1
|
Daida A, Ding Y, Zhang Y, Oana S, Panchavati S, Edmonds BD, Ahn SS, Salamon N, Sankar R, Fallah A, Staba RJ, Engel J, Speier W, Roychowdhury V, Nariai H. Fast ripple band high-frequency activity associated with thalamic sleep spindles in pediatric epilepsy. Clin Neurophysiol 2025; 173:241-251. [PMID: 39915224 DOI: 10.1016/j.clinph.2025.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/26/2024] [Accepted: 01/22/2025] [Indexed: 05/09/2025]
Abstract
OBJECTIVE To investigate high-frequency activities (HFA) associated with thalamic sleep spindles. METHODS We studied a cohort of ten pediatric patients with medication resistant epilepsy who were identified as potential candidates for thalamic neuromodulation. These patients had thalamic sampling as well as presumed epileptogenic zones, using stereotactic EEG (SEEG) with a sampling frequency of 2,000 Hz. We quantified the summated high-frequency activity (HFA) in the fast ripple band associated with sleep spindles using 20-minute scalp EEG and SEEG recordings during non-REM sleep and analyzed its correlation with spindle characteristics. RESULTS HFA, with a median peak frequency of 330 Hz, was distinctively observed in the thalamus and temporally correlated with thalamic sleep spindles. Such HFA demonstrated significant coupling with the sleep spindle range of 11-16 Hz. The duration of HFA positively correlated with higher density and longer duration of accompanying thalamic spindles. Thalamic HFA's duration negatively correlated with the presence of cortical interictal epileptiform discharges. Thalamic spindles generated in channels with HFA often coincided with sleep spindles in various brain regions. CONCLUSION Fast ripple band HFA associated with sleep spindles was observed exclusively in the thalamus. SIGNIFICANCE Thalamic HFA associated with thalamic spindles may represent a thalamus-specific physiological phenomenon.
Collapse
Affiliation(s)
- Atsuro Daida
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine Los Angeles CA USA.
| | - Yuanyi Ding
- Department of Electrical and Computer Engineering, University of California Los Angeles CA USA
| | - Yipeng Zhang
- Department of Electrical and Computer Engineering, University of California Los Angeles CA USA
| | - Shingo Oana
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine Los Angeles CA USA
| | - Saarang Panchavati
- Department of Radiological Sciences, University of California Los Angeles CA USA; Department of Bioengineering, University of California Los Angeles CA USA
| | - Benjamin D Edmonds
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine Los Angeles CA USA
| | - Samuel S Ahn
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine Los Angeles CA USA
| | - Noriko Salamon
- Department of Radiological Sciences, University of California Los Angeles CA USA
| | - Raman Sankar
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine Los Angeles CA USA; The UCLA Children's Discovery and Innovation Institute Los Angeles CA USA
| | - Aria Fallah
- Department of Neurosurgery, UCLA Medical Center, David Geffen School of Medicine Los Angeles CA USA
| | - Richard J Staba
- Department of Neurology, UCLA Medical Center, David Geffen School of Medicine Los Angeles CA USA
| | - Jerome Engel
- Department of Neurology, UCLA Medical Center, David Geffen School of Medicine Los Angeles CA USA; Department of Neurobiology, University of California Los Angeles CA USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles CA USA; The Brain Research Institute, University of California Los Angeles CA USA
| | - William Speier
- Department of Radiological Sciences, University of California Los Angeles CA USA; Department of Bioengineering, University of California Los Angeles CA USA
| | - Vwani Roychowdhury
- Department of Electrical and Computer Engineering, University of California Los Angeles CA USA
| | - Hiroki Nariai
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine Los Angeles CA USA; The UCLA Children's Discovery and Innovation Institute Los Angeles CA USA.
| |
Collapse
|
2
|
Pan M, Li Q, Song J, Wang B, Wang W, Zhang R. Understanding the Spatio-Temporal Coupling of Spikes and Spindles in Focal Epilepsy Through a Network-Level Computational Model. Int J Neural Syst 2025; 35:2550018. [PMID: 40084544 DOI: 10.1142/s0129065725500182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
The electrophysiological findings have shown that epileptiform spikes triggering sleep spindles within 1[Formula: see text]s across multiple channels are commonly observed during sleep in focal epilepsy (FE). Such spatio-temporal couplings of spikes and spindles (STCSSs) are defined as a kind of pathological waves, and frequent emergence of them may cause the degradation of cognitive function for FE patients. However, the neural mechanisms underlying STCSSs are not well understood. To this end, this work first develops a neural mass network model for focal epilepsy (FE-NMNM) with multiple thalamocortical columns being its nodes and the long-range synaptic interactions of thalamocortical columns being its edges, where each thalamocortical column is extended on the basis of Costa model and then they are connected through excitatory synapses between pyramidal cells. Then, how the cortico-cortical connectivity affects the evolution of STCSSs across the network is especially discussed by simulations in two cases, where the inter-ictal state and the ictal state are considered separately. Simulation results demonstrate that: (1) the more STCSSs occur in a more extensive area when the cortico-cortical connectivity becomes stronger, and the significant increase of coupling discharges is attributed to the presence of abundant spikes; (2) when the connectivity is excessively strong, the cortical hyperexcitability will happen, thereby inducing massive spike discharges which may further inhibit the occurrence of spindles, and hence, resulting in the disappearance of STCSSs. The obtained results provide a mechanistic insight into STCSSs, and suggest that such coupling patterns could reflect widespread network dysfunction in FE, thereby potentially advancing therapeutic strategies for FE.
Collapse
Affiliation(s)
- Min Pan
- School of Mathematics, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Qiang Li
- School of Mathematics, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Jiangling Song
- School of Mathematics, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Bo Wang
- School of Mathematics, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Wenhua Wang
- School of Mathematics, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Rui Zhang
- School of Mathematics, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| |
Collapse
|
3
|
Lisgaras CP, de la Prida LM, Bertram E, Cunningham M, Henshall D, Liu AA, Gnatkovsky V, Balestrini S, de Curtis M, Galanopoulou AS, Jacobs J, Jefferys JGR, Mantegazza M, Reschke CR, Jiruska P. The role of electroencephalography in epilepsy research-From seizures to interictal activity and comorbidities. Epilepsia 2025; 66:1374-1393. [PMID: 39913107 PMCID: PMC12097480 DOI: 10.1111/epi.18282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 02/07/2025]
Abstract
Electroencephalography (EEG) has been instrumental in epilepsy research for the past century, both for basic and translational studies. Its contributions have advanced our understanding of epilepsy, shedding light on the pathophysiology and functional organization of epileptic networks, and the mechanisms underlying seizures. Here we re-examine the historical significance, ongoing relevance, and future trajectories of EEG in epilepsy research. We describe traditional approaches to record brain electrical activity and discuss novel cutting-edge, large-scale techniques using micro-electrode arrays. Contemporary EEG studies explore brain potentials beyond the traditional Berger frequencies to uncover underexplored mechanisms operating at ultra-slow and high frequencies, which have proven valuable in understanding the principles of ictogenesis, epileptogenesis, and endogenous epileptogenicity. Integrating EEG with modern techniques such as optogenetics, chemogenetics, and imaging provides a more comprehensive understanding of epilepsy. EEG has become an integral element in a powerful suite of tools for capturing epileptic network dynamics across various temporal and spatial scales, ranging from rapid pathological synchronization to the long-term processes of epileptogenesis or seizure cycles. Advancements in EEG recording techniques parallel the application of sophisticated mathematical analyses and algorithms, significantly augmenting the information yield of EEG recordings. Beyond seizures and interictal activity, EEG has been instrumental in elucidating the mechanisms underlying epilepsy-related cognitive deficits and other comorbidities. Although EEG remains a cornerstone in epilepsy research, persistent challenges such as limited spatial resolution, artifacts, and the difficulty of long-term recording highlight the ongoing need for refinement. Despite these challenges, EEG continues to be a fundamental research tool, playing a central role in unraveling disease mechanisms and drug discovery.
Collapse
Affiliation(s)
- Christos Panagiotis Lisgaras
- Department of PsychiatryNew York University Grossman School of MedicineNew YorkNew YorkUSA
- Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric ResearchNew York State Office of Mental HealthOrangeburgNew YorkUSA
| | | | | | - Mark Cunningham
- Discipline of Physiology, School of MedicineTrinity College DublinDublinIreland
- FutureNeuro Research Ireland CentreRoyal College of Surgeons in IrelandDublinIreland
| | - David Henshall
- Department of Physiology and Medical PhysicsRoyal College of Surgeons in IrelandDublinIreland
- FutureNeuro Research Ireland CentreRoyal College of Surgeons in IrelandDublinIreland
| | - Anli A. Liu
- Langone Medical CenterNew York UniversityNew YorkNew YorkUSA
- Department of Neurology, School of MedicineNew York UniversityNew YorkNew YorkUSA
- Neuroscience Institute, Langone Medical CenterNew York UniversityNew YorkNew YorkUSA
| | - Vadym Gnatkovsky
- Department of EpileptologyUniversity Hospital Bonn (UKB)BonnGermany
| | - Simona Balestrini
- Department of Neuroscience and Medical GeneticsMeyer Children's Hospital IRCSSFlorenceItaly
- University of FlorenceFlorenceItaly
- Department of Clinical & Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
| | - Marco de Curtis
- Epilepsy UnitFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Aristea S. Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child NeurologyAlbert Einstein College of MedicineBronxNew YorkUSA
- Dominick P. Purpura Department of NeuroscienceAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Julia Jacobs
- Alberta Children's Hospital Research Institute, Hotchkiss Brain InstituteAlberta Health Services & University of CalgaryCalgaryCanada
| | - John G. R. Jefferys
- Department of Physiology, Second Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Massimo Mantegazza
- Université Côte d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
- Inserm U1323Valbonne‐Sophia AntipolisFrance
| | - Cristina R. Reschke
- FutureNeuro Research Ireland CentreRoyal College of Surgeons in IrelandDublinIreland
- School of Pharmacy and Biomolecular SciencesRoyal College of Surgeons in IrelandDublinIreland
| | - Premysl Jiruska
- Department of Physiology, Second Faculty of MedicineCharles UniversityPragueCzech Republic
| |
Collapse
|
4
|
Gelinas JN, Khodagholy D. Interictal network dysfunction and cognitive impairment in epilepsy. Nat Rev Neurosci 2025:10.1038/s41583-025-00924-3. [PMID: 40295879 DOI: 10.1038/s41583-025-00924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2025] [Indexed: 04/30/2025]
Abstract
Epilepsy is diagnosed when neural networks become capable of generating excessive or hypersynchronous activity patterns that result in observable seizures. In many cases, epilepsy is associated with cognitive comorbidities that persist between seizures and negatively impact quality of life. Dysregulation of the coordinated physiological network interactions that are required for cognitive function has been implicated in mediating these enduring symptoms, but the causal mechanisms are often elusive. Here, we provide an overview of neural network abnormalities with the potential to contribute to cognitive dysfunction in epilepsy. We examine these pathological interactions across spatial and temporal scales, additionally highlighting the dynamics that arise in response to the brain's intrinsic capacity for plasticity. Understanding these processes will facilitate development of network-level interventions to address cognitive comorbidities that remain undertreated by currently available epilepsy therapeutics.
Collapse
Affiliation(s)
- Jennifer N Gelinas
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
- Department of Paediatrics, University of California, Irvine, CA, USA.
- Children's Hospital of Orange County, Orange, CA, USA.
| | - Dion Khodagholy
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
- Department of Electrical Engineering, University of California, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California, Irvine, CA, USA.
- Department of Materials Science and Engineering, University of California, Irvine, CA, USA.
| |
Collapse
|
5
|
Sheybani L, Frauscher B, Bernard C, Walker MC. Mechanistic insights into the interaction between epilepsy and sleep. Nat Rev Neurol 2025; 21:177-192. [PMID: 40065066 DOI: 10.1038/s41582-025-01064-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2025] [Indexed: 04/04/2025]
Abstract
Epidemiological evidence has demonstrated associations between sleep and epilepsy, but we lack a mechanistic understanding of these associations. If sleep affects the pathophysiology of epilepsy and the risk of seizures, as suggested by correlative evidence, then understanding these effects could provide crucial insight into the basic mechanisms that underlie the development of epilepsy and the generation of seizures. In this Review, we provide in-depth discussion of the associations between epilepsy and sleep at the cellular, network and system levels and consider the mechanistic underpinnings of these associations. We also discuss the clinical relevance of these associations, highlighting how they could contribute to improvements in the management of epilepsy. A better understanding of the mechanisms that govern the interactions between epilepsy and sleep could guide further research and the development of novel approaches to the management of epilepsy.
Collapse
Affiliation(s)
- Laurent Sheybani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK.
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK.
- NIHR University College London Hospitals Biomedical Research Centre, London, UK.
| | - Birgit Frauscher
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Christophe Bernard
- Aix Marseille Université, INSERM, INS, Institute Neurosciences des Systèmes, Marseille, France
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| |
Collapse
|
6
|
Jiao D, Xu L, Gu Z, Yan H, Shen D, Gu X. Pathogenesis, diagnosis, and treatment of epilepsy: electromagnetic stimulation-mediated neuromodulation therapy and new technologies. Neural Regen Res 2025; 20:917-935. [PMID: 38989927 PMCID: PMC11438347 DOI: 10.4103/nrr.nrr-d-23-01444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/31/2023] [Accepted: 01/18/2024] [Indexed: 07/12/2024] Open
Abstract
Epilepsy is a severe, relapsing, and multifactorial neurological disorder. Studies regarding the accurate diagnosis, prognosis, and in-depth pathogenesis are crucial for the precise and effective treatment of epilepsy. The pathogenesis of epilepsy is complex and involves alterations in variables such as gene expression, protein expression, ion channel activity, energy metabolites, and gut microbiota composition. Satisfactory results are lacking for conventional treatments for epilepsy. Surgical resection of lesions, drug therapy, and non-drug interventions are mainly used in clinical practice to treat pain associated with epilepsy. Non-pharmacological treatments, such as a ketogenic diet, gene therapy for nerve regeneration, and neural regulation, are currently areas of research focus. This review provides a comprehensive overview of the pathogenesis, diagnostic methods, and treatments of epilepsy. It also elaborates on the theoretical basis, treatment modes, and effects of invasive nerve stimulation in neurotherapy, including percutaneous vagus nerve stimulation, deep brain electrical stimulation, repetitive nerve electrical stimulation, in addition to non-invasive transcranial magnetic stimulation and transcranial direct current stimulation. Numerous studies have shown that electromagnetic stimulation-mediated neuromodulation therapy can markedly improve neurological function and reduce the frequency of epileptic seizures. Additionally, many new technologies for the diagnosis and treatment of epilepsy are being explored. However, current research is mainly focused on analyzing patients' clinical manifestations and exploring relevant diagnostic and treatment methods to study the pathogenesis at a molecular level, which has led to a lack of consensus regarding the mechanisms related to the disease.
