1
|
Sha S, Ren L, Xing X, Guo W, Wang Y, Li Y, Cao Y, Qu L. Recent advances in immunotherapy targeting amyloid-beta and tauopathies in Alzheimer's disease. Neural Regen Res 2026; 21:577-587. [PMID: 39885674 DOI: 10.4103/nrr.nrr-d-24-00846] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/28/2024] [Indexed: 02/01/2025] Open
Abstract
Alzheimer's disease, a devastating neurodegenerative disorder, is characterized by progressive cognitive decline, primarily due to amyloid-beta protein deposition and tau protein phosphorylation. Effectively reducing the cytotoxicity of amyloid-beta42 aggregates and tau oligomers may help slow the progression of Alzheimer's disease. Conventional drugs, such as donepezil, can only alleviate symptoms and are not able to prevent the underlying pathological processes or cognitive decline. Currently, active and passive immunotherapies targeting amyloid-beta and tau have shown some efficacy in mice with asymptomatic Alzheimer's disease and other transgenic animal models, attracting considerable attention. However, the clinical application of these immunotherapies demonstrated only limited efficacy before the discovery of lecanemab and donanemab. This review first discusses the advancements in the pathogenesis of Alzheimer's disease and active and passive immunotherapies targeting amyloid-beta and tau proteins. Furthermore, it reviews the advantages and disadvantages of various immunotherapies and considers their future prospects. Although some antibodies have shown promise in patients with mild Alzheimer's disease, substantial clinical data are still lacking to validate their effectiveness in individuals with moderate Alzheimer's disease.
Collapse
Affiliation(s)
- Sha Sha
- Department of Geriatrics, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Lina Ren
- Department of Geriatrics, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xiaona Xing
- Department of Neurology, Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - Wanshu Guo
- Department of Neurology, People's Hospital of Liaoning Province, Shenyang, Liaoning Province, China
| | - Yan Wang
- Department of Geriatrics, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ying Li
- Department of Geriatrics, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yunpeng Cao
- Department of Neurology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Le Qu
- Department of Dermatology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
2
|
Kemppainen S, Aramburu-Núñez M, Koivisto H, Posado-Fernández A, Felix-Garcia MR, Nurminen K, Häkli S, Abelli-Deulofeu E, Kaisto M, Custodia A, van Olst L, Willman RM, Mäkinen P, Miettinen PO, Schouten M, Iglesias-Rey R, Kamermans A, Martiskainen H, Rauramaa T, de Vries HE, Eng E, Salo R, Kettunen M, Gröhn O, Gureviciene I, Chmielevski P, Ouro A, Lapresa R, Agulla J, Almeida A, Doria G, Flores O, Aguiar P, Carmans S, Roucourt B, Hiltunen M, Sobrino T, Tanila H. Intracerebroventricular phospho-tau immunotherapy alleviates cortical phospho-tau burden and motor phenotype in a neuron-specific P301S tauopathy mouse. Exp Neurol 2025; 391:115315. [PMID: 40403829 DOI: 10.1016/j.expneurol.2025.115315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 05/11/2025] [Accepted: 05/18/2025] [Indexed: 05/24/2025]
Abstract
Pathological tau accumulation disrupts neuronal function, leading to neurodegeneration and dementia in tauopathies, such as Alzheimer's disease and frontotemporal dementia. Despite the progression of several anti-tau therapies to clinical trials, no disease-modifying treatments for tauopathies exist. Tau hyperphosphorylation is a key factor in pathology progression. Among all tau phosphorylation sites targeted in preclinical passive immunization studies, the classic AT8 pathological tau phosphorylation sites have remained understudied. Thus, we investigated the potential of immunotherapy against phosphorylated tau (pTau) in a P301S mouse model of tauopathy. We administered a new monoclonal B6 antibody that targets tau phosphorylation sites at serine 202, threonine 205 and serine 208 either systemically for 3 months or locally into the cerebral ventricles for 1 or 2 months via an osmotic minipump. Systemic administration failed to reach the brain effectively, and subsequently, was not able to alleviate the progressive motor impairment seen in this tauopathy mouse model. By contrast, intraventricular administration improved motor function in earlier stages of pathology but had a lesser effect in later stages. The local administration for 8 weeks reduced the number of pTau positive neurons in cortex and hippocampus. Our findings indicate that targeting the classical pathological tau phosphorylation sites can ameliorate tau pathology and improve function in a mouse tauopathy model. These results add to growing evidence supporting the efforts in developing tau-targeting immunotherapies for neurodegenerative diseases associated with pathological tau deposits.
Collapse
Affiliation(s)
- S Kemppainen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - M Aramburu-Núñez
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - H Koivisto
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - A Posado-Fernández
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; STAB VIDA Lda, Caparica, Portugal
| | - M R Felix-Garcia
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - K Nurminen
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - S Häkli
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - E Abelli-Deulofeu
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - M Kaisto
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - A Custodia
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - L van Olst
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands
| | - R-M Willman
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - P Mäkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - P O Miettinen
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - M Schouten
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands
| | - Ramón Iglesias-Rey
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - A Kamermans
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands
| | - H Martiskainen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - T Rauramaa
- Department of Pathology, Kuopio University Hospital, Kuopio, Finland; Institute of Clinical Medicine-Pathology, University of Eastern Finland, Kuopio, Finland
| | - H E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands; Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - E Eng
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - R Salo
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - M Kettunen
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - O Gröhn
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - I Gureviciene
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | | | - A Ouro
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - R Lapresa
- Institute of Functional Biology and Genomics, CSIC, Universidad de Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain
| | - J Agulla
- Institute of Functional Biology and Genomics, CSIC, Universidad de Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain
| | - A Almeida
- Institute of Functional Biology and Genomics, CSIC, Universidad de Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain
| | - G Doria
- STAB VIDA Lda, Caparica, Portugal
| | - O Flores
- STAB VIDA Lda, Caparica, Portugal
| | - P Aguiar
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain; Molecular Imaging Biomarkers Group. Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela, Galicia, Spain; Nuclear Medicine Department and Molecular Imaging Biomarkers Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | | | | | - M Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - T Sobrino
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - H Tanila
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
3
|
Kelliny S, Zhou X, Bobrovskaya L. Alzheimer's Disease and Frontotemporal Dementia: A Review of Pathophysiology and Therapeutic Approaches. J Neurosci Res 2025; 103:e70046. [PMID: 40387258 PMCID: PMC12087441 DOI: 10.1002/jnr.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/01/2025] [Accepted: 05/02/2025] [Indexed: 05/20/2025]
Abstract
Alzheimer's disease (AD) is a devastating form of dementia, with the number of affected individuals rising sharply. The main hallmarks of the disease include amyloid-beta plaque deposits and neurofibrillary tangles consisting of hyperphosphorylated tau protein, besides other pathological features that contribute to the disease's complexity. The causes of sporadic AD are multifactorial and mostly age-related and involve risk factors such as diabetes and cardiovascular or cerebrovascular disorders. Frontotemporal dementia (FTD) is another type of dementia characterized by a spectrum of behaviors, memory, and motor abnormalities and associated with abnormal depositions of protein aggregation, including tau protein. Currently approved medications are symptomatic, and no disease-modifying therapy is available to halt the disease progression. Therefore, the development of multi-targeted therapeutic approaches could hold promise for the treatment of AD and other neurodegenerative disorders, including tauopathies. In this article, we will discuss the pathophysiology of AD and FTD, the proposed hypotheses, and current therapeutic approaches, highlighting the development of novel drug candidates and the progress of clinical trials in this field of research.
Collapse
Affiliation(s)
- Sally Kelliny
- Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- Faculty of PharmacyAssiut UniversityAssiutEgypt
| | - Xin‐Fu Zhou
- Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| |
Collapse
|
4
|
Frost B, Rowe JB, Akinyemi RO, Abisambra JF, Ashton NJ, Brendel M, Buée L, Butler D, Carrillo MC, Chung P, Clelland CD, DeVos SL, Diaz K, Edelmayer RM, Elahi FM, Ellajosyula R, Ewen C, Fontana IC, Galas M, Hansson O, Höglinger G, Horie K, Ibanez A, Jacobs L, Maina MB, Malpetti M, McDade E, McEwan W, Montoliu‐Gaya L, Mummery CJ, Orr ME, Rohrer JD, Rommel A, Sastre C, Spires‐Jones TL, Tee BL, Viney TJ, Walker JM, Wegmann S, Wildsmith K, Yadav R, Mahinrad S, Sexton C. Insights into pathophysiology, biomarkers, and therapeutics in tauopathies: Proceedings of the Tau2024 Global Conference. Alzheimers Dement 2025; 21:e70078. [PMID: 40437880 PMCID: PMC12120264 DOI: 10.1002/alz.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 06/01/2025]
Abstract
Recent years have seen major advances in tau-associated brain disorders through interdisciplinary research spanning molecular biology, neuroimaging, clinical trials, and therapeutic development. The Tau2024 Global Conference, hosted by the Alzheimer's Association, CurePSP, and Rainwater Charitable Foundation, showcased these efforts by bringing together researchers and experts worldwide to discuss the latest advancements in tau research. The conference aimed to attract talent and funding to study tauopathies, particularly among early-career researchers, and to foster interdisciplinary alignment and collaboration around challenges in tau research. In this manuscript, we summarize proceedings of the Tau2024 Global Conference, covering a wide range of topics, including lived experiences of individuals with genetic forms of tauopathies, global perspectives on tauopathies, and molecular mechanisms, brain microenvironments, biomarker developments, clinical trials, and therapeutic approaches to tauopathies. Through international, collaborative efforts, innovative research, and a commitment to inclusivity, researchers worldwide have demonstrated transformative breakthroughs toward diagnosing, treating, and, ultimately, preventing tau-related diseases. HIGHLIGHTS: The Tau2024 Global Conference presented updates and advances in tau research. Blood-based biomarkers offer specificity and longitudinal monitoring capabilities. There are a range of targetable mechanisms in the cascade of pathogenesis. International collaboration is vital to address disparities in tauopathies.
Collapse
Affiliation(s)
- Bess Frost
- Center for Alzheimer's Disease Research, Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceRhode IslandUSA
| | - James B. Rowe
- Department of Clinical Neurosciences, MRC Cognition and Brain Sciences Unit, and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical CampusUniversity of CambridgeCambridgeUK
| | - Rufus O. Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of MedicineUniversity of IbadanIbadanOyo StateNigeria
| | - Jose F. Abisambra
- McKnight Brain Institute, Brain Injury, Rehabilitation, and Neuroresilience Center, Center for Translational Research in Neurodegenerative Disease, Fixel Institute, Department of NeuroscienceUniversity of FloridaGainesvilleFloridaUSA
| | - Nicholas J. Ashton
- Department of Psychiatry and NeurochemistryUniversity of GothenburgGothenburgSweden
- Banner Alzheimer's Institute and University of ArizonaPhoenixArizonaUSA
- Banner Sun Health Research InstituteSun CityArizonaUSA
| | - Matthias Brendel
- Department of Nuclear MedicineLMU University HospitalMunichGermany
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and Ludwig‐Maximilians‐Universität München (LMU)HeidelbergGermany
| | - Luc Buée
- Inserm, CHU‐Lille, Lille Neuroscience & CognitionUniversity of LilleLilleFrance
| | | | - Maria C. Carrillo
- Medical & Scientific RelationsAlzheimer's AssociationChicagoIllinoisUSA
| | - Peter Chung
- Department of Physics and Astronomy, Department of Chemistry, and Alfred E. Mann Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Claire D. Clelland
- Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Memory & Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | | | | | | | - Fanny M. Elahi
- Departments of Neurology, Neuroscience, Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- James J. Peters Department of Veterans Affairs Medical CenterBronxNew YorkUSA
| | - Ratnavalli Ellajosyula
- Cognitive Neurology ClinicManipal Hospital, and Annasawmy Mudaliar HospitalBengaluruKarnatakaIndia
- Manipal Academy of Higher Education (MAHE)ManipalKarnatakaIndia
| | | | | | - Marie‐Christine Galas
- Inserm, CHU Lille, CNRS, LilNCog‐Lille Neuroscience and CognitionUniversity of LilleLilleFrance
| | | | - Günter Höglinger
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
- Department of NeurologyLMU University Hospital, Ludwig‐Maximilians‐Universität (LMU) MünchenMunichGermany
| | - Kanta Horie
- The Tracy Family SILQ Center & Department of NeurologyWashington University School of MedicineSt LouisMissouriUSA
- Eisai Inc.NutleyNew JerseyUSA
| | - Agustín Ibanez
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez (UAI)PeñalolénSantiagoChile
- Global Brain Health Institute (GBHI.org)University California San Francisco (UCSF)San FranciscoCaliforniaUSA
- Global Brain Health Institute (GBHI)Trinity College DublinDublinIreland
| | | | - Mahmoud B. Maina
- Sussex Neuroscience, School of Life SciencesUniversity of SussexFalmerUK
- Biomedical Science Research and Training CentreYobe State UniversityDamaturuNigeria
| | - Maura Malpetti
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS TrustUniversity of CambridgeCambridgeUK
- UK Dementia Research InstituteUniversity of CambridgeCambridgeUK
| | - Eric McDade
- Department of NeurologyWashington UniversitySt. LouisMissouriUSA
| | - Will McEwan
- UK Dementia Research InstituteUniversity of CambridgeCambridgeUK
| | - Laia Montoliu‐Gaya
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Catherine J. Mummery
- Dementia Research Centre, Institute of NeurologyUniversity College LondonLondonUK
| | - Miranda E. Orr
- Department of Internal MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Salisbury VA Medical CenterSalisburyNorth CarolinaUSA
| | - Jonathan D. Rohrer
- Dementia Research Centre, Institute of NeurologyUniversity College LondonLondonUK
| | - Amy Rommel
- Rainwater Charitable FoundationFort WorthTexasUSA
| | | | - Tara L. Spires‐Jones
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
- UK Dementia Research InstituteUniversity of EdinburghEdinburghUK
| | - Boon Lead Tee
- Memory & Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Global Brain Health Institute (GBHI.org)University California San Francisco (UCSF)San FranciscoCaliforniaUSA
| | - Tim J. Viney
- Department of PharmacologyUniversity of OxfordOxfordUK
| | - Jamie M. Walker
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Susanne Wegmann
- German Center for Neurodegenerative DiseasesBerlinGermany
- Einstein Center for Neurosciences BerlinCharité ‐ Universitätsmedizin BerlinBerlinGermany
| | | | - Ravi Yadav
- Department of NeurologyNational Institute of Mental Health and Neurosciences (NIMHANS)BengaluruKarnatakaIndia
| | - Simin Mahinrad
- Medical & Scientific RelationsAlzheimer's AssociationChicagoIllinoisUSA
| | - Claire Sexton
- Medical & Scientific RelationsAlzheimer's AssociationChicagoIllinoisUSA
| |
Collapse
|
5
|
Géraudie A, De Rossi P, Canney M, Carpentier A, Delatour B. Effects of blood-brain barrier opening using ultrasound on tauopathies: A systematic review. J Control Release 2025; 379:1029-1044. [PMID: 39875073 DOI: 10.1016/j.jconrel.2025.01.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/09/2025] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
Blood-brain barrier opening with ultrasound can potentiate drug efficacy in the treatment of brain pathologies and also provides therapeutic effects on its own. It is an innovative tool to transiently, repeatedly and safely open the barrier, with studies showing beneficial effects in both preclinical models for Alzheimer's disease and recent clinical studies. The first preclinical and clinical work has mainly shown a decrease in amyloid burden in mice models and in patients. However, Alzheimer's disease pathology also encompasses tauopathy, which is closely related to cognitive decline, making it a crucial therapeutic target. The effects of blood-brain barrier opening with ultrasound have been rarely assessed on tau and are still unclear. METHODS This systematic review, conducted through searches using Pubmed, Embase, Web of Science and Cochrane Central databases, extracted results of 15 studies reporting effects of blood-brain barrier opening using ultrasound on tau proteins. RESULTS This review of the literature indicates that blood-brain barrier opening using ultrasound can decrease the extent of the tau pathology or potentialize the effect of a therapeutic drug. However, selected studies report paradoxically that blood-brain barrier opening can increase tau pathology burden and induce brain damage. DISCUSSION Apparent discrepancies between reports could originate from the variability in protocols or analytical methods that may impact the effects of blood-brain barrier opening with ultrasound on tauopathies, glial populations, tissue integrity and functional outcomes. CONCLUSION This calls for a better standardization effort combined with improved methodologies allowing between-studies comparisons, and for further understanding of the effects of blood-brain barrier opening on tau pathology as an essential prerequisite before translation to clinic.
