1
|
Farrell C, Buhidma Y, Mumford P, Heywood WE, Hällqvist J, Flores-Aguilar L, Andrews EJ, Rahimzadah N, Taso OS, Doran E, Swarup V, Head E, Lashley T, Mills K, Toomey CE, Wiseman FK. Apolipoprotein E abundance is elevated in the brains of individuals with Down syndrome-Alzheimer's disease. Acta Neuropathol 2025; 149:49. [PMID: 40387921 PMCID: PMC12089208 DOI: 10.1007/s00401-025-02889-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/25/2025] [Accepted: 05/01/2025] [Indexed: 05/20/2025]
Abstract
Trisomy of chromosome 21, the cause of Down syndrome (DS), is the most commonly occurring genetic cause of Alzheimer's disease (AD). Here, we compare the frontal cortex proteome of people with Down syndrome-Alzheimer's disease (DSAD) to demographically matched cases of early onset AD and healthy ageing controls. We find dysregulation of the proteome, beyond proteins encoded by chromosome 21, including an increase in the abundance of the key AD-associated protein, APOE, in people with DSAD compared to matched cases of AD. To understand the cell types that may contribute to changes in protein abundance, we undertook a matched single-nuclei RNA-sequencing study, which demonstrated that APOE expression was elevated in subtypes of astrocytes, endothelial cells, and pericytes in DSAD. We further investigate how trisomy 21 may cause increased APOE. Increased abundance of APOE may impact the development of, or response to, AD pathology in the brain of people with DSAD, altering disease mechanisms with clinical implications. Overall, these data highlight that trisomy 21 alters both the transcriptome and proteome of people with DS in the context of AD, and that these differences should be considered when selecting therapeutic strategies for this vulnerable group of individuals who have high risk of early onset dementia.
Collapse
Affiliation(s)
- Clíona Farrell
- UK Dementia Research Institute at University College London, London, UK
- Queen Square Institute of Neurology, University College London, London, UK
| | - Yazead Buhidma
- Queen Square Institute of Neurology, University College London, London, UK
| | - Paige Mumford
- UK Dementia Research Institute at University College London, London, UK
- Queen Square Institute of Neurology, University College London, London, UK
| | - Wendy E Heywood
- UCL Great Ormond Street Institute of Child Heath, University College London, London, UK
| | - Jenny Hällqvist
- UCL Great Ormond Street Institute of Child Heath, University College London, London, UK
| | - Lisi Flores-Aguilar
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| | - Elizabeth J Andrews
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| | - Negin Rahimzadah
- Mathematical, Computational, and Systems Biology (MCSB) Program, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
- Center for Complex Biological Systems (CCBS), University of California Irvine, Irvine, CA, USA
| | - Orjona Stella Taso
- UK Dementia Research Institute at University College London, London, UK
- Queen Square Institute of Neurology, University College London, London, UK
| | - Eric Doran
- Department of Pediatrics, School of Medicine, University of California, Irvine, Orange, CA, USA
| | - Vivek Swarup
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
- Center for Complex Biological Systems (CCBS), University of California Irvine, Irvine, CA, USA
- Department of Neurobiology and Behaviour, University of California, Irvine, CA, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| | - Tammaryn Lashley
- Queen Square Institute of Neurology, University College London, London, UK
| | - Kevin Mills
- UCL Great Ormond Street Institute of Child Heath, University College London, London, UK
| | - Christina E Toomey
- Queen Square Institute of Neurology, University College London, London, UK.
- The Francis Crick Institute, London, UK.
| | - Frances K Wiseman
- UK Dementia Research Institute at University College London, London, UK.
- Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
2
|
Sadeghi G, Farjoo MH. Association of neurodegeneration, cognitive impairment, and short stature in Down syndrome; Could proinflammatory cytokines be the common factor? Brain Res Bull 2025; 224:111317. [PMID: 40139281 DOI: 10.1016/j.brainresbull.2025.111317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/05/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Down syndrome (DS), caused by an extra copy of chromosome 21, is the most prevalent chromosomal disorder. It leads to various complications including, cardiac and endocrine dysfunctions, impairment of the immune system, growth retardation, and certain neurological conditions. Stunted growth in this population might be linked to an increased risk of a variety of co-occurring conditions, particularly neurological disorders. Studies indicate that the levels of neurodegeneration and neuroinflammation markers are higher in shorter children with DS. The disruption of insulin-like growth factor 1 (IGF1) signalling pathway due to the overexpression of proinflammatory cytokine genes could help establish a connection between short stature and neurodegeneration in DS. These cytokines disrupt the production of IGF1 in the liver, thereby inhibiting IGF1 from promoting bone and brain growth. Additionally, elevated cytokines levels impair the production of sex hormones by affecting the gonadal axis, further exacerbating the aforementioned conditions. The group of GnRH neurons responsible for cognitive functions is also impaired in DS, and treatment with GnRH agonists has demonstrated improvements in cognition. Although GnRH agonists can delay the fusion of growth plates by inhibiting pulsatile GnRH secretion, they may also lead to cognitive impairments. Hypothyroidism, the most prevalent endocrine complication of DS, can also contribute to both cognitive impairment and short stature. In conclusion, the increase of proinflammatory cytokines, through various mechanisms, can play a significant role in the development of both cognitive impairments and short stature in DS.
Collapse
Affiliation(s)
- Ghazaleh Sadeghi
- Student Research Committee, School of medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hadi Farjoo
- Department of pharmacology, School of medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Alasmari F, Ahmad A, Alsanea S, Hammad AM, Al-Qerem W. Current insights and prospects for the pathogenesis and treatment of clinical manifestations associated with Down syndrome through neurotransmitter, inflammatory, and oxidative stress pathways. Front Pharmacol 2025; 16:1592277. [PMID: 40356974 PMCID: PMC12066560 DOI: 10.3389/fphar.2025.1592277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
Individuals with Down syndrome exhibit various changes in the human body systems, including alterations in the ocular, neurological, and dermatological systems. Especially, preclinical and clinical studies have determined Down syndrome patients to possess reduced intellectual and cognition abilities, which neurobehavioral effects are associated with altered molecular markers in the brain. For instance, neuroinflammation and increased brain oxidative stress are reported in animals models of Down syndrome, and the reversal of those markers lead to positive effects. Dopaminergic and serotonergic neurons are altered in individuals with Down syndrome, with dopamine and serotonin secretion reduced and their transporters upregulated. Hence, blocking reuptake of dopamine and serotonin might improve Down syndrome behavioral impairments. Norepinephrine loss was observed in a mouse model of Down syndrome, and treatment with a β2 adrenergic receptor agonist improved behavioral symptoms. Moreover, targeting certain glutamatergic receptors, particularly in the hippocampus, might correct the glutamatergic dysfunction and altered behaviors. Inverse agonists or antagonists of GABAergic receptors suppress GABA's inhibitory role, an effect associated with improved cognition behaviors in models of Down syndrome. Reports also suggest partial involvement of the histaminergic system in the impairment of memory function observed in Down syndrome. Finally, cholinergic system alteration has been reported, but the therapeutic role of its modulation needs further investigation. This review collects and reports multi-Omics Studies on Down syndrome, the crucial roles of inflammation, oxidative stress independently as well as role of oxidative stress in pregnancies with Down Syndrome and biomarkers of maternal diagnosis of Down syndrome. This review further explained the role of neurotransmitter pathways in Down syndrome pathogenesis, prognosis and therapeutic intervention for Down syndrome and future directions for interventions.
Collapse
Affiliation(s)
- Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- King Salman Center for Disability Research, Riyadh, Saudi Arabia
| | - Ashfaq Ahmad
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Sary Alsanea
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Alaa M. Hammad
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Walid Al-Qerem
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| |
Collapse
|
4
|
Li C, Yan Y, Stork O, Shen R, Behnisch T. The E3 Ubiquitin Ligase PRAJA1: A Key Regulator of Synaptic Dynamics and Memory Processes with Implications for Alzheimer's Disease. Int J Mol Sci 2025; 26:2909. [PMID: 40243483 PMCID: PMC11988436 DOI: 10.3390/ijms26072909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/13/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
The precise regulation of synaptic function by targeted protein degradation is fundamental to learning and memory, yet the roles of many brain-enriched E3 ubiquitin ligases in this process remain elusive. Here, we uncover a critical and previously unappreciated role for the E3 ubiquitin ligase PRAJA1 in orchestrating synaptic plasticity and hippocampus-dependent memory. Utilizing C57BL/6 and 5xFAD male mice and employing a multi-faceted approach including protein biochemistry, molecular biology, in vitro electrophysiology, and behavioral assays, we demonstrate that long-term potentiation (LTP) induction triggers a rapid, proteasome-dependent downregulation of PRAJA1 within the CA1 region of the hippocampus. Critically, selective knockdown of PRAJA1 in vivo profoundly enhanced both object recognition and spatial memory, while disrupting normal exploratory behavior. Mechanistically, we reveal that PRAJA1 acts as a key regulator of synaptic architecture and transmission: its downregulation leads to a reduction in key synaptic proteins and spine density, influencing the excitatory/inhibitory balance and facilitating synaptic plasticity. Conversely, increased PRAJA1 expression potentiates GABAergic transmission. Furthermore, we identify spinophilin as a novel substrate of PRAJA1, suggesting a direct molecular link between PRAJA1 and synaptic remodeling. Strikingly, our findings implicate dysregulation of PRAJA1 in the pathogenesis of Alzheimer's disease, positioning PRAJA1 as a potential therapeutic target for cognitive enhancement in neurodegenerative conditions. These results unveil PRAJA1 as a critical molecular brake on synaptic plasticity and memory formation, offering a promising new avenue for understanding and potentially treating memory impairment.
Collapse
Affiliation(s)
- Chuhan Li
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yan Yan
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany;
| | - Ruling Shen
- Shanghai Laboratory Animal Research Center, Shanghai 201203, China
| | - Thomas Behnisch
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
5
|
Danaei M, Rashnavadi H, Yeganegi M, Dastgheib SA, Bahrami R, Azizi S, Jayervand F, Masoudi A, Shahbazi A, Shiri A, Aghili K, Mazaheri M, Neamatzadeh H. Advancements in machine learning and biomarker integration for prenatal Down syndrome screening. Turk J Obstet Gynecol 2025; 22:75-82. [PMID: 40062699 PMCID: PMC11894766 DOI: 10.4274/tjod.galenos.2025.12689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/09/2025] [Indexed: 03/14/2025] Open
Abstract
The use of machine learning (ML) in biomarker analysis for predicting Down syndrome exemplifies an innovative strategy that enhances diagnostic accuracy and enables early detection. Recent studies demonstrate the effectiveness of ML algorithms in identifying genetic variations and expression patterns associated with Down syndrome by comparing genomic data from affected individuals and their typically developing peers. This review examines how ML and biomarker analysis improve prenatal screening for Down syndrome. Advancements show that integrating maternal serum markers, nuchal translucency measurements, and ultrasonographic images with algorithms, such as random forests and deep learning convolutional neural networks, raises detection rates to above 85% while keeping false positive rates low. Moreover, non-invasive prenatal testing with soft ultrasound markers has increased diagnostic sensitivity and specificity, marking a significant shift in prenatal care. The review highlights the importance of implementing robust screening protocols that utilize ultrasound biomarkers, along with developing personalized screening tools through advanced statistical methods. It also explores the potential of combining genetic and epigenetic biomarkers with ML to further improve diagnostic accuracy and understanding of Down syndrome pathophysiology. The findings stress the need for ongoing research to optimize algorithms, validate their effectiveness across diverse populations, and incorporate these cutting-edge approaches into routine clinical practice. Ultimately, blending advanced imaging techniques with ML shows promise for enhancing prenatal care outcomes and aiding informed decision-making for expectant parents.
Collapse
Affiliation(s)
- Mahsa Danaei
- Department of Obstetrics and Gynecology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Heewa Rashnavadi
- Student Research Committee, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Yeganegi
- Department of Obstetrics and Gynecology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Seyed Alireza Dastgheib
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Bahrami
- Neonatal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sepideh Azizi
- Shahid Akbarabadi Clinical Research Development Unit, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Jayervand
- Department of Obstetrics and Gynecology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Masoudi
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Amirmasoud Shiri
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kazem Aghili
- Department of Radiology, Shahid Rahnamoun Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahta Mazaheri
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Neamatzadeh
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
6
|
Wagemann O, Nübling G, Martínez‐Murcia FJ, Wlasich E, Loosli SV, Sandkühler K, Stockbauer A, Prix C, Katzdobler S, Petrera A, Hauck SM, Fortea J, Romero‐Zaliz R, Jiménez‐Mesa C, Górriz Sáez JM, Höglinger G, Levin J. Exploratory analysis of the proteomic profile in plasma in adults with Down syndrome in the context of Alzheimer's disease. Alzheimers Dement 2025; 21:e70040. [PMID: 40110647 PMCID: PMC11923571 DOI: 10.1002/alz.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/19/2025] [Accepted: 02/01/2025] [Indexed: 03/22/2025]
Abstract
INTRODUCTION Adults with Down syndrome (DS) show increased risk for Alzheimer's disease (AD) due to the triplication of chromosome 21 encoding the amyloid precursor protein gene. Further, this triplication possibly contributes to dysregulation of the immune system, furthering AD pathophysiology. METHODS Using Olink Explore 3072, we measured ∼3000 proteins in plasma from 73 adults with DS and 15 euploid, healthy controls (HC). Analyses for differentially expressed proteins (DEP) were carried out, and pathway and protein network enrichment using Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG), and STRING database was investigated. Within DS, the LASSO (least absolute shrinkage and selection operator) feature selection was applied. RESULTS We identified 253 DEP between DS and HC and 142 DEP between symptomatic and asymptomatic DS. Several pathways regarding inflammatory and neurodevelopmental processes were dysregulated in both analyses. LASSO feature selection within DS returned 15 proteins as potential blood markers. DISCUSSION This exploratory proteomic analysis found potential new blood biomarkers for diagnosing DS-AD in need of further investigation. HIGHLIGHTS Inflammatory pathways are dysregulated in symptomatic versus asymptomatic DS. NFL and GFAP are confirmed as powerful biomarkers in DS with clinical and/or cognitive decline. Further circulating proteins were identified as potential blood biomarkers for symptomatic DS.