Collapse
Affiliation(s)
- Dian Jiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Lai Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hua Yan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Dingding Shen
- Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xiaosong Gu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
7
|
Maslarova A, Shin JN, Navas-Olive A, Vöröslakos M, Hamer H, Doerfler A, Henin S, Buzsáki G, Liu A. Spatiotemporal Patterns Differentiate Hippocampal Sharp-Wave Ripples from Interictal Epileptiform Discharges in Mice and Humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636758. [PMID: 39975118 PMCID: PMC11839046 DOI: 10.1101/2025.02.06.636758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Hippocampal sharp-wave ripples (SPW-Rs) are high-frequency oscillations critical for memory consolidation in mammals. Despite extensive characterization in rodents, their application as biomarkers to track and treat memory dysfunction in humans is limited by coarse spatial sampling, interference from interictal epileptiform discharges (IEDs), and lack of consensus on human SPW-R localization and morphology. We demonstrate that mouse and human hippocampal ripples share spatial, spectral and temporal features, which are clearly distinct from IEDs. In 1024-channel hippocampal recordings from APP/PS1 mice, SPW-Rs were distinguishable from IEDs by their narrow localization to the CA1 pyramidal layer, narrowband frequency peaks, and multiple ripple cycles on the unfiltered local field potential. In epilepsy patients, ripples showed similar narrowband frequency peaks and visible ripple cycles in CA1 and the subiculum but were absent in the dentate gyrus. Conversely, IEDs showed a broad spatial extent and wide-band frequency power. We introduce a semi-automated, human ripple detection toolbox ("ripmap") selecting optimal detection channels and separating event waveforms by low-dimensional embedding. Our approach improves ripple detection accuracy, providing a firm foundation for future human memory research.
Collapse
|
8
|
Niemeyer JE, Luo P, Pons C, Wu S, Ma H, Liou JY, Surinach D, Kodandaramaiah SB, Schwartz TH. Seizure network characterization by functional connectivity mapping and manipulation. NEUROPHOTONICS 2025; 12:S14605. [PMID: 39822587 PMCID: PMC11737237 DOI: 10.1117/1.nph.12.s1.s14605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 01/19/2025]
Abstract
Significance Despite the availability of various anti-seizure medications, nearly 1/3 of epilepsy patients experience drug-resistant seizures. These patients are left with invasive surgical options that do not guarantee seizure remission. The development of novel treatment options depends on elucidating the complex biology of seizures and brain networks. Aim We aimed to develop an experimental paradigm that uses anatomical network information, functional connectivity, and in vivo seizure models to determine how brain networks, and their manipulation, affect seizure propagation. Approach Guided by a known anatomical network, we applied widefield calcium imaging to determine how neural activity and seizures spread through the network regions, focusing on the primary somatosensory cortex and secondary motor cortex. We used in vivo microstimulation to induce suprathreshold excitatory activation and compared this reproducible stimulus with acute pharmacologically induced spontaneous seizure propagation. In a proof-of-concept experiment, we ablated a single node within this bilateral network and measured the effect on propagation and recruitment. Similar preliminary experiments were repeated in a chronic seizure model. Results The microstimulation of the somatosensory cortex propagated in a distinct pattern throughout the bilateral network with sequential reproducible node recruitment. Seizures recapitulated this same pattern, indicating a hijacking of existing pathways. Ablation of a key node in the network in the secondary motor cortex changed contralateral spread. Early chronic cobalt seizure data are presented. Conclusion Here, we demonstrate a paradigm for combining widefield calcium imaging with microstimulation, cortical ablation, and seizure mapping to determine how anatomical networks inform the propagation patterns of cortical seizures. These experiments can be extended to long-term tracking of epilepsy to study epileptogenesis in other cortical networks. Our proof-of-concept findings suggest that this paradigm may be useful in the development of novel therapies for drug-resistant epilepsy patients and can be extended to the study of other disorders involving brain networks.
Collapse
Affiliation(s)
- James E. Niemeyer
- Weill Cornell Medicine, Department of Neurological Surgery, New York, United States
| | - Peijuan Luo
- The First Hospital of Jilin University, Department of Neurology, Changchun, China
| | - Carmen Pons
- Weill Cornell Medicine, Department of Neurological Surgery, New York, United States
- University of Chicago Medicine, Department of Neurosurgery, Chicago, Illinois, United States
| | - Shiqiang Wu
- Weill Cornell Medicine, Department of Neurological Surgery, New York, United States
- Tongji Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, China
| | - Hongtao Ma
- Weill Cornell Medicine, Department of Neurological Surgery, New York, United States
| | - Jyun-you Liou
- Weill Cornell Medicine, Department of Anesthesiology, New York, United States
| | - Daniel Surinach
- University of Minnesota, Department of Mechanical Engineering, Minneapolis, Minnesota, United States
| | - Suhasa B. Kodandaramaiah
- University of Minnesota, Department of Mechanical Engineering, Minneapolis, Minnesota, United States
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
- University of Minnesota, Department of Neuroscience, Minneapolis, Minnesota, United States
| | - Theodore H. Schwartz
- Weill Cornell Medicine, Department of Neurological Surgery, New York, United States
| |
Collapse
|
9
|
Köksal-Ersöz E, Benquet P, Wendling F. Expansion of epileptogenic networks via neuroplasticity in neural mass models. PLoS Comput Biol 2024; 20:e1012666. [PMID: 39625956 PMCID: PMC11642990 DOI: 10.1371/journal.pcbi.1012666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 12/13/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024] Open
Abstract
Neuroplasticity refers to functional and structural changes in brain regions in response to healthy and pathological activity. Activity dependent plasticity induced by epileptic activity can involve healthy brain regions into the epileptogenic network by perturbing their excitation/inhibition balance. In this article, we present a new neural mass model, which accounts for neuroplasticity, for investigating the possible mechanisms underlying the epileptogenic network expansion. Our multiple-timescale model is inspired by physiological calcium-mediated synaptic plasticity and pathological extrasynaptic N-methyl-D-aspartate (NMDA) dependent plasticity dynamics. The model highlights that synaptic plasticity at excitatory connections and structural changes in the inhibitory system can transform a healthy region into a secondary epileptic focus under recurrent seizures and interictal activity occurring in the primary focus. Our results suggest that the latent period of this transformation can provide a window of opportunity to prevent the expansion of epileptogenic networks, formation of an epileptic focus, or other comorbidities associated with epileptic activity.
Collapse
|
10
|
Yi JD, Pasdarnavab M, Kueck L, Tarcsay G, Ewell LA. Interictal spikes during spatial working memory carry helpful or distracting representations of space and have opposing impacts on performance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623481. [PMID: 39605412 PMCID: PMC11601362 DOI: 10.1101/2024.11.13.623481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
In temporal lobe epilepsy, interictal spikes (IS) - hypersynchronous bursts of network activity - occur at high rates in between seizures. We sought to understand the influence of IS on working memory by recording hippocampal local field potentials from epileptic mice while they performed a delayed alternation task. We found that IS disrupted performance when they were spatially non-restricted and occurred during running. In contrast, when IS were clustered at reward locations, animals performed well. A machine learning decoding approach revealed that IS at reward sites were larger than IS elsewhere on the maze, and could be classified as occurring at specific reward locations - suggesting they carry informative content for the memory task. Finally, a spiking model revealed that spatially clustered IS preserved hippocampal replay, while spatially dispersed IS disrupted replay by causing over-generalization. Together, these results show that IS can have opposing outcomes on memory.
Collapse
Affiliation(s)
- Justin D. Yi
- Anatomy & Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
- These authors contributed equally
| | | | | | - Gergely Tarcsay
- Anatomy & Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Laura A. Ewell
- Anatomy & Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
- Center for Learning and Memory, University of California, Irvine, Irvine, CA, USA
- Senior author
- Lead contact
| |
Collapse
|
11
|
Pan M, Li Q, Song J, Li D, Zhang R. Spike-spindle coupling during sleep and its mechanism explanation in childhood focal epilepsy. Cogn Neurodyn 2024; 18:2145-2160. [PMID: 39555302 PMCID: PMC11564472 DOI: 10.1007/s11571-023-10052-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 11/19/2024] Open
Abstract
Childhood focal epilepsy (CFE) is a serious neurological disorder characterized by epileptic seizures arising from a focal or multi-focal zone of the brain in clinics. During non-rapid eye movement (NREM) sleep stage, epileptiform discharges become frequent, and sleep spindles are generated through local interaction between thalamic neurons for CFE patients. Recent research has shown that epileptiform spikes significantly induce spindle oscillations within 1 s (say, spike-spindle coupling) during NREM sleep in focal epilepsy, which might damage cognitive function of epilepsy patients. However, the temporal interaction mechanism between spikes and spindles is lack of understanding. In this paper, we first develop a new thalamocortical model of CFE (CFE-TCM) by integrating M-type potassium current, persistent sodium current and NMDAR current into Costa model, where the three types of currents are important for modulating the excitability of thalamocortical system. Then we demonstrate in simulations that: (1) the temporal spike-spindle coupling oscillatory patterns do exist in real CFE-EEGs recorded in clinics; (2) the constructed model CFE-TCM has a capacity of generating spike-spindle coupling discharges, and the corresponding statistical results are consistent with those obtained from real EEGs; (3) the spike-spindle coupling discharges are mediated by the strength of long-range thalamus-cortex connections where the excitable projection from thalamocortical neuron in thalamus to pyramidal neuron in cortex takes a great role. The obtained results reveal that pathological spike-spindle coupling may be a potential marker of thalamocortical circuit dysfunction, which will provide a possible treatment strategy for disease progression and cognition impairment in focal epilepsy.
Collapse
Affiliation(s)
- Min Pan
- Medical Big Data Research Center, Northwest University, Xi’an, China
| | - Qiang Li
- Medical Big Data Research Center, Northwest University, Xi’an, China
| | - Jiangling Song
- Medical Big Data Research Center, Northwest University, Xi’an, China
| | - Duo Li
- Medical Big Data Research Center, Northwest University, Xi’an, China
| | - Rui Zhang
- Medical Big Data Research Center, Northwest University, Xi’an, China
| |
Collapse
|
12
|
Kopf M, Martini J, Stier C, Ethofer S, Braun C, Li Hegner Y, Focke NK, Marquetand J, Helfrich RF. Aperiodic Activity Indexes Neural Hyperexcitability in Generalized Epilepsy. eNeuro 2024; 11:ENEURO.0242-24.2024. [PMID: 39137987 PMCID: PMC11376430 DOI: 10.1523/eneuro.0242-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
Generalized epilepsy (GE) encompasses a heterogeneous group of hyperexcitability disorders that clinically manifest as seizures. At the whole-brain level, distinct seizure patterns as well as interictal epileptic discharges (IEDs) reflect key signatures of hyperexcitability in magneto- and electroencephalographic (M/EEG) recordings. Moreover, it had been suggested that aperiodic activity, specifically the slope of the 1/ƒx decay function of the power spectrum, might index neural excitability. However, it remained unclear if hyperexcitability as encountered at the cellular level directly translates to putative large-scale excitability signatures, amenable to M/EEG. In order to test whether the power spectrum is altered in hyperexcitable states, we recorded resting-state MEG from male and female GE patients (n = 51; 29 females; 28.82 ± 12.18 years; mean ± SD) and age-matched healthy controls (n = 49; 22 females; 32.10 ± 12.09 years). We parametrized the power spectra using FOOOF ("fitting oscillations and one over f") to separate oscillatory from aperiodic activity to directly test whether aperiodic activity is systematically altered in GE patients. We further identified IEDs to quantify the temporal dynamics of aperiodic activity around overt epileptic activity. The results demonstrate that aperiodic activity indexes hyperexcitability in GE at the whole-brain level, especially during epochs when no IEDs were present (p = 0.0130; d = 0.52). Upon IEDs, large-scale circuits transiently shifted to a less excitable network state (p = 0.001; d = 0.68). In sum, these results uncover that MEG background activity might index hyperexcitability based on the current brain state and does not rely on the presence of epileptic waveforms.
Collapse
Affiliation(s)
- Markus Kopf
- Hertie Institute for Clinical Brain Research, University Medical Center Tübingen, Tübingen 72076, Germany
| | - Jan Martini
- Hertie Institute for Clinical Brain Research, University Medical Center Tübingen, Tübingen 72076, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen 72076, Germany
| | - Christina Stier
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster 48149, Germany
| | - Silke Ethofer
- Department of Neurosurgery, University Medical Center Tübingen, Tübingen 72076, Germany
| | - Christoph Braun
- Hertie Institute for Clinical Brain Research, University Medical Center Tübingen, Tübingen 72076, Germany
- Magnetoencephalography (MEG) Center, University of Tübingen, Tübingen 72076, Germany
- CIMeC Center for Mind/Brain Sciences, University of Trento, Rovereto 38068, Italy
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Yiwen Li Hegner
- Hertie Institute for Clinical Brain Research, University Medical Center Tübingen, Tübingen 72076, Germany
- Magnetoencephalography (MEG) Center, University of Tübingen, Tübingen 72076, Germany
| | - Niels K Focke
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Justus Marquetand
- Hertie Institute for Clinical Brain Research, University Medical Center Tübingen, Tübingen 72076, Germany
- Magnetoencephalography (MEG) Center, University of Tübingen, Tübingen 72076, Germany
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
- Department of Neurology and Epileptology, University Medical Center Tübingen, Tübingen 72076, Germany
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart 70569, Germany
| | - Randolph F Helfrich
- Hertie Institute for Clinical Brain Research, University Medical Center Tübingen, Tübingen 72076, Germany
- Department of Neurology and Epileptology, University Medical Center Tübingen, Tübingen 72076, Germany
| |
Collapse
|
13
|
Rauhala OJ, Ma L, Wisniewski DJ, Shao S, Schumacher B, Lopez JF, Kaspers M, Zhao Z, Gelinas JN, Khodagholy D. E-Suture: Mixed-Conducting Suture for Medical Devices. Adv Healthc Mater 2024; 13:e2302613. [PMID: 38150402 PMCID: PMC11338356 DOI: 10.1002/adhm.202302613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/17/2023] [Indexed: 12/29/2023]
Abstract
Modern implantable bioelectronics demand soft, biocompatible components that make robust, low-impedance connections with the body and circuit elements. Concurrently, such technologies must demonstrate high efficiency, with the ability to interface between the body's ionic and external electronic charge carriers. Here, a mixed-conducting suture, the e-suture, is presented. Composed of silk, the conducting polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), and insulating jacketing polymers,the resulting e-suture has mixed-conducting properties at the interface with biological tissue as well as effective insulation along its length. The e-suture can be mechanically integrated into electronics, enabling the acquisition of biopotentials such as electrocardiograms, electromyograms, and local field potentials (LFP). Chronic, in vivo acquisition of LFP with e-sutures remains stable for months with robust brain activity patterns. Furthermore, e-sutures can establish electrophoretic-based local drug delivery, potentially offering enhanced anatomical targeting and decreased side effects associated with systemic administration, while maintaining an electrically conducting interface for biopotential monitoring. E-sutures expand on the conventional role of sutures and wires by providing a soft, biocompatible, and mechanically sound structure that additionally has multifunctional capacity for sensing, stimulation, and drug delivery.
