1
|
Sharma R, Khan Z, Mehan S, Das Gupta G, Narula AS. Unraveling the multifaceted insights into amyotrophic lateral sclerosis: Genetic underpinnings, pathogenesis, and therapeutic horizons. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108518. [PMID: 39491718 DOI: 10.1016/j.mrrev.2024.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/19/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Amyotrophic Lateral Sclerosis (ALS), a progressive neurodegenerative disease, primarily impairs upper and lower motor neurons, leading to debilitating motor dysfunction and eventually respiratory failure, widely known as Lou Gehrig's disease. ALS presents with diverse symptomatology, including dysarthria, dysphagia, muscle atrophy, and hyperreflexia. The prevalence of ALS varies globally, with incidence rates ranging from 1.5 to 3.8 per 100,000 individuals, significantly affecting populations aged 45-80. A complex interplay of genetic and environmental factors underpins ALS pathogenesis. Key genetic contributors include mutations in chromosome 9 open reading frame 72 (C9ORF72), superoxide dismutase type 1 (SOD1), Fusedin sarcoma (FUS), and TAR DNA-binding protein (TARDBP) genes, accounting for a considerable fraction of both familial (fALS) and sporadic (sALS) cases. The disease mechanism encompasses aberrant protein folding, mitochondrial dysfunction, oxidative stress, excitotoxicity, and neuroinflammation, contributing to neuronal death. This review consolidates current insights into ALS's multifaceted etiology, highlighting the roles of environmental exposures (e.g., toxins, heavy metals) and their interaction with genetic predispositions. We emphasize the polygenic nature of ALS, where multiple genetic variations cumulatively influence disease susceptibility and progression. This aspect underscores the challenges in ALS diagnosis, which currently lacks specific biomarkers and relies on symptomatology and familial history. Therapeutic strategies for ALS, still in nascent stages, involve symptomatic management and experimental approaches targeting molecular pathways implicated in ALS pathology. Gene therapy, focusing on specific ALS mutations, and stem cell therapy emerge as promising avenues. However, effective treatments remain elusive, necessitating a deeper understanding of ALS's genetic architecture and the development of targeted therapies based on personalized medicine principles. This review aims to provide a comprehensive understanding of ALS, encouraging further research into its complex genetic underpinnings and the development of innovative, effective treatment modalities.
Collapse
Affiliation(s)
- Ramaish Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India.
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
2
|
Liu T, Wetzel L, Zhu Z, Kumaraguru P, Gorthi V, Yan Y, Bukhari MZ, Ermekbaeva A, Jeon H, Kee TR, Woo JAA, Kang DE. Disruption of Mitophagy Flux through the PARL-PINK1 Pathway by CHCHD10 Mutations or CHCHD10 Depletion. Cells 2023; 12:2781. [PMID: 38132101 PMCID: PMC10741529 DOI: 10.3390/cells12242781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/21/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023] Open
Abstract
Coiled-coil-helix-coiled-coil-helix domain-containing 10 (CHCHD10) is a nuclear-encoded mitochondrial protein which is primarily mutated in the spectrum of familial and sporadic amyotrophic lateral sclerosis (ALS)-frontotemporal dementia (FTD). Endogenous CHCHD10 levels decline in the brains of ALS-FTD patients, and the CHCHD10S59L mutation in Drosophila induces dominant toxicity together with PTEN-induced kinase 1 (PINK1), a protein critical for the induction of mitophagy. However, whether and how CHCHD10 variants regulate mitophagy flux in the mammalian brain is unknown. Here, we demonstrate through in vivo and in vitro models, as well as human FTD brain tissue, that ALS/FTD-linked CHCHD10 mutations (R15L and S59L) impair mitophagy flux and mitochondrial Parkin recruitment, whereas wild-type CHCHD10 (CHCHD10WT) normally enhances these measures. Specifically, we show that CHCHD10R15L and CHCHD10S59L mutations reduce PINK1 levels by increasing PARL activity, whereas CHCHD10WT produces the opposite results through its stronger interaction with PARL, suppressing its activity. Importantly, we also demonstrate that FTD brains with TAR DNA-binding protein-43 (TDP-43) pathology demonstrate disruption of the PARL-PINK1 pathway and that experimentally impairing mitophagy promotes TDP-43 aggregation. Thus, we provide herein new insights into the regulation of mitophagy and TDP-43 aggregation in the mammalian brain through the CHCHD10-PARL-PINK1 pathway.
Collapse
Affiliation(s)
- Tian Liu
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA (Z.Z.); (Y.Y.)
| | - Liam Wetzel
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA (Z.Z.); (Y.Y.)
| | - Zexi Zhu
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA (Z.Z.); (Y.Y.)
| | - Pavan Kumaraguru
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA (Z.Z.); (Y.Y.)
| | - Viraj Gorthi
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA (Z.Z.); (Y.Y.)
| | - Yan Yan
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA (Z.Z.); (Y.Y.)
- Byrd Alzheimer’s Center & Research Institute, Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL 33613, USA
| | - Mohammed Zaheen Bukhari
- Byrd Alzheimer’s Center & Research Institute, Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL 33613, USA
| | - Aizara Ermekbaeva
- Byrd Alzheimer’s Center & Research Institute, Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL 33613, USA
| | - Hanna Jeon
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA (Z.Z.); (Y.Y.)
| | - Teresa R. Kee
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA (Z.Z.); (Y.Y.)
- Byrd Alzheimer’s Center & Research Institute, Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL 33613, USA
| | - Jung-A Alexa Woo
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA (Z.Z.); (Y.Y.)
| | - David E. Kang
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA (Z.Z.); (Y.Y.)
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
3
|
Genin EC, Abou-Ali M, Paquis-Flucklinger V. Mitochondria, a Key Target in Amyotrophic Lateral Sclerosis Pathogenesis. Genes (Basel) 2023; 14:1981. [PMID: 38002924 PMCID: PMC10671245 DOI: 10.3390/genes14111981] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
Mitochondrial dysfunction occurs in numerous neurodegenerative diseases, particularly amyotrophic lateral sclerosis (ALS), where it contributes to motor neuron (MN) death. Of all the factors involved in ALS, mitochondria have been considered as a major player, as secondary mitochondrial dysfunction has been found in various models and patients. Abnormal mitochondrial morphology, defects in mitochondrial dynamics, altered activities of respiratory chain enzymes and increased production of reactive oxygen species have been described. Moreover, the identification of CHCHD10 variants in ALS patients was the first genetic evidence that a mitochondrial defect may be a primary cause of MN damage and directly links mitochondrial dysfunction to the pathogenesis of ALS. In this review, we focus on the role of mitochondria in ALS and highlight the pathogenic variants of ALS genes associated with impaired mitochondrial functions. The multiple pathways demonstrated in ALS pathogenesis suggest that all converge to a common endpoint leading to MN loss. This may explain the disappointing results obtained with treatments targeting a single pathological process. Fighting against mitochondrial dysfunction appears to be a promising avenue for developing combined therapies in the future.
Collapse
Affiliation(s)
- Emmanuelle C. Genin
- Institute for Research on Cancer and Aging, Nice (IRCAN), Université Côte d’Azur, Inserm U1081, CNRS UMR7284, Centre Hospitalier Universitaire (CHU) de Nice, 06200 Nice, France; (M.A.-A.); (V.P.-F.)
| | | | | |
Collapse
|
4
|
Kaivola K, Chia R, Ding J, Rasheed M, Fujita M, Menon V, Walton RL, Collins RL, Billingsley K, Brand H, Talkowski M, Zhao X, Dewan R, Stark A, Ray A, Solaiman S, Alvarez Jerez P, Malik L, Dawson TM, Rosenthal LS, Albert MS, Pletnikova O, Troncoso JC, Masellis M, Keith J, Black SE, Ferrucci L, Resnick SM, Tanaka T, PROSPECT Consortium, Topol E, Torkamani A, Tienari P, Foroud TM, Ghetti B, Landers JE, Ryten M, Morris HR, Hardy JA, Mazzini L, D'Alfonso S, Moglia C, Calvo A, Serrano GE, Beach TG, Ferman T, Graff-Radford NR, Boeve BF, Wszolek ZK, Dickson DW, Chiò A, Bennett DA, De Jager PL, Ross OA, Dalgard CL, Gibbs JR, Traynor BJ, Scholz SW. Genome-wide structural variant analysis identifies risk loci for non-Alzheimer's dementias. CELL GENOMICS 2023; 3:100316. [PMID: 37388914 PMCID: PMC10300553 DOI: 10.1016/j.xgen.2023.100316] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/21/2023] [Accepted: 04/06/2023] [Indexed: 07/01/2023]
Abstract
We characterized the role of structural variants, a largely unexplored type of genetic variation, in two non-Alzheimer's dementias, namely Lewy body dementia (LBD) and frontotemporal dementia (FTD)/amyotrophic lateral sclerosis (ALS). To do this, we applied an advanced structural variant calling pipeline (GATK-SV) to short-read whole-genome sequence data from 5,213 European-ancestry cases and 4,132 controls. We discovered, replicated, and validated a deletion in TPCN1 as a novel risk locus for LBD and detected the known structural variants at the C9orf72 and MAPT loci as associated with FTD/ALS. We also identified rare pathogenic structural variants in both LBD and FTD/ALS. Finally, we assembled a catalog of structural variants that can be mined for new insights into the pathogenesis of these understudied forms of dementia.