Collapse
Affiliation(s)
- Amandine Géraudie
- Paris Brain Institute, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne University, 75013 Paris, France.
| | | | | | - Alexandre Carpentier
- Department of Neurosurgery, Sorbonne University, APHP, La Pitié-Salpêtrière Hospital, 75013 Paris, France; Faculty of Medicine, Sorbonne University, GRC 23, Brain Machine Interface, APHP, La Pitié-Salpêtrière Hospital, 75013 Paris, France; Advanced Surgical Research Technology Lab, Sorbonne University, 75013 Paris, France
| | - Benoît Delatour
- Paris Brain Institute, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne University, 75013 Paris, France
| |
Collapse
|
6
|
Balkhi S, Di Spirito A, Poggi A, Mortara L. Immune Modulation in Alzheimer's Disease: From Pathogenesis to Immunotherapy. Cells 2025; 14:264. [PMID: 39996737 PMCID: PMC11853524 DOI: 10.3390/cells14040264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/27/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the leading cause of dementia, affecting a significant proportion of the elderly population. AD is characterized by cognitive decline and functional impairments due to pathological hallmarks like amyloid β-peptide (Aβ) plaques and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau. Microglial activation, chronic neuroinflammation, and disruptions in neuronal communication further exacerbate the disease. Emerging research suggests that immune modulation could play a key role in AD treatment given the significant involvement of neuroinflammatory processes. This review focuses on recent advancements in immunotherapy strategies aimed at modulating immune responses in AD, with a specific emphasis on microglial behavior, amyloid clearance, and tau pathology. By exploring these immunotherapeutic approaches, we aim to provide insights into their potential to alter disease progression and improve patient outcomes, contributing to the evolving landscape of AD treatment.
Collapse
Affiliation(s)
- Sahar Balkhi
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (A.D.S.); (L.M.)
| | - Anna Di Spirito
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (A.D.S.); (L.M.)
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (A.D.S.); (L.M.)
| |
Collapse
|
7
|
Singh S, Khan S, Shahid M, Sardar M, Hassan MI, Islam A. Targeting tau in Alzheimer's and beyond: Insights into pathology and therapeutic strategies. Ageing Res Rev 2025; 104:102639. [PMID: 39674375 DOI: 10.1016/j.arr.2024.102639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
Tauopathies encompass a group of approximately 20 neurodegenerative diseases characterized by the accumulation of the microtubule-associated protein tau in brain neurons. The pathogenesis of intracellular neurofibrillary tangles, a hallmark of tauopathies, is initiated by hyperphosphorylated tau protein isoforms that cause neuronal death and lead to diseases like Alzheimer's, Parkinson's disease, frontotemporal dementia, and other complex neurodegenerative diseases. Current applications of tau biomarkers, including imaging, cerebrospinal fluid, and blood-based assays, assist in the evaluation and diagnosis of tauopathies. Emerging research is providing various potential strategies to prevent cellular toxicity caused by tau aggregation such as: 1) suppressing toxic tau aggregation, 2) preventing post-translational modifications of tau, 3) stabilizing microtubules and 4) designing tau-directed immunogens. This review aims to discuss the role of tau in tauopathies along with neuropathological features of the different tauopathies and the new developments in treating tau aggregation with the therapeutics for treating and possibly preventing tauopathies.
Collapse
Affiliation(s)
- Sunidhi Singh
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Sumaiya Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Meryam Sardar
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
8
|
Ortiz-Islas E, Montes P, Rodríguez-Pérez CE, Ruiz-Sánchez E, Sánchez-Barbosa T, Pichardo-Rojas D, Zavala-Tecuapetla C, Carvajal-Aguilera K, Campos-Peña V. Evolution of Alzheimer's Disease Therapeutics: From Conventional Drugs to Medicinal Plants, Immunotherapy, Microbiotherapy and Nanotherapy. Pharmaceutics 2025; 17:128. [PMID: 39861773 PMCID: PMC11768419 DOI: 10.3390/pharmaceutics17010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Alzheimer's disease (AD) represents an escalating global health crisis, constituting the leading cause of dementia among the elderly and profoundly impairing their quality of life. Current FDA-approved drugs, such as rivastigmine, donepezil, galantamine, and memantine, offer only modest symptomatic relief and are frequently associated with significant adverse effects. Faced with this challenge and in line with advances in the understanding of the pathophysiology of this neurodegenerative condition, various innovative therapeutic strategies have been explored. Here, we review novel approaches inspired by advanced knowledge of the underlying pathophysiological mechanisms of the disease. Among the therapeutic alternatives, immunotherapy stands out, employing monoclonal antibodies to specifically target and eliminate toxic proteins implicated in AD. Additionally, the use of medicinal plants is examined, as their synergistic effects among components may confer neuroprotective properties. The modulation of the gut microbiota is also addressed as a peripheral strategy that could influence neuroinflammatory and degenerative processes in the brain. Furthermore, the therapeutic potential of emerging approaches, such as the use of microRNAs to regulate key cellular processes and nanotherapy, which enables precise drug delivery to the central nervous system, is analyzed. Despite promising advances in these strategies, the incidence of Alzheimer's disease continues to rise. Therefore, it is proposed that achieving effective treatment in the future may require the integration of combined approaches, maximizing the synergistic effects of different therapeutic interventions.
Collapse
Affiliation(s)
- Emma Ortiz-Islas
- Laboratorio de Neurofarmacologia Molecular y Nanotecnologia, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico; (E.O.-I.); (C.E.R.-P.)
| | - Pedro Montes
- Laboratorio de Neuroinmunoendocrinología, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Citlali Ekaterina Rodríguez-Pérez
- Laboratorio de Neurofarmacologia Molecular y Nanotecnologia, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico; (E.O.-I.); (C.E.R.-P.)
| | - Elizabeth Ruiz-Sánchez
- Laboratorio de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Talía Sánchez-Barbosa
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico; (T.S.-B.); (C.Z.-T.)
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico
| | - Diego Pichardo-Rojas
- Programa Prioritario de Epilepsia, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Cecilia Zavala-Tecuapetla
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico; (T.S.-B.); (C.Z.-T.)
| | - Karla Carvajal-Aguilera
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
| | - Victoria Campos-Peña
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico; (T.S.-B.); (C.Z.-T.)
| |
Collapse
|
9
|
Cruz E, Nisbet RM, Padmanabhan P, van Waardenberg AJ, Graham ME, Nkajja G, Tapaswi S, Connor BJ, Robinson P, Götz J. Proteostasis as a fundamental principle of Tau immunotherapy. Brain 2025; 148:168-184. [PMID: 39074206 PMCID: PMC11706327 DOI: 10.1093/brain/awae254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/01/2024] [Accepted: 07/08/2024] [Indexed: 07/31/2024] Open
Abstract
The microtubule-associated protein Tau is a driver of neuronal dysfunction in Alzheimer's disease and other tauopathies. In this process, Tau initially undergoes subtle changes to its abundance, subcellular localization and a vast array of post-translational modifications including phosphorylation that progressively result in the protein's somatodendritic accumulation and dysregulation of multiple Tau-dependent cellular processes. Given the various loss- and gain-of-functions of Tau in disease and the brain-wide changes in the proteome that characterize tauopathies, we asked whether targeting Tau would restore the alterations in proteostasis observed in disease. Therefore, by phage display, we generated a novel pan-Tau antibody, RNJ1, that preferentially binds human Tau and neutralizes proteopathic seeding activity in multiple cell lines and benchmarked it against a clinically tested pan-Tau antibody, HJ8.5 (murine version of tilavonemab). We then evaluated both antibodies, alone and in combination, in the K3 tauopathy mouse model, showing reduced Tau pathology and improvements in neuronal function following 14 weekly treatments, without obtaining synergy for the combination. These effects were more pronounced in female mice. To investigate the molecular mechanisms contributing to improvements in neuronal function, we employed quantitative proteomics, phosphoproteomics and kinase prediction analysis to first establish alterations in K3 mice relative to wild-type controls at the proteome level. In female K3 mice, we found 342 differentially abundant proteins, which are predominantly involved in metabolic and microtubule-associated processes, strengthening previously reported findings of defects in several functional domains in multiple tauopathy models. We next asked whether antibody-mediated Tau target engagement indirectly affects levels of deregulated proteins in the K3 model. Importantly, both immunotherapies, in particular RNJ1, induced abundance shifts towards a restoration to wild-type levels (proteostasis). A total of 257 of 342 (∼75%) proteins altered in K3 were closer in abundance to wild-type levels after RNJ1 treatment, and 73% after HJ8.5 treatment. However, the magnitude of these changes was less pronounced than that observed with RNJ1. Furthermore, analysis of the phosphoproteome showed an even stronger restoration effect with RNJ1, with ∼82% of altered phosphopeptides in K3 showing a shift to wild-type levels, and 75% with HJ8.5. Gene set over-representation analysis further confirmed that proteins undergoing restoration are involved in biological pathways affected in K3 mice. Together, our study suggests that a Tau immunotherapy-induced restoration of proteostasis links target engagement and treatment efficacy.
Collapse
Affiliation(s)
- Esteban Cruz
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, St Lucia Campus (Brisbane), Brisbane, QLD 4072, Australia
| | - Rebecca M Nisbet
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, St Lucia Campus (Brisbane), Brisbane, QLD 4072, Australia
- The Florey, The University of Melbourne, Parkville, Melbourne, VIC 3052, Australia
| | - Pranesh Padmanabhan
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, St Lucia Campus (Brisbane), Brisbane, QLD 4072, Australia
| | | | - Mark E Graham
- Synapse Proteomics, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Godfrey Nkajja
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, St Lucia Campus (Brisbane), Brisbane, QLD 4072, Australia
| | - Swara Tapaswi
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, St Lucia Campus (Brisbane), Brisbane, QLD 4072, Australia
| | - Bradley J Connor
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, St Lucia Campus (Brisbane), Brisbane, QLD 4072, Australia
| | - Phil Robinson
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, St Lucia Campus (Brisbane), Brisbane, QLD 4072, Australia
| |
Collapse
|
10
|
Sidoryk-Węgrzynowicz M, Adamiak K, Strużyńska L. Targeting Protein Misfolding and Aggregation as a Therapeutic Perspective in Neurodegenerative Disorders. Int J Mol Sci 2024; 25:12448. [PMID: 39596513 PMCID: PMC11595158 DOI: 10.3390/ijms252212448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
The abnormal deposition and intercellular propagation of disease-specific protein play a central role in the pathogenesis of many neurodegenerative disorders. Recent studies share the common observation that the formation of protein oligomers and subsequent pathological filaments is an essential step for the disease. Synucleinopathies such as Parkinson's disease (PD), dementia with Lewy bodies (DLB) or multiple system atrophy (MSA) are neurodegenerative diseases characterized by the aggregation of the α-synucleinprotein in neurons and/or in oligodendrocytes (glial cytoplasmic inclusions), neuronal loss, and astrogliosis. A similar mechanism of protein Tau-dependent neurodegeneration is a major feature of tauopathies, represented by Alzheimer's disease (AD), corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), and Pick's disease (PD). The specific inhibition of the protein misfolding and their interneuronal spreading represents a promising therapeutic strategy against both disease pathology and progression. The most recent research focuses on finding potential applications targeting the pathological forms of proteins responsible for neurodegeneration. This review highlights the mechanisms relevant to protein-dependent neurodegeneration based on the most common disorders and describes current therapeutic approaches targeting protein misfolding and aggregation.
