1
|
Dong J, Peschke S, Kirschner A, Palleis C, Mehrkens JH, Scherer M, Kaufmann E, Koeglsperger T. Subjective patient rating as a novel feedback signal for DBS programming in Parkinson's disease. Brain Stimul 2025; 18:770-779. [PMID: 40081467 DOI: 10.1016/j.brs.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 02/24/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Deep brain stimulation of the subthalamic nucleus (STN-DBS) effectively alleviates motor fluctuations in Parkinson's disease (PD). Optimal electrode placement and effective programming significantly influence outcomes. From a patient's perspective, DBS should relieve motor symptoms while avoiding side effects. However, there is a lack of programming routines that consider patients' subjective feedback for parameter adjustment. OBJECTIVE This study assessed the usefulness of patients' subjective ratings as feedback for DBS programming. METHODS We analyzed 260 DBS settings from 11 STN-DBS patients, pairing each volume of tissue activated (VTA) with a subjective rating measured by a visual analogue scale (VAS). We performed sweet spot mapping and connectivity analyses, utilizing voxel-wise and nonparametric permutation statistics to identify neuroanatomical regions and connectivity profiles associated with the highest VAS ratings. To validate our findings, we cross-validated the results in an independent test dataset of 6 patients (189 settings) to determine if the sweet spot and connectivity profile could predict the subjective patient perception. RESULTS VTAs with the highest VAS scores were localized to the dorsolateral STN, consistent with published sweet spots derived from clinical data. Connectivity with the supplementary motor area (SMA) and primary motor cortex (M1) was associated with a more positive subjective perception. Connectivity profiles derived from one dataset successfully predicted outcomes in an independent dataset, as validated through leave-one-cohort-out cross-validation. CONCLUSIONS Mapping patients' subjective perceptions using VAS yields conclusive anatomical results that align with objective clinical and imaging measures. VAS-guided programming could provide an additional feedback mechanism for both acute and chronic DBS parameter adjustments.
Collapse
Affiliation(s)
- Jing Dong
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sophia Peschke
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Angelina Kirschner
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Carla Palleis
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany; Department of Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Jan Hinnerk Mehrkens
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Maximilian Scherer
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Elisabeth Kaufmann
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Thomas Koeglsperger
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany; Department of Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
| |
Collapse
|
2
|
Santyr B, Boutet A, Ajala A, Germann J, Qiu J, Fasano A, Lozano AM, Kucharczyk W. Emerging Techniques for the Personalization of Deep Brain Stimulation Programming. Can J Neurol Sci 2025:1-13. [PMID: 39963066 DOI: 10.1017/cjn.2025.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
The success of deep brain stimulation (DBS) relies on applying carefully titrated therapeutic stimulation at specific targets. Once implanted, the electrical stimulation parameters at each electrode contact can be modified. Iteratively adjusting the stimulation parameters enables testing for the optimal stimulation settings. Due to the large parameter space, the currently employed empirical testing of individual parameters based on acute clinical response is not sustainable. Within the constraints of short clinical visits, optimization is particularly challenging when clinical features lack immediate feedback, as seen in DBS for dystonia and depression and with the cognitive and axial side effects of DBS for Parkinson's disease. A personalized approach to stimulation parameter selection is desirable as the increasing complexity of modern DBS devices also expands the number of available parameters. This review describes three emerging imaging and electrophysiological methods of personalizing DBS programming. Normative connectome-base stimulation utilizes large datasets of normal or disease-matched connectivity imaging. The stimulation location for an individual patient can then be varied to engage regions associated with optimal connectivity. Electrophysiology-guided open- and closed-loop stimulation capitalizes on the electrophysiological recording capabilities of modern implanted devices to individualize stimulation parameters based on biomarkers of success or symptom onset. Finally, individual functional MRI (fMRI)-based approaches use fMRI during active stimulation to identify parameters resulting in characteristic patterns of functional engagement associated with long-term treatment response. Each method provides different but complementary information, and maximizing treatment efficacy likely requires a combined approach.
Collapse
Affiliation(s)
- Brendan Santyr
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | | | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | | | - Alfonso Fasano
- Krembil Brain Institute, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Centre, Toronto Western Hospital, UHN, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Walter Kucharczyk
- Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
de Bruin J, Choi KS, Mayberg HS, Jimenez-Shahed J, Palmese CA, Khang J, Song HN, Kopell BH, Figee M. Co-stimulating the left vmPFC compensates for apathy after levodopa withdrawal in Parkinson's patients with STN DBS. Parkinsonism Relat Disord 2025; 131:107244. [PMID: 39724781 DOI: 10.1016/j.parkreldis.2024.107244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/04/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
INTRODUCTION Subthalamic nucleus deep brain stimulation (STN DBS) improves motor symptoms of Parkinson's disease (PD), but its effect on motivation is controversial. Apathy, the lack of motivation, commonly occurs in PD and is often exacerbated after surgery and its concomitant levodopa reduction. Apathy and reward processing are associated with the ventromedial prefrontal cortex (vmPFC), which standard targeting strategies avoid by targeting the dorsolateral STN. Since apathy can be a levodopa-responsive PD symptom, levodopa withdrawal could unmask apathy without sufficient stimulation of non-motor pathways, similar to the persistence of motor symptoms when motor pathways are underengaged with DBS. OBJECTIVE Using an individualized tractography model, maximized left-sided vmPFC engagement following a DBS adjustment improved apathy in a case example. We, therefore, retrospectively investigated the moderating role of stimulation-related left-sided vmPFC connectivity and levodopa reduction on changes in apathy after STN DBS (N = 28). METHODS We measured apathy (Starkstein Apathy Scale) and levodopa dose pre- and post-surgery. Stimulation-related connectivity was quantified using patient-specific diffusion-weighted MRI and probabilistic tractography to test the interaction with levodopa reduction. RESULTS Effective DBS of the dorsolateral STN included prefrontal non-motor connections. We found a significant interaction between levodopa dose change and STN-connections to the left vmPFC. Apathy severity negatively correlated with stimulation-related connectivity to the left vmPFC in patients with greater levodopa reductions. Apathy change was unrelated to motor pathway connectivity. CONCLUSION Insufficient stimulation of the left vmPFC and associated limbic fronto-subthalamic connections combined with high levodopa reduction contributed to DBS-related apathy in PD, which may inspire novel personalized non-motor targeting strategies.
Collapse
Affiliation(s)
- Jip de Bruin
- The Nash Family Center for Advanced Circuit Therapeutics at the Icahn School of Medicine at Mount Sinai West, New York, NY, 10019, United States
| | - Ki Sueng Choi
- The Nash Family Center for Advanced Circuit Therapeutics at the Icahn School of Medicine at Mount Sinai West, New York, NY, 10019, United States.
| | - Helen S Mayberg
- The Nash Family Center for Advanced Circuit Therapeutics at the Icahn School of Medicine at Mount Sinai West, New York, NY, 10019, United States
| | - Joohi Jimenez-Shahed
- The Nash Family Center for Advanced Circuit Therapeutics at the Icahn School of Medicine at Mount Sinai West, New York, NY, 10019, United States
| | - Christina A Palmese
- The Nash Family Center for Advanced Circuit Therapeutics at the Icahn School of Medicine at Mount Sinai West, New York, NY, 10019, United States
| | - Juna Khang
- The Nash Family Center for Advanced Circuit Therapeutics at the Icahn School of Medicine at Mount Sinai West, New York, NY, 10019, United States
| | - Ha Neul Song
- The Nash Family Center for Advanced Circuit Therapeutics at the Icahn School of Medicine at Mount Sinai West, New York, NY, 10019, United States
| | - Brian H Kopell
- The Nash Family Center for Advanced Circuit Therapeutics at the Icahn School of Medicine at Mount Sinai West, New York, NY, 10019, United States
| | - Martijn Figee
- The Nash Family Center for Advanced Circuit Therapeutics at the Icahn School of Medicine at Mount Sinai West, New York, NY, 10019, United States
| |
Collapse
|
4
|
Luo B, Zou Y, Yan J, Sun J, Wei X, Chang L, Lu Y, Zhao L, Dong W, Qiu C, Yan J, Zhang Y, Zhang W. Altered Cognitive Networks Connectivity in Parkinson's Disease During the Microlesion Period After Deep Brain Stimulation. CNS Neurosci Ther 2024; 30:e70184. [PMID: 39722165 DOI: 10.1111/cns.70184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/05/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024] Open
Abstract
AIMS Cognitive functions are reduced in Parkinson's disease (PD) patients after deep brain stimulation (DBS) surgery. However, the underlying mechanisms remain unclear. The current study attempted to elucidate whether DBS alters the functional connectivity (FC) pattern of cognitive networks in PD patients. METHODS The study obtained fMRI and cognitive scale data from 37 PD patients before and after the DBS surgery. Seed-based FC analysis helped demonstrate the FC changes of the default mode network (DMN), executive control network (ECN), and dorsal attention network (DAN). RESULTS PD patients indicated significant network connectivity decline in DMN [such as in right precuneus, left angular gyrus, and left middle frontal gyrus (MFG)], ECN [such as in left inferior parietal gyrus, left MFG, and left supplementary motor area (SMA)], and DAN [such as in left inferior frontal gyrus and left MFG] post-DBS surgery. The phonemic fluency score was positively associated with the FC value of the right precuneus and left angular gyrus in DMN before DBS. CONCLUSION The general reduction in FC in the major cognitive networks after DBS surgery depicted the presence of the corresponding network reorganization. Further research can help explore the mechanism of impaired cognitive function post-DBS.
Collapse
Affiliation(s)
- Bei Luo
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yanxiang Zou
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Jiuqi Yan
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Sun
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Wei
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Chang
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Lu
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Zhao
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenwen Dong
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chang Qiu
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Yan
- Department of Geriatric Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yanhong Zhang
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenbin Zhang
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Koivu M, Sihvonen AJ, Eerola-Rautio J, Pauls KAM, Resendiz-Nieves J, Vartiainen N, Kivisaari R, Scheperjans F, Pekkonen E. Clinical and Brain Morphometry Predictors of Deep Brain Stimulation Outcome in Parkinson's Disease. Brain Topogr 2024; 37:1186-1194. [PMID: 38662300 PMCID: PMC11408547 DOI: 10.1007/s10548-024-01054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Subthalamic deep brain stimulation (STN-DBS) is known to improve motor function in advanced Parkinson's disease (PD) and to enable a reduction of anti-parkinsonian medication. While the levodopa challenge test and disease duration are considered good predictors of STN-DBS outcome, other clinical and neuroanatomical predictors are less established. This study aimed to evaluate, in addition to clinical predictors, the effect of patients' individual brain topography on DBS outcome. The medical records of 35 PD patients were used to analyze DBS outcomes measured with the following scales: Part III of the Unified Parkinson's Disease Rating Scale (UPDRS-III) off medication at baseline, and at 6-months during medication off and stimulation on, use of anti-parkinsonian medication (LED), Abnormal Involuntary Movement Scale (AIMS) and Non-Motor Symptoms Questionnaire (NMS-Quest). Furthermore, preoperative brain MRI images were utilized to analyze the brain morphology in relation to STN-DBS outcome. With STN-DBS, a 44% reduction in the UPDRS-III score and a 43% decrease in the LED were observed (p<0.001). Dyskinesia and non-motor symptoms decreased significantly [median reductions of 78,6% (IQR 45,5%) and 18,4% (IQR 32,2%) respectively, p=0.001 - 0.047]. Along with the levodopa challenge test, patients' age correlated with the observed DBS outcome measured as UPDRS-III improvement (ρ= -0.466 - -0.521, p<0.005). Patients with greater LED decline had lower grey matter volumes in left superior medial frontal gyrus, in supplementary motor area and cingulum bilaterally. Additionally, patients with greater UPDRS-III score improvement had lower grey matter volume in similar grey matter areas. These findings remained significant when adjusted for sex, age, baseline LED and UPDRS scores respectively and for total intracranial volume (p=0.0041- 0.001). However, only the LED decrease finding remained significant when the analyses were further controlled for stimulation amplitude. It appears that along with the clinical predictors of STN-DBS outcome, individual patient topographic differences may influence DBS outcome. Clinical Trial Registration Number: NCT06095245, registration date October 23, 2023, retrospectively registered.
Collapse
Affiliation(s)
- Maija Koivu
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, Finland, Helsinki, Finland.
| | - Aleksi J Sihvonen
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, Finland, Helsinki, Finland
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Eerola-Rautio
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, Finland, Helsinki, Finland
| | - K Amande M Pauls
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, Finland, Helsinki, Finland
| | | | - Nuutti Vartiainen
- Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland
| | - Riku Kivisaari
- Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland
| | - Filip Scheperjans
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, Finland, Helsinki, Finland
| | - Eero Pekkonen
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, Finland, Helsinki, Finland
| |
Collapse
|
6
|
Zhao W, Shao X, Wang Z, Mi C, Wang Y, Qi X, Ding X. Deep brain stimulation for Parkinson's disease: bibliometric analysis of the top 100 cited literature. Front Aging Neurosci 2024; 16:1413074. [PMID: 39478694 PMCID: PMC11521828 DOI: 10.3389/fnagi.2024.1413074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/27/2024] [Indexed: 11/02/2024] Open
Abstract
Background Deep Brain Stimulation (DBS) has been widely applied and accepted in the treatment of neurological and psychiatric disorders. Despite numerous studies exploring the effects of DBS on the progression of neurodegenerative diseases and the treatment of advanced Parkinson's disease (PD), there is a limited number of articles summarizing this research. The purpose of this study is to investigate the current trends, hot topics, and potential in research surrounding DBS therapy for PD, as well as to anticipate the challenges of such research. Methods We searched the Web of Science Core Collection database (WoSCC) for DBS research literature related to PD published from January 2014 to January 2024, utilized CiteSpace, VOS viewer, the bibliometric online analysis platform, Scimago Graphica, Microsoft Excel 2021, and R software version 4.2.3 for data analysis. And we conducted quantitative research on publications, citations, journals, authors, countries, institutions, keywords, and references, visualized the results in network graphs. Results From 2014 to 2024, papers from 39 journals from 11 countries were among the top 100 cited. Most papers were published in Neurology, with the highest average citations per paper in Nature Neuroscience. The United States (US) contributed the most publications, followed by the United Kingdom (UK) and Germany. In terms of total publications, University College London (UCL) contributed the most papers. The primary classifications of articles were Clinical Neurology, Neurosciences, and Surgery. The top five keywords were subthalamic nucleus, DBS, PD, medical therapy, and basal ganglia. Cluster analysis indicates that DBS research focus on improving quality of life and applying computational models. Conclusion Through bibliometric analysis, researchers could quickly and clearly understand the hotspots and boundaries of their research field, thus guiding their research direction and scope to improve research efficiency and the quality of outcomes. Although studies indicate that DBS is currently a crucial method for treating advanced PD, in the long run, creating a personalized, low-cost treatment regimen with precise targeting and long-term efficacy poses a challenge.
Collapse
Affiliation(s)
- Weijie Zhao
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinxin Shao
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ziyue Wang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chuanhao Mi
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xianghua Qi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao Ding
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
Callahan JW, Morales JC, Atherton JF, Wang D, Kostic S, Bevan MD. Movement-related increases in subthalamic activity optimize locomotion. Cell Rep 2024; 43:114495. [PMID: 39068661 PMCID: PMC11407793 DOI: 10.1016/j.celrep.2024.114495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/27/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
The subthalamic nucleus (STN) is traditionally thought to restrict movement. Lesion or prolonged STN inhibition increases movement vigor and propensity, while optogenetic excitation has opposing effects. However, STN neurons often exhibit movement-related increases in firing. To address this paradox, STN activity was recorded and manipulated in head-fixed mice at rest and during self-initiated and self-paced treadmill locomotion. We found that (1) most STN neurons (type 1) exhibit locomotion-dependent increases in activity, with half firing preferentially during the propulsive phase of the contralateral locomotor cycle; (2) a minority of STN neurons exhibit dips in activity or are uncorrelated with movement; (3) brief optogenetic inhibition of the lateral STN (where type 1 neurons are concentrated) slows and prematurely terminates locomotion; and (4) in Q175 Huntington's disease mice, abnormally brief, low-velocity locomotion is associated with type 1 hypoactivity. Together, these data argue that movement-related increases in STN activity contribute to optimal locomotor performance.