Collapse
Affiliation(s)
- Onni J Rauhala
- Department of Electrical Engineering, Columbia University, New York, 10027, USA
| | - Liang Ma
- Department of Biomedical Engineering, Columbia University, New York, 10027, USA
| | - Duncan J Wisniewski
- Department of Electrical Engineering, Columbia University, New York, 10027, USA
| | - Shan Shao
- Department of Neurology, Columbia University Irving Medical Center, New York, 10032, USA
| | - Brandon Schumacher
- Department of Neurology, Columbia University Irving Medical Center, New York, 10032, USA
| | - Jose Ferrero Lopez
- Department of Neurology, Columbia University Irving Medical Center, New York, 10032, USA
| | - Mara Kaspers
- Department of Biomedical Engineering, Columbia University, New York, 10027, USA
| | - Zifang Zhao
- Department of Electrical Engineering, Columbia University, New York, 10027, USA
| | - Jennifer N Gelinas
- Department of Biomedical Engineering, Columbia University, New York, 10027, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, 10032, USA
| | - Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, 10027, USA
| |
Collapse
|
14
|
Wodeyar A, Chinappen D, Mylonas D, Baxter B, Manoach DS, Eden UT, Kramer MA, Chu CJ. Thalamic epileptic spikes disrupt sleep spindles in patients with epileptic encephalopathy. Brain 2024; 147:2803-2816. [PMID: 38650060 PMCID: PMC11492493 DOI: 10.1093/brain/awae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/01/2024] [Accepted: 03/24/2024] [Indexed: 04/25/2024] Open
Abstract
In severe epileptic encephalopathies, epileptic activity contributes to progressive cognitive dysfunction. Epileptic encephalopathies share the trait of spike-wave activation during non-REM sleep (EE-SWAS), a sleep stage dominated by sleep spindles, which are brain oscillations known to coordinate offline memory consolidation. Epileptic activity has been proposed to hijack the circuits driving these thalamocortical oscillations, thereby contributing to cognitive impairment. Using a unique dataset of simultaneous human thalamic and cortical recordings in subjects with and without EE-SWAS, we provide evidence for epileptic spike interference of thalamic sleep spindle production in patients with EE-SWAS. First, we show that epileptic spikes and sleep spindles are both predicted by slow oscillations during stage two sleep (N2), but at different phases of the slow oscillation. Next, we demonstrate that sleep-activated cortical epileptic spikes propagate to the thalamus (thalamic spike rate increases after a cortical spike, P ≈ 0). We then show that epileptic spikes in the thalamus increase the thalamic spindle refractory period (P ≈ 0). Finally, we show that in three patients with EE-SWAS, there is a downregulation of sleep spindles for 30 s after each thalamic spike (P < 0.01). These direct human thalamocortical observations support a proposed mechanism for epileptiform activity to impact cognitive function, wherein epileptic spikes inhibit thalamic sleep spindles in epileptic encephalopathy with spike and wave activation during sleep.
Collapse
Affiliation(s)
- Anirudh Wodeyar
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Dhinakaran Chinappen
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Graduate Program in Neuroscience, Boston University, Boston, MA 02215, USA
| | - Dimitris Mylonas
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02215, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Bryan Baxter
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02215, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Dara S Manoach
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02215, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Uri T Eden
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA
- Center for Systems Neuroscience, Boston University, Boston, MA 02215, USA
| | - Mark A Kramer
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA
- Center for Systems Neuroscience, Boston University, Boston, MA 02215, USA
| | - Catherine J Chu
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
15
|
Zhu H, Michalak AJ, Merricks EM, Agopyan-Miu AHCW, Jacobs J, Hamberger MJ, Sheth SA, McKhann GM, Feldstein N, Schevon CA, Hillman EMC. Spectral-switching analysis reveals real-time neuronal network representations of concurrent spontaneous naturalistic behaviors in human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.600416. [PMID: 39026706 PMCID: PMC11257469 DOI: 10.1101/2024.07.08.600416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Despite abundant evidence of functional networks in the human brain, their neuronal underpinnings, and relationships to real-time behavior have been challenging to resolve. Analyzing brain-wide intracranial-EEG recordings with video monitoring, acquired in awake subjects during clinical epilepsy evaluation, we discovered the tendency of each brain region to switch back and forth between 2 distinct power spectral densities (PSDs 2-55Hz). We further recognized that this 'spectral switching' occurs synchronously between distant sites, even between regions with differing baseline PSDs, revealing long-range functional networks that would be obscured in analysis of individual frequency bands. Moreover, the real-time PSD-switching dynamics of specific networks exhibited striking alignment with activities such as conversation and hand movements, revealing a multi-threaded functional network representation of concurrent naturalistic behaviors. Network structures and their relationships to behaviors were stable across days, but were altered during N3 sleep. Our results provide a new framework for understanding real-time, brain-wide neural-network dynamics.
Collapse
Affiliation(s)
- Hongkun Zhu
- Department of Biomedical Engineering, Columbia University
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027
| | - Andrew J Michalak
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Edward M Merricks
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University
- Department of Neurological Surgery, Columbia University Medical Center, New York, 10032, New York, USA
| | - Marla J Hamberger
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sameer A Sheth
- Department of Neurological Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Guy M McKhann
- Department of Neurological Surgery, Columbia University Medical Center, New York, 10032, New York, USA
| | - Neil Feldstein
- Department of Neurological Surgery, Columbia University Medical Center, New York, 10032, New York, USA
| | - Catherine A Schevon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Elizabeth M C Hillman
- Department of Biomedical Engineering, Columbia University
- Department of Radiology, Columbia University Medical Center, New York, 10032, New York, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027
| |
Collapse
|
16
|
Mithani K, Wong SM, Suresh H, Yau I, Kerr EN, Smith ML, Donner E, Ibrahim GM. Longitudinal point-of-care assessment of psychomotor vigilance in children in the epilepsy monitoring unit. Epilepsy Behav 2024; 153:109725. [PMID: 38458121 DOI: 10.1016/j.yebeh.2024.109725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/10/2024]
Abstract
The epilepsy monitoring unit (EMU) is a complex and dynamic operational environment, where the cognitive and behavioural consequences of medical and environmental changes often go unnoticed. The psychomotor vigilance task (PVT) has been used to detect changes in cognition and behaviour in numerous contexts, including among astronauts on spaceflight missions, pilots, and commercial drivers. Here, we piloted serial point-of-care administration of the PVT in children undergoing invasive monitoring in the EMU. Seven children completed the PVT throughout their hospital admission and their performance was associated with daily seizure counts, interictal epileptiform discharges, number of antiseizure medications (ASMs) administered, and sleep quality metrics. Using mixed-effects models, we found that PVT reaction time and accuracy were adversely affected by greater number of ASMs and interictal epileptiform activity. We show that serial point-of-care PVT is simple and feasible in the EMU and may enable greater understanding of individual patient responses to medical and environmental alterations, inform clinical decision-making, and support quality-improvement and research initiatives.
Collapse
Affiliation(s)
- Karim Mithani
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
| | - Simeon M Wong
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Neurosciences and Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada.
| | - Hrishikesh Suresh
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
| | - Ivanna Yau
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada.
| | - Elizabeth N Kerr
- Department of Psychology, Hospital for Sick Children, Toronto, Ontario, Canada.
| | - Mary Lou Smith
- Neurosciences and Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, Canada.
| | - Elizabeth Donner
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada.
| | - George M Ibrahim
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Neurosciences and Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Ferrero JJ, Hassan AR, Yu Z, Zhao Z, Ma L, Wu C, Shao S, Kawano T, Engel J, Doyle W, Devinsky O, Khodagholy D, Gelinas JN. Closed-loop electrical stimulation to prevent focal epilepsy progression and long-term memory impairment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579660. [PMID: 38405990 PMCID: PMC10888806 DOI: 10.1101/2024.02.09.579660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Interictal epileptiform discharges (IEDs) are ubiquitously expressed in epileptic networks and disrupt cognitive functions. It is unclear whether addressing IED-induced dysfunction could improve epilepsy outcomes as most therapeutics target seizures. We show in a model of progressive hippocampal epilepsy that IEDs produce pathological oscillatory coupling which is associated with prolonged, hypersynchronous neural spiking in synaptically connected cortex and expands the brain territory capable of generating IEDs. A similar relationship between IED-mediated oscillatory coupling and temporal organization of IEDs across brain regions was identified in human subjects with refractory focal epilepsy. Spatiotemporally targeted closed-loop electrical stimulation triggered on hippocampal IED occurrence eliminated the abnormal cortical activity patterns, preventing spread of the epileptic network and ameliorating long-term spatial memory deficits in rodents. These findings suggest that stimulation-based network interventions that normalize interictal dynamics may be an effective treatment of epilepsy and its comorbidities, with a low barrier to clinical translation. One-Sentence Summary Targeted closed-loop electrical stimulation prevents spread of the epileptic network and ameliorates long-term spatial memory deficits.
Collapse
|
18
|
Yu H, Kim W, Park DK, Phi JH, Lim BC, Chae JH, Kim SK, Kim KJ, Provenzano FA, Khodagholy D, Gelinas JN. Interaction of interictal epileptiform activity with sleep spindles is associated with cognitive deficits and adverse surgical outcome in pediatric focal epilepsy. Epilepsia 2024; 65:190-203. [PMID: 37983643 PMCID: PMC10873110 DOI: 10.1111/epi.17810] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023]
Abstract
OBJECTIVE Temporal coordination between oscillations enables intercortical communication and is implicated in cognition. Focal epileptic activity can affect distributed neural networks and interfere with these interactions. Refractory pediatric epilepsies are often accompanied by substantial cognitive comorbidity, but mechanisms and predictors remain mostly unknown. Here, we investigate oscillatory coupling across large-scale networks in the developing brain. METHODS We analyzed large-scale intracranial electroencephalographic recordings in children with medically refractory epilepsy undergoing presurgical workup (n = 25, aged 3-21 years). Interictal epileptiform discharges (IEDs), pathologic high-frequency oscillations (HFOs), and sleep spindles were detected. Spatiotemporal metrics of oscillatory coupling were determined and correlated with age, cognitive function, and postsurgical outcome. RESULTS Children with epilepsy demonstrated significant temporal coupling of both IEDs and HFOs to sleep spindles in discrete brain regions. HFOs were associated with stronger coupling patterns than IEDs. These interactions involved tissue beyond the clinically identified epileptogenic zone and were ubiquitous across cortical regions. Increased spatial extent of coupling was most prominent in older children. Poor neurocognitive function was significantly correlated with high IED-spindle coupling strength and spatial extent; children with strong pathologic interactions additionally had decreased likelihood of postoperative seizure freedom. SIGNIFICANCE Our findings identify pathologic large-scale oscillatory coupling patterns in the immature brain. These results suggest that such intercortical interactions could predict risk for adverse neurocognitive and surgical outcomes, with the potential to serve as novel therapeutic targets to restore physiologic development.
Collapse
Affiliation(s)
- Han Yu
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Woojoong Kim
- Division of Pediatric Neurology, Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, South Korea
| | - David K. Park
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Ji Hoon Phi
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, South Korea
| | - Byung Chan Lim
- Division of Pediatric Neurology, Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, South Korea
| | - Jong-Hee Chae
- Division of Pediatric Neurology, Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, South Korea
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, South Korea
| | - Ki Joong Kim
- Division of Pediatric Neurology, Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, South Korea
| | | | - Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Jennifer N. Gelinas
- Departments of Neurology, Columbia University, New York, NY, USA
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
19
|
Sands TT, Gelinas JN. Epilepsy and Encephalopathy. Pediatr Neurol 2024; 150:24-31. [PMID: 37948790 DOI: 10.1016/j.pediatrneurol.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/14/2023] [Accepted: 09/24/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Epilepsy encompasses more than the predisposition to unprovoked seizures. In children, epileptic activity during (ictal) and between (interictal) seizures has the potential to disrupt normal brain development. The term "epileptic encephalopathy (EE)" refers to the concept that such abnormal activity may contribute to cognitive and behavioral impairments beyond that expected from the underlying cause of the epileptic activity. METHODS In this review, we survey the concept of EE across a diverse selection of syndromes to illustrate its broad applicability in pediatric epilepsy. We review experimental evidence that provides mechanistic insights into how epileptic activity has the potential to impact normal brain processes and the development of neural networks. We then discuss opportunities to improve developmental outcomes in epilepsy now and in the future. RESULTS Epileptic activity in the brain poses a threat to normal physiology and brain development. CONCLUSION Until we have treatments that reliably target and effectively treat the underlying causes of epilepsy, a major goal of management is to prevent epileptic activity from worsening developmental outcomes.
Collapse
Affiliation(s)
- Tristan T Sands
- Center for Translational Research in Neurodevelopmental Disease, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York; Departments of Neurology and Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York.
| | - Jennifer N Gelinas
- Center for Translational Research in Neurodevelopmental Disease, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York; Departments of Neurology and Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
20
|
Bender AC, Jaleel A, Pellerin KR, Moguilner S, Sarkis RA, Cash SS, Lam AD. Altered Sleep Microarchitecture and Cognitive Impairment in Patients With Temporal Lobe Epilepsy. Neurology 2023; 101:e2376-e2387. [PMID: 37848332 PMCID: PMC10752648 DOI: 10.1212/wnl.0000000000207942] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/28/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND AND OBJECTIVES To investigate the spatiotemporal characteristics of sleep waveforms in temporal lobe epilepsy (TLE) and examine their association with cognition. METHODS In this retrospective, cross-sectional study, we examined overnight EEG data from adult patients with TLE and nonepilepsy comparisons (NECs) admitted to the epilepsy monitoring unit at Mass General Brigham hospitals. Automated algorithms were used to characterize sleep macroarchitecture (sleep stages) and microarchitecture (spindles, slow oscillations [SOs]) on scalp EEG and to detect hippocampal interictal epileptiform discharges (hIEDs) from foramen ovale electrodes simultaneously recorded in a subset of patients with TLE. We examined the association of sleep features and hIEDs with memory and executive function from clinical neuropsychological evaluations. RESULTS A total of 81 adult patients with TLE and 28 NEC adult patients were included with similar mean ages. There were no significant differences in sleep macroarchitecture between groups, including relative time spent in each sleep stage, sleep efficiency, and sleep fragmentation. By contrast, the spatiotemporal characteristics of sleep microarchitecture were altered in TLE compared with NEC and were associated with cognitive impairments. Specifically, we observed a ∼30% reduction in spindle density in patients with TLE compared with NEC, which was significantly associated with worse memory performance. Spindle-SO coupling strength was also reduced in TLE and, in contrast to spindles, was associated with diminished executive function. We found no significant association between sleep macroarchitectural and microarchitectural parameters and hIEDs. DISCUSSION There is a fundamental alteration of sleep microarchitecture in TLE, characterized by a reduction in spindle density and spindle-SO coupling, and these changes may contribute to neurocognitive comorbidity in this disorder.