Collapse
Affiliation(s)
- Olivia Wagemann
- Department of NeurologyUniversity Hospital, Ludwig‐Maximilians‐University (LMU) MunichMunichGermany
- German Center for Neurodegenerative Disease (DZNE)MunichGermany
| | - Georg Nübling
- Department of NeurologyUniversity Hospital, Ludwig‐Maximilians‐University (LMU) MunichMunichGermany
| | - Francisco Jesús Martínez‐Murcia
- Department of Signal TheoryTelematics and CommunicationsAndalusian Institute in Data Science and Computational Intelligence (DaSCI) at University of GranadaGranadaSpain
| | - Elisabeth Wlasich
- Department of NeurologyUniversity Hospital, Ludwig‐Maximilians‐University (LMU) MunichMunichGermany
| | - Sandra V. Loosli
- Department of NeurologyUniversity Hospital, Ludwig‐Maximilians‐University (LMU) MunichMunichGermany
- Department of NeurologyUniversity Hospital ZurichZurichSwitzerland
| | - Katja Sandkühler
- Department of NeurologyUniversity Hospital, Ludwig‐Maximilians‐University (LMU) MunichMunichGermany
| | - Anna Stockbauer
- Department of NeurologyUniversity Hospital, Ludwig‐Maximilians‐University (LMU) MunichMunichGermany
- German Center for Neurodegenerative Disease (DZNE)MunichGermany
| | - Catharina Prix
- Department of NeurologyUniversity Hospital, Ludwig‐Maximilians‐University (LMU) MunichMunichGermany
| | - Sabrina Katzdobler
- Department of NeurologyUniversity Hospital, Ludwig‐Maximilians‐University (LMU) MunichMunichGermany
- German Center for Neurodegenerative Disease (DZNE)MunichGermany
| | - Agnese Petrera
- Metabolomics and Proteomics CoreHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Stefanie M. Hauck
- Metabolomics and Proteomics CoreHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Juan Fortea
- Sant Pau Memory UnitHospital de la Santa Creu i Sant Pau ‐ Biomedical Research Institute Sant PauBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNEDMadridSpain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de DownBarcelonaSpain
| | - Rocío Romero‐Zaliz
- Department of Signal TheoryTelematics and CommunicationsAndalusian Institute in Data Science and Computational Intelligence (DaSCI) at University of GranadaGranadaSpain
- Information and Communication Technologies Research Centre (CITIC‐UGR)University of Calle Periodista Rafael Gómez MonteroGranadaSpain
| | - Carmen Jiménez‐Mesa
- Department of Signal TheoryTelematics and CommunicationsAndalusian Institute in Data Science and Computational Intelligence (DaSCI) at University of GranadaGranadaSpain
| | - Juan M. Górriz Sáez
- Department of Signal TheoryTelematics and CommunicationsAndalusian Institute in Data Science and Computational Intelligence (DaSCI) at University of GranadaGranadaSpain
| | - Günter Höglinger
- Department of NeurologyUniversity Hospital, Ludwig‐Maximilians‐University (LMU) MunichMunichGermany
- German Center for Neurodegenerative Disease (DZNE)MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Johannes Levin
- Department of NeurologyUniversity Hospital, Ludwig‐Maximilians‐University (LMU) MunichMunichGermany
- German Center for Neurodegenerative Disease (DZNE)MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| |
Collapse
|
7
|
Farrell C, Buhidma Y, Mumford P, Heywood WE, Hällqvist J, Flores-Aguilar L, Andrews E, Rahimzadah N, Taso OS, Doran E, Swarup V, Head E, Lashley T, Mills K, Toomey CE, Wiseman FK. Apolipoprotein E abundance is elevated in the brains of individuals with Down syndrome-Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639862. [PMID: 40060680 PMCID: PMC11888362 DOI: 10.1101/2025.02.24.639862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Trisomy of chromosome 21, the cause of Down syndrome (DS), is the most commonly occurring genetic cause of Alzheimer's disease (AD). Here, we compare the frontal cortex proteome of people with Down syndrome-Alzheimer's disease (DSAD) to demographically matched cases of early-onset AD and healthy ageing controls. We find wide dysregulation of the proteome, beyond proteins encoded by chromosome 21, including an increase in the abundance of the key AD-associated protein, APOE, in people with DSAD compared to matched cases of AD. To understand the cell types that may contribute to changes in protein abundance, we undertook a matched single-nuclei RNA-sequencing study, which demonstrated that APOE expression was elevated in subtypes of astrocytes, endothelial cells and pericytes in DSAD. We further investigate how trisomy 21 may cause increased APOE. Increased abundance of APOE may impact the development of, or response to, AD pathology in the brain of people with DSAD, altering disease mechanisms with clinical implications. Overall, these data highlight that trisomy 21 alters both the transcriptome and proteome of people with DS in the context of AD, and that these differences should be considered when selecting therapeutic strategies for this vulnerable group of individuals who have high-risk of early-onset dementia.
Collapse
Affiliation(s)
- Clíona Farrell
- UK Dementia Research Institute at University College London; London, United Kingdom
- Queen Square Institute of Neurology, University College London; London, United Kingdom
| | - Yazead Buhidma
- Queen Square Institute of Neurology, University College London; London, United Kingdom
| | - Paige Mumford
- UK Dementia Research Institute at University College London; London, United Kingdom
- Queen Square Institute of Neurology, University College London; London, United Kingdom
| | - Wendy E. Heywood
- UCL Great Ormond Street Institute of Child Heath, University College London, London, United Kingdom
| | - Jenny Hällqvist
- UCL Great Ormond Street Institute of Child Heath, University College London, London, United Kingdom
| | - Lisi Flores-Aguilar
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| | - Elizabeth Andrews
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| | - Negin Rahimzadah
- Mathematical, Computational, and Systems Biology (MCSB) Program, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
- Center for Complex Biological Systems (CCBS), University of California Irvine, Irvine, CA, USA
| | - Orjona Stella Taso
- UK Dementia Research Institute at University College London; London, United Kingdom
- Queen Square Institute of Neurology, University College London; London, United Kingdom
| | - Eric Doran
- Department of Pediatrics, University of California, Irvine, School of Medicine, Orange, CA, USA
| | - Vivek Swarup
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
- Center for Complex Biological Systems (CCBS), University of California Irvine, Irvine, CA, USA
- Department of Neurobiology and Behaviour, University of California, Irvine, CA, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| | - Tammaryn Lashley
- Queen Square Institute of Neurology, University College London; London, United Kingdom
| | - Kevin Mills
- UCL Great Ormond Street Institute of Child Heath, University College London, London, United Kingdom
| | - Christina E. Toomey
- Queen Square Institute of Neurology, University College London; London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Frances K. Wiseman
- UK Dementia Research Institute at University College London; London, United Kingdom
- Queen Square Institute of Neurology, University College London; London, United Kingdom
| |
Collapse
|
8
|
Wu Y, Cleverley K, Wiseman FK. Reduction of Cystatin B results in increased cathepsin B activity in disomic but not Trisomy 21 human cellular and mouse models. PLoS One 2025; 20:e0316822. [PMID: 39841661 PMCID: PMC11753708 DOI: 10.1371/journal.pone.0316822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Down syndrome, resulting from trisomy of human chromosome 21, is a common form of chromosomal disorder that results in intellectual disability and altered risk of several medical conditions. Individuals with Down syndrome have a greatly increased risk of Alzheimer's disease (DSAD), due to the presence of the APP gene on chromosome 21 that encodes the amyloid-β precursor protein (APP). APP can be processed to generate amyloid-β, which accumulates in plaques in the brains of people who have Alzheimer's disease and is the upstream trigger of disease. Cathepsin B has potential roles in both APP processing and amyloid-β degradation and has been suggested to contribute to amyloid-β accumulation. An endogenous inhibitor of Cathepsin B, Cystatin B (CSTB), is encoded on chromosome 21. The abundance of this protein is increased in the brains of individuals with DSAD, which may be associated with a decrease in Cathepsin B activity compared to individuals who have Alzheimer's disease in the general population. Whether targeting CSTB can modulate Cathepsin B activity in the context of trisomy of chromosome 21 is unclear. Here we test if reducing CSTB can alter Cathepsin B activity in a mouse and a cellular model of trisomy of chromosome 21. We find that reducing CSTB abundance increases Cathepsin B activity in disomic controls but not in the presence of trisomy of chromosome 21. These findings offer new insights into the role of CSTB in regulating Cathepsin B activity.
Collapse
Affiliation(s)
- Yixing Wu
- UK Dementia Research Institute at University College London, London, United Kingdom
- UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| | - Karen Cleverley
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| | - Frances K. Wiseman
- UK Dementia Research Institute at University College London, London, United Kingdom
- UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| |
Collapse
|
9
|
Martá-Ariza M, Leitner DF, Kanshin E, Suazo J, Giusti Pedrosa A, Thierry M, Lee EB, Devinsky O, Drummond E, Fortea J, Lleó A, Ueberheide B, Wisniewski T. Comparison of the amyloid plaque proteome in Down syndrome, early-onset Alzheimer's disease, and late-onset Alzheimer's disease. Acta Neuropathol 2025; 149:9. [PMID: 39825890 PMCID: PMC11742868 DOI: 10.1007/s00401-025-02844-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/20/2025]
Abstract
Down syndrome (DS) is strongly associated with Alzheimer's disease (AD) due to APP overexpression, exhibiting Amyloid-β (Aβ) and Tau pathology similar to early-onset (EOAD) and late-onset AD (LOAD). We evaluated the Aβ plaque proteome of DS, EOAD, and LOAD using unbiased localized proteomics on post-mortem paraffin-embedded tissues from four cohorts (n = 20/group): DS (59.8 ± 4.99 y/o), EOAD (63 ± 4.07 y/o), LOAD (82.1 ± 6.37 y/o), and controls (66.4 ± 13.04). We identified differentially abundant proteins when comparing Aβ plaques and neighboring non-plaque tissue (FDR < 5%, fold-change > 1.5) in DS (n = 132), EOAD (n = 192), and LOAD (n = 128), with 43 plaque-associated proteins shared across all groups. Positive correlations were observed between plaque-associated proteins in DS and EOAD (R2 = .77), DS and LOAD (R2 = .73), and EOAD and LOAD (R2 = .67). Top gene ontology biological processes (GOBP) included lysosomal transport (p = 1.29 × 10-5) for DS, immune system regulation (p = 4.33 × 10-5) for EOAD, and lysosome organization (p = 0.029) for LOAD. Protein networks revealed a plaque-associated protein signature involving APP metabolism, immune response, and lysosomal functions. In DS, EOAD, and LOAD non-plaque vs. control tissue, we identified 263, 269, and 301 differentially abundant proteins, with 65 altered proteins shared across all cohorts. Non-plaque proteins in DS showed modest correlations with EOAD (R2 = .59) and LOAD (R2 = .33) compared to the correlation between EOAD and LOAD (R2 = .79). Top GOBP term for all groups was chromatin remodeling (p < 0.001), with additional terms for DS including extracellular matrix, and protein-DNA complexes and gene expression regulation for EOAD and LOAD. Our study reveals key functional characteristics of the amyloid plaque proteome in DS, compared to EOAD and LOAD, highlighting shared pathways in endo/lysosomal functions and immune responses. The non-plaque proteome revealed distinct alterations in ECM and chromatin structure, underscoring unique differences between DS and AD subtypes. Our findings enhance our understanding of AD pathogenesis and identify potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mitchell Martá-Ariza
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Center for Cognitive Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Dominique F Leitner
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Center for Cognitive Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Comprehensive Epilepsy Center, Department of Neurology, NYU Langone Health and Grossman School of Medicine, New York, NY, USA
| | - Evgeny Kanshin
- Proteomics Laboratory, Division of Advanced Research Technologies, NYU Grossman School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Jianina Suazo
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Center for Cognitive Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Manon Thierry
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Center for Cognitive Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Orrin Devinsky
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Comprehensive Epilepsy Center, Department of Neurology, NYU Langone Health and Grossman School of Medicine, New York, NY, USA
| | - Eleanor Drummond
- Center for Cognitive Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Juan Fortea
- Memory Unit, Department of Neurology, Institut de Recerca Sant Pau, Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Alberto Lleó
- Memory Unit, Department of Neurology, Institut de Recerca Sant Pau, Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Beatrix Ueberheide
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, NYU Grossman School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Thomas Wisniewski
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA.
- Center for Cognitive Neurology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
10
|
Inamdar A, Gurupadayya B, Halagali P, Nandakumar S, Pathak R, Singh H, Sharma H. Cutting-edge Strategies for Overcoming Therapeutic Barriers in Alzheimer's Disease. Curr Pharm Des 2025; 31:598-618. [PMID: 39492772 DOI: 10.2174/0113816128344571241018154506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 11/05/2024]
Abstract
Alzheimer's disease (AD) remains one of the hardest neurodegenerative diseases to treat due to its enduring cognitive deterioration and memory loss. Despite extensive research, few viable treatment approaches have been found; these are mostly due to several barriers, such as the disease's complex biology, limited pharmaceutical efficacy, and the BBB. This presentation discusses current strategies for addressing these therapeutic barriers to enhance AD treatment. Innovative drug delivery methods including liposomes, exosomes, and nanoparticles may be able to pass the blood-brain barrier and allow medicine to enter specific brain regions. These innovative strategies of medicine distribution reduce systemic side effects by improving absorption. Moreover, the development of disease-modifying treatments that target tau protein tangles, amyloid-beta plaques, and neuroinflammation offers the chance to influence the course of the illness rather than only treat its symptoms. Furthermore, gene therapy and CRISPR-Cas9 technologies have surfaced as potentially groundbreaking methods for addressing the underlying genetic defects associated with AD. Furthermore, novel approaches to patient care may involve the utilization of existing medications having neuroprotective properties, such as those for diabetes and cardiovascular conditions. Furthermore, biomarker research and personalized medicine have made individualized therapy approaches possible, ensuring that patients receive the best care possible based on their unique genetic and molecular profiles.
