1
|
Deshpande P, Chimata AV, Singh A. Exploring the role of N-acetyltransferases in diseases: a focus on N-acetyltransferase 9 in neurodegeneration. Neural Regen Res 2025; 20:2862-2871. [PMID: 39435604 PMCID: PMC11826463 DOI: 10.4103/nrr.nrr-d-24-00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/04/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Acetyltransferases, required to transfer an acetyl group on protein are highly conserved proteins that play a crucial role in development and disease. Protein acetylation is a common post-translational modification pivotal to basic cellular processes. Close to 80%-90% of proteins are acetylated during translation, which is an irreversible process that affects protein structure, function, life, and localization. In this review, we have discussed the various N-acetyltransferases present in humans, their function, and how they might play a role in diseases. Furthermore, we have focused on N-acetyltransferase 9 and its role in microtubule stability. We have shed light on how N-acetyltransferase 9 and acetylation of proteins can potentially play a role in neurodegenerative diseases. We have specifically discussed the N-acetyltransferase 9-acetylation independent function and regulation of c-Jun N-terminal kinase signaling and microtubule stability during development and neurodegeneration.
Collapse
Affiliation(s)
| | | | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, USA
- Premedical Program, University of Dayton, Dayton, OH, USA
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
- Integrative Science and Engineering Center, University of Dayton, Dayton, OH, USA
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA
| |
Collapse
|
2
|
Muffels IJ, Carter T, Rehmann H, Vastert SJ, Verrijn Stuart AA, Blank AC, Garde A, van der Zwaag B, De Lange IM, Giltay JC, van Gassen KL, Koop K, Asensio CS, van Hasselt PM. LIMK1 variants are associated with divergent endocrinological phenotypes and altered exocytosis dynamics. iScience 2025; 28:112585. [PMID: 40491492 PMCID: PMC12146536 DOI: 10.1016/j.isci.2025.112585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/11/2024] [Accepted: 04/30/2025] [Indexed: 06/11/2025] Open
Abstract
LIM kinase 1 (LIMK1) plays a pivotal role in dynamic actin remodeling through phosphorylation of cofilin, thereby regulating exocytosis. We report two individuals harboring LIMK1 de novo variants with dissimilar phenotypes: one exhibited epileptic encephalopathy and developmental delay, while the other showed common variable immune deficiency and glucose dysregulation. We suspected that the divergent phenotypic features arose from opposing effects on LIMK1 activity. Indeed, actin polymerization was significantly decreased in individual 1, whereas it was increased in individual 2. Insulin-secreting cell lines expressing the LIMK1 variant of individual 1 exhibited significantly slower exocytosis, contrasting the rapid and uncontrolled exocytosis in individual 2. Intriguingly, both variants led to increased overall insulin secretion. This first report of two individuals with LIMK1 variants with divergent effects on cofilin phosphorylation and actin polymerization, reveals that LIMK1 has an important role in tuned insulin exocytosis. These distinct exocytosis defects may underlie the glucose dysregulation observed.
Collapse
Affiliation(s)
- Irena J.J. Muffels
- Department of Metabolic Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Theodore Carter
- Department of Biological Sciences, College of Natural Sciences and Mathematics, Denver, CO, USA
| | - Holger Rehmann
- Department of Energy and Biotechnology, Flensburg University of Applied Sciences, Flensburg, Germany
| | - Sebastiaan J. Vastert
- Department of Pediatric Rheumatology and Immunology and Center for Translational Immunology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Annemarie A. Verrijn Stuart
- Department of Pediatric Endocrinology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Andreas C. Blank
- Department of Pediatric Cardiology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Aurore Garde
- Centre de Génétique et Centre de Référence Maladies Rares, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD), Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - Bert van der Zwaag
- Department of Medical Genetics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Iris M. De Lange
- Department of Medical Genetics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jacques C. Giltay
- Department of Medical Genetics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Koen L.I. van Gassen
- Department of Medical Genetics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Klaas Koop
- Department of Metabolic Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Cedric S. Asensio
- Department of Biological Sciences, College of Natural Sciences and Mathematics, Denver, CO, USA
| | - Peter M. van Hasselt
- Department of Metabolic Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
3
|
Wen B, Shi S, Long Y, Dang Y, Tian W. PhenoDP: leveraging deep learning for phenotype-based case reporting, disease ranking, and symptom recommendation. Genome Med 2025; 17:67. [PMID: 40481598 PMCID: PMC12143081 DOI: 10.1186/s13073-025-01496-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 05/27/2025] [Indexed: 06/11/2025] Open
Abstract
BACKGROUND Current phenotype-based diagnostic tools often struggle with accurate disease prioritization due to incomplete phenotypic data and the complexity of rare disease presentations. Additionally, they lack the ability to generate patient-centered clinical insights or recommend further symptoms for differential diagnosis. METHODS We developed PhenoDP, a deep learning-based toolkit with three modules: Summarizer, Ranker, and Recommender. The Summarizer fine-tuned a distilled large language model to create clinical summaries from a patient's Human Phenotype Ontology (HPO) terms. The Ranker prioritizes diseases by combining information content-based, phi-based, and semantic-based similarity measures. The Recommender employs contrastive learning to recommend additional HPO terms for enhanced diagnostic accuracy. RESULTS PhenoDP's Summarizer produces more clinically coherent and patient-centered summaries than the general-purpose language model FlanT5. The Ranker achieves state-of-the-art diagnostic performance, consistently outperforming existing phenotype-based methods across both simulated and real-world datasets. The Recommender also outperformed GPT-4o and PhenoTips in improving diagnostic accuracy when its suggested terms were incorporated into different ranking pipelines. CONCLUSIONS PhenoDP enhances Mendelian disease diagnosis through deep learning, offering precise summarization, ranking, and symptom recommendation. Its superior performance and open-source design make it a valuable clinical tool, with potential to accelerate diagnosis and improve patient outcomes. PhenoDP is freely available at https://github.com/TianLab-Bioinfo/PhenoDP .
Collapse
Affiliation(s)
- Baole Wen
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Computational Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Sheng Shi
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Computational Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Yi Long
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yanan Dang
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Computational Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Weidong Tian
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Computational Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China.
- Children's Hospital of Fudan University, Shanghai, 201102, China.