Collapse
Affiliation(s)
- Karri Kaivola
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Ruth Chia
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Jinhui Ding
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Memoona Rasheed
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Masashi Fujita
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, New York, NY, USA
| | - Vilas Menon
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, New York, NY, USA
| | - Ronald L. Walton
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, USA
| | - Ryan L. Collins
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (M.I.T.), Cambridge, MA, USA
- Division of Medical Sciences and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kimberley Billingsley
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Centre for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, MD, USA
| | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (M.I.T.), Cambridge, MA, USA
- Division of Medical Sciences and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Michael Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (M.I.T.), Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Xuefang Zhao
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (M.I.T.), Cambridge, MA, USA
| | - Ramita Dewan
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Ali Stark
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Anindita Ray
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Sultana Solaiman
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Pilar Alvarez Jerez
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Centre for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, MD, USA
| | - Laksh Malik
- Centre for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, MD, USA
| | - Ted M. Dawson
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
- Neuroregeneration and Stem Cell Programs, Institute of Cell Engineering, Johns Hopkins University Medical Center, Baltimore, MD, USA
- Department of Pharmacology and Molecular Science, Johns Hopkins University Medical Center, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Liana S. Rosenthal
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Marilyn S. Albert
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Olga Pletnikova
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY, USA
- Department of Pathology (Neuropathology), Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Juan C. Troncoso
- Department of Pathology (Neuropathology), Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Mario Masellis
- Cognitive & Movement Disorders Clinic, Sunnybrook Health Sciences Centre, University of Toronto, 1 King’s College Circle, Room 2374, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, 2075 Bayview Avenue, Toronto, ON, Canada
- LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, University of Toronto, 2075 Bayview Avenue, Toronto, ON, Canada
| | - Julia Keith
- Department of Anatomical Pathology, Sunnybrook Health Sciences Centre, University of Toronto, 1 King’s College Circle, Room 2374, Toronto, ON, Canada
| | - Sandra E. Black
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, 2075 Bayview Avenue, Toronto, ON, Canada
- LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, University of Toronto, 2075 Bayview Avenue, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King’s College Circle, Room 2374, Toronto, ON, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences Centre, University of Toronto, 1 King’s College Circle, Room 2374, Toronto, ON, Canada
| | - Luigi Ferrucci
- Longitudinal Studies Section, National Institute on Aging, Baltimore, MD, USA
| | - Susan M. Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| | - Toshiko Tanaka
- Longitudinal Studies Section, National Institute on Aging, Baltimore, MD, USA
| | - PROSPECT Consortium
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, New York, NY, USA
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (M.I.T.), Cambridge, MA, USA
- Division of Medical Sciences and Department of Medicine, Harvard Medical School, Boston, MA, USA
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Centre for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, MD, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
- Neuroregeneration and Stem Cell Programs, Institute of Cell Engineering, Johns Hopkins University Medical Center, Baltimore, MD, USA
- Department of Pharmacology and Molecular Science, Johns Hopkins University Medical Center, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University Medical Center, Baltimore, MD, USA
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY, USA
- Department of Pathology (Neuropathology), Johns Hopkins University Medical Center, Baltimore, MD, USA
- Cognitive & Movement Disorders Clinic, Sunnybrook Health Sciences Centre, University of Toronto, 1 King’s College Circle, Room 2374, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, 2075 Bayview Avenue, Toronto, ON, Canada
- LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, University of Toronto, 2075 Bayview Avenue, Toronto, ON, Canada
- Department of Anatomical Pathology, Sunnybrook Health Sciences Centre, University of Toronto, 1 King’s College Circle, Room 2374, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King’s College Circle, Room 2374, Toronto, ON, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences Centre, University of Toronto, 1 King’s College Circle, Room 2374, Toronto, ON, Canada
- Longitudinal Studies Section, National Institute on Aging, Baltimore, MD, USA
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
- Scripps Research Translational Institute, Scripps Research, La Jolla, CA, USA
- Translational Immunology, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, University College London, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
- UK Dementia Research Institute, Department of Neurogenerative Disease and Reta Lila Weston Institute, London, UK
- Institute of Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Maggiore della Carita University Hospital, Novara, Italy
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
- Azienda Ospedaliero Universitaria Città, della Salute e della Scienza, Corso Bramante, 88, Turin, Italy
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
- Department of Psychiatry and Psychology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, USA
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, USA
- Center for Sleep Medicine, Mayo Clinic, Rochester, MN, USA
- Institute of Cognitive Sciences and Technologies, C.N.R., Via S. Martino della Battaglia, 44, Rome, Italy
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- RNA Therapeutics Laboratory, Therapeutics Development Branch, National Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Eric Topol
- Scripps Research Translational Institute, Scripps Research, La Jolla, CA, USA
| | - Ali Torkamani
- Scripps Research Translational Institute, Scripps Research, La Jolla, CA, USA
| | - Pentti Tienari
- Translational Immunology, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Tatiana M. Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - John E. Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mina Ryten
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, University College London, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Huw R. Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - John A. Hardy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
- UK Dementia Research Institute, Department of Neurogenerative Disease and Reta Lila Weston Institute, London, UK
- Institute of Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | | | - Sandra D'Alfonso
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Cristina Moglia
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
- Azienda Ospedaliero Universitaria Città, della Salute e della Scienza, Corso Bramante, 88, Turin, Italy
| | - Andrea Calvo
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
- Azienda Ospedaliero Universitaria Città, della Salute e della Scienza, Corso Bramante, 88, Turin, Italy
| | - Geidy E. Serrano
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Thomas G. Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Tanis Ferman
- Department of Psychiatry and Psychology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, USA
| | | | | | - Zbigniew K. Wszolek
- Institute of Cognitive Sciences and Technologies, C.N.R., Via S. Martino della Battaglia, 44, Rome, Italy
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, USA
| | - Adriano Chiò
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
- Azienda Ospedaliero Universitaria Città, della Salute e della Scienza, Corso Bramante, 88, Turin, Italy
- Institute of Cognitive Sciences and Technologies, C.N.R., Via S. Martino della Battaglia, 44, Rome, Italy
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, New York, NY, USA
| | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, USA
| | - Clifton L. Dalgard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - J. Raphael Gibbs
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Bryan J. Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
- RNA Therapeutics Laboratory, Therapeutics Development Branch, National Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Sonja W. Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| |
Collapse
|
5
|
Ikeda A, Imai Y, Hattori N. Neurodegeneration-associated mitochondrial proteins, CHCHD2 and CHCHD10–what distinguishes the two? Front Cell Dev Biol 2022; 10:996061. [PMID: 36158221 PMCID: PMC9500460 DOI: 10.3389/fcell.2022.996061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) and Coiled-coil-helix-coiled-coil-helix domain containing 10 (CHCHD10) are mitochondrial proteins that are thought to be genes which duplicated during evolution and are the causative genes for Parkinson’s disease and amyotrophic lateral sclerosis/frontotemporal lobe dementia, respectively. CHCHD2 forms a heterodimer with CHCHD10 and a homodimer with itself, both of which work together within the mitochondria. Various pathogenic and disease-risk variants have been identified; however, how these mutations cause neurodegeneration in specific diseases remains a mystery. This review focuses on important new findings published since 2019 and discusses avenues to solve this mystery.
Collapse
Affiliation(s)
- Aya Ikeda
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yuzuru Imai
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Research for Parkinson’s Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
- *Correspondence: Yuzuru Imai, ; Nobutaka Hattori,
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Research for Parkinson’s Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama, Japan
- *Correspondence: Yuzuru Imai, ; Nobutaka Hattori,
| |
Collapse
|
6
|
Aiello EN, Feroldi S, De Luca G, Guidotti L, Arrigoni E, Appollonio I, Solca F, Carelli L, Poletti B, Verde F, Silani V, Ticozzi N. Primary progressive aphasia and motor neuron disease: A review. Front Aging Neurosci 2022; 14:1003792. [PMID: 36158556 PMCID: PMC9492890 DOI: 10.3389/fnagi.2022.1003792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Background This study aims at reviewing, within the framework of motor neuron disease-frontotemporal degeneration (MND-FTD)-spectrum disorders, evidence on the co-occurrence between primary progressive aphasia (PPA) and MND in order to profile such a complex at pathological, genetic and clinical levels. Methods This review was pre-registered (osf.io/ds8m4) and performed in accordance with the 2020 PRISMA guidelines. Case reports/series and group studies were included if addressing (1) progressive non-fluent aphasia (PNFA) or semantic dementia (SD) with MND or (2) MND patients with co-morbid PNFA/SD. Results Out of 546 initial records, 56 studies were included. As to case reports/series (N = 35), which included 61 PPA-MND patients, the following findings yielded: (1) PNFA is more frequent than SD in PPA-MND; (2) in PPA-MND, the most prevalent motor phenotypes are amyotrophic lateral sclerosis and predominant-upper MND, with bulbar involvement being ubiquitous; (3) extrapyramidal features are moderately frequent in PPA-MND; (4) PPA-MND patients usually display frontotemporal, left-greater-than-right involvement; (5) TDP-43-B is the typical pathological substrate of PPA-MND; (6) TBK1 mutations represent the most frequent genetic risk factors for PPA-MND. As to group studies, including 121 patients, proportional meta-analytic procedures revealed that: (1) the lifetime prevalence of MND in PPA is 6%; (2) PPA occurs in 19% of patients with co-morbid MND and FTD; (3) MND is more frequent in PNFA (10%) than in SD patients (3%). Discussion Insights herewith delivered into the clinical, neuropathological and genetic features of PPA-MND patients prompt further investigations aimed at improving clinical practice within the MND-FTD spectrum.
Collapse
Affiliation(s)
- Edoardo Nicolò Aiello
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Ph.D. Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- *Correspondence: Edoardo Nicolò Aiello,
| | - Sarah Feroldi
- Ph.D. Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Giulia De Luca
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Lucilla Guidotti
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Eleonora Arrigoni
- Ph.D. Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Ildebrando Appollonio
- Neurology Section, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Federica Solca
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Laura Carelli
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Barbara Poletti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Federico Verde
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
7
|
Genetic architecture of motor neuron diseases. J Neurol Sci 2021; 434:120099. [PMID: 34965490 DOI: 10.1016/j.jns.2021.120099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022]
Abstract
Motor neuron diseases (MNDs) are rare and frequently fatal neurological disorders in which motor neurons within the brainstem and spinal cord regions slowly die. MNDs are primarily caused by genetic mutations, and > 100 different mutant genes in humans have been discovered thus far. Given the fact that many more MND-related genes have yet to be discovered, the growing body of genetic evidence has offered new insights into the diverse cellular and molecular mechanisms involved in the aetiology and pathogenesis of MNDs. This search may aid in the selection of potential candidate genes for future investigation and, eventually, may open the door to novel interventions to slow down disease progression. In this review paper, we have summarized detailed existing research findings of different MNDs, such as amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), spinal bulbar muscle atrophy (SBMA) and hereditary spastic paraplegia (HSP) in relation to their complex genetic architecture.
Collapse
|
8
|
Smith AST, Chun C, Hesson J, Mathieu J, Valdmanis PN, Mack DL, Choi BO, Kim DH, Bothwell M. Human Induced Pluripotent Stem Cell-Derived TDP-43 Mutant Neurons Exhibit Consistent Functional Phenotypes Across Multiple Gene Edited Lines Despite Transcriptomic and Splicing Discrepancies. Front Cell Dev Biol 2021; 9:728707. [PMID: 34660586 PMCID: PMC8511491 DOI: 10.3389/fcell.2021.728707] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/06/2021] [Indexed: 11/25/2022] Open
Abstract
Gene editing technologies hold great potential to enhance our ability to model inheritable neurodegenerative diseases. Specifically, engineering multiple amyotrophic lateral sclerosis (ALS) mutations into isogenic cell populations facilitates determination of whether different causal mutations cause pathology via shared mechanisms, and provides the capacity to separate these mechanisms from genotype-specific effects. As gene-edited, cell-based models of human disease become more commonplace, there is an urgent need to verify that these models constitute consistent and accurate representations of native biology. Here, commercially sourced, induced pluripotent stem cell-derived motor neurons from Cellular Dynamics International, edited to express the ALS-relevant mutations TDP-43M337V and TDP-43Q331K were compared with in-house derived lines engineered to express the TDP-43Q331K mutation within the WTC11 background. Our results highlight electrophysiological and mitochondrial deficits in these edited cells that correlate with patient-derived cells, suggesting a consistent cellular phenotype arising from TDP-43 mutation. However, significant differences in the transcriptomic profiles and splicing behavior of the edited cells underscores the need for careful comparison of multiple lines when attempting to use these cells as a means to better understand the onset and progression of ALS in humans.
Collapse
Affiliation(s)
- Alec S T Smith
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Changho Chun
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Jennifer Hesson
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States.,Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States.,Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Paul N Valdmanis
- Division of Medical Genetics, University of Washington, Seattle, WA, United States
| | - David L Mack
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States.,Department of Bioengineering, University of Washington, Seattle, WA, United States.,Department of Rehabilitation Medicine, University of Washington, Seattle, WA, United States
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea.,Department of Health Sciences and Technology, The Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA, United States.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mark Bothwell
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
9
|
Amyotrophic Lateral Sclerosis: Molecular Mechanisms, Biomarkers, and Therapeutic Strategies. Antioxidants (Basel) 2021; 10:antiox10071012. [PMID: 34202494 PMCID: PMC8300638 DOI: 10.3390/antiox10071012] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with the progressive loss of motor neurons, leading to a fatal paralysis. According to whether there is a family history of ALS, ALS can be roughly divided into two types: familial and sporadic. Despite decades of research, the pathogenesis of ALS is still unelucidated. To this end, we review the recent progress of ALS pathogenesis, biomarkers, and treatment strategies, mainly discuss the roles of immune disorders, redox imbalance, autophagy dysfunction, and disordered iron homeostasis in the pathogenesis of ALS, and introduce the effects of RNA binding proteins, ALS-related genes, and non-coding RNA as biomarkers on ALS. In addition, we also mention other ALS biomarkers such as serum uric acid (UA), cardiolipin (CL), chitotriosidase (CHIT1), and neurofilament light chain (NFL). Finally, we discuss the drug therapy, gene therapy, immunotherapy, and stem cell-exosomal therapy for ALS, attempting to find new therapeutic targets and strategies. A challenge is to study the various mechanisms of ALS as a syndrome. Biomarkers that have been widely explored are indispensable for the diagnosis, treatment, and prevention of ALS. Moreover, the development of new genes and targets is an urgent task in this field.