Collapse
Affiliation(s)
- Aparna Inamdar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Bannimath Gurupadayya
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Prashant Halagali
- Department of Pharmaceutical Quality Assurance, KLE College of Pharmacy, KLE Academy of Higher Education and Research, Belagavi 590010, Karnataka, India
| | - S Nandakumar
- Associate Scientist, Corteva Agriscience, Hyderabad 500081, Telangana, India
| | - Rashmi Pathak
- Department of Pharmacy, Invertis University, Bareilly (UP) 243123, India
| | - Himalaya Singh
- Department of Medicine, Government Institute of Medical Sciences, Greater Noida (UP) 201312, India
| | - Himanshu Sharma
- Department of Pharmacy, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad (UP) 244001, India
| |
Collapse
|
11
|
Maure-Blesa L, Rodríguez-Baz I, Carmona-Iragui M, Fortea J. What Can We Learn About Alzheimer's Disease from People with Down Syndrome? Curr Top Behav Neurosci 2025; 69:197-226. [PMID: 39509049 DOI: 10.1007/7854_2024_546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Down syndrome (DS) is the most frequent cause of intellectual disability of genetic origin, estimated to affect about 1 in 700 babies born worldwide (CDC 2023). In Europe and the United States, current estimates indicate a population prevalence of 5.6 and 6.7 per 10,000 individuals, respectively, which translates to more than 200,000 people in the United States, more than 400,000 people in Europe, and approximately six million worldwide. Advances in healthcare and the treatment of accompanying conditions have significantly prolonged the lifespan of those with DS over the past 50 years. Consequently, there is a pressing need to address the challenges associated with ageing among this population, with Alzheimer's disease (AD) being the primary concern. In this chapter, we will review the significance of studying this population to understand AD biology, the insights gained on AD in DS (DSAD), and how this knowledge can help us understand the AD not only in DS but also in the general population. We will conclude by exploring the objectives that remain to be accomplished.
Collapse
Affiliation(s)
- Lucia Maure-Blesa
- Sant Pau Memory Unit, Department of Neurology, Facultad de Medicina, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Iñigo Rodríguez-Baz
- Sant Pau Memory Unit, Department of Neurology, Facultad de Medicina, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Maria Carmona-Iragui
- Sant Pau Memory Unit, Department of Neurology, Facultad de Medicina, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Facultad de Medicina, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain.
| |
Collapse
|
12
|
Hopkins PCR, Troakes C, King A, Tear G. Transmembrane and coiled-coil 2 associates with Alzheimer's disease pathology in the human brain. Brain Pathol 2025; 35:e13290. [PMID: 39084860 PMCID: PMC11669416 DOI: 10.1111/bpa.13290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
Transmembrane and coiled-coil 2 (TMCC2) is a human orthologue of the Drosophila gene dementin, mutant alleles of which cause neurodegeneration with features of Alzheimer's disease (AD). TMCC2 and Dementin further have an evolutionarily conserved interaction with the amyloid protein precursor (APP), a protein central to AD pathogenesis. To investigate if human TMCC2 might also participate in mechanisms of neurodegeneration, we examined TMCC2 expression in late onset AD human brain and age-matched controls, familial AD cases bearing a mutation in APP Val717, and Down syndrome AD. Consistent with previous observations of complex formation between TMCC2 and APP in the rat brain, the dual immunocytochemistry of control human temporal cortex showed highly similar distributions of TMCC2 and APP. In late onset AD cases stratified by APOE genotype, TMCC2 immunoreactivity was associated with dense core senile plaques and adjacent neuronal dystrophies, but not with Aβ surrounding the core, diffuse Aβ plaques or tauopathy. In Down syndrome AD, we observed in addition TMCC2-immunoreactive and methoxy-X04-positive pathological features that were morphologically distinct from those seen in the late onset and familial AD cases, suggesting enhanced pathological alteration of TMCC2 in Down syndrome AD. At the protein level, western blots of human brain extracts revealed that human brain-derived TMCC2 exists as at least three isoforms, the relative abundance of which varied between the temporal gyrus and cerebellum and was influenced by APOE and/or dementia status. Our findings thus implicate human TMCC2 in AD via its interactions with APP, its association with dense core plaques, as well as its alteration in Down syndrome AD.
Collapse
Affiliation(s)
| | - Claire Troakes
- London Neurodegenerative Diseases Brain BankInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Andrew King
- London Neurodegenerative Diseases Brain BankInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Guy Tear
- Centre for Developmental NeurobiologyKing's College LondonLondonUK
| |
Collapse
|
13
|
Russell JK, Conley AC, Wilson JE, Newhouse PA. Cholinergic System Structure and Function Changes in Individuals with Down Syndrome During the Development of Alzheimer's Disease. Curr Top Behav Neurosci 2025; 69:49-78. [PMID: 39485646 PMCID: PMC12042956 DOI: 10.1007/7854_2024_523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Adults with Down syndrome represent the population with the highest risk of developing Alzheimer's disease worldwide. The cholinergic system is known to decline in Alzheimer's disease, with this decline responsible for many of the cognitive deficits that develop. The integrity of the cholinergic system across the lifespan in individuals with Down syndrome is not well characterized. Small fetal and infant post-mortem studies suggest an intact cholinergic projection system with a potential reduction in cholinergic receptors, while post-mortem studies in adults with Down syndrome reveal an age-related decrease in cholinergic integrity. Advances in magnetic resonance imaging (MRI) and positron emission tomography (PET) over the last 20 years have allowed for studies investigating the changes in cholinergic integrity across aging and during the development of Alzheimer's disease. One large cross-sectional study demonstrated reduced cholinergic basal forebrain volume measured by MRI associated with increasing Alzheimer's disease pathology. In a small cohort of adults with Down syndrome, we have recently reported that PET measures of cholinergic integrity negatively correlated with amyloid accumulation. New disease-modifying treatments for Alzheimer's disease and treatments under development for Alzheimer's disease in Down syndrome have the potential to preserve the cholinergic system, while treatments targeting the cholinergic system directly may be used in conjunction with disease-modifying therapies to improve cognitive function further. A greater understanding of cholinergic neuronal and receptor integrity across the lifespan in individuals with Down syndrome will provide insights as to when targeting the cholinergic system is an appropriate therapeutic option and, in the future, maybe a valuable screening tool to identify individuals that would most benefit from cholinergic interventions.
Collapse
Affiliation(s)
- Jason K Russell
- Department of Psychiatry and Behavioral Sciences, Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexander C Conley
- Department of Psychiatry and Behavioral Sciences, Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jo Ellen Wilson
- Department of Psychiatry and Behavioral Sciences, Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Tennessee Valley Health System, Nashville, TN, USA
| | - Paul A Newhouse
- Department of Psychiatry and Behavioral Sciences, Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Tennessee Valley Health System, Nashville, TN, USA.
| |
Collapse
|
14
|
Firdaus Z, Li X. Epigenetic Explorations of Neurological Disorders, the Identification Methods, and Therapeutic Avenues. Int J Mol Sci 2024; 25:11658. [PMID: 39519209 PMCID: PMC11546397 DOI: 10.3390/ijms252111658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/26/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Neurodegenerative disorders are major health concerns globally, especially in aging societies. The exploration of brain epigenomes, which consist of multiple forms of DNA methylation and covalent histone modifications, offers new and unanticipated perspective into the mechanisms of aging and neurodegenerative diseases. Initially, chromatin defects in the brain were thought to be static abnormalities from early development associated with rare genetic syndromes. However, it is now evident that mutations and the dysregulation of the epigenetic machinery extend across a broader spectrum, encompassing adult-onset neurodegenerative diseases. Hence, it is crucial to develop methodologies that can enhance epigenetic research. Several approaches have been created to investigate alterations in epigenetics on a spectrum of scales-ranging from low to high-with a particular focus on detecting DNA methylation and histone modifications. This article explores the burgeoning realm of neuroepigenetics, emphasizing its role in enhancing our mechanistic comprehension of neurodegenerative disorders and elucidating the predominant techniques employed for detecting modifications in the epigenome. Additionally, we ponder the potential influence of these advancements on shaping future therapeutic approaches.
Collapse
Affiliation(s)
- Zeba Firdaus
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
15
|
Martá-Ariza M, Leitner DF, Kanshin E, Suazo J, Pedrosa AG, Thierry M, Lee EB, Devinsky O, Drummond E, Fortea J, Lleó A, Ueberheide B, Wisniewski T. Comparison of the Amyloid Plaque Proteome in Down Syndrome, Early-Onset Alzheimer's Disease and Late-Onset Alzheimer's Disease. RESEARCH SQUARE 2024:rs.3.rs-4469045. [PMID: 39070643 PMCID: PMC11275979 DOI: 10.21203/rs.3.rs-4469045/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background Down syndrome (DS) is strongly associated with Alzheimer's disease (AD), attributable to APP overexpression. DS exhibits Amyloid-β (Aβ) and Tau pathology similar to early-onset AD (EOAD) and late-onset AD (LOAD). The study aimed to evaluate the Aβ plaque proteome of DS, EOAD and LOAD. Methods Using unbiased localized proteomics, we analyzed amyloid plaques and adjacent plaque-devoid tissue ('non-plaque') from post-mortem paraffin-embedded tissues in four cohorts (n = 20/group): DS (59.8 ± 4.99 y/o), EOAD (63 ± 4.07 y/o), LOAD (82.1 ± 6.37 y/o) and controls (66.4 ± 13.04). We assessed functional associations using Gene Ontology (GO) enrichment and protein interaction networks. Results We identified differentially abundant Aβ plaque proteins vs. non-plaques (FDR < 5%, fold-change > 1.5) in DS (n = 132), EOAD (n = 192) and in LOAD (n = 128); there were 43 plaque-associated proteins shared between all groups. Positive correlations (p < 0.0001) were observed between plaque-associated proteins in DS and EOAD (R2 = 0.77), DS and LOAD (R2 = 0.73), and EOAD vs. LOAD (R2 = 0.67). Top Biological process (BP) GO terms (p < 0.0001) included lysosomal transport for DS, immune system regulation for EOAD, and lysosome organization for LOAD. Protein networks revealed a plaque enriched signature across all cohorts involving APP metabolism, immune response, and lysosomal functions. In DS, EOAD and LOAD non-plaque vs. control tissue, we identified 263, 269, and 301 differentially abundant proteins, including 65 altered non-plaque proteins across all cohorts. Differentially abundant non-plaque proteins in DS showed a significant (p < 0.0001) but weaker positive correlation with EOAD (R2 = 0.59) and LOAD (R2 = 0.33) compared to the stronger correlation between EOAD and LOAD (R2 = 0.79). The top BP GO term for all groups was chromatin remodeling (DS p = 0.0013, EOAD p = 5.79×10- 9, and LOAD p = 1.69×10- 10). Additional GO terms for DS included extracellular matrix (p = 0.0068), while EOAD and LOAD were associated with protein-DNA complexes and gene expression regulation (p < 0.0001). Conclusions We found strong similarities among the Aβ plaque proteomes in individuals with DS, EOAD and LOAD, and a robust association between the plaque proteomes and lysosomal and immune-related pathways. Further, non-plaque proteomes highlighted altered pathways related to chromatin structure and extracellular matrix (ECM), the latter particularly associated with DS. We identified novel Aβ plaque proteins, which may serve as biomarkers or therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Edward B Lee
- University of Pennsylvania Perelman School of Medicine
| | | | | | - Juan Fortea
- Universitat Autònoma de Barcelona: Universitat Autonoma de Barcelona
| | - Alberto Lleó
- Universitat Autònoma de Barcelona: Universitat Autonoma de Barcelona
| | | | | |
Collapse
|
16
|
Canonica T, Kidd EJ, Gibbins D, Lana-Elola E, Fisher EMC, Tybulewicz VLJ, Good M. Dissecting the contribution of human chromosome 21 syntenic regions to recognition memory processes in adult and aged mouse models of Down syndrome. Front Behav Neurosci 2024; 18:1428146. [PMID: 39050700 PMCID: PMC11266108 DOI: 10.3389/fnbeh.2024.1428146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Background Trisomy of human chromosome 21 (Hsa21) results in a constellation of features known as Down syndrome (DS), the most common genetic form of intellectual disability. Hsa21 is orthologous to three regions in the mouse genome on mouse chromosome 16 (Mmu16), Mmu17 and Mmu10. We investigated genotype-phenotype relationships by assessing the contribution of these three regions to memory function and age-dependent cognitive decline, using three mouse models of DS, Dp1Tyb, Dp(17)3Yey, Dp(10)2Yey, that carry an extra copy of the Hsa21-orthologues on Mmu16, Mmu17 and Mmu10, respectively. Hypothesis Prior research on cognitive function in DS mouse models has largely focused on models with an extra copy of the Mmu16 region and relatively little is known about the effects of increased copy number on Mmu17 and Mmu10 on cognition and how this interacts with the effects of aging. As aging is is a critical contributor to cognitive and psychiatric changes in DS, we hypothesised that ageing would differentially impact memory function in Dp1Tyb, Dp(17)3Yey, and Dp(10)2Yey, models of DS. Methods Young (12-13 months and old (18-20 months mice Dp1Tyb, Dp(17)3Yey and Dp(10)2Yey mice were tested on a battery of object recognition memory test that assessed object novelty detection, novel location detection and associative object-in place memory. Following behavioral testing, hippocampal and frontal cortical tissue was analysed for expression of glutamatergic receptor proteins using standard immunoblot techniques. Results Young (12-13 months and old (18-20 months mice Dp1Tyb, Dp(17)3Yey and Dp(10)2Yey mice were tested on a battery of object recognition memory test that assessed object novelty detection, novel location detection and associative object-in place memory. Following behavioral testing, hippocampal and frontal cortical tissue was analysed for expression of glutamatergic receptor proteins using standard immunoblot techniques. Conclusion Our results show that distinct Hsa21-orthologous regions contribute differentially to cognitive dysfunction in DS mouse models and that aging interacts with triplication of Hsa21-orthologous genes on Mmu10.