Collapse
Affiliation(s)
- Marta Sidoryk-Węgrzynowicz
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, 02-106 Warsaw, Poland; (K.A.); (L.S.)
| | | | | |
Collapse
|
11
|
Wu J, Wu J, Chen T, Cai J, Ren R. Protein aggregation and its affecting mechanisms in neurodegenerative diseases. Neurochem Int 2024; 180:105880. [PMID: 39396709 DOI: 10.1016/j.neuint.2024.105880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
Protein aggregation serves as a critical pathological marker in a spectrum of neurodegenerative diseases (NDs), including the formation of amyloid β (Aβ) and Tau neurofibrillary tangles in Alzheimer's disease, as well as α-Synuclein (α-Syn) aggregates in Parkinson's disease, Parkinson's disease-related dementia (PDD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). A significant proportion of patients with amyotrophic lateral sclerosis (ALS) exhibit TDP-43 aggregates. Moreover, a confluence of brain protein pathologies, such as Aβ, Tau, α-Syn, and TDP-43, has been identified in individual NDs cases, highlighting the intricate interplay among these proteins that is garnering heightened scrutiny. Importantly, protein aggregation is modulated by an array of factors, with burgeoning evidence suggesting that it frequently results from perturbations in protein homeostasis, influenced by the cellular membrane milieu, metal ion concentrations, post-translational modifications, and genetic mutations. This review delves into the pathological underpinnings of protein aggregation across various NDs and elucidates the intercommunication among disparate proteins within the same disease context. Additionally, we examine the pathogenic mechanisms by which diverse factors impinge upon protein aggregation, offering fresh perspectives for the future therapeutic intervention of NDs.
Collapse
Affiliation(s)
- Junyun Wu
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Jianan Wu
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Tao Chen
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Jing Cai
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.
| | - Reng Ren
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
12
|
Zhang S, Crossley CA, Yuan Q. Neuronal Vulnerability of the Entorhinal Cortex to Tau Pathology in Alzheimer's Disease. Br J Biomed Sci 2024; 81:13169. [PMID: 39435008 PMCID: PMC11491395 DOI: 10.3389/bjbs.2024.13169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024]
Abstract
This review delves into the entorhinal cortex (EC) as a central player in the pathogenesis of Alzheimer's Disease (AD), emphasizing its role in the accumulation and propagation of tau pathology. It elucidates the multifaceted functions of the EC, encompassing memory formation, spatial navigation, and olfactory processing, while exploring how disruptions in these processes contribute to cognitive decline in AD. The review discusses the intricate interplay between tau pathology and EC vulnerability, highlighting how alterations in neuronal firing patterns and synaptic function within the EC exacerbate cognitive impairments. Furthermore, it elucidates how specific neuronal subtypes within the EC exhibit differential susceptibility to tau-induced damage, contributing to disease progression. Early detection methods, such as imaging techniques and assessments of EC blood flow, are examined as potential tools for identifying tau pathology in the preclinical stages of AD. These approaches offer promise for improving diagnostic accuracy and enabling timely intervention. Therapeutic strategies targeting tau pathology within the EC are explored, including the clearance of pathological tau aggregates and the inhibition of tau aggregation processes. By understanding the molecular and cellular mechanisms underlying EC vulnerability, researchers can develop more targeted and effective interventions to slow disease progression. The review underscores the importance of reliable biomarkers to assess disease progression and therapeutic efficacy in clinical trials targeting the EC. Ultimately, it aims to contribute to the development of more effective management strategies for AD, emphasizing the translation of research findings into clinical practice to address the growing societal burden of the disease.
Collapse
Affiliation(s)
| | - Chelsea Ann Crossley
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | |
Collapse
|
13
|
Hroudová J, Fišar Z. Alzheimer's disease approaches - Focusing on pathology, biomarkers and clinical trial candidates. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111069. [PMID: 38917881 DOI: 10.1016/j.pnpbp.2024.111069] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
The strategy for the development of new drugs for Alzheimer's disease (AD) recognizes that an effective therapy requires early therapeutic intervention and a multifactorial approach that considers the individual initiators of AD development. Current knowledge of AD includes the understanding of pathophysiology, risk factors, biomarkers, and the evolving patterns of biomarker abnormalities. This knowledge is essential in identifying potential molecular targets for new drug development. This review summarizes promising AD drug candidates, many of which are currently in phase 2 or 3 clinical trials. New agents are classified according to the Common Alzheimer's Disease Research Ontology (CADRO). The main targets of new drugs for AD are processes related to amyloid beta and tau neurotoxicity, neurotransmission, inflammation, metabolism and bioenergetics, synaptic plasticity, and oxidative stress. These interventions are aimed at preventing disease onset and slowing or eliminating disease progression. The efficacy of pharmacotherapy may be enhanced by combining these drugs with other treatments, antioxidants, and dietary supplements. Ongoing research into AD pathophysiology, risk factors, biomarkers, and the dynamics of biomarker abnormalities may contribute to the understanding of AD and offer hope for effective therapeutic strategies in the near future.
Collapse
Affiliation(s)
- Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic.
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic
| |
Collapse
|
14
|
DeRosier F, Hibbs C, Alessi K, Padda I, Rodriguez J, Pradeep S, Parmar MS. Progressive supranuclear palsy: Neuropathology, clinical presentation, diagnostic challenges, management, and emerging therapies. Dis Mon 2024; 70:101753. [PMID: 38908985 DOI: 10.1016/j.disamonth.2024.101753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative disease characterized by the accumulation of 4R-tau protein aggregates in various brain regions. PSP leads to neuronal loss, gliosis, and tau-positive inclusions, such as neurofibrillary tangles, tufted astrocytes, and coiled bodies. These pathological changes mainly affect the brainstem and the basal ganglia, resulting in distinctive MRI features, such as the hummingbird and morning glory signs. PSP shows clinical heterogeneity and presents as different phenotypes, the most classical of which is Richardson's syndrome (PSP-RS). The region of involvement and the mode of atrophy spread can further distinguish subtypes of PSP. PSP patients can experience various signs and symptoms, such as postural instability, supranuclear ophthalmoplegia, low amplitude fast finger tapping, and irregular sleep patterns. The most common symptoms of PSP are postural instability, falls, vertical gaze palsy, bradykinesia, and cognitive impairment. These features often overlap with those of Parkinson's disease (PD) and other Parkinsonian syndromes, making the diagnosis challenging. PSP is an essential clinical topic to research because it is a devastating and incurable disease. However, there are still many gaps in knowledge about its pathophysiology, diagnosis, and treatment. Several clinical trials are underway to test noveltherapies that target tau in various ways, such as modulating its post-translational modifications, stabilizing its interaction with microtubules, or enhancing its clearance by immunotherapy. These approaches may offer new hope for slowing down the progression of PSP. In this review, we aim to provide an overview of the current knowledge on PSP, from its pathogenesis to its management. We also discuss the latest advances and future directions in PSP research.
Collapse
Affiliation(s)
- Frederick DeRosier
- Department of Foundational Sciences, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, United States of America
| | - Cody Hibbs
- Department of Foundational Sciences, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, United States of America
| | - Kaitlyn Alessi
- Department of Family Medicine, University of Florida, Gainesville, United States of America
| | - Inderbir Padda
- Department of Internal Medicine, Richmond University Medical Center, Staten Island, New York, United States of America
| | - Jeanette Rodriguez
- Department of Family Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, Florida, United States of America
| | - Swati Pradeep
- Department of Movement Disorders, UTHealth Houston Neurosciences Neurology - Texas Medical Center, Texas, United States of America
| | - Mayur S Parmar
- Department of Foundational Sciences, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, United States of America.
| |
Collapse
|
15
|
Ma R, Mu Q, Xi Y, Liu G, Liu C. Nanotechnology for tau pathology in Alzheimer's disease. Mater Today Bio 2024; 27:101145. [PMID: 39070098 PMCID: PMC11283088 DOI: 10.1016/j.mtbio.2024.101145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Tau protein aggregation is a defining characteristic of Alzheimer's disease (AD), leading to the formation of neurofibrillary tangles that disrupt neural communication and ultimately result in cognitive decline. Nanotechnology presents novel strategies for both diagnosing and treating Alzheimer's disease. Nanotechnology. It has become a revolutionary tool in the fight against Alzheimer's disease, particularly in addressing the pathological accumulation of tau protein. This review explores the relationship between tau-related neurophysiology and the utilization of nanotechnology for AD treatment, focusing on the application of nanomaterials to regulate tau phosphorylation, hinder tau aggregation and propagation, stabilize microtubules, eliminate pathological tau and emphasize the potential of nanotechnology in developing personalized therapies and monitoring treatment responses in AD patients. This review combines tau-related neurophysiology with nanotechnology to provide new insights for further understanding and treating Alzheimer's disease.
Collapse
Affiliation(s)
- Rongrong Ma
- State Key Laboratory of Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Qianwen Mu
- State Key Laboratory of Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yue Xi
- State Key Laboratory of Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Chao Liu
- State Key Laboratory of Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, China
| |
Collapse
|
16
|
Martinez P, Jury-Garfe N, Patel H, You Y, Perkins A, You Y, Lee-Gosselin A, Vidal R, Lasagna-Reeves CA. Phosphorylation at serine 214 correlates with tau seeding activity in an age-dependent manner in two mouse models for tauopathies and is required for tau transsynaptic propagation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604618. [PMID: 39211286 PMCID: PMC11361173 DOI: 10.1101/2024.07.22.604618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Pathological aggregation and propagation of hyperphosphorylated and aberrant forms of tau are critical features of the clinical progression of Alzheimer's disease and other tauopathies. To better understand the correlation between these pathological tau species and disease progression, we profiled the temporal progression of tau seeding activity and the levels of various phospho- and conformational tau species in the brains of two mouse models of human tauopathies. Our findings indicate that tau seeding is an early event that occurs well before the appearance of AT8-positive NFT. Specifically, we observed that tau phosphorylation in serine 214 (pTau-Ser214) positively correlates to tau seeding activity during disease progression in both mouse models. Furthermore, we found that the histopathology of pTau-Ser214 appears much earlier and has a distinct pattern and compartmentalization compared to the pathology of AT8, demonstrating the diversity of tau species within the same region of the brain. Importantly, we also observed that preventing the phosphorylation of tau at Ser214 significantly decreases tau propagation in mouse primary neurons, and seeding activity in a Drosophila model of tauopathy, suggesting a role for this tau phosphorylation in spreading pathological forms of tau. Together, these results suggest that the diverse spectrum of soluble pathological tau species could be responsible for the distinct pathological properties of tau and that it is critical to dissect the nature of the tau seed in the context of disease progression.
Collapse
|
17
|
Gaikwad S, Puangmalai N, Sonawane M, Montalbano M, Price R, Iyer MS, Ray A, Moreno S, Kayed R. Nasal tau immunotherapy clears intracellular tau pathology and improves cognitive functions in aged tauopathy mice. Sci Transl Med 2024; 16:eadj5958. [PMID: 38959324 DOI: 10.1126/scitranslmed.adj5958] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/11/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
Pathological tau aggregates cause cognitive decline in neurodegenerative tauopathies, including Alzheimer's disease (AD). These aggregates are prevalent within intracellular compartments. Current tau immunotherapies have shown limited efficacy in clearing intracellular tau aggregates and improving cognition in clinical trials. In this study, we developed toxic tau conformation-specific monoclonal antibody-2 (TTCM2), which selectively recognized pathological tau aggregates in brain tissues from patients with AD, dementia with Lewy bodies (DLB), and progressive supranuclear palsy (PSP). TTCM2 potently inhibited tau-seeding activity, an essential mechanism underlying tauopathy progression. To effectively target intracellular tau aggregates and ensure rapid delivery to the brain, TTCM2 was loaded in micelles (TTCM2-ms) and administered through the intranasal route. We found that intranasally administered TTCM2-ms efficiently entered the brain in hTau-tauopathy mice, targeting pathological tau in intracellular compartments. Moreover, a single intranasal dose of TTCM2-ms effectively cleared pathological tau, elevated synaptic proteins, and improved cognitive functions in aged tauopathy mice. Mechanistic studies revealed that TTCM2-ms cleared intracellular, synaptic, and seed-competent tau aggregates through tripartite motif-containing 21 (TRIM21), an intracellular antibody receptor and E3 ubiquitin ligase known to facilitate proteasomal degradation of cytosolic antibody-bound proteins. TRIM21 was found to be essential for TTCM2-ms-mediated clearance of tau pathology. Our study collectively provides evidence of the effectiveness of nasal tau immunotherapy in targeting and clearing intracellular tau pathology through TRIM21 and enhancing cognition in aged tauopathy mice. This study could be valuable in designing effective tau immunotherapies for AD and other tauopathies.