Collapse
Affiliation(s)
- Alex C Bender
- From the Epilepsy Service (A.C.B., A.J., K.R.P., S.M., S.S.C., A.D.L.), Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston; and Epilepsy Service (R.A.S.), Department of Neurology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA.
| | - Afareen Jaleel
- From the Epilepsy Service (A.C.B., A.J., K.R.P., S.M., S.S.C., A.D.L.), Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston; and Epilepsy Service (R.A.S.), Department of Neurology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA
| | - Kyle R Pellerin
- From the Epilepsy Service (A.C.B., A.J., K.R.P., S.M., S.S.C., A.D.L.), Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston; and Epilepsy Service (R.A.S.), Department of Neurology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA
| | - Sebastian Moguilner
- From the Epilepsy Service (A.C.B., A.J., K.R.P., S.M., S.S.C., A.D.L.), Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston; and Epilepsy Service (R.A.S.), Department of Neurology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA
| | - Rani A Sarkis
- From the Epilepsy Service (A.C.B., A.J., K.R.P., S.M., S.S.C., A.D.L.), Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston; and Epilepsy Service (R.A.S.), Department of Neurology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA
| | - Sydney S Cash
- From the Epilepsy Service (A.C.B., A.J., K.R.P., S.M., S.S.C., A.D.L.), Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston; and Epilepsy Service (R.A.S.), Department of Neurology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA
| | - Alice D Lam
- From the Epilepsy Service (A.C.B., A.J., K.R.P., S.M., S.S.C., A.D.L.), Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston; and Epilepsy Service (R.A.S.), Department of Neurology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA
| |
Collapse
|
21
|
Bernard C, Frauscher B, Gelinas J, Timofeev I. Sleep, oscillations, and epilepsy. Epilepsia 2023; 64 Suppl 3:S3-S12. [PMID: 37226640 PMCID: PMC10674035 DOI: 10.1111/epi.17664] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/27/2023] [Accepted: 05/23/2023] [Indexed: 05/26/2023]
Abstract
Sleep and wake are defined through physiological and behavioral criteria and can be typically separated into non-rapid eye movement (NREM) sleep stages N1, N2, and N3, rapid eye movement (REM) sleep, and wake. Sleep and wake states are not homogenous in time. Their properties vary during the night and day cycle. Given that brain activity changes as a function of NREM, REM, and wake during the night and day cycle, are seizures more likely to occur during NREM, REM, or wake at a specific time? More generally, what is the relationship between sleep-wake cycles and epilepsy? We will review specific examples from clinical data and results from experimental models, focusing on the diversity and heterogeneity of these relationships. We will use a top-down approach, starting with the general architecture of sleep, followed by oscillatory activities, and ending with ionic correlates selected for illustrative purposes, with respect to seizures and interictal spikes. The picture that emerges is that of complexity; sleep disruption and pathological epileptic activities emerge from reorganized circuits. That different circuit alterations can occur across patients and models may explain why sleep alterations and the timing of seizures during the sleep-wake cycle are patient-specific.
Collapse
Affiliation(s)
| | - Birgit Frauscher
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Jennifer Gelinas
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Igor Timofeev
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Centre de Recherche CERVO, Université Laval, Québec, QC G1J2G3, Canada
| |
Collapse
|
22
|
Shamas M, Yeh HJ, Fried I, Engel J, Staba RJ. High-rate leading spikes in propagating spike sequences predict seizure outcome in surgical patients with temporal lobe epilepsy. Brain Commun 2023; 5:fcad289. [PMID: 37953846 PMCID: PMC10636565 DOI: 10.1093/braincomms/fcad289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/14/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023] Open
Abstract
Inter-ictal spikes aid in the diagnosis of epilepsy and in planning surgery of medication-resistant epilepsy. However, the localizing information from spikes can be unreliable because spikes can propagate, and the burden of spikes, often assessed as a rate, does not always correlate with the seizure onset zone or seizure outcome. Recent work indicates identifying where spikes regularly emerge and spread could localize the seizure network. Thus, the current study sought to better understand where and how rates of single and coupled spikes, and especially brain regions with high-rate and leading spike of a propagating sequence, informs the extent of the seizure network. In 37 patients with medication-resistant temporal lobe seizures, who had surgery to treat their seizure disorder, an algorithm detected spikes in the pre-surgical depth inter-ictal EEG. A separate algorithm detected spike propagation sequences and identified the location of leading and downstream spikes in each sequence. We analysed the rate and power of single spikes on each electrode and coupled spikes between pairs of electrodes, and the proportion of sites with high-rate, leading spikes in relation to the seizure onset zone of patients seizure free (n = 19) and those with continuing seizures (n = 18). We found increased rates of single spikes in mesial temporal seizure onset zone (ANOVA, P < 0.001, η2 = 0.138), and increased rates of coupled spikes within, but not between, mesial-, lateral- and extra-temporal seizure onset zone of patients with continuing seizures (P < 0.001; η2 = 0.195, 0.113 and 0.102, respectively). In these same patients, there was a higher proportion of brain regions with high-rate leaders, and each sequence contained a greater number of spikes that propagated with a higher efficiency over a longer distance outside the seizure onset zone than patients seizure free (Wilcoxon, P = 0.0172). The proportion of high-rate leaders in and outside the seizure onset zone could predict seizure outcome with area under curve = 0.699, but not rates of single or coupled spikes (0.514 and 0.566). Rates of coupled spikes to a greater extent than single spikes localize the seizure onset zone and provide evidence for inter-ictal functional segregation, which could be an adaptation to avert seizures. Spike rates, however, have little value in predicting seizure outcome. High-rate spike sites leading propagation could represent sources of spikes that are important components of an efficient seizure network beyond the clinical seizure onset zone, and like the seizure onset zone these, too, need to be removed, disconnected or stimulated to increase the likelihood for seizure control.
Collapse
Affiliation(s)
- Mohamad Shamas
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Hsiang J Yeh
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Itzhak Fried
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jerome Engel
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Richard J Staba
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
23
|
El Youssef N, Marchi A, Bartolomei F, Bonini F, Lambert I. Sleep and epilepsy: A clinical and pathophysiological overview. Rev Neurol (Paris) 2023; 179:687-702. [PMID: 37598088 DOI: 10.1016/j.neurol.2023.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/21/2023]
Abstract
The interaction between sleep and epilepsy is complex. A better understanding of the mechanisms linking sleep and epilepsy appears increasingly important as it may improve diagnosis and therapeutic strategies in patients with epilepsy. In this narrative review, we aim to (i) provide an overview of the physiological and pathophysiological processes linking sleep and epilepsy; (ii) present common sleep disorders in patients with epilepsy; (iii) discuss how sleep and sleep disorders should be considered in new therapeutic approaches to epilepsy such as neurostimulation; and (iv) present the overall nocturnal manifestations and differential diagnosis between epileptic seizures and parasomnia.
Collapse
Affiliation(s)
- N El Youssef
- AP-HM, Timone hospital, Sleep Unit, Epileptology and Cerebral Rhythmology, Marseille, France
| | - A Marchi
- AP-HM, Timone hospital, Sleep Unit, Epileptology and Cerebral Rhythmology, Marseille, France
| | - F Bartolomei
- AP-HM, Timone hospital, Sleep Unit, Epileptology and Cerebral Rhythmology, Marseille, France; Aix-Marseille University, Inserm, Inst Neurosci Syst (INS), Marseille, France
| | - F Bonini
- AP-HM, Timone hospital, Sleep Unit, Epileptology and Cerebral Rhythmology, Marseille, France; Aix-Marseille University, Inserm, Inst Neurosci Syst (INS), Marseille, France
| | - I Lambert
- AP-HM, Timone hospital, Sleep Unit, Epileptology and Cerebral Rhythmology, Marseille, France; Aix-Marseille University, Inserm, Inst Neurosci Syst (INS), Marseille, France.
| |
Collapse
|
24
|
Warsi NM, Wong SM, Germann J, Boutet A, Arski ON, Anderson R, Erdman L, Yan H, Suresh H, Gouveia FV, Loh A, Elias GJB, Kerr E, Smith ML, Ochi A, Otsubo H, Sharma R, Jain P, Donner E, Lozano AM, Snead OC, Ibrahim GM. Dissociable default-mode subnetworks subserve childhood attention and cognitive flexibility: Evidence from deep learning and stereotactic electroencephalography. Neural Netw 2023; 167:827-837. [PMID: 37741065 DOI: 10.1016/j.neunet.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 05/13/2023] [Accepted: 07/12/2023] [Indexed: 09/25/2023]
Abstract
Cognitive flexibility encompasses the ability to efficiently shift focus and forms a critical component of goal-directed attention. The neural substrates of this process are incompletely understood in part due to difficulties in sampling the involved circuitry. We leverage stereotactic intracranial recordings to directly resolve local-field potentials from otherwise inaccessible structures to study moment-to-moment attentional activity in children with epilepsy performing a flexible attentional task. On an individual subject level, we employed deep learning to decode neural features predictive of task performance indexed by single-trial reaction time. These models were subsequently aggregated across participants to identify predictive brain regions based on AAL atlas and FIND functional network parcellations. Through this approach, we show that fluctuations in beta (12-30 Hz) and gamma (30-80 Hz) power reflective of increased top-down attentional control and local neuronal processing within relevant large-scale networks can accurately predict single-trial task performance. We next performed connectomic profiling of these highly predictive nodes to examine task-related engagement of distributed functional networks, revealing exclusive recruitment of the dorsal default mode network during shifts in attention. The identification of distinct substreams within the default mode system supports a key role for this network in cognitive flexibility and attention in children. Furthermore, convergence of our results onto consistent functional networks despite significant inter-subject variability in electrode implantations supports a broader role for deep learning applied to intracranial electrodes in the study of human attention.
Collapse
Affiliation(s)
- Nebras M Warsi
- Division of Neurosurgery, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario, Canada; Department of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Simeon M Wong
- Department of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada; Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Olivia N Arski
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Lauren Erdman
- Vector Institute for Artificial Intelligence, University Health Network, Toronto, Ontario, Canada
| | - Han Yan
- Division of Neurosurgery, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario, Canada
| | - Hrishikesh Suresh
- Division of Neurosurgery, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario, Canada; Department of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | - Aaron Loh
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada; Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Gavin J B Elias
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada; Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth Kerr
- Department of Psychology, The Hospital for Sick Children, University of Toronto, 555 University Ave., Toronto, Ontario, Canada, M5G 1X8
| | - Mary Lou Smith
- Department of Psychology, The Hospital for Sick Children, University of Toronto, 555 University Ave., Toronto, Ontario, Canada, M5G 1X8
| | - Ayako Ochi
- Division of Neurosurgery, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario, Canada
| | - Hiroshi Otsubo
- Division of Neurosurgery, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario, Canada
| | - Roy Sharma
- Division of Neurosurgery, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario, Canada
| | - Puneet Jain
- Division of Neurosurgery, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario, Canada
| | - Elizabeth Donner
- Division of Neurosurgery, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - O Carter Snead
- Division of Neurosurgery, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario, Canada
| | - George M Ibrahim
- Division of Neurosurgery, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario, Canada; Department of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
25
|
Halász P, Szũcs A. Self-limited childhood epilepsies are disorders of the perisylvian communication system, carrying the risk of progress to epileptic encephalopathies-Critical review. Front Neurol 2023; 14:1092244. [PMID: 37388546 PMCID: PMC10301767 DOI: 10.3389/fneur.2023.1092244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/04/2023] [Indexed: 07/01/2023] Open
Abstract
"Sleep plasticity is a double-edged sword: a powerful machinery of neural build-up, with a risk to epileptic derailment." We aimed to review the types of self-limited focal epilepsies..."i.e. keep as two separate paragraphs" We aimed to review the types of self-limited focal epilepsies: (1) self-limited focal childhood epilepsy with centrotemporal spikes, (2) atypical Rolandic epilepsy, and (3) electrical status epilepticus in sleep with mental consequences, including Landau-Kleffner-type acquired aphasia, showing their spectral relationship and discussing the debated topics. Our endeavor is to support the system epilepsy concept in this group of epilepsies, using them as models for epileptogenesis in general. The spectral continuity of the involved conditions is evidenced by several features: language impairment, the overarching presence of centrotemporal spikes and ripples (with changing electromorphology across the spectrum), the essential timely and spatial independence of interictal epileptic discharges from seizures, NREM sleep relatedness, and the existence of the intermediate-severity "atypical" forms. These epilepsies might be the consequences of a genetically determined transitory developmental failure, reflected by widespread neuropsychological symptoms originating from the perisylvian network that have distinct time and space relations from secondary epilepsy itself. The involved epilepsies carry the risk of progression to severe, potentially irreversible encephalopathic forms.
Collapse
Affiliation(s)
- Péter Halász
- Department of Neurology, University Medical School, Pécs, Hungary
| | - Anna Szũcs
- Institute of Behavioral Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
26
|
Duan QT, Dai L, Wang LK, Shi XJ, Chen X, Liao X, Zhang CQ, Yang H. Hippocampal ripples correlate with memory performance in humans. Brain Res 2023; 1810:148370. [PMID: 37080267 DOI: 10.1016/j.brainres.2023.148370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/22/2023]
Abstract
Memory performance evaluation has generally been based on behavioral tests in the past decades. However, its neural correlates remain largely unknown, particularly in humans. Here we addressed this question using intracranial electroencephalography in patients with refractory epilepsy, performing an episodic memory test. We used the presurgical Wechsler Memory Scale (WMS) test to assess the memory performance of each patient. We found that hippocampal ripples significantly exhibited a transient increase during visual stimulation or before verbal recall. This increase in hippocampal ripples positively correlated with memory performance. By contrast, memory performance is negatively correlated with hippocampal interictal epileptic discharges (IEDs) or epileptic ripples in the memory task. However, these correlations were not present during quiet wakefulness. Thus, our findings uncover the neural correlates of memory performance in addition to traditional behavioral tests.