Collapse
Affiliation(s)
- Tara Canonica
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Emma J. Kidd
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | | | | | - Elizabeth M. C. Fisher
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | | | - Mark Good
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
17
|
Sarangi S, Minaeva O, Ledoux DM, Parsons DS, Moncaster JA, Black CA, Hollander J, Tripodis Y, Clark JI, Hunter DG, Goldstein LE. In vivo quasi-elastic light scattering detects molecular changes in the lenses of adolescents with Down syndrome. Exp Eye Res 2024; 241:109818. [PMID: 38422787 DOI: 10.1016/j.exer.2024.109818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/08/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Down syndrome (DS) is the most common chromosomal disorder in humans. DS is associated with increased prevalence of several ocular sequelae, including characteristic blue-dot cerulean cataract. DS is accompanied by age-dependent accumulation of Alzheimer's disease (AD) amyloid-β (Aβ) peptides and amyloid pathology in the brain and comorbid early-onset Aβ amyloidopathy and colocalizing cataracts in the lens. Quasi-elastic light scattering (QLS) is an established optical technique that noninvasively measures changes in protein size distributions in the human lens in vivo. In this cross-sectional study, lenticular QLS correlation time was decreased in adolescent subjects with DS compared to age-matched control subjects. Clinical QLS was consistent with alterations in relative particle hydrodynamic radius in lenses of adolescents with DS. These correlative results suggest that noninvasive QLS can be used to evaluate molecular changes in the lenses of individuals with DS.
Collapse
Affiliation(s)
- Srikant Sarangi
- Molecular Aging & Development Laboratory, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA; Boston University Photonics Center, Boston University, Boston, MA, USA; Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Olga Minaeva
- Molecular Aging & Development Laboratory, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA; Boston University Photonics Center, Boston University, Boston, MA, USA; Department of Biomedical Engineering, Boston University, Boston, MA, USA; Boston University Alzheimer's Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA
| | - Danielle M Ledoux
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Douglas S Parsons
- Molecular Aging & Development Laboratory, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA; Boston University Photonics Center, Boston University, Boston, MA, USA
| | - Juliet A Moncaster
- Molecular Aging & Development Laboratory, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA; Boston University Photonics Center, Boston University, Boston, MA, USA; Boston University Alzheimer's Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Caitlin A Black
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA
| | - Jeffrey Hollander
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - John I Clark
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - David G Hunter
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Lee E Goldstein
- Molecular Aging & Development Laboratory, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA; Boston University Photonics Center, Boston University, Boston, MA, USA; Department of Biomedical Engineering, Boston University, Boston, MA, USA; Boston University Alzheimer's Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
18
|
Saternos H, Hamlett ED, Guzman S, Head E, Granholm AC, Ledreux A. Unique Pathology in the Locus Coeruleus of Individuals with Down Syndrome. J Alzheimers Dis 2024; 101:541-561. [PMID: 39213062 PMCID: PMC12101226 DOI: 10.3233/jad-240043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Down syndrome (DS) is one of the most commonly occurring chromosomal conditions. Most individuals with DS develop Alzheimer's disease (AD) by 50 years of age. Recent evidence suggests that AD pathology in the locus coeruleus (LC) is an early event in sporadic AD. It is likely that the widespread axonal network of LC neurons contributes to the spread of tau pathology in the AD brain, although this has not been investigated in DS-AD. Objective The main purpose of this study was to profile AD pathology and neuroinflammation in the LC, comparing AD and DS-AD in postmortem human tissues. Methods We utilized immunofluorescence and semi-quantitative analyses of pTau (4 different forms), amyloid-β (Aβ), glial, and neuronal markers in the LC across 36 cases (control, DS-AD, and AD) to compare the different pathological profiles. Results Oligomeric tau was highly elevated in DS-AD cases compared to LOAD or EOAD cases. The distribution of staining for pT231 was elevated in DS-AD and EOAD compared to the LOAD group. The DS-AD group exhibited increased Aβ immunostaining compared to AD cases. The number of tau-bearing neurons was also significantly different between the EOAD and DS-AD cases compared to the LOAD cases. Conclusions While inflammation, pTau, and Aβ are all involved in AD pathology, their contribution to disease progression may differ depending on the diagnosis. Our results suggest that DS-AD and EOAD may be more similar in pathology than LOAD. Our study highlights unique avenues to further our understanding of the mechanisms governing AD neuropathology.
Collapse
Affiliation(s)
- Hannah Saternos
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora,CO, USA
| | - Eric D Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Samuel Guzman
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California at Irvine, Irvine, CA, USA
| | - Ann-Charlotte Granholm
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora,CO, USA
| | - Aurélie Ledreux
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora,CO, USA
| |
Collapse
|
19
|
Perluigi M, Di Domenico F, Butterfield DA. Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease. Physiol Rev 2024; 104:103-197. [PMID: 37843394 PMCID: PMC11281823 DOI: 10.1152/physrev.00030.2022] [Citation(s) in RCA: 67] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/30/2023] [Accepted: 05/24/2023] [Indexed: 10/17/2023] Open
Abstract
Alzheimer disease (AD) is associated with multiple etiologies and pathological mechanisms, among which oxidative stress (OS) appears as a major determinant. Intriguingly, OS arises in various pathways regulating brain functions, and it seems to link different hypotheses and mechanisms of AD neuropathology with high fidelity. The brain is particularly vulnerable to oxidative damage, mainly because of its unique lipid composition, resulting in an amplified cascade of redox reactions that target several cellular components/functions ultimately leading to neurodegeneration. The present review highlights the "OS hypothesis of AD," including amyloid beta-peptide-associated mechanisms, the role of lipid and protein oxidation unraveled by redox proteomics, and the antioxidant strategies that have been investigated to modulate the progression of AD. Collected studies from our groups and others have contributed to unraveling the close relationships between perturbation of redox homeostasis in the brain and AD neuropathology by elucidating redox-regulated events potentially involved in both the pathogenesis and progression of AD. However, the complexity of AD pathological mechanisms requires an in-depth understanding of several major intracellular pathways affecting redox homeostasis and relevant for brain functions. This understanding is crucial to developing pharmacological strategies targeting OS-mediated toxicity that may potentially contribute to slow AD progression as well as improve the quality of life of persons with this severe dementing disorder.
Collapse
Affiliation(s)
- Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
20
|
Gautam D, Naik UP, Naik MU, Yadav SK, Chaurasia RN, Dash D. Glutamate Receptor Dysregulation and Platelet Glutamate Dynamics in Alzheimer's and Parkinson's Diseases: Insights into Current Medications. Biomolecules 2023; 13:1609. [PMID: 38002291 PMCID: PMC10669830 DOI: 10.3390/biom13111609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Two of the most prevalent neurodegenerative disorders (NDDs), Alzheimer's disease (AD) and Parkinson's disease (PD), present significant challenges to healthcare systems worldwide. While the etiologies of AD and PD differ, both diseases share commonalities in synaptic dysfunction, thereby focusing attention on the role of neurotransmitters. The possible functions that platelets may play in neurodegenerative illnesses including PD and AD are becoming more acknowledged. In AD, platelets have been investigated for their ability to generate amyloid-ß (Aß) peptides, contributing to the formation of neurotoxic plaques. Moreover, platelets are considered biomarkers for early AD diagnosis. In PD, platelets have been studied for their involvement in oxidative stress and mitochondrial dysfunction, which are key factors in the disease's pathogenesis. Emerging research shows that platelets, which release glutamate upon activation, also play a role in these disorders. Decreased glutamate uptake in platelets has been observed in Alzheimer's and Parkinson's patients, pointing to a systemic dysfunction in glutamate handling. This paper aims to elucidate the critical role that glutamate receptors play in the pathophysiology of both AD and PD. Utilizing data from clinical trials, animal models, and cellular studies, we reviewed how glutamate receptors dysfunction contributes to neurodegenerative (ND) processes such as excitotoxicity, synaptic loss, and cognitive impairment. The paper also reviews all current medications including glutamate receptor antagonists for AD and PD, highlighting their mode of action and limitations. A deeper understanding of glutamate receptor involvement including its systemic regulation by platelets could open new avenues for more effective treatments, potentially slowing disease progression and improving patient outcomes.
Collapse
Affiliation(s)
- Deepa Gautam
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
- The Cardeza Foundation for Hematologic Research, Center for Hemostasis, Thrombosis and Vascular Biology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (U.P.N.); (M.U.N.); (S.K.Y.)
| | - Ulhas P. Naik
- The Cardeza Foundation for Hematologic Research, Center for Hemostasis, Thrombosis and Vascular Biology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (U.P.N.); (M.U.N.); (S.K.Y.)
| | - Meghna U. Naik
- The Cardeza Foundation for Hematologic Research, Center for Hemostasis, Thrombosis and Vascular Biology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (U.P.N.); (M.U.N.); (S.K.Y.)
| | - Santosh K. Yadav
- The Cardeza Foundation for Hematologic Research, Center for Hemostasis, Thrombosis and Vascular Biology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (U.P.N.); (M.U.N.); (S.K.Y.)
| | - Rameshwar Nath Chaurasia
- The Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India;
| | - Debabrata Dash
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
21
|
Wright AL, Konen LM, Mockett BG, Morris GP, Singh A, Burbano LE, Milham L, Hoang M, Zinn R, Chesworth R, Tan RP, Royle GA, Clark I, Petrou S, Abraham WC, Vissel B. The Q/R editing site of AMPA receptor GluA2 subunit acts as an epigenetic switch regulating dendritic spines, neurodegeneration and cognitive deficits in Alzheimer's disease. Mol Neurodegener 2023; 18:65. [PMID: 37759260 PMCID: PMC10537207 DOI: 10.1186/s13024-023-00632-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/03/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND RNA editing at the Q/R site of GluA2 occurs with ~99% efficiency in the healthy brain, so that the majority of AMPARs contain GluA2(R) instead of the exonically encoded GluA2(Q). Reduced Q/R site editing infcreases AMPA receptor calcium permeability and leads to dendritic spine loss, neurodegeneration, seizures and learning impairments. Furthermore, GluA2 Q/R site editing is impaired in Alzheimer's disease (AD), raising the possibility that unedited GluA2(Q)-containing AMPARs contribute to synapse loss and neurodegeneration in AD. If true, then inhibiting expression of unedited GluA2(Q), while maintaining expression of GluA2(R), may be a novel strategy of preventing synapse loss and neurodegeneration in AD. METHODS We engineered mice with the 'edited' arginine codon (CGG) in place of the unedited glutamine codon (CAG) at position 607 of the Gria2 gene. We crossbred this line with the J20 mouse model of AD and conducted anatomical, electrophysiological and behavioural assays to determine the impact of eliminating unedited GluA2(Q) expression on AD-related phenotypes. RESULTS Eliminating unedited GluA2(Q) expression in AD mice prevented dendritic spine loss and hippocampal CA1 neurodegeneration as well as improved working and reference memory in the radial arm maze. These phenotypes were improved independently of Aβ pathology and ongoing seizure susceptibility. Surprisingly, our data also revealed increased spine density in non-AD mice with exonically encoded GluA2(R) as compared to their wild-type littermates, suggesting an unexpected and previously unknown role for unedited GluA2(Q) in regulating dendritic spines. CONCLUSION The Q/R editing site of the AMPA receptor subunit GluA2 may act as an epigenetic switch that regulates dendritic spines, neurodegeneration and memory deficits in AD.
Collapse
Affiliation(s)
- Amanda L Wright
- St Vincent's Clinical School, St Vincent's Hospital Sydney, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, 2010, Australia
- School of Rural Medicine, Charles Sturt University, Orange, NSW, 2800, Australia
| | - Lyndsey M Konen
- Centre for Neuroscience and Regenerative Medicine, St Vincent's Centre for Applied Medical Research, St Vincent's Hospital Sydney, Darlinghurst, NSW, 2010, Australia
| | - Bruce G Mockett
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Box 56, Dunedin, 9054, New Zealand
| | - Gary P Morris
- Centre for Neuroscience and Regenerative Medicine, St Vincent's Centre for Applied Medical Research, St Vincent's Hospital Sydney, Darlinghurst, NSW, 2010, Australia
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7005, Australia
| | - Anurag Singh
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Box 56, Dunedin, 9054, New Zealand
| | - Lisseth Estefania Burbano
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Luke Milham
- St Vincent's Clinical School, St Vincent's Hospital Sydney, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, 2010, Australia
- Centre for Neuroscience and Regenerative Medicine, St Vincent's Centre for Applied Medical Research, St Vincent's Hospital Sydney, Darlinghurst, NSW, 2010, Australia
| | - Monica Hoang
- School of Pharmacy, University of Waterloo, Kitchener, ON, N2G 1C5, Canada
| | - Raphael Zinn
- Centre for Neuroscience and Regenerative Medicine, St Vincent's Centre for Applied Medical Research, St Vincent's Hospital Sydney, Darlinghurst, NSW, 2010, Australia
| | - Rose Chesworth
- School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Richard P Tan
- Chronic Diseases, School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, Sydney, NSW, 2050, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, 2006, Australia
| | - Gordon A Royle
- Middlemore Hospital, Counties Manukau DHB, Otahuhu, Auckland, 1062, New Zealand
- Faculty of Medical and Health Sciences, University of Auckland, Grafton, Auckland, 1023, New Zealand
| | - Ian Clark
- Research School of Biology, Australian National University, Canberra, ACT, 0200, Australia
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Wickliffe C Abraham
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Box 56, Dunedin, 9054, New Zealand
| | - Bryce Vissel
- St Vincent's Clinical School, St Vincent's Hospital Sydney, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, 2010, Australia.
- Centre for Neuroscience and Regenerative Medicine, St Vincent's Centre for Applied Medical Research, St Vincent's Hospital Sydney, Darlinghurst, NSW, 2010, Australia.
| |
Collapse
|
22
|
Pizzano S, Sterne GR, Veling MW, Xu LA, Hergenreder T, Ye B. The Drosophila homolog of APP promotes Dscam expression to drive axon terminal growth, revealing interaction between Down syndrome genes. Dis Model Mech 2023; 16:dmm049725. [PMID: 37712356 PMCID: PMC10508694 DOI: 10.1242/dmm.049725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/08/2023] [Indexed: 09/16/2023] Open
Abstract
Down syndrome (DS) is caused by triplication of human chromosome 21 (HSA21). Although several HSA21 genes have been found to be responsible for aspects of DS, whether and how HSA21 genes interact with each other is poorly understood. DS patients and animal models present with a number of neurological changes, including aberrant connectivity and neuronal morphology. Previous studies have indicated that amyloid precursor protein (APP) and Down syndrome cell adhesion molecule (DSCAM) regulate neuronal morphology and contribute to neuronal aberrations in DS. Here, we report the functional interaction between the Drosophila homologs of these two genes, Amyloid precursor protein-like (Appl) and Dscam (Dscam1). We show that Appl requires Dscam to promote axon terminal growth in sensory neurons. Moreover, Appl increases Dscam protein expression post-transcriptionally. We further demonstrate that regulation of Dscam by Appl does not require the Appl intracellular domain or second extracellular domain. This study presents an example of functional interactions between HSA21 genes, providing insights into the pathogenesis of neuronal aberrations in DS.