Collapse
Affiliation(s)
- Sagar Gaikwad
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nicha Puangmalai
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Minal Sonawane
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mauro Montalbano
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Rachel Price
- Department of Science, University "Roma Tre," Viale G. Marconi 446 00146 Rome, Italy
| | | | | | - Sandra Moreno
- Department of Science, University "Roma Tre," Viale G. Marconi 446 00146 Rome, Italy
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
18
|
Ye J, Wan H, Chen S, Liu GP. Targeting tau in Alzheimer's disease: from mechanisms to clinical therapy. Neural Regen Res 2024; 19:1489-1498. [PMID: 38051891 PMCID: PMC10883484 DOI: 10.4103/1673-5374.385847] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/16/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Alzheimer's disease is the most prevalent neurodegenerative disease affecting older adults. Primary features of Alzheimer's disease include extracellular aggregation of amyloid-β plaques and the accumulation of neurofibrillary tangles, formed by tau protein, in the cells. While there are amyloid-β-targeting therapies for the treatment of Alzheimer's disease, these therapies are costly and exhibit potential negative side effects. Mounting evidence suggests significant involvement of tau protein in Alzheimer's disease-related neurodegeneration. As an important microtubule-associated protein, tau plays an important role in maintaining the stability of neuronal microtubules and promoting axonal growth. In fact, clinical studies have shown that abnormal phosphorylation of tau protein occurs before accumulation of amyloid-β in the brain. Various therapeutic strategies targeting tau protein have begun to emerge, and are considered possible methods to prevent and treat Alzheimer's disease. Specifically, abnormalities in post-translational modifications of the tau protein, including aberrant phosphorylation, ubiquitination, small ubiquitin-like modifier (SUMO)ylation, acetylation, and truncation, contribute to its microtubule dissociation, misfolding, and subcellular missorting. This causes mitochondrial damage, synaptic impairments, gliosis, and neuroinflammation, eventually leading to neurodegeneration and cognitive deficits. This review summarizes the recent findings on the underlying mechanisms of tau protein in the onset and progression of Alzheimer's disease and discusses tau-targeted treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Jinwang Ye
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Huali Wan
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Sihua Chen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Gong-Ping Liu
- Co-innovation Center of Neurodegeneration, Nantong University, Nantong, Jiangsu Province, China
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
19
|
Murakami R, Watanabe H, Hashimoto H, Kashiwagi-Hakozaki M, Hashimoto T, Karch CM, Iwatsubo T, Okano H. Inhibitory Roles of Apolipoprotein E Christchurch Astrocytes in Curbing Tau Propagation Using Human Pluripotent Stem Cell-Derived Models. J Neurosci 2024; 44:e1709232024. [PMID: 38649269 PMCID: PMC11170944 DOI: 10.1523/jneurosci.1709-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/08/2024] [Accepted: 03/15/2024] [Indexed: 04/25/2024] Open
Abstract
Genetic variants in the apolipoprotein E (APOE) gene affect the onset and progression of Alzheimer's disease (AD). The APOE Christchurch (APOE Ch) variant has been identified as the most prominent candidate for preventing the onset and progression of AD. In this study, we generated isogenic APOE3Ch/3Ch human-induced pluripotent stem cells (iPSCs) from APOE3/3 healthy control female iPSCs and induced them into astrocytes. RNA expression analysis revealed the inherent resilience of APOE3Ch/3Ch astrocytes to induce a reactive state in response to inflammatory cytokines. Moreover, cytokine treatment changed astrocytic morphology with more complexity in APOE3/3 astrocytes, but not in APOE3Ch/3Ch astrocytes, indicating resilience of the rare variant to a reactive state. Interestingly, we observed robust morphological alterations containing more intricate processes when cocultured with iPSC-derived cortical neurons, in which APOE3Ch/3Ch astrocytes reduced complexity compared with APOE3/3 astrocytes. To assess the impacts of tau propagation effects, we next developed a sophisticated and sensitive assay utilizing cortical neurons derived from human iPSCs, previously generated from donors of both sexes. We showed that APOE3Ch/3Ch astrocytes effectively mitigated tau propagation within iPSC-derived neurons. This study provides important experimental evidence of the characteristic functions exhibited by APOE3Ch/3Ch astrocytes, thereby offering valuable insights for the advancement of novel clinical interventions in AD research.
Collapse
Affiliation(s)
- Rei Murakami
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Research fellow of Japan Society of the Promotion of Science (JSPS), Tokyo 102-0083, Japan
| | - Hirotaka Watanabe
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hideko Hashimoto
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mayu Kashiwagi-Hakozaki
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tadafumi Hashimoto
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-0031, Japan
| | - Celeste M Karch
- Department of Psychiatry and Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
20
|
Chu D, Yang X, Wang J, Zhou Y, Gu JH, Miao J, Wu F, Liu F. Tau truncation in the pathogenesis of Alzheimer's disease: a narrative review. Neural Regen Res 2024; 19:1221-1232. [PMID: 37905868 PMCID: PMC11467920 DOI: 10.4103/1673-5374.385853] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/07/2023] [Accepted: 07/25/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Alzheimer's disease is characterized by two major neuropathological hallmarks-the extracellular β-amyloid plaques and intracellular neurofibrillary tangles consisting of aggregated and hyperphosphorylated Tau protein. Recent studies suggest that dysregulation of the microtubule-associated protein Tau, especially specific proteolysis, could be a driving force for Alzheimer's disease neurodegeneration. Tau physiologically promotes the assembly and stabilization of microtubules, whereas specific truncated fragments are sufficient to induce abnormal hyperphosphorylation and aggregate into toxic oligomers, resulting in them gaining prion-like characteristics. In addition, Tau truncations cause extensive impairments to neural and glial cell functions and animal cognition and behavior in a fragment-dependent manner. This review summarizes over 60 proteolytic cleavage sites and their corresponding truncated fragments, investigates the role of specific truncations in physiological and pathological states of Alzheimer's disease, and summarizes the latest applications of strategies targeting Tau fragments in the diagnosis and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Dandan Chu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xingyue Yang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Jing Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Yan Zhou
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Jin-Hua Gu
- Department of Clinical Pharmacy, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province, China
| | - Jin Miao
- Laboratory of Animal Center, Nantong University, Nantong, Jiangsu Province, China
| | - Feng Wu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
21
|
Wang C, Wang X, Sun S, Chang Y, Lian P, Guo H, Zheng S, Ma R, Li G. Irisin inhibits microglial senescence via TFAM-mediated mitochondrial metabolism in a mouse model of tauopathy. Immun Ageing 2024; 21:30. [PMID: 38745313 PMCID: PMC11092051 DOI: 10.1186/s12979-024-00437-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND The accumulation of senescent microglia has been highlighted as a critical contributor to the progression of tauopathies. Irisin, a muscle-derived hormone produced by the proteolytic cleavage of Fibronectin-domain III containing 5 (FNDC5), mediates the pleiotropic effects of exercise on the physical body. Herein, we investigate the potential role of irisin in microglial senescence in tauopathies. METHODS To model tauopathies both in vivo and in vitro, we utilized P301S tau transgenic mice and tau K18 fibril-treated microglia BV2 cells, respectively. We first examined the expression of the irisin expression and senescence phenotypes of microglia in tauopathies. Subsequently, we investigated the impact of irisin on microglial senescence and its underlying molecular mechanisms. RESULT We observed a reduction in irisin levels and an onset of premature microglial senescence both in vivo and in vitro. Irisin administration was found to counteract microglial senescence and ameliorate cognitive decline in P301S mice. Mechanistically, irisin effectively inhibited microglial senescence by stimulating the expression of mitochondrial transcription factor A (TFAM), a master regulator of mitochondrial respiratory chain biogenesis, thereby enhancing mitochondrial oxidative phosphorylation (OXPHOS). Silencing TFAM eliminated the inhibitory effect of irisin on microglial senescence as well as the restorative effect of irisin on mitochondrial OXPHOS. Furthermore, the SIRT1/PGC1α signaling pathway appeared to be implicated in irisin-mediated upregulation of TFAM. CONCLUSION Taken together, our study revealed that irisin mitigated microglial senescence via TFAM-driven mitochondrial biogenesis, suggesting a promising new avenue for therapeutic strategies targeting tauopathies.
Collapse
Affiliation(s)
- Cailin Wang
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiufeng Wang
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shangqi Sun
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yanmin Chang
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Piaopiao Lian
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongxiu Guo
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Siyi Zheng
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rong Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Gang Li
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
22
|
Singh H, Das A, Khan MM, Pourmotabbed T. New insights into the therapeutic approaches for the treatment of tauopathies. Neural Regen Res 2024; 19:1020-1026. [PMID: 37862204 PMCID: PMC10749630 DOI: 10.4103/1673-5374.385288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/05/2023] [Accepted: 08/10/2023] [Indexed: 10/22/2023] Open
Abstract
Tauopathies are a group of neurological disorders, including Alzheimer's disease and frontotemporal dementia, which involve progressive neurodegeneration, cognitive deficits, and aberrant tau protein accumulation. The development of tauopathies cannot currently be stopped or slowed down by treatment measures. Given the significant contribution of tau burden in primary tauopathies and the strong association between pathogenic tau accumulation and cognitive deficits, there has been a lot of interest in creating therapies that can alleviate tau pathology and render neuroprotective effects. Recently, small molecules, immunotherapies, and gene therapy have been used to reduce the pathological tau burden and prevent neurodegeneration in animal models of tauopathies. However, the major pitfall of the current therapeutic approach is the difficulty of drugs and gene-targeting modalities to cross the blood-brain barrier and their unintended side effects. In this review, the current therapeutic strategies used for tauopathies including the use of oligonucleotide-based gene therapy approaches that have shown a promising result for the treatment of tauopathies and Alzheimer's disease in preclinical animal models, have been discussed.
Collapse
Affiliation(s)
- Himanshi Singh
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, India
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, India
| | - Mohammad Moshahid Khan
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences and Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Tayebeh Pourmotabbed
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
23
|
Del Giudice KP, Cosgaya M, Zaro I, Ravasi V, Santacruz P, Painous C, Fernández M, Cámara A, Compta Y. Anti-alpha synuclein and anti-tau immunotherapies: Can a cocktail approach work? Parkinsonism Relat Disord 2024; 122:106080. [PMID: 38508903 DOI: 10.1016/j.parkreldis.2024.106080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
The hypothesis that neurodegenerative diseases are proteinopathies due to toxic effect of different underlying proteins, such as amyloid-beta and 3+4R-tau in Alzheimer's disease (AD) and alpha-synuclein in Parkinson's disease (PD), while still controversial is supported by several studies in the literature. This has led to conduct clinical trials attempting to reduce the load of these allegedly toxic proteins by immunotherapy, mostly but not solely based on antibodies against these proteins. Already completed clinical trials have ranged from initially negative results to recently partial positive outcomes, specifically for anti-amyloid antibodies in AD but also albeit to lesser degree for anti-synuclein antibodies in PD. Currently, there are several ongoing clinical trials in degenerative parkinsonisms with anti-synuclein approaches in PD and multiple system atrophy (MSA), as well as with anti-tau antibodies in 4R-tauopathies such as progressive supranuclear palsy (PSP). While it can be argued that expectations that part of these clinical trials will be positive can be hope or hype, it is reasonable to consider the future possibility of "cocktail" combination of different antibodies after the available experimental evidence of cross-talk between these proteins and neuropathological evidence of coexistence of these proteinopathies more frequently than expected by chance. Moreover, such "cocktail" approaches are widespread and accepted common practice in other fields such as oncology, and the complexity of neurodegenerative parkinsonisms makes reasonable the option for testing and eventually applying such combined approaches, should these prove useful separately, in the setting of patients with evidence of underlying concomitant proteinopathies, for example through biomarkers.
Collapse
Affiliation(s)
- Kirsys Patricia Del Giudice
- Parkinson's Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic I Universitari de Barcelona, Barcelona, Catalonia, Spain; IDIBAPS, CIBERNED (CB06/05/0018-ISCIII), ERN- RND, UBNeuro, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marina Cosgaya
- Parkinson's Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic I Universitari de Barcelona, Barcelona, Catalonia, Spain; IDIBAPS, CIBERNED (CB06/05/0018-ISCIII), ERN- RND, UBNeuro, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Idoia Zaro
- Parkinson's Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic I Universitari de Barcelona, Barcelona, Catalonia, Spain; IDIBAPS, CIBERNED (CB06/05/0018-ISCIII), ERN- RND, UBNeuro, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Valeria Ravasi
- Parkinson's Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic I Universitari de Barcelona, Barcelona, Catalonia, Spain; IDIBAPS, CIBERNED (CB06/05/0018-ISCIII), ERN- RND, UBNeuro, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Pilar Santacruz
- Parkinson's Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic I Universitari de Barcelona, Barcelona, Catalonia, Spain; IDIBAPS, CIBERNED (CB06/05/0018-ISCIII), ERN- RND, UBNeuro, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Celia Painous
- Parkinson's Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic I Universitari de Barcelona, Barcelona, Catalonia, Spain; IDIBAPS, CIBERNED (CB06/05/0018-ISCIII), ERN- RND, UBNeuro, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Manel Fernández
- Parkinson's Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic I Universitari de Barcelona, Barcelona, Catalonia, Spain; IDIBAPS, CIBERNED (CB06/05/0018-ISCIII), ERN- RND, UBNeuro, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Ana Cámara
- Parkinson's Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic I Universitari de Barcelona, Barcelona, Catalonia, Spain; IDIBAPS, CIBERNED (CB06/05/0018-ISCIII), ERN- RND, UBNeuro, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Yaroslau Compta
- Parkinson's Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic I Universitari de Barcelona, Barcelona, Catalonia, Spain; IDIBAPS, CIBERNED (CB06/05/0018-ISCIII), ERN- RND, UBNeuro, Universitat de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
24
|
Basheer N, Buee L, Brion JP, Smolek T, Muhammadi MK, Hritz J, Hromadka T, Dewachter I, Wegmann S, Landrieu I, Novak P, Mudher A, Zilka N. Shaping the future of preclinical development of successful disease-modifying drugs against Alzheimer's disease: a systematic review of tau propagation models. Acta Neuropathol Commun 2024; 12:52. [PMID: 38576010 PMCID: PMC10993623 DOI: 10.1186/s40478-024-01748-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/21/2024] [Indexed: 04/06/2024] Open
Abstract
The transcellular propagation of the aberrantly modified protein tau along the functional brain network is a key hallmark of Alzheimer's disease and related tauopathies. Inoculation-based tau propagation models can recapitulate the stereotypical spread of tau and reproduce various types of tau inclusions linked to specific tauopathy, albeit with varying degrees of fidelity. With this systematic review, we underscore the significance of judicious selection and meticulous functional, biochemical, and biophysical characterization of various tau inocula. Furthermore, we highlight the necessity of choosing suitable animal models and inoculation sites, along with the critical need for validation of fibrillary pathology using confirmatory staining, to accurately recapitulate disease-specific inclusions. As a practical guide, we put forth a framework for establishing a benchmark of inoculation-based tau propagation models that holds promise for use in preclinical testing of disease-modifying drugs.