- Children's Hospital of Shandong University, Jinan, Shandong, 250022, China.
| |
Collapse
|
4
|
Øye H, Lundekvam M, Caiella A, Hellesvik M, Arnesen T. Protein N-terminal modifications: molecular machineries and biological implications. Trends Biochem Sci 2025; 50:290-310. [PMID: 39837675 DOI: 10.1016/j.tibs.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025]
Abstract
The majority of eukaryotic proteins undergo N-terminal (Nt) modifications facilitated by various enzymes. These enzymes, which target the initial amino acid of a polypeptide in a sequence-dependent manner, encompass peptidases, transferases, cysteine oxygenases, and ligases. Nt modifications - such as acetylation, fatty acylations, methylation, arginylation, and oxidation - enhance proteome complexity and regulate protein targeting, stability, and complex formation. Modifications at protein N termini are thereby core components of a large number of biological processes, including cell signaling and motility, autophagy regulation, and plant and animal oxygen sensing. Dysregulation of Nt-modifying enzymes is implicated in several human diseases. In this feature review we provide an overview of the various protein Nt modifications occurring either co- or post-translationally, the enzymes involved, and the biological impact.
Collapse
Affiliation(s)
- Hanne Øye
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Malin Lundekvam
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Alessia Caiella
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Surgery, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
5
|
Li X, Han X, Yan H, Zhu H, Wang H, Li D, Tian Y, Su Y. From gut microbiota to host genes: A dual-regulatory pathway driving body weight variation in dagu chicken (Gallus gallus domesticus). Poult Sci 2025; 104:105067. [PMID: 40239312 PMCID: PMC12032334 DOI: 10.1016/j.psj.2025.105067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
During the growth and development of animals, there is an interaction between the gut microbiota and the host genotype. The host genotype can regulate the microbiota, and in turn, the microbiota can influence host gene expression, thereby affecting the animal's production performance. This study explored the dynamic interplay between the gut microbiota and host gene expression in body weight variation in Dagu chicken, an indigenous poultry genetic resource in China. We characterized mucosa-associated microbiota across four gastrointestinal segments (duodenum, jejunum, ileum, cecum) and ileocecal chyme microbiota in 12-week-old Dagu chickens stratified by divergent body weight phenotypes, while simultaneously quantifying region-specific intestinal epithelial transcriptional regulation. 16S rDNA sequencing was employed to identify Firmicutes as the predominant bacterial phylum, with notable differences in the abundance of specific genera (e.g., Ligilactobacillus and Lactobacillus) being observed between the high- or low-body-weight groups. Enhanced biosynthesis pathways were functionally predicted in heavier roosters, whereas reduced nutrient metabolism pathways were contrasted. A conserved functional concordance was observed between regionally predominant differential microbiota and the physiological specialization of corresponding intestinal niches. Functional analysis revealed that the high-body-weight group demonstrated superior capabilities in microbial biosynthesis, whereas the low-body-weight group exhibited enhanced microbial metabolic activity. NAA80 was identified as the common differentially expressed gene across all intestinal epithelial tissues. The Gene Ontology and KEGG pathway analyses revealed elevated nutrient absorption efficiency in the high-body-weight group, while the low-body-weight group demonstrated accelerated cellular renewal rates and shorter cycles. Correlation analysis identified significant associations between gut microbiota and host genes expression profiles, with the majority of correlations being positive. These results suggest a coordinated interaction between microbial communities and host genetic regulation, potentially driving phenotypic differences in body weight performance.
Collapse
Affiliation(s)
- Xiaohan Li
- College of Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China; Liaoning Provincial Key Laboratory of Animal Product Quality and Safety, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China
| | - Xueru Han
- College of Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China; Liaoning Provincial Key Laboratory of Animal Product Quality and Safety, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China
| | - Huan Yan
- College of Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China; Liaoning Provincial Key Laboratory of Animal Product Quality and Safety, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China
| | - Hongyan Zhu
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China
| | - Hongcai Wang
- College of Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China; Liaoning Provincial Key Laboratory of Animal Product Quality and Safety, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China
| | - Desheng Li
- College of Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China; Liaoning Provincial Key Laboratory of Animal Product Quality and Safety, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China
| | - Yumin Tian
- College of Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China; Liaoning Provincial Key Laboratory of Animal Product Quality and Safety, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China
| | - Yuhong Su
- College of Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China; Liaoning Provincial Key Laboratory of Animal Product Quality and Safety, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China.
| |
Collapse
|
6
|
McTiernan N, Kjosås I, Arnesen T. Illuminating the impact of N-terminal acetylation: from protein to physiology. Nat Commun 2025; 16:703. [PMID: 39814713 PMCID: PMC11735805 DOI: 10.1038/s41467-025-55960-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
N-terminal acetylation is a highly abundant protein modification in eukaryotic cells. This modification is catalysed by N-terminal acetyltransferases acting co- or post-translationally. Here, we review the eukaryotic N-terminal acetylation machinery: the enzymes involved and their substrate specificities. We also provide an overview of the impact of N-terminal acetylation, including its effects on protein folding, subcellular targeting, protein complex formation, and protein turnover. In particular, there may be competition between N-terminal acetyltransferases and other enzymes in defining protein fate. At the organismal level, N-terminal acetylation is highly influential, and its impairment was recently linked to cardiac dysfunction and neurodegenerative diseases.
Collapse
Affiliation(s)
- Nina McTiernan
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Ine Kjosås
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway.
- Department of Surgery, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
7
|
Ree R, Lin SJ, Sti Dahl LO, Huang K, Petree C, Varshney GK, Arnesen T. Naa80 is required for actin N-terminal acetylation and normal hearing in zebrafish. Life Sci Alliance 2024; 7:e202402795. [PMID: 39384430 PMCID: PMC11465159 DOI: 10.26508/lsa.202402795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024] Open
Abstract
Actin is a critical component of the eukaryotic cytoskeleton. In animals, actins undergo unique N-terminal processing by dedicated enzymes resulting in mature acidic and acetylated forms. The final step, N-terminal acetylation, is catalyzed by NAA80 in humans. N-terminal acetylation of actin is crucial for maintaining normal cytoskeletal dynamics and cell motility in human cell lines. However, the physiological impact of actin N-terminal acetylation remains to be fully understood. We developed a zebrafish naa80 knockout model and demonstrated that Naa80 acetylates both muscle and non-muscle actins in vivo. Assays with purified Naa80 revealed a preference for acetylating actin N-termini. Zebrafish lacking actin N-terminal acetylation exhibited normal development, morphology, and behavior. In contrast, humans with pathogenic actin variants can present with hypotonia and hearing impairment. Whereas zebrafish lacking naa80 showed no obvious muscle defects or abnormalities, we observed abnormal inner ear development, small otoliths, and impaired response to sound. In conclusion, we have established that zebrafish Naa80 N-terminally acetylates actins in vitro and in vivo, and that actin N-terminal acetylation is essential for normal hearing.