Collapse
Affiliation(s)
- Sarah Pizzano
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gabriella R. Sterne
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Macy W. Veling
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - L. Amanda Xu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ty Hergenreder
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bing Ye
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
23
|
Wu Y, Mumford P, Noy S, Cleverley K, Mrzyglod A, Luo D, van Dalen F, Verdoes M, Fisher EMC, Wiseman FK. Cathepsin B abundance, activity and microglial localisation in Alzheimer's disease-Down syndrome and early onset Alzheimer's disease; the role of elevated cystatin B. Acta Neuropathol Commun 2023; 11:132. [PMID: 37580797 PMCID: PMC10426223 DOI: 10.1186/s40478-023-01632-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023] Open
Abstract
Cathepsin B is a cysteine protease that is implicated in multiple aspects of Alzheimer's disease pathogenesis. The endogenous inhibitor of this enzyme, cystatin B (CSTB) is encoded on chromosome 21. Thus, individuals who have Down syndrome, a genetic condition caused by having an additional copy of chromosome 21, have an extra copy of an endogenous inhibitor of the enzyme. Individuals who have Down syndrome are also at significantly increased risk of developing early-onset Alzheimer's disease (EOAD). The impact of the additional copy of CSTB on Alzheimer's disease development in people who have Down syndrome is not well understood. Here we compared the biology of cathepsin B and CSTB in individuals who had Down syndrome and Alzheimer's disease, with disomic individuals who had Alzheimer's disease or were ageing healthily. We find that the activity of cathepsin B enzyme is decreased in the brain of people who had Down syndrome and Alzheimer's disease compared with disomic individuals who had Alzheimer's disease. This change occurs independently of an alteration in the abundance of the mature enzyme or the number of cathepsin B+ cells. We find that the abundance of CSTB is significantly increased in the brains of individuals who have Down syndrome and Alzheimer's disease compared to disomic individuals both with and without Alzheimer's disease. In mouse and human cellular preclinical models of Down syndrome, three-copies of CSTB increases CSTB protein abundance but this is not sufficient to modulate cathepsin B activity. EOAD and Alzheimer's disease-Down syndrome share many overlapping mechanisms but differences in disease occur in individuals who have trisomy 21. Understanding this biology will ensure that people who have Down syndrome access the most appropriate Alzheimer's disease therapeutics and moreover will provide unique insight into disease pathogenesis more broadly.
Collapse
Affiliation(s)
- Yixing Wu
- The UK Dementia Research Institute, University College London, Queen Square, London, WC1N 3BG, UK
| | - Paige Mumford
- The UK Dementia Research Institute, University College London, Queen Square, London, WC1N 3BG, UK
| | - Suzanna Noy
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Karen Cleverley
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Alicja Mrzyglod
- The UK Dementia Research Institute, University College London, Queen Square, London, WC1N 3BG, UK
| | - Dinghao Luo
- The UK Dementia Research Institute, University College London, Queen Square, London, WC1N 3BG, UK
| | - Floris van Dalen
- Department of Medical BioSciences, Radboudumc, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
- Institute for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Martijn Verdoes
- Department of Medical BioSciences, Radboudumc, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
- Institute for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Frances K Wiseman
- The UK Dementia Research Institute, University College London, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
24
|
Elangovan A, Babu HWS, Iyer M, Gopalakrishnan AV, Vellingiri B. Untangle the mystery behind DS-associated AD - Is APP the main protagonist? Ageing Res Rev 2023; 87:101930. [PMID: 37031726 DOI: 10.1016/j.arr.2023.101930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Amyloid precursor protein profusion in Trisomy 21, also called Down Syndrome (DS), is rooted in the genetic determination of Alzheimer's disease (AD). With the recent development in patient care, the life expectancy of DS patients has gradually increased, leading to the high prospect of AD development, consequently leading to the development of plaques of amyloid proteins and neurofibrillary tangles made of tau by the fourth decade of the patient leading to dementia. The altered gene expression resulted in cellular dysfunction due to impairment of autophagy, mitochondrial and lysosomal dysfunction, and copy number variation controlled by the additional genes in Trisomy 21. The cognitive impairment and mechanistic insights underlying DS-AD conditions have been reviewed in this article. Some recent findings regarding biomarkers and therapeutics of DS-AD conditions were highlighted in this review.
Collapse
Affiliation(s)
- Ajay Elangovan
- Stem cell and Regenerative Medicine/ Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India; Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Harysh Winster Suresh Babu
- Stem cell and Regenerative Medicine/ Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India; Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Mahalaxmi Iyer
- Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore-641021, India
| | | | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/ Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India; Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India.
| |
Collapse
|
25
|
Victorino DB, Faber J, Pinheiro DJLL, Scorza FA, Almeida ACG, Costa ACS, Scorza CA. Toward the Identification of Neurophysiological Biomarkers for Alzheimer's Disease in Down Syndrome: A Potential Role for Cross-Frequency Phase-Amplitude Coupling Analysis. Aging Dis 2023; 14:428-449. [PMID: 37008053 PMCID: PMC10017148 DOI: 10.14336/ad.2022.0906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Cross-frequency coupling (CFC) mechanisms play a central role in brain activity. Pathophysiological mechanisms leading to many brain disorders, such as Alzheimer's disease (AD), may produce unique patterns of brain activity detectable by electroencephalography (EEG). Identifying biomarkers for AD diagnosis is also an ambition among research teams working in Down syndrome (DS), given the increased susceptibility of people with DS to develop early-onset AD (DS-AD). Here, we review accumulating evidence that altered theta-gamma phase-amplitude coupling (PAC) may be one of the earliest EEG signatures of AD, and therefore may serve as an adjuvant tool for detecting cognitive decline in DS-AD. We suggest that this field of research could potentially provide clues to the biophysical mechanisms underlying cognitive dysfunction in DS-AD and generate opportunities for identifying EEG-based biomarkers with diagnostic and prognostic utility in DS-AD.
Collapse
Affiliation(s)
- Daniella B Victorino
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| | - Jean Faber
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| | - Daniel J. L. L Pinheiro
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| | - Fulvio A Scorza
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| | - Antônio C. G Almeida
- Department of Biosystems Engineering, Federal University of São João Del Rei, Minas Gerais, MG, Brazil.
| | - Alberto C. S Costa
- Division of Psychiatry, Case Western Reserve University, Cleveland, OH, United States.
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, United States.
| | - Carla A Scorza
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| |
Collapse
|
26
|
Rodríguez-Hidalgo E, García-Alba J, Novell R, Esteba-Castillo S. The Global Deterioration Scale for Down Syndrome Population (GDS-DS): A Rating Scale to Assess the Progression of Alzheimer's Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5096. [PMID: 36982004 PMCID: PMC10049652 DOI: 10.3390/ijerph20065096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The aim of this study is to adapt and validate the global deterioration scale (GDS) for the systematic tracking of Alzheimer's disease (AD) progression in a population with Down syndrome (DS). A retrospective dual-center cohort study was conducted with 83 participants with DS (46.65 ± 5.08 years) who formed the primary diagnosis (PD) group: cognitive stability (n = 48), mild cognitive impairment (n = 24), and Alzheimer's disease (n = 11). The proposed scale for adults with DS (GDS-DS) comprises six stages, from cognitive and/or behavioral stability to advanced AD. Two neuropsychologists placed the participants of the PD group in each stage of the GDS-DS according to cognitive, behavioral and daily living skills data. Inter-rater reliability in staging with the GDS-DS was excellent (ICC = 0.86; CI: 0.80-0.93), and the agreement with the diagnosis categories of the PD group ranged from substantial to excellent with κ values of 0.82 (95% CI: 0.73-0.92) and 0.85 (95% CI: 0.72, 0.99). Performance with regard to the CAMCOG-DS total score and orientation subtest of the Barcelona test for intellectual disability showed a slight progressive decline across all the GDS-DS stages. The GDS-DS scale is a sensitive tool for staging the progression of AD in the DS population, with special relevance in daily clinical practice.
Collapse
Affiliation(s)
- Emili Rodríguez-Hidalgo
- Specialized Service in Mental Health and Intellectual Disability, Institute of Health Assistance (IAS), Parc Hospitalari Martí i Julià, 17190 Girona, Spain
- Neurodevelopmental Group [Girona Biomedical Research Institute]-IDIBGI, Institute of Health Assistance (IAS), Parc Hospitalari Martí i Julià, 17190 Girona, Spain
| | - Javier García-Alba
- Research and Psychology in Education Department, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ramon Novell
- Specialized Service in Mental Health and Intellectual Disability, Institute of Health Assistance (IAS), Parc Hospitalari Martí i Julià, 17190 Girona, Spain
- Neurodevelopmental Group [Girona Biomedical Research Institute]-IDIBGI, Institute of Health Assistance (IAS), Parc Hospitalari Martí i Julià, 17190 Girona, Spain
| | - Susanna Esteba-Castillo
- Specialized Service in Mental Health and Intellectual Disability, Institute of Health Assistance (IAS), Parc Hospitalari Martí i Julià, 17190 Girona, Spain
- Neurodevelopmental Group [Girona Biomedical Research Institute]-IDIBGI, Institute of Health Assistance (IAS), Parc Hospitalari Martí i Julià, 17190 Girona, Spain
| |
Collapse
|
27
|
Mehta RI, Mehta RI. The Vascular-Immune Hypothesis of Alzheimer's Disease. Biomedicines 2023; 11:408. [PMID: 36830944 PMCID: PMC9953491 DOI: 10.3390/biomedicines11020408] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating and irreversible neurodegenerative disorder with unknown etiology. While its cause is unclear, a number of theories have been proposed to explain the pathogenesis of AD. In large part, these have centered around potential causes for intracerebral accumulation of beta-amyloid (βA) and tau aggregates. Yet, persons with AD dementia often exhibit autopsy evidence of mixed brain pathologies including a myriad of vascular changes, vascular brain injuries, complex brain inflammation, and mixed protein inclusions in addition to hallmark neuropathologic lesions of AD, namely insoluble βA plaques and neurofibrillary tangles (NFTs). Epidemiological data demonstrate that overlapping lesions diminish the βA plaque and NFT threshold necessary to precipitate clinical dementia. Moreover, a subset of persons who exhibit AD pathology remain resilient to disease while other persons with clinically-defined AD dementia do not exhibit AD-defining neuropathologic lesions. It is increasingly recognized that AD is a pathologically heterogeneous and biologically multifactorial disease with uncharacterized biologic phenomena involved in its genesis and progression. Here, we review the literature with regard to neuropathologic criteria and incipient AD changes, and discuss converging concepts regarding vascular and immune factors in AD.
Collapse
Affiliation(s)
- Rashi I. Mehta
- Department of Neuroradiology, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Rupal I. Mehta
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
28
|
Raval M, Mishra S, Tiwari AK. Epigenetic regulons in Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:185-247. [DOI: 10.1016/bs.pmbts.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
29
|
Gomes FDC, Santos IBF, Stephani CM, Ferrari MDFR, Galvis-Alonso OY, Goloni-Bertollo EM, Melo-Neto JSD, Pavarino ÉC. Vitamin D3 supplementation may attenuate morphological and molecular abnormalities of the olfactory bulb in a mouse model of Down syndrome. Tissue Cell 2022; 78:101898. [DOI: 10.1016/j.tice.2022.101898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/28/2022]
|
30
|
Panagaki T, Pecze L, Randi EB, Nieminen AI, Szabo C. Role of the cystathionine β-synthase / H 2S pathway in the development of cellular metabolic dysfunction and pseudohypoxia in down syndrome. Redox Biol 2022; 55:102416. [PMID: 35921774 PMCID: PMC9356176 DOI: 10.1016/j.redox.2022.102416] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/10/2022] [Accepted: 07/17/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Overexpression of the transsulfuration enzyme cystathionine-β-synthase (CBS), and overproduction of its product, hydrogen sulfide (H2S) are recognized as potential pathogenetic factors in Down syndrome (DS). The purpose of the study was to determine how the mitochondrial function and core metabolic pathways are affected by DS and how pharmacological inhibition of CBS affects these parameters. METHODS 8 human control and 8 human DS fibroblast cell lines have been subjected to bioenergetic and fluxomic and proteomic analysis with and without treatment with a pharmacological inhibitor of CBS. RESULTS DS cells exhibited a significantly higher CBS expression than control cells, and produced more H2S. They also exhibited suppressed mitochondrial electron transport and oxygen consumption and suppressed Complex IV activity, impaired cell proliferation and increased ROS generation. Inhibition of H2S biosynthesis with aminooxyacetic acid reduced cellular H2S, improved cellular bioenergetics, attenuated ROS and improved proliferation. 13C glucose fluxomic analysis revealed that DS cells exhibit a suppression of the Krebs cycle activity with a compensatory increase in glycolysis. CBS inhibition restored the flux from glycolysis to the Krebs cycle and reactivated oxidative phosphorylation. Proteomic analysis revealed no CBS-dependent alterations in the expression level of the enzymes involved in glycolysis, oxidative phosphorylation and the pentose phosphate pathway. DS was associated with the dysregulation of several components of the autophagy network; CBS inhibition normalized several of these parameters. CONCLUSIONS Increased H2S generation in DS promotes pseudohypoxia and contributes to cellular metabolic dysfunction by causing a shift from oxidative phosphorylation to glycolysis.