Collapse
|
10
|
Straub IR, Weraarpachai W, Shoubridge EA. Multi-OMICS study of a CHCHD10 variant causing ALS demonstrates metabolic rewiring and activation of endoplasmic reticulum and mitochondrial unfolded protein responses. Hum Mol Genet 2021; 30:687-705. [PMID: 33749723 DOI: 10.1093/hmg/ddab078] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/16/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations in CHCHD10, coding for a mitochondrial intermembrane space protein, are a rare cause of autosomal dominant amyotrophic lateral sclerosis. Mutation-specific toxic gain of function or haploinsufficiency models have been proposed to explain pathogenicity. To decipher the metabolic dysfunction associated with the haploinsufficient p.R15L variant, we integrated transcriptomic, metabolomic and proteomic data sets in patient cells subjected to an energetic stress that forces the cells to rely on oxidative phosphorylation for ATP production. Patient cells had a complex I deficiency that resulted in an increased NADH/NAD+ ratio, diminished TCA cycle activity, a reorganization of one carbon metabolism and an increased AMP/ATP ratio leading to phosphorylation of AMPK and inhibition of mTORC1. These metabolic changes activated the unfolded protein response (UPR) in the ER through the IRE1/XBP1 pathway, upregulating downstream targets including ATF3, ATF4, CHOP and EGLN3, and two cytokine markers of mitochondrial disease, GDF15 and FGF21. Activation of the mitochondrial UPR was mediated through an upregulation of the transcription factors ATF4 and ATF5, leading to increased expression of mitochondrial proteases and heat shock proteins. There was a striking transcriptional up regulation of at least seven dual specific phosphatases, associated with an almost complete dephosphorylation of JNK isoforms, suggesting a concerted deactivation of MAP kinase pathways. This study demonstrates that loss of CHCHD10 function elicits an energy deficit that activates unique responses to nutrient stress in both the mitochondria and ER, which may contribute to the selective vulnerability of motor neurons.
Collapse
Affiliation(s)
- Isabella R Straub
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Woranontee Weraarpachai
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Eric A Shoubridge
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Mitochondrial hyperfusion: a friend or a foe. Biochem Soc Trans 2021; 48:631-644. [PMID: 32219382 DOI: 10.1042/bst20190987] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
Abstract
The cellular mitochondrial population undergoes repeated cycles of fission and fusion to maintain its integrity, as well as overall cellular homeostasis. While equilibrium usually exists between the fission-fusion dynamics, their rates are influenced by organellar and cellular metabolic and pathogenic conditions. Under conditions of cellular stress, there is a disruption of this fission and fusion balance and mitochondria undergo either increased fusion, forming a hyperfused meshwork or excessive fission to counteract stress and remove damaged mitochondria via mitophagy. While some previous reports suggest that hyperfusion is initiated to ameliorate cellular stress, recent studies show its negative impact on cellular health in disease conditions. The exact mechanism of mitochondrial hyperfusion and its role in maintaining cellular health and homeostasis, however, remain unclear. In this review, we aim to highlight the different aspects of mitochondrial hyperfusion in either promoting or mitigating stress and also its role in immunity and diseases.
Collapse
|
12
|
Jiang Y, Jiao B, Xiao X, Shen L. Genetics of frontotemporal dementia in China. Amyotroph Lateral Scler Frontotemporal Degener 2021; 22:321-335. [PMID: 33538206 DOI: 10.1080/21678421.2021.1880596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Backgbround: Frontotemporal dementia (FTD) is the second most common presenile dementia, characterized by prominent behavioral, language, and cognitive impairment, which has a strong genetic component contributing to its pathogenesis. Due to geographical and ethnic variability, the prevalence of the causative genes of FTD may be different. Methods: To explore the genetics of FTD in the Chinese population, we reviewed 97 closely related studies that were searched in PubMed and Web of Science. In this review, we summarized the characteristics of each FTD gene. We also reassessed their pathogenicity and revised some mutations from pathogenic to uncertain significance according to the American College of Medical Genetics and Genomics (ACMG). Results: Thirty-two rare variants in genes of MAPT, GRN, C9orf72, CHCHD10, VCP, and TBK1 were identified in Chinese FTD populations, including 25 pathogenic mutations and seven variants of uncertain significance (VUS). Among them, the frequency of rare variants in the CHCHD10 gene was the highest. Surprisingly, twelve variants reported as pathogenic mutations were revised as VUS by ACMG. The correlations between genes and clinical manifestations were MAPT and frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), GRN and frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP), C9orf72/CHCHD10/TBK1 and amyotrophic lateral sclerosis (ALS)-FTD spectrum, and VCP corresponds inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia (IBMPFD). Conclusions: It is necessary to strictly interpret the contributions of genes to diseases by ACMG. MAPT is the most common pathogenic gene for FTD in China.
Collapse
Affiliation(s)
- Yaling Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China, and
| | - Xuewen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China, and.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
13
|
Häkkinen S, Chu SA, Lee SE. Neuroimaging in genetic frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis 2020; 145:105063. [PMID: 32890771 DOI: 10.1016/j.nbd.2020.105063] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) have a strong clinical, genetic and pathological overlap. This review focuses on the current understanding of structural, functional and molecular neuroimaging signatures of genetic FTD and ALS. We overview quantitative neuroimaging studies on the most common genes associated with FTD (MAPT, GRN), ALS (SOD1), and both (C9orf72), and summarize visual observations of images reported in the rarer genes (CHMP2B, TARDBP, FUS, OPTN, VCP, UBQLN2, SQSTM1, TREM2, CHCHD10, TBK1).
Collapse
Affiliation(s)
- Suvi Häkkinen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephanie A Chu
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Suzee E Lee
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
14
|
Yang B, Yang C, Ren J, Zhong C, Liu K, Zhao L, Li L, Wang H, Zhu M, Lin Z. Meta-analysis of the association between CHCHD10 Pro34Ser variant and the risk of amyotrophic lateral sclerosis. Neurol Sci 2020; 42:625-631. [PMID: 32651855 DOI: 10.1007/s10072-020-04579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/02/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS), one of the motor neuron diseases, appears to be caused by genetic and environmental risk factors. However, the influence of Pro34Ser variant of CHCHD10 gene in increasing risk of ALS remains indeterminate. This study conducted a meta-analysis to establish the association between Pro34Ser variant of CHCHD10 gene and risk of ALS. METHODS PubMed, Web of Science, and Embase databases were systematically searched for genome-wide association studies or case-control studies published up to March 28, 2020, on the association between Pro34Ser variant and risk of ALS. Data from eligible studies were extracted and analyzed. RESULTS Twelve case-control studies involving 7442 patients with sporadic ALS and 75,371 controls were analyzed. The Pro34Ser variant was not associated with increased risk of ALS disease based on fixed-effects meta-analysis (Pro34Ser-positive vs Pro34Ser-negative: OR 1.23, 95% CI 0.90 to 1.69, P = 0.201). CONCLUSION Existing evidence suggests that Pro34Ser variant in CHCHD10 is not associated with risk of ALS, particularly in Caucasian participants. However, our results ought to be validated using large, well-designed studies, especially in Asian and African populations.
Collapse
Affiliation(s)
- Baiyuan Yang
- Department of Neurology, Chengdu Seventh People's Hospital, 1188 Shuangxing Avenue, Shuangliu District, Chengdu, 610213, Sichuan Province, China
| | - Chenghui Yang
- Department of Psychosomatic Medicine, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, 32# West. Section 2, 1st RingRoad, Chengdu, 610072, Sichuan Province, China
| | - Junwei Ren
- Department of Neurology, Fuling Central Hospital of Chongqing City, No.2, Gaosuntang Road, Fuling District, Chongqing, 408000, China
| | - Chengqing Zhong
- Department of Neurology, Chengdu Seventh People's Hospital, 1188 Shuangxing Avenue, Shuangliu District, Chengdu, 610213, Sichuan Province, China
| | - Keting Liu
- Department of Neurology, Chengdu Seventh People's Hospital, 1188 Shuangxing Avenue, Shuangliu District, Chengdu, 610213, Sichuan Province, China
| | - Liusha Zhao
- Department of Neurology, Chengdu Seventh People's Hospital, 1188 Shuangxing Avenue, Shuangliu District, Chengdu, 610213, Sichuan Province, China
| | - Li Li
- Department of Neurology, Chengdu Seventh People's Hospital, 1188 Shuangxing Avenue, Shuangliu District, Chengdu, 610213, Sichuan Province, China
| | - Han Wang
- Department of Neurology, Chengdu Seventh People's Hospital, 1188 Shuangxing Avenue, Shuangliu District, Chengdu, 610213, Sichuan Province, China
| | - Mingling Zhu
- Department of Neurology, Chengdu Seventh People's Hospital, 1188 Shuangxing Avenue, Shuangliu District, Chengdu, 610213, Sichuan Province, China
| | - Zhenfang Lin
- Department of Neurology, Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of TCM, 81, Ba Yi Road, Wenjiang, Chengdu, 611135, Sichuan Province, China.
| |
Collapse
|
15
|
Ranganathan R, Haque S, Coley K, Shepheard S, Cooper-Knock J, Kirby J. Multifaceted Genes in Amyotrophic Lateral Sclerosis-Frontotemporal Dementia. Front Neurosci 2020; 14:684. [PMID: 32733193 PMCID: PMC7358438 DOI: 10.3389/fnins.2020.00684] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis and frontotemporal dementia are two progressive, adult onset neurodegenerative diseases, caused by the cell death of motor neurons in the motor cortex and spinal cord and cortical neurons in the frontal and temporal lobes, respectively. Whilst these have previously appeared to be quite distinct disorders, in terms of areas affected and clinical symptoms, identification of cognitive dysfunction as a component of amyotrophic lateral sclerosis (ALS), with some patients presenting with both ALS and FTD, overlapping features of neuropathology and the ongoing discoveries that a significant proportion of the genes underlying the familial forms of the disease are the same, has led to ALS and FTD being described as a disease spectrum. Many of these genes encode proteins in common biological pathways including RNA processing, autophagy, ubiquitin proteasome system, unfolded protein response and intracellular trafficking. This article provides an overview of the ALS-FTD genes before summarizing other known ALS and FTD causing genes where mutations have been found primarily in patients of one disease and rarely in the other. In discussing these genes, the review highlights the similarity of biological pathways in which the encoded proteins function and the interactions that occur between these proteins, whilst recognizing the distinctions of MAPT-related FTD and SOD1-related ALS. However, mutations in all of these genes result in similar pathology including protein aggregation and neuroinflammation, highlighting that multiple different mechanisms lead to common downstream effects and neuronal loss. Next generation sequencing has had a significant impact on the identification of genes associated with both diseases, and has also highlighted the widening clinical phenotypes associated with variants in these ALS and FTD genes. It is hoped that the large sequencing initiatives currently underway in ALS and FTD will begin to uncover why different diseases are associated with mutations within a single gene, especially as a personalized medicine approach to therapy, based on a patient's genetics, approaches the clinic.
Collapse
Affiliation(s)
- Ramya Ranganathan
- Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, United Kingdom
| | - Shaila Haque
- Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, United Kingdom
- Department of Biochemistry and Biotechnology, University of Barishal, Barishal, Bangladesh
| | - Kayesha Coley
- Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, United Kingdom
| | - Stephanie Shepheard
- Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, United Kingdom
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, United Kingdom
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
16
|
The Genetics of Alzheimer's Disease in the Chinese Population. Int J Mol Sci 2020; 21:ijms21072381. [PMID: 32235595 PMCID: PMC7178026 DOI: 10.3390/ijms21072381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/22/2020] [Accepted: 03/27/2020] [Indexed: 12/30/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by progressive cognitive dysfunction and behavioral impairment. In China, the number of AD patients is growing rapidly, which poses a considerable burden on society and families. In recent years, through the advancement of genome-wide association studies, second-generation gene sequencing technology, and their application in AD genetic research, more genetic loci associated with the risk for AD have been discovered, including KCNJ15, TREM2, and GCH1, which provides new ideas for the etiology and treatment of AD. This review summarizes three early-onset AD causative genes (APP, PSEN1, and PSEN2) and some late-onset AD susceptibility genes and their mutation sites newly discovered in China, and briefly introduces the potential mechanisms of these genetic susceptibilities in the pathogenesis of AD, which would help in understanding the genetic mechanisms underlying this devastating disease.