Collapse
Affiliation(s)
- Joshua W Callahan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Juan Carlos Morales
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jeremy F Atherton
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Dorothy Wang
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Selena Kostic
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Mark D Bevan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
8
|
Ellis EG, Meyer GM, Kaasinen V, Corp DT, Pavese N, Reich MM, Joutsa J. Multimodal neuroimaging to characterize symptom-specific networks in movement disorders. NPJ Parkinsons Dis 2024; 10:154. [PMID: 39143114 PMCID: PMC11324766 DOI: 10.1038/s41531-024-00774-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
Movement disorders, such as Parkinson's disease, essential tremor, and dystonia, are characterized by their predominant motor symptoms, yet diseases causing abnormal movement also encompass several other symptoms, including non-motor symptoms. Here we review recent advances from studies of brain lesions, neuroimaging, and neuromodulation that provide converging evidence on symptom-specific brain networks in movement disorders. Although movement disorders have traditionally been conceptualized as disorders of the basal ganglia, cumulative data from brain lesions causing parkinsonism, tremor and dystonia have now demonstrated that this view is incomplete. Several recent studies have shown that lesions causing a given movement disorder occur in heterogeneous brain locations, but disrupt common brain networks, which appear to be specific to each motor phenotype. In addition, findings from structural and functional neuroimaging in movement disorders have demonstrated that brain abnormalities extend far beyond the brain networks associated with the motor symptoms. In fact, neuroimaging findings in each movement disorder are strongly influenced by the constellation of patients' symptoms that also seem to map to specific networks rather than individual anatomical structures or single neurotransmitters. Finally, observations from deep brain stimulation have demonstrated that clinical changes, including both symptom improvement and side effects, are dependent on the modulation of large-scale networks instead of purely local effects of the neuromodulation. Combined, this multimodal evidence suggests that symptoms in movement disorders arise from distinct brain networks, encouraging multimodal imaging studies to better characterize the underlying symptom-specific mechanisms and individually tailor treatment approaches.
Collapse
Affiliation(s)
- Elizabeth G Ellis
- Turku Brain and Mind Center, University of Turku, Turku, Finland.
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia.
| | - Garance M Meyer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Valtteri Kaasinen
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Daniel T Corp
- Turku Brain and Mind Center, University of Turku, Turku, Finland
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Nicola Pavese
- Institute of Clinical Medicine, Department of Nuclear Medicine & PET, Aarhus University, Aarhus, Denmark
- Translational and Clinical Research Institute, Newcastle University, Upon Tyn, UK
| | - Martin M Reich
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Juho Joutsa
- Turku Brain and Mind Center, University of Turku, Turku, Finland.
- Clinical Neurosciences, University of Turku, Turku, Finland.
- Neurocenter, Turku University Hospital, Turku, Finland.
| |
Collapse
|
9
|
Gittis AH, Sillitoe RV. Circuit-Specific Deep Brain Stimulation Provides Insights into Movement Control. Annu Rev Neurosci 2024; 47:63-83. [PMID: 38424473 DOI: 10.1146/annurev-neuro-092823-104810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Deep brain stimulation (DBS), a method in which electrical stimulation is delivered to specific areas of the brain, is an effective treatment for managing symptoms of a number of neurological and neuropsychiatric disorders. Clinical access to neural circuits during DBS provides an opportunity to study the functional link between neural circuits and behavior. This review discusses how the use of DBS in Parkinson's disease and dystonia has provided insights into the brain networks and physiological mechanisms that underlie motor control. In parallel, insights from basic science about how patterns of electrical stimulation impact plasticity and communication within neural circuits are transforming DBS from a therapy for treating symptoms to a therapy for treating circuits, with the goal of training the brain out of its diseased state.
Collapse
Affiliation(s)
- Aryn H Gittis
- Department of Biological Sciences and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA;
| | - Roy V Sillitoe
- Departments of Neuroscience, Pathology & Immunology, and Pediatrics; and Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
10
|
Callahan JW, Morales JC, Atherton JF, Wang D, Kostic S, Bevan MD. Movement-related increases in subthalamic activity optimize locomotion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.07.570617. [PMID: 38105984 PMCID: PMC10723456 DOI: 10.1101/2023.12.07.570617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The subthalamic nucleus (STN) is traditionally thought to restrict movement. Lesion or prolonged STN inhibition increases movement vigor and propensity, while ontogenetic excitation typically has opposing effects. Subthalamic and motor activity are also inversely correlated in movement disorders. However, most STN neurons exhibit movement-related increases in firing. To address this paradox, STN activity was recorded and manipulated in head-fixed mice at rest and during self-initiated treadmill locomotion. The majority of STN neurons (type 1) exhibited locomotion-dependent increases in activity, with half encoding the locomotor cycle. A minority of neurons exhibited dips in activity or were uncorrelated with movement. Brief optogenetic inhibition of the dorsolateral STN (where type 1 neurons are concentrated) slowed and prematurely terminated locomotion. In Q175 Huntington's disease mice abnormally brief, low-velocity locomotion was specifically associated with type 1 hyperactivity. Together these data argue that movement-related increases in STN activity contribute to optimal locomotor performance.
Collapse
|
11
|
Béreau M, Kibleur A, Servant M, Clément G, Dujardin K, Rolland AS, Wirth T, Lagha-Boukbiza O, Voirin J, Santin MDN, Hainque E, Grabli D, Comte A, Drapier S, Durif F, Marques A, Eusebio A, Azulay JP, Giordana C, Houeto JL, Jarraya B, Maltete D, Rascol O, Rouaud T, Tir M, Moreau C, Danaila T, Prange S, Tatu L, Tranchant C, Corvol JC, Devos D, Thobois S, Desmarets M, Anheim M. Motivational and cognitive predictors of apathy after subthalamic nucleus stimulation in Parkinson's disease. Brain 2024; 147:472-485. [PMID: 37787488 DOI: 10.1093/brain/awad324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/13/2023] [Accepted: 08/21/2023] [Indexed: 10/04/2023] Open
Abstract
Postoperative apathy is a frequent symptom in Parkinson's disease patients who have undergone bilateral deep brain stimulation of the subthalamic nucleus. Two main hypotheses for postoperative apathy have been suggested: (i) dopaminergic withdrawal syndrome relative to postoperative dopaminergic drug tapering; and (ii) direct effect of chronic stimulation of the subthalamic nucleus. The primary objective of our study was to describe preoperative and 1-year postoperative apathy in Parkinson's disease patients who underwent chronic bilateral deep brain stimulation of the subthalamic nucleus. We also aimed to identify factors associated with 1-year postoperative apathy considering: (i) preoperative clinical phenotype; (ii) dopaminergic drug management; and (iii) volume of tissue activated within the subthalamic nucleus and the surrounding structures. We investigated a prospective clinical cohort of 367 patients before and 1 year after chronic bilateral deep brain stimulation of the subthalamic nucleus. We assessed apathy using the Lille Apathy Rating Scale and carried out a systematic evaluation of motor, cognitive and behavioural signs. We modelled the volume of tissue activated in 161 patients using the Lead-DBS toolbox and analysed overlaps within motor, cognitive and limbic parts of the subthalamic nucleus. Of the 367 patients, 94 (25.6%) exhibited 1-year postoperative apathy: 67 (18.2%) with 'de novo apathy' and 27 (7.4%) with 'sustained apathy'. We observed disappearance of preoperative apathy in 22 (6.0%) patients, who were classified as having 'reversed apathy'. Lastly, 251 (68.4%) patients had neither preoperative nor postoperative apathy and were classified as having 'no apathy'. We identified preoperative apathy score [odds ratio (OR) 1.16; 95% confidence interval (CI) 1.10, 1.22; P < 0.001], preoperative episodic memory free recall score (OR 0.93; 95% CI 0.88, 0.97; P = 0.003) and 1-year postoperative motor responsiveness (OR 0.98; 95% CI 0.96, 0.99; P = 0.009) as the main factors associated with postoperative apathy. We showed that neither dopaminergic dose reduction nor subthalamic stimulation were associated with postoperative apathy. Patients with 'sustained apathy' had poorer preoperative fronto-striatal cognitive status and a higher preoperative action initiation apathy subscore. In these patients, apathy score and cognitive status worsened postoperatively despite significantly lower reduction in dopamine agonists (P = 0.023), suggesting cognitive dopa-resistant apathy. Patients with 'reversed apathy' benefited from the psychostimulant effect of chronic stimulation of the limbic part of the left subthalamic nucleus (P = 0.043), suggesting motivational apathy. Our results highlight the need for careful preoperative assessment of motivational and cognitive components of apathy as well as executive functions in order to better prevent or manage postoperative apathy.
Collapse
Affiliation(s)
- Matthieu Béreau
- Department of Neurology, NS-PARK/F-CRIN network, University Hospital of Besançon, 25030 Besançon Cedex, France
- UR LINC 481, Université de Franche-Comté, F-2500 Besançon, France
| | - Astrid Kibleur
- LIP/PC2S, Université Grenoble Alpes, Université Savoie Mont Blanc, 38040 Grenoble Cedex 9, France
| | - Mathieu Servant
- UR LINC 481, Université de Franche-Comté, F-2500 Besançon, France
| | - Gautier Clément
- Department of Neurology, NS-PARK/F-CRIN network, University Hospital of Besançon, 25030 Besançon Cedex, France
| | - Kathy Dujardin
- Lille Neurosciences and Cognition, CHU-Lille, Neurology and Movement Disorders department, NS-Park/F-CRIN network, Univ. Lille, 59037 Lille, France
| | - Anne-Sophie Rolland
- Lille Neurosciences and Cognition, CHU-Lille, Department of Medical Pharmacology, NS-Park/F-CRIN, Univ. Lille, Inserm, 59045 Lille, France
| | - Thomas Wirth
- Service de Neurologie, NS-Park/F-CRIN network, Hôpitaux Universitaires de Strasbourg et Fédération de Médecine Translationnelle de Médecine de Strasbourg, 67200 Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM-U964/CNRS-UMR7104/Université de Strasbourg, 67400 Illkirch, France
| | - Ouhaid Lagha-Boukbiza
- Service de Neurologie, NS-Park/F-CRIN network, Hôpitaux Universitaires de Strasbourg et Fédération de Médecine Translationnelle de Médecine de Strasbourg, 67200 Strasbourg, France
| | - Jimmy Voirin
- Department of Neurosurgery, NS-PARK/F-CRIN network, Strasbourg University Hospital, 67200 Strasbourg, France
| | - Marie des Neiges Santin
- Department of Neurosurgery, NS-PARK/F-CRIN network, Strasbourg University Hospital, 67200 Strasbourg, France
| | - Elodie Hainque
- Assistance publique Hôpitaux de Paris, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Department of Neurology, NS-Park/F-CRIN network, Sorbonne Université, Paris Brain Institute-ICM, 75014 Paris, France
| | - David Grabli
- Assistance publique Hôpitaux de Paris, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Department of Neurology, NS-Park/F-CRIN network, Sorbonne Université, Paris Brain Institute-ICM, 75014 Paris, France
| | - Alexandre Comte
- UR LINC 481, Université de Franche-Comté, F-2500 Besançon, France
- Centre d'investigation clinique Inserm CIC 1431, CHU Besançon, F-25000 Besançon, France
| | - Sophie Drapier
- Department of Neurology, NS-PARK/F-CRIN network, University Hospital of Rennes, 35000 Rennes, France
| | - Franck Durif
- CNRS, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand University Hospital, Neurology department, NS-Park/F-CRIN network, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Ana Marques
- CNRS, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand University Hospital, Neurology department, NS-Park/F-CRIN network, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Alexandre Eusebio
- Department of Neurology and Movement Disorders, APHM, Hôpital Universitaire Timone, 13005 Marseille, France
- CNRS, Institut de Neurosciences de la Timone, Aix Marseille Univ., 13005 Marseille, France
| | - Jean-Philippe Azulay
- Department of Neurology and Movement Disorders, APHM, Hôpital Universitaire Timone, 13005 Marseille, France
- CNRS, Institut de Neurosciences de la Timone, Aix Marseille Univ., 13005 Marseille, France
| | - Caroline Giordana
- Department of Neurology, NS-Park/F-CRIN network, Centre Hospitalier Universitaire de Nice, 06002 Nice, France
| | - Jean-Luc Houeto
- Department of Neurology, NS-Park/F-CRIN network, Limoges University Hospital, Inserm, U1094, EpiMaCT-Epidemiology of chronic diseases in tropical zone, Limoges University Hospital,87042 Limoges, France
| | - Béchir Jarraya
- Neuroscience Pole, NS-Park/F-CRIN network, Hôpital Foch, Suresnes, University of Versailles Paris-Saclay, INSERM-CEA NeuroSpin, 91191 Gif-sur-Yvette, France
| | - David Maltete
- Department of Neurology, NS-Park/F-CRIN network, Rouen University Hospital and University of Rouen, 76000 Rouen, France
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, 76130 Mont-Saint-Aignan, France
| | - Olivier Rascol
- Department of Clinical Pharmacology and Neuroscience, CIC1436, NS-Park/F-CRIN network, NeuroToul Center of Excellence, Toulouse University Hospital, INSERM, CHU of Toulouse, 31000 Toulouse, France
| | - Tiphaine Rouaud
- Department of Neurology, Centre Expert Parkinson, NS-Park/F-CRIN network, CHU Nantes, 44093 Nantes, France
| | - Mélissa Tir
- Department of Neurology, NS-Park/F-CRIN network, Amiens University Hospital, 80000 Amiens, France
| | - Caroline Moreau
- Lille Neurosciences and Cognition, CHU-Lille, Neurology and Movement Disorders department, NS-Park/F-CRIN network, Univ. Lille, 59037 Lille, France
| | - Teodor Danaila
- Department of Neurology, NS-Park/F-CRIN network, Amiens University Hospital, 80000 Amiens, France
| | - Stéphane Prange
- Department of Neurology, NS-Park/F-CRIN network, Amiens University Hospital, 80000 Amiens, France
- Service de Neurologie C, NS-Park/F-CRIN network, Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, 69500 Bron, France
| | - Laurent Tatu
- Department of Neurology, NS-PARK/F-CRIN network, University Hospital of Besançon, 25030 Besançon Cedex, France
| | - Christine Tranchant
- Service de Neurologie, NS-Park/F-CRIN network, Hôpitaux Universitaires de Strasbourg et Fédération de Médecine Translationnelle de Médecine de Strasbourg, 67200 Strasbourg, France
| | - Jean-Christophe Corvol
- Assistance publique Hôpitaux de Paris, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Department of Neurology, NS-Park/F-CRIN network, Sorbonne Université, Paris Brain Institute-ICM, 75014 Paris, France
| | - David Devos
- Lille Neurosciences and Cognition, CHU-Lille, Neurology and Movement Disorders department, NS-Park/F-CRIN network, Univ. Lille, 59037 Lille, France
- Lille Neurosciences and Cognition, CHU-Lille, Department of Medical Pharmacology, NS-Park/F-CRIN, Univ. Lille, Inserm, 59045 Lille, France
| | - Stephane Thobois
- Service de Neurologie C, NS-Park/F-CRIN network, Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, 69500 Bron, France
- Institut des Sciences Cognitives Marc Jeannerot, CNRS, UMR5229, 69675 Bron, France
| | - Maxime Desmarets
- Centre d'investigation clinique Inserm CIC 1431, CHU Besançon, F-25000 Besançon, France
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, 25000 Besançon, France
| | - Mathieu Anheim
- Service de Neurologie, NS-Park/F-CRIN network, Hôpitaux Universitaires de Strasbourg et Fédération de Médecine Translationnelle de Médecine de Strasbourg, 67200 Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM-U964/CNRS-UMR7104/Université de Strasbourg, 67400 Illkirch, France
| |
Collapse
|
12
|
Prasad AA, Wallén-Mackenzie Å. Architecture of the subthalamic nucleus. Commun Biol 2024; 7:78. [PMID: 38200143 PMCID: PMC10782020 DOI: 10.1038/s42003-023-05691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
The subthalamic nucleus (STN) is a major neuromodulation target for the alleviation of neurological and neuropsychiatric symptoms using deep brain stimulation (DBS). STN-DBS is today applied as treatment in Parkinson´s disease, dystonia, essential tremor, and obsessive-compulsive disorder (OCD). STN-DBS also shows promise as a treatment for refractory Tourette syndrome. However, the internal organization of the STN has remained elusive and challenges researchers and clinicians: How can this small brain structure engage in the multitude of functions that renders it a key hub for therapeutic intervention of a variety of brain disorders ranging from motor to affective to cognitive? Based on recent gene expression studies of the STN, a comprehensive view of the anatomical and cellular organization, including revelations of spatio-molecular heterogeneity, is now possible to outline. In this review, we focus attention to the neurobiological architecture of the STN with specific emphasis on molecular patterns discovered within this complex brain area. Studies from human, non-human primate, and rodent brains now reveal anatomically defined distribution of specific molecular markers. Together their spatial patterns indicate a heterogeneous molecular architecture within the STN. Considering the translational capacity of targeting the STN in severe brain disorders, the addition of molecular profiling of the STN will allow for advancement in precision of clinical STN-based interventions.