Collapse
Affiliation(s)
- Theodora Panagaki
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Laszlo Pecze
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Elisa B Randi
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Anni I Nieminen
- Metabolomics Unit, Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Csaba Szabo
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
31
|
Mumford P, Tosh J, Anderle S, Gkanatsiou Wikberg E, Lau G, Noy S, Cleverley K, Saito T, Saido TC, Yu E, Brinkmalm G, Portelius E, Blennow K, Zetterberg H, Tybulewicz V, Fisher EMC, Wiseman FK. Genetic Mapping of APP and Amyloid-β Biology Modulation by Trisomy 21. J Neurosci 2022; 42:6453-6468. [PMID: 35835549 PMCID: PMC9398545 DOI: 10.1523/jneurosci.0521-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/03/2022] [Accepted: 06/18/2022] [Indexed: 12/04/2022] Open
Abstract
Individuals who have Down syndrome (DS) frequently develop early onset Alzheimer's disease (AD), a neurodegenerative condition caused by the buildup of aggregated amyloid-β (Aβ) and tau proteins in the brain. Aβ is produced by amyloid precursor protein (APP), a gene located on chromosome 21. People who have DS have three copies of chromosome 21 and thus also an additional copy of APP; this genetic change drives the early development of AD in these individuals. Here we use a combination of next-generation mouse models of DS (Tc1, Dp3Tyb, Dp(10)2Yey and Dp(17)3Yey) and a knockin mouse model of Aβ accumulation (AppNL-F ) to determine how chromosome 21 genes, other than APP, modulate APP/Aβ in the brain when in three copies. Using both male and female mice, we demonstrate that three copies of other chromosome 21 genes are sufficient to partially ameliorate Aβ accumulation in the brain. We go on to identify a subregion of chromosome 21 that contains the gene(s) causing this decrease in Aβ accumulation and investigate the role of two lead candidate genes, Dyrk1a and Bace2 Thus, an additional copy of chromosome 21 genes, other than APP, can modulate APP/Aβ in the brain under physiological conditions. This work provides critical mechanistic insight into the development of disease and an explanation for the typically later age of onset of dementia in people who have AD in DS, compared with those who have familial AD caused by triplication of APP SIGNIFICANCE STATEMENT Trisomy of chromosome 21 is a commonly occurring genetic risk factor for early-onset Alzheimer's disease (AD), which has been previously attributed to people with Down syndrome having three copies of the amyloid precursor protein (APP) gene, which is encoded on chromosome 21. However, we have shown that an extra copy of other chromosome 21 genes modifies AD-like phenotypes independently of APP copy number (Wiseman et al., 2018; Tosh et al., 2021). Here, we use a mapping approach to narrow down the genetic cause of the modulation of pathology, demonstrating that gene(s) on chromosome 21 decrease Aβ accumulation in the brain, independently of alterations to full-length APP or C-terminal fragment abundance and that just 38 genes are sufficient to cause this.
Collapse
Affiliation(s)
- Paige Mumford
- The UK Dementia Research Institute, University College London, London, WC1N 3BG, United Kingdom
| | - Justin Tosh
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - Silvia Anderle
- The UK Dementia Research Institute, University College London, London, WC1N 3BG, United Kingdom
| | - Eleni Gkanatsiou Wikberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg S-431 80, Sweden
| | - Gloria Lau
- The UK Dementia Research Institute, University College London, London, WC1N 3BG, United Kingdom
| | - Sue Noy
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - Karen Cleverley
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako-shi, Saitama Japan, 351-0198
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako-shi, Saitama Japan, 351-0198
| | - Eugene Yu
- Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Children's Guild Foundation Down Syndrome Research Program, Buffalo, New York NY 14263
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg S-431 80, Sweden
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg S-431 80, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg S-431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal S-43180, Sweden
| | - Henrik Zetterberg
- The UK Dementia Research Institute, University College London, London, WC1N 3BG, United Kingdom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg S-431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal S-43180, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Victor Tybulewicz
- The Francis Crick Institute, London, NW1 1AT, United Kingdom
- Department of Immunology and Inflammation, Imperial College, London, W12 0NN, United Kingdom
- LonDownS: London Down Syndrome Consortium
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
- LonDownS: London Down Syndrome Consortium
| | - Frances K Wiseman
- The UK Dementia Research Institute, University College London, London, WC1N 3BG, United Kingdom
- LonDownS: London Down Syndrome Consortium
| |
Collapse
|
32
|
Sacco S, Falquero S, Bouis C, Akkaya M, Gallard J, Pichot A, Radice G, Bazin F, Montestruc F, Hiance-Delahaye A, Rebillat AS. Modified cued recall test in the French population with Down syndrome: A retrospective medical records analysis. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2022; 66:690-703. [PMID: 35726628 DOI: 10.1111/jir.12957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 05/03/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Adults with Down syndrome (DS) are at increased risk of developing Alzheimer's disease (AD) due to genetic predisposition. Identification of patients with AD is difficult since intellectual disabilities (ID) may confound diagnosis. The objective of this study was to evaluate the ability of the French version of the modified cued recall test (mCRT) to distinguish between subjects with and without AD in the adult DS population. METHODS This was a retrospective, single-centre, medical records study including data between March 2014 and July 2020. Adults aged ≥30 years with DS who had at least one mCRT record available were eligible. Age, sex and ID level were extracted, and subjects were attributed to three groups: patients with AD, patients with co-occurring conditions that may impact cognitive function and subjects without AD. mCRT scores, adjusted by sex, age and ID level, were compared between groups. The optimal cut-off value to distinguish between patients with and without AD was determined using the receiver operating characteristic curve. The impact of age and ID level on mCRT scores was assessed. RESULTS Overall, 194 patients with DS were included: 12 patients with AD, 94 patients with co-occurring conditions and 88 healthy subjects. Total recall scores were significantly lower (P < 0.0001) in patients with AD compared with healthy subjects. The optimal cut-off value to discriminate between patients with AD and healthy subjects was 22, which compares well with the cut-off value of 23 originally reported for the English version of the mCRT. Patients aged 30-44 years had higher mCRT total recall scores compared with patients aged ≥45 years (P = 0.0221). Similarly, patients with mild ID had higher mCRT scores compared with patients with severe ID (P < 0.0001). INTERPRETATION The mCRT is a sensitive tool that may help in the clinical diagnosis of AD in subjects with DS. Early recognition of AD is paramount to deliver appropriate interventions to this vulnerable population.
Collapse
Affiliation(s)
- S Sacco
- Institut Jérôme Lejeune, Paris, France
| | | | - C Bouis
- Institut Jérôme Lejeune, Paris, France
| | - M Akkaya
- Institut Jérôme Lejeune, Paris, France
| | - J Gallard
- Institut Jérôme Lejeune, Paris, France
| | - A Pichot
- Institut Jérôme Lejeune, Paris, France
| | - G Radice
- Institut Jérôme Lejeune, Paris, France
| | - F Bazin
- Department of Statistics, eXYSTAT, Paris, France
| | - F Montestruc
- Department of Statistics, eXYSTAT, Paris, France
| | | | | |
Collapse
|
33
|
Curtis ME, Smith T, Blass BE, Praticò D. Dysfunction of the retromer complex system contributes to amyloid and tau pathology in a stem cell model of Down syndrome. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12334. [PMID: 35910668 PMCID: PMC9322819 DOI: 10.1002/trc2.12334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022]
Abstract
Introduction Retromer complex proteins are decreased in Down syndrome (DS) brains and correlate inversely with brain amyloidosis. However, whether retromer dysfunction contributes to the amyloid beta (Aβ) and tau neuropathology of DS remains unknown. Methods Human trisomic induced Pluripotent Stem Cells (iPSCs) and isogenic controls were differentiated into forebrain neurons, and changes in retromer proteins, tau phosphorylated epitopes, and Aβ levels were assessed in euploid and trisomic neurons using western blot and enzyme-linked immunosorbent assay (ELISA). Genetic overexpression and pharmacological retromer stabilization were used to determine the functional role of the retromer complex system in modulating amyloid and tau pathology. Results Trisomic neurons developed age-dependent retromer core protein deficiency associated with accumulation of Aβ peptides and phosphorylated tau isoforms. Enhancing retromer function through overexpression or pharmacological retromer stabilization reduced amyloid and tau pathology in trisomic neurons. However, the effect was greater using a pharmacological approach, suggesting that targeting the complex stability may be more effective in addressing this neuropathology in DS. Discussion Our results demonstrate that the retromer complex is directly involved in the development of the neuropathologic phenotype in DS, and that pharmacological stabilization of the complex should be considered as a novel therapeutic tool in people with DS.
Collapse
Affiliation(s)
- Mary Elizabeth Curtis
- Alzheimer's Center at TempleLewis Katz School of MedicineTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Tiffany Smith
- Alzheimer's Center at TempleLewis Katz School of MedicineTemple UniversityPhiladelphiaPennsylvaniaUSA
| | | | - Domenico Praticò
- Alzheimer's Center at TempleLewis Katz School of MedicineTemple UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
34
|
Zhu B, Parsons T, Stensen W, Mjøen Svendsen JS, Fugelli A, Hodge JJL. DYRK1a Inhibitor Mediated Rescue of Drosophila Models of Alzheimer’s Disease-Down Syndrome Phenotypes. Front Pharmacol 2022; 13:881385. [PMID: 35928283 PMCID: PMC9345315 DOI: 10.3389/fphar.2022.881385] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease which is becoming increasingly prevalent due to ageing populations resulting in huge social, economic, and health costs to the community. Despite the pathological processing of genes such as Amyloid Precursor Protein (APP) into Amyloid-β and Microtubule Associated Protein Tau (MAPT) gene, into hyperphosphorylated Tau tangles being known for decades, there remains no treatments to halt disease progression. One population with increased risk of AD are people with Down syndrome (DS), who have a 90% lifetime incidence of AD, due to trisomy of human chromosome 21 (HSA21) resulting in three copies of APP and other AD-associated genes, such as DYRK1A (Dual specificity tyrosine-phosphorylation-regulated kinase 1A) overexpression. This suggests that blocking DYRK1A might have therapeutic potential. However, it is still not clear to what extent DYRK1A overexpression by itself leads to AD-like phenotypes and how these compare to Tau and Amyloid-β mediated pathology. Likewise, it is still not known how effective a DYRK1A antagonist may be at preventing or improving any Tau, Amyloid-β and DYRK1a mediated phenotype. To address these outstanding questions, we characterised Drosophila models with targeted overexpression of human Tau, human Amyloid-β or the fly orthologue of DYRK1A, called minibrain (mnb). We found targeted overexpression of these AD-associated genes caused degeneration of photoreceptor neurons, shortened lifespan, as well as causing loss of locomotor performance, sleep, and memory. Treatment with the experimental DYRK1A inhibitor PST-001 decreased pathological phosphorylation of human Tau [at serine (S) 262]. PST-001 reduced degeneration caused by human Tau, Amyloid-β or mnb lengthening lifespan as well as improving locomotion, sleep and memory loss caused by expression of these AD and DS genes. This demonstrated PST-001 effectiveness as a potential new therapeutic targeting AD and DS pathology.
Collapse
Affiliation(s)
- Bangfu Zhu
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Science, University of Bristol, Bristol, United Kingdom
| | - Tom Parsons
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Science, University of Bristol, Bristol, United Kingdom
| | - Wenche Stensen
- Department of Chemistry, The Arctic University of Norway, Tromsø, Norway
- Pharmasum Therapeutics AS, ShareLab, Forskningsparken i Oslo, Oslo, Norway
| | - John S. Mjøen Svendsen
- Department of Chemistry, The Arctic University of Norway, Tromsø, Norway
- Pharmasum Therapeutics AS, ShareLab, Forskningsparken i Oslo, Oslo, Norway
| | - Anders Fugelli
- Pharmasum Therapeutics AS, ShareLab, Forskningsparken i Oslo, Oslo, Norway
| | - James J. L. Hodge
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Science, University of Bristol, Bristol, United Kingdom
- *Correspondence: James J. L. Hodge,
| |
Collapse
|
35
|
Martini AC, Gross TJ, Head E, Mapstone M. Beyond amyloid: Immune, cerebrovascular, and metabolic contributions to Alzheimer disease in people with Down syndrome. Neuron 2022; 110:2063-2079. [PMID: 35472307 PMCID: PMC9262826 DOI: 10.1016/j.neuron.2022.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 12/16/2022]
Abstract
People with Down syndrome (DS) have increased risk of Alzheimer disease (AD), presumably conferred through genetic predispositions arising from trisomy 21. These predispositions necessarily include triplication of the amyloid precursor protein (APP), but also other Ch21 genes that confer risk directly or through interactions with genes on other chromosomes. We discuss evidence that multiple genes on chromosome 21 are associated with metabolic dysfunction in DS. The resulting dysregulated pathways involve the immune system, leading to chronic inflammation; the cerebrovascular system, leading to disruption of the blood brain barrier (BBB); and cellular energy metabolism, promoting increased oxidative stress. In combination, these disruptions may produce a precarious biological milieu that, in the presence of accumulating amyloid, drives the pathophysiological cascade of AD in people with DS. Critically, mechanistic drivers of this dysfunction may be targetable in future clinical trials of pharmaceutical and/or lifestyle interventions.
Collapse
Affiliation(s)
- Alessandra C Martini
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Thomas J Gross
- Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Mark Mapstone
- Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
36
|
Involvement of the HERV-derived cell-fusion inhibitor, suppressyn, in the fusion defects characteristic of the trisomy 21 placenta. Sci Rep 2022; 12:10552. [PMID: 35732788 PMCID: PMC9218086 DOI: 10.1038/s41598-022-14104-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/01/2022] [Indexed: 01/10/2023] Open
Abstract
Suppressyn (SUPYN) is the first host-cell encoded mammalian protein shown to inhibit cell–cell fusion. Its expression is restricted to the placenta, where it negatively regulates syncytia formation in villi. Since its chromosomal localization overlaps with the Down syndrome critical region and the TS21 placenta is characterized by delayed maturation of cytotrophoblast cells and reduced syncytialization, we hypothesized a potential link between changes in SUPYN expression and morphologic abnormalities in the TS21 placenta. Here we demonstrate that an increase in chromosomal copy number in the TS21 placenta is associated with: (1) reduced fusion of cytotrophoblast cells into syncytiotrophoblast in vivo, (2) increased SUPYN transcription, translation and secretion in vivo, (3) increased SUPYN/syncytin-1 receptor degradation in vivo, (4) increased SUPYN transcription and secretion ex vivo, (5) decreased cytotrophoblast cell fusion ex vivo, and (6) reciprocal response of changes in SUPYN and CGB in TS21 placental cells ex vivo. These data suggest direct links between immature placentation in Down syndrome and increased SUPYN. Finally, we report a significant increase in secreted SUPYN concentration in maternal serum in women with pregnancies affected by Down syndrome, suggesting that SUPYN may be useful as an alternate or additional diagnostic marker for this disease.