Collapse
|
17
|
McCann EP, Fifita JA, Grima N, Galper J, Mehta P, Freckleton SE, Zhang KY, Henden L, Hogan AL, Chan Moi Fat S, Wu SS, Jagaraj CJ, Berning BA, Williams KL, Twine NA, Bauer D, Piguet O, Hodges J, Kwok JBJ, Halliday GM, Kiernan MC, Atkin J, Rowe DB, Nicholson GA, Walker AK, Blair IP, Yang S. Genetic and immunopathological analysis of CHCHD10 in Australian amyotrophic lateral sclerosis and frontotemporal dementia and transgenic TDP-43 mice. J Neurol Neurosurg Psychiatry 2020; 91:162-171. [PMID: 31690696 DOI: 10.1136/jnnp-2019-321790] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/20/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Since the first report of CHCHD10 gene mutations in amyotrophiclateral sclerosis (ALS)/frontotemporaldementia (FTD) patients, genetic variation in CHCHD10 has been inconsistently linked to disease. A pathological assessment of the CHCHD10 protein in patient neuronal tissue also remains to be reported. We sought to characterise the genetic and pathological contribution of CHCHD10 to ALS/FTD in Australia. METHODS Whole-exome and whole-genome sequencing data from 81 familial and 635 sporadic ALS, and 108 sporadic FTD cases, were assessed for genetic variation in CHCHD10. CHCHD10 protein expression was characterised by immunohistochemistry, immunofluorescence and western blotting in control, ALS and/or FTD postmortem tissues and further in a transgenic mouse model of TAR DNA-binding protein 43 (TDP-43) pathology. RESULTS No causal, novel or disease-associated variants in CHCHD10 were identified in Australian ALS and/or FTD patients. In human brain and spinal cord tissues, CHCHD10 was specifically expressed in neurons. A significant decrease in CHCHD10 protein level was observed in ALS patient spinal cord and FTD patient frontal cortex. In a TDP-43 mouse model with a regulatable nuclear localisation signal (rNLS TDP-43 mouse), CHCHD10 protein levels were unaltered at disease onset and early in disease, but were significantly decreased in cortex in mid-stage disease. CONCLUSIONS Genetic variation in CHCHD10 is not a common cause of ALS/FTD in Australia. However, we showed that in humans, CHCHD10 may play a neuron-specific role and a loss of CHCHD10 function may be linked to ALS and/or FTD. Our data from the rNLS TDP-43 transgenic mice suggest that a decrease in CHCHD10 levels is a late event in aberrant TDP-43-induced ALS/FTD pathogenesis.
Collapse
Affiliation(s)
- Emily P McCann
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Jennifer A Fifita
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Natalie Grima
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Jasmin Galper
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Prachi Mehta
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Sarah E Freckleton
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Katharine Y Zhang
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Lyndal Henden
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Alison L Hogan
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Sandrine Chan Moi Fat
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Sharlynn Sl Wu
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Cyril J Jagaraj
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Britt A Berning
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Kelly Louise Williams
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Natalie A Twine
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia.,Commonwealth Scientific and Industrial Research Organization, Health & Biosecurity Flagship, Sydney, New South Wales, Australia
| | - Denis Bauer
- Commonwealth Scientific and Industrial Research Organization, Health & Biosecurity Flagship, Sydney, New South Wales, Australia
| | - Olivier Piguet
- Brain and Mind Centre & Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - John Hodges
- Brain and Mind Centre & Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - John B J Kwok
- Brain and Mind Centre & Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Glenda M Halliday
- Brain and Mind Centre & Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre & Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Julie Atkin
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Dominic B Rowe
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia.,Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Garth A Nicholson
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia.,Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.,Molecular Medicine Laboratory, Concord Hospital, Sydney, New South Wales, Australia
| | - Adam K Walker
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia.,Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Ian P Blair
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Shu Yang
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
18
|
Alcolea D, Clarimón J, Carmona-Iragui M, Illán-Gala I, Morenas-Rodríguez E, Barroeta I, Ribosa-Nogué R, Sala I, Sánchez-Saudinós MB, Videla L, Subirana A, Benejam B, Valldeneu S, Fernández S, Estellés T, Altuna M, Santos-Santos M, García-Losada L, Bejanin A, Pegueroles J, Montal V, Vilaplana E, Belbin O, Dols-Icardo O, Sirisi S, Querol-Vilaseca M, Cervera-Carles L, Muñoz L, Núñez R, Torres S, Camacho MV, Carrió I, Giménez S, Delaby C, Rojas-Garcia R, Turon-Sans J, Pagonabarraga J, Jiménez A, Blesa R, Fortea J, Lleó A. The Sant Pau Initiative on Neurodegeneration (SPIN) cohort: A data set for biomarker discovery and validation in neurodegenerative disorders. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2019; 5:597-609. [PMID: 31650016 PMCID: PMC6804606 DOI: 10.1016/j.trci.2019.09.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction The SPIN (Sant Pau Initiative on Neurodegeneration) cohort is a multimodal biomarker platform designed for neurodegenerative disease research following an integrative approach. Methods Participants of the SPIN cohort provide informed consent to donate blood and cerebrospinal fluid samples, receive detailed neurological and neuropsychological evaluations, and undergo a structural 3T brain MRI scan. A subset also undergoes other functional or imaging studies (video-polysomnogram, 18F-fluorodeoxyglucose PET, amyloid PET, Tau PET). Participants are followed annually for a minimum of 4 years, with repeated cerebrospinal fluid collection and imaging studies performed every other year, and brain donation is encouraged. Results The integration of clinical, neuropsychological, genetic, biochemical, imaging, and neuropathological information and the harmonization of protocols under the same umbrella allows the discovery and validation of key biomarkers across several neurodegenerative diseases. Discussion We describe our particular 10-year experience and how different research projects were unified under an umbrella biomarker program, which might be of help to other research teams pursuing similar approaches. The SPIN cohort is a multimodal biomarker program for research in neurodegeneration. We describe how research projects were unified under an umbrella biomarker program. Integrating clinical and biological data allows discovery and validation of markers. As a clinical group, we keep the SPIN cohort focused in patient-oriented research.
Collapse
Affiliation(s)
- Daniel Alcolea
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Jordi Clarimón
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - María Carmona-Iragui
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain.,Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Ignacio Illán-Gala
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Estrella Morenas-Rodríguez
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Isabel Barroeta
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Roser Ribosa-Nogué
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Isabel Sala
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - M Belén Sánchez-Saudinós
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Laura Videla
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain.,Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Andrea Subirana
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Bessy Benejam
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain.,Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Sílvia Valldeneu
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Susana Fernández
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain.,Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Teresa Estellés
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Miren Altuna
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Miguel Santos-Santos
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Lídia García-Losada
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Alexandre Bejanin
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Jordi Pegueroles
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Víctor Montal
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Eduard Vilaplana
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Olivia Belbin
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Oriol Dols-Icardo
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Sònia Sirisi
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Marta Querol-Vilaseca
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Laura Cervera-Carles
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Laia Muñoz
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Raúl Núñez
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Soraya Torres
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - M Valle Camacho
- Nuclear Medicine Department, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ignasi Carrió
- Nuclear Medicine Department, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sandra Giménez
- Respiratory Department, Multidisciplinary Sleep Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain
| | - Constance Delaby
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Université de Montpellier, CHU de Montpellier, Laboratoire de Biochimie-Protéomique clinique, INSERM U1183, Montpellier, France
| | - Ricard Rojas-Garcia
- Department of Neurology, Neuromuscular Diseases Unit, MND Clinic, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras, Ciberer, Spain
| | - Janina Turon-Sans
- Department of Neurology, Neuromuscular Diseases Unit, MND Clinic, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras, Ciberer, Spain
| | - Javier Pagonabarraga
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain.,Department of Neurology, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain
| | - Amanda Jiménez
- Endocrinology and Diabetes Department, Obesity Unit, Hospital Clinic de Barcelona - IDIBAPS, Barcelona, Spain
| | - Rafael Blesa
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Juan Fortea
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain.,Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Alberto Lleó
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| |
Collapse
|
19
|
Zhou W, Ma D, Tan EK. Mitochondrial CHCHD2 and CHCHD10: Roles in Neurological Diseases and Therapeutic Implications. Neuroscientist 2019; 26:170-184. [DOI: 10.1177/1073858419871214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CHCHD2 mutations have been identified in various neurological diseases such as Parkinson’s disease (PD), frontotemporal dementia (FTD), and Alzheimer’s disease (AD). It is also the first mitochondrial gene whose mutations lead to PD. CHCHD10 is a homolog of CHCHD2; similar to CHCHD2, various mutations of CHCHD10 have been identified in a broad spectrum of neurological disorders, including FTD and AD, with a high frequency of CHCHD10 mutations found in motor neuron diseases. Functionally, CHCHD2 and CHCHD10 have been demonstrated to interact with each other in mitochondria. Recent studies link the biological functions of CHCHD2 to the MICOS complex (mitochondrial inner membrane organizing system). Multiple experimental models suggest that CHCHD2 maintains mitochondrial cristae and disease-associated CHCHD2 mutations function in a loss-of-function manner. However, both CHCHD2 and CHCHD10 knockout mouse models appear phenotypically normal, with no obvious mitochondrial defects. Strategies to maintain or enhance mitochondria cristae could provide opportunities to correct the associated cellular defects in disease state and unravel potential novel targets for CHCHD2-linked neurological conditions.
Collapse
Affiliation(s)
- Wei Zhou
- Neuroscience Research laboratory, National Neuroscience Institute, Duke NUS Medical School, Singapore
| | - Dongrui Ma
- Department of Neurology, Singapore General Hospital, Singapore
| | - Eng-King Tan
- Neuroscience Research laboratory, National Neuroscience Institute, Duke NUS Medical School, Singapore
- Department of Neurology, Singapore General Hospital, Singapore
| |
Collapse
|
20
|
Ragagnin AMG, Shadfar S, Vidal M, Jamali MS, Atkin JD. Motor Neuron Susceptibility in ALS/FTD. Front Neurosci 2019; 13:532. [PMID: 31316328 PMCID: PMC6610326 DOI: 10.3389/fnins.2019.00532] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the death of both upper and lower motor neurons (MNs) in the brain, brainstem and spinal cord. The neurodegenerative mechanisms leading to MN loss in ALS are not fully understood. Importantly, the reasons why MNs are specifically targeted in this disorder are unclear, when the proteins associated genetically or pathologically with ALS are expressed ubiquitously. Furthermore, MNs themselves are not affected equally; specific MNs subpopulations are more susceptible than others in both animal models and human patients. Corticospinal MNs and lower somatic MNs, which innervate voluntary muscles, degenerate more readily than specific subgroups of lower MNs, which remain resistant to degeneration, reflecting the clinical manifestations of ALS. In this review, we discuss the possible factors intrinsic to MNs that render them uniquely susceptible to neurodegeneration in ALS. We also speculate why some MN subpopulations are more vulnerable than others, focusing on both their molecular and physiological properties. Finally, we review the anatomical network and neuronal microenvironment as determinants of MN subtype vulnerability and hence the progression of ALS.
Collapse
Affiliation(s)
- Audrey M G Ragagnin
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sina Shadfar
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Marta Vidal
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Md Shafi Jamali
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Julie D Atkin
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Parakh S, Perri ER, Jagaraj CJ, Ragagnin AMG, Atkin JD. Rab-dependent cellular trafficking and amyotrophic lateral sclerosis. Crit Rev Biochem Mol Biol 2019; 53:623-651. [PMID: 30741580 DOI: 10.1080/10409238.2018.1553926] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rab GTPases are becoming increasingly implicated in neurodegenerative disorders, although their role in amyotrophic lateral sclerosis (ALS) has been somewhat overlooked. However, dysfunction of intracellular transport is gaining increasing attention as a pathogenic mechanism in ALS. Many previous studies have focused axonal trafficking, and the extreme length of axons in motor neurons may contribute to their unique susceptibility in this disorder. In contrast, the role of transport defects within the cell body has been relatively neglected. Similarly, whilst Rab GTPases control all intracellular membrane trafficking events, their role in ALS is poorly understood. Emerging evidence now highlights this family of proteins in ALS, particularly the discovery that C9orf72 functions in intra transport in conjunction with several Rab GTPases. Here, we summarize recent updates on cellular transport defects in ALS, with a focus on Rab GTPases and how their dysfunction may specifically target neurons and contribute to pathophysiology. We discuss the molecular mechanisms associated with dysfunction of Rab proteins in ALS. Finally, we also discuss dysfunction in other modes of transport recently implicated in ALS, including nucleocytoplasmic transport and the ER-mitochondrial contact regions (MAM compartment), and speculate whether these may also involve Rab GTPases.