Collapse
Affiliation(s)
- Neha Basheer
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10, Bratislava, Slovakia
| | - Luc Buee
- Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, University of Lille, 59000, Lille, France.
| | - Jean-Pierre Brion
- Faculty of Medicine, Laboratory of Histology, Alzheimer and Other Tauopathies Research Group (CP 620), ULB Neuroscience Institute (UNI), Université Libre de Bruxelles, 808, Route de Lennik, 1070, Brussels, Belgium
| | - Tomas Smolek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10, Bratislava, Slovakia
| | - Muhammad Khalid Muhammadi
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10, Bratislava, Slovakia
| | - Jozef Hritz
- CEITEC Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Tomas Hromadka
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10, Bratislava, Slovakia
| | - Ilse Dewachter
- Biomedical Research Institute, BIOMED, Hasselt University, 3500, Hasselt, Belgium
| | - Susanne Wegmann
- German Center for Neurodegenerative Diseases, Charitéplatz 1, 10117, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Isabelle Landrieu
- CNRS EMR9002 - BSI - Integrative Structural Biology, 59000, Lille, France
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille, 59000, Lille, France
| | - Petr Novak
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10, Bratislava, Slovakia
| | - Amritpal Mudher
- School of Biological Sciences, Faculty of Environment and Life Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Norbert Zilka
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10, Bratislava, Slovakia.
- AXON Neuroscience R&D Services SE, Dubravska Cesta 9, 845 10, Bratislava, Slovakia.
| |
Collapse
|
25
|
Guo X, Yan L, Zhang D, Zhao Y. Passive immunotherapy for Alzheimer's disease. Ageing Res Rev 2024; 94:102192. [PMID: 38219962 DOI: 10.1016/j.arr.2024.102192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/03/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by cognitive impairment with few therapeutic options. Despite many failures in developing AD treatment during the past 20 years, significant advances have been achieved in passive immunotherapy of AD very recently. Here, we review characteristics, clinical trial data, and mechanisms of action for monoclonal antibodies (mAbs) targeting key players in AD pathogenesis, including amyloid-β (Aβ), tau and neuroinflammation modulators. We emphasized the efficacy of lecanemab and donanemab on cognition and amyloid clearance in AD patients in phase III clinical trials and discussed factors that may contribute to the efficacy and side effects of anti-Aβ mAbs. In addition, we provided important information on mAbs targeting tau or inflammatory regulators in clinical trials, and indicated that mAbs against the mid-region of tau or pathogenic tau have therapeutic potential for AD. In conclusion, passive immunotherapy targeting key players in AD pathogenesis offers a promising strategy for effective AD treatment.
Collapse
Affiliation(s)
- Xiaoyi Guo
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Li Yan
- School of Traditional Chinese Medicine, Jinan University, 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China
| | - Denghong Zhang
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Yingjun Zhao
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China.
| |
Collapse
|
26
|
Clasadonte J, Deprez T, Stephens GS, Mairet-Coello G, Cortin PY, Boutier M, Frey A, Chin J, Rajman M. ΔFosB is part of a homeostatic mechanism that protects the epileptic brain from further deterioration. Front Mol Neurosci 2024; 16:1324922. [PMID: 38283700 PMCID: PMC10810990 DOI: 10.3389/fnmol.2023.1324922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024] Open
Abstract
Activity induced transcription factor ΔFosB plays a key role in different CNS disorders including epilepsy, Alzheimer's disease, and addiction. Recent findings suggest that ΔFosB drives cognitive deficits in epilepsy and together with the emergence of small molecule inhibitors of ΔFosB activity makes it an interesting therapeutic target. However, whether ΔFosB contributes to pathophysiology or provides protection in drug-resistant epilepsy is still unclear. In this study, ΔFosB was specifically downregulated by delivering AAV-shRNA into the hippocampus of chronically epileptic mice using the drug-resistant pilocarpine model of mesial temporal epilepsy (mTLE). Immunohistochemistry analyses showed that prolonged downregulation of ΔFosB led to exacerbation of neuroinflammatory markers of astrogliosis and microgliosis, loss of mossy fibers, and hippocampal granule cell dispersion. Furthermore, prolonged inhibition of ΔFosB using a ΔJunD construct to block ΔFosB signaling in a mouse model of Alzheimer's disease, that exhibits spontaneous recurrent seizures, led to similar findings, with increased neuroinflammation and decreased NPY expression in mossy fibers. Together, these data suggest that seizure-induced ΔFosB, regardless of seizure-etiology, is part of a homeostatic mechanism that protects the epileptic brain from further deterioration.
Collapse
Affiliation(s)
- Jerome Clasadonte
- Epilepsy Discovery Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | - Tania Deprez
- Epilepsy Discovery Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | | | | | - Pierre-Yves Cortin
- Epilepsy Discovery Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | - Maxime Boutier
- Epilepsy Discovery Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | - Aurore Frey
- Epilepsy Discovery Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | - Jeannie Chin
- Baylor College of Medicine, Houston, TX, United States
| | - Marek Rajman
- Epilepsy Discovery Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| |
Collapse
|
27
|
Gharat R, Dixit G, Khambete M, Prabhu A. Targets, trials and tribulations in Alzheimer therapeutics. Eur J Pharmacol 2024; 962:176230. [PMID: 38042464 DOI: 10.1016/j.ejphar.2023.176230] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by abnormal accumulation of extracellular amyloid beta senile plaques and intracellular neurofibrillary tangles in the parts of the brain responsible for cognition. The therapeutic burden for the management of AD relies solely on cholinesterase inhibitors that provide only symptomatic relief. The urgent need for disease-modifying drugs has resulted in intensive research in this domain, which has led to better understanding of the disease pathology and identification of a plethora of new pathological targets. Currently, there are over a hundred and seventy clinical trials exploring disease modification, cognitive enhancement, and reduction of neuro-psychiatric complications. However, the path to developing safe and efficacious AD therapeutics has not been without challenges. Several clinical trials have been terminated in advanced stages due to lack of therapeutic translation or increased incidence of adverse events. This review presents an in-depth look at the various therapeutic targets of AD and the lessons learnt during their clinical assessment. Comprehensive understanding of the implication of modulating various aspects of Alzheimer brain pathology is crucial for development of drugs with potential to halt disease progression in Alzheimer therapeutics.
Collapse
Affiliation(s)
- Ruchita Gharat
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, VM Road, Vile Parle (West), Mumbai, 400056, Maharashtra, India
| | - Gargi Dixit
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, VM Road, Vile Parle (West), Mumbai, 400056, Maharashtra, India
| | - Mihir Khambete
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Arati Prabhu
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, VM Road, Vile Parle (West), Mumbai, 400056, Maharashtra, India.
| |
Collapse
|
28
|
Sigurdsson EM. Tau Immunotherapies for Alzheimer's Disease and Related Tauopathies: Status of Trials and Insights from Preclinical Studies. J Alzheimers Dis 2024; 101:S129-S140. [PMID: 38427486 PMCID: PMC11587787 DOI: 10.3233/jad-231238] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
The tau protein undergoes pathological changes in Alzheimer's disease and other tauopathies that eventually lead to functional impairments. Over the years, several therapeutic approaches have been examined to slow or halt the progression of tau pathology but have yet to lead to an approved disease-modifying treatment. Of the drugs in clinical trials that directly target tau, immunotherapies are the largest category and mostly consist of antibodies in different stages of development. There is a reasonable optimism that at least some of these compounds will have a clinically meaningful efficacy. This view is based on the significant although modest efficacy of some antibodies targeting amyloid-β in Alzheimer's disease and the fact that tau pathology correlates much better with the degree of dementia than amyloid-β lesions. In Alzheimer's disease, clearing pathological tau may therefore improve function later in the disease process than when removing amyloid-β. This review provides a brief update on the active and passive clinical tau immunization trials with insight from preclinical studies. Various epitopes are being targeted and some of the antibodies are said to target extracellular tau but because almost all of pathological tau is found intracellularly, the most efficacious antibodies should be able to enter the cell.
Collapse
Affiliation(s)
- Einar M Sigurdsson
- Departments of Neuroscience and Physiology, and Psychiatry, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
29
|
Mortelecque J, Danis C, Landrieu I, Dupré E. Recombinant Production and Characterization of VHHs/Nanobodies Targeting Tau to Block Fibrillar Assembly. Methods Mol Biol 2024; 2754:131-146. [PMID: 38512665 DOI: 10.1007/978-1-0716-3629-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Tau protein was extensively studied using nuclear magnetic resonance spectroscopy, providing a powerful way to determine interaction sites between Tau and partner proteins. Here we used this analytical tool to describe the epitopes of Tau-specific VHHs (variable domain of the heavy chain of the heavy chain-only antibodies, aka nanobodies) selected from a synthetic library. An in vitro Tau aggregation assay was subsequently used as a functional screen to check VHH efficacy as aggregation inhibitors. We have observed a correlation between the targeted epitope and the aggregation-inhibition capacity of a series of Tau-specific VHHs.
Collapse
Affiliation(s)
- Justine Mortelecque
- CNRS, EMR9002 BSI Integrative Structural Biology, Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- LabEx (Laboratory of Excellence) DISTALZ (Development of Innovative Strategies for a Transdisciplinary Approach to Alzheimer's Disease ANR-11-LABX-01), Lille, France
| | - Clément Danis
- CNRS, EMR9002 BSI Integrative Structural Biology, Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- LabEx (Laboratory of Excellence) DISTALZ (Development of Innovative Strategies for a Transdisciplinary Approach to Alzheimer's Disease ANR-11-LABX-01), Lille, France
| | - Isabelle Landrieu
- CNRS, EMR9002 BSI Integrative Structural Biology, Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- LabEx (Laboratory of Excellence) DISTALZ (Development of Innovative Strategies for a Transdisciplinary Approach to Alzheimer's Disease ANR-11-LABX-01), Lille, France
| | - Elian Dupré
- CNRS, EMR9002 BSI Integrative Structural Biology, Lille, France.
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France.
- LabEx (Laboratory of Excellence) DISTALZ (Development of Innovative Strategies for a Transdisciplinary Approach to Alzheimer's Disease ANR-11-LABX-01), Lille, France.
| |
Collapse
|
30
|
Galpern WR, Triana-Baltzer G, Li L, Van Kolen K, Timmers M, Haeverans K, Janssens L, Kolb H, Nandy P, Aida K, Shimizu H, Mercken M, Sun H. Phase 1 Studies of the Anti-Tau Monoclonal Antibody JNJ-63733657 in Healthy Participants and Participants with Alzheimer's Disease. J Prev Alzheimers Dis 2024; 11:1592-1603. [PMID: 39559872 PMCID: PMC11573813 DOI: 10.14283/jpad.2024.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/16/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND JNJ-63733657 (posdinemab) is a humanized IgG1/kappa monoclonal anti-phospho tau antibody that binds with high affinity to phosphorylated amino acid 217 (pT217) in the proline-rich domain. The parent molecule, PT3, was raised against Alzheimer's disease brain purified paired helical filament, and preclinical studies with the humanized version, JNJ-63733657, have demonstrated reductions in tau seeding. The results of the first-in-human clinical trial of JNJ-63733657 and a separate single ascending dose study in Japanese participants are presented. OBJECTIVES To evaluate the safety and tolerability, pharmacokinetics, immunogenicity, and pharmacodynamics of JNJ-63733657 after single and multiple intravenous dose administrations in healthy participants and participants with prodromal or mild Alzheimer's disease. DESIGN A two part first-in-human, phase 1, randomized, double-blind, placebo-controlled trial: Single ascending dose (Part 1) and multiple ascending dose (Part 2). And a phase 1, randomized, double-blind, placebo-controlled single ascending dose trial in healthy Japanese participants. SETTING 7 sites in Belgium, Netherlands, Spain, and Germany; 1 site in Japan. PARTICIPANTS A total of 40 healthy participants aged 55-75 were enrolled in Part 1 of the first-in-human study; a total of 16 healthy participants and 13 participants with prodromal or mild AD aged 55-80 years were enrolled in Part 2. In the Japanese trial, a total of 24 participants aged 55-75 were enrolled. INTERVENTION In Part 1, single doses of 1, 3, 10, 30, or 60 mg/kg of JNJ-63733657 or placebo were administered to healthy participants. In Part 2, two dose levels of JNJ-63733657 (5 mg/kg or 50 mg/kg) or placebo were evaluated in healthy participants, and 2 dose levels (15 mg/kg or 30 mg/kg) or placebo were evaluated in participants with Alzheimer's disease; doses were administered on Days 1, 29, and 57. In the Japanese trial, single doses of 3, 15, or 60 mg/kg of JNJ-63733675 or placebo were administered. All doses were administered intravenously. MEASUREMENTS Safety assessments, serum and cerebrospinal fluid pharmacokinetic parameters, immunogenicity, and cerebrospinal fluid pharmacodynamic changes in free and total p217+tau, total tau, and p181tau were evaluated. RESULTS JNJ-63733657 was generally safe and well-tolerated in healthy participants and participants with Alzheimer's disease. In healthy participants and participants with Alzheimer's disease, JNJ-63733657 demonstrated linear PK, and serum Cmax and AUC were approximately dose proportional following single and multiple doses. Dose-dependent reductions in free and total p217+tau in cerebrospinal fluid were observed. No changes in total tau or p181tau were observed in healthy participants whereas Alzheimer's disease participants showed decreases in these tau species following administration of JNJ-63733657. CONCLUSION In these Phase 1 trials, no safety or tolerability concerns were identified, and dose dependent reductions in p217+tau in the cerebrospinal fluid were demonstrated following administration of JNJ-63733657. The safety and biomarker profiles support the continued investigation of this compound for the slowing of disease progression in Alzheimer's disease.