Collapse
|
37
|
Farrell C, Mumford P, Wiseman FK. Rodent Modeling of Alzheimer's Disease in Down Syndrome: In vivo and ex vivo Approaches. Front Neurosci 2022; 16:909669. [PMID: 35747206 PMCID: PMC9209729 DOI: 10.3389/fnins.2022.909669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 12/30/2022] Open
Abstract
There are an estimated 6 million people with Down syndrome (DS) worldwide. In developed countries, the vast majority of these individuals will develop Alzheimer's disease neuropathology characterized by the accumulation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles within the brain, which leads to the early onset of dementia (AD-DS) and reduced life-expectancy. The mean age of onset of clinical dementia is ~55 years and by the age of 80, approaching 100% of individuals with DS will have a dementia diagnosis. DS is caused by trisomy of chromosome 21 (Hsa21) thus an additional copy of a gene(s) on the chromosome must cause the development of AD neuropathology and dementia. Indeed, triplication of the gene APP which encodes the amyloid precursor protein is sufficient and necessary for early onset AD (EOAD), both in people who have and do not have DS. However, triplication of other genes on Hsa21 leads to profound differences in neurodevelopment resulting in intellectual disability, elevated incidence of epilepsy and perturbations to the immune system. This different biology may impact on how AD neuropathology and dementia develops in people who have DS. Indeed, genes on Hsa21 other than APP when in three-copies can modulate AD-pathogenesis in mouse preclinical models. Understanding this biology better is critical to inform drug selection for AD prevention and therapy trials for people who have DS. Here we will review rodent preclinical models of AD-DS and how these can be used for both in vivo and ex vivo (cultured cells and organotypic slice cultures) studies to understand the mechanisms that contribute to the early development of AD in people who have DS and test the utility of treatments to prevent or delay the development of disease.
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW This article provides an overview of the neuropathology of common age-related dementing disorders, focusing on the pathologies that underlie Alzheimer disease (AD) and related dementias, including Lewy body dementias, frontotemporal dementia, vascular dementia, limbic-predominant age-related transactive response DNA-binding protein 43 (TDP-43) encephalopathy (LATE), and mixed-etiology dementias. This article also discusses the underlying proteinopathies of neurodegenerative diseases (eg, amyloid-β, paired helical filament tau, α-synuclein, and TDP-43 pathology) and vascular pathologies, including tissue injury (eg, infarcts, hemorrhages) with or without vessel disease. RECENT FINDINGS New criteria for AD pathologic diagnosis highlight amyloid-β as the sine qua non of AD; they require molecular markers of amyloid and establish a minimum threshold of Braak neurofibrillary tangle stage 3. Pathologic diagnosis is separated from clinical disease (ie, pathologic diagnosis no longer requires dementia). TDP-43 pathology, a major pathology in a frontotemporal dementia subtype, was found as a central pathology in LATE, a newly named amnestic disorder. Multiple pathologies (often co-occurring with AD) contribute to dementia and add complexity to the clinical picture. Conversely, Lewy body, LATE, and vascular dementias often have accompanying AD pathology. Pathology and biomarker studies highlight subclinical pathologies in older people without cognitive impairment. This resilience to brain pathology is common and is known as cognitive reserve. SUMMARY The pathologies of dementia in aging are most commonly amyloid, tangles, Lewy bodies, TDP-43, hippocampal sclerosis, and vascular pathologies. These pathologies often co-occur (mixed pathologies), which may make specific clinical diagnoses difficult. In addition, dementia-related pathologies are often subclinical, suggesting varying levels of resilience in older people.
Collapse
|
39
|
de Oliveira LC, de Paula Faria D. Pharmacological Approaches to the Treatment of Dementia in Down Syndrome: A Systematic Review of Randomized Clinical Studies. Molecules 2022; 27:3244. [PMID: 35630721 PMCID: PMC9147973 DOI: 10.3390/molecules27103244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 12/20/2022] Open
Abstract
Down Syndrome (DS) is considered the most frequent form of Intellectual Disability, with important expressions of cognitive decline and early dementia. Studies on potential treatments for dementia in this population are still scarce. Thus, the current review aims to synthesize the different pharmacological approaches that already exist in the literature, which focus on improving the set of symptoms related to dementia in people with DS. A total of six studies were included, evaluating the application of supplemental antioxidant therapies, such as alpha-tocopherol; the use of acetylcholinesterase inhibitor drugs, such as donepezil; N-methyl-d-aspartate (NMDA) receptor antagonists, such as memantine; and the use of vitamin E and a fast-acting intranasal insulin. Two studies observed important positive changes related to some general functions in people with DS (referring to donepezil). In the majority of studies, the use of pharmacological therapies did not lead to improvement in the set of symptoms related to dementia, such as memory and general functionality, in the population with DS.
Collapse
Affiliation(s)
| | - Daniele de Paula Faria
- Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, SP, Brazil;
| |
Collapse
|
40
|
Cannavo C, Cleverley K, Maduro C, Mumford P, Moulding D, Fisher EMC, Wiseman FK. Endosomal structure and APP biology are not altered in a preclinical mouse cellular model of Down syndrome. PLoS One 2022; 17:e0262558. [PMID: 35544526 PMCID: PMC9094519 DOI: 10.1371/journal.pone.0262558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
Abstract
Individuals who have Down syndrome (trisomy 21) are at greatly increased risk of developing Alzheimer's disease, characterised by the accumulation in the brain of amyloid-β plaques. Amyloid-β is a product of the processing of the amyloid precursor protein, encoded by the APP gene on chromosome 21. In Down syndrome the first site of amyloid-β accumulation is within endosomes, and changes to endosome biology occur early in Alzheimer's disease. Here, we determine if primary mouse embryonic fibroblasts isolated from a mouse model of Down syndrome can be used to study endosome and APP cell biology. We report that in this cellular model, endosome number, size and APP processing are not altered, likely because APP is not dosage sensitive in the model, despite three copies of App.
Collapse
Affiliation(s)
- Claudia Cannavo
- UK Dementia Research Institute, UCL Queen Square Institute of Neurology, London, United Kingdom
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Karen Cleverley
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Cheryl Maduro
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Paige Mumford
- UK Dementia Research Institute, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Dale Moulding
- Light Microscopy Core Facility, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Elizabeth M. C. Fisher
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Frances K. Wiseman
- UK Dementia Research Institute, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
41
|
Iulita MF, Garzón Chavez D, Klitgaard Christensen M, Valle Tamayo N, Plana-Ripoll O, Rasmussen SA, Roqué Figuls M, Alcolea D, Videla L, Barroeta I, Benejam B, Altuna M, Padilla C, Pegueroles J, Fernandez S, Belbin O, Carmona-Iragui M, Blesa R, Lleó A, Bejanin A, Fortea J. Association of Alzheimer Disease With Life Expectancy in People With Down Syndrome. JAMA Netw Open 2022; 5:e2212910. [PMID: 35604690 PMCID: PMC9127560 DOI: 10.1001/jamanetworkopen.2022.12910] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
IMPORTANCE People with Down syndrome have a high risk of developing Alzheimer disease dementia. However, penetrance and age at onset are considered variable, and the association of this disease with life expectancy remains unclear because of underreporting in death certificates. OBJECTIVE To assess whether the variability in symptom onset of Alzheimer disease in Down syndrome is similar to autosomal dominant Alzheimer disease and to assess its association with mortality. DESIGN, SETTING, AND PARTICIPANTS This study combines a meta-analysis with the assessment of mortality data from US death certificates (n = 77 347 case records with a International Classification of Diseases code for Down syndrome between 1968 to 2019; 37 900 [49%] female) and from a longitudinal cohort study (n = 889 individuals; 46% female; 3.2 [2.1] years of follow-up) from the Down Alzheimer Barcelona Neuroimaging Initiative (DABNI). MAIN OUTCOMES AND MEASURES A meta-analysis was conducted to investigate the age at onset, age at death, and duration of Alzheimer disease dementia in Down syndrome. PubMed/Medline, Embase, Web of Science, and CINAHL were searched for research reports, and OpenGray was used for gray literature. Studies with data about the age at onset or diagnosis, age at death, and disease duration were included. Pooled estimates with corresponding 95% CIs were calculated using random-effects meta-analysis. The variability in disease onset was compared with that of autosomal dominant Alzheimer disease. Based on these estimates, a hypothetical distribution of age at death was constructed, assuming fully penetrant Alzheimer disease. These results were compared with real-world mortality data. RESULTS In this meta-analysis, the estimate of age at onset was 53.8 years (95% CI, 53.1-54.5 years; n = 2695); the estimate of age at death, 58.4 years (95% CI, 57.2-59.7 years; n = 324); and the estimate of disease duration, 4.6 years (95% CI, 3.7-5.5 years; n = 226). Coefficients of variation and 95% prediction intervals of age at onset were comparable with those reported in autosomal dominant Alzheimer disease. US mortality data revealed an increase in life expectancy in Down syndrome (median [IQR], 1 [0.3-16] years in 1968 to 57 [49-61] years in 2019), but with clear ceiling effects in the highest percentiles of age at death in the last decades (90th percentile: 1990, age 63 years; 2019, age 65 years). The mortality data matched the limits projected by a distribution assuming fully penetrant Alzheimer disease in up to 80% of deaths (corresponding to the highest percentiles). This contrasts with dementia mentioned in 30% of death certificates but is in agreement with the mortality data in DABNI (78.9%). Important racial disparities persisted in 2019, being more pronounced in the lower percentiles (10th percentile: Black individuals, 1 year; White individuals, 30 years) than in the higher percentiles (90th percentile: Black individuals, 64 years; White individuals, 66 years). CONCLUSIONS AND RELEVANCE These findings suggest that the mortality data and the consistent age at onset were compatible with fully penetrant Alzheimer disease. Lifespan in persons with Down syndrome will not increase until disease-modifying treatments for Alzheimer disease are available.
Collapse
Affiliation(s)
- Maria Florencia Iulita
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | - Diana Garzón Chavez
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | | | - Natalia Valle Tamayo
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | | | - Sonja A. Rasmussen
- Departments of Pediatrics and Obstetrics and Gynecology, University of Florida College of Medicine, Gainesville, Florida
- Department of Epidemiology, University of Florida College of Public Health and Health Professions and College of Medicine, Gainesville, Florida
| | - Marta Roqué Figuls
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau, Barcelona, Spain
| | - Daniel Alcolea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | - Laura Videla
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Isabel Barroeta
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | - Bessy Benejam
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Miren Altuna
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | - Concepción Padilla
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | - Jordi Pegueroles
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | - Susana Fernandez
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Olivia Belbin
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | - María Carmona-Iragui
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Rafael Blesa
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | - Alberto Lleó
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | - Alexandre Bejanin
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| |
Collapse
|
42
|
Wu CI, Vinton EA, Pearse RV, Heo K, Aylward AJ, Hsieh YC, Bi Y, Adeleye S, Fancher S, Duong DM, Seyfried NT, Schwarz TL, Young-Pearse TL. APP and DYRK1A regulate axonal and synaptic vesicle protein networks and mediate Alzheimer's pathology in trisomy 21 neurons. Mol Psychiatry 2022; 27:1970-1989. [PMID: 35194165 PMCID: PMC9133025 DOI: 10.1038/s41380-022-01454-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 01/18/2022] [Indexed: 11/09/2022]
Abstract
Trisomy 21 (T21) causes Down syndrome and an early-onset form of Alzheimer's disease (AD). Here, we used human induced pluripotent stem cells (hiPSCs) along with CRISPR-Cas9 gene editing to investigate the contribution of chromosome 21 candidate genes to AD-relevant neuronal phenotypes. We utilized a direct neuronal differentiation protocol to bypass neurodevelopmental cell fate phenotypes caused by T21 followed by unbiased proteomics and western blotting to define the proteins dysregulated in T21 postmitotic neurons. We show that normalization of copy number of APP and DYRK1A each rescue elevated tau phosphorylation in T21 neurons, while reductions of RCAN1 and SYNJ1 do not. To determine the T21 alterations relevant to early-onset AD, we identified common pathways altered in familial Alzheimer's disease neurons and determined which of these were rescued by normalization of APP and DYRK1A copy number in T21 neurons. These studies identified disruptions in T21 neurons in both the axonal cytoskeletal network and presynaptic proteins that play critical roles in axonal transport and synaptic vesicle cycling. These alterations in the proteomic profiles have functional consequences: fAD and T21 neurons exhibit dysregulated axonal trafficking and T21 neurons display enhanced synaptic vesicle release. Taken together, our findings provide insights into the initial molecular alterations within neurons that ultimately lead to synaptic loss and axonal degeneration in Down syndrome and early-onset AD.
Collapse
Affiliation(s)
- Chun-I Wu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Elizabeth A Vinton
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Richard V Pearse
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Keunjung Heo
- Harvard Medical School, Boston, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Aimee J Aylward
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Yi-Chen Hsieh
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yan Bi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Sopefoluwa Adeleye
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Seeley Fancher
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Duc M Duong
- Department of Biochemistry, Emory School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory School of Medicine, Atlanta, GA, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory School of Medicine, Atlanta, GA, USA
| | - Thomas L Schwarz
- Harvard Medical School, Boston, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
43
|
Cell models for Down syndrome-Alzheimer’s disease research. Neuronal Signal 2022; 6:NS20210054. [PMID: 35449591 PMCID: PMC8996251 DOI: 10.1042/ns20210054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022] Open
Abstract
Down syndrome (DS) is the most common chromosomal abnormality and leads to intellectual disability, increased risk of cardiac defects, and an altered immune response. Individuals with DS have an extra full or partial copy of chromosome 21 (trisomy 21) and are more likely to develop early-onset Alzheimer’s disease (AD) than the general population. Changes in expression of human chromosome 21 (Hsa21)-encoded genes, such as amyloid precursor protein (APP), play an important role in the pathogenesis of AD in DS (DS-AD). However, the mechanisms of DS-AD remain poorly understood. To date, several mouse models with an extra copy of genes syntenic to Hsa21 have been developed to characterise DS-AD-related phenotypes. Nonetheless, due to genetic and physiological differences between mouse and human, mouse models cannot faithfully recapitulate all features of DS-AD. Cells differentiated from human-induced pluripotent stem cells (iPSCs), isolated from individuals with genetic diseases, can be used to model disease-related cellular and molecular pathologies, including DS. In this review, we will discuss the limitations of mouse models of DS and how these can be addressed using recent advancements in modelling DS using human iPSCs and iPSC-mouse chimeras, and potential applications of iPSCs in preclinical studies for DS-AD.