Collapse
Affiliation(s)
- S Parakh
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia.,b Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , Melbourne , Australia
| | - E R Perri
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia.,b Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , Melbourne , Australia
| | - C J Jagaraj
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia
| | - A M G Ragagnin
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia
| | - J D Atkin
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia.,b Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , Melbourne , Australia
| |
Collapse
|
22
|
Rubino E, Zhang M, Mongini T, Boschi S, Vercelli L, Vacca A, Govone F, Gai A, Giordana MT, Grinberg M, Rogaeva E, Rainero I. Response to a letter to the editor. Neurobiol Aging 2019; 78:195-196. [PMID: 31027854 DOI: 10.1016/j.neurobiolaging.2019.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Elisa Rubino
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy.
| | - Ming Zhang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Tiziana Mongini
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy; Neurology 1, Department of Neuroscience and Mental Health, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Silvia Boschi
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy; Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Liliana Vercelli
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Alessandro Vacca
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Flora Govone
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Annalisa Gai
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Maria Teresa Giordana
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy; Neurology 1, Department of Neuroscience and Mental Health, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Mark Grinberg
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Innocenzo Rainero
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy; Neurology 1, Department of Neuroscience and Mental Health, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| |
Collapse
|
23
|
Park SK, Park S, Liebman SW. Respiration Enhances TDP-43 Toxicity, but TDP-43 Retains Some Toxicity in the Absence of Respiration. J Mol Biol 2019; 431:2050-2059. [PMID: 30905713 DOI: 10.1016/j.jmb.2019.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/09/2018] [Accepted: 03/11/2019] [Indexed: 12/13/2022]
Abstract
The trans-activating response DNA-binding protein 43 (TDP-43) is a transcriptional repressor and splicing factor. TDP-43 is normally mostly in the nucleus, although it shuttles to the cytoplasm. Mutations in TDP-43 are one cause of familial amyotrophic lateral sclerosis. In neurons of these patients, TDP-43 forms cytoplasmic aggregates. In addition, wild-type TDP-43 is also frequently found in neuronal cytoplasmic aggregates in patients with neurodegenerative diseases not caused by TDP-43 mutations. TDP-43 expressed in yeast causes toxicity and forms cytoplasmic aggregates. This disease model has been validated because genetic modifiers of TDP-43 toxicity in yeast have led to the discovery that their conserved genes in humans are amyotrophic lateral sclerosis genetic risk factors. While how TDP-43 is associated with toxicity is unknown, several studies find that TDP-43 alters mitochondrial function. We now report that TDP-43 is much more toxic when yeast are respiring than when grown on a carbon source where respiration is inhibited. However, respiration is not the unique target of TDP-43 toxicity because we found that TDP-43 retains some toxicity even in the absence of respiration. We found that H2O2 increases the toxicity of TDP-43, suggesting that the reactive oxygen species associated with respiration could likewise enhance the toxicity of TDP-43. In this case, the TDP-43 toxicity targets in the presence or absence of respiration could be identical, with the reactive oxygen species produced by respiration activating TDP-43 to become more toxic or making TDP-43 targets more vulnerable.
Collapse
Affiliation(s)
- Sei-Kyoung Park
- Department of Pharmacology, University of Nevada, Reno, NV, USA
| | - Sangeun Park
- Department of Pharmacology, University of Nevada, Reno, NV, USA
| | - Susan W Liebman
- Department of Pharmacology, University of Nevada, Reno, NV, USA.
| |
Collapse
|
24
|
Imai Y, Meng H, Shiba-Fukushima K, Hattori N. Twin CHCH Proteins, CHCHD2, and CHCHD10: Key Molecules of Parkinson's Disease, Amyotrophic Lateral Sclerosis, and Frontotemporal Dementia. Int J Mol Sci 2019; 20:ijms20040908. [PMID: 30791515 PMCID: PMC6412816 DOI: 10.3390/ijms20040908] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 12/12/2022] Open
Abstract
Mutations of coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) and 10 (CHCHD10) have been found to be linked to Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and/or frontotemporal lobe dementia (FTD). CHCHD2 and CHCHD10 proteins, which are homologous proteins with 54% identity in amino acid sequence, belong to the mitochondrial coiled-coil-helix-coiled-coil-helix (CHCH) domain protein family. A series of studies reveals that these twin proteins form a multimodal complex, producing a variety of pathophysiology by the disease-causing variants of these proteins. In this review, we summarize the present knowledge about the physiological and pathological roles of twin proteins, CHCHD2 and CHCHD10, in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuzuru Imai
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| | - Hongrui Meng
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| | - Kahori Shiba-Fukushima
- Department of Neurodegenerative and Demented Disorders, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| | - Nobutaka Hattori
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
- Department of Neurodegenerative and Demented Disorders, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| |
Collapse
|
25
|
Straub IR, Janer A, Weraarpachai W, Zinman L, Robertson J, Rogaeva E, Shoubridge EA. Loss of CHCHD10-CHCHD2 complexes required for respiration underlies the pathogenicity of a CHCHD10 mutation in ALS. Hum Mol Genet 2019; 27:178-189. [PMID: 29121267 DOI: 10.1093/hmg/ddx393] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/31/2017] [Indexed: 12/13/2022] Open
Abstract
Coiled-helix coiled-helix domain containing protein 10 (CHCHD10) and its paralogue CHCHD2 belong to a family of twin CX9C motif proteins, most of which localize to the intermembrane space of mitochondria. Dominant mutations in CHCHD10 cause amyotrophic lateral sclerosis (ALS)/frontotemporal dementia, and mutations in CHCHD2 have been associated with Parkinson's disease, but the function of these proteins remains unknown. Here we show that the p.R15L CHCHD10 variant in ALS patient fibroblasts destabilizes the protein, leading to a defect in the assembly of Complex I, impaired cellular respiration, mitochondrial hyperfusion, an increase in the steady-state level of CHCHD2, and a severe proliferation defect on galactose, a substrate that forces cells to synthesize virtually all of their ATP aerobically. CHCHD10 and CHCHD2 appeared together in distinct foci by immunofluorescence analysis and could be quantitatively immunoprecipitated with antibodies against either protein. Blue native polyacrylamide gel electrophoresis analyses showed that both proteins migrated in a high molecular weight complex (220 kDa) in control cells, which was, however, absent in patient cells. CHCHD10 and CHCHD2 levels increased markedly in control cells in galactose medium, a response that was dampened in patient cells, and a new complex (40 kDa) appeared in both control and patient cells cultured in galactose. Re-entry of patient cells into the cell cycle, which occurred after prolonged culture in galactose, was associated with a marked increase in Complex I, and restoration of the oxygen consumption defect. Our results indicate that CHCHD10-CHCHD2 complexes are necessary for efficient mitochondrial respiration, and support a role for mitochondrial dysfunction in some patients with ALS.
Collapse
Affiliation(s)
- Isabella R Straub
- Department of Human Genetics, McGill University, Montreal, QC H3A 2B4, Canada.,Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexandre Janer
- Department of Human Genetics, McGill University, Montreal, QC H3A 2B4, Canada.,Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Woranontee Weraarpachai
- Department of Human Genetics, McGill University, Montreal, QC H3A 2B4, Canada.,Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.,Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Lampang 52000, Thailand
| | - Lorne Zinman
- Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Eric A Shoubridge
- Department of Human Genetics, McGill University, Montreal, QC H3A 2B4, Canada.,Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
26
|
CHCHD10 variants in amyotrophic lateral sclerosis: Where is the evidence? Ann Neurol 2018; 84:110-116. [PMID: 30014597 PMCID: PMC6553489 DOI: 10.1002/ana.25273] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE After the initial report of a CHCHD10 mutation in mitochondrial disease with features resembling amyotrophic lateral sclerosis (ALS), CHCHD10 mutations have been considered to be a frequent cause for ALS. However, the exact pathogenicity and clinical significance of these mutations remain unclear. Here, we aimed to determine the role of CHCHD10 mutations in ALS. METHODS We analyzed 4,365 whole genome sequenced ALS patients and 1,832 controls from 7 different countries and examined all nonsynonymous single nucleotide variants in CHCHD10. These were tested for association with ALS, independently and in aggregate using several genetic burden tests (including sequence kernel association test [SKAT], optimal unified test [SKAT-O], and Firth logistic regression). RESULTS We identified 3 new variants in cases, but only 1 was ALS-specific. Also, 1 control-specific mutation was identified. There was no increased burden of rare coding mutations among ALS patients compared to controls (p = 0.86, p = 0.86, and p = 0.88 for SKAT, SKAT-O, and Firth, respectively). The few carriers with potential pathogenic CHCHD10 mutations exhibited a slowly progressive ALS-like phenotype with atypical features such as myopathy and deafness. INTERPRETATION CHCHD10 mutations seem to be a far less prevalent cause of pure ALS than previously suggested, and instead appear related to more complex phenotypes. There appears to be insufficient evidence for the pathogenicity of most previously reported variants in pure ALS. This study shows that routine testing for CHCHD10 mutations in pure ALS is not recommended and illustrates the importance of sufficient genetic and functional evidence in establishing pathogenicity of genetic variants. Ann Neurol 2018;83:110-116.
Collapse
|
27
|
Lehmer C, Schludi MH, Ransom L, Greiling J, Junghänel M, Exner N, Riemenschneider H, van der Zee J, Van Broeckhoven C, Weydt P, Heneka MT, Edbauer D. A novel CHCHD10 mutation implicates a Mia40-dependent mitochondrial import deficit in ALS. EMBO Mol Med 2018; 10:e8558. [PMID: 29789341 PMCID: PMC5991575 DOI: 10.15252/emmm.201708558] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 12/12/2022] Open
Abstract
CHCHD10 mutations are linked to amyotrophic lateral sclerosis, but their mode of action is unclear. In a 29-year-old patient with rapid disease progression, we discovered a novel mutation (Q108P) in a conserved residue within the coiled-coil-helix-coiled-coil-helix (CHCH) domain. The aggressive clinical phenotype prompted us to probe its pathogenicity. Unlike the wild-type protein, mitochondrial import of CHCHD10 Q108P was blocked nearly completely resulting in diffuse cytoplasmic localization and reduced stability. Other CHCHD10 variants reported in patients showed impaired mitochondrial import (C122R) or clustering within mitochondria (especially G66V and E127K) often associated with reduced expression. Truncation experiments suggest mitochondrial import of CHCHD10 is mediated by the CHCH domain rather than the proposed N-terminal mitochondrial targeting signal. Knockdown of Mia40, which introduces disulfide bonds into CHCH domain proteins, blocked mitochondrial import of CHCHD10. Overexpression of Mia40 rescued mitochondrial import of CHCHD10 Q108P by enhancing disulfide-bond formation. Since reduction in CHCHD10 inhibits respiration, mutations in its CHCH domain may cause aggressive disease by impairing mitochondrial import. Our data suggest Mia40 upregulation as a potential therapeutic salvage pathway.
Collapse
Affiliation(s)
- Carina Lehmer
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Martin H Schludi
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Linnea Ransom
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Johanna Greiling
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Michaela Junghänel
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Nicole Exner
- Biomedical Center (BMC), Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Julie van der Zee
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Patrick Weydt
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, Bonn University Hospital, Bonn, Germany
| | - Michael T Heneka
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, Bonn University Hospital, Bonn, Germany
- German Center for Neurodegenerative Disease (DZNE) Bonn, Bonn, Germany
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
28
|
Revisiting the concept of amyotrophic lateral sclerosis as a multisystems disorder of limited phenotypic expression. Curr Opin Neurol 2018; 30:599-607. [PMID: 28914734 DOI: 10.1097/wco.0000000000000488] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW The current review will examine the contemporary evidence that amyotrophic lateral sclerosis (ALS) is a syndrome in which the unifying feature is a progressive loss of upper and lower motor neuron function. RECENT FINDINGS Although ALS is traditionally viewed as a neurodegenerative disorder affecting the motor neurons, there is considerable phenotypic heterogeneity and widespread involvement of the central nervous system. A broad range of both causative and disease modifying genetic variants are associated with both sporadic and familial forms of ALS. A significant proportion of ALS patients have an associated frontotemporal dysfunction which can be a harbinger of a significantly shorter survival and for which there is increasing evidence of a fundamental disruption of tau metabolism in those affected individuals. Although the traditional neuropathology of the degenerating motor neurons in ALS is that of neuronal cytoplasmic inclusions composed neuronal intermediate filaments, the presence of neuronal cytoplasmic inclusions composed of RNA binding proteins suggests a key role for RNA dysmetabolism in the pathogenesis of ALS. SUMMARY ALS is a complex multisystem neurodegenerative syndrome with marked heterogeneity at not only the level of clinical expression, but also etiologically.
