hampers efforts to comprehensively understand the molecular foundations of disease's pathophysiology and test novel therapeutic interventions. In the following review, we describe the epidemiology, symptomatology, and pathological progression of hereditary ataxia, including both the prevalent and less common forms of these diseases. Furthermore, we illustrate the diverse molecular pathways and therapeutic approaches currently undergoing investigation in both pre-clinical studies and clinical trials. Finally, we address the existing and anticipated challenges within this field, encompassing both basic research and clinical endeavors.
Collapse
Affiliation(s)
| | | | - Hélène Puccio
- Institut Neuromyogène, Pathophysiology and Genetics of Neuron and Muscle, Inserm U1315, CNRS-Université Claude Bernard Lyon 1 UMR5261, 69008 Lyon, France
| |
Collapse
|
15
|
Ye ZX, Bi J, Qiu LL, Chen XY, Li MC, Chen XY, Qiu YS, Yuan RY, Yu XT, Huang CY, Cheng B, Lin W, Chen WJ, Hu JP, Fu Y, Wang N, Gan SR. Cognitive impairment associated with cerebellar volume loss in spinocerebellar ataxia type 3. J Neurol 2024; 271:918-928. [PMID: 37848650 DOI: 10.1007/s00415-023-12042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/15/2023] [Accepted: 10/01/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Many neuroscience and neurology studies have forced a reconsideration of the traditional motor-related scope of cerebellar function, which has now expanded to include various cognitive functions. Spinocerebellar ataxia type 3 (SCA3; the most common hereditary ataxia) is neuropathologically characterized by cerebellar atrophy and frequently presents with cognitive impairment. OBJECTIVE To characterize cognitive impairment in SCA3 and investigate the cerebellum-cognition associations. METHODS This prospective, cross-sectional cohort study recruited 126 SCA3 patients and 41 healthy control individuals (HCs). Participants underwent a brain 3D T1-weighted images as well as neuropsychological tests. Voxel-based morphometry (VBM) and region of interest (ROI) approaches were performed on the 3D T1-weighted images. CERES was used to automatically segment cerebellums. Patients were grouped into cognitively impaired (CI) and cognitively preserved (CP), and clinical and MRI parameters were compared. Multivariable regression models were fitted to examine associations between cerebellar microstructural alterations and cognitive domain impairments. RESULTS Compared to HCs, SCA3 patients showed cognitive domain impairments in information processing speed, verbal memory, executive function, and visuospatial perception. Between CI and CP subgroups, the CI subgroup was older and had lower education, as well as higher severity scores. VBM and ROI analyses revealed volume loss in cerebellar bilateral lobule VI, right lobule Crus I, and right lobule IV of the CI subgroup, and all these cerebellar lobules were associated with the above cognitive domain impairments. CONCLUSIONS Our findings demonstrate the multiple cognitive domain impairments in SCA3 patients and indicate the responsible cerebellar lobules for the impaired cognitive domain(s).
Collapse
Affiliation(s)
- Zhi-Xian Ye
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Jin Bi
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Liang-Liang Qiu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xuan-Yu Chen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350005, China
| | - Meng-Cheng Li
- Department of Radiology of First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Xin-Yuan Chen
- Department of Rehabilitation Medicine of First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Yu-Sen Qiu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Ru-Ying Yuan
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Xin-Tong Yu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Chun-Yu Huang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Bi Cheng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Wei Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Jian-Ping Hu
- Department of Radiology of First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Ying Fu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China.
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350005, China.
| | - Ning Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China.
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| | - Shi-Rui Gan
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China.
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
16
|
Jäschke D, Steiner KM, Chang DI, Claaßen J, Uslar E, Thieme A, Gerwig M, Pfaffenrot V, Hulst T, Gussew A, Maderwald S, Göricke SL, Minnerop M, Ladd ME, Reichenbach JR, Timmann D, Deistung A. Age-related differences of cerebellar cortex and nuclei: MRI findings in healthy controls and its application to spinocerebellar ataxia (SCA6) patients. Neuroimage 2023; 270:119950. [PMID: 36822250 DOI: 10.1016/j.neuroimage.2023.119950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Understanding cerebellar alterations due to healthy aging provides a reference point against which pathological findings in late-onset disease, for example spinocerebellar ataxia type 6 (SCA6), can be contrasted. In the present study, we investigated the impact of aging on the cerebellar nuclei and cerebellar cortex in 109 healthy controls (age range: 16 - 78 years) using 3 Tesla magnetic resonance imaging (MRI). Findings were compared with 25 SCA6 patients (age range: 38 - 78 years). A subset of 16 SCA6 (included: 14) patients and 50 controls (included: 45) received an additional MRI scan at 7 Tesla and were re-scanned after one year. MRI included T1-weighted, T2-weighted FLAIR, and multi-echo T2*-weighted imaging. The T2*-weighted phase images were converted to quantitative susceptibility maps (QSM). Since the cerebellar nuclei are characterized by elevated iron content with respect to their surroundings, two independent raters manually outlined them on the susceptibility maps. T1-weighted images acquired at 3T were utilized to automatically identify the cerebellar gray matter (GM) volume. Linear correlations revealed significant atrophy of the cerebellum due to tissue loss of cerebellar cortical GM in healthy controls with increasing age. Reduction of the cerebellar GM was substantially stronger in SCA6 patients. The volume of the dentate nuclei did not exhibit a significant relationship with age, at least in the age range between 18 and 78 years, whereas mean susceptibilities of the dentate nuclei increased with age. As previously shown, the dentate nuclei volumes were smaller and magnetic susceptibilities were lower in SCA6 patients compared to age- and sex-matched controls. The significant dentate volume loss in SCA6 patients could also be confirmed with 7T MRI. Linear mixed effects models and individual paired t-tests accounting for multiple comparisons revealed no statistical significant change in volume and susceptibility of the dentate nuclei after one year in neither patients nor controls. Importantly, dentate volumes were more sensitive to differentiate between SCA6 (Cohen's d = 3.02) and matched controls than the cerebellar cortex volume (d = 2.04). In addition to age-related decline of the cerebellar cortex and atrophy in SCA6 patients, age-related increase of susceptibility of the dentate nuclei was found in controls, whereas dentate volume and susceptibility was significantly decreased in SCA6 patients. Because no significant changes of any of these parameters was found at follow-up, these measures do not allow to monitor disease progression at short intervals.
Collapse
Affiliation(s)
- Dominik Jäschke
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany; Department of Radiology and Nuclear Medicine, University Hospital Basel, Basel 4031, Switzerland
| | - Katharina M Steiner
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany; LVR-Hospital Essen, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Duisburg-Essen, Essen 45147, Germany
| | - Dae-In Chang
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany; Clinic for Psychiatry, Psychotherapy and Preventive Medicine, LWL-University Hospital of the Ruhr-University Bochum, Bochum 44791, Germany
| | - Jens Claaßen
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany; Fachklinik für Neurologie, MEDICLIN Klinik Reichshof, Reichshof-Eckenhagen 51580, Germany
| | - Ellen Uslar
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany
| | - Andreas Thieme
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany
| | - Marcus Gerwig
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany
| | - Viktor Pfaffenrot
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen 45141, Germany
| | - Thomas Hulst
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany; Erasmus University College, Rotterdam 3011 HP, the Netherlands
| | - Alexander Gussew
- University Clinic and Outpatient Clinic for Radiology, Department for Radiation Medicine, University Hospital Halle (Saale), Ernst-Grube-Str. 40, Halle (Saale) 06120, Germany
| | - Stefan Maderwald
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen 45141, Germany
| | - Sophia L Göricke
- Institute of Diagnostic and Interventional Neuroradiology, Essen University Hospital, University of Duisburg-Essen, Essen 45141, Germany
| | - Martina Minnerop
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich 52425, Germany; Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf 40225, Germany; Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Mark E Ladd
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen 45141, Germany; Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Faculty of Physics and Astronomy and Faculty of Medicine, Heidelberg University, Heidelberg 69120, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena 07743, Germany
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany; Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen 45141, Germany
| | - Andreas Deistung
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany; University Clinic and Outpatient Clinic for Radiology, Department for Radiation Medicine, University Hospital Halle (Saale), Ernst-Grube-Str. 40, Halle (Saale) 06120, Germany; Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena 07743, Germany.
| |
Collapse
|
17
|
Kerestes R, Cummins H, Georgiou-Karistianis N, Selvadurai LP, Corben LA, Delatycki MB, Egan GF, Harding IH. Reduced cerebello-cerebral functional connectivity correlates with disease severity and impaired white matter integrity in Friedreich ataxia. J Neurol 2023; 270:2360-2369. [PMID: 36859626 PMCID: PMC10130106 DOI: 10.1007/s00415-023-11637-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/07/2023] [Accepted: 02/19/2023] [Indexed: 03/03/2023]
Abstract
Friedreich ataxia (FRDA) is a rare, inherited neurodegenerative disease characterised in most cases by progressive and debilitating motor dysfunction. Degeneration of cerebellar white matter pathways have been previously reported, alongside indications of cerebello-cerebral functional alterations. In this work, we examine resting-state functional connectivity changes within cerebello-cerebral circuits, and their associations with disease severity (Scale for the Assessment and Rating of Ataxia [SARA]), psychomotor function (speeded and paced finger tapping), and white matter integrity (diffusion tensor imaging) in 35 adults with FRDA and 45 age and sex-matched controls. Voxel-wise seed-based functional connectivity was assessed for three cerebellar cortical regions (anterior lobe, lobules I-V; superior posterior lobe, lobules VI-VIIB; inferior posterior lobe, lobules VIIIA-IX) and two dentate nucleus seeds (dorsal and ventral). Compared to controls, people with FRDA showed significantly reduced connectivity between the anterior cerebellum and bilateral pre/postcentral gyri, and between the superior posterior cerebellum and left dorsolateral PFC. Greater disease severity correlated with lower connectivity in these circuits. Lower anterior cerebellum-motor cortex functional connectivity also correlated with slower speeded finger tapping and less fractional anisotropy in the superior cerebellar peduncles, internal capsule, and precentral white matter in the FRDA cohort. There were no significant between-group differences in inferior posterior cerebellar or dentate nucleus connectivity. This study indicates that altered cerebello-cerebral functional connectivity is associated with functional status and white matter damage in cerebellar efferent pathways in people with FRDA, particularly in motor circuits.
Collapse
Affiliation(s)
- Rebecca Kerestes
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Hannah Cummins
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Nellie Georgiou-Karistianis
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Louisa P Selvadurai
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Louise A Corben
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Melbourne, Australia
| | - Martin B Delatycki
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Melbourne, Australia
| | - Gary F Egan
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia.,Monash Biomedical Imaging, Monash University, Melbourne, VIC, 3800, Australia
| | - Ian H Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia. .,Monash Biomedical Imaging, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
18
|
Kurokawa R, Kurokawa M, Mitsutake A, Nakaya M, Baba A, Nakata Y, Moritani T, Abe O. Clinical and neuroimaging review of triplet repeat diseases. Jpn J Radiol 2023; 41:115-130. [PMID: 36169768 PMCID: PMC9889482 DOI: 10.1007/s11604-022-01343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/18/2022] [Indexed: 02/04/2023]
Abstract
Triplet repeat diseases (TRDs) refer to a group of diseases caused by three nucleotide repeats elongated beyond a pathologic threshold. TRDs are divided into the following four groups depending on the pathomechanisms, although the pathomechanisms of several diseases remain unelucidated: polyglutamine disorders, caused by a pathologic repeat expansion of CAG (coding the amino acid glutamine) located within the exon; loss-of-function repeat disorders, characterized by the common feature of a loss of function of the gene within which they occur; RNA gain-of-function disorders, involving the production of a toxic RNA species; and polyalanine disorders, caused by a pathologic repeat expansion of GCN (coding the amino acid alanine) located within the exon. Many of these TRDs manifest through neurologic symptoms; moreover, neuroimaging, especially brain magnetic resonance imaging, plays a pivotal role in the detection of abnormalities, differentiation, and management of TRDs. In this article, we reviewed the clinical and neuroimaging features of TRDs. An early diagnosis of TRDs through clinical and imaging approaches is important and may contribute to appropriate medical intervention for patients and their families.