Collapse
Affiliation(s)
- Qing-Tian Duan
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Lu Dai
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Lu-Kang Wang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xian-Jun Shi
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China
| | - Xiang Liao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China.
| | - Chun-Qing Zhang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China.
| | - Hui Yang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China.
| |
Collapse
|
27
|
Warsi NM, Wong SM, Gorodetsky C, Suresh H, Arski ON, Ebden M, Kerr EN, Smith ML, Yau I, Ochi A, Otsubo H, Sharma R, Jain P, Weiss S, Donner EJ, Snead OC, Ibrahim GM. Which is more deleterious to cognitive performance? Interictal epileptiform discharges vs anti-seizure medication. Epilepsia 2023; 64:e75-e81. [PMID: 36809544 DOI: 10.1111/epi.17556] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023]
Abstract
Children with epilepsy commonly have comorbid neurocognitive impairments that severely affect their psychosocial well-being, education, and future career prospects. Although the provenance of these deficits is multifactorial, the effects of interictal epileptiform discharges (IEDs) and anti-seizure medications (ASMs) are thought to be particularly severe. Although certain ASMs can be leveraged to inhibit IED occurrence, it remains unclear whether epileptiform discharges or the medications themselves are most deleterious to cognition. To examine this question, 25 children undergoing invasive monitoring for refractory focal epilepsy performed one or more sessions of a cognitive flexibility task. Electrophysiological data were recorded to detect IEDs. Between repeated sessions, prescribed ASMs were either continued or titrated to <50% of the baseline dose. Hierarchical mixed-effects modeling assessed the relationship between task reaction time (RT), IED occurrence, ASM type, and dose while controlling for seizure frequency. Both presence (β ± SE = 49.91 ± 16.55 ms, p = .003) and number of IEDs (β ± SE = 49.84 ± 12.51 ms, p < .001) were associated with slowed task RT. Higher dose oxcarbazepine significantly reduced IED frequency (p = .009) and improved task performance (β ± SE = -107.43 ± 39.54 ms, p = .007). These results emphasize the neurocognitive consequences of IEDs independent of seizure effects. Furthermore, we demonstrate that inhibition of IEDs following treatment with select ASMs is associated with improved neurocognitive function.
Collapse
Affiliation(s)
- Nebras M Warsi
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Simeon M Wong
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Carolina Gorodetsky
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hrishikesh Suresh
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Olivia N Arski
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mark Ebden
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elizabeth N Kerr
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mary Lou Smith
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ivanna Yau
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ayako Ochi
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hiroshi Otsubo
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rohit Sharma
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Puneet Jain
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Shelly Weiss
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elizabeth J Donner
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - O Carter Snead
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - George M Ibrahim
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Schiller K, von Ellenrieder N, Avigdor T, El Kosseifi C, Abdallah C, Minato E, Gotman J, Frauscher B. Focal epilepsy impacts rapid eye movement sleep microstructure. Sleep 2023; 46:zsac250. [PMID: 36242588 PMCID: PMC9905780 DOI: 10.1093/sleep/zsac250] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/16/2022] [Indexed: 12/12/2022] Open
Abstract
STUDY OBJECTIVES Whereas there is plenty of evidence on the influence of epileptic activity on non-rapid eye movement (NREM) sleep macro- and micro-structure, data on the impact of epilepsy on rapid eye movement (REM) sleep remains sparse. Using high-density electroencephalography (HD-EEG), we assessed global and focal disturbances of sawtooth waves (STW) as cortically generated sleep oscillations of REM sleep in patients with focal epilepsy. METHODS Twenty-two patients with drug-resistant focal epilepsy (13 females; mean age, 32.6 ± 10.7 years; 12 temporal lobe epilepsy) and 12 healthy controls (3 females; 24.0 ± 3.2 years) underwent combined overnight HD-EEG and polysomnography. STW rate, duration, frequency, power, spatial extent, IED rates and sleep homeostatic properties were analyzed. RESULTS STW rate and duration were reduced in patients with focal epilepsy compared to healthy controls (rate: 0.64/min ± 0.46 vs. 1.12/min ± 0.41, p = .005, d = -0.98; duration: 3.60 s ± 0.76 vs. 4.57 ± 1.00, p = .003, d = -1.01). Not surprisingly given the fronto-central maximum of STW, the reductions were driven by extratemporal lobe epilepsy patients (rate: 0.45/min ± 0.31 vs. 1.12/min ± 0.41, p = .0004, d = -1.35; duration: 3.49 s ± 0.92 vs. 4.57 ± 1.00, p = .017, d = -0.99) and were more pronounced in the first vs. the last sleep cycle (rate first cycle patients vs. controls: 0.60/min ± 0.49 vs. 1.10/min ± 0.55, p = .016, d = -0.90, rate last cycle patients vs. controls: 0.67/min ± 0.51 vs. 0.99/min ± 0.49, p = .11, d = -0.62; duration first cycle patients vs. controls: 3.60s ± 0.76 vs. 4.57 ± 1.00, p = .003, d = -1.01, duration last cycle patients vs. controls: 3.66s ± 0.84 vs. 4.51 ± 1.26, p = .039, d = -0.80). There was no regional decrease of STWs in the region with the epileptic focus vs. the contralateral side (all p > .05). CONCLUSION Patients with focal epilepsy and in particular extratemporal lobe epilepsy show a global reduction of STW activity in REM sleep. This may suggest that epilepsy impacts cortically generated sleep oscillations even in REM sleep when epileptic activity is low.
Collapse
Affiliation(s)
- Katharina Schiller
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
- Hospital Group Ostallgaeu-Kaufbeuren, Department of Pediatrics, Kaufbeuren, Germany
- Medical University Innsbruck, Department of Pediatrics, Innsbruck, Austria
| | | | - Tamir Avigdor
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Charbel El Kosseifi
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Chifaou Abdallah
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Erica Minato
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Jean Gotman
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Birgit Frauscher
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
- Department of Medicine and Center for Neuroscience Studies, Queen’s University; Kingston, Ontario, Canada
| |
Collapse
|
29
|
Li Z, Jiang C, Gao Q, Xiang W, Qi Z, Peng K, Lin J, Wang W, Deng B, Wang W. The relationship between the interictal epileptiform discharge source connectivity and cortical structural couplings in temporal lobe epilepsy. Front Neurol 2023; 14:1029732. [PMID: 36846133 PMCID: PMC9948620 DOI: 10.3389/fneur.2023.1029732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Objective The objective of this study was to explore the relation between interictal epileptiform discharge (IED) source connectivity and cortical structural couplings (SCs) in temporal lobe epilepsy (TLE). Methods High-resolution 3D-MRI and 32-sensor EEG data from 59 patients with TLE were collected. Principal component analysis was performed on the morphological data on MRI to obtain the cortical SCs. IEDs were labeled from EEG data and averaged. The standard low-resolution electromagnetic tomography analysis was performed to locate the source of the average IEDs. Phase-locked value was used to evaluate the IED source connectivity. Finally, correlation analysis was used to compare the IED source connectivity and the cortical SCs. Results The features of the cortical morphology in left and right TLE were similar across four cortical SCs, which could be mainly described as the default mode network, limbic regions, connections bilateral medial temporal, and connections through the ipsilateral insula. The IED source connectivity at the regions of interest was negatively correlated with the corresponding cortical SCs. Significance The cortical SCs were confirmed to be negatively related to IED source connectivity in patients with TLE as detected with MRI and EEG coregistered data. These findings suggest the important role of intervening IEDs in treating TLE.
Collapse
Affiliation(s)
- Zhensheng Li
- Department of Neurology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Che Jiang
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Quwen Gao
- Department of Neurology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Wei Xiang
- Department of Neurology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Zijuan Qi
- Department of Neurology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Kairun Peng
- Department of Neurology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Jian Lin
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Wei Wang
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bingmei Deng
- Department of Neurology, General Hospital of Southern Theater Command, Guangzhou, China,Bingmei Deng ✉
| | - Weimin Wang
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, China,*Correspondence: Weimin Wang ✉
| |
Collapse
|
30
|
Khodagholy D, Ferrero JJ, Park J, Zhao Z, Gelinas JN. Large-scale, closed-loop interrogation of neural circuits underlying cognition. Trends Neurosci 2022; 45:968-983. [PMID: 36404457 PMCID: PMC10437206 DOI: 10.1016/j.tins.2022.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Cognitive functions are increasingly understood to involve coordinated activity patterns between multiple brain regions, and their disruption by neuropsychiatric disorders is similarly complex. Closed-loop neurostimulation can directly modulate neural signals with temporal and spatial precision. How to leverage such an approach to effectively identify and target distributed neural networks implicated in mediating cognition remains unclear. We review current conceptual and technical advances in this area, proposing that devices that enable large-scale acquisition, integrated processing, and multiregion, arbitrary waveform stimulation will be critical for mechanistically driven manipulation of cognitive processes in physiological and pathological brain networks.
Collapse
Affiliation(s)
- Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA.
| | - Jose J Ferrero
- Institute for Genomic Medicine, Columbia University Irving Medical Center, 701 W 168(th) St., New York, NY 10032, USA
| | - Jaehyo Park
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Zifang Zhao
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA; Institute for Genomic Medicine, Columbia University Irving Medical Center, 701 W 168(th) St., New York, NY 10032, USA
| | - Jennifer N Gelinas
- Institute for Genomic Medicine, Columbia University Irving Medical Center, 701 W 168(th) St., New York, NY 10032, USA; Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA..
| |
Collapse
|
31
|
Okadome T, Yamaguchi T, Mukaino T, Sakata A, Ogata K, Shigeto H, Isobe N, Uehara T. The effect of interictal epileptic discharges and following spindles on motor sequence learning in epilepsy patients. Front Neurol 2022; 13:979333. [PMID: 36438951 PMCID: PMC9686303 DOI: 10.3389/fneur.2022.979333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/25/2022] [Indexed: 09/05/2023] Open
Abstract
PURPOSE Interictal epileptic discharges (IEDs) are known to affect cognitive function in patients with epilepsy, but the mechanism has not been elucidated. Sleep spindles appearing in synchronization with IEDs were recently demonstrated to impair memory consolidation in rat, but this has not been investigated in humans. On the other hand, the increase of sleep spindles at night after learning is positively correlated with amplified learning effects during sleep for motor sequence learning. In this study, we examined the effects of IEDs and IED-coupled spindles on motor sequence learning in patients with epilepsy, and clarified their pathological significance. MATERIALS AND METHODS Patients undergoing long-term video-electroencephalography (LT-VEEG) at our hospital from June 2019 to November 2021 and age-matched healthy subjects were recruited. Motor sequence learning consisting of a finger-tapping task was performed before bedtime and the next morning, and the improvement rate of performance was defined as the sleep-dependent learning effect. We searched for factors associated with the changes in learning effect observed between the periods of when antiseizure medications (ASMs) were withdrawn for LT-VEEG and when they were returned to usual doses after LT-VEEG. RESULTS Excluding six patients who had epileptic seizures at night after learning, nine patients and 11 healthy subjects were included in the study. In the patient group, there was no significant learning effect when ASMs were withdrawn. The changes in learning effect of the patient group during ASM withdrawal were not correlated with changes in sleep duration or IED density; however, they were significantly negatively correlated with changes in IED-coupled spindle density. CONCLUSION We found that the increase of IED-coupled spindles correlated with the decrease of sleep-dependent learning effects of procedural memory. Pathological IED-coupled sleep spindles could hinder memory consolidation, that is dependent on physiological sleep spindles, resulting in cognitive dysfunction in patients with epilepsy.
Collapse
Affiliation(s)
- Toshiki Okadome
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Yamaguchi
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiko Mukaino
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ayumi Sakata
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Katsuya Ogata
- Department of Pharmacy, School of Pharmaceutical Sciences at Fukuoka, International University of Health and Welfare, Okawa, Japan
| | - Hiroshi Shigeto
- Division of Medical Technology, Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriko Isobe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taira Uehara
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Neurology, School of Medicine, International University of Health and Welfare Narita Hospital, Narita, Japan
| |
Collapse
|
32
|
Low-Cost Platform for Multianimal Chronic Local Field Potential Video Monitoring with Graphical User Interface (GUI) for Seizure Detection and Behavioral Scoring. eNeuro 2022; 9:ENEURO.0283-22.2022. [PMID: 36192155 PMCID: PMC9581574 DOI: 10.1523/eneuro.0283-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 12/15/2022] Open
Abstract
Experiments employing chronic monitoring of neurophysiological signals and video are commonly used in studies of epilepsy to characterize behavioral correlates of seizures. Our objective was to design a low-cost platform that enables chronic monitoring of several animals simultaneously, synchronizes bilateral local field potential (LFP) and video streams in real time, and parses recorded data into manageable file sizes. We present a hardware solution leveraging Intan and Open Ephys acquisition systems and a software solution implemented in Bonsai. The platform was tested in 48-h continuous recordings simultaneously from multiple mice (male and female) with chronic epilepsy. To enable seizure detection and scoring, we developed a graphical user interface (GUI) that reads the data produced by our workflow and allows a user with no coding expertise to analyze events. Our Bonsai workflow was designed to maximize flexibility for a wide variety of experimental applications, and our use of the Open Ephys acquisition board would allow for scaling recordings up to 128 channels per animal.
Collapse
|
33
|
Latreille V, Schiller K, Peter-Derex L, Frauscher B. Does epileptic activity impair sleep-related memory consolidation in epilepsy? A critical and systematic review. J Clin Sleep Med 2022; 18:2481-2495. [PMID: 35866226 PMCID: PMC9516593 DOI: 10.5664/jcsm.10166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES People with epilepsy often complain about disturbed sleep and cognitive impairment. Beyond seizures, the occurrence of interictal epileptic activity during sleep is also increasingly recognized to negatively impact cognitive functioning, including memory processes. The aim of this study was to critically review the effect of interictal epileptic activity on sleep-related memory consolidation. METHODS PubMed and PsychINFO databases were systematically searched to identify experimental studies that investigated sleep-related memory consolidation and the relationships between sleep-related epileptic activity and memory in adults and children with epilepsy. This review also highlights hypotheses regarding the potential pathophysiological mechanisms. RESULTS A total of 261 studies were identified; 27 of these met selection criteria. Only 13 studies prospectively assessed the effect of sleep on memory in epilepsy. Most studies reported no alteration of sleep-related memory consolidation in patients, with either similar retention levels following a period containing sleep (n = 5) or improved memory performance postsleep (n = 4). Two studies in children with epilepsy found impaired sleep-related memory consolidation. Ten studies, of which 6 were in childhood epilepsy syndromes, reported a debilitating effect of sleep-related epileptic activity on memory functioning. CONCLUSIONS Conclusions from existing studies were hampered by small sample sizes, heterogeneous patient groups, and variations in memory assessment techniques. Overall, results to date preclude any definitive conclusions on the alteration of sleep-related memory consolidation in epilepsy. We discuss methodological considerations specific to people with epilepsy and provide suggestions on how to best investigate the relationship between epileptic activity, sleep, and memory consolidation in future studies. CITATION Latreille V, Schiller K, Peter-Derex L, Frauscher B. Does epilepticimpair sleep-related memory consolidation in epilepsy? A critical and systematic review. J Clin Sleep Med. 2022;18(10):2481-2495.