Collapse
Affiliation(s)
- Asheeta A Prasad
- University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, NSW, Australia.
| | | |
Collapse
|
13
|
Kroneberg D, Al-Fatly B, Morkos C, Steiner LA, Schneider GH, Kühn A. Kinematic Effects of Combined Subthalamic and Dorsolateral Nigral Deep Brain Stimulation in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:269-282. [PMID: 38363617 PMCID: PMC10977420 DOI: 10.3233/jpd-230181] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 02/17/2024]
Abstract
Background Additional stimulation of the substantia nigra (SNr) has been proposed to target axial symptoms and gait impairment in patients with Parkinson's disease (PD). Objective This study aimed to characterize effects of combined deep brain stimulation (DBS) of the subthalamic nucleus (STN) and SNr on gait performance in PD and to map stimulation sites within the SNr. Methods In a double-blinded crossover design, 10 patients with PD and gait impairment underwent clinical examination and kinematic assessment with STN DBS, combined STN+SNr DBS and OFF DBS 30 minutes after reprogramming. To confirm stimulation within the SNr, electrodes, active contacts, and stimulation volumes were modeled in a common space and overlap with atlases of SNr was computed. Results Overlap of stimulation volumes with dorsolateral SNr was confirmed for all patients. UPDRS III, scoring of freezing during turning and transitioning, stride length, stride velocity, and range of motion of shank, knee, arm, and trunk as well as peak velocities during turning and transitions and turn duration were improved with STN DBS compared to OFF. On cohort level, no further improvement was observed with combined STN+SNr DBS but additive improvement of spatiotemporal gait parameters was observed in individual subjects. Conclusions Combined high frequency DBS of the STN and dorsolateral SNr did not consistently result in additional short-term kinematic or clinical benefit compared to STN DBS. Stimulation intervals, frequency, and patient selection for target symptoms as well as target region within the SNr need further refinement in future trials.
Collapse
Affiliation(s)
- Daniel Kroneberg
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Bassam Al-Fatly
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Cornelia Morkos
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leon Amadeus Steiner
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - A. Kühn
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Charite - Universitatsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Charité – Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
14
|
Mirzai N, Polet K, Morisot A, Hesse S, Pesce A, Louchart de la Chapelle S, Iakimova G. Can the Ability to Recognize Facial Emotions in Individuals With Neurodegenerative Disease be Improved? A Systematic Review and Meta-analysis. Cogn Behav Neurol 2023; 36:202-218. [PMID: 37410880 PMCID: PMC10683976 DOI: 10.1097/wnn.0000000000000348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/30/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Facial emotion recognition (FER) is commonly impaired in individuals with neurodegenerative disease (NDD). This impairment has been linked to an increase in behavioral disorders and caregiver burden. OBJECTIVE To identify interventions targeting the improvement of FER ability in individuals with NDD and investigate the magnitude of the efficacy of the interventions. We also wanted to explore the duration of the effects of the intervention and their possible impacts on behavioral and psychological symptoms of dementia and caregiver burden. METHOD We included 15 studies with 604 individuals who had been diagnosed with NDD. The identified interventions were categorized into three types of approach (cognitive, neurostimulation, and pharmacological) as well as a combined approach (neurostimulation with pharmacological). RESULTS The three types of approaches pooled together had a significant large effect size for FER ability improvement (standard mean difference: 1.21, 95% CI = 0.11, 2.31, z = 2.15, P = 0.03). The improvement lasted post intervention, in tandem with a decrease in behavioral disorders and caregiver burden. CONCLUSION A combination of different approaches for FER ability improvement may be beneficial for individuals with NDD and their caregivers.
Collapse
Affiliation(s)
- Naz Mirzai
- Clinical Research Unit–Memory Clinic, Princess Grace Hospital, Monaco
- Cote d’Azur University, Laboratory of Clinical, Cognitive and Social Anthropology and Psychology, Nice, France
| | - Kévin Polet
- Clinical Research Unit–Memory Clinic, Princess Grace Hospital, Monaco
| | - Adeline Morisot
- Clinical Research Unit–Memory Clinic, Princess Grace Hospital, Monaco
- Public Health Department, Cote d’Azur University, University Hospital Center of Nice, Nice, France
| | - Solange Hesse
- Clinical Research Unit–Memory Clinic, Princess Grace Hospital, Monaco
| | - Alain Pesce
- Bibliographic Research Association for Neurosciences, Nice, France
| | | | - Galina Iakimova
- Cote d’Azur University, Laboratory of Clinical, Cognitive and Social Anthropology and Psychology, Nice, France
| |
Collapse
|
15
|
Neige C, Vassiliadis P, Ali Zazou A, Dricot L, Lebon F, Brees T, Derosiere G. Connecting the dots: harnessing dual-site transcranial magnetic stimulation to quantify the causal influence of medial frontal areas on the motor cortex. Cereb Cortex 2023; 33:11339-11353. [PMID: 37804253 DOI: 10.1093/cercor/bhad370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/09/2023] Open
Abstract
Dual-site transcranial magnetic stimulation has been widely employed to investigate the influence of cortical structures on the primary motor cortex. Here, we leveraged this technique to probe the causal influence of two key areas of the medial frontal cortex, namely the supplementary motor area and the medial orbitofrontal cortex, on primary motor cortex. We show that supplementary motor area stimulation facilitates primary motor cortex activity across short (6 and 8 ms) and long (12 ms) inter-stimulation intervals, putatively recruiting cortico-cortical and cortico-subcortico-cortical circuits, respectively. Crucially, magnetic resonance imaging revealed that this facilitatory effect depended on a key morphometric feature of supplementary motor area: individuals with larger supplementary motor area volumes exhibited more facilitation from supplementary motor area to primary motor cortex for both short and long inter-stimulation intervals. Notably, we also provide evidence that the facilitatory effect of supplementary motor area stimulation at short intervals is unlikely to arise from spinal interactions of volleys descending simultaneously from supplementary motor area and primary motor cortex. On the other hand, medial orbitofrontal cortex stimulation moderately suppressed primary motor cortex activity at both short and long intervals, irrespective of medial orbitofrontal cortex volume. These results suggest that dual-site transcranial magnetic stimulation is a fruitful approach to investigate the differential influence of supplementary motor area and medial orbitofrontal cortex on primary motor cortex activity, paving the way for the multimodal assessment of these fronto-motor circuits in health and disease.
Collapse
Affiliation(s)
- Cécilia Neige
- Université Bourgogne Franche-Comté, INSERM UMR1093-CAPS, UFR des Sciences du Sport, F-21078, Dijon, France
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, PsyR2 Team, F-69500, Bron, France
- Centre Hospitalier le Vinatier, 95 Boulevard Pinel, 300 3969678 Bron Cedex, France
| | - Pierre Vassiliadis
- Institute of Neuroscience, Université Catholique de Louvain, Avenue E. Mounier 53 & 73, 1200, Brussels, Belgium
- Defitech Chair for Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 1202, Geneva, Switzerland
| | - Abdelkrim Ali Zazou
- Institute of Neuroscience, Université Catholique de Louvain, Avenue E. Mounier 53 & 73, 1200, Brussels, Belgium
| | - Laurence Dricot
- Institute of Neuroscience, Université Catholique de Louvain, Avenue E. Mounier 53 & 73, 1200, Brussels, Belgium
| | - Florent Lebon
- Université Bourgogne Franche-Comté, INSERM UMR1093-CAPS, UFR des Sciences du Sport, F-21078, Dijon, France
| | - Thomas Brees
- Institute of Neuroscience, Université Catholique de Louvain, Avenue E. Mounier 53 & 73, 1200, Brussels, Belgium
| | - Gerard Derosiere
- Institute of Neuroscience, Université Catholique de Louvain, Avenue E. Mounier 53 & 73, 1200, Brussels, Belgium
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Impact Team, F-69500, Bron, France
| |
Collapse
|
16
|
El Ghazal N, Nakanishi H, Martinez-Nunez AE, Al Sabbakh NK, Segun-Omosehin OA, Bourdakos NE, Nasser M, Matar RH, Than C, Danoun OA, Johnson A. The Effects of Deep Brain Stimulation on Mood and Quality of Life in Parkinson's Disease: A Systematic Review and Meta-Analysis. Cureus 2023; 15:e44177. [PMID: 37753046 PMCID: PMC10519648 DOI: 10.7759/cureus.44177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2023] [Indexed: 09/28/2023] Open
Abstract
Deep brain stimulation (DBS) is extensively used to treat motor and non-motor symptoms in Parkinson's disease (PD). The aim of this study was to investigate the difference between subthalamic (STN) and globus pallidus internus (GPi) DBS on mood and quality of life with reference to minimal clinically important differences (MCID). A systematic literature search for articles published until November 2022 yielded 14 studies meeting the eligibility criteria, with a total of 1,088 patients undergoing STN (n=571) or GPi (n=517) stimulation. Baseline patient and clinical characteristics were comparable between the two groups. Results showed that GPi stimulation demonstrated a greater reduction in the Beck depression inventory (mean difference (MD)=1.68) than STN stimulation (MD=0.84). Hospital anxiety and depression scale showed a 2.69- and 3.48-point decrease by the GPi group in the depression and anxiety categories, respectively. The summary index (SI) of the PD questionnaire depicted a greater improvement in the GPi group from baseline (mean=41.01, 95% CI 34.89, 47.13) to follow-up (mean=30.85, 95% CI 22.08, 39.63) when compared to the STN group (baseline mean=42.43, 95% CI 34.50, 50.37; follow-up mean=34.21, 95% CI 25.43, 42.99). The emotions category also demonstrated a similar trend. However, STN stimulation showed greater reductions in motor symptoms and medication than GPi stimulation. This meta-analysis demonstrated that GPi stimulation seems to offer an advantage over STN stimulation in improving mood and quality of life in PD, but those effects must be further validated by larger studies.
Collapse
Affiliation(s)
- Nour El Ghazal
- Neurosurgery, St George's University of London, London, GBR
- Neurosurgery, University of Nicosia Medical School, Nicosia, CYP
| | - Hayato Nakanishi
- Neurosurgery, St George's University of London, London, GBR
- Neurosurgery, University of Nicosia Medical School, Nicosia, CYP
| | | | - Nader K Al Sabbakh
- Neurosurgery, St George's University of London, London, GBR
- Neurosurgery, University of Nicosia Medical School, Nicosia, CYP
| | - Omotayo A Segun-Omosehin
- Neurosurgery, St George's University of London, London, GBR
- Neurosurgery, University of Nicosia Medical School, Nicosia, CYP
| | - Natalie E Bourdakos
- Neurosurgery, St George's University of London, London, GBR
- Neurosurgery, University of Nicosia Medical School, Nicosia, CYP
| | - Maya Nasser
- Neurosurgery, St George's University of London, London, GBR
- Neurosurgery, University of Nicosia Medical School, Nicosia, CYP
| | - Reem H Matar
- Neurosurgery, St George's University of London, London, GBR
- Neurosurgery, University of Nicosia Medical School, Nicosia, CYP
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, USA
| | - Christian Than
- Neurosurgery, St George's University of London, London, GBR
- Neurosurgery, University of Nicosia Medical School, Nicosia, CYP
- Biomedical Sciences, The University of Queensland, Brisbane, AUS
| | | | - Andrew Johnson
- Neurological Institute, Northshore Medical Group, Chicago, USA
| |
Collapse
|
17
|
Averna A, Debove I, Nowacki A, Peterman K, Duchet B, Sousa M, Bernasconi E, Alva L, Lachenmayer ML, Schuepbach M, Pollo C, Krack P, Nguyen TAK, Tinkhauser G. Spectral Topography of the Subthalamic Nucleus to Inform Next-Generation Deep Brain Stimulation. Mov Disord 2023; 38:818-830. [PMID: 36987385 PMCID: PMC7615852 DOI: 10.1002/mds.29381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/13/2023] [Accepted: 02/27/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND The landscape of neurophysiological symptoms and behavioral biomarkers in basal ganglia signals for movement disorders is expanding. The clinical translation of sensing-based deep brain stimulation (DBS) also requires a thorough understanding of the anatomical organization of spectral biomarkers within the subthalamic nucleus (STN). OBJECTIVES The aims were to systematically investigate the spectral topography, including a wide range of sub-bands in STN local field potentials (LFP) of Parkinson's disease (PD) patients, and to evaluate its predictive performance for clinical response to DBS. METHODS STN-LFPs were recorded from 70 PD patients (130 hemispheres) awake and at rest using multicontact DBS electrodes. A comprehensive spatial characterization, including hot spot localization and focality estimation, was performed for multiple sub-bands (delta, theta, alpha, low-beta, high-beta, low-gamma, high-gamma, and fast-gamma (FG) as well as low- and fast high-frequency oscillations [HFO]) and compared to the clinical hot spot for rigidity response to DBS. A spectral biomarker map was established and used to predict the clinical response to DBS. RESULTS The STN shows a heterogeneous topographic distribution of different spectral biomarkers, with the strongest segregation in the inferior-superior axis. Relative to the superiorly localized beta hot spot, HFOs (FG, slow HFO) were localized up to 2 mm more inferiorly. Beta oscillations are spatially more spread compared to other sub-bands. Both the spatial proximity of contacts to the beta hot spot and the distance to higher-frequency hot spots were predictive for the best rigidity response to DBS. CONCLUSIONS The spatial segregation and properties of spectral biomarkers within the DBS target structure can additionally be informative for the implementation of next-generation sensing-based DBS. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alberto Averna
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Ines Debove
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Andreas Nowacki
- Department of Neurosurgery, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Katrin Peterman
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Benoit Duchet
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
| | - Mário Sousa
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Elena Bernasconi
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Laura Alva
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Martin L. Lachenmayer
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | | | - Claudio Pollo
- Department of Neurosurgery, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Paul Krack
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Thuy-Anh K. Nguyen
- Department of Neurosurgery, Bern University Hospital and University of Bern, Bern, Switzerland
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Gerd Tinkhauser
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Ji YW, Zhang X, Fan JP, Gu WX, Shen ZL, Wu HC, Cui G, Zhou C, Xiao C. Differential remodeling of subthalamic projections to basal ganglia output nuclei and locomotor deficits in 6-OHDA-induced hemiparkinsonian mice. Cell Rep 2023; 42:112178. [PMID: 36857188 DOI: 10.1016/j.celrep.2023.112178] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 11/04/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
The subthalamic nucleus (STN) controls basal ganglia outputs via the substantia nigra pars reticulata (SNr) and the globus pallidus internus (GPi). However, the synaptic properties of these projections and their roles in motor control remain unclear. We show that the STN-SNr and STN-GPi projections differ markedly in magnitude and activity-dependent plasticity despite the existence of collateral STN neurons projecting to both the SNr and GPi. Stimulation of either STN projection reduces locomotion; in contrast, inhibition of either the STN-SNr projection or collateral STN neurons facilitates locomotion. In 6-OHDA-hemiparkinsonian mice, the STN-SNr projection is dramatically attenuated, but the STN-GPi projection is robustly enhanced; apomorphine inhibition of the STN-GPi projection through D2 receptors is significantly augmented and improves locomotion. Optogenetic inhibition of either the STN-SNr or STN-GPi projection improves parkinsonian bradykinesia. These results suggest that the STN-GPi and STN-SNr projections are differentially involved in motor control in physiological and parkinsonian conditions.