Collapse
Affiliation(s)
- Ryo Kurokawa
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan ,Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109 USA
| | - Mariko Kurokawa
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan ,Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109 USA
| | - Akihiko Mitsutake
- Department of Neurology, International University of Health and Welfare, Mita Hospital, 1-4-3 Mita, Minato-ku, Tokyo, 108-8329 Japan
| | - Moto Nakaya
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Akira Baba
- Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109 USA
| | - Yasuhiro Nakata
- Department of Neuroradiology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo 183-0042 Japan
| | - Toshio Moritani
- Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109 USA
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| |
Collapse
|
19
|
Marapin RS, van der Horn HJ, van der Stouwe AMM, Dalenberg JR, de Jong BM, Tijssen MAJ. Altered brain connectivity in hyperkinetic movement disorders: A review of resting-state fMRI. Neuroimage Clin 2022; 37:103302. [PMID: 36669351 PMCID: PMC9868884 DOI: 10.1016/j.nicl.2022.103302] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Hyperkinetic movement disorders (HMD) manifest as abnormal and uncontrollable movements. Despite reported involvement of several neural circuits, exact connectivity profiles remain elusive. OBJECTIVES Providing a comprehensive literature review of resting-state brain connectivity alterations using resting-state fMRI (rs-fMRI). We additionally discuss alterations from the perspective of brain networks, as well as correlations between connectivity and clinical measures. METHODS A systematic review was performed according to PRISMA guidelines and searching PubMed until October 2022. Rs-fMRI studies addressing ataxia, chorea, dystonia, myoclonus, tics, tremor, and functional movement disorders (FMD) were included. The standardized mean difference was used to summarize findings per region in the Automated Anatomical Labeling atlas for each phenotype. Furthermore, the activation likelihood estimation meta-analytic method was used to analyze convergence of significant between-group differences per phenotype. Finally, we conducted hierarchical cluster analysis to provide additional insights into commonalities and differences across HMD phenotypes. RESULTS Most articles concerned tremor (51), followed by dystonia (46), tics (19), chorea (12), myoclonus (11), FMD (11), and ataxia (8). Altered resting-state connectivity was found in several brain regions: in ataxia mainly cerebellar areas; for chorea, the caudate nucleus; for dystonia, sensorimotor and basal ganglia regions; for myoclonus, the thalamus and cingulate cortex; in tics, the basal ganglia, cerebellum, insula, and frontal cortex; for tremor, the cerebello-thalamo-cortical circuit; finally, in FMD, frontal, parietal, and cerebellar regions. Both decreased and increased connectivity were found for all HMD. Significant spatial convergence was found for dystonia, FMD, myoclonus, and tremor. Correlations between clinical measures and resting-state connectivity were frequently described. CONCLUSION Key brain regions contributing to functional connectivity changes across HMD often overlap. Possible increases and decreases of functional connections of a specific region emphasize that HMD should be viewed as a network disorder. Despite the complex interplay of physiological and methodological factors, this review serves to gain insight in brain connectivity profiles across HMD phenotypes.
Collapse
Affiliation(s)
- Ramesh S Marapin
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Harm J van der Horn
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - A M Madelein van der Stouwe
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Jelle R Dalenberg
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Bauke M de Jong
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Marina A J Tijssen
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands.
| |
Collapse
|
20
|
Serrallach BL, Orman G, Boltshauser E, Hackenberg A, Desai NK, Kralik SF, Huisman TAGM. Neuroimaging in cerebellar ataxia in childhood: A review. J Neuroimaging 2022; 32:825-851. [PMID: 35749078 DOI: 10.1111/jon.13017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/27/2022] [Accepted: 06/05/2022] [Indexed: 11/28/2022] Open
Abstract
Ataxia is one of the most common pediatric movement disorders and can be caused by a large number of congenital and acquired diseases affecting the cerebellum or the vestibular or sensory system. It is mainly characterized by gait abnormalities, dysmetria, intention tremor, dysdiadochokinesia, dysarthria, and nystagmus. In young children, ataxia may manifest as the inability or refusal to walk. The diagnostic approach begins with a careful clinical history including the temporal evolution of ataxia and the inquiry of additional symptoms, is followed by a meticulous physical examination, and, depending on the results, is complemented by laboratory assays, electroencephalography, nerve conduction velocity, lumbar puncture, toxicology screening, genetic testing, and neuroimaging. Neuroimaging plays a pivotal role in either providing the final diagnosis, narrowing the differential diagnosis, or planning targeted further workup. In this review, we will focus on the most common form of ataxia in childhood, cerebellar ataxia (CA). We will discuss and summarize the neuroimaging findings of either the most common or the most important causes of CA in childhood or present causes of pediatric CA with pathognomonic findings on MRI. The various pediatric CAs will be categorized and presented according to (a) the cause of ataxia (acquired/disruptive vs. inherited/genetic) and (b) the temporal evolution of symptoms (acute/subacute, chronic, progressive, nonprogressive, and recurrent). In addition, several illustrative cases with their key imaging findings will be presented.
Collapse
Affiliation(s)
- Bettina L Serrallach
- Edward B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Gunes Orman
- Edward B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Eugen Boltshauser
- Department of Pediatric Neurology, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Annette Hackenberg
- Department of Pediatric Neurology, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Nilesh K Desai
- Edward B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Stephen F Kralik
- Edward B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Thierry A G M Huisman
- Edward B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
21
|
Sobana SA, Huda F, Hermawan R, Sribudiani Y, Koan TS, Dian S, Ong PA, Dahlan NL, Utami N, Pusparini I, Gamayani U, Mohamed Ibrahim N, Achmad TH. Brain MRI Volumetry Analysis in an Indonesian Family of SCA 3 Patients: A Case-Based Study. Front Neurol 2022; 13:912592. [PMID: 35847233 PMCID: PMC9277061 DOI: 10.3389/fneur.2022.912592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022] Open
Abstract
Introduction Spinocerebellar ataxia type-3 (SCA3) is an adult-onset autosomal dominant neurodegenerative disease. It is caused by expanding of CAG repeat in ATXN3 gene that later on would affect brain structures. This brain changes could be evaluated using brain MRI volumetric. However, findings across published brain volumetric studies have been inconsistent. Here, we report MRI brain volumetric analysis in a family of SCA 3 patients, which included pre-symptomatic and symptomatic patients. Methodology The study included affected and unaffected members from a large six-generation family of SCA 3, genetically confirmed using PolyQ/CAG repeat expansion analysis, Sanger sequencing, and PCR. Clinical evaluation was performed using Scale for the Assessment and Rating of Ataxia (SARA). Subjects' brains were scanned using 3.0-T MRI with a 3D T1 BRAVO sequence. Evaluations were performed by 2 independent neuroradiologists. An automated volumetric analysis was performed using FreeSurfer and CERES (for the cerebellum). Result We evaluated 7 subjects from this SCA3 family, including 3 subjects with SCA3 and 4 unaffected subjects. The volumetric evaluation revealed smaller brain volumes (p < 0.05) in the corpus callosum, cerebellar volume of lobules I-II, lobule IV, lobule VIIB and lobule IX; and in cerebellar gray matter volume of lobule IV, and VIIIA; in the pathologic/expanded CAG repeat group (SCA3). Conclusion Brain MRI volumetry of SCA3 subjects showed smaller brain volumes in multiple brain regions including the corpus callosum and gray matter volumes of several cerebellar lobules.
Collapse
Affiliation(s)
- Siti Aminah Sobana
- Department of Neurology, Faculty of Medicine, Dr. Hasan Sadikin Central General Hospital/Universitas Padjadjaran, Bandung, Indonesia
- Research Center of Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Doctoral Study Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Siti Aminah Sobana
| | - Fathul Huda
- Department of Neurology, Faculty of Medicine, Dr. Hasan Sadikin Central General Hospital/Universitas Padjadjaran, Bandung, Indonesia
- Research Center of Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- *Correspondence: Fathul Huda
| | - Robby Hermawan
- Department of Radiology, Saint Borromeus Hospital, Bandung, Indonesia
| | - Yunia Sribudiani
- Research Center of Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Tan Siauw Koan
- Department of Radiology, Saint Borromeus Hospital, Bandung, Indonesia
| | - Sofiati Dian
- Department of Neurology, Faculty of Medicine, Dr. Hasan Sadikin Central General Hospital/Universitas Padjadjaran, Bandung, Indonesia
| | - Paulus Anam Ong
- Department of Neurology, Faculty of Medicine, Dr. Hasan Sadikin Central General Hospital/Universitas Padjadjaran, Bandung, Indonesia
| | - Nushrotul Lailiyya Dahlan
- Department of Neurology, Faculty of Medicine, Dr. Hasan Sadikin Central General Hospital/Universitas Padjadjaran, Bandung, Indonesia
| | - Nastiti Utami
- Department of Neurology, Faculty of Medicine, Dr. Hasan Sadikin Central General Hospital/Universitas Padjadjaran, Bandung, Indonesia
| | - Iin Pusparini
- Department of Neurology, Faculty of Medicine, Dr. Hasan Sadikin Central General Hospital/Universitas Padjadjaran, Bandung, Indonesia
| | - Uni Gamayani
- Department of Neurology, Faculty of Medicine, Dr. Hasan Sadikin Central General Hospital/Universitas Padjadjaran, Bandung, Indonesia
| | - Norlinah Mohamed Ibrahim
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Tri Hanggono Achmad
- Research Center of Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
22
|
Mayoral-Palarz K, Neves-Carvalho A, Duarte-Silva S, Monteiro-Fernandes D, Maciel P, Khodakhah K. Cerebellar neuronal dysfunction accompanies early motor symptoms in spinocerebellar ataxia type 3. Dis Model Mech 2022; 15:275597. [PMID: 35660856 PMCID: PMC9367011 DOI: 10.1242/dmm.049514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is an adult-onset, progressive ataxia. SCA3 presents with ataxia before any gross neuropathology. A feature of many cerebellar ataxias is aberrant cerebellar output that contributes to motor dysfunction. We examined whether abnormal cerebellar output was present in the CMVMJD135 SCA3 mouse model and, if so, whether it correlated with the disease onset and progression. In vivo recordings showed that the activity of deep cerebellar nuclei neurons, the main output of the cerebellum, was altered. The aberrant activity correlated with the onset of ataxia. However, although the severity of ataxia increased with age, the severity of the aberrant cerebellar output was not progressive. The abnormal cerebellar output, however, was accompanied by non-progressive abnormal activity of their upstream synaptic inputs, the Purkinje cells. In vitro recordings indicated that alterations in intrinsic Purkinje cell pacemaking and in their synaptic inputs contributed to abnormal Purkinje cell activity. These findings implicate abnormal cerebellar physiology as an early, consistent contributor to pathophysiology in SCA3, and suggest that the aberrant cerebellar output could be an appropriate therapeutic target in SCA3. Summary: In a mouse model of spinocerebellar ataxia type 3 (SCA3), aberrant cerebellar physiology is apparent early in disease, prior to cerebellar neuronal pathology. Aberrant cerebellar output could be a therapeutic target in SCA3.
Collapse
Affiliation(s)
- Kristin Mayoral-Palarz
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andreia Neves-Carvalho
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Daniela Monteiro-Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Kamran Khodakhah
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
23
|
van der Horn HJ, Meles SK, Kok JG, Vergara VM, Qi S, Calhoun VD, Dalenberg JR, Siero JCW, Renken RJ, de Vries JJ, Spikman JM, Kremer HPH, De Jong BM. A resting-state fMRI pattern of spinocerebellar ataxia type 3 and comparison with 18F-FDG PET. Neuroimage Clin 2022; 34:103023. [PMID: 35489193 PMCID: PMC9062756 DOI: 10.1016/j.nicl.2022.103023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/25/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022]
Abstract
This is the first study identifying a resting-state fMRI pattern in SCA3. This pattern was closely associated with a metabolic (18F-FDG PET) counterpart. Pattern subject scores were highly correlated with ataxia severity.
Spinocerebellar ataxia type 3 (SCA3) is a rare genetic neurodegenerative disease. The neurobiological basis of SCA3 is still poorly understood, and up until now resting-state fMRI (rs-fMRI) has not been used to study this disease. In the current study we investigated (multi-echo) rs-fMRI data from patients with genetically confirmed SCA3 (n = 17) and matched healthy subjects (n = 16). Using independent component analysis (ICA) and subsequent regression with bootstrap resampling, we identified a pattern of differences between patients and healthy subjects, which we coined the fMRI SCA3 related pattern (fSCA3-RP) comprising cerebellum, anterior striatum and various cortical regions. Individual fSCA3-RP scores were highly correlated with a previously published 18F-FDG PET pattern found in the same sample (rho = 0.78, P = 0.0003). Also, a high correlation was found with the Scale for Assessment and Rating of Ataxia scores (r = 0.63, P = 0.007). No correlations were found with neuropsychological test scores, nor with levels of grey matter atrophy. Compared with the 18F-FDG PET pattern, the fSCA3-RP included a more extensive contribution of the mediofrontal cortex, putatively representing changes in default network activity. This rs-fMRI identification of additional regions is proposed to reflect a consequence of the nature of the BOLD technique, enabling measurement of dynamic network activity, compared to the more static 18F-FDG PET methodology. Altogether, our findings shed new light on the neural substrate of SCA3, and encourage further validation of the fSCA3-RP to assess its potential contribution as imaging biomarker for future research and clinical use.