Collapse
Affiliation(s)
- Rasmus Ree
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Sheng-Jia Lin
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | - Kevin Huang
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Cassidy Petree
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Gaurav K Varshney
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
8
|
Šikić K, Peters TMA, Engelke U, Petković Ramadža D, Žigman T, Fumić K, Davidović M, Huljev Frković S, Körmendy T, Martinelli D, Novelli A, Lepri FR, Wevers RA, Barić I. Huppke-Brendel syndrome: Novel cases and a therapeutic trial with ketogenic diet and N-acetylcysteine. JIMD Rep 2024; 65:361-370. [PMID: 39512429 PMCID: PMC11540564 DOI: 10.1002/jmd2.12439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/26/2024] [Accepted: 07/01/2024] [Indexed: 11/15/2024] Open
Abstract
Huppke-Brendel syndrome (HBS) is an autosomal recessive disorder caused by SLC33A1 mutations, a gene coding for the acetyl-CoA transporter-1 (AT-1). So far it has been described in nine pediatric and one adult patient. Therapeutic trials with copper histidinate failed to achieve any clinical improvement. Here, we describe the clinical characteristics of two novel patients, one of them diagnosed by gene analysis and his sib postmortally based on clinical characteristics. We demonstrate a therapeutic trial with acetylation therapy, consisting of N-acetylcysteine and ketogenic diet, in one of them. We provide biochemical data on N-acetylated amino acids in cerebrospinal fluid (CSF) and plasma before and after starting this treatment regimen. Our results indicate that ketogenic diet and N-acetylcysteine do not seem to normalize the concentrations of N-acetylated amino acids in CSF or plasma. The overall metabolic pattern shows a trend toward lowered levels of N-acetylated amino acids in CSF and to a lesser extent in plasma. Although there are some assumptions, the function of AT-1 is still not clear and further studies are needed to better understand mechanisms underlying this complex disorder.
Collapse
Affiliation(s)
- Katarina Šikić
- Department of PediatricsUniversity Hospital Center ZagrebZagrebCroatia
| | - Tessa M. A. Peters
- Donders Institute for Brain, Cognition and BehaviorRadboud University Medical CenterNijmegenThe Netherlands
- Department Human Genetics, Translational Metabolic LaboratoryRadboud University Medical CenterNijmegenThe Netherlands
| | - Udo Engelke
- Donders Institute for Brain, Cognition and BehaviorRadboud University Medical CenterNijmegenThe Netherlands
- Department Human Genetics, Translational Metabolic LaboratoryRadboud University Medical CenterNijmegenThe Netherlands
| | - Danijela Petković Ramadža
- Department of PediatricsUniversity Hospital Center ZagrebZagrebCroatia
- University of Zagreb, School of MedicineZagrebCroatia
| | - Tamara Žigman
- Department of PediatricsUniversity Hospital Center ZagrebZagrebCroatia
- University of Zagreb, School of MedicineZagrebCroatia
| | - Ksenija Fumić
- Department of Laboratory DiagnosticsUniversity Hospital Centre ZagrebZagrebCroatia
| | - Maša Davidović
- Department of PediatricsUniversity Hospital Center ZagrebZagrebCroatia
| | - Sanda Huljev Frković
- Department of PediatricsUniversity Hospital Center ZagrebZagrebCroatia
- University of Zagreb, School of MedicineZagrebCroatia
| | - Tibor Körmendy
- Department of Diagnostic NeuroradiologyUniversity Hospital Centre ZagrebZagrebCroatia
| | - Diego Martinelli
- Division of Metabolic Diseases, Department of Paediatric Subspecialties and Liver‐Kidney TransplantationBambino Gesù Children's HospitalRomeItaly
| | - Antonio Novelli
- Translational Cytogenomics Research UnitBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Francesca Romana Lepri
- Translational Cytogenomics Research UnitBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Ron A. Wevers
- Donders Institute for Brain, Cognition and BehaviorRadboud University Medical CenterNijmegenThe Netherlands
- Department Human Genetics, Translational Metabolic LaboratoryRadboud University Medical CenterNijmegenThe Netherlands
| | - Ivo Barić
- Department of PediatricsUniversity Hospital Center ZagrebZagrebCroatia
- University of Zagreb, School of MedicineZagrebCroatia
| |
Collapse
|
9
|
Schuldt C, Khudayberdiev S, Chandra BD, Linne U, Rust MB. Cyclase-associated protein (CAP) inhibits inverted formin 2 (INF2) to induce dendritic spine maturation. Cell Mol Life Sci 2024; 81:353. [PMID: 39154297 PMCID: PMC11335277 DOI: 10.1007/s00018-024-05393-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/09/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
The morphology of dendritic spines, the postsynaptic compartment of most excitatory synapses, decisively modulates the function of neuronal circuits as also evident from human brain disorders associated with altered spine density or morphology. Actin filaments (F-actin) form the backbone of spines, and a number of actin-binding proteins (ABP) have been implicated in shaping the cytoskeleton in mature spines. Instead, only little is known about the mechanisms that control the reorganization from unbranched F-actin of immature spines to the complex, highly branched cytoskeleton of mature spines. Here, we demonstrate impaired spine maturation in hippocampal neurons upon genetic inactivation of cyclase-associated protein 1 (CAP1) and CAP2, but not of CAP1 or CAP2 alone. We found a similar spine maturation defect upon overactivation of inverted formin 2 (INF2), a nucleator of unbranched F-actin with hitherto unknown synaptic function. While INF2 overactivation failed in altering spine density or morphology in CAP-deficient neurons, INF2 inactivation largely rescued their spine defects. From our data we conclude that CAPs inhibit INF2 to induce spine maturation. Since we previously showed that CAPs promote cofilin1-mediated cytoskeletal remodeling in mature spines, we identified them as a molecular switch that control transition from filopodia-like to mature spines.
Collapse
Affiliation(s)
- Cara Schuldt
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, 35032, Marburg, Germany
| | - Sharof Khudayberdiev
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, 35032, Marburg, Germany
| | - Ben-David Chandra
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany
| | - Uwe Linne
- Department of Chemistry, Philipps-University Marburg, 35032, Marburg, Germany
| | - Marco B Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany.