Collapse
MESH Headings
- Humans
- Alzheimer Disease/drug therapy
- Double-Blind Method
- Male
- Female
- Aged
- Middle Aged
- tau Proteins
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Dose-Response Relationship, Drug
- Healthy Volunteers
- Aged, 80 and over
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/therapeutic use
Collapse
Affiliation(s)
- W R Galpern
- Wendy R. Galpern, MD, PhD, Janssen Research and Development, LLC, 1125 Trenton-Harbourton Road, Titusville, NJ 08560,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Aljassabi A, Zieneldien T, Kim J, Regmi D, Cao C. Alzheimer's Disease Immunotherapy: Current Strategies and Future Prospects. J Alzheimers Dis 2024; 98:755-772. [PMID: 38489183 DOI: 10.3233/jad-231163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Alzheimer's disease (AD) is an extremely complex and heterogeneous pathology influenced by many factors contributing to its onset and progression, including aging, amyloid-beta (Aβ) plaques, tau fibril accumulation, inflammation, etc. Despite promising advances in drug development, there is no cure for AD. Although there have been substantial advancements in understanding the pathogenesis of AD, there have been over 200 unsuccessful clinical trials in the past decade. In recent years, immunotherapies have been at the forefront of these efforts. Immunotherapy alludes to the immunological field that strives to identify disease treatments via the enhancement, suppression, or induction of immune responses. Interestingly, immunotherapy in AD is a relatively new approach for non-infectious disease. At present, antibody therapy (passive immunotherapy) that targets anti-Aβ aimed to prevent the fibrillization of Aβ peptides and disrupt pre-existing fibrils is a predominant AD immunotherapy due to the continuous failure of active immunotherapy for AD. The most rational and safe strategies will be those targeting the toxic molecule without triggering an abnormal immune response, offering therapeutic advantages, thus making clinical trial design more efficient. This review offers a concise overview of immunotherapeutic strategies, including active and passive immunotherapy for AD. Our review encompasses approved methods and those presently under investigation in clinical trials, while elucidating the recent challenges, complications, successes, and potential treatments. Thus, immunotherapies targeting Aβ throughout the disease progression using a mutant oligomer-Aβ stimulated dendritic cell vaccine may offer a promising therapy in AD.
Collapse
Affiliation(s)
- Ali Aljassabi
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Tarek Zieneldien
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Janice Kim
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Deepika Regmi
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Chuanhai Cao
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| |
Collapse
|
32
|
Neațu M, Covaliu A, Ioniță I, Jugurt A, Davidescu EI, Popescu BO. Monoclonal Antibody Therapy in Alzheimer's Disease. Pharmaceutics 2023; 16:60. [PMID: 38258071 PMCID: PMC11154277 DOI: 10.3390/pharmaceutics16010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Alzheimer's disease is a neurodegenerative condition marked by the progressive deterioration of cognitive abilities, memory impairment, and the accumulation of abnormal proteins, specifically beta-amyloid plaques and tau tangles, within the brain. Despite extensive research efforts, Alzheimer's disease remains without a cure, presenting a significant global healthcare challenge. Recently, there has been an increased focus on antibody-based treatments as a potentially effective method for dealing with Alzheimer's disease. This paper offers a comprehensive overview of the current status of research on antibody-based molecules as therapies for Alzheimer's disease. We will briefly mention their mechanisms of action, therapeutic efficacy, and safety profiles while addressing the challenges and limitations encountered during their development. We also highlight some crucial considerations in antibody-based treatment development, including patient selection criteria, dosing regimens, or safety concerns. In conclusion, antibody-based therapies present a hopeful outlook for addressing Alzheimer's disease. While challenges remain, the accumulating evidence suggests that these therapies may offer substantial promise in ameliorating or preventing the progression of this debilitating condition, thus potentially enhancing the quality of life for the millions of individuals and families affected by Alzheimer's disease worldwide.
Collapse
Affiliation(s)
- Monica Neațu
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (A.C.); (I.I.); (A.J.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Anca Covaliu
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (A.C.); (I.I.); (A.J.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Iulia Ioniță
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (A.C.); (I.I.); (A.J.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Ana Jugurt
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (A.C.); (I.I.); (A.J.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Eugenia Irene Davidescu
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (A.C.); (I.I.); (A.J.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Bogdan Ovidiu Popescu
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (A.C.); (I.I.); (A.J.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Department of Cell Biology, Neurosciences and Experimental Myology, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
33
|
Congdon EE, Ji C, Tetlow AM, Jiang Y, Sigurdsson EM. Tau-targeting therapies for Alzheimer disease: current status and future directions. Nat Rev Neurol 2023; 19:715-736. [PMID: 37875627 PMCID: PMC10965012 DOI: 10.1038/s41582-023-00883-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/26/2023]
Abstract
Alzheimer disease (AD) is the most common cause of dementia in older individuals. AD is characterized pathologically by amyloid-β (Aβ) plaques and tau neurofibrillary tangles in the brain, with associated loss of synapses and neurons, which eventually results in dementia. Many of the early attempts to develop treatments for AD focused on Aβ, but a lack of efficacy of these treatments in terms of slowing disease progression led to a change of strategy towards targeting of tau pathology. Given that tau shows a stronger correlation with symptom severity than does Aβ, targeting of tau is more likely to be efficacious once cognitive decline begins. Anti-tau therapies initially focused on post-translational modifications, inhibition of tau aggregation and stabilization of microtubules. However, trials of many potential drugs were discontinued because of toxicity and/or lack of efficacy. Currently, the majority of tau-targeting agents in clinical trials are immunotherapies. In this Review, we provide an update on the results from the initial immunotherapy trials and an overview of new therapeutic candidates that are in clinical development, as well as considering future directions for tau-targeting therapies.
Collapse
Affiliation(s)
- Erin E Congdon
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Changyi Ji
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Amber M Tetlow
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Yixiang Jiang
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
34
|
Shulman M, Kong J, O'Gorman J, Ratti E, Rajagovindan R, Viollet L, Huang E, Sharma S, Racine AM, Czerkowicz J, Graham D, Li Y, Hering H, Haeberlein SB. TANGO: a placebo-controlled randomized phase 2 study of efficacy and safety of the anti-tau monoclonal antibody gosuranemab in early Alzheimer's disease. NATURE AGING 2023; 3:1591-1601. [PMID: 38012285 PMCID: PMC10724064 DOI: 10.1038/s43587-023-00523-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/10/2023] [Indexed: 11/29/2023]
Abstract
In Alzheimer's disease, the spread of aberrantly phosphorylated tau is an important criterion in the Braak staging of disease severity and correlates with disease symptomatology. Here, we report the results of TANGO ( NCT03352557 ), a randomized, double-blind, placebo-controlled, parallel-group and multiple-dose long-term trial of gosuranemab-a monoclonal antibody to N-terminal tau-in patients with early Alzheimer's disease. The primary objective was to assess the safety and tolerability of gosuranemab compared to placebo. The secondary objectives were to assess the efficacy of multiple doses of gosuranemab in slowing cognitive and functional impairment (using the Clinical Dementia Rating Scale Sum of Boxes (CDR-SB) scores at week 78) and evaluate the immunogenicity of gosuranemab (using the incidence of anti-gosuranemab antibody responses). Participants were randomized (n = 654); received (n = 650) low-dose (125 mg once every 4 weeks (q4w), n = 58; 375 mg q12w, n = 58), intermediate-dose (600 mg q4w, n = 106) or high-dose (2,000 mg q4w, n = 214) gosuranemab or placebo (q4w, n = 214) intravenously for 78 weeks; and assigned to cerebrospinal fluid (n = 327) and/or tau positron emission tomography (n = 357) biomarker substudies. Gosuranemab had an acceptable safety profile and was generally well tolerated (incidence of serious adverse events: placebo, 12.1%; low dose, 10.3%; intermediate dose, 12.3%; high dose, 11.7%). The incidence of treatment-emergent gosuranemab antibody responses was low at all time points. No significant effects were identified in cognitive and functional tests as no dose resulted in a favorable change from the baseline CDR-SB score at week 78 compared to placebo control (adjusted mean change: placebo, 1.85; low dose, 2.20; intermediate dose, 2.24; high dose, 1.85). At week 76, all doses caused significant (P < 0.0001) reductions in the cerebrospinal fluid levels of unbound N-terminal tau compared to placebo.
Collapse
Affiliation(s)
| | | | | | - Elena Ratti
- Biogen, Cambridge, MA, USA
- Takeda Pharmaceuticals, Cambridge, MA, USA
| | | | - Louis Viollet
- Biogen, Cambridge, MA, USA
- Moderna, Cambridge, MA, USA
| | | | | | - Annie M Racine
- Biogen, Cambridge, MA, USA
- Alexion, AstraZeneca Rare Disease, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
35
|
Davidson R, Krider RI, Borsellino P, Noorda K, Alhwayek G, Vida TA. Untangling Tau: Molecular Insights into Neuroinflammation, Pathophysiology, and Emerging Immunotherapies. Curr Issues Mol Biol 2023; 45:8816-8839. [PMID: 37998730 PMCID: PMC10670294 DOI: 10.3390/cimb45110553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023] Open
Abstract
Neuroinflammation, a core pathological feature observed in several neurodegenerative diseases, including Alzheimer's disease (AD), is rapidly gaining attention as a target in understanding the molecular underpinnings of these disorders. Glial cells, endothelial cells, peripheral immune cells, and astrocytes produce a variety of pro-inflammatory mediators that exacerbate the disease progression. Additionally, microglial cells play a complex role in AD, facilitating the clearance of pathological amyloid-beta peptide (Aβ) plaques and aggregates of the tau protein. Tau proteins, traditionally associated with microtubule stabilization, have come under intense scrutiny for their perturbed roles in neurodegenerative conditions. In this narrative review, we focus on recent advances from molecular insights that have revealed aberrant tau post-translational modifications, such as phosphorylation and acetylation, serving as pathological hallmarks. These modifications also trigger the activation of CNS-resident immune cells, such as microglia and astrocytes substantially contributing to neuroinflammation. This intricate relationship between tau pathologies and neuroinflammation fosters a cascading impact on neural pathophysiology. Furthermore, understanding the molecular mechanisms underpinning tau's influence on neuroinflammation presents a frontier for the development of innovative immunotherapies. Neurodegenerative diseases have been relatively intractable to conventional pharmacology using small molecules. We further comprehensively document the many alternative approaches using immunotherapy targeting tau pathological epitopes and structures with a wide array of antibodies. Clinical trials are discussed using these therapeutic approaches, which have both promising and disappointing outcomes. Future directions for tau immunotherapies may include combining treatments with Aβ immunotherapy, which may result in more significant clinical outcomes for neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas A. Vida
- Kirk Kerkorian School of Medicine at UNLV, 625 Shadow Lane, Las Vegas, NV 89106, USA; (R.D.); (R.I.K.); (P.B.); (K.N.); (G.A.)
| |
Collapse
|
36
|
Lanooij SD, Drinkenburg WHIM, Eisel ULM, van der Zee EA, Kas MJH. The effects of social environment on AD-related pathology in hAPP-J20 mice and tau-P301L mice. Neurobiol Dis 2023; 187:106309. [PMID: 37748620 DOI: 10.1016/j.nbd.2023.106309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
In humans, social factors (e.g., loneliness) have been linked to the risk of developing Alzheimer's Disease (AD). To date, AD pathology is primarily characterized by amyloid-β plaques and tau tangles. We aimed to assess the effect of single- and group-housing on AD-related pathology in a mouse model for amyloid pathology (J20, and WT controls) and a mouse model for tau pathology (P301L) with and without seeding of synthetic human tau fragments (K18). Female mice were either single housed (SH) or group housed (GH) from the age of 6-7 weeks onwards. In 12-week-old P301L mice, tau pathology was induced through seeding by injecting K18 into the dorsal hippocampus (P301LK18), while control mice received a PBS injection (P301LPBS). P301L mice were sacrificed at 4 months of age and J20 mice at 10 months of age. In all mice brain pathology was histologically assessed by examining microglia, the CA1 pyramidal cell layer and specific AD pathology: analysis of plaques in J20 mice and tau hyperphosphorylation in P301L mice. Contrary to our expectation, SH-J20 mice interestingly displayed fewer plaques in the hippocampus compared to GH-J20 mice. However, housing did not affect tau hyperphosphorylation at Ser202/Thr205 of P301L mice, nor neuronal cell death in the CA1 region in any of the mice. The number of microglia was increased by the J20 genotype, and their activation (based on cell body to cell size ratio) in the CA1 was affected by genotype and housing condition (interaction effect). Single housing of P301L mice was linked to the development of stereotypic behavior (i.e. somersaulting and circling behavior). In P301LK18 mice, an increased number of microglia were observed, among which were rod microglia. Taken together, our findings point to a significant effect of social housing conditions on amyloid plaques and microglia in J20 mice and on the development of stereotypic behavior in P301L mice, indicating that the social environment can modulate AD-related pathology.
Collapse
Affiliation(s)
- Suzanne D Lanooij
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands.
| | - W H I M Drinkenburg
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands; Department of Neuroscience, Janssen Research & Development, a Division on Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | - U L M Eisel
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands.
| | - E A van der Zee
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands.
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands.
| |
Collapse
|
37
|
Foster K, Manca M, McClure K, Koivula P, Trojanowski JQ, Havas D, Chancellor S, Goldstein L, Brunden KR, Kraus A, Ahlijanian MK. Preclinical characterization and IND-enabling safety studies for PNT001, an antibody that recognizes cis-pT231 tau. Alzheimers Dement 2023; 19:4662-4674. [PMID: 37002928 DOI: 10.1002/alz.13028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND The cis-conformer of tau phosphorylated at threonine-231 (cis-pT231 tau) is hypothesized to contribute to tauopathies. PNT001 is a humanized, monoclonal antibody that recognizes cis-pT231 tau. PNT001 was characterized to assess clinical development readiness. METHODS Affinity and selectivity were assessed by surface plasmon resonance and enzyme-linked immunosorbent assay. Immunohistochemistry (IHC) was performed with brain sections from human tauopathy patients and controls. Real-time quaking-induced conversion (RT-QuIC) was used to assess whether PNT001 reduced tau seeds from Tg4510 transgenic mouse brain. Murine PNT001 was evaluated in vivo in the Tg4510 mouse. RESULTS The affinity of PNT001 for a cis-pT231 peptide was 0.3 to 3 nM. IHC revealed neurofibrillary tangle-like structures in tauopathy patients with no detectable staining in controls. Incubation of Tg4510 brain homogenates with PNT001 lowered seeding in RT-QuIC. Multiple endpoints were improved in the Tg4510 mouse. No adverse findings attributable to PNT001 were detected in Good Laboratory Practice safety studies. DISCUSSION The data support clinical development of PNT001 in human tauopathies.