Collapse
Affiliation(s)
- Harm J van der Horn
- Department of Neurology, University Medical Center Groningen, University of Groningen, the Netherlands.
| | - Sanne K Meles
- Department of Neurology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Jelmer G Kok
- Department of Neurology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Victor M Vergara
- Tri-institutional Center for Translational Research (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA, USA
| | - Shile Qi
- Tri-institutional Center for Translational Research (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA, USA
| | - Jelle R Dalenberg
- Department of Neurology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Jeroen C W Siero
- Department of Radiology, Utrecht Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands; Spinoza Centre for Neuroimaging Amsterdam, Amsterdam, the Netherlands
| | - Remco J Renken
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Jeroen J de Vries
- Department of Neurology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Jacoba M Spikman
- Department of Neuropsychology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Hubertus P H Kremer
- Department of Neurology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Bauke M De Jong
- Department of Neurology, University Medical Center Groningen, University of Groningen, the Netherlands
| |
Collapse
|
24
|
Thieme A, Faber J, Sulzer P, Reetz K, Dogan I, Barkhoff M, Krahe J, Jacobi H, Aktories JE, Minnerop M, Elben S, van der Veen R, Müller J, Batsikadze G, Konczak J, Synofzik M, Roeske S, Timmann D. The CCAS-scale in hereditary ataxias: helpful on the group level, particularly in SCA3, but limited in individual patients. J Neurol 2022; 269:4363-4374. [PMID: 35364683 PMCID: PMC9293809 DOI: 10.1007/s00415-022-11071-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/02/2022]
Abstract
Background A brief bedside test has recently been introduced by Hoche et al. (Brain, 2018) to screen for the Cerebellar Cognitive Affective Syndrome (CCAS) in patients with cerebellar disease. Objective This multicenter study tested the ability of the CCAS-Scale to diagnose CCAS in individual patients with common forms of hereditary ataxia. Methods A German version of the CCAS-Scale was applied in 30 SCA3, 14 SCA6 and 20 FRDA patients, and 64 healthy participants matched for age, sex, and level of education. Based on original cut-off values, the number of failed test items was assessed, and CCAS was considered possible (one failed item), probable (two failed items) or definite (three failed items). In addition a total sum raw score was calculated. Results On a group level, failed items were significantly higher and total sum scores were significantly lower in SCA3 patients compared to matched controls. SCA6 and FRDA patients performed numerically below controls, but respective group differences failed to reach significance. The ability of the CCAS-Scale to diagnose CCAS in individual patients was limited to severe cases failing three or more items. Milder cases failing one or two items showed a great overlap with the performance of controls exhibiting a substantial number of false-positive test results. The word fluency test items differentiated best between patients and controls. Conclusions As a group, SCA3 patients performed below the level of SCA6 and FRDA patients, possibly reflecting additional cerebral involvement. Moreover, the application of the CCAS-Scale in its present form results in a high number of false-positive test results, that is identifying controls as patients, reducing its usefulness as a screening tool for CCAS in individual patients. Supplementary Information The online version contains supplementary material available at 10.1007/s00415-022-11071-5.
Collapse
Affiliation(s)
- Andreas Thieme
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Jennifer Faber
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Helmholtz Association, Venusberg-Campus 1/99, 53127, Bonn, Germany.,Department of Neurology, Bonn University Hospital, Rheinische Friedrich-Wilhelms University Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Patricia Sulzer
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, Eberhard-Karls University Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE) Tübingen, Helmholtz Association, Otfried-Müller-Str. 23, 72076, Tübingen, Germany
| | - Kathrin Reetz
- JARA-BRAIN Institute, Molecular Neuroscience and Neuroimaging, Research Center Jülich, Wilhelm-Johnen-Str., 52425, Jülich, Germany.,Department of Neurology, Aachen University Hospital, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Pauwelstr. 30, 52074, Aachen, Germany
| | - Imis Dogan
- JARA-BRAIN Institute, Molecular Neuroscience and Neuroimaging, Research Center Jülich, Wilhelm-Johnen-Str., 52425, Jülich, Germany.,Department of Neurology, Aachen University Hospital, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Pauwelstr. 30, 52074, Aachen, Germany
| | - Miriam Barkhoff
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Helmholtz Association, Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Janna Krahe
- JARA-BRAIN Institute, Molecular Neuroscience and Neuroimaging, Research Center Jülich, Wilhelm-Johnen-Str., 52425, Jülich, Germany.,Department of Neurology, Aachen University Hospital, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Pauwelstr. 30, 52074, Aachen, Germany
| | - Heike Jacobi
- Department of Neurology, Heidelberg University Hospital, Ruprecht-Karls University Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Julia-Elisabeth Aktories
- Department of Neurology, Heidelberg University Hospital, Ruprecht-Karls University Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Martina Minnerop
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.,Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Wilhelm-Johnen-Str., 52425, Jülich, Germany
| | - Saskia Elben
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Raquel van der Veen
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Johanna Müller
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Giorgi Batsikadze
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Jürgen Konczak
- School of Kinesiology, University of Minnesota, 400 Cooke Hall 1900 University Ave S E, Minneapolis, MN, 55455, USA
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, Eberhard-Karls University Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE) Tübingen, Helmholtz Association, Otfried-Müller-Str. 23, 72076, Tübingen, Germany
| | - Sandra Roeske
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Helmholtz Association, Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| |
Collapse
|
25
|
Lien YR, Lin YC, Lin SHN, Lin CP, Chang LH. Frequency-Dependent Effects of Cerebellar Repetitive Transcranial Magnetic Stimulation on Visuomotor Accuracy. Front Neurosci 2022; 16:804027. [PMID: 35368261 PMCID: PMC8971901 DOI: 10.3389/fnins.2022.804027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/14/2022] [Indexed: 12/11/2022] Open
Abstract
The cerebellum plays a critical role in acquiring visuomotor skills. Visuomotor task mastery requires improving both visuomotor accuracy and stability; however, the cerebellum’s contribution to these processes remains unclear. We hypothesized that repetitive transcranial magnetic stimulation (rTMS) of the cerebellum exerts frequency-dependent modulatory effects on both accuracy and stability in subjects performing a visuomotor coordination task (i.e., pursuit rotor task). We recruited 43 healthy volunteers and randomly assigned them to the high-frequency (HF), low-frequency (LF), and sham rTMS groups. We calculated changes in performance of the pursuit rotor task at the highest rotation speed and the minimum distance from target as indices of accuracy. We also calculated the intertrial variability (standard deviations) of time on target and distance from target as indices of stability. Visuomotor accuracy was significantly enhanced in the HF group and disrupted in the LF group compared to the sham group, indicating frequency-dependent effects of rTMS. In contrast, both HF and LF rTMS demonstrated no significant change in visuomotor stability. Surprisingly, our findings demonstrated that the accuracy and stability of visuomotor performance may be differentially influenced by cerebellar rTMS. This suggests that visuomotor accuracy and stability have different underlying neural mechanisms and revealed the possibility of training strategies based on cerebellar neuromodulation.
Collapse
Affiliation(s)
- Yun R. Lien
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Cheng Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Taipei Municipal Gan-Dau Hospital, Taipei, Taiwan
| | - Shang-Hua N. Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Hung Chang
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Education Center for Humanities and Social Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Philosophy of Mind and Cognition, National Yang Ming Chiao Tung University, Taipei, Taiwan
- *Correspondence: Li-Hung Chang,
| |
Collapse
|
26
|
Vavla M, Arrigoni F, Peruzzo D, Montanaro D, Frijia F, Pizzighello S, De Luca A, Della Libera E, Tessarotto F, Guerra P, Harding IH, Martinuzzi A. Functional MRI Studies in Friedreich's Ataxia: A Systematic Review. Front Neurol 2022; 12:802496. [PMID: 35360279 PMCID: PMC8960250 DOI: 10.3389/fneur.2021.802496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Friedreich's ataxia (FRDA) is an inherited neurodegenerative movement disorder with early onset, widespread cerebral and cerebellar pathology, and no cure still available. Functional MRI (fMRI) studies, although currently limited in number, have provided a better understanding of brain changes in people with FRDA. This systematic review aimed to provide a critical overview of the findings and methodologies of all fMRI studies conducted in genetically confirmed FRDA so far, and to offer recommendations for future study designs. About 12 cross-sectional and longitudinal fMRI studies, included 198 FRDA children and young adult patients and, 205 healthy controls (HCs), according to the inclusion criteria. Details regarding GAA triplet expansion and demographic and clinical severity measures were widely reported. fMRI designs included motor and cognitive task paradigms, and resting-state studies, with widespread changes in functionally activated areas and extensive variability in study methodologies. These studies highlight a mixed picture of both hypoactivation and hyperactivation in different cerebral and cerebellar brain regions depending on fMRI design and cohort characteristics. Functional changes often correlate with clinical variables. In aggregate, the findings provide support for cerebro-cerebellar loop damage and the compensatory mechanism hypothesis. Current literature indicates that fMRI is a valuable tool for gaining in vivo insights into FRDA pathology, but addressing that its limitations would be a key to improving the design, interpretation, and generalizability of studies in the future.
Collapse
Affiliation(s)
- Marinela Vavla
- Department of Neurorehabilitation, Pieve di Soligo, Scientific Institute, IRCCS E. Medea, Pieve di Soligo, Italy
- *Correspondence: Marinela Vavla ;
| | - Filippo Arrigoni
- Neuroimaging Lab, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Denis Peruzzo
- Neuroimaging Lab, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Domenico Montanaro
- U.O.C. Risonanza Magnetica Specialistica e Neuroradiologia, Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
- U.O.S.D. Servizio Autonomo di Risonanza Magnetica, Dipartimento Clinico di Neuroscienze dell'Età Evolutiva - IRCCS Fondazione Stella Maris - Pisa, Italy
| | - Francesca Frijia
- U.O.C. Bioingegneria e Ing. Clinica, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Silvia Pizzighello
- Department of Neurorehabilitation, Pieve di Soligo, Scientific Institute, IRCCS E. Medea, Pieve di Soligo, Italy
| | - Alberto De Luca
- Department of Neurology, UMC Utrecht Brain Center, UMC Utrecht, Utrecht, Netherlands
| | | | - Federica Tessarotto
- Department of Neurorehabilitation, Pieve di Soligo, Scientific Institute, IRCCS E. Medea, Pieve di Soligo, Italy
| | - Paola Guerra
- Department of Neurorehabilitation, Pieve di Soligo, Scientific Institute, IRCCS E. Medea, Pieve di Soligo, Italy
| | - Ian H. Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Andrea Martinuzzi
- Department of Neurorehabilitation, Pieve di Soligo, Scientific Institute, IRCCS E. Medea, Pieve di Soligo, Italy
| |
Collapse
|
27
|
Hannoun S, Hourani R. Editorial: MRI-Based Methods for the Identification of Cerebellar Ataxia Types. Front Neurosci 2022; 16:847726. [PMID: 35250472 PMCID: PMC8890120 DOI: 10.3389/fnins.2022.847726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Salem Hannoun
- Medical Imaging Sciences Program, Division of Health Professions, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
- *Correspondence: Salem Hannoun
| | - Roula Hourani
- Department of Diagnostic Radiology, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
28
|
Harding IH, Ward PGD. Brain susceptibility imaging provides valuable in vivo insights into cerebellar diseases, but biological interpretations remain elusive. Brain Commun 2022; 4:fcac007. [PMID: 35178517 PMCID: PMC8846579 DOI: 10.1093/braincomms/fcac007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/09/2021] [Accepted: 02/03/2022] [Indexed: 11/14/2022] Open
Abstract
This scientific commentary relates to: 'Quantitative susceptibility mapping reveals alterations of dentate nuclei in common types of degenerative cerebellar ataxias' by Deistung et al. (https://doi.org/10.1093/braincomms/fcab306).
Collapse
Affiliation(s)
- Ian H. Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Phillip G. D. Ward
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
- Turner Institute for Brain and Mental Health & School of Psychological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
29
|
Deistung A, Jäschke D, Draganova R, Pfaffenrot V, Hulst T, Steiner KM, Thieme A, Giordano IA, Klockgether T, Tunc S, Münchau A, Minnerop M, Göricke SL, Reichenbach JR, Timmann D. Quantitative susceptibility mapping reveals alterations of dentate nuclei in common types of degenerative cerebellar ataxias. Brain Commun 2022; 4:fcab306. [PMID: 35291442 PMCID: PMC8914888 DOI: 10.1093/braincomms/fcab306] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 10/28/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
The cerebellar nuclei are a brain region with high iron content. Surprisingly,
little is known about iron content in the cerebellar nuclei and its possible
contribution to pathology in cerebellar ataxias, with the only exception of
Friedreich’s ataxia. In the present exploratory cross-sectional study,
quantitative susceptibility mapping was used to investigate volume, iron
concentration and total iron content of the dentate nuclei in common types of
hereditary and non-hereditary degenerative ataxias. Seventy-nine patients with
spinocerebellar ataxias of types 1, 2, 3 and 6; 15 patients with
Friedreich’s ataxia; 18 patients with multiple system atrophy, cerebellar
type and 111 healthy controls were also included. All underwent 3 T MRI
and clinical assessments. For each specific ataxia subtype, voxel-based and
volumes-of-interest-based group analyses were performed in comparison with a
corresponding age- and sex-matched control group, both for volume, magnetic
susceptiblity (indicating iron concentration) and susceptibility mass
(indicating total iron content) of the dentate nuclei. Spinocerebellar ataxia of
type 1 and multiple system atrophy, cerebellar type patients showed higher
susceptibilities in large parts of the dentate nucleus but unaltered
susceptibility masses compared with controls. Friedreich’s ataxia
patients and, only on a trend level, spinocerebellar ataxia of type 2 patients
showed higher susceptibilities in more circumscribed parts of the dentate. In
contrast, spinocerebellar ataxia of type 6 patients revealed lower
susceptibilities and susceptibility masses compared with controls throughout the
dentate nucleus. Spinocerebellar ataxia of type 3 patients showed no significant
changes in susceptibility and susceptibility mass. Lower volume of the dentate
nuclei was found to varying degrees in all ataxia types. It was most pronounced
in spinocerebellar ataxia of type 6 patients and least prominent in
spinocerebellar ataxia of type 3 patients. The findings show that alterations in
susceptibility revealed by quantitative susceptibility mapping are common in the
dentate nuclei in different types of cerebellar ataxias. The most striking
changes in susceptibility were found in spinocerebellar ataxia of type 1,
multiple system atrophy, cerebellar type and spinocerebellar ataxia of type 6.