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, 35032, Marburg, Germany.
| |
Collapse
|
10
|
Zhang C, Jian L, Li X, Guo W, Deng W, Hu X, Li T. Mendelian randomization analysis of the brain, cerebrospinal fluid, and plasma proteome identifies potential drug targets for attention deficit hyperactivity disorder. EBioMedicine 2024; 105:105197. [PMID: 38876042 PMCID: PMC11225168 DOI: 10.1016/j.ebiom.2024.105197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND The need for new therapeutics for attention deficit hyperactivity disorder (ADHD) is evident. Brain, cerebrospinal fluid (CSF), and plasma protein biomarkers with causal genetic evidence could represent potential drug targets. However, a comprehensive screen of the proteome has not yet been conducted. METHODS We employed a three-pronged approach using Mendelian Randomization (MR) and Bayesian colocalization analysis. Firstly, we studied 608 brains, 214 CSF, and 612 plasma proteins as potential causal mediators of ADHD using MR analysis. Secondly, we analysed the consistency of the discovered biomarkers across three distinct subtypes of ADHD: childhood, persistent, and late-diagnosed ADHD. Finally, we extended our analysis to examine the correlation between identified biomarkers and Tourette syndrome and pervasive autism spectrum disorder (ASD), conditions often linked with ADHD. To validate the MR findings, we conducted sensitivity analysis. Additionally, we performed cell type analysis on the human brain to identify risk genes that are notably enriched in various brain cell types. FINDINGS After applying Bonferroni correction, we found that the risk of ADHD was increased by brain proteins GMPPB, NAA80, HYI, CISD2, and HYI, TIE1 in CSF and plasma. Proteins GMPPB, NAA80, ICA1L, CISD2, TIE1, and RMDN1 showed overlapped loci with ADHD risk through Bayesian colocalization. Overexpression of GMPPB protein was linked to an increase in the risk for all three ADHD subtypes. While ICA1L provided protection against both ASD and ADHD, CISD2 increased the probability of both disorders. Cell-specific studies revealed that GMPPB, NAA80, ICA1L, and CISD2 were predominantly present on the surface of excitatory-inhibitory neurons. INTERPRETATION Our comprehensive MR investigation of the brain, CSF, and plasma proteomes revealed seven proteins with causal connections to ADHD. Particularly, GMPPB and TIE1 emerged as intriguing targets for potential ADHD therapy. FUNDING This work was partly funded by the Key R & D Program of Zhejiang (T.L. 2022C03096); the National Natural Science Foundation of China Project (C.Z. 82001413); Postdoctoral Foundation of West China Hospital (C.Z. 2020HXBH163).
Collapse
Affiliation(s)
- Chengcheng Zhang
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lingqi Jian
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaojing Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Wanjun Guo
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Wei Deng
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Xun Hu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Koufaris C, Demetriadou C, Nicolaidou V, Kirmizis A. Bioinformatic Analysis Reveals the Association of Human N-Terminal Acetyltransferase Complexes with Distinct Transcriptional and Post-Transcriptional Processes. Biochem Genet 2024:10.1007/s10528-024-10860-z. [PMID: 38864963 DOI: 10.1007/s10528-024-10860-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
N-terminal acetyltransferases (NAT) are the protein complexes that deposit the abundant N-terminal acetylation (Nt-Ac) on eukaryotic proteins, with seven human complexes currently identified. Despite the increasing recognition of their biological and clinical importance, NAT regulation remains elusive. In this study, we performed a bioinformatic investigation to identify transcriptional and post-transcriptional processes that could be involved in the regulation of human NAT complexes. First, co-expression analysis of independent transcriptomic datasets revealed divergent pathway associations for human NAT, which are potentially connected to their distinct cellular functions. One interesting connection uncovered was the coordinated regulation of the NatA and proteasomal genes in cancer and immune cells, confirmed by analysis of multiple datasets and in isolated primary T cells. Another distinctive association was of NAA40 (NatD) with DNA replication, in cancer and non-cancer settings. The link between NAA40 transcription and DNA replication is potentially mediated through E2F1, which we have experimentally shown to bind the promoter of this NAT. Second, the coupled examination of transcriptomic and proteomic datasets revealed a much greater intra-complex concordance of NAT subunits at the protein compared to the transcript level, indicating the predominance of post-transcriptional processes for achieving their coordination. In agreement with this concept, we also found that the effects of somatic copy number alterations affecting NAT genes are attenuated post-transcriptionally. In conclusion, this study provides novel insights into the regulation of human NAT complexes.
Collapse
Affiliation(s)
- C Koufaris
- Epigenetics and Gene Regulation Laboratory, Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus
| | - C Demetriadou
- Epigenetics and Gene Regulation Laboratory, Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus
| | - V Nicolaidou
- Department of Life Sciences, University of Nicosia, Nicosia, Cyprus
| | - A Kirmizis
- Epigenetics and Gene Regulation Laboratory, Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus.
| |
Collapse
|
12
|
Chelban V, Aksnes H, Maroofian R, LaMonica LC, Seabra L, Siggervåg A, Devic P, Shamseldin HE, Vandrovcova J, Murphy D, Richard AC, Quenez O, Bonnevalle A, Zanetti MN, Kaiyrzhanov R, Salpietro V, Efthymiou S, Schottlaender LV, Morsy H, Scardamaglia A, Tariq A, Pagnamenta AT, Pennavaria A, Krogstad LS, Bekkelund ÅK, Caiella A, Glomnes N, Brønstad KM, Tury S, Moreno De Luca A, Boland-Auge A, Olaso R, Deleuze JF, Anheim M, Cretin B, Vona B, Alajlan F, Abdulwahab F, Battini JL, İpek R, Bauer P, Zifarelli G, Gungor S, Kurul SH, Lochmuller H, Da'as SI, Fakhro KA, Gómez-Pascual A, Botía JA, Wood NW, Horvath R, Ernst AM, Rothman JE, McEntagart M, Crow YJ, Alkuraya FS, Nicolas G, Arnesen T, Houlden H. Biallelic NAA60 variants with impaired n-terminal acetylation capacity cause autosomal recessive primary familial brain calcifications. Nat Commun 2024; 15:2269. [PMID: 38480682 PMCID: PMC10937998 DOI: 10.1038/s41467-024-46354-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/23/2024] [Indexed: 03/17/2024] Open
Abstract
Primary familial brain calcification (PFBC) is characterized by calcium deposition in the brain, causing progressive movement disorders, psychiatric symptoms, and cognitive decline. PFBC is a heterogeneous disorder currently linked to variants in six different genes, but most patients remain genetically undiagnosed. Here, we identify biallelic NAA60 variants in ten individuals from seven families with autosomal recessive PFBC. The NAA60 variants lead to loss-of-function with lack of protein N-terminal (Nt)-acetylation activity. We show that the phosphate importer SLC20A2 is a substrate of NAA60 in vitro. In cells, loss of NAA60 caused reduced surface levels of SLC20A2 and a reduction in extracellular phosphate uptake. This study establishes NAA60 as a causal gene for PFBC, provides a possible biochemical explanation of its disease-causing mechanisms and underscores NAA60-mediated Nt-acetylation of transmembrane proteins as a fundamental process for healthy neurobiological functioning.