Collapse
|
29
|
Nguyen HP, Van Broeckhoven C, van der Zee J. ALS Genes in the Genomic Era and their Implications for FTD. Trends Genet 2018; 34:404-423. [PMID: 29605155 DOI: 10.1016/j.tig.2018.03.001] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/04/2017] [Accepted: 03/02/2018] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease, characterized genetically by a disproportionately large contribution of rare genetic variation. Driven by advances in massive parallel sequencing and applied on large patient-control cohorts, systematic identification of these rare variants that make up the genetic architecture of ALS became feasible. In this review paper, we present a comprehensive overview of recently proposed ALS genes that were identified based on rare genetic variants (TBK1, CHCHD10, TUBA4A, CCNF, MATR3, NEK1, C21orf2, ANXA11, TIA1) and their potential relevance to frontotemporal dementia genetic etiology. As more causal and risk genes are identified, it has become apparent that affected individuals can carry multiple disease-associated variants. In light of this observation, we discuss the oligogenic architecture of ALS. To end, we highlight emerging key molecular processes and opportunities for therapy.
Collapse
Affiliation(s)
- Hung Phuoc Nguyen
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium; Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium; Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Julie van der Zee
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium; Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
30
|
Purandare N, Somayajulu M, Hüttemann M, Grossman LI, Aras S. The cellular stress proteins CHCHD10 and MNRR1 (CHCHD2): Partners in mitochondrial and nuclear function and dysfunction. J Biol Chem 2018. [PMID: 29540477 DOI: 10.1074/jbc.ra117.001073] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Coiled-coil-helix-coiled-coil-helix domain-containing 10 (CHCHD10) and CHCHD2 (MNRR1) are homologous proteins with 58% sequence identity and belong to the twin CX9C family of proteins that mediate cellular stress responses. Despite the identification of several neurodegeneration-associated mutations in the CHCHD10 gene, few studies have assessed its physiological role. Here, we investigated CHCHD10's function as a regulator of oxidative phosphorylation in the mitochondria and the nucleus. We show that CHCHD10 copurifies with cytochrome c oxidase (COX) and up-regulates COX activity by serving as a scaffolding protein required for MNRR1 phosphorylation, mediated by ARG (ABL proto-oncogene 2, nonreceptor tyrosine kinase (ABL2)). The CHCHD10 gene was maximally transcribed in cultured cells at 8% oxygen, unlike MNRR1, which was maximally expressed at 4%, suggesting a fine-tuned oxygen-sensing system that adapts to the varying oxygen concentrations in the human body under physiological conditions. We show that nuclear CHCHD10 protein down-regulates the expression of genes harboring the oxygen-responsive element (ORE) in their promoters by interacting with and augmenting the activity of the largely uncharacterized transcriptional repressor CXXC finger protein 5 (CXXC5). We further show that two genetic CHCHD10 disease variants, G66V and P80L, in the mitochondria exhibit faulty interactions with MNRR1 and COX, reducing respiration and increasing reactive oxygen species (ROS), and in the nucleus abrogating transcriptional repression of ORE-containing genes. Our results reveal that CHCHD10 positively regulates mitochondrial respiration and contributes to transcriptional repression of ORE-containing genes in the nucleus, and that genetic CHCHD10 variants are impaired in these activities.
Collapse
Affiliation(s)
- Neeraja Purandare
- From the Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201
| | - Mallika Somayajulu
- From the Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201
| | - Maik Hüttemann
- From the Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201
| | - Lawrence I Grossman
- From the Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201
| | - Siddhesh Aras
- From the Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201
| |
Collapse
|
31
|
Rubino E, Zhang M, Mongini T, Boschi S, Vercelli L, Vacca A, Govone F, Gai A, Giordana MT, Grinberg M, Rogaeva E, Rainero I. Mutation analysis of CHCHD2 and CHCHD10 in Italian patients with mitochondrial myopathy. Neurobiol Aging 2018. [PMID: 29519717 DOI: 10.1016/j.neurobiolaging.2018.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mutations in CHCHD2 and CHCHD10 were recently reported in a broad spectrum of neurodegenerative diseases, for example, Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, or mitochondrial myopathy (MM). The aim of the study was to evaluate the prevalence of CHCHD2 and CHCHD10 mutations in Italian MM patients without mitochondrial DNA mutations. The coding regions of CHCHD2 and CHCHD10 were sequenced in 62 MM patients. None of the patients showed CHCHD2 mutations, whereas 1 sporadic MM patient carried a homozygous Pro96Thr substitution in CHCHD10. Muscle biopsy of this patient showed intracellular glycogen accumulation with cytochrome c oxidase negative and ragged red fibers. Our study suggests that the homozygous Pro96Thr mutation in CHCHD10 might be pathogenic but does not support a major role for CHCHD2 in MM pathogenesis.
Collapse
Affiliation(s)
- Elisa Rubino
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy.
| | - Ming Zhang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Tiziana Mongini
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy; Neurology 1, Department of Neuroscience and Mental Health, AOU Cittá della Salute e della Scienza di Torino, Torino, Italy
| | - Silvia Boschi
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy; Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Italy
| | - Liliana Vercelli
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Alessandro Vacca
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Flora Govone
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Annalisa Gai
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Maria Teresa Giordana
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy; Neurology 1, Department of Neuroscience and Mental Health, AOU Cittá della Salute e della Scienza di Torino, Torino, Italy
| | - Mark Grinberg
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Innocenzo Rainero
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy; Neurology 1, Department of Neuroscience and Mental Health, AOU Cittá della Salute e della Scienza di Torino, Torino, Italy
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Amyotrophic lateral sclerosis (ALS), like other neurodegenerative diseases, remains incurable, but gene mutations linked to ALS are providing clues as to how to target therapies. It is important for researchers to keep abreast of the rapid influx of new data in ALS, and we aim to summarize the major genetic advances made in the field over the past 2 years. RECENT FINDINGS Significant variation in seven genes has recently been found in ALS: TBK1, CCNF, GLE1, MATR3, TUBA4A, CHCHD10 and NEK1. These have mostly been identified through large exome screening studies, though traditional linkage approaches and candidate gene screening remain important. We briefly update C9orf72 research, noting in particular the development of reagents to better understand the normal role of C9orf72 protein. SUMMARY Striking advances in our understanding of the genetic heterogeneity of ALS continue to be made, year on year. These implicate proteostasis, RNA export, nuclear transport, the cytoskeleton, mitochondrial function, the cell cycle and DNA repair. Functional studies to integrate these hits are needed. By building a web of knowledge with interlinked genes and mechanisms, it is hoped we can better understand ALS and work toward effective therapies.
Collapse
|
33
|
Burstein SR, Valsecchi F, Kawamata H, Bourens M, Zeng R, Zuberi A, Milner TA, Cloonan SM, Lutz C, Barrientos A, Manfredi G. In vitro and in vivo studies of the ALS-FTLD protein CHCHD10 reveal novel mitochondrial topology and protein interactions. Hum Mol Genet 2018; 27:160-177. [PMID: 29112723 PMCID: PMC5886281 DOI: 10.1093/hmg/ddx397] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/11/2017] [Accepted: 11/01/2017] [Indexed: 12/12/2022] Open
Abstract
Mutations in coiled-coil-helix-coiled-coil-helix-domain containing 10 (CHCHD10), a mitochondrial twin CX9C protein whose function is still unknown, cause myopathy, motor neuron disease, frontotemporal dementia, and Parkinson's disease. Here, we investigate CHCHD10 topology and its protein interactome, as well as the effects of CHCHD10 depletion or expression of disease-associated mutations in wild-type cells. We find that CHCHD10 associates with membranes in the mitochondrial intermembrane space, where it interacts with a closely related protein, CHCHD2. Furthermore, both CHCHD10 and CHCHD2 interact with p32/GC1QR, a protein with various intra and extra-mitochondrial functions. CHCHD10 and CHCHD2 have short half-lives, suggesting regulatory rather than structural functions. Cell lines with CHCHD10 knockdown do not display bioenergetic defects, but, unexpectedly, accumulate excessive intramitochondrial iron. In mice, CHCHD10 is expressed in many tissues, most abundantly in heart, skeletal muscle, liver, and in specific CNS regions, notably the dopaminergic neurons of the substantia nigra and spinal cord neurons, which is consistent with the pathology associated with CHCHD10 mutations. Homozygote CHCHD10 knockout mice are viable, have no gross phenotypes, no bioenergetic defects or ultrastructural mitochondrial abnormalities in brain, heart or skeletal muscle, indicating that functional redundancy or compensatory mechanisms for CHCHD10 loss occur in vivo. Instead, cells expressing S59L or R15L mutant versions of CHCHD10, but not WT, have impaired mitochondrial energy metabolism. Taken together, the evidence obtained from our in vitro and in vivo studies suggest that CHCHD10 mutants cause disease through a gain of toxic function mechanism, rather than a loss of function.
Collapse
Affiliation(s)
- S R Burstein
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - F Valsecchi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - H Kawamata
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - M Bourens
- Department of Neurology, Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - R Zeng
- Department of Neurology, Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - A Zuberi
- The Jackson Laboratories, ME 04609, USA
| | - T A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA
| | - S M Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - C Lutz
- The Jackson Laboratories, ME 04609, USA
| | - A Barrientos
- Department of Neurology, Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - G Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
34
|
Abstract
Frontotemporal dementia (FTD) is a neurodegenerative disorder characterized by progressive changes in behavior, personality, and language with involvement of the frontal and temporal regions of the brain. About 40% of FTD cases have a positive family history, and about 10% of these cases are inherited in an autosomal-dominant pattern. These gene defects present with distinct clinical phenotypes. As the diagnosis of FTD becomes more recognizable, it will become increasingly important to keep these gene mutations in mind. In this chapter, we review the genes with known associations to FTD. We discuss protein functions, mutation frequencies, clinical phenotypes, imaging characteristics, and pathology associated with these genes.
Collapse
Affiliation(s)
- Jessica Deleon
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, United States
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, United States.
| |
Collapse
|
35
|
Chia R, Chiò A, Traynor BJ. Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. Lancet Neurol 2017; 17:94-102. [PMID: 29154141 DOI: 10.1016/s1474-4422(17)30401-5] [Citation(s) in RCA: 419] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 10/05/2017] [Accepted: 10/05/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND The disease course of amyotrophic lateral sclerosis (ALS) is rapid and, because its pathophysiology is unclear, few effective treatments are available. Genetic research aims to understand the underlying mechanisms of ALS and identify potential therapeutic targets. The first gene associated with ALS was SOD1, identified in 1993 and, by early 2014, more than 20 genes had been identified as causative of, or highly associated with, ALS. These genetic discoveries have identified key disease pathways that are therapeutically testable and could potentially lead to the development of better treatments for people with ALS. RECENT DEVELOPMENTS Since 2014, seven additional genes have been associated with ALS (MATR3, CHCHD10, TBK1, TUBA4A, NEK1, C21orf2, and CCNF), all of which were identified by genome-wide association studies, whole genome studies, or exome sequencing technologies. Each of the seven novel genes code for proteins associated with one or more molecular pathways known to be involved in ALS. These pathways include dysfunction in global protein homoeostasis resulting from abnormal protein aggregation or a defect in the protein clearance pathway, mitochondrial dysfunction, altered RNA metabolism, impaired cytoskeletal integrity, altered axonal transport dynamics, and DNA damage accumulation due to defective DNA repair. Because these novel genes share common disease pathways with other genes implicated in ALS, therapeutics targeting these pathways could be useful for a broad group of patients stratified by genotype. However, the effects of these novel genes have not yet been investigated in animal models, which will be a key step to translating these findings into clinical practice. WHERE NEXT?: The identification of these seven novel genes has been important in unravelling the molecular mechanisms underlying ALS. However, our understanding of what causes ALS is not complete, and further genetic research will provide additional detail about its causes. Increased genetic knowledge will also identify potential therapeutic targets and could lead to the development of individualised medicine for patients with ALS. These developments will have a direct effect on clinical practice when genome sequencing becomes a routine and integral part of disease diagnosis and management.