Because iron content is known to be high in glial cells but not in neurons of
the cerebellar nuclei, the higher susceptibility in spinocerebellar ataxia of
type 1 and multiple system atrophy, cerebellar type may be explained by a
reduction of neurons (increase in iron concentration) and/or an increase in
iron-rich glial cells, e.g. microgliosis. Hypomyelination also leads to higher
susceptibility and could also contribute. The lower susceptibility in SCA6
suggests a loss of iron-rich glial cells. Quantitative susceptibility maps
warrant future studies of iron content and iron-rich cells in ataxias to gain a
more comprehensive understanding of the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Andreas Deistung
- University Clinic and Outpatient Clinic for Radiology, Department for Radiation Medicine, University Hospital Halle (Saale), Halle (Saale), Germany
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, Essen, Germany
| | - Dominik Jäschke
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, Essen, Germany
| | - Rossitza Draganova
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, Essen, Germany
| | - Viktor Pfaffenrot
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| | - Thomas Hulst
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, Essen, Germany
- Erasmus University College, Erasmus School of Social and Behavioural Sciences, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Katharina M. Steiner
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, Essen, Germany
| | - Andreas Thieme
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, Essen, Germany
| | - Ilaria A. Giordano
- Department of Neurology, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Thomas Klockgether
- Department of Neurology, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Sinem Tunc
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Martina Minnerop
- Institute of Neuroscience and Medicine (INM-1), Research Center Juelich, Juelich, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Duesseldorf, Germany
| | - Sophia L. Göricke
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen University Hospital, Essen, Germany
| | - Jürgen R. Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, Essen, Germany
| |
Collapse
|
30
|
Liu Y, Cai J, Shen J, Dong W, Xu L, Fang M, Lin Y, Liu J, Ding Y, Qiao T, Li K. SS-31 efficacy in a mouse model of Friedreich ataxia by upregulation of frataxin expression. Hum Mol Genet 2021; 31:176-188. [PMID: 34387346 DOI: 10.1093/hmg/ddab232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 06/05/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Friedreich ataxia (FRDA) is a serious hereditary neurodegenerative disease, mostly accompanied with hypertrophic cardiomyopathy, caused by the reduced expression of frataxin (FXN). However, there is still no effective treatment. Our previous studies have shown that SS-31, a mitochondrion-targeted peptide, is capable to upregulate the expression of FXN and improve the mitochondrial function in cells derived from FRDA patients. To further explore the potential of SS-31, we used the GAA expansion-based models, including Y47 and YG8R (Fxn KIKO) mice, primary neurons and macrophages from the mice and cells derived from FRDA patients. After once-daily intraperitoneal injection of 1 mg/kg SS-31 for 1 month, we observed the significant improvement of motor function. The vacuolation in dorsal root ganglia, lesions in dentate nuclei and the lost thickness of myelin sheath of spinal cord were all repaired after SS-31 treatment. In addition, the hypertrophic cardiomyocytes and disarrayed abnormal Purkinje cells were dramatically reduced. Interestingly, we found that SS-31 treatment upregulated FXN expression not only at the translational levels as observed in cell culture but also at mRNA levels in vivo. Consequently, mitochondrial morphology and function were greatly improved in all tested tissues. Importantly, our data provided additional evidence that the maintenance of the therapeutic benefits needed continuous drug administration. Taken together, our findings have demonstrated the effectiveness of SS-31 treatment through the upregulation of FXN in vivo and offer guidance of the potential usage in the clinical application for FRDA.
Collapse
Affiliation(s)
- Yutong Liu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Jing Cai
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Jiaqi Shen
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Weichen Dong
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Li Xu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Maoxin Fang
- Department of Biological Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yishan Lin
- Department of Biological Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jiali Liu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Yibing Ding
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Tong Qiao
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Kuanyu Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| |
Collapse
|
31
|
Harding IH, Chopra S, Arrigoni F, Boesch S, Brunetti A, Cocozza S, Corben LA, Deistung A, Delatycki M, Diciotti S, Dogan I, Evangelisti S, França MC, Göricke SL, Georgiou-Karistianis N, Gramegna LL, Henry PG, Hernandez-Castillo CR, Hutter D, Jahanshad N, Joers JM, Lenglet C, Lodi R, Manners DN, Martinez ARM, Martinuzzi A, Marzi C, Mascalchi M, Nachbauer W, Pane C, Peruzzo D, Pisharady PK, Pontillo G, Reetz K, Rezende TJR, Romanzetti S, Saccà F, Scherfler C, Schulz JB, Stefani A, Testa C, Thomopoulos SI, Timmann D, Tirelli S, Tonon C, Vavla M, Egan GF, Thompson PM. Brain Structure and Degeneration Staging in Friedreich Ataxia: Magnetic Resonance Imaging Volumetrics from the ENIGMA-Ataxia Working Group. Ann Neurol 2021; 90:570-583. [PMID: 34435700 PMCID: PMC9292360 DOI: 10.1002/ana.26200] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 01/24/2023]
Abstract
Objective Friedreich ataxia (FRDA) is an inherited neurological disease defined by progressive movement incoordination. We undertook a comprehensive characterization of the spatial profile and progressive evolution of structural brain abnormalities in people with FRDA. Methods A coordinated international analysis of regional brain volume using magnetic resonance imaging data charted the whole‐brain profile, interindividual variability, and temporal staging of structural brain differences in 248 individuals with FRDA and 262 healthy controls. Results The brainstem, dentate nucleus region, and superior and inferior cerebellar peduncles showed the greatest reductions in volume relative to controls (Cohen d = 1.5–2.6). Cerebellar gray matter alterations were most pronounced in lobules I–VI (d = 0.8), whereas cerebral differences occurred most prominently in precentral gyri (d = 0.6) and corticospinal tracts (d = 1.4). Earlier onset age predicted less volume in the motor cerebellum (rmax = 0.35) and peduncles (rmax = 0.36). Disease duration and severity correlated with volume deficits in the dentate nucleus region, brainstem, and superior/inferior cerebellar peduncles (rmax = −0.49); subgrouping showed these to be robust and early features of FRDA, and strong candidates for further biomarker validation. Cerebral white matter abnormalities, particularly in corticospinal pathways, emerge as intermediate disease features. Cerebellar and cerebral gray matter loss, principally targeting motor and sensory systems, preferentially manifests later in the disease course. Interpretation FRDA is defined by an evolving spatial profile of neuroanatomical changes beyond primary pathology in the cerebellum and spinal cord, in line with its progressive clinical course. The design, interpretation, and generalization of research studies and clinical trials must consider neuroanatomical staging and associated interindividual variability in brain measures. ANN NEUROL 2021;90:570–583
Collapse
Affiliation(s)
- Ian H Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia
| | - Sidhant Chopra
- Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia.,School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Filippo Arrigoni
- Neuroimaging Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Sylvia Boesch
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Louise A Corben
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia.,Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville, VIC, Australia.,University of Melbourne, Parkville, VIC, Australia
| | - Andreas Deistung
- University Clinic and Outpatient Clinic for Radiology, Department for Radiation Medicine, University Hospital Halle (Saale), Halle (Saale), Germany.,Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Martin Delatycki
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Stefano Diciotti
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi,", University of Bologna, Bologna, Italy
| | - Imis Dogan
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute, Molecular Neuroscience and Neuroimaging, Research Center Jülich, Jülich, Germany
| | - Stefania Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marcondes C França
- Department of Neurology, School of Medical Sciences, University of Campinas, Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Sophia L Göricke
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Laura L Gramegna
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Institute of Neurological Sciences of Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - Pierre-Gilles Henry
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Carlos R Hernandez-Castillo
- Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada.,CONACYT-Institute of Neuroethology, University of Veracruz, Xalapa, Mexico
| | - Diane Hutter
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA
| | - James M Joers
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Christophe Lenglet
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Raffaele Lodi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - David N Manners
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alberto R M Martinez
- Department of Neurology, School of Medical Sciences, University of Campinas, Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Andrea Martinuzzi
- Scientific Institute, IRCCS Eugenio Medea, Conegliano-Pieve di Soligo Research Center, Conegliano, Italy
| | - Chiara Marzi
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi,", University of Bologna, Bologna, Italy
| | - Mario Mascalchi
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio,", University of Florence, Florence, Italy.,Clinical Epidemiology Unit, ISPRO, Oncological Network, Prevention and Research Institute, Florence, Italy
| | | | - Chiara Pane
- NSRO Department, University of Naples Federico II, Naples, Italy
| | - Denis Peruzzo
- Neuroimaging Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Pramod K Pisharady
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy.,Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute, Molecular Neuroscience and Neuroimaging, Research Center Jülich, Jülich, Germany
| | - Thiago J R Rezende
- Department of Neurology, School of Medical Sciences, University of Campinas, Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Sandro Romanzetti
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute, Molecular Neuroscience and Neuroimaging, Research Center Jülich, Jülich, Germany
| | - Francesco Saccà
- NSRO Department, University of Naples Federico II, Naples, Italy
| | - Christoph Scherfler
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.,Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - Jörg B Schulz
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute, Molecular Neuroscience and Neuroimaging, Research Center Jülich, Jülich, Germany
| | - Ambra Stefani
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudia Testa
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA
| | - Dagmar Timmann
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Stefania Tirelli
- Neuroimaging Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Caterina Tonon
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Institute of Neurological Sciences of Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - Marinela Vavla
- Scientific Institute, IRCCS Eugenio Medea, Conegliano-Pieve di Soligo Research Center, Conegliano, Italy
| | - Gary F Egan
- Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia.,School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA
| |
Collapse
|
32
|
Hu J, Chen X, Li M, Xu HL, Huang Z, Chen N, Tu Y, Chen Q, Gan S, Cao D. Pattern of cerebellar grey matter loss associated with ataxia severity in spinocerebellar ataxias type 3: a multi-voxel pattern analysis. Brain Imaging Behav 2021; 16:379-388. [PMID: 34417969 DOI: 10.1007/s11682-021-00511-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2021] [Indexed: 01/08/2023]
Abstract
Spinocerebellar ataxias type 3 (SCA3) patients are clinically characterized by progressive cerebellar ataxia combined with degeneration of the cerebellum. Previous neuroimaging studies have indicated ataxia severity associated with cerebellar atrophy using univariate methods. However, whether cerebellar atrophy patterns can be used to quantitatively predict ataxia severity in SCA3 patients at the individual level remains largely unexplored. In this study, a group of 66 SCA3 patients and 58 healthy controls were included. Disease duration and ataxia assessment, including the Scale for the Assessment and Rating of Ataxia (SARA) and the International Cooperative Ataxia Rating Scale (ICARS), were collected for SCA3 patients. The high-resolution T1-weighted MRI was obtained, and cerebellar grey matter (GM) was extracted using a spatially unbiased infratentorial template toolbox for all participants. We investigated the association between the pattern of cerebellar grey matter (GM) loss and ataxia assessment in SCA3 by using a multivariate machine learning technique. We found that the application of RVR allowed quantitative prediction of both SARA scores (leave-one-subject-out cross-validation: correlation = 0.56, p-value = 0.001; mean squared error (MSE) = 20.51, p-value = 0.001; ten-fold cross-validation: correlation = 0.52, p-value = 0.001; MSE = 21.00, p-value = 0.001) and ICARS score (leave-one-subject-out cross-validation: correlation = 0.59, p-value = 0.001; MSE = 139.69, p-value = 0.001; ten-fold cross-validation: correlation = 0.57, p-value = 0.001; MSE = 145.371, p-value = 0.001) with statistically significant accuracy. These results provide proof-of-concept that ataxia severity in SCA3 patients can be predicted by the alteration pattern of cerebellar GM using multi-voxel pattern analysis.