Collapse
Affiliation(s)
- Viorica Chelban
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.
- Neurobiology and Medical Genetics Laboratory, "Nicolae Testemitanu" State University of Medicine and Pharmacy, 165, Stefan cel Mare si Sfant Boulevard, MD, 2004, Chisinau, Republic of Moldova.
| | - Henriette Aksnes
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Lauren C LaMonica
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Luis Seabra
- Université Paris Cité, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, INSERM UMR 1163, Paris, France
| | | | - Perrine Devic
- Hospices Civils de Lyon, Groupement Hospitalier Sud, Service d'Explorations Fonctionnelles Neurologiques, Lyon, France
| | - Hanan E Shamseldin
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Jana Vandrovcova
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - David Murphy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Anne-Claire Richard
- Univ Rouen Normandie, Inserm U1245, CHU Rouen, Department of Genetics and CNRMAJ, F-76000, Rouen, France
| | - Olivier Quenez
- Univ Rouen Normandie, Inserm U1245, CHU Rouen, Department of Genetics and CNRMAJ, F-76000, Rouen, France
| | - Antoine Bonnevalle
- Univ Rouen Normandie, Inserm U1245, CHU Rouen, Department of Genetics and CNRMAJ, F-76000, Rouen, France
| | - M Natalia Zanetti
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Rauan Kaiyrzhanov
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- South Kazakhstan Medical Academy Shymkent, Shymkent, 160019, Kazakhstan
| | - Vincenzo Salpietro
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Lucia V Schottlaender
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Juan Domingo Perón 1500, B1629AHJ, Pilar, Argentina
- Instituto de medicina genómica (IMeG), Hospital Universitario Austral, Universidad Austral, Av. Juan Domingo Perón 1500, B1629AHJ, Pilar, Argentina
| | - Heba Morsy
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Annarita Scardamaglia
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Ambreen Tariq
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Alistair T Pagnamenta
- Oxford NIHR Biomedical Research Centre, Wellcome Centre for Human Genetics, Oxford, United Kingdom
| | - Ajia Pennavaria
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Liv S Krogstad
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Åse K Bekkelund
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Alessia Caiella
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Nina Glomnes
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway
| | | | - Sandrine Tury
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Andrés Moreno De Luca
- Department of Radiology, Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA, USA
- Department of Radiology, Neuroradiology Section, Kingston Health Sciences Centre, Queen's University Faculty of Health Sciences, Kingston, Ontario, Canada
| | - Anne Boland-Auge
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057, Evry, France
| | - Robert Olaso
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057, Evry, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057, Evry, France
| | - Mathieu Anheim
- Neurology Department, Strasbourg University Hospital, Strasbourg, France
- Strasbourg Federation of Translational Medicine (FMTS), Strasbourg University, Strasbourg, France
- INSERM-U964; CNRS-UMR7104, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Benjamin Cretin
- Neurology Department, Strasbourg University Hospital, Strasbourg, France
- Strasbourg Federation of Translational Medicine (FMTS), Strasbourg University, Strasbourg, France
- INSERM-U964; CNRS-UMR7104, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Barbara Vona
- Institute of Human Genetics, University Medical Center Göttingen, 37073, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Fahad Alajlan
- Department of Neuroscience Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Jean-Luc Battini
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Rojan İpek
- Paediatric Neurology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Peter Bauer
- Centogene GmbH, Am Strande 7, 18055, Rostock, Germany
| | | | - Serdal Gungor
- Inonu University, Faculty of Medicine, Turgut Ozal Research Center, Department of Pediatrics, Division of Pediatric Neurology, Malatya, Turkey
| | - Semra Hiz Kurul
- Dokuz Eylul University, School of Medicine, Department of Paediatric Neurology, Izmir, Turkey
| | - Hanns Lochmuller
- Children's Hospital of Eastern Ontario Research Institute and Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Sahar I Da'as
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Khalid A Fakhro
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Weill Cornell Medical College, Doha, Qatar
| | - Alicia Gómez-Pascual
- Department of Information and Communications Engineering, University of Murcia, Campus Espinardo, 30100, Murcia, Spain
| | - Juan A Botía
- Department of Information and Communications Engineering, University of Murcia, Campus Espinardo, 30100, Murcia, Spain
| | - Nicholas W Wood
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Neurogenetics Laboratory, The National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Andreas M Ernst
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - James E Rothman
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Meriel McEntagart
- Medical Genetics Department, St George's University Hospitals, London, SWI7 0RE, UK
| | - Yanick J Crow
- Université Paris Cité, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, INSERM UMR 1163, Paris, France
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Gaël Nicolas
- Univ Rouen Normandie, Inserm U1245, CHU Rouen, Department of Genetics and CNRMAJ, F-76000, Rouen, France
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway.
- Department of Surgery, Haukeland University Hospital, Bergen, Norway.
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.
- Neurogenetics Laboratory, The National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK.
| |
Collapse
|
13
|
Varland S, Silva RD, Kjosås I, Faustino A, Bogaert A, Billmann M, Boukhatmi H, Kellen B, Costanzo M, Drazic A, Osberg C, Chan K, Zhang X, Tong AHY, Andreazza S, Lee JJ, Nedyalkova L, Ušaj M, Whitworth AJ, Andrews BJ, Moffat J, Myers CL, Gevaert K, Boone C, Martinho RG, Arnesen T. N-terminal acetylation shields proteins from degradation and promotes age-dependent motility and longevity. Nat Commun 2023; 14:6774. [PMID: 37891180 PMCID: PMC10611716 DOI: 10.1038/s41467-023-42342-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Most eukaryotic proteins are N-terminally acetylated, but the functional impact on a global scale has remained obscure. Using genome-wide CRISPR knockout screens in human cells, we reveal a strong genetic dependency between a major N-terminal acetyltransferase and specific ubiquitin ligases. Biochemical analyses uncover that both the ubiquitin ligase complex UBR4-KCMF1 and the acetyltransferase NatC recognize proteins bearing an unacetylated N-terminal methionine followed by a hydrophobic residue. NatC KO-induced protein degradation and phenotypes are reversed by UBR knockdown, demonstrating the central cellular role of this interplay. We reveal that loss of Drosophila NatC is associated with male sterility, reduced longevity, and age-dependent loss of motility due to developmental muscle defects. Remarkably, muscle-specific overexpression of UbcE2M, one of the proteins targeted for NatC KO-mediated degradation, suppresses defects of NatC deletion. In conclusion, NatC-mediated N-terminal acetylation acts as a protective mechanism against protein degradation, which is relevant for increased longevity and motility.