Collapse
Affiliation(s)
- Ya-Wei Ji
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xue Zhang
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221006, China
| | - Jiang-Peng Fan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory in Brain Diseases, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Wei-Xin Gu
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Zi-Lin Shen
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hai-Chuan Wu
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221006, China.
| | - Chunyi Zhou
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Cheng Xiao
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
19
|
Morelli N. Effect and Relationship of Gait on Subcortical Local Field Potentials in Parkinson's Disease: A Systematic Review. Neuromodulation 2023; 26:271-279. [PMID: 36244929 DOI: 10.1016/j.neurom.2022.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/19/2022] [Accepted: 09/05/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Developments in deep brain stimulation (DBS) technology have enabled the ability to detect local field potentials (LFPs) in Parkinson disease (PD). Gait dysfunction is one of the most prevalent deficits seen in PD. However, no consensus has been reached on the effect of gait on LFPs and the relationship between LFPs and clinical measures of gait. The objective of this systematic review was to synthesize existing research regarding the relationship between gait dysfunction and LFPs in PD. METHODS A systematic search of the literature yielded a total of ten articles, including 132 patients with PD, which met the criteria for inclusion. RESULTS Beta frequency band measures showed low-to-strong correlation to clinical gait measures (r = -0.50 to 0.82). Two studies found decreased beta power during gait; one found increased beta frequency peaks during gait; and one found higher beta power during dual-task gait than during single-task gait. One of the three studies comparing patients with and without freezing found significantly increased beta burst duration and power during gait in freezers compared with nonfreezers. All studies showed moderate-to-high methodologic quality. CONCLUSIONS This review highlights the need to consider the effect of gait on LFP recordings, particularly when used to guide DBS programming. Although sample sizes were small, it appears LFPs are associated to and modulated by gait in patients with PD. This evidence suggests that LFPs have the potential to be used as a biomarker of gait dysfunction in PD.
Collapse
|
20
|
Weiss AR, Korzeniewska A, Chrabaszcz A, Bush A, Fiez JA, Crone NE, Richardson RM. Lexicality-Modulated Influence of Auditory Cortex on Subthalamic Nucleus During Motor Planning for Speech. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2023; 4:53-80. [PMID: 37229140 PMCID: PMC10205077 DOI: 10.1162/nol_a_00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/18/2022] [Indexed: 05/27/2023]
Abstract
Speech requires successful information transfer within cortical-basal ganglia loop circuits to produce the desired acoustic output. For this reason, up to 90% of Parkinson's disease patients experience impairments of speech articulation. Deep brain stimulation (DBS) is highly effective in controlling the symptoms of Parkinson's disease, sometimes alongside speech improvement, but subthalamic nucleus (STN) DBS can also lead to decreases in semantic and phonological fluency. This paradox demands better understanding of the interactions between the cortical speech network and the STN, which can be investigated with intracranial EEG recordings collected during DBS implantation surgery. We analyzed the propagation of high-gamma activity between STN, superior temporal gyrus (STG), and ventral sensorimotor cortices during reading aloud via event-related causality, a method that estimates strengths and directionalities of neural activity propagation. We employed a newly developed bivariate smoothing model based on a two-dimensional moving average, which is optimal for reducing random noise while retaining a sharp step response, to ensure precise embedding of statistical significance in the time-frequency space. Sustained and reciprocal neural interactions between STN and ventral sensorimotor cortex were observed. Moreover, high-gamma activity propagated from the STG to the STN prior to speech onset. The strength of this influence was affected by the lexical status of the utterance, with increased activity propagation during word versus pseudoword reading. These unique data suggest a potential role for the STN in the feedforward control of speech.
Collapse
Affiliation(s)
- Alexander R. Weiss
- JHU Cognitive Neurophysiology and BMI Lab, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna Korzeniewska
- JHU Cognitive Neurophysiology and BMI Lab, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna Chrabaszcz
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alan Bush
- Brain Modulation Lab, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Julie A. Fiez
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Nathan E. Crone
- JHU Cognitive Neurophysiology and BMI Lab, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert M. Richardson
- Brain Modulation Lab, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Wang X, Mao Z, Yu X. Volume of tissue activated within subthalamic nucleus and clinical efficacy of deep brain stimulation in Meige syndrome. Neurol Sci 2023; 44:1643-1651. [PMID: 36622476 DOI: 10.1007/s10072-022-06594-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/29/2022] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The clinical efficacy of deep brain stimulation (DBS) relies on the optimal electrode placement in a large extent. Subthalamic nucleus (STN) DBS was recognized as clinically effective for Meige syndrome. This study identified the correlations of volume of tissue activated (VTA) within the motor STN and the final efficacy of the surgical procedure. METHODS Clinical outcomes of the patients (n=25) were evaluated with the percentage improvement in Burke-Fahn-Marsden Dystonia Rating Scale movement (BFMDRS-M) scores at the last follow-up (LFU) visit. Pearson's correlation coefficients were calculated to identify the relationship of the final clinical outcomes with the VTA within the STN, VTA within the different STN territories, and other clinical variables. RESULTS On the whole, the patients showed an average of 59.21% improvement at the LFU visit relative to the baseline (5.72 ± 7.31 vs. 13.70 ± 7.36, P ˂ 0.001). Active electrode contacts mainly clustered in the STN motor territories. There were significant positive correlations between the BFMDRS-M percentage improvement and VTA within the STN (Pearson r = 0.434, P = 0.039) and the STN motor territories (r = 0.430, P = 0.041), but not associative or limbic STN. Other basic clinical characteristics including age, disease duration, and preoperative scores were not significantly correlated with the final outcomes. CONCLUSIONS Our study further validated the efficacy of STN-DBS in even the cases with intractable Meige syndrome. Furthermore, VTA within the motor STN could serve as a potential prognostic factor for the final clinical outcomes.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan, Shandong, China.
| | - Zhiqi Mao
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xinguang Yu
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
22
|
Waldthaler J, Sperlich A, Stüssel C, Steidel K, Timmermann L, Pedrosa DJ. Stimulation of non-motor subthalamic nucleus impairs selective response inhibition via prefrontal connectivity. Brain Commun 2023; 5:fcad121. [PMID: 37113315 PMCID: PMC10128876 DOI: 10.1093/braincomms/fcad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/03/2023] [Indexed: 04/29/2023] Open
Abstract
Given the inconsistent results in the past, there is an ongoing debate whether and how deep brain stimulation in the subthalamic nucleus modifies cognitive control processes like response inhibition in persons with Parkinson's disease. In this study, we examined how the location of the stimulation volume within the subthalamic nucleus affects the performance in an antisaccade task but also how its structural connectivity is related to response inhibition. Antisaccade error rates and latencies were collected in 14 participants on and off deep brain stimulation in a randomized order. Stimulation volumes were computed based on patient-specific lead localizations using preoperative MRI and postoperative CT scans. Structural connectivity of the stimulation volumes with pre-defined cortical oculomotor control regions as well as whole-brain connectivity was estimated using a normative connectome. We showed that the detrimental effect of deep brain stimulation on response inhibition, measured as antisaccade error rate, depended upon the magnitude of the intersection of volumes of activated tissue with the non-motor subregion of the subthalamic nucleus and on its structural connectivity with regions of the prefrontal oculomotor network including bilateral frontal eye fields and right anterior cingulate cortex. Our results corroborate previous recommendations for avoidance of stimulation in the ventromedial non-motor subregion of the subthalamic nucleus which connects to the prefrontal cortex to prevent stimulation-induced impulsivity. Furthermore, antisaccades were initiated faster with deep brain stimulation when the stimulation volume was connected to fibres passing the subthalamic nucleus laterally and projecting onto the prefrontal cortex, indicating that improvement of voluntary saccade generation with deep brain stimulation may be an off-target effect driven by stimulation of corticotectal fibres directly projecting from the frontal and supplementary eye fields onto brainstem gaze control areas. Taken together, these findings could help implement individualized circuit-based deep brain stimulation strategies that avoid impulsive side effects while improving voluntary oculomotor control.
Collapse
Affiliation(s)
- Josefine Waldthaler
- Correspondence to: Josefine Waldthaler, Department of Neurology, University Hospitals Gießen and Marburg, Baldingerstraße, 35033 Marburg, Hesse, Germany E-mail:
| | - Alexander Sperlich
- Department of Neurology, University Hospital Gießen and Marburg, 35033 Marburg, Germany
| | - Charlotte Stüssel
- Department of Neurology, University Hospital Gießen and Marburg, 35033 Marburg, Germany
| | - Kenan Steidel
- Department of Neurology, University Hospital Gießen and Marburg, 35033 Marburg, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital Gießen and Marburg, 35033 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg and Justus-Liebig-University Giessen, 35033 Marburg, Germany
| | - David J Pedrosa
- Department of Neurology, University Hospital Gießen and Marburg, 35033 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg and Justus-Liebig-University Giessen, 35033 Marburg, Germany
| |
Collapse
|
23
|
Chen PL, Chen YC, Tu PH, Liu TC, Chen MC, Wu HT, Yeap MC, Yeh CH, Lu CS, Chen CC. Subthalamic high-beta oscillation informs the outcome of deep brain stimulation in patients with Parkinson's disease. Front Hum Neurosci 2022; 16:958521. [PMID: 36158623 PMCID: PMC9493001 DOI: 10.3389/fnhum.2022.958521] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe therapeutic effect of deep brain stimulation (DBS) of the subthalamic nucleus (STN) for Parkinson's disease (PD) is related to the modulation of pathological neural activities, particularly the synchronization in the β band (13–35 Hz). However, whether the local β activity in the STN region can directly predict the stimulation outcome remains unclear.ObjectiveWe tested the hypothesis that low-β (13–20 Hz) and/or high-β (20–35 Hz) band activities recorded from the STN region can predict DBS efficacy.MethodsLocal field potentials (LFPs) were recorded in 26 patients undergoing deep brain stimulation surgery in the subthalamic nucleus area. Recordings were made after the implantation of the DBS electrode prior to its connection to a stimulator. The maximum normalized powers in the theta (4–7 Hz), alpha (7–13 Hz), low-β (13–20 Hz), high-β (20–35 Hz), and low-γ (40–55 Hz) subbands in the postoperatively recorded LFP were correlated with the stimulation-induced improvement in contralateral tremor or bradykinesia–rigidity. The distance between the contact selected for stimulation and the contact with the maximum subband power was correlated with the stimulation efficacy. Following the identification of the potential predictors by the significant correlations, a multiple regression analysis was performed to evaluate their effect on the outcome.ResultsThe maximum high-β power was positively correlated with bradykinesia–rigidity improvement (rs = 0.549, p < 0.0001). The distance to the contact with maximum high-β power was negatively correlated with bradykinesia–rigidity improvement (rs = −0.452, p < 0.001). No significant correlation was observed with low-β power. The maximum high-β power and the distance to the contact with maximum high-β power were both significant predictors for bradykinesia–rigidity improvement in the multiple regression analysis, explaining 37.4% of the variance altogether. Tremor improvement was not significantly correlated with any frequency.ConclusionHigh-β oscillations, but not low-β oscillations, recorded from the STN region with the DBS lead can inform stimulation-induced improvement in contralateral bradykinesia–rigidity in patients with PD. High-β oscillations can help refine electrode targeting and inform contact selection for DBS therapy.
Collapse
Affiliation(s)
- Po-Lin Chen
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yi-Chieh Chen
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Hsun Tu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tzu-Chi Liu
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Mathematics, National Taiwan University, Taipei, Taiwan
| | - Min-Chi Chen
- Department of Public Health, Biostatistics Consulting Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Hau-Tieng Wu
- Department of Mathematics, Duke University, Durham, NC, United States
- Department of Statistical Science, Duke University, Durham, NC, United States
| | - Mun-Chun Yeap
- Department of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Hua Yeh
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neuroradiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chin-Song Lu
- Professor Lu Neurological Clinic, Taoyuan, Taiwan
| | - Chiung-Chu Chen
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- *Correspondence: Chiung-Chu Chen
| |
Collapse
|
24
|
Butenko K, Li N, Neudorfer C, Roediger J, Horn A, Wenzel GR, Eldebakey H, Kühn AA, Reich MM, Volkmann J, Rienen UV. Linking profiles of pathway activation with clinical motor improvements - A retrospective computational study. Neuroimage Clin 2022; 36:103185. [PMID: 36099807 PMCID: PMC9474565 DOI: 10.1016/j.nicl.2022.103185] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/27/2022] [Accepted: 09/02/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) is an established therapy for patients with Parkinson's disease. In silico computer models for DBS hold the potential to inform a selection of stimulation parameters. In recent years, the focus has shifted towards DBS-induced firing in myelinated axons, deemed particularly relevant for the external modulation of neural activity. OBJECTIVE The aim of this project was to investigate correlations between patient-specific pathway activation profiles and clinical motor improvement. METHODS We used the concept of pathway activation modeling, which incorporates advanced volume conductor models and anatomically authentic fiber trajectories to estimate DBS-induced action potential initiation in anatomically plausible pathways that traverse in close proximity to targeted nuclei. We applied the method on two retrospective datasets of DBS patients, whose clinical improvement had been evaluated according to the motor part of the Unified Parkinson's Disease Rating Scale. Based on differences in outcome and activation levels for intrapatient DBS protocols in a training cohort, we derived a pathway activation profile that theoretically induces a complete alleviation of symptoms described by UPDRS-III. The profile was further enhanced by analyzing the importance of matching activation levels for individual pathways. RESULTS The obtained profile emphasized the importance of activation in pathways descending from the motor-relevant cortical regions as well as the pallidothalamic pathways. The degree of similarity of patient-specific profiles to the optimal profile significantly correlated with clinical motor improvement in a test cohort. CONCLUSION Pathway activation modeling has a translational utility in the context of motor symptom alleviation in Parkinson's patients treated with DBS.
Collapse
Affiliation(s)
- Konstantin Butenko
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany,Movement Disorders and Neuromodulation Unit, Department for Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany,Corresponding author.
| | - Ningfei Li
- Movement Disorders and Neuromodulation Unit, Department for Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Clemens Neudorfer
- Movement Disorders and Neuromodulation Unit, Department for Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Roediger
- Movement Disorders and Neuromodulation Unit, Department for Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany,Einstein Center for Neurosciences, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Horn
- Movement Disorders and Neuromodulation Unit, Department for Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Gregor R. Wenzel
- Movement Disorders and Neuromodulation Unit, Department for Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Hazem Eldebakey
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Andrea A. Kühn
- Movement Disorders and Neuromodulation Unit, Department for Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Martin M. Reich
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Ursula van Rienen
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany,Department Life, Light & Matter, University of Rostock, Rostock, Germany,Department of Ageing of Individuals and Society, University of Rostock, Rostock, Germany,Corresponding author.
| |
Collapse
|
25
|
Gadot R, Vanegas Arroyave N, Dang H, Anand A, Najera RA, Taneff LY, Bellows S, Tarakad A, Jankovic J, Horn A, Shofty B, Viswanathan A, Sheth SA. Association of clinical outcomes and connectivity in awake versus asleep deep brain stimulation for Parkinson disease. J Neurosurg 2022; 138:1016-1027. [PMID: 35932263 DOI: 10.3171/2022.6.jns212904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/09/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) for Parkinson disease (PD) is traditionally performed with awake intraoperative testing and/or microelectrode recording. Recently, however, the procedure has been increasingly performed under general anesthesia with image-based verification. The authors sought to compare structural and functional networks engaged by awake and asleep PD-DBS of the subthalamic nucleus (STN) and correlate them with clinical outcomes. METHODS Levodopa equivalent daily dose (LEDD), pre- and postoperative motor scores on the Movement Disorders Society-Unified Parkinson's Disease Rating Scale part III (MDS-UPDRS III), and total electrical energy delivered (TEED) at 6 months were retroactively assessed in patients with PD who received implants of bilateral DBS leads. In subset analysis, implanted electrodes were reconstructed using the Lead-DBS toolbox. Volumes of tissue activated (VTAs) were used as seed points in group volumetric and connectivity analysis. RESULTS The clinical courses of 122 patients (52 asleep, 70 awake) were reviewed. Operating room and procedure times were significantly shorter in asleep cases. LEDD reduction, MDS-UPDRS III score improvement, and TEED at the 6-month follow-up did not differ between groups. In subset analysis (n = 40), proximity of active contact, VTA overlap, and desired network fiber counts with motor STN correlated with lower DBS energy requirement and improved motor scores. Discriminative structural fiber tracts involving supplementary motor area, thalamus, and brainstem were associated with optimal clinical improvement. Areas of highest structural and functional connectivity with VTAs did not significantly differ between the two groups. CONCLUSIONS Compared to awake STN DBS, asleep procedures can achieve similarly optimal targeting-based on clinical outcomes, electrode placement, and connectivity estimates-in more efficient procedures and shorter operating room times.