Collapse
Affiliation(s)
- Véronique Latreille
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Katharina Schiller
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
- Department of Pediatrics, Hospital Group Ostallgaeu-Kaufbeuren, Kaufbeuren, Germany
| | - Laure Peter-Derex
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
- Center for Sleep Medicine and Respiratory Diseases, Croix-Rousse Hospital, University Hospital of Lyon, Lyon 1 University, France
- Lyon Neuroscience Research Center, INSERM 1028/CNRS 5292, Lyon, France
| | - Birgit Frauscher
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| |
Collapse
|
34
|
Shing N, Walker MC, Chang P. The Role of Aberrant Neural Oscillations in the Hippocampal-Medial Prefrontal Cortex Circuit in Neurodevelopmental and Neurological Disorders. Neurobiol Learn Mem 2022; 195:107683. [PMID: 36174886 DOI: 10.1016/j.nlm.2022.107683] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
Abstract
The hippocampus (HPC) and medial prefrontal cortex (mPFC) have well-established roles in cognition, emotion, and sensory processing. In recent years, interests have shifted towards developing a deeper understanding of the mechanisms underlying interactions between the HPC and mPFC in achieving these functions. Considerable research supports the idea that synchronized activity between the HPC and the mPFC is a general mechanism by which brain functions are regulated. In this review, we summarize current knowledge on the hippocampal-medial prefrontal cortex (HPC-mPFC) circuit in normal brain function with a focus on oscillations and highlight several neurodevelopmental and neurological disorders associated with aberrant HPC-mPFC circuitry. We further discuss oscillatory dynamics across the HPC-mPFC circuit as potentially useful biomarkers to assess interventions for neurodevelopmental and neurological disorders. Finally, advancements in brain stimulation, gene therapy and pharmacotherapy are explored as promising therapies for disorders with aberrant HPC-mPFC circuit dynamics.
Collapse
Affiliation(s)
- Nathanael Shing
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, UK; Department of Medicine, University of Central Lancashire, Preston, PR17BH, UK
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Pishan Chang
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT.
| |
Collapse
|
35
|
Sákovics A, Csukly G, Borbély C, Virág M, Kelemen A, Bódizs R, Erőss L, Fabó D. Prolongation of cortical sleep spindles during hippocampal interictal epileptiform discharges in epilepsy patients. Epilepsia 2022; 63:2256-2268. [PMID: 35723195 PMCID: PMC9796153 DOI: 10.1111/epi.17337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Memory deficits are frequent among patients with epilepsies affecting the temporal lobe. Hippocampal interictal epileptic discharges (hIEDs), the presumed epileptic exaggeration of sharp wave-ripples (SWRs), are known to contribute to memory dysfunction, but the potential underlying mechanism is unknown. The precise temporal coordination between hippocampal SWRs and corticothalamic spindles during sleep is critical for memory consolidation. Moreover, previous investigation indicated that hIEDs induce neocortical spindlelike oscillation. In the present study, we aimed to assess the influence of hIEDs on neocortical spindles. METHODS We analyzed the spindle characteristics (duration, amplitude, frequency) of 21 epilepsy patients implanted with foramen ovale (FO) electrodes during a whole night sleep. Scalp sleep spindles were categorized based on their temporal relationship to hIEDs detected on the FO electrodes. Three groups were created: (1) spindles coinciding with hIEDs, (2) spindles "induced" by hIEDs, and (3) spindles without hIED co-occurrence. RESULTS We found that spindles co-occurring with hIEDs had altered characteristics in all measured properties, lasted longer by 126 ± 48 ms (mean ± SD), and had higher amplitude by 3.4 ± 3.2 μV, and their frequency range shifted toward the higher frequencies within the 13-15-Hz range. Also, hIED-induced spindles had identical oscillatory properties to spindles without any temporal relationships with hIEDs. In more than half of our subjects, clear temporal coherence was revealed between hIEDs and spindles, but the direction of the coupling was patient-specific. SIGNIFICANCE We investigated the effect of hippocampal IEDs on neocortical spindle activity and found spindle alterations in cases of spindle-hIED co-occurrence, but not in cases of hIED-initiated spindles. We propose that this is a marker of a pathologic process, where IEDs may have direct effect on spindle generation. It could mark a potential mechanism whereby IEDs disrupt memory processes, and also provide a potential therapeutic target to treat memory disturbances in epilepsy.
Collapse
Affiliation(s)
- Anna Sákovics
- Department of NeurologyNational Institute of Mental Health, Neurology, and NeurosurgeryBudapestHungary,School of PhDSemmelweis UniversityBudapestHungary
| | - Gábor Csukly
- Department of Psychiatry and PsychotherapySemmelweis UniversityBudapestHungary
| | - Csaba Borbély
- Department of NeurologyNational Institute of Mental Health, Neurology, and NeurosurgeryBudapestHungary
| | - Márta Virág
- Department of NeurologyNational Institute of Mental Health, Neurology, and NeurosurgeryBudapestHungary
| | - Anna Kelemen
- Department of NeurologyNational Institute of Mental Health, Neurology, and NeurosurgeryBudapestHungary,András Pető FacultySemmelweis UniversityBudapestHungary
| | - Róbert Bódizs
- Department of NeurologyNational Institute of Mental Health, Neurology, and NeurosurgeryBudapestHungary,Institute of Behavioral SciencesSemmelweis UniversityBudapestHungary
| | - Loránd Erőss
- Department of Functional NeurosurgeryNational Institute of Mental Health, Neurology, and NeurosurgeryBudapestHungary
| | - Dániel Fabó
- Department of NeurologyNational Institute of Mental Health, Neurology, and NeurosurgeryBudapestHungary
| |
Collapse
|
36
|
Hassan AR, Zhao Z, Ferrero JJ, Cea C, Jastrzebska‐Perfect P, Myers J, Asman P, Ince NF, McKhann G, Viswanathan A, Sheth SA, Khodagholy D, Gelinas JN. Translational Organic Neural Interface Devices at Single Neuron Resolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202306. [PMID: 35908811 PMCID: PMC9507374 DOI: 10.1002/advs.202202306] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Recording from the human brain at the spatiotemporal resolution of action potentials provides critical insight into mechanisms of higher cognitive functions and neuropsychiatric disease that is challenging to derive from animal models. Here, organic materials and conformable electronics are employed to create an integrated neural interface device compatible with minimally invasive neurosurgical procedures and geared toward chronic implantation on the surface of the human brain. Data generated with these devices enable identification and characterization of individual, spatially distribute human cortical neurons in the absence of any tissue penetration (n = 229 single units). Putative single-units are effectively clustered, and found to possess features characteristic of pyramidal cells and interneurons, as well as identifiable microcircuit interactions. Human neurons exhibit consistent phase modulation by oscillatory activity and a variety of population coupling responses. The parameters are furthermore established to optimize the yield and quality of single-unit activity from the cortical surface, enhancing the ability to investigate human neural network mechanisms without breaching the tissue interface and increasing the information that can be safely derived from neurophysiological monitoring.
Collapse
Affiliation(s)
- Ahnaf Rashik Hassan
- Institute for Genomic MedicineColumbia University Irving Medical CenterNew YorkNY10032USA
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Zifang Zhao
- Department of Electrical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Jose J. Ferrero
- Institute for Genomic MedicineColumbia University Irving Medical CenterNew YorkNY10032USA
| | - Claudia Cea
- Department of Electrical EngineeringColumbia UniversityNew YorkNY10027USA
| | | | - John Myers
- Department of NeurosurgeryBaylor College of MedicineHoustonTX77030USA
| | - Priscella Asman
- Department of Biomedical EngineeringUniversity of HoustonHoustonTX77004USA
| | - Nuri Firat Ince
- Department of Biomedical EngineeringUniversity of HoustonHoustonTX77004USA
| | - Guy McKhann
- Department of NeurosurgeryColumbia University Irving Medical Center and New York Presbyterian HospitalNew YorkNY10032USA
| | | | - Sameer A. Sheth
- Department of NeurosurgeryBaylor College of MedicineHoustonTX77030USA
| | - Dion Khodagholy
- Department of Electrical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Jennifer N. Gelinas
- Institute for Genomic MedicineColumbia University Irving Medical CenterNew YorkNY10032USA
- Department of NeurologyColumbia University Irving Medical Center and New York Presbyterian HospitalNew YorkNY10032USA
| |
Collapse
|
37
|
Fouad A, Azizollahi H, Le Douget JE, Lejeune FX, Valderrama M, Mayor L, Navarro V, Le Van Quyen M. Interictal epileptiform discharges show distinct spatiotemporal and morphological patterns across wake and sleep. Brain Commun 2022; 4:fcac183. [PMID: 36483575 PMCID: PMC9724782 DOI: 10.1093/braincomms/fcac183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 03/24/2022] [Accepted: 07/15/2022] [Indexed: 03/19/2024] Open
Abstract
Presurgical evaluation of mesial temporal and neocortical focal pharmacoresistant epilepsy patients using intracranial EEG recordings has led to the generation of extensive data on interictal epileptiform discharges, located within or remotely from seizure onset zones. In this study, we used this data to investigate how interictal epileptiform discharges are modulated and how their spatial distribution changes during wake and sleep and analysed the relationship between these discharge events and seizure onset zones. Preoperative evaluation data from 11 adult patients with focal pharmacoresistant epilepsy were extracted from the Epilepsiae database. Interictal epileptiform discharges were automatically detected during wakefulness and over several hours of continuous seizure-free sleep (total duration of EEG recordings:106.7 h; mean per patient: 9.7 h), and analysed across four brain areas (mesial temporal, lateral neocortical, basal cortical and the temporal pole). Sleep stages were classified manually from scalp EEG. Discharge events were characterized according to their rate and morphology (amplitude, sharpness and duration). Eight patients had a seizure onset zone over mesial areas and three patients over lateral neocortical areas. Overall, discharge rates varied across brain areas during wakefulness and sleep [wake/sleep stages × brain areas interaction; Wald χ 2(df = 6) = 31.1, P < 0.0001]. N2-N3 non-rapid eye movement sleep increased interictal epileptiform discharges in mesial areas compared with wakefulness and rapid eye movement sleep (P < 0.0001), and to other areas (P < 0.0001 for all comparisons). This mesial pattern was observed both within and outside of seizure onset zones. During wakefulness, the rate of interictal epileptiform discharges was significantly higher than during N2-N3 non-rapid eye movement sleep (P = 0.04), and rapid eye movement sleep (P = 0.01) in lateral neocortical areas (referred to as lateral neocortical pattern), a finding that was more pronounced in seizures onset zones (P = 0.004). The morphological characteristics of the discharge events were modulated during wakefulness and sleep stages across brain areas. The effect of seizure onset zones on discharge morphology was conditioned by brain area and was particularly marked in temporal pole areas. Our analysis of discharge patterns in relation to cerebral localization, vigilance state and the anatomical affiliation of seizure onset zones revealed the global and local aspects of the complex relationship between interictal discharges, sleep and seizure onset zones. This novel approach may lead to a better understanding of cognitive decline and responses to therapy, as well as to adaptation of surgical interventions for epileptic patients.
Collapse
Affiliation(s)
- Amal Fouad
- Bioelectrics Lab, Paris Brain Institute (ICM Institut du Cerveau), (UMRS 1127, CNRS UMR 7225), Pitié-Salpêtriere Hospital, 75013 Paris, France
- Department of Neurology, Faculty of medicine, Ain-Shams University, Cairo, Egypt
| | - Hamed Azizollahi
- Bioelectrics Lab, Paris Brain Institute (ICM Institut du Cerveau), (UMRS 1127, CNRS UMR 7225), Pitié-Salpêtriere Hospital, 75013 Paris, France
- Bioserenity, Paris Brain Institute (ICM Institut du Cerveau), 75013 Paris, France
| | - Jean-Eudes Le Douget
- Bioelectrics Lab, Paris Brain Institute (ICM Institut du Cerveau), (UMRS 1127, CNRS UMR 7225), Pitié-Salpêtriere Hospital, 75013 Paris, France
- Bioserenity, Paris Brain Institute (ICM Institut du Cerveau), 75013 Paris, France
| | - François-Xavier Lejeune
- Sorbonne University, Paris, France
- Paris Brain Institute (ICM Institut du Cerveau), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, 75013 Paris, France
- Paris Brain Institute's Data and Analysis Core (ICM Institut du Cerveau), University Hospital Pitié-Salpêtrière, 75013 Paris, France
| | - Mario Valderrama
- Department of Biomedical Engineering, University of los Andes, Bogotá, Colombia
| | | | - Vincent Navarro
- Sorbonne University, Paris, France
- Paris Brain Institute (ICM Institut du Cerveau), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, 75013 Paris, France
- Epileptology Unit, AP-HP Pitié-Salpêtrière Hospital, 75013 Paris, France
| | - Michel Le Van Quyen
- Bioelectrics Lab, Paris Brain Institute (ICM Institut du Cerveau), (UMRS 1127, CNRS UMR 7225), Pitié-Salpêtriere Hospital, 75013 Paris, France
- Sorbonne University, Paris, France
- Laboratoire D’Imagerie Biomédicale, (INSERM U1146, UMR7371, CNRS), Sorbonne University, Paris, France
| |
Collapse
|
38
|
Warsi NM, Wong SM, Suresh H, Arski ON, Yan H, Ebden M, Kerr E, Smith ML, Ochi A, Otsubo H, Sharma R, Jain P, Donner EJ, Snead OC, Ibrahim GM. Interictal discharges delay target-directed eye movements and impair attentional set-shifting in children with epilepsy. Epilepsia 2022; 63:2571-2582. [PMID: 35833751 DOI: 10.1111/epi.17365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The theory of transient cognitive impairment in epilepsy posits that lapses in attention result from ephemeral disruption of attentional circuitry by interictal events. Eye movements are intimately associated with human attention and can be monitored in real -time using eye-tracking technologies. Here, we sought to characterize the associations between interictal discharges (IEDs), gaze, and attentional behaviour in children with epilepsy. METHODS Eleven consecutive children undergoing invasive monitoring with stereotactic electrodes for localization-related epilepsy performed an attentional set-shifting task while tandem intracranial electroencephalographic signals and eye-tracking data were recorded. Using an established algorithm, IEDs were detected across all intracranial electrodes on a trial-by-trial basis. Hierarchical mixed-effects modelling was performed to delineate associations between trial reaction time (RT), eye movements, and IEDs. RESULTS Hierarchical mixed-effects modelling revealed that both the presence of an IED (β±SE=72.74±24.21ms, p=0.003) and the frequency of epileptiform events (β±SE=67.54±17.30ms, p<0.001) were associated with prolonged RT on the attentional set-shifting task. IED occurrence at the time of stimulus presentation was associated with delays in gaze initiation toward the visual targets (p=0.017). SIGNIFICANCE The occurrence of epileptiform activity in close temporal association with stimulus presentation is associated with delays in target-directed gaze and prolonged response time, hallmarks of momentary lapses in attention. These findings provide novel insights into the mechanisms of transient impairments in children and support the use of visual tracking as a correlate of higher-order attentional behaviour.