Collapse
Affiliation(s)
- Sylvia Varland
- Department of Biomedicine, University of Bergen, N-5021, Bergen, Norway.
- Department of Biological Sciences, University of Bergen, N-5006, Bergen, Norway.
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.
| | - Rui Duarte Silva
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139, Faro, Portugal.
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139, Faro, Portugal.
| | - Ine Kjosås
- Department of Biomedicine, University of Bergen, N-5021, Bergen, Norway
| | - Alexandra Faustino
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139, Faro, Portugal
| | - Annelies Bogaert
- VIB-UGent Center for Medical Biotechnology, B-9052, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, B-9052, Ghent, Belgium
| | - Maximilian Billmann
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, D-53127, Bonn, Germany
| | - Hadi Boukhatmi
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes 1, CNRS, UMR6290, 35065, Rennes, France
| | - Barbara Kellen
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139, Faro, Portugal
| | - Michael Costanzo
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Adrian Drazic
- Department of Biomedicine, University of Bergen, N-5021, Bergen, Norway
| | - Camilla Osberg
- Department of Biomedicine, University of Bergen, N-5021, Bergen, Norway
| | - Katherine Chan
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Xiang Zhang
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Amy Hin Yan Tong
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Simonetta Andreazza
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Juliette J Lee
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Lyudmila Nedyalkova
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Matej Ušaj
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | | | - Brenda J Andrews
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Jason Moffat
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Program in Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 1×8, Canada
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, B-9052, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, B-9052, Ghent, Belgium
| | - Charles Boone
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
- RIKEN Centre for Sustainable Resource Science, Wako, Saitama, 351-0106, Japan
| | - Rui Gonçalo Martinho
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139, Faro, Portugal.
- Departmento de Ciências Médicas, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
- iBiMED - Institute of Biomedicine, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, N-5021, Bergen, Norway.
- Department of Biological Sciences, University of Bergen, N-5006, Bergen, Norway.
- Department of Surgery, Haukeland University Hospital, N-5021, Bergen, Norway.
| |
Collapse
|
14
|
Varland S, Brønstad KM, Skinner SJ, Arnesen T. A nonsense variant in the N-terminal acetyltransferase NAA30 may be associated with global developmental delay and tracheal cleft. Am J Med Genet A 2023; 191:2402-2410. [PMID: 37387332 DOI: 10.1002/ajmg.a.63338] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/03/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
Most human proteins are N-terminally acetylated by N-terminal acetyltransferases (NATs), which play crucial roles in many cellular functions. The NatC complex, comprising the catalytic subunit NAA30 and the auxiliary subunits NAA35 and NAA38, is estimated to acetylate up to 20% of the human proteome in a co-translational manner. Several NAT enzymes have been linked to rare genetic diseases, causing developmental delay, intellectual disability, and heart disease. Here, we report a de novo heterozygous NAA30 nonsense variant c.244C>T (p.Q82*) (NM_001011713.2), which was identified by whole exome sequencing in a 5-year-old boy presenting with global development delay, autism spectrum disorder, hypotonia, tracheal cleft, and recurrent respiratory infections. Biochemical studies were performed to assess the functional impact of the premature stop codon on NAA30's catalytic activity. We find that NAA30-Q82* completely disrupts the N-terminal acetyltransferase activity toward a classical NatC substrate using an in vitro acetylation assay. This finding corresponds with structural modeling showing that the truncated NAA30 variant lacks the entire GNAT domain, which is required for catalytic activity. This study suggests that defective NatC-mediated N-terminal acetylation can cause disease, thus expanding the spectrum of NAT variants linked to genetic disease.
Collapse
Affiliation(s)
- Sylvia Varland
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | | | - Stephanie J Skinner
- Department of Pediatrics, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
15
|
Abstract
Most proteins receive an acetyl group at the N terminus while in their nascency as the result of modification by co-translationally acting N-terminal acetyltransferases (NATs). The N-terminal acetyl group can influence several aspects of protein functionality. From studies of NAT-lacking cells, it is evident that several cellular processes are affected by this modification. More recently, an increasing number of genetic cases have demonstrated that N-terminal acetylation has crucial roles in human physiology and pathology. In this Cell Science at a Glance and the accompanying poster, we provide an overview of the human NAT enzymes and their properties, substrate coverage, cellular roles and connections to human disease.
Collapse
Affiliation(s)
- Henriette Aksnes
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Nina McTiernan
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
- Department of Biological Sciences, University of Bergen, 5009 Bergen, Norway
- Department of Surgery, Haukeland University Hospital, 5009 Bergen, Norway
| |
Collapse
|
16
|
Myklebust LM, Baumann M, Støve SI, Foyn H, Arnesen T, Haug BE. Optimized bisubstrate inhibitors for the actin N-terminal acetyltransferase NAA80. Front Chem 2023; 11:1202501. [PMID: 37408560 PMCID: PMC10318143 DOI: 10.3389/fchem.2023.1202501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/08/2023] [Indexed: 07/07/2023] Open
Abstract
Acetylation of protein N-termini is one of the most common protein modifications in the eukaryotic cell and is catalyzed by the N-terminal acetyltransferase family of enzymes. The N-terminal acetyltransferase NAA80 is expressed in the animal kingdom and was recently found to specifically N-terminally acetylate actin, which is the main component of the microfilament system. This unique animal cell actin processing is essential for the maintenance of cell integrity and motility. Actin is the only known substrate of NAA80, thus potent inhibitors of NAA80 could prove as important tool compounds to study the crucial roles of actin and how NAA80 regulates this by N-terminal acetylation. Herein we describe a systematic study toward optimizing the peptide part of a bisubstrate-based NAA80 inhibitor comprising of coenzyme A conjugated onto the N-terminus of a tetrapeptide amide via an acetyl linker. By testing various combinations of Asp and Glu which are found at the N-termini of β- and γ-actin, respectively, CoA-Ac-EDDI-NH2 was identified as the best inhibitor with an IC50 value of 120 nM.