Collapse
|
44
|
Zheng Q, Song B, Li G, Cai F, Wu M, Zhao Y, Jiang L, Guo T, Shen M, Hou H, Zhou Y, Zhao Y, Di A, Zhang L, Zeng F, Zhang XF, Luo H, Zhang X, Zhang H, Zeng Z, Huang TY, Dong C, Qing H, Zhang Y, Zhang Q, Wang X, Wu Y, Xu H, Song W, Wang X. USP25 inhibition ameliorates Alzheimer's pathology through the regulation of APP processing and Aβ generation. J Clin Invest 2022; 132:152170. [PMID: 35229730 PMCID: PMC8884900 DOI: 10.1172/jci152170] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/11/2022] [Indexed: 02/02/2023] Open
Abstract
Down syndrome (DS), or trisomy 21, is one of the critical risk factors for early-onset Alzheimer’s disease (AD), implicating key roles for chromosome 21–encoded genes in the pathogenesis of AD. We previously identified a role for the deubiquitinase USP25, encoded on chromosome 21, in regulating microglial homeostasis in the AD brain; however, whether USP25 affects amyloid pathology remains unknown. Here, by crossing 5×FAD AD and Dp16 DS mice, we observed that trisomy 21 exacerbated amyloid pathology in the 5×FAD brain. Moreover, bacterial artificial chromosome (BAC) transgene–mediated USP25 overexpression increased amyloid deposition in the 5×FAD mouse brain, whereas genetic deletion of Usp25 reduced amyloid deposition. Furthermore, our results demonstrate that USP25 promoted β cleavage of APP and Aβ generation by reducing the ubiquitination and lysosomal degradation of both APP and BACE1. Importantly, pharmacological inhibition of USP25 ameliorated amyloid pathology in the 5×FAD mouse brain. In summary, we identified the DS-related gene USP25 as a critical regulator of AD pathology, and our data suggest that USP25 serves as a potential pharmacological target for AD drug development.
Collapse
Affiliation(s)
- Qiuyang Zheng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Beibei Song
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guilin Li
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Fang Cai
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Meiling Wu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yingjun Zhao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - LuLin Jiang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Tiantian Guo
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Mingyu Shen
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Huan Hou
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ying Zhou
- Department of Translational Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Yini Zhao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Anjie Di
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lishan Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Fanwei Zeng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiu-Fang Zhang
- Department of Pediatrics, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Hong Luo
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xian Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Hongfeng Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhiping Zeng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Chen Dong
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yun Zhang
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Qing Zhang
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xu Wang
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, China
| | - Yili Wu
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, China
| | - Huaxi Xu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada.,Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, China
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
45
|
Saitoh S. Endosomal Recycling Defects and Neurodevelopmental Disorders. Cells 2022; 11:cells11010148. [PMID: 35011709 PMCID: PMC8750115 DOI: 10.3390/cells11010148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/22/2021] [Accepted: 01/01/2022] [Indexed: 02/01/2023] Open
Abstract
The quality and quantity of membrane proteins are precisely and dynamically maintained through an endosomal recycling process. This endosomal recycling is executed by two protein complexes: retromer and recently identified retriever. Defects in the function of retromer or retriever cause dysregulation of many membrane proteins and result in several human disorders, including neurodegenerative disorders such as Alzheimer’s disease and Parkinson’s disease. Recently, neurodevelopmental disorders caused by pathogenic variants in genes associated with retriever were identified. This review focuses on the two recycling complexes and discuss their biological and developmental roles and the consequences of defects in endosomal recycling, especially in the nervous system. We also discuss future perspectives of a possible relationship of the dysfunction of retromer and retriever with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Shinji Saitoh
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| |
Collapse
|
46
|
Hwang R, Dang LH, Chen J, Lee JH, Marquer C. Triplication of Synaptojanin 1 in Alzheimer's Disease Pathology in Down Syndrome. Curr Alzheimer Res 2022; 19:795-807. [PMID: 36464875 DOI: 10.2174/1567205020666221202102832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 12/12/2022]
Abstract
Down Syndrome (DS), caused by triplication of human chromosome 21 (Hsa21) is the most common form of intellectual disability worldwide. Recent progress in healthcare has resulted in a dramatic increase in the lifespan of individuals with DS. Unfortunately, most will develop Alzheimer's disease like dementia (DS-AD) as they age. Understanding similarities and differences between DSAD and the other forms of the disease - i.e., late-onset AD (LOAD) and autosomal dominant AD (ADAD) - will provide important clues for the treatment of DS-AD. In addition to the APP gene that codes the precursor of the main component of amyloid plaques found in the brain of AD patients, other genes on Hsa21 are likely to contribute to disease initiation and progression. This review focuses on SYNJ1, coding the phosphoinositide phosphatase synaptojanin 1 (SYNJ1). First, we highlight the function of SYNJ1 in the brain. We then summarize the involvement of SYNJ1 in the different forms of AD at the genetic, transcriptomic, proteomic and neuropathology levels in humans. We further examine whether results in humans correlate with what has been described in murine and cellular models of the disease and report possible mechanistic links between SYNJ1 and the progression of the disease. Finally, we propose a set of questions that would further strengthen and clarify the role of SYNJ1 in the different forms of AD.
Collapse
Grants
- U19 AG068054, U01 AG051412, UL1TR001873, R01 AG058918, R01 AG058918 S1, P30AG10161, P30AG72975, R01AG15819, R01AG17917, R01AG03-6836, U01AG46152, U01AG61356, U01AG046139, P50 AG016574, R01 AG032990, U01AG046139, R01AG01-8023, U01AG006576, U01AG006786, R01AG025711, R01AG017216, R01AG003949, R01NS080820, U24NS07-2026, P30AG19610, U01AG046170, RF1AG057440, U24AG061340 NIH/NIA , National Institutes of Health
Collapse
Affiliation(s)
- Robert Hwang
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, NY, 10032, USA
| | - Lam-Ha Dang
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, NY, 10032, USA
- G.H. Sergievsky Center, Columbia University Medical Center, New York, NY 10032, USA
- Departments of Epidemiology and Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Jacinda Chen
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, NY, 10032, USA
| | - Joseph H Lee
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, NY, 10032, USA
- G.H. Sergievsky Center, Columbia University Medical Center, New York, NY 10032, USA
- Departments of Epidemiology and Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Catherine Marquer
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, NY, 10032, USA
| |
Collapse
|
47
|
Maxwell AM, Yuan P, Rivera BM, Schaaf W, Mladinov M, Prasher VP, Robinson AC, DeGrado WF, Condello C. Emergence of distinct and heterogeneous strains of amyloid beta with advanced Alzheimer's disease pathology in Down syndrome. Acta Neuropathol Commun 2021; 9:201. [PMID: 34961556 PMCID: PMC8711167 DOI: 10.1186/s40478-021-01298-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/30/2022] Open
Abstract
Amyloid beta (Aβ) is thought to play a critical role in the pathogenesis of Alzheimer's disease (AD). Prion-like Aβ polymorphs, or "strains", can have varying pathogenicity and may underlie the phenotypic heterogeneity of the disease. In order to develop effective AD therapies, it is critical to identify the strains of Aβ that might arise prior to the onset of clinical symptoms and understand how they may change with progressing disease. Down syndrome (DS), as the most common genetic cause of AD, presents promising opportunities to compare such features between early and advanced AD. In this work, we evaluate the neuropathology and Aβ strain profile in the post-mortem brain tissues of 210 DS, AD, and control individuals. We assayed the levels of various Aβ and tau species and used conformation-sensitive fluorescent probes to detect differences in Aβ strains among individuals and populations. We found that these cohorts have some common but also some distinct strains from one another, with the most heterogeneous populations of Aβ emerging in subjects with high levels of AD pathology. The emergence of distinct strains in DS at these later stages of disease suggests that the confluence of aging, pathology, and other DS-linked factors may favor conditions that generate strains that are unique from sporadic AD.
Collapse
|
48
|
Yuen SC, Lee SMY, Leung SW. Putative Factors Interfering Cell Cycle Re-Entry in Alzheimer's Disease: An Omics Study with Differential Expression Meta-Analytics and Co-Expression Profiling. J Alzheimers Dis 2021; 85:1373-1398. [PMID: 34924393 DOI: 10.3233/jad-215349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neuronal cell cycle re-entry (CCR) is a mechanism, along with amyloid-β (Aβ) oligomers and hyperphosphorylated tau proteins, contributing to toxicity in Alzheimer's disease (AD). OBJECTIVE This study aimed to examine the putative factors in CCR based on evidence corroboration by combining meta-analysis and co-expression analysis of omic data. METHODS The differentially expressed genes (DEGs) and CCR-related modules were obtained through the differential analysis and co-expression of transcriptomic data, respectively. Differentially expressed microRNAs (DEmiRNAs) were extracted from the differential miRNA expression studies. The dysregulations of DEGs and DEmiRNAs as binary outcomes were independently analyzed by meta-analysis based on a random-effects model. The CCR-related modules were mapped to human protein-protein interaction databases to construct a network. The importance score of each node within the network was determined by the PageRank algorithm, and nodes that fit the pre-defined criteria were treated as putative CCR-related factors. RESULTS The meta-analysis identified 18,261 DEGs and 36 DEmiRNAs, including genes in the ubiquitination proteasome system, mitochondrial homeostasis, and CCR, and miRNAs associated with AD pathologies. The co-expression analysis identified 156 CCR-related modules to construct a protein-protein interaction network. Five genes, UBC, ESR1, EGFR, CUL3, and KRAS, were selected as putative CCR-related factors. Their functions suggested that the combined effects of cellular dyshomeostasis and receptors mediating Aβ toxicity from impaired ubiquitination proteasome system are involved in CCR. CONCLUSION This study identified five genes as putative factors and revealed the significance of cellular dyshomeostasis in the CCR of AD.
Collapse
Affiliation(s)
- Sze Chung Yuen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Siu-Wai Leung
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China.,Edinburgh Bayes Centre for AI Research in Shenzhen, College of Science and Engineering, University of Edinburgh, Scotland, United Kingdom
| |
Collapse
|
49
|
Rebillat AS, Hiance-Delahaye A, Falquero S, Radice G, Sacco S. The French translation of the dementia screening questionnaire for individuals with intellectual disabilities is a sensitive tool for screening for dementia in people with Down Syndrome. RESEARCH IN DEVELOPMENTAL DISABILITIES 2021; 118:104068. [PMID: 34467872 DOI: 10.1016/j.ridd.2021.104068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND People with Down Syndrome (DS) are at an increased risk of developing Alzheimer's Disease (AD) relatively early in life. The dementia screening questionnaire for individuals with intellectual disabilities (DSQIID) has been developed for people with intellectual disabilities and was shown to have high discriminative power to distinguish between people with and without dementia. The objective of this study was to verify if the French version of the DSQIID (DSQIID-F) had a good diagnostic specificity and to determine the optimal cut-off for screening people with DS for dementia. METHOD This was a single-centre, retrospective, medical chart review study in people with DS aged ≥40 years. Demographics, level of intellectual disability, DSQIID-F data and clinical assessment of dementia were extracted from medical records. Sensitivity and specificity for different DSQIID-F cut-offs were calculated to determine the optimal cut-off. RESULTS 151 people with DS were included with a median age of 51 years. The optimal DSQIID-F cut-off was 19, sensitivity was 0.940 (95 % CI: 0.830; 0.985) and specificity was 0.941 (95 % CI: 0.873; 0.975). Results were comparable to those for the English DSQIID (cut-off: 20; sensitivity: 0.92; specificity: 0.97). However, the psychometric qualities of the DSQIID-F, used for clinical follow-up, have not been verified. CONCLUSIONS The DSQIID-F has good discriminative power and represents a useful tool to screen people with DS for dementia.
Collapse
|
50
|
Fortea J, Zaman SH, Hartley S, Rafii MS, Head E, Carmona-Iragui M. Alzheimer's disease associated with Down syndrome: a genetic form of dementia. Lancet Neurol 2021; 20:930-942. [PMID: 34687637 PMCID: PMC9387748 DOI: 10.1016/s1474-4422(21)00245-3] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 02/03/2023]
Abstract
Adults with Down syndrome develop the neuropathological hallmarks of Alzheimer's disease and are at very high risk of developing early-onset dementia, which is now the leading cause of death in this population. Diagnosis of dementia remains a clinical challenge because of the lack of validated diagnostic criteria in this population, and because symptoms are overshadowed by the intellectual disability associated with Down syndrome. In people with Down syndrome, fluid and imaging biomarkers have shown good diagnostic performances and a strikingly similar temporality of changes with respect to sporadic and autosomal dominant Alzheimer's disease. Most importantly, there are no treatments to prevent Alzheimer's disease, even though adults with Down syndrome could be an optimal population in whom to conduct Alzheimer's disease prevention trials. Unprecedented research activity in Down syndrome is rapidly changing this bleak scenario that will translate into disease-modifying therapies that could benefit other populations.
Collapse
Affiliation(s)
- Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu y Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Madrid, Spain.
| | - Shahid H Zaman
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK; Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, UK
| | - Sigan Hartley
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael S Rafii
- Alzheimer's Therapeutic Research Institute (ATRI), Keck School of Medicine, University of Southern California, San Diego, CA, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| | - Maria Carmona-Iragui
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu y Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Madrid, Spain
| |
Collapse
|