Collapse
Affiliation(s)
- Ron Gadot
- 1Department of Neurosurgery, Baylor College of Medicine
| | - Nora Vanegas Arroyave
- 2Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, Texas; and
| | - Huy Dang
- 1Department of Neurosurgery, Baylor College of Medicine
| | - Adrish Anand
- 1Department of Neurosurgery, Baylor College of Medicine
| | | | - Lisa Yutong Taneff
- 2Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, Texas; and
| | - Steven Bellows
- 2Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, Texas; and
| | - Arjun Tarakad
- 2Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, Texas; and
| | - Joseph Jankovic
- 2Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, Texas; and
| | - Andreas Horn
- 3Department of Neurology, Movement Disorder and Neuromodulation Unit, Charité-Universitätsmedizin, Berlin, Germany
| | - Ben Shofty
- 1Department of Neurosurgery, Baylor College of Medicine
| | | | | |
Collapse
|
26
|
Kratter IH, Jorge A, Feyder MT, Whiteman AC, Chang YF, Henry LC, Karp JF, Richardson RM. Depression history modulates effects of subthalamic nucleus topography on neuropsychological outcomes of deep brain stimulation for Parkinson's disease. Transl Psychiatry 2022; 12:213. [PMID: 35624103 PMCID: PMC9142573 DOI: 10.1038/s41398-022-01978-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 11/09/2022] Open
Abstract
Patients with psychiatric symptoms, such as depression, anxiety, and visual hallucinations, may be at increased risk for adverse effects following deep brain stimulation of the subthalamic nucleus for Parkinson's disease, but there have been relatively few studies of associations between locations of chronic stimulation and neuropsychological outcomes. We sought to determine whether psychiatric history modulates associations between stimulation location within the subthalamic nucleus and postoperative affective and cognitive changes. We retrospectively identified 42 patients with Parkinson's disease who received bilateral subthalamic nucleus deep brain stimulation and who completed both pre- and postoperative neuropsychological testing. Active stimulation contacts were localized in MNI space using Lead-DBS software. Linear discriminant analysis identified vectors maximizing variance in postoperative neuropsychological changes, and Pearson's correlations were used to assess for linear relationships. Stimulation location was associated with postoperative change for only 3 of the 18 neuropsychological measures. Variation along the superioinferior (z) axis was most influential. Constraining the analysis to patients with a history of depression revealed 10 measures significantly associated with active contact location, primarily related to location along the anterioposterior (y) axis and with worse outcomes associated with more anterior stimulation. Analysis of patients with a history of anxiety revealed 5 measures with location-associated changes without a predominant axis. History of visual hallucinations was not associated with significant findings. Our results suggest that a history of depression may influence the relationship between active contact location and neuropsychological outcomes following subthalamic nucleus deep brain stimulation. These patients may be more sensitive to off-target (nonmotor) stimulation.
Collapse
Affiliation(s)
- Ian H Kratter
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Brain Modulation Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA, 94305, USA.
| | - Ahmed Jorge
- Brain Modulation Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael T Feyder
- Brain Modulation Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ashley C Whiteman
- Brain Modulation Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yue-Fang Chang
- Brain Modulation Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Luke C Henry
- Brain Modulation Laboratory, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jordan F Karp
- Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Tödt I, Al-Fatly B, Granert O, Kühn AA, Krack P, Rau J, Timmermann L, Schnitzler A, Paschen S, Helmers AK, Hartmann A, Bardinet E, Schuepbach M, Barbe MT, Dembek TA, Fraix V, Kübler D, Brefel-Courbon C, Gharabaghi A, Wojtecki L, Pinsker MO, Thobois S, Damier P, Witjas T, Houeto JL, Schade-Brittinger C, Vidailhet M, Horn A, Deuschl G. The Contribution of Subthalamic Nucleus Deep Brain Stimulation to the Improvement in Motor Functions and Quality of Life. Mov Disord 2022; 37:291-301. [PMID: 35112384 DOI: 10.1002/mds.28952] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Subthalamic nucleus deep brain stimulation (STN-DBS) effectively treats motor symptoms and quality of life (QoL) of advanced and fluctuating early Parkinson's disease. Little is known about the relation between electrode position and changes in symptom control and ultimately QoL. OBJECTIVES The relation between the stimulated part of the STN and clinical outcomes, including the motor score of the Unified Parkinson's Disease Rating Scale (UPDRS) and the quality-of-life questionnaire, was assessed in a subcohort of the EARLYSTIM study. METHODS Sixty-nine patients from the EARLYSTIM cohort who underwent DBS, with a comprehensive clinical characterization before and 24 months after surgery, were included. Intercorrelations of clinical outcome changes, correlation between the affected functional parts of the STN, and changes in clinical outcomes were investigated. We further calculated sweet spots for different clinical parameters. RESULTS Improvements in the UPDRS III and Parkinson's Disease Questionnaire (PDQ-39) correlated positively with the extent of the overlap with the sensorimotor STN. The sweet spots for the UPDRS III (x = 11.6, y = -13.1, z = -6.3) and the PDQ-39 differed (x = 14.8, y = -12.4, z = -4.3) ~3.8 mm. CONCLUSIONS The main influence of DBS on QoL is likely mediated through the sensory-motor basal ganglia loop. The PDQ sweet spot is located in a posteroventral spatial location in the STN territory. For aspects of QoL, however, there was also evidence of improvement through stimulation of the other STN subnuclei. More research is necessary to customize the DBS target to individual symptoms of each patient. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Inken Tödt
- Department of Neurology, University Hospital Schleswig Holstein, Kiel, Germany
| | - Bassam Al-Fatly
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité Medicine University of Berlin, Berlin, Germany
| | - Oliver Granert
- Department of Neurology, University Hospital Schleswig Holstein, Kiel, Germany
| | - Andrea A Kühn
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité Medicine University of Berlin, Berlin, Germany
| | - Paul Krack
- Department of Neurology, University Hospital Bern and University of Bern, Bern, Switzerland
| | - Joern Rau
- Coordinating Center for Clinical Trials, Philipps-University, Marburg, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital Giessen and Marburg, Marburg, Germany
| | - Alfons Schnitzler
- Department of Neurology, Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Steffen Paschen
- Department of Neurology, University Hospital Schleswig Holstein, Kiel, Germany
| | - Ann-Kristin Helmers
- Department of Neurosurgery, University Hospital Schleswig Holstein, Kiel, Germany
| | - Andreas Hartmann
- Assistance-Publique Hôpitaux de Paris, Center d'Investigation Clinique 9503, Institut du Cerveau et de la Moelle épinière, Paris, France.,Département de Neurologie, Université Pierre et Marie Curie-Paris 6 et INSERM, Paris, France
| | - Eric Bardinet
- Department of Neurology, NS-PARK/F-CRIN, University Hospital of Besançon, Besançon, France.,Center de Neuroimagerie de Recherche, Institut du Cerveau et de la Moelle (ICM), Paris, France
| | - Michael Schuepbach
- Department of Neurology, University Hospital Bern and University of Bern, Bern, Switzerland.,Assistance-Publique Hôpitaux de Paris, Center d'Investigation Clinique 9503, Institut du Cerveau et de la Moelle épinière, Paris, France.,Département de Neurologie, Université Pierre et Marie Curie-Paris 6 et INSERM, Paris, France.,Institute of Neurology, Konolfingen, Switzerland
| | - Michael T Barbe
- Department of Neurology, University of Cologne, Faculty of Medicine, Cologne, Germany
| | - Till A Dembek
- Department of Neurology, University of Cologne, Faculty of Medicine, Cologne, Germany
| | - Valerie Fraix
- Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France.,Neurology Department, Grenoble University Hospital, Grenoble, France
| | - Dorothee Kübler
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité Medicine University of Berlin, Berlin, Germany
| | | | - Alireza Gharabaghi
- Department of Neurosurgery and Neurotechnology Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tuebingen, Tuebingen, Germany
| | - Lars Wojtecki
- Department of Neurology and Neurorehabilitation, Hospital zum Heiligen Geist GmbH & Co.KG Academic Teaching Hospital of the Heinrich-Heine-University Düsseldorf Von-Broichhausen-Allee 1, Kempen, Germany
| | - Marcus O Pinsker
- Department of Neurosurgery, University of Freiburg, Freiburg, Germany
| | - Stephane Thobois
- Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Center Expert Parkinson, Bron, France.,Université Lyon, Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Sud Charles Mérieux, Oullins, France
| | | | - Tatiana Witjas
- Department of Neurology, Timone University Hospital UMR 7289, CNRS Marseille, Marseille, France
| | - Jean-Luc Houeto
- Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Center Expert Parkinson, Bron, France
| | | | - Marie Vidailhet
- Department of Neurology, Sorbonne Université, ICM UMR1127, INSERM &1127, CNRS 7225, Salpêtriere University Hospital AP-HP, Paris, France
| | - Andreas Horn
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité Medicine University of Berlin, Berlin, Germany
| | - Günther Deuschl
- Department of Neurology, University Hospital Schleswig Holstein, Kiel, Germany
| |
Collapse
|
28
|
Milardi D, Antonio Basile G, Faskowitz J, Bertino S, Quartarone A, Anastasi G, Bramanti A, Ciurleo R, Cacciola A. Effects of diffusion signal modeling and segmentation approaches on subthalamic nucleus parcellation. Neuroimage 2022; 250:118959. [PMID: 35122971 DOI: 10.1016/j.neuroimage.2022.118959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 11/24/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
The subthalamic nucleus (STN) is commonly used as a surgical target for deep brain stimulation in movement disorders such as Parkinson's Disease. Tractography-derived connectivity-based parcellation (CBP) has been recently proposed as a suitable tool for non-invasive in vivo identification and pre-operative targeting of specific functional territories within the human STN. However, a well-established, accurate and reproducible protocol for STN parcellation is still lacking. The present work aims at testing the effects of different tractography-based approaches for the reconstruction of STN functional territories. We reconstructed functional territories of the STN on the high-quality dataset of 100 unrelated healthy subjects and on the test-retest dataset of the Human Connectome Project (HCP) repository. Connectivity-based parcellation was performed with a hypothesis-driven approach according to cortico-subthalamic connectivity, after dividing cortical areas into three groups: associative, limbic and sensorimotor. Four parcellation pipelines were compared, combining different signal modeling techniques (single-fiber vs multi-fiber) and different parcellation approaches (winner takes all parcellation vs fiber density thresholding). We tested these procedures on STN regions of interest obtained from three different, commonly employed, subcortical atlases. We evaluated the pipelines both in terms of between-subject similarity, assessed on the cohort of 100 unrelated healthy subjects, and of within-subject similarity, using a second cohort of 44 subjects with available test-retest data. We found that each parcellation provides converging results in terms of location of the identified parcels, but with significative variations in size and shape. All pipelines obtained very high within-subject similarity, with tensor-based approaches outperforming multi-fiber pipelines. On the other hand, higher between-subject similarity was found with multi-fiber signal modeling techniques combined with fiber density thresholding. We suggest that a fine-tuning of tractography-based parcellation may lead to higher reproducibility and aid the development of an optimized surgical targeting protocol.
Collapse
Affiliation(s)
- Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.
| | - Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Joshua Faskowitz
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA
| | - Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Angelo Quartarone
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Giuseppe Anastasi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alessia Bramanti
- Department of Medicine, Surgery and Dentistry "Medical School of Salerno"- University of Salerno, Italy
| | | | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.
| |
Collapse
|
29
|
Gonzalez-Escamilla G, Koirala N, Bange M, Glaser M, Pintea B, Dresel C, Deuschl G, Muthuraman M, Groppa S. Deciphering the Network Effects of Deep Brain Stimulation in Parkinson's Disease. Neurol Ther 2022; 11:265-282. [PMID: 35000133 PMCID: PMC8857357 DOI: 10.1007/s40120-021-00318-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/21/2021] [Indexed: 10/31/2022] Open
Abstract
INTRODUCTION Deep brain stimulation of the subthalamic nucleus (STN-DBS) is an established therapy for Parkinson's disease (PD). However, a more detailed characterization of the targeted network and its grey matter (GM) terminals that drive the clinical outcome is needed. In this direction, the use of MRI after DBS surgery is now possible due to recent advances in hardware, opening a window for the clarification of the association between the affected tissue, including white matter fiber pathways and modulated GM regions, and the DBS-related clinical outcome. Therefore, we present a computational framework for reconstruction of targeted networks on postoperative MRI. METHODS We used a combination of preoperative whole-brain T1-weighted (T1w) and diffusion-weighted MRI data for morphometric integrity assessment and postoperative T1w MRI for electrode reconstruction and network reconstruction in 15 idiopathic PD patients. Within this framework, we made use of DBS lead artifact intensity profiles on postoperative MRI to determine DBS locations used as seeds for probabilistic tractography to cortical and subcortical targets within the motor circuitry. Lastly, we evaluated the relationship between brain microstructural characteristics of DBS-targeted brain network terminals and postoperative clinical outcomes. RESULTS The proposed framework showed robust performance for identifying the DBS electrode positions. Connectivity profiles between the primary motor cortex (M1), supplementary motor area (SMA), and DBS locations were strongly associated with the stimulation intensity needed for the optimal clinical outcome. Local diffusion properties of the modulated pathways were related to DBS outcomes. STN-DBS motor symptom improvement was highly associated with cortical thickness in the middle frontal and superior frontal cortices, but not with subcortical volumetry. CONCLUSION These data suggest that STN-DBS outcomes largely rely on the modulatory interference from cortical areas, particularly M1 and SMA, to DBS locations.
Collapse
Affiliation(s)
- Gabriel Gonzalez-Escamilla
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Nabin Koirala
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Manuel Bange
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Martin Glaser
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Bogdan Pintea
- Department of Neurosurgery, University Hospital Bergmannsheil, Bürkle de la Camp-Platz 1, 44789, Bochum, Germany
| | - Christian Dresel
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Günther Deuschl
- Department of Neurology, Schleswig-Holstein University Hospital UKSH, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Muthuraman Muthuraman
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Sergiu Groppa
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
30
|
Chen YC, Wu HT, Tu PH, Yeh CH, Liu TC, Yeap MC, Chao YP, Chen PL, Lu CS, Chen CC. Theta Oscillations at Subthalamic Region Predicts Hypomania State After Deep Brain Stimulation in Parkinson's Disease. Front Hum Neurosci 2022; 15:797314. [PMID: 34987369 PMCID: PMC8721814 DOI: 10.3389/fnhum.2021.797314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022] Open
Abstract
Subthalamic nucleus (STN) deep brain stimulation (DBS) is an effective treatment for the motor impairments of patients with advanced Parkinson's disease. However, mood or behavioral changes, such as mania, hypomania, and impulsive disorders, can occur postoperatively. It has been suggested that these symptoms are associated with the stimulation of the limbic subregion of the STN. Electrophysiological studies demonstrate that the low-frequency activities in ventral STN are modulated during emotional processing. In this study, we report 22 patients with Parkinson's disease who underwent STN DBS for treatment of motor impairment and presented stimulation-induced mood elevation during initial postoperative programming. The contact at which a euphoric state was elicited by stimulation was termed as the hypomania-inducing contact (HIC) and was further correlated with intraoperative local field potential recorded during the descending of DBS electrodes. The power of four frequency bands, namely, θ (4–7 Hz), α (7–10 Hz), β (13–35 Hz), and γ (40–60 Hz), were determined by a non-linear variation of the spectrogram using the concentration of frequency of time (conceFT). The depth of maximum θ power is located approximately 2 mm below HIC on average and has significant correlation with the location of contacts (r = 0.676, p < 0.001), even after partializing the effect of α and β, respectively (r = 0.474, p = 0.022; r = 0.461, p = 0.027). The occurrence of HIC was not associated with patient-specific characteristics such as age, gender, disease duration, motor or non-motor symptoms before the operation, or improvement after stimulation. Taken together, these data suggest that the location of maximum θ power is associated with the stimulation-induced hypomania and the prediction of θ power is frequency specific. Our results provide further information to refine targeting intraoperatively and select stimulation contacts in programming.