Collapse
Affiliation(s)
| | - Markus Baumann
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Chemistry and Centre for Pharmacy, University of Bergen, Bergen, Norway
| | - Svein I. Støve
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Håvard Foyn
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - Bengt Erik Haug
- Department of Chemistry and Centre for Pharmacy, University of Bergen, Bergen, Norway
| |
Collapse
|
17
|
Lundekvam M, Arnesen T, McTiernan N. Using cell lysates to assess N-terminal acetyltransferase activity and impairment. Methods Enzymol 2023; 686:29-43. [PMID: 37532404 DOI: 10.1016/bs.mie.2023.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The vast majority of eukaryotic proteins are subjected to N-terminal (Nt) acetylation. This reaction is catalyzed by a group of N-terminal acetyltransferases (NATs), which co- or post-translationally transfer an acetyl group from Acetyl coenzyme A to the protein N-terminus. Nt-acetylation plays an important role in many cellular processes, but the functional consequences of this widespread protein modification are still undefined for most proteins. Several in vitro acetylation assays have been developed to study the catalytic activity and substrate specificity of NATs or other acetyltransferases. These assays are valuable tools that can be used to define substrate specificities of yet uncharacterized NAT candidates, assess catalytic impairment of pathogenic NAT variants, and determine the potency of chemical inhibitors. The enzyme input in acetylation assays is typically acetyltransferases that have been recombinantly expressed and purified or immunoprecipitated proteins. In this chapter, we highlight how cell lysates can also be used to assess NAT catalytic activity and impairment when used as input in a previously described isotope-based in vitro Nt-acetylation assay. This is a fast and highly sensitive method that utilizes isotope labeled 14C-Ac-CoA and scintillation to detect the formation of Nt-acetylated peptide products.
Collapse
Affiliation(s)
- Malin Lundekvam
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Biological Sciences, University of Bergen, Bergen, Norway; Department of Surgery, Haukeland University Hospital, Bergen, Norway.
| | - Nina McTiernan
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
18
|
Arnesen T, Aksnes H. Actin finally matures: uncovering machinery and impact. Trends Biochem Sci 2023; 48:414-416. [PMID: 36804256 DOI: 10.1016/j.tibs.2023.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/25/2023] [Accepted: 02/08/2023] [Indexed: 02/19/2023]
Abstract
Actin, one of the most abundant proteins in nature and a key component of the cytoskeleton, undergoes a unique multistep N-terminal (Nt) maturation. In a recent report, Haahr et al. identified actin maturation protease (ACTMAP) as the dedicated actin aminopeptidase and showed that its absence is associated with abnormal muscle physiology.
Collapse
Affiliation(s)
- Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Biological Sciences, University of Bergen, Bergen, Norway; Department of Surgery, Haukeland University Hospital, Bergen, Norway.
| | - Henriette Aksnes
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
19
|
Van Damme P, Osberg C, Jonckheere V, Glomnes N, Gevaert K, Arnesen T, Aksnes H. Expanded in vivo substrate profile of the yeast N-terminal acetyltransferase NatC. J Biol Chem 2023; 299:102824. [PMID: 36567016 PMCID: PMC9867985 DOI: 10.1016/j.jbc.2022.102824] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
N-terminal acetylation is a conserved protein modification among eukaryotes. The yeast Saccharomyces cerevisiae is a valuable model system for studying this modification. The bulk of protein N-terminal acetylation in S. cerevisiae is catalyzed by the N-terminal acetyltransferases NatA, NatB, and NatC. Thus far, proteome-wide identification of the in vivo protein substrates of yeast NatA and NatB has been performed by N-terminomics. Here, we used S. cerevisiae deleted for the NatC catalytic subunit Naa30 and identified 57 yeast NatC substrates by N-terminal combined fractional diagonal chromatography analysis. Interestingly, in addition to the canonical N-termini starting with ML, MI, MF, and MW, yeast NatC substrates also included MY, MK, MM, MA, MV, and MS. However, for some of these substrate types, such as MY, MK, MV, and MS, we also uncovered (residual) non-NatC NAT activity, most likely due to the previously established redundancy between yeast NatC and NatE/Naa50. Thus, we have revealed a complex interplay between different NATs in targeting methionine-starting N-termini in yeast. Furthermore, our results showed that ectopic expression of human NAA30 rescued known NatC phenotypes in naa30Δ yeast, as well as partially restored the yeast NatC Nt-acetylome. Thus, we demonstrate an evolutionary conservation of NatC from yeast to human thereby underpinning future disease models to study pathogenic NAA30 variants. Overall, this work offers increased biochemical and functional insights into NatC-mediated N-terminal acetylation and provides a basis for future work to pinpoint the specific molecular mechanisms that link the lack of NatC-mediated N-terminal acetylation to phenotypes of NatC deletion yeast.
Collapse
Affiliation(s)
- Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
| | - Camilla Osberg
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Veronique Jonckheere
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Nina Glomnes
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Biological Sciences, University of Bergen, Bergen, Norway; Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - Henriette Aksnes
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
20
|
Muffels IJ, Schene IF, Rehmann H, Massink MP, van der Wal MM, Bauder C, Labeur M, Armando NG, Lequin MH, Houben ML, Giltay JC, Haitjema S, Huisman A, Vansenne F, Bluvstein J, Pappas J, Shailee LV, Zarate YA, Mokry M, van Haaften GW, Nieuwenhuis EE, Refojo D, van Wijk F, Fuchs SA, van Hasselt PM. Bi-allelic variants in NAE1 cause intellectual disability, ischiopubic hypoplasia, stress-mediated lymphopenia and neurodegeneration. Am J Hum Genet 2023; 110:146-160. [PMID: 36608681 PMCID: PMC9892777 DOI: 10.1016/j.ajhg.2022.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 12/07/2022] [Indexed: 01/07/2023] Open
Abstract
Neddylation has been implicated in various cellular pathways and in the pathophysiology of numerous diseases. We identified four individuals with bi-allelic variants in NAE1, which encodes the neddylation E1 enzyme. Pathogenicity was supported by decreased NAE1 abundance and overlapping clinical and cellular phenotypes. To delineate how cellular consequences of NAE1 deficiency would lead to the clinical phenotype, we focused primarily on the rarest phenotypic features, based on the assumption that these would best reflect the pathophysiology at stake. Two of the rarest features, neuronal loss and lymphopenia worsening during infections, suggest that NAE1 is required during cellular stress caused by infections to protect against cell death. In support, we found that stressing the proteasome system with MG132-requiring upregulation of neddylation to restore proteasomal function and proteasomal stress-led to increased cell death in fibroblasts of individuals with NAE1 genetic variants. Additionally, we found decreased lymphocyte counts after CD3/CD28 stimulation and decreased NF-κB translocation in individuals with NAE1 variants. The rarest phenotypic feature-delayed closure of the ischiopubic rami-correlated with significant downregulation of RUN2X and SOX9 expression in transcriptomic data of fibroblasts. Both genes are involved in the pathophysiology of ischiopubic hypoplasia. Thus, we show that NAE1 plays a major role in (skeletal) development and cellular homeostasis during stress. Our approach suggests that a focus on rare phenotypic features is able to provide significant pathophysiological insights in diseases caused by mutations in genes with pleiotropic effects.