Collapse
Affiliation(s)
- Jianping Hu
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 ChaZhong Rd, Fuzhou, Fujian, 350005, People's Republic of China
| | - Xinyuan Chen
- Department of Rehabilitation, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, People's Republic of China
| | - Mengcheng Li
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 ChaZhong Rd, Fuzhou, Fujian, 350005, People's Republic of China
| | - Hao-Ling Xu
- Department of Neurology, 900TH Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Ziqiang Huang
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 ChaZhong Rd, Fuzhou, Fujian, 350005, People's Republic of China
| | - Naping Chen
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 ChaZhong Rd, Fuzhou, Fujian, 350005, People's Republic of China
| | - Yuqing Tu
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 ChaZhong Rd, Fuzhou, Fujian, 350005, People's Republic of China
| | - Qunlin Chen
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 ChaZhong Rd, Fuzhou, Fujian, 350005, People's Republic of China
| | - Shirui Gan
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, People's Republic of China. .,Fujian Institute of Neurology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| | - Dairong Cao
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 ChaZhong Rd, Fuzhou, Fujian, 350005, People's Republic of China. .,Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China. .,Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, 20 ChaZhong Rd, Fuzhou, 350005, Fujian, China.
| |
Collapse
|
33
|
Shin HR, Moon J, Lee WJ, Lee HS, Kim EY, Shin S, Lee ST, Jung KH, Park KI, Jung KY, Lee SK, Chu K. Serum neurofilament light chain as a severity marker for spinocerebellar ataxia. Sci Rep 2021; 11:13517. [PMID: 34188109 PMCID: PMC8241827 DOI: 10.1038/s41598-021-92855-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/16/2021] [Indexed: 01/27/2023] Open
Abstract
Since the serum neurofilament light (NfL) chain is known as a promising biomarker in neurodegenerative diseases, we aimed to evaluate serum NfL as a biomarker indicating neuronal damage in autosomal-dominant (AD) spinocerebellar ataxia (SCA). We reviewed patients diagnosed with AD SCA in the outpatient clinic of Seoul National University Hospital's (SNUH) Department of Neurology between May and August of 2019. We reviewed the demographic data, clinical characteristics, Scale for the Assessment and Rating of Ataxia (SARA) score, and brain magnetic resonance imaging (MRI) scans. The serum NfL was measured by electrochemiluminescence (ECL) immunoassay. Forty-nine patients with AD SCA were reviewed and their serum NfL level was determined. The median serum NfL level (109.5 pg/mL) was higher than control (41.1 pg/mL) (p-value < 0.001). Among the AD SCA patients, there was a positive correlation between the serum NfL level and the trinucleotide repeat number (r = 0.47, p-value = 0.001), disease duration (r = 0.35, p-value = 0.019), disease duration/age × trinucleotide repeat number (r = 0.330, p-value = 0.021), and SARA score (n = 33; r = 0.37, p-value = 0.033). This study shows that serum NfL is elevated in AD SCA patients and correlates with clinical severity.
Collapse
Affiliation(s)
- Hye-Rim Shin
- Department of Neurology, Dankook University Hospital, Cheonan, Chungnam, South Korea
| | - Jangsup Moon
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea.,Laboratory for Neurotherapeutics, Center for Medical Innovations, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Department of Genomic Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Woo-Jin Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea.,Laboratory for Neurotherapeutics, Center for Medical Innovations, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Center for Hospital Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Han Sang Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea.,Laboratory for Neurotherapeutics, Center for Medical Innovations, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Center for Hospital Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Eun Young Kim
- Department of Neurology, Chungnam National University Sejong Hospital, Sejong, South Korea
| | - Seoyi Shin
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea.,Laboratory for Neurotherapeutics, Center for Medical Innovations, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Soon-Tae Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea.,Laboratory for Neurotherapeutics, Center for Medical Innovations, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Keun-Hwa Jung
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea.,Laboratory for Neurotherapeutics, Center for Medical Innovations, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Kyung-Il Park
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea.,Laboratory for Neurotherapeutics, Center for Medical Innovations, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Department of Neurology, Seoul National University Healthcare System Gangnam Center, Seoul, South Korea
| | - Ki-Young Jung
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea
| | - Sang Kun Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea.,Laboratory for Neurotherapeutics, Center for Medical Innovations, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Kon Chu
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea. .,Laboratory for Neurotherapeutics, Center for Medical Innovations, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.
| |
Collapse
|
34
|
Abstract
Spinocerebellar ataxias type 3 (SCA3) and type 10 (SCA10) are the most prevalent in southern Brazil. To analyze the relationships between volumetric MRI changes and clinical and genetic findings in SCA3 and SCA10 patients. All patients in the study had a confirmed genetic diagnosis. Demographic data, ataxia severity (SARA score), and the size of the expanded alleles were evaluated. Nineteen SCA3 and 18 SCA10 patients were selected and compared with a similar number of healthy controls. Patient and control groups underwent the same MRI protocol. The standard FreeSurfer pipeline was used for the morphometric data. Our results show more affected brain structures (volume reductions) in SCA3 patients than in SCA10 patients (15 vs. 5 structures). Volume reductions in brain structures were also greater in the former. The main areas with significant volumetric reductions in the former were the cerebellum, basal ganglia, brain stem, and diencephalon, whereas in the latter, significant volume reductions were observed in the cerebellum and pallidum. While SARA scores and disease duration were more correlated with volume reduction in SCA10, in SCA3, the expansion length (CAGn) correlated positively with cerebellar WM, thalamus, brain stem, and total GM volumes. There was no correlation between expansion length (ATTCTn) and neuroimaging findings in SCA10. Neuroimaging results differed significantly between SCA3 and SCA10 patients and were compatible with the differences in clinical presentation, disease progression, and molecular findings.
Collapse
|
35
|
Chen ML, Lin CC, Rosenthal LS, Opal P, Kuo SH. Rating scales and biomarkers for CAG-repeat spinocerebellar ataxias: Implications for therapy development. J Neurol Sci 2021; 424:117417. [PMID: 33836316 DOI: 10.1016/j.jns.2021.117417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/26/2021] [Accepted: 03/23/2021] [Indexed: 01/18/2023]
Abstract
Spinocerebellar ataxias (SCAs) are a group of dominantly-inherited cerebellar ataxias, among which CAG expansion-related SCAs are most common. These diseases have very high penetrance with defined disease progression, and emerging therapies are being developed to provide either symptomatic or disease-modifying benefits. In clinical trial design, it is crucial to incorporate biomarkers to test target engagement or track disease progression in response to therapies, especially in rare diseases such as SCAs. In this article, we review the available rating scales and recent advances of biomarkers in CAG-repeat SCAs. We divided biomarkers into neuroimaging, body fluid, and physiological studies. Understanding the utility of each biomarker will facilitate the design of robust clinical trials to advance therapies for SCAs.
Collapse
Affiliation(s)
- Meng-Ling Chen
- Department of Neurology, Columbia University, New York, NY, USA; Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Chih-Chun Lin
- Department of Neurology, Columbia University, New York, NY, USA; Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Liana S Rosenthal
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Puneet Opal
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Cellular and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, NY, USA; Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA.
| |
Collapse
|
36
|
Cocozza S, Pontillo G, De Michele G, Di Stasi M, Guerriero E, Perillo T, Pane C, De Rosa A, Ugga L, Brunetti A. Conventional MRI findings in hereditary degenerative ataxias: a pictorial review. Neuroradiology 2021; 63:983-999. [PMID: 33733696 PMCID: PMC8213578 DOI: 10.1007/s00234-021-02682-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/25/2021] [Indexed: 12/15/2022]
Abstract
Purpose Cerebellar ataxias are a large and heterogeneous group of disorders. The evaluation of brain parenchyma via MRI plays a central role in the diagnostic assessment of these conditions, being mandatory to exclude the presence of other underlying causes in determining the clinical phenotype. Once these possible causes are ruled out, the diagnosis is usually researched in the wide range of hereditary or sporadic ataxias. Methods We here propose a review of the main clinical and conventional imaging findings of the most common hereditary degenerative ataxias, to help neuroradiologists in the evaluation of these patients. Results Hereditary degenerative ataxias are all usually characterized from a neuroimaging standpoint by the presence, in almost all cases, of cerebellar atrophy. Nevertheless, a proper assessment of imaging data, extending beyond the mere evaluation of cerebellar atrophy, evaluating also the pattern of volume loss as well as concomitant MRI signs, is crucial to achieve a proper diagnosis. Conclusion The integration of typical neuroradiological characteristics, along with patient’s clinical history and laboratory data, could allow the neuroradiologist to identify some conditions and exclude others, addressing the neurologist to the more appropriate genetic testing.
Collapse
Affiliation(s)
- Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy.
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy.,Department of Electrical Engineering and Information Technology, University of Naples "Federico II", Naples, Italy
| | - Giovanna De Michele
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Martina Di Stasi
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| | - Elvira Guerriero
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| | - Teresa Perillo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| | - Chiara Pane
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Anna De Rosa
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| |
Collapse
|
37
|
Bushart DD, Zalon AJ, Zhang H, Morrison LM, Guan Y, Paulson HL, Shakkottai VG, McLoughlin HS. Antisense Oligonucleotide Therapy Targeted Against ATXN3 Improves Potassium Channel-Mediated Purkinje Neuron Dysfunction in Spinocerebellar Ataxia Type 3. CEREBELLUM (LONDON, ENGLAND) 2021; 20:41-53. [PMID: 32789747 PMCID: PMC7930886 DOI: 10.1007/s12311-020-01179-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Spinocerebellar ataxia type 3 (SCA3) is the second-most common CAG repeat disease, caused by a glutamine-encoding expansion in the ATXN3 protein. SCA3 is characterized by spinocerebellar degeneration leading to progressive motor incoordination and early death. Previous studies suggest that potassium channel dysfunction underlies early abnormalities in cerebellar cortical Purkinje neuron firing in SCA3. However, cerebellar cortical degeneration is often modest both in the human disease and mouse models of SCA3, raising uncertainty about the role of cerebellar dysfunction in SCA3. Here, we address this question by investigating Purkinje neuron excitability in SCA3. In early-stage SCA3 mice, we confirm a previously identified increase in excitability of cerebellar Purkinje neurons and associate this excitability with reduced transcripts of two voltage-gated potassium (KV) channels, Kcna6 and Kcnc3, as well as motor impairment. Intracerebroventricular delivery of antisense oligonucleotides (ASO) to reduce mutant ATXN3 restores normal excitability to SCA3 Purkinje neurons and rescues transcript levels of Kcna6 and Kcnc3. Interestingly, while an even broader range of KV channel transcripts shows reduced levels in late-stage SCA3 mice, cerebellar Purkinje neuron physiology was not further altered despite continued worsening of motor impairment. These results suggest the progressive motor phenotype observed in SCA3 may not reflect ongoing changes in the cerebellar cortex but instead dysfunction of other neuronal structures within and beyond the cerebellum. Nevertheless, the early rescue of both KV channel expression and neuronal excitability by ASO treatment suggests that cerebellar cortical dysfunction contributes meaningfully to motor dysfunction in SCA3.
Collapse
Affiliation(s)
- David D. Bushart
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109
| | - Annie J. Zalon
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109
| | - Hongjiu Zhang
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109,Microsoft, Inc. Bellevue, WA 98004
| | - Logan M. Morrison
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109
| | - Yuanfang Guan
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109
| | - Henry L. Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109
| | - Vikram G. Shakkottai
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109,Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109,Address correspondence to: Vikram G. Shakkottai, 4009 BSRB, 109 Zina Pitcher Pl., Ann Arbor, MI 48109, ; Hayley S. McLoughlin, 4017 BSRB, 109 Zina Pitcher Pl., Ann Arbor, MI 48109,
| | - Hayley S. McLoughlin
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109,Address correspondence to: Vikram G. Shakkottai, 4009 BSRB, 109 Zina Pitcher Pl., Ann Arbor, MI 48109, ; Hayley S. McLoughlin, 4017 BSRB, 109 Zina Pitcher Pl., Ann Arbor, MI 48109,
| |
Collapse
|
38
|
Guo J, Chen H, Biswal BB, Guo X, Zhang H, Dai L, Zhang Y, Li L, Fan Y, Han S, Liu J, Feng L, Wang Q, Wang J, Liu C, Chen H. Gray matter atrophy patterns within the cerebellum-neostriatum-cortical network in SCA3. Neurology 2020; 95:e3036-e3044. [PMID: 33024025 DOI: 10.1212/wnl.0000000000010986] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To investigate the spatial patterns and the probable sequences of gray matter atrophy in spinocerebellar ataxia type 3 (SCA3). METHODS A total of 47 patients with SCA3 and 49 age- and sex-matched healthy controls participated in the study. High-resolution T1-weighted MRI were examined in all participants. We used the causal network of structural covariance (CasCN) to identify the sequence of gray matter atrophy patterns. This was achieved by applying Granger causality analysis to a gray matter atrophy staging scheme performed by voxel-based morphometry from the network level. RESULTS Participants in the premanifest stage of the disease showed the presence of focal gray matter atrophy in the vermis. As the disease duration increased, there was progressive gray matter atrophy in the cerebellar, neostriatum, frontal lobe, and parietal lobe. The patients with SCA3 also showed proximal and distal cortical atrophy sequences exerting from the vermis to the regions mainly located in the cerebellum-neostriatum-cortical network. CONCLUSION Our results, although preliminary in nature, indicate that the gray matter atrophy in SCA3 lies and extends to involve more regions according to distinct anatomical patterns, mainly in the cerebellum-neostriatum-cortical network. These findings advance our understanding on the natural history of structural damage in SCA3, while confirming known clinical features. This could provide unique insight into the ordered sequential process of regional brain atrophy that targets a particular network.