Collapse
Affiliation(s)
- Yi-Chieh Chen
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hau-Tieng Wu
- Department of Mathematics, Duke University, Durham, NC, United States.,Department of Statistical Science, Duke University, Durham, NC, United States
| | - Po-Hsun Tu
- College of Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Hua Yeh
- College of Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Neuroradiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tzu-Chi Liu
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Mun-Chun Yeap
- Department of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yi-Ping Chao
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Po-Lin Chen
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chin-Song Lu
- Professor Lu Neurological Clinic, Taoyuan, Taiwan
| | - Chiung-Chu Chen
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
31
|
Rodriguez-Rojas R, Pineda-Pardo JA, Mañez-Miro J, Sanchez-Turel A, Martinez-Fernandez R, Del Alamo M, DeLong M, Obeso JA. Functional Topography of the Human Subthalamic Nucleus: Relevance for Subthalamotomy in Parkinson's Disease. Mov Disord 2021; 37:279-290. [PMID: 34859498 DOI: 10.1002/mds.28862] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The subthalamic nucleus (STN) is considered a key structure in motor, behavioral, and emotional control. Although identification of the functional topography of the STN has therapeutic implications in the treatment of the motor features of Parkinson's disease (PD), the details of its functional and somatotopic organization in humans are not well understood. OBJECTIVE The aim of this study was to characterize the functional organization of the STN and its correlation with the motor outcomes induced by subthalamotomy. METHODS We used diffusion-weighted imaging to assess STN connectivity patterns in 23 healthy control subjects and 86 patients with PD, of whom 39 received unilateral subthalamotomy. Analytical tractography was used to reconstruct structural cortico-subthalamic connectivity. A diffusion-weighted imaging/functional magnetic resonance imaging-driven somatotopic parcellation of the STN was defined to delineate the representation of the upper and lower limb in the STN. RESULTS We confirmed a connectional gradient to sensorimotor, supplementary-motor, associative, and limbic cortical regions, spanning from posterior-dorsal-lateral to anterior-ventral-medial portions of the STN, with intermediate overlapping zones. Functional magnetic resonance imaging-driven parcellation demonstrated dual segregation of motor cortico-subthalamic projections in humans. Moreover, the relationship between lesion topography and functional anatomy of the STN explains specific improvement in bradykinesia, rigidity, and tremor induced by subthalamotomy. CONCLUSIONS Our results support an interplay between segregation and integration of cortico-subthalamic projections, suggesting the coexistence of parallel and convergent information processing. Identifying the functional topography of the STN will facilitate better definition of the optimal location for functional neurosurgical approaches, that is, electrode placement and lesion location, and improve specific cardinal features in PD. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Rafael Rodriguez-Rojas
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.,Universidad CEU-San Pablo University, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Carlos III Institute, Madrid, Spain
| | - Jose A Pineda-Pardo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.,Universidad CEU-San Pablo University, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Carlos III Institute, Madrid, Spain
| | - Jorge Mañez-Miro
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
| | - Alicia Sanchez-Turel
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
| | - Raul Martinez-Fernandez
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.,Universidad CEU-San Pablo University, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Carlos III Institute, Madrid, Spain
| | - Marta Del Alamo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
| | - Mahlon DeLong
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jose A Obeso
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.,Universidad CEU-San Pablo University, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Carlos III Institute, Madrid, Spain
| |
Collapse
|
32
|
Marceglia S, Guidetti M, Harmsen IE, Loh A, Meoni S, Foffani G, Lozano AM, Volkmann J, Moro E, Priori A. Deep brain stimulation: is it time to change gears by closing the loop? J Neural Eng 2021; 18. [PMID: 34678794 DOI: 10.1088/1741-2552/ac3267] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/22/2021] [Indexed: 11/12/2022]
Abstract
Objective.Adaptive deep brain stimulation (aDBS) is a form of invasive stimulation that was conceived to overcome the technical limitations of traditional DBS, which delivers continuous stimulation of the target structure without considering patients' symptoms or status in real-time. Instead, aDBS delivers on-demand, contingency-based stimulation. So far, aDBS has been tested in several neurological conditions, and will be soon extensively studied to translate it into clinical practice. However, an exhaustive description of technical aspects is still missing.Approach.in this topical review, we summarize the knowledge about the current (and future) aDBS approach and control algorithms to deliver the stimulation, as reference for a deeper undestending of aDBS model.Main results.We discuss the conceptual and functional model of aDBS, which is based on the sensing module (that assesses the feedback variable), the control module (which interpretes the variable and elaborates the new stimulation parameters), and the stimulation module (that controls the delivery of stimulation), considering both the historical perspective and the state-of-the-art of available biomarkers.Significance.aDBS modulates neuronal circuits based on clinically relevant biofeedback signals in real-time. First developed in the mid-2000s, many groups have worked on improving closed-loop DBS technology. The field is now at a point in conducting large-scale randomized clinical trials to translate aDBS into clinical practice. As we move towards implanting brain-computer interfaces in patients, it will be important to understand the technical aspects of aDBS.
Collapse
Affiliation(s)
- Sara Marceglia
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | - Matteo Guidetti
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy.,Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Irene E Harmsen
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Sara Meoni
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy.,Movement Disorders Unit, Division of Neurology, CHU Grenoble Alpes, Grenoble, France.,Grenoble Institute of Neurosciences, INSERM U1216, University Grenoble Alpes, Grenoble, France
| | - Guglielmo Foffani
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.,Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jens Volkmann
- Department of Neurology, University of Wurzburg, Wurzburg, Germany
| | - Elena Moro
- Movement Disorders Unit, Division of Neurology, CHU Grenoble Alpes, Grenoble, France.,Grenoble Institute of Neurosciences, INSERM U1216, University Grenoble Alpes, Grenoble, France
| | - Alberto Priori
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy.,ASST Santi Paolo e Carlo, 20142 Milan, Italy
| |
Collapse
|
33
|
Mosley PE, Robinson K, Dissanayaka NN, Coyne T, Silburn P, Marsh R, Pye D. A Pilot Trial of Cognitive Behavioral Therapy for Caregivers After Deep Brain Stimulation for Parkinson's Disease. J Geriatr Psychiatry Neurol 2021; 34:454-465. [PMID: 32400266 DOI: 10.1177/0891988720924720] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Subthalamic deep brain stimulation for Parkinson's disease may not ameliorate burden among caregivers. An 8-session, manualized program of cognitive-behavioral therapy (CBT) was delivered to a pilot sample of 10 caregivers (6 females, mean age: 60, age range: 34-79). Primary outcome measures were caregiver burden (Zarit Burden Interview) and caregiver quality of life (Parkinson's Disease Questionnaire-Carer). Secondary outcome measures comprised ratings of depression and anxiety in the caregiver, in addition to relationship quality. Caregiver burden (t = 2.91 P = .017) and caregiver anxiety (t = 2.82 P = .020) symptoms were significantly reduced at completion of the program, and these benefits were maintained 3 months later. Caregiver quality of life had significantly improved by the end of the intervention (t = 3.02 P = .015), but this effect was not sustained after 3 months. The longitudinal influence of participation in the program on caregiver burden was confirmed in a linear, mixed-effects model, χ2 (3) = 15.1, P = .0017). The intervention was well received by participants, and qualitative feedback was obtained. These results indicate that caregiver burden is modifiable in this cohort with a short course of CBT, that benefits are maintained after termination of the program, and that psychological treatment is acceptable to participants. Larger, controlled trials are justified.
Collapse
Affiliation(s)
- Philip E Mosley
- Systems Neuroscience Group, 56362QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,Neurosciences Queensland, St Andrew's War Memorial Hospital, Spring Hill, Queensland, Australia.,171919Queensland Brain Institute, University of Queensland, St Lucia, Queensland, Australia.,Faculty of Medicine, 171919University of Queensland, Herston, Queensland, Australia
| | - Katherine Robinson
- Systems Neuroscience Group, 56362QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Nadeeka N Dissanayaka
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Herston, Queensland, Australia.,310748School of Psychology, St Lucia, University of Queensland, Brisbane, Australia.,Department of Neurology, 3883Royal Brisbane & Women's Hospital, Herston, Queensland, Australia
| | - Terry Coyne
- 171919Queensland Brain Institute, University of Queensland, St Lucia, Queensland, Australia.,Brizbrain and Spine, The Wesley Hospital, Auchenflower, Queensland, Australia
| | - Peter Silburn
- Neurosciences Queensland, St Andrew's War Memorial Hospital, Spring Hill, Queensland, Australia.,171919Queensland Brain Institute, University of Queensland, St Lucia, Queensland, Australia
| | - Rodney Marsh
- Neurosciences Queensland, St Andrew's War Memorial Hospital, Spring Hill, Queensland, Australia.,Department of Psychiatry, 3883Royal Brisbane & Women's Hospital, Herston, Queensland, Australia
| | - Deidre Pye
- 310748School of Psychology, St Lucia, University of Queensland, Brisbane, Australia
| |
Collapse
|
34
|
Sobesky L, Goede L, Odekerken VJJ, Wang Q, Li N, Neudorfer C, Rajamani N, Al-Fatly B, Reich M, Volkmann J, de Bie RMA, Kühn AA, Horn A. Subthalamic and pallidal deep brain stimulation: are we modulating the same network? Brain 2021; 145:251-262. [PMID: 34453827 DOI: 10.1093/brain/awab258] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/05/2021] [Accepted: 06/21/2021] [Indexed: 11/14/2022] Open
Abstract
The subthalamic nucleus and internal pallidum are main target sites for deep brain stimulation in Parkinson's disease. Multiple trials that investigated subthalamic versus pallidal stimulation were unable to settle on a definitive optimal target between the two. One reason could be that the effect is mediated via a common functional network. To test this hypothesis, we calculated connectivity profiles seeding from deep brain stimulation electrodes in 94 patients that underwent subthalamic and 28 patients with pallidal treatment based on a normative connectome atlas calculated from 1,000 healthy subjects. In each cohort, we calculated connectivity profiles that were associated with optimal clinical improvements. The two maps showed striking similarity and were able to cross-predict outcomes in the respective other cohort (R = 0.37 at p < 0.001; R = 0.34 at p = 0.032). Next, we calculated an agreement map which retained regions common to both target sites. Crucially, this map was able to explain an additional amount of variance in clinical improvements of either cohort when compared to the maps calculated on the two cohorts alone. Finally, we tested profiles and predictive utility of connectivity maps calculated from different motor symptom subscores with a specific focus on bradykinesia and rigidity. While our study is based on retrospective data and indirect connectivity metrics, it may deliver empirical data to support the hypothesis of a largely overlapping network associated with effective deep brain stimulation in Parkinson's disease irrespective of the specific target.
Collapse
Affiliation(s)
- Leon Sobesky
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Lukas Goede
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Vincent J J Odekerken
- Department of Neurology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Qiang Wang
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Ningfei Li
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Clemens Neudorfer
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Nanditha Rajamani
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Bassam Al-Fatly
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Martin Reich
- Department of Neurology, University Clinic of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Clinic of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Rob M A de Bie
- Department of Neurology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Andreas Horn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| |
Collapse
|
35
|
Strotzer QD, Kohl Z, Anthofer JM, Faltermeier R, Schmidt NO, Torka E, Greenlee MW, Fellner C, Schlaier JR, Beer AL. Structural Connectivity Patterns of Side Effects Induced by Subthalamic Deep Brain Stimulation for Parkinson's Disease. Brain Connect 2021; 12:374-384. [PMID: 34210163 DOI: 10.1089/brain.2021.0051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Tractography based on diffusion-weighted magnetic resonance imaging (DWI) models the structural connectivity of the human brain. Deep brain stimulation (DBS) targeting the subthalamic nucleus is an effective treatment for advanced Parkinson's disease, but may induce adverse effects. This study investigated the relationship between structural connectivity patterns of DBS electrodes and stimulation-induced side effects. Materials and Methods: Twenty-one patients with Parkinson's disease treated with bilateral subthalamic DBS were examined. Overall, 168 electrode contacts were categorized as inducing or noninducing depending on their capability for inducing side effects such as motor effects, paresthesia, dysarthria, oculomotor effects, hyperkinesia, and other complications as assessed during the initial programming session. Furthermore, the connectivity of each contact with target regions was evaluated by probabilistic tractography based on DWI. Finally, stimulation sites and structural connectivity patterns of inducing and noninducing contacts were compared. Results: Inducing contacts differed across the various side effects and from those mitigating Parkinson's symptoms. Although contacts showed a largely overlapping spatial distribution within the subthalamic region, they could be distinguished by their connectivity patterns. In particular, inducing contacts were more likely connected with supplementary motor areas (hyperkinesia, dysarthria), frontal cortex (oculomotor), fibers of the internal capsule (paresthesia), and the basal ganglia-thalamo-cortical circuitry (dysarthria). Discussion: Side effects induced by DBS seem to be associated with distinct connectivity patterns. Cerebellar connections are hardly associated with side effects, although they seem relevant for mitigating motor symptoms in Parkinson's disease. A symptom-specific, connectivity-based approach for target planning in DBS may enhance treatment outcomes and reduce adverse effects.
Collapse
Affiliation(s)
- Quirin D Strotzer
- Department of Neurosurgery, University of Regensburg Medical Center, Regensburg, Germany.,Center for Deep Brain Stimulation, University of Regensburg Medical Center, Regensburg, Germany.,Institute of Radiology, and University of Regensburg Medical Center, Regensburg, Germany
| | - Zacharias Kohl
- Center for Deep Brain Stimulation, University of Regensburg Medical Center, Regensburg, Germany.,Department of Neurology, University of Regensburg Medical Center, Regensburg, Germany.,Department of Molecular Neurology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Judith M Anthofer
- Department of Neurosurgery, University of Regensburg Medical Center, Regensburg, Germany.,Center for Deep Brain Stimulation, University of Regensburg Medical Center, Regensburg, Germany
| | - Rupert Faltermeier
- Department of Neurosurgery, University of Regensburg Medical Center, Regensburg, Germany
| | - Nils O Schmidt
- Department of Neurosurgery, University of Regensburg Medical Center, Regensburg, Germany
| | - Elisabeth Torka
- Center for Deep Brain Stimulation, University of Regensburg Medical Center, Regensburg, Germany.,Department of Neurology, University of Regensburg Medical Center, Regensburg, Germany
| | - Mark W Greenlee
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Claudia Fellner
- Institute of Radiology, and University of Regensburg Medical Center, Regensburg, Germany
| | - Juergen R Schlaier
- Department of Neurosurgery, University of Regensburg Medical Center, Regensburg, Germany.,Center for Deep Brain Stimulation, University of Regensburg Medical Center, Regensburg, Germany
| | - Anton L Beer
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
36
|
Coenen VA, Reisert M. DTI for brain targeting: Diffusion weighted imaging fiber tractography-Assisted deep brain stimulation. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 159:47-67. [PMID: 34446250 DOI: 10.1016/bs.irn.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fiber tractography assisted Deep Brain Stimulation (DBS) has been performed by different groups for more than 10 years to now. Groups around the world have adapted initial approaches to currently embrace the fiber tractography technology mainly for treating tremor (DBS and lesions), psychiatric indications (OCD and major depression) and pain (DBS). Despite the advantages of directly visualizing the target structure, the technology is demanding and is vulnerable to inaccuracies especially since it is performed on individual level. In this contribution, we will focus on tremor and psychiatric indications, and will show future applications of sophisticated tractography applications for subthalamic nucleus (STN) DBS surgery and stimulation steering as an example.
Collapse
Affiliation(s)
- Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany; Medical Faculty of Freiburg University, Freiburg, Germany; Center for Deep Brain Stimulation, Medical Center of Freiburg University, Freiburg, Germany.
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany; Medical Faculty of Freiburg University, Freiburg, Germany; Department of Radiology-Medical Physics, Freiburg University, Freiburg, Germany
| |
Collapse
|
37
|
De Pretto M, Mouthon M, Debove I, Pollo C, Schüpbach M, Spierer L, Accolla EA. Proactive inhibition is not modified by deep brain stimulation for Parkinson's disease: An electrical neuroimaging study. Hum Brain Mapp 2021; 42:3934-3949. [PMID: 34110074 PMCID: PMC8288097 DOI: 10.1002/hbm.25530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 11/06/2022] Open
Abstract
In predictable contexts, motor inhibitory control can be deployed before the actual need for response suppression. The brain functional underpinnings of proactive inhibition, and notably the role of basal ganglia, are not entirely identified. We investigated the effects of deep brain stimulation of the subthalamic nucleus or internal globus pallidus on proactive inhibition in patients with Parkinson's disease. They completed a cued go/no-go proactive inhibition task ON and (unilateral) OFF stimulation while EEG was recorded. We found no behavioural effect of either subthalamic nucleus or internal globus pallidus deep brain stimulation on proactive inhibition, despite a general improvement of motor performance with subthalamic nucleus stimulation. In the non-operated and subthalamic nucleus group, we identified periods of topographic EEG modulation by the level of proactive inhibition. In the subthalamic nucleus group, source estimation analysis suggested the initial involvement of bilateral frontal and occipital areas, followed by a right lateralized fronto-basal network, and finally of right premotor and left parietal regions. Our results confirm the overall preservation of proactive inhibition capacities in both subthalamic nucleus and internal globus pallidus deep brain stimulation, and suggest a partly segregated network for proactive inhibition, with a preferential recruitment of the indirect pathway.