Collapse
Affiliation(s)
- Ruth Chia
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | - Adriano Chiò
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy; Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Bryan J Traynor
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA; Department of Neurology, Brain Sciences Institute, Johns Hopkins Hospital, Baltimore, MD, USA
| |
Collapse
|
36
|
Pottier C, Ravenscroft TA, Sanchez-Contreras M, Rademakers R. Genetics of FTLD: overview and what else we can expect from genetic studies. J Neurochem 2017; 138 Suppl 1:32-53. [PMID: 27009575 DOI: 10.1111/jnc.13622] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/26/2016] [Accepted: 03/18/2016] [Indexed: 12/11/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) comprises a highly heterogeneous group of disorders clinically associated with behavioral and personality changes, language impairment, and deficits in executive functioning, and pathologically associated with degeneration of frontal and temporal lobes. Some patients present with motor symptoms including amyotrophic lateral sclerosis. Genetic research over the past two decades in FTLD families led to the identification of three common FTLD genes (microtubule-associated protein tau, progranulin, and chromosome 9 open reading frame 72) and a small number of rare FTLD genes, explaining the disease in almost all autosomal dominant FTLD families but only a minority of apparently sporadic patients or patients in whom the family history is less clear. Identification of additional FTLD (risk) genes is therefore highly anticipated, especially with the emerging use of next-generation sequencing. Common variants in the transmembrane protein 106 B were identified as a genetic risk factor of FTLD and disease modifier in patients with known mutations. This review summarizes for each FTLD gene what we know about the type and frequency of mutations, their associated clinical and pathological features, and potential disease mechanisms. We also provide an overview of emerging disease pathways encompassing multiple FTLD genes. We further discuss how FTLD specific issues, such as disease heterogeneity, the presence of an unclear family history and the possible role of an oligogenic basis of FTLD, can pose challenges for future FTLD gene identification and risk assessment of specific variants. Finally, we highlight emerging clinical, genetic, and translational research opportunities that lie ahead. Genetic research led to the identification of three common FTLD genes with rare variants (MAPT, GRN, and C9orf72) and a small number of rare genes. Efforts are now ongoing, which aimed at the identification of rare variants with high risk and/or low frequency variants with intermediate effect. Common risk variants have also been identified, such as TMEM106B. This review discusses the current knowledge on FTLD genes and the emerging disease pathways encompassing multiple FTLD genes.
Collapse
Affiliation(s)
- Cyril Pottier
- Mayo Clinic Jacksonville, Department of Neuroscience, Jacksonville, FL, USA
| | | | | | - Rosa Rademakers
- Mayo Clinic Jacksonville, Department of Neuroscience, Jacksonville, FL, USA
| |
Collapse
|
37
|
MNRR1, a Biorganellar Regulator of Mitochondria. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6739236. [PMID: 28685009 PMCID: PMC5480048 DOI: 10.1155/2017/6739236] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/09/2017] [Indexed: 12/12/2022]
Abstract
The central role of energy metabolism in cellular activities is becoming widely recognized. However, there are many gaps in our knowledge of the mechanisms by which mitochondria evaluate their status and call upon the nucleus to make adjustments. Recently, a protein family consisting of twin CX9C proteins has been shown to play a role in human pathophysiology. We focus here on two family members, the isoforms CHCHD2 (renamed MNRR1) and CHCHD10. The better studied isoform, MNRR1, has the unusual property of functioning in both the mitochondria and the nucleus and of having a different function in each. In the mitochondria, it functions by binding to cytochrome c oxidase (COX), which stimulates respiration. Its binding to COX is promoted by tyrosine-99 phosphorylation, carried out by ABL2 kinase (ARG). In the nucleus, MNRR1 binds to a novel promoter element in COX4I2 and itself, increasing transcription at 4% oxygen. We discuss mutations in both MNRR1 and CHCHD10 found in a number of chronic, mostly neurodegenerative, diseases. Finally, we propose a model of a graded response to hypoxic and oxidative stresses, mediated under different oxygen tensions by CHCHD10, MNRR1, and HIF1, which operate at intermediate and very low oxygen concentrations, respectively.
Collapse
|
38
|
CHCHD10 mutations in patients with amyotrophic lateral sclerosis in Mainland China. Neurobiol Aging 2017; 54:214.e7-214.e10. [PMID: 28318595 DOI: 10.1016/j.neurobiolaging.2017.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/11/2017] [Accepted: 02/16/2017] [Indexed: 12/12/2022]
Abstract
Many genes have been found to be pathogenic for amyotrophic lateral sclerosis (ALS). Among them, the coiled-coil-helix-coiled-coil-helix domain containing 10 (CHCHD10) has been reported to play a controversial role in ALS. We examined the coding region of this gene in 424 unrelated Chinese sporadic ALS subjects, 73 familial ALS subjects, and 204 healthy controls using a polymerase chain reaction-direct sequencing strategy. Two types of variants were identified, and of these, one variant (g.877C>T, p.P23L) was identified to be damaging, and the other one was (g.648G>A) in intron. The mutation (g.877C>T, p.P23L) has been previously reported in a Chinese frontotemporal dementia patient. Our study is the first to report the clinical heterogeneity of specific mutations in CHCHD10 in ALS in an Asian population and to report the possible new mutation hotspot. Our findings support the major role of CHCHD10 in the frontotemporal dementia-amyotrophic lateral sclerosis disease spectrum and stress the importance of mitochondrial abnormalities in the pathogenesis of diseases in Asian cohorts.
Collapse
|
39
|
Perrone F, Nguyen HP, Van Mossevelde S, Moisse M, Sieben A, Santens P, De Bleecker J, Vandenbulcke M, Engelborghs S, Baets J, Cras P, Vandenberghe R, De Jonghe P, De Deyn PP, Martin JJ, Van Damme P, Van Broeckhoven C, van der Zee J. Investigating the role of ALS genes CHCHD10 and TUBA4A in Belgian FTD-ALS spectrum patients. Neurobiol Aging 2016; 51:177.e9-177.e16. [PMID: 28069311 DOI: 10.1016/j.neurobiolaging.2016.12.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 12/06/2016] [Accepted: 12/11/2016] [Indexed: 10/20/2022]
Abstract
Mutation screening and phenotypic profiling of 2 amyotrophic lateral sclerosis-(ALS) and frontotemporal dementia-(FTD) associated genes, CHCHD10 and TUBA4A, were performed in a Belgian cohort of 459 FTD, 28 FTD-ALS, and 429 ALS patients. In CHCHD10, we identified a novel nonsense mutation (p.Gln108*) in a patient with atypical clinical FTD and pathology-confirmed Parkinson's disease (1/459, 0.22%) leading to loss of transcript. We further observed 3 previously described missense variants (p.Pro34Ser, p.Pro80Leu, and p.Pro96Thr) that were also present in the matched control series. In TUBA4A, we detected a novel frameshift mutation (p.Arg64Glyfs*90) leading to a truncated protein in 1 FTD patient (1/459 of 0.22%) with family history of Parkinson's disease and cognitive impairment, and a novel missense mutation (p.Thr381Met) in 2 sibs with familial ALS and memory problems (1 index patient/429, 0.23%) in whom we previously identified a pathogenic Chromosome 9 open reading frame 72 repeat expansion mutation. The present study confirms the role of CHCHD10 and TUBA4A in the FTD-ALS spectrum, although genetic variations in these 2 genes are extremely rare in the Belgian population and often associated with symptomatology of related neurodegenerative diseases including Parkinson's disease and Alzheimer's disease.
Collapse
Affiliation(s)
- Federica Perrone
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Hung Phuoc Nguyen
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Sara Van Mossevelde
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Matthieu Moisse
- Department of Neurosciences, Faculty of Medicine, KU Leuven, Leuven, Belgium; Laboratory of Neurobiology, Vesalius Research Center, VIB, Leuven, Belgium
| | - Anne Sieben
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Department of Neurology, University Hospital Ghent and University of Ghent, Ghent, Belgium
| | - Patrick Santens
- Department of Neurology, University Hospital Ghent and University of Ghent, Ghent, Belgium
| | - Jan De Bleecker
- Department of Neurology, University Hospital Ghent and University of Ghent, Ghent, Belgium
| | - Mathieu Vandenbulcke
- Department of Neurosciences, Faculty of Medicine, KU Leuven, Leuven, Belgium; Department of Old Age Psychiatry and Memory Clinic, University of Leuven, Leuven, Belgium
| | - Sebastiaan Engelborghs
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Department of Neurology and Memory Clinic, Hospital Network Antwerp Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Jonathan Baets
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Neurogenetics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Patrick Cras
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Rik Vandenberghe
- Department of Neurosciences, Faculty of Medicine, KU Leuven, Leuven, Belgium; Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Peter De Jonghe
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Neurogenetics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Peter P De Deyn
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Department of Neurology and Memory Clinic, Hospital Network Antwerp Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Jean-Jacques Martin
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Faculty of Medicine, KU Leuven, Leuven, Belgium; Laboratory of Neurobiology, Vesalius Research Center, VIB, Leuven, Belgium; Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.
| | - Julie van der Zee
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.
| | | |
Collapse
|
40
|
Sabatelli M, Marangi G, Conte A, Tasca G, Zollino M, Lattante S. New ALS-Related Genes Expand the Spectrum Paradigm of Amyotrophic Lateral Sclerosis. Brain Pathol 2016; 26:266-75. [PMID: 26780671 DOI: 10.1111/bpa.12354] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/14/2016] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is characterized by the degeneration of upper and lower motor neurons. Clinical heterogeneity is a well-recognized feature of the disease as age of onset, site of onset and the duration of the disease can vary greatly among patients. A number of genes have been identified and associated to familial and sporadic forms of ALS but the majority of cases remains still unexplained. Recent breakthrough discoveries have demonstrated that clinical manifestations associated with ALS-related genes are not circumscribed to motor neurons involvement. In this view, ALS appears to be linked to different conditions over a continuum or spectrum in which overlapping phenotypes may be identified. In this review, we aim to examine the increasing number of spectra, including ALS/Frontotemporal Dementia and ALS/Myopathies spectra. Considering all these neurodegenerative disorders as different phenotypes of the same spectrum can help to identify common pathological pathways and consequently new therapeutic targets in these incurable diseases.
Collapse
Affiliation(s)
- Mario Sabatelli
- Department of Geriatrics, Neurosciences and Orthopedics, Clinic Center NEMO-Roma. Institute of Neurology
| | - Giuseppe Marangi
- Institute of Medical Genetics, Catholic University School of Medicine, Rome, Italy
| | - Amelia Conte
- Department of Geriatrics, Neurosciences and Orthopedics, Clinic Center NEMO-Roma. Institute of Neurology
| | | | - Marcella Zollino
- Institute of Medical Genetics, Catholic University School of Medicine, Rome, Italy
| | - Serena Lattante
- Institute of Medical Genetics, Catholic University School of Medicine, Rome, Italy
| |
Collapse
|
41
|
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disorder that is characterized by a progressive degeneration of the upper and lower motor neurons. Most cases appear to be sporadic, but 5-10 % of cases have a family history of the disease. High-throughput DNA sequencing and related genomic capture tools are methodological advances which have rapidly contributed to an acceleration in the discovery of genetic risk factors for both familial and sporadic ALS. It is interesting to note that as the number of ALS genes grows, many of the proteins they encode are in shared intracellular processes. This review will summarize some of the recent advances and gene discovery made in ALS.