Collapse
Affiliation(s)
- Kelly Foster
- Pinteon Therapeutics, Inc., Discovery Biology, Newton, Massachusetts, USA
| | - Matteo Manca
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Kim McClure
- Pinteon Therapeutics, Inc., Discovery Biology, Newton, Massachusetts, USA
| | - Pyry Koivula
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel Havas
- Psychogenics, Inc, Biology Paramus, New Jersey, USA
| | - Sarah Chancellor
- Molecular Aging & Development Laboratory, Boston University School of Medicine, USA
| | - Lee Goldstein
- Molecular Aging & Development Laboratory, Boston University School of Medicine, USA
| | - Kurt R Brunden
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Allison Kraus
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | |
Collapse
|
38
|
Geerts H, Bergeler S, Walker M, van der Graaf PH, Courade JP. Analysis of clinical failure of anti-tau and anti-synuclein antibodies in neurodegeneration using a quantitative systems pharmacology model. Sci Rep 2023; 13:14342. [PMID: 37658103 PMCID: PMC10474108 DOI: 10.1038/s41598-023-41382-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023] Open
Abstract
Misfolded proteins in Alzheimer's disease and Parkinson's disease follow a well-defined connectomics-based spatial progression. Several anti-tau and anti-alpha synuclein (aSyn) antibodies have failed to provide clinical benefit in clinical trials despite substantial target engagement in the experimentally accessible cerebrospinal fluid (CSF). The proposed mechanism of action is reducing neuronal uptake of oligomeric protein from the synaptic cleft. We built a quantitative systems pharmacology (QSP) model to quantitatively simulate intrasynaptic secretion, diffusion and antibody capture in the synaptic cleft, postsynaptic membrane binding and internalization of monomeric and oligomeric tau and aSyn proteins. Integration with a physiologically based pharmacokinetic (PBPK) model allowed us to simulate clinical trials of anti-tau antibodies gosuranemab, tilavonemab, semorinemab, and anti-aSyn antibodies cinpanemab and prasineuzumab. Maximal target engagement for monomeric tau was simulated as 45% (semorinemab) to 99% (gosuranemab) in CSF, 30% to 99% in ISF but only 1% to 3% in the synaptic cleft, leading to a reduction of less than 1% in uptake of oligomeric tau. Simulations for prasineuzumab and cinpanemab suggest target engagement of free monomeric aSyn of only 6-8% in CSF, 4-6% and 1-2% in the ISF and synaptic cleft, while maximal target engagement of aggregated aSyn was predicted to reach 99% and 80% in the synaptic cleft with similar effects on neuronal uptake. The study generates optimal values of selectivity, sensitivity and PK profiles for antibodies. The study identifies a gradient of decreasing target engagement from CSF to the synaptic cleft as a key driver of efficacy, quantitatively identifies various improvements for drug design and emphasizes the need for QSP modelling to support the development of tau and aSyn antibodies.
Collapse
Affiliation(s)
- Hugo Geerts
- Certara US, 100 Overlook Centre, Suite 101, Princeton, NJ, 08540, USA.
| | - Silke Bergeler
- Certara US, 100 Overlook Centre, Suite 101, Princeton, NJ, 08540, USA
- Bristol-Meyers-Squibb, Lawrenceville, NJ, 08648, USA
| | - Mike Walker
- Certara UK, Canterbury Innovation Centre, University Road, Canterbury, CT2 7FG, Kent, UK
| | - Piet H van der Graaf
- Certara UK, Canterbury Innovation Centre, University Road, Canterbury, CT2 7FG, Kent, UK
| | | |
Collapse
|
39
|
Chen Y, Yu Y. Tau and neuroinflammation in Alzheimer's disease: interplay mechanisms and clinical translation. J Neuroinflammation 2023; 20:165. [PMID: 37452321 PMCID: PMC10349496 DOI: 10.1186/s12974-023-02853-3] [Citation(s) in RCA: 133] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Alzheimer's Disease (AD) contributes to most cases of dementia. Its prominent neuropathological features are the extracellular neuritic plaques and intercellular neurofibrillary tangles composed of aggregated β-amyloid (Aβ) and hyperphosphorylated tau protein, respectively. In the past few decades, disease-modifying therapy targeting Aβ has been the focus of AD drug development. Even though it is encouraging that two of these drugs have recently received accelerated US Food and Drug Administration approval for AD treatment, their efficacy or long-term safety is controversial. Tau has received increasing attention as a potential therapeutic target, since evidence indicates that tau pathology is more associated with cognitive dysfunction. Moreover, inflammation, especially neuroinflammation, accompanies AD pathological processes and is also linked to cognitive deficits. Accumulating evidence indicates that inflammation has a complex and tight interplay with tau pathology. Here, we review recent evidence on the interaction between tau pathology, focusing on tau post-translational modification and dissemination, and neuroinflammatory responses, including glial cell activation and inflammatory signaling pathways. Then, we summarize the latest clinical trials targeting tau and neuroinflammation. Sustained and increased inflammatory responses in glial cells and neurons are pivotal cellular drivers and regulators of the exacerbation of tau pathology, which further contributes to its worsening by aggravating inflammatory responses. Unraveling the precise mechanisms underlying the relationship between tau pathology and neuroinflammation will provide new insights into the discovery and clinical translation of therapeutic targets for AD and other tau-related diseases (tauopathies). Targeting multiple pathologies and precision therapy strategies will be the crucial direction for developing drugs for AD and other tauopathies.
Collapse
Affiliation(s)
- Yijun Chen
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yang Yu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
40
|
Benussi A, Borroni B. Advances in the treatment and management of frontotemporal dementia. Expert Rev Neurother 2023; 23:621-639. [PMID: 37357688 DOI: 10.1080/14737175.2023.2228491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
INTRODUCTION Frontotemporal dementia (FTD) is a complex neurodegenerative disorder, characterized by a wide range of pathological conditions associated with the buildup of proteins such as tau and TDP-43. With a strong hereditary component, FTD often results from genetic variants in three genes - MAPT, GRN, and C9orf72. AREAS COVERED In this review, the authors explore abnormal protein accumulation in FTD and forthcoming treatments, providing a detailed analysis of new diagnostic advancements, including innovative markers. They analyze how these discoveries have influenced therapeutic strategies, particularly disease-modifying treatments, which could potentially transform FTD management. This comprehensive exploration of FTD from its molecular underpinnings to its therapeutic prospects offers a compelling overview of the current state of FTD research. EXPERT OPINION Notable challenges in FTD management involve identifying reliable biomarkers for early diagnosis and response monitoring. Genetic forms of FTD, particularly those linked to C9orf72 and GRN, show promise, with targeted therapies resulting in substantial progress in disease-modifying strategies. The potential of neuromodulation techniques, like tDCS and rTMS, is being explored, requiring further study. Ongoing trials and multi-disciplinary care highlight the continued push toward effective FTD treatments. With increasing understanding of FTD's molecular and clinical intricacies, the hope for developing effective interventions grows.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili di Brescia, Brescia, Italy
| |
Collapse
|
41
|
Mees I, Nisbet R, Hannan A, Renoir T. Implications of Tau Dysregulation in Huntington's Disease and Potential for New Therapeutics. J Huntingtons Dis 2023; 12:1-13. [PMID: 37092231 DOI: 10.3233/jhd-230569] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder. The disease, characterized by motor, cognitive, and psychiatric impairments, is caused by the expansion of a CAG repeat in the huntingtin gene. Despite the discovery of the mutation in 1993, no disease-modifying treatments are yet available. Understanding the molecular and cellular mechanisms involved in HD is therefore crucial for the development of novel treatments. Emerging research has found that HD might be classified as a secondary tauopathy, with the presence of tau insoluble aggregates in late HD. Increased total tau protein levels have been observed in both HD patients and animal models of HD. Tau hyperphosphorylation, the main feature of tau pathology, has also been investigated and our own published results suggest that the protein phosphorylation machinery is dysregulated in the early stages of HD in R6/1 transgenic mice, primarily in the cortex and striatum. Protein phosphorylation, catalysed by kinases, regulates numerous cellular mechanisms and has been shown to be dysregulated in other neurodegenerative disorders, including Alzheimer's disease. While it is still unclear how the mutation in the huntingtin gene leads to tau dysregulation in HD, several hypotheses have been explored. Evidence suggests that the mutant huntingtin does not directly interact with tau, but instead interacts with tau kinases, phosphatases, and proteins involved in tau alternative splicing, which could result in tau dysregulation as observed in HD. Altogether, there is increasing evidence that tau is undergoing pathological changes in HD and may be a good therapeutic target.
Collapse
Affiliation(s)
- Isaline Mees
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
| | - Rebecca Nisbet
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
| | - Anthony Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| |
Collapse
|
42
|
Chen H, Xu J, Xu H, Luo T, Li Y, Jiang K, Shentu Y, Tong Z. New Insights into Alzheimer’s Disease: Novel Pathogenesis, Drug Target and Delivery. Pharmaceutics 2023; 15:pharmaceutics15041133. [PMID: 37111618 PMCID: PMC10143738 DOI: 10.3390/pharmaceutics15041133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Alzheimer’s disease (AD), the most common type of dementia, is characterized by senile plaques composed of amyloid β protein (Aβ) and neurofilament tangles derived from the hyperphosphorylation of tau protein. However, the developed medicines targeting Aβ and tau have not obtained ideal clinical efficacy, which raises a challenge to the hypothesis that AD is Aβ cascade-induced. A critical problem of AD pathogenesis is which endogenous factor induces Aβ aggregation and tau phosphorylation. Recently, age-associated endogenous formaldehyde has been suggested to be a direct trigger for Aβ- and tau-related pathology. Another key issue is whether or not AD drugs are successfully delivered to the damaged neurons. Both the blood–brain barrier (BBB) and extracellular space (ECS) are the barriers for drug delivery. Unexpectedly, Aβ-related SP deposition in ECS slows down or stops interstitial fluid drainage in AD, which is the direct reason for drug delivery failure. Here, we propose a new pathogenesis and perspectives on the direction of AD drug development and drug delivery: (1) aging-related formaldehyde is a direct trigger for Aβ assembly and tau hyperphosphorylation, and the new target for AD therapy is formaldehyde; (2) nano-packaging and physical therapy may be the promising strategy for increasing BBB permeability and accelerating interstitial fluid drainage.
Collapse
Affiliation(s)
- Haishu Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Jinan Xu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China
| | - Hanyuan Xu
- Institute of Albert, Wenzhou Medical University, Wenzhou 325035, China
| | - Tiancheng Luo
- Institute of Albert, Wenzhou Medical University, Wenzhou 325035, China
| | - Yihao Li
- Institute of Albert, Wenzhou Medical University, Wenzhou 325035, China
| | - Ke Jiang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China
| | - Yangping Shentu
- Institute of Albert, Wenzhou Medical University, Wenzhou 325035, China
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Zhiqian Tong
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
- Institute of Albert, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
43
|
Li L, Miao J, Jiang Y, Dai CL, Iqbal K, Liu F, Chu D. Passive immunization inhibits tau phosphorylation and improves recognition learning and memory in 3xTg-AD mice. Exp Neurol 2023; 362:114337. [PMID: 36717015 DOI: 10.1016/j.expneurol.2023.114337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/05/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023]
Abstract
Tau pathology is essential in the pathogenesis of Alzheimer's disease (AD) and related tauopathies. Tau immunotherapy aimed at reducing the progression of tau pathology provides a potential therapeutic strategy for treating these diseases. By screening monoclonal antibodies 43D, 63B, 39E10, and 77G7 that recognize epitopes ranging from tau's N-terminus to C-terminus, we found the 77G7, which targets the microtubule-binding domain promoted tau clearance in a dose-dependent manner by entering neuronal cells in vitro. Intra-cerebroventricular injection of 77G7 antibody reduced tau levels in the wild-type FVB mouse brain. Without influencing the levels of detergent-insoluble and aggregated tau, intravenous injection of 77G7 reduced tau hyperphosphorylation in the brain and improved novel object recognition but not spatial learning and memory in 15-18-month-old 3xTg-AD mice. These studies suggest that epitopes recognized by tau antibodies are crucial for the efficacy of immunotherapy. Immunization with antibody 77G7 provides a novel potential opportunity for tau-directed immunotherapy of AD and related tauopathies.
Collapse
Affiliation(s)
- Longfei Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Jin Miao
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA; Laboratory Animal Center, Nantong University, Nantong 226001, China
| | - Yanli Jiang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Chun-Ling Dai
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.
| | - Dandan Chu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.
| |
Collapse
|
44
|
Yamada K. Multifaceted Roles of Aquaporins in the Pathogenesis of Alzheimer’s Disease. Int J Mol Sci 2023; 24:ijms24076528. [PMID: 37047501 PMCID: PMC10095057 DOI: 10.3390/ijms24076528] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The central nervous system is highly dependent on water, and disturbances in water homeostasis can have a significant impact on its normal functions. The regulation of water balance is, at least in part, carried out via specialized water channels called aquaporins. In the central nervous system, two major aquaporins (AQPs), AQP1 and AQP4, and their potential involvements have been long implicated in the pathophysiology of many brain disorders such as brain edema and Neuromyelitis optica. In addition to these diseases, there is growing attention to the involvement of AQPs in the removal of waste products in Alzheimer’s disease (AD). This indicates that targeting fluid homeostasis is a novel and attractive approach for AD. This review article aims to summarize recent knowledge on the pathological implications of AQPs in AD, discussing unsolved questions and future prospects.