Collapse
Affiliation(s)
- Michael De Pretto
- Neurology Unit, Medicine Section, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Michael Mouthon
- Neurology Unit, Medicine Section, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Ines Debove
- Movement Disorders Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Claudio Pollo
- Department of Neurosurgery, Inselspital University Hospital Bern, Bern, Switzerland
| | - Michael Schüpbach
- Movement Disorders Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Lucas Spierer
- Neurology Unit, Medicine Section, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Ettore A Accolla
- Neurology Unit, Medicine Section, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.,Neurology Unit, Department of Medicine, HFR - Cantonal Hospital Fribourg, Fribourg, Switzerland
| |
Collapse
|
38
|
Feldmann LK, Neumann WJ, Faust K, Schneider GH, Kühn AA. Risk of Infection after Deep Brain Stimulation Surgery with Externalization and Local-Field Potential Recordings: Twelve-Year Experience from a Single Institution. Stereotact Funct Neurosurg 2021; 99:512-520. [PMID: 33971662 DOI: 10.1159/000516150] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 03/16/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Deep brain stimulation (DBS) has been an established surgical procedure in the field of functional neurosurgery for many years. The experimental electrophysiological method of local field potential (LFP) recordings in postsurgically externalized patients has made substantial contributions to the better understanding of pathophysiologies underlying movement disorders. As interest in LFP recordings for the development of improved stimulation strategies increases, this study's aim was to provide evidence concerning safety of this research method, in a major DBS center. METHODS We retrospectively analyzed incidence and infection characteristics in adult patients who underwent two-staged DBS surgery with temporary externalization of leads in our center between January 2008 and November 2019. We focused on whether patients had participated in LFP recordings, and evaluated incidence of infections at 3 months and 1 year after the surgery based on medical records. Infection rates were compared to major DBS studies and reports focusing on the risk of infection due to externalization of DBS leads. Results were visualized using descriptive statistics. RESULTS Between January 2008 and November 2019, DBS surgery was performed in 528 patients (389/139 patients in the LFP/non-LFP group), mainly for movement disorders such as Parkinson's disease (308), dystonia (93), and essential tremor (86). Of the patients, 72.9% participated in LFP recordings. The incidence of infections in the acute postsurgical phase (3 months) was 2.46% and did not differ significantly between the LFP group (1.8%) and the non-LFP group (4.32%). The overall incidence after 1 year amounted to 3.6% (19 patients) with no difference between LFP/non-LFP groups. Incidence rates reported in the literature show a large variety (2.6-10%), and the incidence reported here is within the lower range of reported incidences. DISCUSSION/CONCLUSION This study demonstrates that DBS is a surgical procedure with a low risk of infection in a large patient cohort. Importantly, it shows that LFP recordings do not have a significant effect on the incidence of infections in patients with externalization. With a representative cohort of more than 380 patients participating in LFP-recordings, this underlines LFP as a safe method in research and supports further use of this method, for example, for the development of adaptive stimulation protocols.
Collapse
Affiliation(s)
- Lucia K Feldmann
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Wolf-Julian Neumann
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katharina Faust
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andrea A Kühn
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Mind and Brain, Charité University Medicine, Berlin, Germany.,NeuroCure Clinical Research Centre, Charité University Medicine, Berlin, Germany.,DZNE, German Center for Degenerative Diseases, Berlin, Germany
| |
Collapse
|
39
|
Lofredi R, Auernig GC, Irmen F, Nieweler J, Neumann WJ, Horn A, Schneider GH, Kühn AA. Subthalamic stimulation impairs stopping of ongoing movements. Brain 2021; 144:44-52. [PMID: 33253351 DOI: 10.1093/brain/awaa341] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 01/27/2023] Open
Abstract
The subthalamic nucleus is part of a global stopping network that also includes the presupplementary motor area and inferior frontal gyrus of the right hemisphere. In Parkinson's disease, subthalamic deep brain stimulation improves movement initiation and velocity, but its effect on stopping of ongoing movement is unknown. Here, we examine the relation between movement stopping and connectivity of stimulation volumes to the stopping network. Stop and go times were collected in 17 patients with Parkinson's disease on and off subthalamic stimulation during visually cued initiation and termination of continuous, rotational movements. Deep brain stimulation contacts were localized; the stimulation volume computed and connectivity profiles estimated using an openly available, normative structural connectome. Subthalamic stimulation significantly increased stop times, which correlated with the connectivity of the stimulation volume to presupplementary motor area and inferior frontal gyrus of the right hemisphere. The robustness of this finding was validated using three separate analysis streams: voxel-wise whole-brain connectivity, region of interest connectivity and a tract-centred method. Our study sheds light on the role of the fronto-subthalamic inhibitory triangle in stopping of ongoing movements and may inspire circuit based adaptive stimulation strategies for control of stopping impairment, possibly reflected in stimulation-induced dyskinesia.
Collapse
Affiliation(s)
- Roxanne Lofredi
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Georg Cem Auernig
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Friederike Irmen
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Johanna Nieweler
- Department of Neurology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Wolf-Julian Neumann
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Bernstein Center for Computational Neuroscience, Humboldt-Universität, Berlin, Germany
| | - Andreas Horn
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Andrea A Kühn
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Bernstein Center for Computational Neuroscience, Humboldt-Universität, Berlin, Germany.,NeuroCure, Exzellenzcluster, Charité-Universitätsmedizin Berlin, Berlin, Germany.,DZNE, German center for neurodegenerative diseases, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
40
|
Costanza A, Radomska M, Bondolfi G, Zenga F, Amerio A, Aguglia A, Serafini G, Amore M, Berardelli I, Pompili M, Nguyen KD. Suicidality Associated With Deep Brain Stimulation in Extrapyramidal Diseases: A Critical Review and Hypotheses on Neuroanatomical and Neuroimmune Mechanisms. Front Integr Neurosci 2021; 15:632249. [PMID: 33897384 PMCID: PMC8060445 DOI: 10.3389/fnint.2021.632249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
Deep brain stimulation (DBS) is a very well-established and effective treatment for patients with extrapyramidal diseases. Despite its generally favorable clinical efficacy, some undesirable outcomes associated with DBS have been reported. Among such complications are incidences of suicidal ideation (SI) and behavior (SB) in patients undergoing this neurosurgical procedure. However, causal associations between DBS and increased suicide risk are not demonstrated and they constitute a debated issue. In light of these observations, the main objective of this work is to provide a comprehensive and unbiased overview of the literature on suicide risk in patients who received subthalamic nucleus (STN) and internal part of globus pallidum (GPi) DBS treatment. Additionally, putative mechanisms that might be involved in the development of SI and SB in these patients as well as caveats associated with these hypotheses are introduced. Finally, we briefly propose some clinical implications, including therapeutic strategies addressing these potential disease mechanisms. While a mechanistic connection between DBS and suicidality remains a controversial topic that requires further investigation, it is of critical importance to consider suicide risk as an integral component of candidate selection and post-operative care in DBS.
Collapse
Affiliation(s)
- Alessandra Costanza
- Department of Psychiatry, Faculty of Medicine, University of Geneva (UNIGE), Geneva, Switzerland.,Department of Psychiatry, ASO Santi Antonio e Biagio e Cesare Arrigo Hospital, Alessandria, Italy
| | - Michalina Radomska
- Faculty of Psychology, University of Geneva (UNIGE), Geneva, Switzerland
| | - Guido Bondolfi
- Department of Psychiatry, Faculty of Medicine, University of Geneva (UNIGE), Geneva, Switzerland.,Department of Psychiatry, Service of Liaison Psychiatry and Crisis Intervention (SPLIC), Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Francesco Zenga
- Department of Neurosurgery, University and City of Health and Science Hospital, Turin, Italy
| | - Andrea Amerio
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genova, Italy.,Department of Psychiatry, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Mood Disorders Program, Tufts Medical Center, Boston, MA, United States
| | - Andrea Aguglia
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genova, Italy.,Department of Psychiatry, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Gianluca Serafini
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genova, Italy.,Department of Psychiatry, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Mario Amore
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genova, Italy.,Department of Psychiatry, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Isabella Berardelli
- Department of Neurosciences, Mental Health and Sensory Organs, Suicide Prevention Center, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Maurizio Pompili
- Department of Neurosciences, Mental Health and Sensory Organs, Suicide Prevention Center, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Khoa D Nguyen
- Department of Microbiology and Immunology, Stanford University, Palo Alto, CA, United States.,Tranquis Therapeutics, Palo Alto, CA, United States.,Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
41
|
Mosley PE, Windels F, Morris J, Coyne T, Marsh R, Giorni A, Mohan A, Sachdev P, O’Leary E, Boschen M, Sah P, Silburn PA. A randomised, double-blind, sham-controlled trial of deep brain stimulation of the bed nucleus of the stria terminalis for treatment-resistant obsessive-compulsive disorder. Transl Psychiatry 2021; 11:190. [PMID: 33782383 PMCID: PMC8007749 DOI: 10.1038/s41398-021-01307-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/19/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Deep brain stimulation (DBS) is a promising treatment for severe, treatment-resistant obsessive-compulsive disorder (OCD). Here, nine participants (four females, mean age 47.9 ± 10.7 years) were implanted with DBS electrodes bilaterally in the bed nucleus of the stria terminalis (BNST). Following a one-month postoperative recovery phase, participants entered a three-month randomised, double-blind, sham-controlled phase before a twelve-month period of open-label stimulation incorporating a course of cognitive behavioural therapy (CBT). The primary outcome measure was OCD symptoms as rated with the Yale-Brown Obsessive-Compulsive Scale (YBOCS). In the blinded phase, there was a significant benefit of active stimulation over sham (p = 0.025, mean difference 4.9 points). After the open phase, the mean reduction in YBOCS was 16.6 ± 1.9 points (χ2 (11) = 39.8, p = 3.8 × 10-5), with seven participants classified as responders. CBT resulted in an additive YBOCS reduction of 4.8 ± 3.9 points (p = 0.011). There were two serious adverse events related to the DBS device, the most severe of which was an infection during the open phase necessitating device explantation. There were no serious psychiatric adverse events related to stimulation. An analysis of the structural connectivity of each participant's individualised stimulation field isolated right-hemispheric fibres associated with YBOCS reduction. These included subcortical tracts incorporating the amygdala, hippocampus and stria terminalis, in addition to cortical regions in the ventrolateral and ventromedial prefrontal cortex, parahippocampal, parietal and extrastriate visual cortex. In conclusion, this study provides further evidence supporting the efficacy and tolerability of DBS in the region of the BNST for individuals with otherwise treatment-refractory OCD and identifies a connectivity fingerprint associated with clinical benefit.
Collapse
Affiliation(s)
- Philip E. Mosley
- grid.1049.c0000 0001 2294 1395Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Herston, QLD Australia ,Neurosciences Queensland, St Andrew’s War Memorial Hospital, Spring Hill, QLD Australia ,grid.1003.20000 0000 9320 7537Queensland Brain Institute, University of Queensland, St Lucia, QLD Australia ,grid.1003.20000 0000 9320 7537Faculty of Medicine, University of Queensland, Herston, QLD Australia
| | - François Windels
- grid.1003.20000 0000 9320 7537Queensland Brain Institute, University of Queensland, St Lucia, QLD Australia
| | - John Morris
- grid.1003.20000 0000 9320 7537Queensland Brain Institute, University of Queensland, St Lucia, QLD Australia
| | - Terry Coyne
- grid.1003.20000 0000 9320 7537Queensland Brain Institute, University of Queensland, St Lucia, QLD Australia ,grid.417021.10000 0004 0627 7561Brizbrain and Spine, the Wesley Hospital, Auchenflower, QLD Australia
| | - Rodney Marsh
- Neurosciences Queensland, St Andrew’s War Memorial Hospital, Spring Hill, QLD Australia ,grid.1003.20000 0000 9320 7537Faculty of Medicine, University of Queensland, Herston, QLD Australia
| | - Andrea Giorni
- grid.1003.20000 0000 9320 7537Queensland Brain Institute, University of Queensland, St Lucia, QLD Australia
| | - Adith Mohan
- grid.1005.40000 0004 4902 0432Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, NSW Australia ,grid.415193.bNeuropsychiatric Institute, The Prince of Wales Hospital, Randwick, NSW Australia
| | - Perminder Sachdev
- grid.1005.40000 0004 4902 0432Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, NSW Australia ,grid.415193.bNeuropsychiatric Institute, The Prince of Wales Hospital, Randwick, NSW Australia
| | | | - Mark Boschen
- grid.1022.10000 0004 0437 5432School of Applied Psychology, Griffith University, Gold Coast, QLD Australia
| | - Pankaj Sah
- grid.1003.20000 0000 9320 7537Queensland Brain Institute, University of Queensland, St Lucia, QLD Australia ,grid.263817.9Joint Center for Neuroscience and Neural Engineering, and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province P. R. China
| | - Peter A. Silburn
- Neurosciences Queensland, St Andrew’s War Memorial Hospital, Spring Hill, QLD Australia ,grid.1003.20000 0000 9320 7537Queensland Brain Institute, University of Queensland, St Lucia, QLD Australia
| |
Collapse
|
42
|
Luo M, Narasimhan S, Larson PS, Martin AJ, Konrad PE, Miga MI. Impact of brain shift on neural pathways in deep brain stimulation: a preliminary analysis via multi-physics finite element models. J Neural Eng 2021; 18. [PMID: 33740780 DOI: 10.1088/1741-2552/abf066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/19/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The effectiveness of deep brain stimulation (DBS) depends on electrode placement accuracy, which can be compromised by brain shift during surgery. While there have been efforts in assessing the impact of electrode misplacement due to brain shift using preop- and postop- imaging data, such analysis using preop- and intraop- imaging data via biophysical modeling has not been conducted. This work presents a preliminary study that applies a multi-physics analysis framework using finite element biomechanical and bioelectric models to examine the impact of realistic intraoperative shift on neural pathways determined by tractography. APPROACH The study examined six patients who had undergone interventional magnetic resonance (iMR)-guided DBS surgery. The modeling framework utilized a biomechanical approach to update preoperative MR to reflect shift-induced anatomical changes. Using this anatomically deformed image and its undeformed counterpart, bioelectric effects from shifting electrode leads could be simulated and neural activation differences were approximated. Specifically, for each configuration, volume of tissue activation (VTA) was computed and subsequently used for tractography estimation. Total tract volume and overlapping volume with motor regions as well as connectivity profile were compared. In addition, volumetric overlap between different fiber bundles among configurations was computed and correlated to estimated shift. MAIN RESULT The study found deformation-induced differences in tract volume, motor region overlap, and connectivity behavior, suggesting the impact of shift. There is a strong correlation (R=-0.83) between shift from intended target and intended neural pathway recruitment, where at threshold of ~2.94 mm, intended recruitment completely degrades. The determined threshold is consistent with and provides quantitative support to prior observations and literature that deviations of 2-3 mm are detrimental. SIGNIFICANCE The findings support and advance prior studies and understanding to illustrate the need to account for shift in DBS and the potentiality of computational modeling for estimating influence of shift on neural activation.
Collapse
Affiliation(s)
- Ma Luo
- Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, Tennessee, 37232, UNITED STATES
| | - Saramati Narasimhan
- Department of Neurological Surgery, Vanderbilt University Medical Center, Village at Vanderbilt, 1500 21st Ave. South, Nashville, Tennessee, 37212, UNITED STATES
| | - Paul S Larson
- Department of Neurological Surgery, University of California San Francisco, Box 0112, 505 Parnassus Ave, Room M779, San Francisco, California, 94143, UNITED STATES
| | - Alastiar J Martin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Avenue, San Francisco, California, 94143, UNITED STATES
| | - Peter E Konrad
- Department of Neurosurgery, West Virginia University, PO Box 9183, Morgantown, West Virginia, 26506, UNITED STATES
| | - Michael I Miga
- Department of Biomedical Engineering, Vanderbilt University, 5901 Stevenson Center, Nashville, Tennessee, 37235, UNITED STATES
| |
Collapse
|
43
|
Measuring Subthalamic Nucleus Volume of Parkinson's Patients and Evaluating Its Relationship with Clinical Scales at Pre- and Postdeep Brain Stimulation Treatment: A Magnetic Resonance Imaging Study. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6646416. [PMID: 33708991 PMCID: PMC7932794 DOI: 10.1155/2021/6646416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 11/17/2022]
Abstract
This study investigated potential imaging biomarkers for predicting the efficacy of deep brain stimulation (DBS) of the subthalamic nucleus (STN) in patients with Parkinson's disease (PD). A total of 59 PD patients and 50 healthy control subjects underwent high-resolution 3-dimensional T1-weighted brain magnetic resonance imaging. Bilateral STN volumes were compared between the 2 groups, and a correlation analysis was performed to assess the relationship between bilateral STN volumes or intracranial volume (ICV) and pre- or postoperative clinical scale scores. The results showed that the left STN volume differed significantly between PD patients and controls. In patients, the left STN volume was negatively correlated with pre- and postoperative quality of life scores and positively correlated with Mini-mental State Examination (MMSE) and Montreal Cognitive Assessment scores; ICV was also positively correlated with the MMSE score. These findings indicate that changes in the left STN volume are a useful biomarker for evaluating the clinical outcome of PD patients following DBS.