Collapse
|
42
|
Erratum to: Mitochondrial CHCHD-Containing Proteins: Physiologic Functions and Link with Neurodegenerative Diseases. Mol Neurobiol 2016; 54:5547-5549. [PMID: 27718101 DOI: 10.1007/s12035-016-0160-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Zhou ZD, Saw WT, Tan EK. Mitochondrial CHCHD-Containing Proteins: Physiologic Functions and Link with Neurodegenerative Diseases. Mol Neurobiol 2016; 54:5534-5546. [PMID: 27631878 DOI: 10.1007/s12035-016-0099-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/02/2016] [Indexed: 12/13/2022]
Abstract
The coiled-coil-helix-coiled-coil-helix domain (CHCHD)-containing proteins are evolutionarily conserved nucleus-encoded small mitochondrial proteins with important functions. So far, nine members have been identified in this protein family. All CHCHD proteins have at least one functional coiled-coil-helix-coiled-coil-helix (CHCH) domain, which is stabilized by two pairs of disulfide bonds between two helices. CHCHD proteins have various important pathophysiological roles in mitochondria and other key cellular processes. Mutations of CHCHD proteins have been associated with various human neurodegenerative diseases. Mutations of CHCHD10 are associated with amyotrophic lateral sclerosis (ALS) and/or frontotemporal lobe dementia (FTD), motor neuron disease, and late-onset spinal muscular atrophy and autosomal dominant mitochondrial myopathy. CHCHD10 stabilizes mitochondrial crista ultrastructure and maintains its integrity. In patients with CHCHD10 mutations, there are abnormal mitochondrial crista structure, deficiencies of respiratory chain complexes, impaired mitochondrial respiration, and multiple mitochondrial DNA (mtDNA) deletions. Recently, CHCHD2 mutations are linked with autosomal dominant and sporadic Parkinson's disease (PD). The CHCHD2 is a multifunctional protein and plays roles in regulation of mitochondrial metabolism, synthesis of respiratory chain components, and modulation of cell apoptosis. With a better understanding of the pathophysiologic roles of CHCHD proteins, they may be potential novel therapeutic targets for human neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhi-Dong Zhou
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore. .,Signature Research Program in Neuroscience and Behavioural Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857, Singapore.
| | - Wuan-Ting Saw
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Eng-King Tan
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore. .,Signature Research Program in Neuroscience and Behavioural Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857, Singapore. .,Department of Neurology, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore.
| |
Collapse
|
44
|
Xiao T, Jiao B, Zhang W, Pan C, Wei J, Liu X, Zhou Y, Zhou L, Tang B, Shen L. Identification of CHCHD10 Mutation in Chinese Patients with Alzheimer Disease. Mol Neurobiol 2016; 54:5243-5247. [PMID: 27578015 DOI: 10.1007/s12035-016-0056-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 08/15/2016] [Indexed: 01/27/2023]
Abstract
CHCHD10 gene has been identified to be associated with frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Considering the clinical phenotype and pathology characterization were overlapped between FTD and Alzheimer disease (AD), and so far, no systematic analysis of CHCHD10 mutation was conducted in patients with AD in Asian population. Therefore, we screened of all exons in CHCHD10 in a cohort of 484 AD patients (60 with family history) from Mainland China. A heterozygous variant p.A35D (c.104C>A), previously reported in a patient with FTD in Italian population, was identified in a female patient with sporadic LOAD. The age at onset of mutation carrier was 86, presented as typical amnestic dementia. The mutation was found to be deleterious according to in silico predictions and excluded in 500 ethnically and geographically matched controls. Our finding revealed the clinical manifestations of variant p.A35D (c.104C>A) in a LOAD case and indicated that CHCHD10 mutation was presented in different types of dementia.
Collapse
Affiliation(s)
- Tingting Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Weiwei Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Chuzheng Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jingya Wei
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyan Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yafang Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Lin Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,State Key Laboratory of Medical Genetics, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China. .,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China. .,State Key Laboratory of Medical Genetics, Changsha, China.
| |
Collapse
|
45
|
Genetic testing and genetic counseling for amyotrophic lateral sclerosis: an update for clinicians. Genet Med 2016; 19:267-274. [DOI: 10.1038/gim.2016.107] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/17/2016] [Indexed: 12/11/2022] Open
|
46
|
Riva N, Agosta F, Lunetta C, Filippi M, Quattrini A. Recent advances in amyotrophic lateral sclerosis. J Neurol 2016; 263:1241-54. [PMID: 27025851 PMCID: PMC4893385 DOI: 10.1007/s00415-016-8091-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 02/12/2016] [Indexed: 10/28/2022]
Abstract
ALS is a relentlessly progressive and fatal disease, with no curative therapies available to date. Symptomatic and palliative care, provided in a multidisciplinary context, still remains the cornerstone of ALS management. However, our understanding of the molecular mechanisms underlying the disease has advanced greatly over the past years, giving new hope for the development of novel diagnostic and therapeutic approaches. Here, we have reviewed the most recent studies that have contributed to improving both clinical management and our understanding of ALS pathogenesis.
Collapse
Affiliation(s)
- Nilo Riva
- Neuropathology Unit, INSPE and Division of Neuroscience, Department of Neurology, Institute of Experimental Neurology, San Raffaele Scientific Institute, Via Olgettina 48, 20132, Milan, Italy.
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, Department of Neurology, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Christian Lunetta
- NEuroMuscular Omnicentre (NEMO), Niguarda Ca Granda Hospital, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, Department of Neurology, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Quattrini
- Neuropathology Unit, INSPE and Division of Neuroscience, Department of Neurology, Institute of Experimental Neurology, San Raffaele Scientific Institute, Via Olgettina 48, 20132, Milan, Italy
| |
Collapse
|
47
|
Teyssou E, Chartier L, Albert M, Bouscary A, Antoine JC, Camdessanché JP, Rotolo F, Couratier P, Salachas F, Seilhean D, Millecamps S. Genetic analysis of CHCHD10 in French familial amyotrophic lateral sclerosis patients. Neurobiol Aging 2016; 42:218.e1-3. [DOI: 10.1016/j.neurobiolaging.2016.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 03/17/2016] [Indexed: 12/12/2022]
|
48
|
Alsultan AA, Waller R, Heath PR, Kirby J. The genetics of amyotrophic lateral sclerosis: current insights. Degener Neurol Neuromuscul Dis 2016; 6:49-64. [PMID: 30050368 PMCID: PMC6053097 DOI: 10.2147/dnnd.s84956] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that results in loss of the upper and lower motor neurons from motor cortex, brainstem, and spinal cord. While the majority of cases are sporadic, approximately 10% show familial inheritance. ALS is usually inherited in an autosomal dominant manner, although autosomal recessive and X-linked inheritance do occur. To date, 24 of the genes at 26 loci have been identified; these include loci linked to ALS and to frontotemporal dementia-ALS, where family pedigrees contain individuals with frontotemporal dementia with/without ALS. The most commonly established genetic causes of familial ALS (FALS) to date are the presence of a hexanucleotide repeat expansion in the C9ORF72 gene (39.3% FALS) and mutation of SOD1, TARDBP, and FUS, with frequencies of 12%-23.5%, 5%, and 4.1%, respectively. However, with the increasing use of next-generation sequencing of small family pedigrees, this has led to an increasing number of genes being associated with ALS. This review provides a comprehensive review on the genetics of ALS and an update of the pathogenic mechanisms associated with these genes. Commonly implicated pathways have been established, including RNA processing, the protein degradation pathways of autophagy and ubiquitin-proteasome system, as well as protein trafficking and cytoskeletal function. Elucidating the role genetics plays in both FALS and sporadic ALS is essential for understanding the subsequent cellular dysregulation that leads to motor neuron loss, in order to develop future effective therapeutic strategies.
Collapse
Affiliation(s)
- Afnan A Alsultan
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK,
| | - Rachel Waller
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK,
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK,
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK,
| |
Collapse
|
49
|
Li XL, Shu S, Li XG, Liu Q, Liu F, Cui B, Liu MS, Peng B, Cui LY, Zhang X. CHCHD10 is not a frequent causative gene in Chinese ALS patients. Amyotroph Lateral Scler Frontotemporal Degener 2016; 17:458-60. [PMID: 27077676 DOI: 10.3109/21678421.2016.1170151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder characterized by the death of motor neurons. Recently, mutations in CHCHD10 have been reported to cause ALS in Western populations. In the present study, direct DNA sequencing has been performed on CHCHD10 in a cohort of 294 ALS patients of Chinese Han origin. No mutations were identified in CHCHD10 in ALS cases of Chinese ancestry. We propose CHCHD10 might not be a frequent causal gene among Chinese with ALS.
Collapse
Affiliation(s)
- Xiao Ling Li
- a Department of Neurology and Laboratory of Clinical Genetics , Peking Union Medical College , Beijing .,c McKusick-Zhang Centre for Genetic Medicine , CAMS & PUMC , Beijing , China
| | - Shi Shu
- a Department of Neurology and Laboratory of Clinical Genetics , Peking Union Medical College , Beijing .,b Neuroscience Center, CAMS Hospital , Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC) , Beijing , and.,c McKusick-Zhang Centre for Genetic Medicine , CAMS & PUMC , Beijing , China
| | - Xiao Guang Li
- a Department of Neurology and Laboratory of Clinical Genetics , Peking Union Medical College , Beijing
| | - Qing Liu
- a Department of Neurology and Laboratory of Clinical Genetics , Peking Union Medical College , Beijing .,b Neuroscience Center, CAMS Hospital , Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC) , Beijing , and
| | - Fang Liu
- a Department of Neurology and Laboratory of Clinical Genetics , Peking Union Medical College , Beijing .,c McKusick-Zhang Centre for Genetic Medicine , CAMS & PUMC , Beijing , China
| | - Bo Cui
- a Department of Neurology and Laboratory of Clinical Genetics , Peking Union Medical College , Beijing
| | - Ming Sheng Liu
- a Department of Neurology and Laboratory of Clinical Genetics , Peking Union Medical College , Beijing
| | - Bin Peng
- a Department of Neurology and Laboratory of Clinical Genetics , Peking Union Medical College , Beijing
| | - Li Ying Cui
- a Department of Neurology and Laboratory of Clinical Genetics , Peking Union Medical College , Beijing .,b Neuroscience Center, CAMS Hospital , Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC) , Beijing , and
| | - Xue Zhang
- a Department of Neurology and Laboratory of Clinical Genetics , Peking Union Medical College , Beijing .,b Neuroscience Center, CAMS Hospital , Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC) , Beijing , and.,c McKusick-Zhang Centre for Genetic Medicine , CAMS & PUMC , Beijing , China
| |
Collapse
|
50
|
Mutation Screening of the CHCHD10 Gene in Chinese Patients with Amyotrophic Lateral Sclerosis. Mol Neurobiol 2016; 54:3189-3194. [PMID: 27056076 DOI: 10.1007/s12035-016-9888-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/28/2016] [Indexed: 02/05/2023]
Abstract
Mutations in the coiled-coil-helix-coiled-coil-helix domain-containing protein 10 gene (CHCHD10), involved in mitochondrial function, have recently been reported as a causative gene of amyotrophic lateral sclerosis (ALS). The aim of this study was to obtain the mutation prevalence of CHCHD10 and the phenotypes with mutations in Chinese ALS patients. A cohort of 499 ALS patients including 487 sporadic ALS (SALS) and 12 familial ALS (FALS), from the Department of Neurology, West China Hospital of Sichuan University, were screened for mutations of all exons of the CHCHD10 gene by Sanger sequencing. Novel candidate mutations or variants were confirmed by polymerase chain reaction-restriction fragment length polymorphism in 466 healthy individuals. All patients identified with mutations of CHCHD10 gene were screened for mutations of the common ALS causative genes including C9orf72, SOD1, TARDBP, FUS, PFN1, and SQSTM1. Three heterozygous variants, including two missense mutations (c.275A > G (p.Y92C) and c.306G > C (p.Q102H)) and a synonymous change c.306G > A (p.Q102Q), were found in exon 3 of CHCHD10 in three alive SALS individuals (with the longest disease duration of 8.6 years), all of which were not detected in healthy controls. No mutation in CHCHD10 was identified in FALS patients. No mutation was found in the aforementioned common ALS causative genes in the patients who carried CHCHD10 mutations. The mutation frequency of CHCHD10 (0.4 %, 2/487) in a Chinese SALS population suggests CHCHD10 gene mutation appears to be an uncommon cause of ALS in Chinese populations. CHCHD10 mutations are associated with a slow progression and long disease duration.
Collapse
|