Collapse
Affiliation(s)
- Nebras M Warsi
- Division of Neurosurgery, Hospital for Sick Children, Toronto, ON.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON
| | - Simeon M Wong
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON.,Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON
| | - Hrishikesh Suresh
- Division of Neurosurgery, Hospital for Sick Children, Toronto, ON.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON
| | - Olivia N Arski
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON
| | - Han Yan
- Division of Neurosurgery, Hospital for Sick Children, Toronto, ON.,Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON
| | - Mark Ebden
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON
| | - Elizabeth Kerr
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON
| | - Mary Lou Smith
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON
| | - Ayako Ochi
- Division of Neurology, Hospital for Sick Children, Toronto, ON
| | - Hiroshi Otsubo
- Division of Neurology, Hospital for Sick Children, Toronto, ON
| | - Roy Sharma
- Division of Neurology, Hospital for Sick Children, Toronto, ON
| | - Puneet Jain
- Division of Neurology, Hospital for Sick Children, Toronto, ON
| | | | - O Carter Snead
- Division of Neurology, Hospital for Sick Children, Toronto, ON
| | - George M Ibrahim
- Division of Neurosurgery, Hospital for Sick Children, Toronto, ON.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON.,Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON
| |
Collapse
|
39
|
Arski ON, Wong SM, Warsi NM, Pang E, Kerr E, Smith ML, Taylor MJ, Dunkley BT, Ochi A, Otsubo H, Sharma R, Yau I, Jain P, Donner EJ, Snead OC, Ibrahim GM. Epilepsy disrupts hippocampal phase precision and impairs working memory. Epilepsia 2022; 63:2583-2596. [PMID: 35778973 DOI: 10.1111/epi.17357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Working memory deficits are prevalent in childhood epilepsy. Working memory processing is thought to be supported by the phase of hippocampal neural oscillations. Disruptions in working memory have previously been linked to the occurrence of transient epileptic activity. This study aimed to resolve the associations between oscillatory neural activity, transient epileptiform events, and working memory in children with epilepsy. METHODS Intracranial recordings were acquired from stereotactically-implanted electrodes in the hippocampi, epileptogenic zones, and working memory-related networks of children with drug-resistant epilepsy during a 1-back working memory task. Interictal epileptic activity was captured using automated detectors. Hippocampal phase and interregional connectivity within working memory networks were indexed by Rayleigh Z and the phase difference derivative respectively. Trials with and without transient epileptiform events were compared. RESULTS Twelve children (mean age of 14.3 ± 2.8 years) with drug-resistant epilepsy were included in the study. In the absence of transient epileptic activity, significant delta and theta hippocampal phase resetting occurred in response to working memory stimulus presentation (Rz = 9, Rz = 8). Retrieval trials that were in-phase with the preferred phase angle were associated with faster reaction times (p = 0.01, p = 0.03). Concurrently, delta and theta coordinated interactions between the hippocampi and working memory-related networks were enhanced (PDD z-scores = 6-11). During retrieval trials with pre-encoding or pre-retrieval transient epileptic activity, phase resetting was attenuated (Rz = 5, Rz = 1), interregional connectivity was altered (PDD z-scores = 1-3), and reaction times were prolonged (p = 0.01, p = 0.03). SIGNIFICANCE This work highlights the role of hippocampal phase in working memory. We observe post-stimulus hippocampal phase resetting coincident with enhanced interregional connectivity. The precision of hippocampal phase predicts optimal working memory processing, and transient epileptic activity prolongs working memory processing. These findings can help guide future treatments aimed at restoring memory function in this patient population.
Collapse
Affiliation(s)
- Olivia N Arski
- Institute of Medical Science, University of Toronto, Toronto, Canada.,Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada
| | - Simeon M Wong
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada.,Division of Neurosurgery, Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Canada
| | - Nebras M Warsi
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada.,Division of Neurosurgery, Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Elizabeth Pang
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Elizabeth Kerr
- Department of Psychology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Mary Lou Smith
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Psychology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Margot J Taylor
- Institute of Medical Science, University of Toronto, Toronto, Canada.,Diagnostic Imaging, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | | | - Ayako Ochi
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Hiroshi Otsubo
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Roy Sharma
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Ivanna Yau
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Puneet Jain
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Elizabeth J Donner
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - O Carter Snead
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - George M Ibrahim
- Institute of Medical Science, University of Toronto, Toronto, Canada.,Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada.,Division of Neurosurgery, Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
40
|
Camarillo-Rodriguez L, Leenen I, Waldman Z, Serruya M, Wanda PA, Herweg NA, Kahana MJ, Rubinstein D, Orosz I, Lega B, Podkorytova I, Gross RE, Worrell G, Davis KA, Jobst BC, Sheth SA, Weiss SA, Sperling MR. Temporal lobe interictal spikes disrupt encoding and retrieval of verbal memory: A subregion analysis. Epilepsia 2022; 63:2325-2337. [PMID: 35708911 DOI: 10.1111/epi.17334] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The medial temporal lobe (MTL) encodes and recalls memories and can be a predominant site for interictal spikes (IS) in patients with focal epilepsy. It is unclear whether memory deficits are due to IS in the MTL producing a transient decline. Here, we investigated whether IS in the MTL subregions and lateral temporal cortex impact episodic memory encoding and recall. METHODS Seventy-eight participants undergoing presurgical evaluation for medically refractory focal epilepsy with depth electrodes placed in the temporal lobe participated in a verbal free recall task. IS were manually annotated during the pre-encoding, encoding, and recall epochs. We examined the effect of IS on word recall using mixed-effects logistic regression. RESULTS IS in the left hippocampus (odds ratio [OR] = .73, 95% confidence interval [CI] = .63-.84, p < .001) and left middle temporal gyrus (OR = .46, 95% CI = .27-.78, p < .05) during word encoding decreased subsequent recall performance. Within the left hippocampus, this effect was specific for area CA1 (OR = .76, 95% CI = .66-.88, p < .01) and dentate gyrus (OR = .74, 95% CI = .62-.89, p < .05). IS in other MTL subregions or inferior and superior temporal gyrus and IS occurring during the prestimulus window did not affect word encoding (p > .05). IS during retrieval in right hippocampal (OR = .22, 95% CI = .08-.63, p = .01) and parahippocampal regions (OR = .24, 95% CI = .07-.8, p < .05) reduced the probability of recalling a word. SIGNIFICANCE IS in medial and lateral temporal cortex contribute to transient memory decline during verbal episodic memory.
Collapse
Affiliation(s)
| | - Iwin Leenen
- Faculty of Psychology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Zachary Waldman
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mijail Serruya
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Paul A Wanda
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nora A Herweg
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel Rubinstein
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Iren Orosz
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| | | | | | - Robert E Gross
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
| | | | - Kathryn A Davis
- Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Barbara C Jobst
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Sameer A Sheth
- Department of Neurological Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Shennan A Weiss
- Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, New York, USA.,Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York, USA.,Departments of Neurology, New York City Health + Hospitals/Kings County, Brooklyn, New York, USA
| | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
41
|
Brain structural connectivity sub typing in unilateral temporal lobe epilepsy. Brain Imaging Behav 2022; 16:2220-2228. [PMID: 35674920 DOI: 10.1007/s11682-022-00691-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2022] [Indexed: 11/02/2022]
Abstract
To categorize and clinically characterize subtypes of brain structural connectivity patterns in unilateral temporal lobe epilepsy (TLE). Voxel based morphometry (VBM) and surfaced based morphometry (SBM) analysis were used to detect brain structural alterations associated with TLE from MRI data. Principal component analysis (PCA) was performed to identify subtypes of brain structural connectivity patterns. Correlation analysis was used to explore associations between PC scores and clinical characteristics. A total of 59 patients with TLE and 100 healthy adults were included in this study. Widespread cortical atrophy was shown in both left and right TLE (P < 0.05, FWE corrected). Six principal components (PCs) that explained more than 70% of the variance were extracted for left and right TLE, reflecting patterns of brain structural connectivity. PCs representing perisylvian connectivity were positively correlated with verbal IQ (left TLE: r = 0.696, P < 0.001; right TLE: r = 0.484, P = 0.012) and total IQ (left TLE r = 0.608, P < 0.001) and negatively correlated with disease duration (r = -0.448, P = 0.009). In left TLE, the PC in the ipsilateral mesial temporal region was negatively correlated with age at onset (r = -0.382, P = 0.028). In right TLE, the PC representing the default mode network was negatively correlated with number of antiepileptic drugs (r = -0.407, P = 0.039). This study categorized subtypes of unilateral TLE based on brain structural connectivity patterns. Findings may provide insight into seizure pathways, the pathophysiology of epilepsy, including comorbidities such as cognitive impairment, and help predict treatment outcomes.
Collapse
|
42
|
Besné GM, Horrillo-Maysonnial A, Nicolás MJ, Capell-Pascual F, Urrestarazu E, Artieda J, Valencia M. An interactive framework for the detection of ictal and interictal activities: Cross-species and stand-alone implementation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 218:106728. [PMID: 35299138 DOI: 10.1016/j.cmpb.2022.106728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/03/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Despite advances on signal analysis and artificial intelligence, visual inspection is the gold standard in event detection on electroencephalographic recordings. This process requires much time of clinical experts on both annotating and training new experts for this same task. In scenarios where epilepsy is considered, the need for automatic tools is more prominent, as both seizures and interictal events can occur on hours- or days-long recordings. Although other solutions have already been proposed, most of them are not integrated on clinical and basic science environments due to their complexity and required specialization. Here we present a pipeline that arises from coordinated efforts between life-science researchers, clinicians and data scientists to develop an interactive and iterative workflow to train machine-learning tools for the automatic detection of electroencephalographic events in a variety of scenarios. METHODS The approach consists on a series of subsequent steps covering data loading and configuration, event annotation, model training/re-training and event detection. With slight modifications, the combination of these blocks can cope with a variety of scenarios. To illustrate the flexibility and robustness of the approach, three datasets from clinical (patients of Dravet Syndrome) and basic research environments (mice model of the same disease) were evaluated. From them, and in response to researchers' daily needs, four real world examples of interictal event detection and seizure classification tasks were selected and processed. RESULTS Results show that the current approach was of great aid for event annotation and model development. It was capable of creating custom machine-learning solutions for each scenario with slight adjustments on the analysis protocol, easily accessible to users without programming skills. Final annotator similarity metrics reached values above 80% on all cases of use, reaching 92.3% on interictal event detection on human recordings. CONCLUSIONS The presented framework is easily adaptable to multiple real world scenarios and the interactive and ease-to-use approach makes it manageable to clinical and basic researches without programming skills. Nevertheless, it is conceived so data scientists can optimize it for specific scenarios, improving the knowledge transfer between these fields.
Collapse
Affiliation(s)
- Guillermo M Besné
- Program of Neuroscience, Universidad de Navarra, CIMA, Avenida Pío XII, 55, 31008 Navarra, Pamplona, Spain
| | | | - María Jesús Nicolás
- Program of Neuroscience, Universidad de Navarra, CIMA, Avenida Pío XII, 55, 31008 Navarra, Pamplona, Spain
| | - Ferran Capell-Pascual
- Program of Neuroscience, Universidad de Navarra, CIMA, Avenida Pío XII, 55, 31008 Navarra, Pamplona, Spain
| | - Elena Urrestarazu
- Clinical Neurophysiology Section, Clínica Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Julio Artieda
- Program of Neuroscience, Universidad de Navarra, CIMA, Avenida Pío XII, 55, 31008 Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Miguel Valencia
- Program of Neuroscience, Universidad de Navarra, CIMA, Avenida Pío XII, 55, 31008 Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; Institute of Data Science and Artificial Intelligence, Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
43
|
Nobili L, Frauscher B, Eriksson S, Gibbs SA, Halasz P, Lambert I, Manni R, Peter-Derex L, Proserpio P, Provini F, de Weerd A, Parrino L. Sleep and epilepsy: A snapshot of knowledge and future research lines. J Sleep Res 2022; 31:e13622. [PMID: 35487880 PMCID: PMC9540671 DOI: 10.1111/jsr.13622] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022]
Abstract
Sleep and epilepsy have a reciprocal relationship, and have been recognized as bedfellows since antiquity. However, research on this topic has made a big step forward only in recent years. In this narrative review we summarize the most stimulating discoveries and insights reached by the "European school." In particular, different aspects concerning the sleep-epilepsy interactions are analysed: (a) the effects of sleep on epilepsy; (b) the effects of epilepsy on sleep structure; (c) the relationship between epilepsy, sleep and epileptogenesis; (d) the impact of epileptic activity during sleep on cognition; (e) the relationship between epilepsy and the circadian rhythm; (f) the history and features of sleep hypermotor epilepsy and its differential diagnosis; (g) the relationship between epilepsy and sleep disorders.
Collapse
Affiliation(s)
- Lino Nobili
- Child Neuropsychiatric Unit, Istituto G. Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Birgit Frauscher
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Sofia Eriksson
- Department of Clinical and Experiential Epilepsy, UCL Institute of Neurology, University College London, London, UK
| | - Steve Alex Gibbs
- Department of Neurosciences, Center for Advanced Research in Sleep Medicine, Sacred Heart Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Peter Halasz
- Szentagothai János School of Ph.D Studies, Clinical Neurosciences, Semmelweis University, Budapest, Hungary
| | - Isabelle Lambert
- Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France.,APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France
| | - Raffaele Manni
- Unit of Sleep Medicine and Epilepsy, IRCCS Mondino Foundation, Pavia, Italy
| | - Laure Peter-Derex
- Center for Sleep Medicine and Respiratory Diseases, Lyon University Hospital, Lyon 1 University, Lyon, France.,Lyon Neuroscience Research Center, CNRS UMR 5292/INSERM U1028, Lyon, France
| | - Paola Proserpio
- Department of Neuroscience, Sleep Medicine Centre, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Federica Provini
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Al de Weerd
- Stichting Epilepsie Instellingen Nederland, Zwolle, Netherlands
| | - Liborio Parrino
- Department of General and Specialized Medicine, Sleep Disorders Center, University Hospital of Parma, Parma, Italy
| |
Collapse
|
44
|
Stiso J, Lynn CW, Kahn AE, Rangarajan V, Szymula KP, Archer R, Revell A, Stein JM, Litt B, Davis KA, Lucas TH, Bassett DS. Neurophysiological Evidence for Cognitive Map Formation during Sequence Learning. eNeuro 2022; 9:ENEURO.0361-21.2022. [PMID: 35105662 PMCID: PMC8896554 DOI: 10.1523/eneuro.0361-21.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/03/2021] [Accepted: 01/03/2022] [Indexed: 12/29/2022] Open
Abstract
Humans deftly parse statistics from sequences. Some theories posit that humans learn these statistics by forming cognitive maps, or underlying representations of the latent space which links items in the sequence. Here, an item in the sequence is a node, and the probability of transitioning between two items is an edge. Sequences can then be generated from walks through the latent space, with different spaces giving rise to different sequence statistics. Individual or group differences in sequence learning can be modeled by changing the time scale over which estimates of transition probabilities are built, or in other words, by changing the amount of temporal discounting. Latent space models with temporal discounting bear a resemblance to models of navigation through Euclidean spaces. However, few explicit links have been made between predictions from Euclidean spatial navigation and neural activity during human sequence learning. Here, we use a combination of behavioral modeling and intracranial encephalography (iEEG) recordings to investigate how neural activity might support the formation of space-like cognitive maps through temporal discounting during sequence learning. Specifically, we acquire human reaction times from a sequential reaction time task, to which we fit a model that formulates the amount of temporal discounting as a single free parameter. From the parameter, we calculate each individual's estimate of the latent space. We find that neural activity reflects these estimates mostly in the temporal lobe, including areas involved in spatial navigation. Similar to spatial navigation, we find that low-dimensional representations of neural activity allow for easy separation of important features, such as modules, in the latent space. Lastly, we take advantage of the high temporal resolution of iEEG data to determine the time scale on which latent spaces are learned. We find that learning typically happens within the first 500 trials, and is modulated by the underlying latent space and the amount of temporal discounting characteristic of each participant. Ultimately, this work provides important links between behavioral models of sequence learning and neural activity during the same behavior, and contextualizes these results within a broader framework of domain general cognitive maps.