Collapse
|
44
|
Sui Y, Tian Y, Ko WKD, Wang Z, Jia F, Horn A, De Ridder D, Choi KS, Bari AA, Wang S, Hamani C, Baker KB, Machado AG, Aziz TZ, Fonoff ET, Kühn AA, Bergman H, Sanger T, Liu H, Haber SN, Li L. Deep Brain Stimulation Initiative: Toward Innovative Technology, New Disease Indications, and Approaches to Current and Future Clinical Challenges in Neuromodulation Therapy. Front Neurol 2021; 11:597451. [PMID: 33584498 PMCID: PMC7876228 DOI: 10.3389/fneur.2020.597451] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/23/2020] [Indexed: 01/17/2023] Open
Abstract
Deep brain stimulation (DBS) is one of the most important clinical therapies for neurological disorders. DBS also has great potential to become a great tool for clinical neuroscience research. Recently, the National Engineering Laboratory for Neuromodulation at Tsinghua University held an international Deep Brain Stimulation Initiative workshop to discuss the cutting-edge technological achievements and clinical applications of DBS. We specifically addressed new clinical approaches and challenges in DBS for movement disorders (Parkinson's disease and dystonia), clinical application toward neurorehabilitation for stroke, and the progress and challenges toward DBS for neuropsychiatric disorders. This review highlighted key developments in (1) neuroimaging, with advancements in 3-Tesla magnetic resonance imaging DBS compatibility for exploration of brain network mechanisms; (2) novel DBS recording capabilities for uncovering disease pathophysiology; and (3) overcoming global healthcare burdens with online-based DBS programming technology for connecting patient communities. The successful event marks a milestone for global collaborative opportunities in clinical development of neuromodulation to treat major neurological disorders.
Collapse
Affiliation(s)
- Yanan Sui
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Ye Tian
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Wai Kin Daniel Ko
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Zhiyan Wang
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Fumin Jia
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Andreas Horn
- Charité, Department of Neurology, Movement Disorders and Neuromodulation Unit, University Medicine Berlin, Berlin, Germany
| | - Dirk De Ridder
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Ki Sueng Choi
- Department of Psychiatry and Behavioural Science, Emory University, Atlanta, GA, United States.,Department of Radiology, Mount Sinai School of Medicine, New York, NY, United States.,Department of Neurosurgery, Mount Sinai School of Medicine, New York, NY, United States
| | - Ausaf A Bari
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Clement Hamani
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Kenneth B Baker
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Andre G Machado
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Tipu Z Aziz
- Department of Neurosurgery, John Radcliffe Hospital, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Erich Talamoni Fonoff
- Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil.,Hospital Sírio-Libanês and Hospital Albert Einstein, São Paulo, Brazil
| | - Andrea A Kühn
- Charité, Department of Neurology, Movement Disorders and Neuromodulation Unit, University Medicine Berlin, Berlin, Germany
| | - Hagai Bergman
- Department of Medical Neurobiology (Physiology), Institute of Medical Research-Israel-Canada (IMRIC), Faculty of Medicine, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Research (ELSC), The Hebrew University and Department of Neurosurgery, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Terence Sanger
- University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Hesheng Liu
- Department of Neuroscience, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Suzanne N Haber
- Department of Pharmacology and Physiology, University of Rochester School of Medicine & Dentistry, Rochester, NY, United States.,McLean Hospital and Harvard Medical School, Belmont, MA, United States
| | - Luming Li
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| |
Collapse
|
45
|
Micheli F, Vissani M, Pecchioli G, Terenzi F, Ramat S, Mazzoni A. Impulsivity Markers in Parkinsonian Subthalamic Single-Unit Activity. Mov Disord 2021; 36:1435-1440. [PMID: 33453079 DOI: 10.1002/mds.28497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Impulsive-compulsive behaviors are common in Parkinson's disease (PD) patients. However, the basal ganglia dysfunctions associated with high impulsivity have not been fully characterized. The objective of this study was to identify the features associated with impulsive-compulsive behaviors in single neurons of the subthalamic nucleus (STN). METHODS We compared temporal and spectral features of 412 subthalamic neurons from 12 PD patients with impulsive-compulsive behaviors and 330 neurons from 12 PD patients without. Single-unit activities were extracted from exploratory microrecordings performed during deep brain stimulation (DBS) implant surgery in an OFF medication state. RESULTS Patients with impulsive-compulsive behaviors displayed decreased firing frequency during bursts and a larger fraction of tonic neurons combined with weaker beta coherence. Information carried by these features led to the identification of patients with impulsive-compulsive behaviors with an accuracy greater than 80%. CONCLUSIONS Impulsive-compulsive behaviors in PD patients are associated with decreased bursts in STN neurons in the OFF medication state. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Federico Micheli
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Matteo Vissani
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Guido Pecchioli
- Dipartimento Neuromuscolo-Scheletrico e degli Organi di Senso, AOU Careggi, Florence, Italy
| | - Federica Terenzi
- Dipartimento di Neuroscienze, Psicologia, Università degli Studi di Firenze, Area del Farmaco e Salute del Bambino, Florence, Italy
| | - Silvia Ramat
- Dipartimento Neuromuscolo-Scheletrico e degli Organi di Senso, AOU Careggi, Florence, Italy
| | - Alberto Mazzoni
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
46
|
Cognitive effects of theta frequency bilateral subthalamic nucleus stimulation in Parkinson's disease: A pilot study. Brain Stimul 2021; 14:230-240. [PMID: 33418095 DOI: 10.1016/j.brs.2020.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 11/12/2020] [Accepted: 12/28/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND There is significant evidence for cognitive decline following deep brain stimulation (DBS). Current stimulation paradigms utilize gamma frequency stimulation for optimal motor benefits; however, little has been done to optimize stimulation parameters for cognition. Recent evidence implicates subthalamic nucleus (STN) theta oscillations in executive function, and theta oscillations are well-known to relate to episodic memory, suggesting that theta frequency stimulation could potentially improve cognition in Parkinson's disease (PD). OBJECTIVE To evaluate the acute effects of theta frequency bilateral STN stimulation on executive function in PD versus gamma frequency and off, as well as investigate the differential effects on episodic versus nonepisodic verbal fluency. METHODS Twelve patients (all males, mean age 60.8) with bilateral STN DBS for PD underwent a double-blinded, randomized cognitive testing during stimulation at (1) 130-135 Hz (gamma), (2) 10 Hz (theta) and (3) off. Executive functions and processing speed were evaluated using verbal fluency tasks (letter, episodic category, nonepisodic category, and category switching), color-word interference task, and random number generation task. Performance at each stimulation frequency was compared within subjects. RESULTS Theta frequency significantly improved episodic category fluency compared to gamma, but not compared to off. There were no significant differences between stimulation frequencies in other tests. CONCLUSION In this pilot trial, our results corroborate the role of theta oscillations in episodic retrieval, although it is unclear whether this reflects direct modulation of the medial temporal lobe and whether similar effects can be found with more canonical memory paradigms. Further work is necessary to corroborate our findings and investigate the possibility of interleaving theta and gamma frequency stimulation for concomitant motor and cognitive effects.
Collapse
|
47
|
Mosley PE, Paliwal S, Robinson K, Coyne T, Silburn P, Tittgemeyer M, Stephan KE, Perry A, Breakspear M. The structural connectivity of subthalamic deep brain stimulation correlates with impulsivity in Parkinson's disease. Brain 2020; 143:2235-2254. [PMID: 32568370 DOI: 10.1093/brain/awaa148] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
Subthalamic deep brain stimulation (STN-DBS) for Parkinson's disease treats motor symptoms and improves quality of life, but can be complicated by adverse neuropsychiatric side-effects, including impulsivity. Several clinically important questions remain unclear: can 'at-risk' patients be identified prior to DBS; do neuropsychiatric symptoms relate to the distribution of the stimulation field; and which brain networks are responsible for the evolution of these symptoms? Using a comprehensive neuropsychiatric battery and a virtual casino to assess impulsive behaviour in a naturalistic fashion, 55 patients with Parkinson's disease (19 females, mean age 62, mean Hoehn and Yahr stage 2.6) were assessed prior to STN-DBS and 3 months postoperatively. Reward evaluation and response inhibition networks were reconstructed with probabilistic tractography using the participant-specific subthalamic volume of activated tissue as a seed. We found that greater connectivity of the stimulation site with these frontostriatal networks was related to greater postoperative impulsiveness and disinhibition as assessed by the neuropsychiatric instruments. Larger bet sizes in the virtual casino postoperatively were associated with greater connectivity of the stimulation site with right and left orbitofrontal cortex, right ventromedial prefrontal cortex and left ventral striatum. For all assessments, the baseline connectivity of reward evaluation and response inhibition networks prior to STN-DBS was not associated with postoperative impulsivity; rather, these relationships were only observed when the stimulation field was incorporated. This suggests that the site and distribution of stimulation is a more important determinant of postoperative neuropsychiatric outcomes than preoperative brain structure and that stimulation acts to mediate impulsivity through differential recruitment of frontostriatal networks. Notably, a distinction could be made amongst participants with clinically-significant, harmful changes in mood and behaviour attributable to DBS, based upon an analysis of connectivity and its relationship with gambling behaviour. Additional analyses suggested that this distinction may be mediated by the differential involvement of fibres connecting ventromedial subthalamic nucleus and orbitofrontal cortex. These findings identify a mechanistic substrate of neuropsychiatric impairment after STN-DBS and suggest that tractography could be used to predict the incidence of adverse neuropsychiatric effects. Clinically, these results highlight the importance of accurate electrode placement and careful stimulation titration in the prevention of neuropsychiatric side-effects after STN-DBS.
Collapse
Affiliation(s)
- Philip E Mosley
- Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,Neurosciences Queensland, St Andrew's War Memorial Hospital, Spring Hill, Queensland, Australia.,Queensland Brain Institute, University of Queensland, St Lucia, Queensland, Australia.,Faculty of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Saee Paliwal
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zürich and Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Katherine Robinson
- Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Terry Coyne
- Queensland Brain Institute, University of Queensland, St Lucia, Queensland, Australia.,Brizbrain and Spine, The Wesley Hospital, Auchenflower, Queensland, Australia
| | - Peter Silburn
- Neurosciences Queensland, St Andrew's War Memorial Hospital, Spring Hill, Queensland, Australia.,Queensland Brain Institute, University of Queensland, St Lucia, Queensland, Australia
| | | | - Klaas E Stephan
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zürich and Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland.,Max Planck Institute for Metabolism Research, Cologne, Germany.,Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Alistair Perry
- Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.,Centre for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Michael Breakspear
- Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,Brain and Mind Priority Research Centre, Hunter Medical Research Institute, University of Newcastle, NSW, Australia
| |
Collapse
|
48
|
Ehlen F, Al-Fatly B, Kühn AA, Klostermann F. Impact of deep brain stimulation of the subthalamic nucleus on natural language in patients with Parkinson's disease. PLoS One 2020; 15:e0244148. [PMID: 33373418 PMCID: PMC7771859 DOI: 10.1371/journal.pone.0244148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/03/2020] [Indexed: 12/30/2022] Open
Abstract
Background In addition to the typical motor symptoms, a majority of patients suffering from Parkinson’s disease experience language impairments. Deep Brain Stimulation of the subthalamic nucleus robustly reduces motor dysfunction, but its impact on language skills remains ambiguous. Method To elucidate the impact of subthalamic deep brain stimulation on natural language production, we systematically analyzed language samples from fourteen individuals (three female / eleven male, average age 66.43 ± 7.53 years) with Parkinson’s disease in the active (ON) versus inactive (OFF) stimulation condition. Significant ON-OFF differences were considered as stimulation effects. To localize their neuroanatomical origin within the subthalamic nucleus, they were correlated with the volume of tissue activated by therapeutic stimulation. Results Word and clause production speed increased significantly under active stimulation. These enhancements correlated with the volume of tissue activated within the associative part of the subthalamic nucleus, but not with that within the dorsolateral motor part, which again correlated with motor improvement. Language error rates were lower in the ON vs. OFF condition, but did not correlate with electrode localization. No significant changes in further semantic or syntactic language features were detected in the current study. Conclusion The findings point towards a facilitation of executive language functions occurring rather independently from motor improvement. Given the presumed origin of this stimulation effect within the associative part of the subthalamic nucleus, this could be due to co-stimulation of the prefrontal-subthalamic circuit.
Collapse
Affiliation(s)
- Felicitas Ehlen
- Department of Neurology, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Jüdisches Krankenhaus Berlin, Berlin, Germany
- * E-mail:
| | - Bassam Al-Fatly
- Department of Neurology, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andrea A. Kühn
- Department of Neurology, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Neurocure Cluster of Excellence, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Berlin, Germany
| | - Fabian Klostermann
- Department of Neurology, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
49
|
Mosley PE, Robinson K, Coyne T, Silburn P, Barker MS, Breakspear M, Robinson GA, Perry A. Subthalamic deep brain stimulation identifies frontal networks supporting initiation, inhibition and strategy use in Parkinson's disease. Neuroimage 2020; 223:117352. [DOI: 10.1016/j.neuroimage.2020.117352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/22/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
|
50
|
Wong JK, Viswanathan VT, Nozile-Firth KS, Eisinger RS, Leone EL, Desai AM, Foote KD, Ramirez-Zamora A, Okun MS, Wagle Shukla A. STN Versus GPi Deep Brain Stimulation for Action and Rest Tremor in Parkinson's Disease. Front Hum Neurosci 2020; 14:578615. [PMID: 33192410 PMCID: PMC7651783 DOI: 10.3389/fnhum.2020.578615] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/07/2020] [Indexed: 11/15/2022] Open
Abstract
Objective To investigate the effects of subthalamic nucleus (STN) and globus pallidus internus (GPi), deep brain stimulation (DBS) on individual action tremor/postural tremor (AT) and rest tremor (RT) in Parkinson’s disease (PD). Randomized DBS studies have reported marked benefit in tremor with both GPi and STN and DBS, however, there is a paucity of information available on AT vs RT when separated by the surgical target. Methods We retrospectively reviewed the 1-year clinical outcome of PD patients treated with STN and GPi DBS at the University of Florida. We specifically selected patients with moderate to severe AT. Eighty-eight patients (57 STN and 31 GPi) were evaluated at 6 and 12 months for changes in AT and RT in the OFF-medication/ON stimulation state. A comparison of “response” was performed and defined as greater than or equal to a 2-point decrease in tremor score. Results STN and GPi DBS both improved AT at 6- and 12-months post-implantation (p < 0.001 and p < 0.001). The STN DBS group experienced a greater improvement in AT at 6 months compared to the GPi group (p = 0.005) but not at the 12 months follow-up (p = 0.301). Both STN and GPi DBS also improved RT at 6- and 12-months post-implantation (p < 0.001 and p < 0.001). There was no difference in RT scores between the two groups at 6 months (p = 0.23) or 12 months (p = 0.74). The STN group had a larger proportion of patients who achieved a “response” in AT at 6 months (p < 0.01), however, this finding was not present at 12 months (p = 0.23). A sub-analysis revealed that in RT, the STN group had a larger percentage of “responders” when followed through 12 months (p < 0.01). Conclusion Both STN and GPi DBS reduced PD associated AT and RT at 12 months follow-up. There was no advantage of either brain target in the management of RT or AT. One nuance of the study was that STN DBS was more effective in suppressing AT in the early postoperative period, however, this effect diminished over time. Clinicians should be aware that it may take longer to achieve a similar tremor outcome when utilizing the GPi target.
Collapse
Affiliation(s)
- Joshua K Wong
- Department of Neurology, Normal Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Vyas T Viswanathan
- Department of Neurology, Normal Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Kamilia S Nozile-Firth
- Department of Neurology, Normal Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Robert S Eisinger
- Department of Neurology, Normal Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Emma L Leone
- Department of Neurology, Normal Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Anuj M Desai
- Department of Neurology, Normal Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Kelly D Foote
- Department of Neurosurgery, Normal Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Normal Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Michael S Okun
- Department of Neurology, Normal Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Aparna Wagle Shukla
- Department of Neurology, Normal Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|