Collapse
Affiliation(s)
- Jing Guo
- From The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation (J.G., B.B.B., X.G., H.Z., L.L., Y.F., S.H., Huafu Chen), School of Medicine (J.G.), and School of Life Science and Technology, Center for Information in Medicine (X.G., H.Z., L.L., Y.F., S.H.), University of Electronic Science and Technology of China, Chengdu; Departments of Radiology (Hui Chen, Y.Z., J.L, J.W., C.L., Huafu Chen) and Laboratory Medicine (L.F.), Southwest Hospital, Department of Medical Genetics, College of Basic Medical Science (L.D.), and Department of Biomedical Engineering & Imaging Medicine (Q.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; and Department of Biomedical Engineering (B.B.B.), New Jersey Institute of Technology, Newark
| | - Hui Chen
- From The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation (J.G., B.B.B., X.G., H.Z., L.L., Y.F., S.H., Huafu Chen), School of Medicine (J.G.), and School of Life Science and Technology, Center for Information in Medicine (X.G., H.Z., L.L., Y.F., S.H.), University of Electronic Science and Technology of China, Chengdu; Departments of Radiology (Hui Chen, Y.Z., J.L, J.W., C.L., Huafu Chen) and Laboratory Medicine (L.F.), Southwest Hospital, Department of Medical Genetics, College of Basic Medical Science (L.D.), and Department of Biomedical Engineering & Imaging Medicine (Q.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; and Department of Biomedical Engineering (B.B.B.), New Jersey Institute of Technology, Newark.
| | - Bharat B Biswal
- From The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation (J.G., B.B.B., X.G., H.Z., L.L., Y.F., S.H., Huafu Chen), School of Medicine (J.G.), and School of Life Science and Technology, Center for Information in Medicine (X.G., H.Z., L.L., Y.F., S.H.), University of Electronic Science and Technology of China, Chengdu; Departments of Radiology (Hui Chen, Y.Z., J.L, J.W., C.L., Huafu Chen) and Laboratory Medicine (L.F.), Southwest Hospital, Department of Medical Genetics, College of Basic Medical Science (L.D.), and Department of Biomedical Engineering & Imaging Medicine (Q.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; and Department of Biomedical Engineering (B.B.B.), New Jersey Institute of Technology, Newark
| | - Xiaonan Guo
- From The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation (J.G., B.B.B., X.G., H.Z., L.L., Y.F., S.H., Huafu Chen), School of Medicine (J.G.), and School of Life Science and Technology, Center for Information in Medicine (X.G., H.Z., L.L., Y.F., S.H.), University of Electronic Science and Technology of China, Chengdu; Departments of Radiology (Hui Chen, Y.Z., J.L, J.W., C.L., Huafu Chen) and Laboratory Medicine (L.F.), Southwest Hospital, Department of Medical Genetics, College of Basic Medical Science (L.D.), and Department of Biomedical Engineering & Imaging Medicine (Q.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; and Department of Biomedical Engineering (B.B.B.), New Jersey Institute of Technology, Newark
| | - Huangbin Zhang
- From The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation (J.G., B.B.B., X.G., H.Z., L.L., Y.F., S.H., Huafu Chen), School of Medicine (J.G.), and School of Life Science and Technology, Center for Information in Medicine (X.G., H.Z., L.L., Y.F., S.H.), University of Electronic Science and Technology of China, Chengdu; Departments of Radiology (Hui Chen, Y.Z., J.L, J.W., C.L., Huafu Chen) and Laboratory Medicine (L.F.), Southwest Hospital, Department of Medical Genetics, College of Basic Medical Science (L.D.), and Department of Biomedical Engineering & Imaging Medicine (Q.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; and Department of Biomedical Engineering (B.B.B.), New Jersey Institute of Technology, Newark
| | - Limeng Dai
- From The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation (J.G., B.B.B., X.G., H.Z., L.L., Y.F., S.H., Huafu Chen), School of Medicine (J.G.), and School of Life Science and Technology, Center for Information in Medicine (X.G., H.Z., L.L., Y.F., S.H.), University of Electronic Science and Technology of China, Chengdu; Departments of Radiology (Hui Chen, Y.Z., J.L, J.W., C.L., Huafu Chen) and Laboratory Medicine (L.F.), Southwest Hospital, Department of Medical Genetics, College of Basic Medical Science (L.D.), and Department of Biomedical Engineering & Imaging Medicine (Q.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; and Department of Biomedical Engineering (B.B.B.), New Jersey Institute of Technology, Newark
| | - Yuhan Zhang
- From The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation (J.G., B.B.B., X.G., H.Z., L.L., Y.F., S.H., Huafu Chen), School of Medicine (J.G.), and School of Life Science and Technology, Center for Information in Medicine (X.G., H.Z., L.L., Y.F., S.H.), University of Electronic Science and Technology of China, Chengdu; Departments of Radiology (Hui Chen, Y.Z., J.L, J.W., C.L., Huafu Chen) and Laboratory Medicine (L.F.), Southwest Hospital, Department of Medical Genetics, College of Basic Medical Science (L.D.), and Department of Biomedical Engineering & Imaging Medicine (Q.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; and Department of Biomedical Engineering (B.B.B.), New Jersey Institute of Technology, Newark
| | - Liang Li
- From The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation (J.G., B.B.B., X.G., H.Z., L.L., Y.F., S.H., Huafu Chen), School of Medicine (J.G.), and School of Life Science and Technology, Center for Information in Medicine (X.G., H.Z., L.L., Y.F., S.H.), University of Electronic Science and Technology of China, Chengdu; Departments of Radiology (Hui Chen, Y.Z., J.L, J.W., C.L., Huafu Chen) and Laboratory Medicine (L.F.), Southwest Hospital, Department of Medical Genetics, College of Basic Medical Science (L.D.), and Department of Biomedical Engineering & Imaging Medicine (Q.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; and Department of Biomedical Engineering (B.B.B.), New Jersey Institute of Technology, Newark.
| | - Yunshuang Fan
- From The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation (J.G., B.B.B., X.G., H.Z., L.L., Y.F., S.H., Huafu Chen), School of Medicine (J.G.), and School of Life Science and Technology, Center for Information in Medicine (X.G., H.Z., L.L., Y.F., S.H.), University of Electronic Science and Technology of China, Chengdu; Departments of Radiology (Hui Chen, Y.Z., J.L, J.W., C.L., Huafu Chen) and Laboratory Medicine (L.F.), Southwest Hospital, Department of Medical Genetics, College of Basic Medical Science (L.D.), and Department of Biomedical Engineering & Imaging Medicine (Q.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; and Department of Biomedical Engineering (B.B.B.), New Jersey Institute of Technology, Newark
| | - Shaoqiang Han
- From The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation (J.G., B.B.B., X.G., H.Z., L.L., Y.F., S.H., Huafu Chen), School of Medicine (J.G.), and School of Life Science and Technology, Center for Information in Medicine (X.G., H.Z., L.L., Y.F., S.H.), University of Electronic Science and Technology of China, Chengdu; Departments of Radiology (Hui Chen, Y.Z., J.L, J.W., C.L., Huafu Chen) and Laboratory Medicine (L.F.), Southwest Hospital, Department of Medical Genetics, College of Basic Medical Science (L.D.), and Department of Biomedical Engineering & Imaging Medicine (Q.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; and Department of Biomedical Engineering (B.B.B.), New Jersey Institute of Technology, Newark
| | - Juan Liu
- From The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation (J.G., B.B.B., X.G., H.Z., L.L., Y.F., S.H., Huafu Chen), School of Medicine (J.G.), and School of Life Science and Technology, Center for Information in Medicine (X.G., H.Z., L.L., Y.F., S.H.), University of Electronic Science and Technology of China, Chengdu; Departments of Radiology (Hui Chen, Y.Z., J.L, J.W., C.L., Huafu Chen) and Laboratory Medicine (L.F.), Southwest Hospital, Department of Medical Genetics, College of Basic Medical Science (L.D.), and Department of Biomedical Engineering & Imaging Medicine (Q.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; and Department of Biomedical Engineering (B.B.B.), New Jersey Institute of Technology, Newark.
| | - Liu Feng
- From The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation (J.G., B.B.B., X.G., H.Z., L.L., Y.F., S.H., Huafu Chen), School of Medicine (J.G.), and School of Life Science and Technology, Center for Information in Medicine (X.G., H.Z., L.L., Y.F., S.H.), University of Electronic Science and Technology of China, Chengdu; Departments of Radiology (Hui Chen, Y.Z., J.L, J.W., C.L., Huafu Chen) and Laboratory Medicine (L.F.), Southwest Hospital, Department of Medical Genetics, College of Basic Medical Science (L.D.), and Department of Biomedical Engineering & Imaging Medicine (Q.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; and Department of Biomedical Engineering (B.B.B.), New Jersey Institute of Technology, Newark
| | - Qiannan Wang
- From The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation (J.G., B.B.B., X.G., H.Z., L.L., Y.F., S.H., Huafu Chen), School of Medicine (J.G.), and School of Life Science and Technology, Center for Information in Medicine (X.G., H.Z., L.L., Y.F., S.H.), University of Electronic Science and Technology of China, Chengdu; Departments of Radiology (Hui Chen, Y.Z., J.L, J.W., C.L., Huafu Chen) and Laboratory Medicine (L.F.), Southwest Hospital, Department of Medical Genetics, College of Basic Medical Science (L.D.), and Department of Biomedical Engineering & Imaging Medicine (Q.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; and Department of Biomedical Engineering (B.B.B.), New Jersey Institute of Technology, Newark.
| | - Jian Wang
- From The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation (J.G., B.B.B., X.G., H.Z., L.L., Y.F., S.H., Huafu Chen), School of Medicine (J.G.), and School of Life Science and Technology, Center for Information in Medicine (X.G., H.Z., L.L., Y.F., S.H.), University of Electronic Science and Technology of China, Chengdu; Departments of Radiology (Hui Chen, Y.Z., J.L, J.W., C.L., Huafu Chen) and Laboratory Medicine (L.F.), Southwest Hospital, Department of Medical Genetics, College of Basic Medical Science (L.D.), and Department of Biomedical Engineering & Imaging Medicine (Q.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; and Department of Biomedical Engineering (B.B.B.), New Jersey Institute of Technology, Newark.
| | - Chen Liu
- From The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation (J.G., B.B.B., X.G., H.Z., L.L., Y.F., S.H., Huafu Chen), School of Medicine (J.G.), and School of Life Science and Technology, Center for Information in Medicine (X.G., H.Z., L.L., Y.F., S.H.), University of Electronic Science and Technology of China, Chengdu; Departments of Radiology (Hui Chen, Y.Z., J.L, J.W., C.L., Huafu Chen) and Laboratory Medicine (L.F.), Southwest Hospital, Department of Medical Genetics, College of Basic Medical Science (L.D.), and Department of Biomedical Engineering & Imaging Medicine (Q.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; and Department of Biomedical Engineering (B.B.B.), New Jersey Institute of Technology, Newark.
| | - Huafu Chen
- From The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation (J.G., B.B.B., X.G., H.Z., L.L., Y.F., S.H., Huafu Chen), School of Medicine (J.G.), and School of Life Science and Technology, Center for Information in Medicine (X.G., H.Z., L.L., Y.F., S.H.), University of Electronic Science and Technology of China, Chengdu; Departments of Radiology (Hui Chen, Y.Z., J.L, J.W., C.L., Huafu Chen) and Laboratory Medicine (L.F.), Southwest Hospital, Department of Medical Genetics, College of Basic Medical Science (L.D.), and Department of Biomedical Engineering & Imaging Medicine (Q.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; and Department of Biomedical Engineering (B.B.B.), New Jersey Institute of Technology, Newark.
| |
Collapse
|
39
|
Wan N, Chen Z, Wan L, Tang B, Jiang H. MR Imaging of SCA3/MJD. Front Neurosci 2020; 14:749. [PMID: 32848545 PMCID: PMC7417615 DOI: 10.3389/fnins.2020.00749] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022] Open
Abstract
Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is a progressive autosomal dominantly inherited cerebellar ataxia characterized by the aggregation of polyglutamine-expanded protein within neuronal nuclei in the brain, which can lead to brain damage that precedes the onset of clinical manifestations. Magnetic resonance imaging (MRI) techniques such as morphometric MRI, diffusion tensor imaging (DTI), functional magnetic resonance imaging (fMRI), and magnetic resonance spectroscopy (MRS) have gained increasing attention as non-invasive and quantitative methods for the assessment of structural and functional alterations in clinical SCA3/MJD patients as well as preclinical carriers. Morphometric MRI has demonstrated typical patterns of atrophy or volume loss in the cerebellum and brainstem with extensive lesions in some supratentorial areas. DTI has detected widespread microstructural alterations in brain white matter, which indicate disrupted brain anatomical connectivity. Task-related fMRI has presented unusual brain activation patterns within the cerebellum and some extracerebellar tissue, reflecting the decreased functional connectivity of these brain regions in SCA3/MJD subjects. MRS has revealed abnormal neurochemical profiles, such as the levels or ratios of N-acetyl aspartate, choline, and creatine, in both clinical cases and preclinical cases before the alterations in brain anatomical structure. Moreover, a number of studies have reported correlations of MR imaging alterations with clinical and genetic features. The utility of these MR imaging techniques can help to identify preclinical SCA3/MJD carriers, monitor disease progression, evaluate response to therapeutic interventions, and illustrate the pathophysiological mechanisms underlying the occurrence, development, and prognosis of SCA3/MJD.