Collapse
Affiliation(s)
- Kaoru Yamada
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
45
|
Mukadam AS, Miller LVC, Smith AE, Vaysburd M, Sakya SA, Sanford S, Keeling S, Tuck BJ, Katsinelos T, Green C, Skov L, Kaalund SS, Foss S, Mayes K, O’Connell K, Wing M, Knox C, Banbury J, Avezov E, Rowe JB, Goedert M, Andersen JT, James LC, McEwan WA. Cytosolic antibody receptor TRIM21 is required for effective tau immunotherapy in mouse models. Science 2023; 379:1336-1341. [PMID: 36996217 PMCID: PMC7614512 DOI: 10.1126/science.abn1366] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/09/2023] [Indexed: 04/01/2023]
Abstract
Aggregates of the protein tau are proposed to drive pathogenesis in neurodegenerative diseases. Tau can be targeted by using passively transferred antibodies (Abs), but the mechanisms of Ab protection are incompletely understood. In this work, we used a variety of cell and animal model systems and showed that the cytosolic Ab receptor and E3 ligase TRIM21 (T21) could play a role in Ab protection against tau pathology. Tau-Ab complexes were internalized to the cytosol of neurons, which enabled T21 engagement and protection against seeded aggregation. Ab-mediated protection against tau pathology was lost in mice that lacked T21. Thus, the cytosolic compartment provides a site of immunotherapeutic protection, which may help in the design of Ab-based therapies in neurodegenerative disease.
Collapse
Affiliation(s)
- Aamir S Mukadam
- UK Dementia Research Institute at the University of Cambridge, Hills Road, Cambridge CB2 0AH, UK
- Department of Clinical Neurosciences, University of Cambridge, CB2 0AH
| | - Lauren VC Miller
- UK Dementia Research Institute at the University of Cambridge, Hills Road, Cambridge CB2 0AH, UK
- Department of Clinical Neurosciences, University of Cambridge, CB2 0AH
| | - Annabel E Smith
- UK Dementia Research Institute at the University of Cambridge, Hills Road, Cambridge CB2 0AH, UK
- Department of Clinical Neurosciences, University of Cambridge, CB2 0AH
| | - Marina Vaysburd
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Siri A Sakya
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, N-0424 Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, N-0372 Oslo, Norway
| | - Sophie Sanford
- UK Dementia Research Institute at the University of Cambridge, Hills Road, Cambridge CB2 0AH, UK
- Department of Clinical Neurosciences, University of Cambridge, CB2 0AH
| | - Sophie Keeling
- UK Dementia Research Institute at the University of Cambridge, Hills Road, Cambridge CB2 0AH, UK
- Department of Clinical Neurosciences, University of Cambridge, CB2 0AH
| | - Benjamin J Tuck
- UK Dementia Research Institute at the University of Cambridge, Hills Road, Cambridge CB2 0AH, UK
- Department of Clinical Neurosciences, University of Cambridge, CB2 0AH
| | - Taxiarchis Katsinelos
- UK Dementia Research Institute at the University of Cambridge, Hills Road, Cambridge CB2 0AH, UK
- Department of Clinical Neurosciences, University of Cambridge, CB2 0AH
| | - Chris Green
- UK Dementia Research Institute at the University of Cambridge, Hills Road, Cambridge CB2 0AH, UK
- Department of Clinical Neurosciences, University of Cambridge, CB2 0AH
| | - Lise Skov
- UK Dementia Research Institute at the University of Cambridge, Hills Road, Cambridge CB2 0AH, UK
- Department of Clinical Neurosciences, University of Cambridge, CB2 0AH
| | - Sanne S Kaalund
- Department of Clinical Neurosciences, University of Cambridge, CB2 0AH
| | - Stian Foss
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, N-0424 Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, N-0372 Oslo, Norway
| | - Keith Mayes
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Kevin O’Connell
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Mark Wing
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Claire Knox
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jessica Banbury
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Edward Avezov
- UK Dementia Research Institute at the University of Cambridge, Hills Road, Cambridge CB2 0AH, UK
- Department of Clinical Neurosciences, University of Cambridge, CB2 0AH
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, CB2 0AH
- Cambridge University Hospitals NHS Trust, Cambridge, CB2 0SZ
| | - Michel Goedert
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jan Terje Andersen
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, N-0424 Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, N-0372 Oslo, Norway
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - William A McEwan
- UK Dementia Research Institute at the University of Cambridge, Hills Road, Cambridge CB2 0AH, UK
- Department of Clinical Neurosciences, University of Cambridge, CB2 0AH
| |
Collapse
|
46
|
Guo ZH, Khattak S, Rauf MA, Ansari MA, Alomary MN, Razak S, Yang CY, Wu DD, Ji XY. Role of Nanomedicine-Based Therapeutics in the Treatment of CNS Disorders. Molecules 2023; 28:1283. [PMID: 36770950 PMCID: PMC9921752 DOI: 10.3390/molecules28031283] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/31/2023] Open
Abstract
Central nervous system disorders, especially neurodegenerative diseases, are a public health priority and demand a strong scientific response. Various therapy procedures have been used in the past, but their therapeutic value has been insufficient. The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier is two of the barriers that protect the central nervous system (CNS), but are the main barriers to medicine delivery into the CNS for treating CNS disorders, such as brain tumors, Parkinson's disease, Alzheimer's disease, and Huntington's disease. Nanotechnology-based medicinal approaches deliver valuable cargos targeting molecular and cellular processes with greater safety, efficacy, and specificity than traditional approaches. CNS diseases include a wide range of brain ailments connected to short- and long-term disability. They affect millions of people worldwide and are anticipated to become more common in the coming years. Nanotechnology-based brain therapy could solve the BBB problem. This review analyzes nanomedicine's role in medication delivery; immunotherapy, chemotherapy, and gene therapy are combined with nanomedicines to treat CNS disorders. We also evaluated nanotechnology-based approaches for CNS disease amelioration, with the intention of stimulating the immune system by delivering medications across the BBB.
Collapse
Affiliation(s)
- Zi-Hua Guo
- Department of Neurology, Kaifeng Hospital of Traditional Chinese Medicine, No. 54 East Caizhengting St., Kaifeng 475000, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Mohd Ahmar Rauf
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Sufyan Razak
- Dow Medical College, John Hopkins Medical Center, School of Medicine, Baltimore, MD 21205, USA
| | - Chang-Yong Yang
- School of Nursing and Health, Henan University, Kaifeng 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- School of Stomatology, Henan University, Kaifeng 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
47
|
Shah AJ, Mohi-Ud-Din R, Sabreen S, Wani TU, Jan R, Javed MN, Mir PA, Mir RH, Masoodi MH. Clinical Biomarkers and Novel Drug Targets to Cut Gordian Knots of Alzheimer's Disease. Curr Mol Pharmacol 2023; 16:254-279. [PMID: 36056834 DOI: 10.2174/1874467215666220903095837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/03/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's disease (AD), the primary cause of dementia, escalating worldwide, has no proper diagnosis or effective treatment. Neuronal cell death and impairment of cognitive abilities, possibly triggered by several brain mechanisms, are the most significant characteristic of this disorder. METHODS A multitude of pharmacological targets have been identified for potential drug design against AD. Although many advances in treatment strategies have been made to correct various abnormalities, these often exhibit limited clinical significance because this disease aggressively progresses into different regions of the brain, causing severe deterioration. RESULTS These biomarkers can be game-changers for early detection and timely monitoring of such disorders. CONCLUSION This review covers clinically significant biomarkers of AD for precise and early monitoring of risk factors and stages of this disease, the potential site of action and novel targets for drugs, and pharmacological approaches to clinical management.
Collapse
Affiliation(s)
- Abdul Jalil Shah
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar- 190006, Kashmir, India
| | - Roohi Mohi-Ud-Din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar- 190011, Jammu and Kashmir, India
| | - Saba Sabreen
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar- 190006, Kashmir, India
| | - Taha Umair Wani
- Department of Pharmaceutical Sciences, Pharmaceutics Lab, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir India
| | - Rafia Jan
- Defence Research and Development Organization (DRDO), Hospital, Khonmoh, Srinagar 190001, Jammu & Kashmir, India
| | - Md Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmaceutics, KR Mangalam University, Gurugram, India
| | - Prince Ahad Mir
- Khalsa College of Pharmacy, G.T. Road, Amritsar-143002, Punjab, India
| | - Reyaz Hassan Mir
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar- 190006, Kashmir, India
- Pharmaceutical Chemistry Division, Chandigarh College of Pharmacy, Mohali, Punjab 140307, India
| | - Mubashir Hussain Masoodi
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar- 190006, Kashmir, India
| |
Collapse
|
48
|
Bespalov A, Courade JP, Khiroug L, Terstappen GC, Wang Y. A call for better understanding of target engagement in Tau antibody development. Drug Discov Today 2022; 27:103338. [PMID: 35973661 DOI: 10.1016/j.drudis.2022.103338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/08/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
Abstract
Significant efforts have been channeled into developing antibodies for the treatment of CNS indications. Disappointment with the first generation of clinical Tau antibodies in Alzheimer's disease has highlighted the challenges in understanding whether an antibody can reach or affect the target in the compartment where it is involved in pathological processes. Here, we highlight different aspects essential for improving translatability of Tau-based immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Yipeng Wang
- Shanghai Qiangrui Biotech, Shanghai, PR China
| |
Collapse
|
49
|
Opportunities and challenges in delivering biologics for Alzheimer's disease by low-intensity ultrasound. Adv Drug Deliv Rev 2022; 189:114517. [PMID: 36030018 DOI: 10.1016/j.addr.2022.114517] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 01/24/2023]
Abstract
Low-intensity ultrasound combined with intravenously injected microbubbles (US+MB) is a novel treatment modality for brain disorders, including Alzheimer's disease (AD), safely and transiently allowing therapeutic agents to overcome the blood-brain barrier (BBB) that constitutes a major barrier for therapeutic agents. Here, we first provide an update on immunotherapies in AD and how US+MB has been applied to AD mouse models and in clinical trials, considering the ultrasound and microbubble parameter space. In the second half of the review, we compare different in vitro BBB models and discuss strategies for combining US+MB with BBB modulators (targeting molecules such as claudin-5), and highlight the insight provided by super-resolution microscopy. Finally, we conclude with a short discussion on how in vitro findings can inform the design of animal studies, and how the insight gained may aid treatment optimization in the clinical ultrasound space.
Collapse
|
50
|
Li L, Miao J, Chu D, Jin N, Tung YC, Dai C, Hu W, Gong C, Iqbal K, Liu F. Tau antibody 77G7 targeting microtubule binding domain suppresses proteopathic tau to seed tau aggregation. CNS Neurosci Ther 2022; 28:2245-2259. [PMID: 36114722 PMCID: PMC9627375 DOI: 10.1111/cns.13970] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Neurofibrillary tangle (NFT) of hyperphosphorylated tau is a hallmark of Alzheimer's disease (AD) and related tauopathies. Tau lesion starts in the trans-entorhinal cortex, from where it spreads to limbic regions, followed by neocortical areas. The regional distribution of NFTs associates with the progression of AD. Accumulating evidence suggests that proteopathic tau can seed tau aggregation in a prion-like fashion in vitro and in vivo. Inhibition of tau seeding activity could provide a potential therapeutic opportunity to block the propagation of tau pathology in AD and related tauopathies. AIMS In the present study, we investigated the role of 77G7, a monoclonal tau antibody to the microtubule-binding repeats, in repressing the seeding activity of proteopathic tau. RESULTS We found that 77G7 had a higher affinity toward aggregated pathological tau fractions than un-aggregated tau derived from AD brain. 77G7 inhibited the internalization of tau aggregates by cells, blocked AD O-tau to capture normal tau, and to seed tau aggregation in vitro and in cultured cells. Tau pathology induced by hippocampal injection of AD O-tau in 3xTg-AD mice was suppressed by mixing 77G7 with AD O-tau. Intravenous administration of 77G7 ameliorated site-specific hyperphosphorylation of tau induced by AD O-tau in the hippocampi of Tg/hTau mice. CONCLUSION These findings indicate that 77G7 can effectively suppress the seeding activity of AD O-tau and thus could be developed as a potential immunotherapeutic drug to inhibit the propagation of tau pathology in AD and related tauopathies.
Collapse
Affiliation(s)
- Longfei Li
- Department of NeurochemistryInge Grundke‐Iqbal Research FloorNew York State Institute for Basic Research in Developmental DisabilitiesStaten IslandNew YorkUSA,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of EducationNantong UniversityNantongChina
| | - Jin Miao
- Department of NeurochemistryInge Grundke‐Iqbal Research FloorNew York State Institute for Basic Research in Developmental DisabilitiesStaten IslandNew YorkUSA,Laboratory Animal CenterNantong UniversityNantongChina
| | - Dandan Chu
- Department of NeurochemistryInge Grundke‐Iqbal Research FloorNew York State Institute for Basic Research in Developmental DisabilitiesStaten IslandNew YorkUSA,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of EducationNantong UniversityNantongChina
| | - Nana Jin
- Department of NeurochemistryInge Grundke‐Iqbal Research FloorNew York State Institute for Basic Research in Developmental DisabilitiesStaten IslandNew YorkUSA,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of EducationNantong UniversityNantongChina
| | - Yunn Chyn Tung
- Department of NeurochemistryInge Grundke‐Iqbal Research FloorNew York State Institute for Basic Research in Developmental DisabilitiesStaten IslandNew YorkUSA
| | - Chun‐Ling Dai
- Department of NeurochemistryInge Grundke‐Iqbal Research FloorNew York State Institute for Basic Research in Developmental DisabilitiesStaten IslandNew YorkUSA
| | - Wen Hu
- Department of NeurochemistryInge Grundke‐Iqbal Research FloorNew York State Institute for Basic Research in Developmental DisabilitiesStaten IslandNew YorkUSA
| | - Cheng‐Xin Gong
- Department of NeurochemistryInge Grundke‐Iqbal Research FloorNew York State Institute for Basic Research in Developmental DisabilitiesStaten IslandNew YorkUSA
| | - Khalid Iqbal
- Department of NeurochemistryInge Grundke‐Iqbal Research FloorNew York State Institute for Basic Research in Developmental DisabilitiesStaten IslandNew YorkUSA
| | - Fei Liu
- Department of NeurochemistryInge Grundke‐Iqbal Research FloorNew York State Institute for Basic Research in Developmental DisabilitiesStaten IslandNew YorkUSA
| |
Collapse
|