Collapse
Affiliation(s)
- Jennifer Stiso
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
| | - Christopher W Lynn
- Initiative for the Theoretical Sciences, Graduate Center, City University of New York, New York, NY 10016
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544
| | - Ari E Kahn
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
| | - Vinitha Rangarajan
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
| | - Karol P Szymula
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
| | - Ryan Archer
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Andrew Revell
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Joel M Stein
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Brian Litt
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Kathryn A Davis
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Timothy H Lucas
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Dani S Bassett
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Physics and Astronomy, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104
- The Santa Fe Institute, Santa Fe, NM 87501
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
- Initiative for the Theoretical Sciences, Graduate Center, City University of New York, New York, NY 10016
| |
Collapse
|
45
|
Yao DR, Yu H, Rauhala OJ, Cea C, Zhao Z, Gelinas JN, Khodagholy D. Anisotropic Ion Conducting Particulate Composites for Bioelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104404. [PMID: 35083889 PMCID: PMC8948554 DOI: 10.1002/advs.202104404] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Acquisition, processing, and manipulation of biological signals require transistor circuits capable of ion to electron conversion. However, use of this class of transistors in integrated sensors or circuits is limited due to difficulty in patterning biocompatible electrolytes for independent operation of transistors. It is hypothesized that it would be possible to eliminate the need for electrolyte patterning by enabling directional ion conduction as a property of the material serving as electrolyte. Here, the anisotropic ion conductor (AIC) is developed as a soft, biocompatible composite material comprised of ion-conducting particles and an insulating polymer. AIC displays strongly anisotropic ion conduction with vertical conduction comparable to isotropic electrolytes over extended time periods. AIC allows effective hydration of conducting polymers to establish volumetric capacitance, which is critical for the operation of electrochemical transistors. AIC enables dense patterning of transistors with minimal leakage using simple solution-based deposition techniques. Lastly, AIC can be utilized as a dry, anisotropic interface with human skin that is capable of non-invasive acquisition of individual motor action potentials. The properties of AIC position it to enable implementation of a wide range of large-scale organic bioelectronics and enhance their translation to human health applications.
Collapse
Affiliation(s)
- Dickson R. Yao
- Department of Electrical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Han Yu
- Department of Electrical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Onni J. Rauhala
- Department of Electrical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Claudia Cea
- Department of Electrical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Zifang Zhao
- Department of Electrical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Jennifer N. Gelinas
- Department of NeurologyColumbia University Medical CenterNew YorkNY10032USA
- Institute for Genomic MedicineColumbia University Medical CenterNew YorkNY10032USA
| | - Dion Khodagholy
- Department of Electrical EngineeringColumbia UniversityNew YorkNY10027USA
| |
Collapse
|
46
|
Dubey M, Pascual-Garcia M, Helmes K, Wever DD, Hamada MS, Kushner SA, Kole MHP. Myelination synchronizes cortical oscillations by consolidating parvalbumin-mediated phasic inhibition. eLife 2022; 11:73827. [PMID: 35001871 PMCID: PMC8887893 DOI: 10.7554/elife.73827] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Parvalbumin-positive (PV+) γ-aminobutyric acid (GABA) interneurons are critically involved in producing rapid network oscillations and cortical microcircuit computations, but the significance of PV+ axon myelination to the temporal features of inhibition remains elusive. Here, using toxic and genetic mouse models of demyelination and dysmyelination, respectively, we find that loss of compact myelin reduces PV+ interneuron presynaptic terminals and increases failures, and the weak phasic inhibition of pyramidal neurons abolishes optogenetically driven gamma oscillations in vivo. Strikingly, during behaviors of quiet wakefulness selectively theta rhythms are amplified and accompanied by highly synchronized interictal epileptic discharges. In support of a causal role of impaired PV-mediated inhibition, optogenetic activation of myelin-deficient PV+ interneurons attenuated the power of slow theta rhythms and limited interictal spike occurrence. Thus, myelination of PV axons is required to consolidate fast inhibition of pyramidal neurons and enable behavioral state-dependent modulation of local circuit synchronization.
Collapse
Affiliation(s)
- Mohit Dubey
- Department of Axonal Signaling, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | | | - Koke Helmes
- Department of Axonal Signaling, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | - Dennis D Wever
- Department of Axonal Signaling, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | - Mustafa S Hamada
- Department of Axonal Signaling, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands.,Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Steven A Kushner
- Department of Psychiatry, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Maarten H P Kole
- Department of Axonal Signaling, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands.,Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
47
|
Chen Y, Fallon N, Kreilkamp BAK, Denby C, Bracewell M, Das K, Pegg E, Mohanraj R, Marson AG, Keller SS. Probabilistic mapping of thalamic nuclei and thalamocortical functional connectivity in idiopathic generalised epilepsy. Hum Brain Mapp 2021; 42:5648-5664. [PMID: 34432348 PMCID: PMC8559489 DOI: 10.1002/hbm.25644] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
It is well established that abnormal thalamocortical systems play an important role in the generation and maintenance of primary generalised seizures. However, it is currently unknown which thalamic nuclei and how nuclear‐specific thalamocortical functional connectivity are differentially impacted in patients with medically refractory and non‐refractory idiopathic generalised epilepsy (IGE). In the present study, we performed structural and resting‐state functional magnetic resonance imaging (MRI) in patients with refractory and non‐refractory IGE, segmented the thalamus into constituent nuclear regions using a probabilistic MRI segmentation method and determined thalamocortical functional connectivity using seed‐to‐voxel connectivity analyses. We report significant volume reduction of the left and right anterior thalamic nuclei only in patients with refractory IGE. Compared to healthy controls, patients with refractory and non‐refractory IGE had significant alterations of functional connectivity between the centromedian nucleus and cortex, but only patients with refractory IGE had altered cortical connectivity with the ventral lateral nuclear group. Patients with refractory IGE had significantly increased functional connectivity between the left and right ventral lateral posterior nuclei and cortical regions compared to patients with non‐refractory IGE. Cortical effects were predominantly located in the frontal lobe. Atrophy of the anterior thalamic nuclei and resting‐state functional hyperconnectivity between ventral lateral nuclei and cerebral cortex may be imaging markers of pharmacoresistance in patients with IGE. These structural and functional abnormalities fit well with the known importance of thalamocortical systems in the generation and maintenance of primary generalised seizures, and the increasing recognition of the importance of limbic pathways in IGE.
Collapse
Affiliation(s)
- Yachin Chen
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Nicholas Fallon
- Department of Psychology, University of Liverpool, Liverpool, UK
| | - Barbara A K Kreilkamp
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | | | - Martyn Bracewell
- The Walton Centre NHS Foundation Trust, Liverpool, UK.,Schools of Medical Sciences and Psychology, Bangor University, Bangor, UK
| | - Kumar Das
- The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Emily Pegg
- Department of Neurology, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Rajiv Mohanraj
- Department of Neurology, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Anthony G Marson
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Simon S Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,The Walton Centre NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
48
|
Marissal T. An inventory of basic research in temporal lobe epilepsy. Rev Neurol (Paris) 2021; 177:1069-1081. [PMID: 34176659 DOI: 10.1016/j.neurol.2021.02.390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 12/25/2022]
Abstract
Temporal lobe epilepsy is a severe neurological disease, characterized by seizure occurrence and invalidating cognitive co-morbidities, which affects up to 1% of the adults. Roughly one third of the patients are resistant to any conventional pharmacological treatments. The last option in that case is the surgical removal of the epileptic focus, with no guarantee for clinical symptom alleviation. This state of affairs requests the identification of cellular or molecular targets for novel therapeutic approaches with limited side effects. Here we review some generalities about the disease as well as some of the most recent discoveries about the cellular and molecular mechanisms of TLE, and the latest perspectives for novel treatments.
Collapse
Affiliation(s)
- T Marissal
- INMED, Inserm UMR1249, Aix-Marseille université, Marseille, France.
| |
Collapse
|
49
|
Sheybani L, Mégevand P, Spinelli L, Bénar CG, Momjian S, Seeck M, Quairiaux C, Kleinschmidt A, Vulliémoz S. Slow oscillations open susceptible time windows for epileptic discharges. Epilepsia 2021; 62:2357-2371. [PMID: 34338315 PMCID: PMC9290693 DOI: 10.1111/epi.17020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022]
Abstract
Objective In patients with epilepsy, interictal epileptic discharges are a diagnostic hallmark of epilepsy and represent abnormal, so‐called “irritative” activity that disrupts normal cognitive functions. Despite their clinical relevance, their mechanisms of generation remain poorly understood. It is assumed that brain activity switches abruptly, unpredictably, and supposedly randomly to these epileptic transients. We aim to study the period preceding these epileptic discharges, to extract potential proepileptogenic mechanisms supporting their expression. Methods We used multisite intracortical recordings from patients who underwent intracranial monitoring for refractory epilepsy, the majority of whom had a mesial temporal lobe seizure onset zone. Our objective was to evaluate the existence of proepileptogenic windows before interictal epileptic discharges. We tested whether the amplitude and phase synchronization of slow oscillations (.5–4 Hz and 4–7 Hz) increase before epileptic discharges and whether the latter are phase‐locked to slow oscillations. Then, we tested whether the phase‐locking of neuronal activity (assessed by high‐gamma activity, 60–160 Hz) to slow oscillations increases before epileptic discharges to provide a potential mechanism linking slow oscillations to interictal activities. Results Changes in widespread slow oscillations anticipate upcoming epileptic discharges. The network extends beyond the irritative zone, but the increase in amplitude and phase synchronization is rather specific to the irritative zone. In contrast, epileptic discharges are phase‐locked to widespread slow oscillations and the degree of phase‐locking tends to be higher outside the irritative zone. Then, within the irritative zone only, we observe an increased coupling between slow oscillations and neuronal discharges before epileptic discharges. Significance Our results show that epileptic discharges occur during vulnerable time windows set up by a specific phase of slow oscillations. The specificity of these permissive windows is further reinforced by the increased coupling of neuronal activity to slow oscillations. These findings contribute to our understanding of epilepsy as a distributed oscillopathy and open avenues for future neuromodulation strategies aiming at disrupting proepileptic mechanisms.
Collapse
Affiliation(s)
- Laurent Sheybani
- EEG and Epilepsy Unit / Neurology, Department of Clinical Neuroscience, University Hospitals and Faculty of Medicine of University of Geneva, Geneva, Switzerland
| | - Pierre Mégevand
- EEG and Epilepsy Unit / Neurology, Department of Clinical Neuroscience, University Hospitals and Faculty of Medicine of University of Geneva, Geneva, Switzerland.,Department of Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Laurent Spinelli
- EEG and Epilepsy Unit / Neurology, Department of Clinical Neuroscience, University Hospitals and Faculty of Medicine of University of Geneva, Geneva, Switzerland
| | - Christian G Bénar
- Aix-Marseille University, National Institute of Health and Medical Research, Institute of Systems Neurosciences, Marseille, France
| | - Shahan Momjian
- Neurosurgery, Department of Clinical Neuroscience, University Hospitals and Faculty of Medicine of University of Geneva, Geneva, Switzerland
| | - Margitta Seeck
- EEG and Epilepsy Unit / Neurology, Department of Clinical Neuroscience, University Hospitals and Faculty of Medicine of University of Geneva, Geneva, Switzerland
| | - Charles Quairiaux
- Functional Brain Mapping Laboratory, Department of Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Andreas Kleinschmidt
- EEG and Epilepsy Unit / Neurology, Department of Clinical Neuroscience, University Hospitals and Faculty of Medicine of University of Geneva, Geneva, Switzerland
| | - Serge Vulliémoz
- EEG and Epilepsy Unit / Neurology, Department of Clinical Neuroscience, University Hospitals and Faculty of Medicine of University of Geneva, Geneva, Switzerland
| |
Collapse
|
50
|
Helfrich RF, Lendner JD, Knight RT. Aperiodic sleep networks promote memory consolidation. Trends Cogn Sci 2021; 25:648-659. [PMID: 34127388 PMCID: PMC9017392 DOI: 10.1016/j.tics.2021.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 11/22/2022]
Abstract
Hierarchical synchronization of sleep oscillations establishes communication pathways to support memory reactivation, transfer, and consolidation. From an information-theoretical perspective, oscillations constitute highly structured network states that provide limited information-coding capacity. Recent findings indicate that sleep oscillations occur in transient bursts that are interleaved with aperiodic network states, which were previously considered to be random noise. We argue that aperiodic activity exhibits unique and variable spatiotemporal patterns, providing an ideal information-rich neurophysiological substrate for imprinting new mnemonic patterns onto existing circuits. We discuss novel avenues in conceptualizing and quantifying aperiodic network states during sleep to further understand their relevance and interplay with sleep oscillations in support of memory consolidation.
Collapse
Affiliation(s)
- Randolph F Helfrich
- Hertie Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Hoppe-Seyler-Strasse 3, 72076 Tübingen, Germany.
| | - Janna D Lendner
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Tübingen, Hoppe-Seyler-Strasse 3, 72076 Tübingen, Germany
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California Berkeley, 132 Barker Hall, Berkeley, CA 94720, USA; Department of Psychology, University of California Berkeley, Tolman Hall, Berkeley, CA 94720, USA
| |
Collapse
|