Collapse
Affiliation(s)
- Na Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Linlin Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
40
|
Straub S, Mangesius S, Emmerich J, Indelicato E, Nachbauer W, Degenhardt KS, Ladd ME, Boesch S, Gizewski ER. Toward quantitative neuroimaging biomarkers for Friedreich's ataxia at 7 Tesla: Susceptibility mapping, diffusion imaging, R 2 and R 1 relaxometry. J Neurosci Res 2020; 98:2219-2231. [PMID: 32731306 PMCID: PMC7590084 DOI: 10.1002/jnr.24701] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/12/2020] [Accepted: 07/08/2020] [Indexed: 01/21/2023]
Abstract
Friedreich's ataxia (FRDA) is a rare genetic disorder leading to degenerative processes. So far, no effective treatment has been found. Therefore, it is important to assist the development of medication with imaging biomarkers reflecting disease status and progress. Ten FRDA patients (mean age 37 ± 14 years; four female) and 10 age- and sex-matched controls were included. Acquisition of magnetic resonance imaging (MRI) data for quantitative susceptibility mapping, R1 , R2 relaxometry and diffusion imaging was performed at 7 Tesla. Results of volume of interest (VOI)-based analyses of the quantitative data were compared with a voxel-based morphometry (VBM) evaluation. Differences between patients and controls were assessed using the analysis of covariance (ANCOVA; p < 0.01) with age and sex as covariates, effect size of group differences, and correlations with disease characteristics with Spearman correlation coefficient. For the VBM analysis, a statistical threshold of 0.001 for uncorrected and 0.05 for corrected p-values was used. Statistically significant differences between FRDA patients and controls were found in five out of twelve investigated structures, and statistically significant correlations with disease characteristics were revealed. Moreover, VBM revealed significant white matter atrophy within regions of the brainstem, and the cerebellum. These regions overlapped partially with brain regions for which significant differences between healthy controls and patients were found in the VOI-based quantitative MRI evaluation. It was shown that two independent analyses provided overlapping results. Moreover, positive results on correlations with disease characteristics were found, indicating that these quantitative MRI parameters could provide more detailed information and assist the search for effective treatments.
Collapse
Affiliation(s)
- Sina Straub
- Division of Medical Physics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephanie Mangesius
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria.,Neuroimaging Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - Julian Emmerich
- Division of Medical Physics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | | | - Wolfgang Nachbauer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Katja S Degenhardt
- Division of Medical Physics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Mark E Ladd
- Division of Medical Physics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.,Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Sylvia Boesch
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Elke R Gizewski
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria.,Neuroimaging Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
41
|
Nakata Y, Sakamoto A, Kawata A. Neuromelanin imaging analyses of the substantia nigra in patients with Machado-Joseph disease. Neuroradiology 2020; 62:1433-1439. [DOI: 10.1007/s00234-020-02479-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/11/2020] [Indexed: 12/31/2022]
|
42
|
Lin YC, Hsu CCH, Wang PN, Lin CP, Chang LH. The Relationship Between Zebrin Expression and Cerebellar Functions: Insights From Neuroimaging Studies. Front Neurol 2020; 11:315. [PMID: 32390933 PMCID: PMC7189018 DOI: 10.3389/fneur.2020.00315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/31/2020] [Indexed: 12/26/2022] Open
Abstract
The cerebellum has long been known to play an important role in motor and balance control, and accumulating evidence has revealed that it is also involved in multiple cognitive functions. However, the evidence from neuroimaging studies and clinical observations is not well-integrated at the anatomical or molecular level. The goal of this review is to summarize and link different aspects of the cerebellum, including molecular patterning, functional topography images, and clinical cerebellar disorders. More specifically, we explored the potential relationships between the cerebrocerebellar connections and the expression of particular molecules and, in particular, zebrin stripe (a Purkinje cell-specific antibody molecular marker, which is a glycolytic enzyme expressed in cerebellar Purkinje cells). We hypothesized that the zebrin patterns contribute to cerebellar functional maps—especially when cerebrocerebellar circuit changes exist in cerebellar-related diseases. The zebrin stripe receives input from climbing fibers and project to different parts of the cerebral cortex through its cerebrocerebellar connection. Since zebrin-positive cerebellar Purkinje cells are resistant to excitotoxicity and cell injury while zebrin-negative zones are more prone to damage, we suggest that motor control dysfunction symptoms such as ataxia and dysmetria present earlier and are easier to observe than non-ataxia symptoms due to zebrin-negative cell damage by cerebrocerebellar connections. In summary, we emphasize that the molecular zebrin patterns provide the basis for a new viewpoint from which to investigate cerebellar functions and clinico-neuroanatomic correlations.
Collapse
Affiliation(s)
- Yi-Cheng Lin
- Taipei Municipal Gan-Dau Hospital, Taipei, Taiwan.,Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Neuroscience, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Chin Heather Hsu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Ning Wang
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Li-Hung Chang
- Institute of Neuroscience, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan.,Education Center for Humanities and Social Sciences, School of Humanities and Social Sciences, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
43
|
Pattern of Cerebellar Atrophy in Friedreich's Ataxia-Using the SUIT Template. THE CEREBELLUM 2019; 18:435-447. [PMID: 30771164 DOI: 10.1007/s12311-019-1008-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Whole-brain voxel-based morphometry (VBM) studies revealed patterns of patchy atrophy within the cerebellum of Friedreich's ataxia patients, missing clear clinico-anatomic correlations. Studies so far are lacking an appropriate registration to the infratentorial space. To circumvent these limitations, we applied a high-resolution atlas template of the human cerebellum and brainstem (SUIT template) to characterize regional cerebellar atrophy in Friedreich's ataxia (FRDA) on 3-T MRI data. We used a spatially unbiased voxel-based morphometry approach together with T2-based manual segmentation, T2 histogram analysis, and atlas generation of the dentate nuclei in a representative cohort of 18 FRDA patients and matched healthy controls. We demonstrate that the cerebellar volume in FRDA is generally not significantly different from healthy controls but mild lobular atrophy develops beyond normal aging. The medial parts of lobule VI, housing the somatotopic representation of tongue and lips, are the major site of this lobular atrophy, which possibly reflects speech impairment. Extended white matter affection correlates with disease severity across and beyond the cerebellar inflow and outflow tracts. The dentate nucleus, as a major site of cerebellar degeneration, shows a mean volume loss of about 30%. Remarkably, not the atrophy but the T2 signal decrease of the dentate nuclei highly correlates with disease duration and severity.
Collapse
|
44
|
Nóbrega C, Mendonça L, Marcelo A, Lamazière A, Tomé S, Despres G, Matos CA, Mechmet F, Langui D, den Dunnen W, de Almeida LP, Cartier N, Alves S. Restoring brain cholesterol turnover improves autophagy and has therapeutic potential in mouse models of spinocerebellar ataxia. Acta Neuropathol 2019; 138:837-858. [PMID: 31197505 DOI: 10.1007/s00401-019-02019-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 04/04/2019] [Accepted: 04/20/2019] [Indexed: 12/31/2022]
Abstract
Spinocerebellar ataxias (SCAs) are devastating neurodegenerative disorders for which no curative or preventive therapies are available. Deregulation of brain cholesterol metabolism and impaired brain cholesterol turnover have been associated with several neurodegenerative diseases. SCA3 or Machado-Joseph disease (MJD) is the most prevalent ataxia worldwide. We show that cholesterol 24-hydroxylase (CYP46A1), the key enzyme allowing efflux of brain cholesterol and activating brain cholesterol turnover, is decreased in cerebellar extracts from SCA3 patients and SCA3 mice. We investigated whether reinstating CYP46A1 expression would improve the disease phenotype of SCA3 mouse models. We show that administration of adeno-associated viral vectors encoding CYP46A1 to a lentiviral-based SCA3 mouse model reduces mutant ataxin-3 accumulation, which is a hallmark of SCA3, and preserves neuronal markers. In a transgenic SCA3 model with a severe motor phenotype we confirm that cerebellar delivery of AAVrh10-CYP46A1 is strongly neuroprotective in adult mice with established pathology. CYP46A1 significantly decreases ataxin-3 protein aggregation, alleviates motor impairments and improves SCA3-associated neuropathology. In particular, improvement in Purkinje cell number and reduction of cerebellar atrophy are observed in AAVrh10-CYP46A1-treated mice. Conversely, we show that knocking-down CYP46A1 in normal mouse brain impairs cholesterol metabolism, induces motor deficits and produces strong neurodegeneration with impairment of the endosomal-lysosomal pathway, a phenotype closely resembling that of SCA3. Remarkably, we demonstrate for the first time both in vitro, in a SCA3 cellular model, and in vivo, in mouse brain, that CYP46A1 activates autophagy, which is impaired in SCA3, leading to decreased mutant ataxin-3 deposition. More broadly, we show that the beneficial effect of CYP46A1 is also observed with mutant ataxin-2 aggregates. Altogether, our results confirm a pivotal role for CYP46A1 and brain cholesterol metabolism in neuronal function, pointing to a key contribution of the neuronal cholesterol pathway in mechanisms mediating clearance of aggregate-prone proteins. This study identifies CYP46A1 as a relevant therapeutic target not only for SCA3 but also for other SCAs.
Collapse
Affiliation(s)
- Clévio Nóbrega
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
- Centre for Biomedical Research, University of Algarve, Faro, Portugal
- Algarve Biomedical Center, University of Algarve, Faro, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Liliana Mendonça
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Adriana Marcelo
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
- Centre for Biomedical Research, University of Algarve, Faro, Portugal
| | - Antonin Lamazière
- INSERM, Saint-Antoine Research Center, Sorbonne Université, Faculté de Médecine, AP-HP, Hôpital Saint Antoine, Département PM2, Paris, France
| | - Sandra Tomé
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Gaetan Despres
- INSERM, Saint-Antoine Research Center, Sorbonne Université, Faculté de Médecine, AP-HP, Hôpital Saint Antoine, Département PM2, Paris, France
| | - Carlos A Matos
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
- Centre for Biomedical Research, University of Algarve, Faro, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Fatich Mechmet
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
- Centre for Biomedical Research, University of Algarve, Faro, Portugal
| | - Dominique Langui
- Institut du Cerveau et de la Moelle épinière, ICM, INSERM U1127, CNRS UMR7225, Sorbonne Université, Hôpital Pitié-Salpêtrière, 47 bd de l'Hôpital, 75013, Paris, France
| | - Wilfred den Dunnen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Luis Pereira de Almeida
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal.
| | - Nathalie Cartier
- INSERM U1169 92265 Fontenay aux Roses and Université Paris-Sud, Université Paris Saclay, 91400, Orsay, France.
- INSERM U1127, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, 47 bd de l'hôpital, 75013, Paris, France.
| | - Sandro Alves
- Brainvectis, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, 47 boulevard de l'Hôpital Paris, 75646, Paris, CEDEX 13, France.
| |
Collapse
|
45
|
Cerebellum and cognition in Friedreich ataxia: a voxel-based morphometry and volumetric MRI study. J Neurol 2019; 267:350-358. [PMID: 31641877 DOI: 10.1007/s00415-019-09582-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/25/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Recent studies have suggested the presence of a significant atrophy affecting the cerebellar cortex in Friedreich ataxia (FRDA) patients, an area of the brain long considered to be relatively spared by neurodegenerative phenomena. Cognitive deficits, which occur in FRDA patients, have been associated with cerebellar volume loss in other conditions. The aim of this study was to investigate the correlation between cerebellar volume and cognition in FRDA. METHODS Nineteen FRDA patients and 20 healthy controls (HC) were included in this study and evaluated via a neuropsychological examination. Cerebellar global and lobular volumes were computed using the Spatially Unbiased Infratentorial Toolbox (SUIT). Furthermore, a cerebellar voxel-based morphometry (VBM) analysis was also carried out. Correlations between MRI metrics and clinical data were tested via partial correlation analysis. RESULTS FRDA patients showed a significant reduction of the total cerebellar volume (p = 0.004), significantly affecting the Lobule IX (p = 0.001). At the VBM analysis, we found a cluster of significant reduced GM density encompassing the entire lobule IX (p = 0.003). When correlations were probed, we found a direct correlation between Lobule IX volume and impaired visuo-spatial functions (r = 0.58, p = 0.02), with a similar correlation that was found between the same altered function and results obtained at the VBM (r = 0.52; p = 0.03). CONCLUSIONS With two different image analysis techniques, we confirmed the presence of cerebellar volume loss in FRDA, mainly affecting the posterior lobe. In particular, Lobule IX atrophy correlated with worse visuo-spatial abilities, further expanding our knowledge about the physiopathology of cognitive impairment in FRDA.
Collapse
|
46
|
Hu ZW, Yang ZH, Zhang S, Liu YT, Yang J, Wang YL, Mao CY, Zhang QM, Shi CH, Xu YM. Carboxyl Terminus of Hsp70-Interacting Protein Is Increased in Serum and Cerebrospinal Fluid of Patients With Spinocerebellar Ataxia Type 3. Front Neurol 2019; 10:1094. [PMID: 31749756 PMCID: PMC6843056 DOI: 10.3389/fneur.2019.01094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 09/30/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Spinocerebellar ataxia type 3 (SCA3)/Machado-Joseph disease (MJD) is the most common type of autosomal dominant ataxia. Like other neurodegenerative diseases, is characterized by the dysfunction of the protein quality control (PQC) system. The carboxyl terminus of the Hsp70-interacting protein (CHIP), an important component of PQC, participates in the clearance of misfolded proteins to maintain cellular homeostasis. While no cure for SCA3 exists, the disease progresses slowly. Thus, the identification of biomarkers that indicate the severity and prognosis of this disease would be valuable. Methods: In this exploratory case-control study, we quantitatively evaluated the concentrations of CHIP in the sera of 80 patients with SCA3 and 80 age and sex-matched controls, using the enzyme-linked immunosorbent assay (ELISA). CHIP levels in the cerebrospinal fluid (CSF) donated by six patients and six healthy volunteers, who were matched for sex and age were also measured. All the baseline data were collected, and the patients underwent clinical evaluation. The correlations between CHIP levels and several clinical measurements were analyzed. Results: The serum CHIP level in the SCA3 group was (80.93 ± 28.68) ng/mL, which was significantly higher than those in the control group [(40.37 ± 18.55) ng/mL]. Similar results were observed for the CSF [(164.59 ± 42.99) ng/mL and (37.47 ± 7.85) ng/mL, respectively]. CSF CHIP levels were significantly higher than the serum CHIP levels in the SCA3 group but not in the control group. The Dunn-Bonferroni post-hoc for Kruskal-Wallis test revealed no significant difference between the serum and CSF of the patients and the control group. Multivariate linear regression showed that serum CHIP levels correlated positively with disease severity, as measured by the Scale for the Assessment and Rating of Ataxia (SARA) and the International Cooperative Ataxia Rating Scale (ICARS). Moreover, we found that serum CHIP levels were moderately correlated with age in healthy controls. Conclusion: The present study determined that CHIP levels increased significantly in the serum and CSF of patients with SCA3 and that serum CHIP levels were corelated with disease severity. Thus, CHIP is a promising biomarker for SCA3.
Collapse
Affiliation(s)
- Zheng-Wei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zhi-Hua Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yu-Tao Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yan-Lin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Cheng-Yuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Qi-Meng Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Chang-He Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yu-Ming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
47
|
Sugiyama A, Sato N, Kimura Y, Fujii H, Maikusa N, Shigemoto Y, Suzuki F, Morimoto E, Koide K, Takahashi Y, Matsuda H, Kuwabara S. Quantifying iron deposition in the cerebellar subtype of multiple system atrophy and spinocerebellar ataxia type 6 by quantitative susceptibility mapping. J Neurol Sci 2019; 407:116525. [PMID: 31639532 DOI: 10.1016/j.jns.2019.116525] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/14/2019] [Accepted: 10/06/2019] [Indexed: 01/08/2023]
Abstract
We used quantitative susceptibility mapping (QSM) to assess the brain iron deposition in 28 patients with the cerebellar subtype of multiple system atrophy (MSA-C), nine patients with spinocerebellar ataxia type 6 (SCA6), and 23 healthy controls. Two reviewers independently measured the mean QSM values in brain structures including the putamen, globus pallidus, caudate nucleus, red nucleus, substantia nigra, and cerebellar dentate nucleus. A receiver operating characteristics (ROC) analysis was performed to assess the diagnostic usefulness of the QSM measurements. The QSM values in the substantia nigra were significantly higher in the MSA-C group compared to the HC group (p = .007). The QSM values in the cerebellar dentate nucleus were significantly higher in MSA-C than those in the SCA6 and HC groups (p < .001), and significantly lower in the SCA6 patients compared to the HCs (p = .027). The QSM values in the cerebellar dentate nucleus were correlated with disease duration in MSA-C, but inversely correlated with disease duration in SCA6. In the ROC analysis, the QSM values in the cerebellar dentate nucleus showed excellent accuracy for differentiating MSA-C from SCA6 (area under curve [AUC], 0.925), and good accuracy for differentiating MSA-C from healthy controls (AUC 0.834). QSM can identify increased susceptibility of the substantia nigra and cerebellar dentate nucleus in MSA-C patients. These results suggest that an increase in iron accumulation in the cerebellar dentate nucleus may be secondary to the neurodegeneration associated with MSA-C.
Collapse
Affiliation(s)
- Atsuhiko Sugiyama
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan; Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Noriko Sato
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | - Yukio Kimura
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroyuki Fujii
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Norihide Maikusa
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yoko Shigemoto
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Fumio Suzuki
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Emiko Morimoto
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kyosuke Koide
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroshi Matsuda
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
48
|
Meira AT, Arruda WO, Ono SE, Neto ADC, Raskin S, Camargo CHF, Teive HAG. Neuroradiological Findings in the Spinocerebellar Ataxias. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2019; 9:tre-09-682. [PMID: 31632837 PMCID: PMC6765228 DOI: 10.7916/tohm.v0.682] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/02/2019] [Indexed: 01/19/2023]
Abstract
Background The spinocerebellar ataxias (SCAs) are a group of autosomal dominant degenerative diseases characterized by cerebellar ataxia. Classified according to gene discovery, specific features of the SCAs – clinical, laboratorial, and neuroradiological (NR) – can facilitate establishing the diagnosis. The purpose of this study was to review the particular NR abnormalities in the main SCAs. Methods We conducted a literature search on this topic. Results The main NR characteristics of brain imaging (magnetic resonance imaging or computerized tomography) in SCAs were: (1) pure cerebellar atrophy; (2) cerebellar atrophy with other findings (e.g., pontine, olivopontocerebellar, spinal, cortical, or subcortical atrophy; “hot cross bun sign”, and demyelinating lesions); (3) selective cerebellar atrophy; (4) no cerebellar atrophy. Discussion The main NR abnormalities in the commonest SCAs, are not pathognomonic of any specific genotype, but can be helpful in limiting the diagnostic options. We are progressing to a better understanding of the SCAs, not only genetically, but also pathologically; NR is helpful in the challenge of diagnosing the specific genotype of SCA.
Collapse
Affiliation(s)
- Alex Tiburtino Meira
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, BR
| | - Walter Oleschko Arruda
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, BR
| | | | - Arnolfo de Carvalho Neto
- DAPI, Diagnóstico Avançado por Imagem, Curitiba, BR.,Neurological Diseases Group, Graduate Program of Internal Medicine, Hospital de Clínicas, Federal University of Paraná, Curitiba, BR
| | - Salmo Raskin
- Genetika - Centro de aconselhamento e laboratório de genética, Curitiba, BR
| | - Carlos Henrique F Camargo
- Neurological Diseases Group, Graduate Program of Internal Medicine, Hospital de Clínicas, Federal University of Paraná, Curitiba, BR
| | - Hélio Afonso G Teive
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, BR.,Neurological Diseases Group, Graduate Program of Internal Medicine, Hospital de Clínicas, Federal University of Paraná, Curitiba, BR
| |
Collapse
|
49
|
Sayah S, Rotgé JY, Francisque H, Gargiulo M, Czernecki V, Justo D, Lahlou-Laforet K, Hahn V, Pandolfo M, Pelissolo A, Fossati P, Durr A. Personality and Neuropsychological Profiles in Friedreich Ataxia. THE CEREBELLUM 2019; 17:204-212. [PMID: 29086357 DOI: 10.1007/s12311-017-0890-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Friedreich ataxia, an autosomal recessive mitochondrial disease, is the most frequent inherited ataxia. Many studies have attempted to identify cognitive and affective changes associated with the disease, but conflicting results have been obtained, depending on the tests used and because many of the samples studied were very small. We investigated personality and neuropsychological characteristics in a cohort of 47 patients with genetically confirmed disease. The neuropsychological battery assessed multiple cognition domains: processing speed, attention, working memory, executive functions, verbal memory, vocabulary, visual reasoning, emotional recognition, and social cognition. Personality was assessed with the Temperament and Character Inventory, and depressive symptoms were assessed with the Beck Depression Inventory. We found deficits of sustained attention, processing speed, semantic capacities, and verbal fluency only partly attributable to motor deficit or depressed mood. Visual reasoning, memory, and learning were preserved. Emotional processes and social cognition were unimpaired. We also detected a change in automatic processes, such as reading. Personality traits were characterized by high persistence and low self-transcendence. The mild cognitive impairment observed may be a developmental rather than degenerative problem, due to early cerebellum dysfunction, with the impairment of cognitive and emotional processing. Disease manifestations at crucial times for personality development may also have an important impact on personality traits.
Collapse
Affiliation(s)
- Sabrina Sayah
- AP-HP, Genetic Department, Pitié-Salpêtrière University Hospital, Paris, France.,ICM, Institut du Cerveau et de la Moelle Epinière, INSERM U1127, CNRS UMR7225, Sorbonne Universités - UPMC Université Paris VI UMR_S1127, Paris, France
| | - Jean-Yves Rotgé
- ICM, Institut du Cerveau et de la Moelle Epinière, INSERM U1127, CNRS UMR7225, Sorbonne Universités - UPMC Université Paris VI UMR_S1127, Paris, France.,AP-HP, Service de Psychiatrie, Pitié-Salpêtrière University Hospital, Paris, France
| | - Hélène Francisque
- APHP, Hôpitaux Universitaires Saint Louis Lariboisière Fernand-Widal, Paris, France
| | - Marcela Gargiulo
- AP-HP, Genetic Department, Pitié-Salpêtrière University Hospital, Paris, France.,Institut de Myologie, Pitié-Salpêtrière University Hospital, Paris, France.,Laboratoire de Psychologie Clinique et Psychopathologie, EA 4056, Université Paris Descartes, Sorbonne Paris Cité, Institut de Psychologie, Paris, France
| | - Virginie Czernecki
- AP-HP, Département des Maladies du Système Nerveux, Pitié-Salpêtrière University Hospital, Paris, France
| | - Damian Justo
- Unité de neurologie de la Mémoire et du Langage, Centre Hospitalier Sainte-Anne, Paris, France
| | - Khadija Lahlou-Laforet
- Unité de Psychologie et Psychiatrie de Liaison et d'Urgences, Hôpital Européen Georges Pompidou, Service de Psychiatrie Adulte et du Sujet Agé, Hôpitaux Universitaires Paris-Ouest, Paris, France
| | - Valérie Hahn
- Unité de neurologie de la Mémoire et du Langage, Centre Hospitalier Sainte-Anne, Paris, France
| | - Massimo Pandolfo
- Service de Neurologie, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Antoine Pelissolo
- AP-HP, Service de Psychiatrie, Hôpitaux Universitaires Henri-Mondor, Créteil, France
| | - Philippe Fossati
- ICM, Institut du Cerveau et de la Moelle Epinière, INSERM U1127, CNRS UMR7225, Sorbonne Universités - UPMC Université Paris VI UMR_S1127, Paris, France.,AP-HP, Service de Psychiatrie, Pitié-Salpêtrière University Hospital, Paris, France
| | - Alexandra Durr
- AP-HP, Genetic Department, Pitié-Salpêtrière University Hospital, Paris, France. .,ICM, Institut du Cerveau et de la Moelle Epinière, INSERM U1127, CNRS UMR7225, Sorbonne Universités - UPMC Université Paris VI UMR_S1127, Paris, France. .,ICM, Institut du Cerveau et de la Moelle épinière, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Boulevard de l'Hôpital, 75651, Paris Cedex 13, France.
| |
Collapse
|
50
|
Abstract
The spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of autosomal dominantly inherited progressive disorders, the clinical hallmark of which is loss of balance and coordination accompanied by slurred speech; onset is most often in adult life. Genetically, SCAs are grouped as repeat expansion SCAs, such as SCA3/Machado-Joseph disease (MJD), and rare SCAs that are caused by non-repeat mutations, such as SCA5. Most SCA mutations cause prominent damage to cerebellar Purkinje neurons with consecutive cerebellar atrophy, although Purkinje neurons are only mildly affected in some SCAs. Furthermore, other parts of the nervous system, such as the spinal cord, basal ganglia and pontine nuclei in the brainstem, can be involved. As there is currently no treatment to slow or halt SCAs (many SCAs lead to premature death), the clinical care of patients with SCA focuses on managing the symptoms through physiotherapy, occupational therapy and speech therapy. Intense research has greatly expanded our understanding of the pathobiology of many SCAs, revealing that they occur via interrelated mechanisms (including proteotoxicity, RNA toxicity and ion channel dysfunction), and has led to the identification of new targets for treatment development. However, the development of effective therapies is hampered by the heterogeneity of the SCAs; specific therapeutic approaches may be required for each disease.
Collapse
|