Collapse
Affiliation(s)
- Irena J.J. Muffels
- Department of Metabolic Diseases, Division Pediatrics, Wilhelmina Children’s Hospital University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, the Netherlands,Center for Translational Immunology (CTI), Division Pediatrics, Wilhelmina Children’s Hospital University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Imre F. Schene
- Department of Metabolic Diseases, Division Pediatrics, Wilhelmina Children’s Hospital University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, the Netherlands
| | - Holger Rehmann
- Department of Energy and Biotechnology, Flensburg University of Applied Sciences, Flensburg, Germany
| | - Maarten P.G. Massink
- Department of Genetics, Division Pediatrics, Wilhelmina Children’s Hospital University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Maria M. van der Wal
- Center for Translational Immunology (CTI), Division Pediatrics, Wilhelmina Children’s Hospital University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Corinna Bauder
- Department of Neuroendocrinology, Max Planck Institute of Psychiatry, Munich, Germany,Institute of Developmental Genetics, Helmholtz Zentrum München, Munich, Germany
| | - Martha Labeur
- Department of Neuroendocrinology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Natalia G. Armando
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Maarten H. Lequin
- Division Imaging and Oncology University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Michiel L. Houben
- Department of General Pediatrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jaques C. Giltay
- Department of Genetics, Division Pediatrics, Wilhelmina Children’s Hospital University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Saskia Haitjema
- Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Albert Huisman
- Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Fleur Vansenne
- Department of Medical Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Judith Bluvstein
- Dravet Center and Comprehensive Epilepsy Center, NYU School of Medicine, New York, NY, USA
| | - John Pappas
- NYU Clinical Genetic Services, NYU Grossman School of Medicine, New York, NY, USA
| | - Lala V. Shailee
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Yuri A. Zarate
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Michal Mokry
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Gijs W. van Haaften
- Department of Genetics, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Edward E.S. Nieuwenhuis
- Department of Biomedical and Life Sciences, University College Roosevelt, Middelburg, the Netherlands
| | - Damian Refojo
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina,Molecular Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Femke van Wijk
- Department of Genetics, Division Pediatrics, Wilhelmina Children’s Hospital University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sabine A. Fuchs
- Department of Metabolic Diseases, Division Pediatrics, Wilhelmina Children’s Hospital University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, the Netherlands
| | - Peter M. van Hasselt
- Department of Metabolic Diseases, Division Pediatrics, Wilhelmina Children’s Hospital University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, the Netherlands,Corresponding author
| |
Collapse
|
21
|
Li J, Kalev-Zylinska ML. Advances in molecular characterization of myeloid proliferations associated with Down syndrome. Front Genet 2022; 13:891214. [PMID: 36035173 PMCID: PMC9399805 DOI: 10.3389/fgene.2022.891214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Myeloid leukemia associated with Down syndrome (ML-DS) has a unique molecular landscape that differs from other subtypes of acute myeloid leukemia. ML-DS is often preceded by a myeloproliferative neoplastic condition called transient abnormal myelopoiesis (TAM) that disrupts megakaryocytic and erythroid differentiation. Over the last two decades, many genetic and epigenetic changes in TAM and ML-DS have been elucidated. These include overexpression of molecules and micro-RNAs located on chromosome 21, GATA1 mutations, and a range of other somatic mutations and chromosomal alterations. In this review, we summarize molecular changes reported in TAM and ML-DS and provide a comprehensive discussion of these findings. Recent advances in the development of CRISPR/Cas9-modified induced pluripotent stem cell-based disease models are also highlighted. However, despite significant progress in this area, we still do not fully understand the pathogenesis of ML-DS, and there are no targeted therapies. Initial diagnosis of ML-DS has a favorable prognosis, but refractory and relapsed disease can be difficult to treat; therapeutic options are limited in Down syndrome children by their stronger sensitivity to the toxic effects of chemotherapy. Because of the rarity of TAM and ML-DS, large-scale multi-center studies would be helpful to advance molecular characterization of these diseases at different stages of development and progression.
Collapse
Affiliation(s)
- Jixia Li
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, China
- *Correspondence: Jixia Li, ; Maggie L. Kalev-Zylinska,
| | - Maggie L. Kalev-Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Haematology Laboratory, Department of Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
- *Correspondence: Jixia Li, ; Maggie L. Kalev-Zylinska,
| |
Collapse
|
22
|
Drazic A, Timmerman E, Kajan U, Marie M, Varland S, Impens F, Gevaert K, Arnesen T. The Final Maturation State of β-actin Involves N-terminal Acetylation by NAA80, not N-terminal Arginylation by ATE1. J Mol Biol 2022; 434:167397. [PMID: 34896361 PMCID: PMC7613935 DOI: 10.1016/j.jmb.2021.167397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/16/2022]
Abstract
Actin is a hallmark protein of the cytoskeleton in eukaryotic cells, affecting a range of cellular functions. Actin dynamics is regulated through a myriad of actin-binding proteins and post-translational modifications. The mammalian actin family consists of six different isoforms, which vary slightly in their N-terminal (Nt) sequences. During and after synthesis, actins undergo an intricate Nt-processing that yields mature actin isoforms. The ubiquitously expressed cytoplasmic β-actin is Nt-acetylated by N-alpha acetyltransferase 80 (NAA80) yielding the Nt-sequence Ac-DDDI-. In addition, β-actin was also reported to be Nt-arginylated by arginyltransferase 1 (ATE1) after further peptidase-mediated processing, yielding RDDI-. To characterize in detail the Nt-processing of actin, we used state-of-the-art proteomics. To estimate the relative cellular levels of Nt-modified proteoforms of actin, we employed NAA80-lacking cells, in which actin was not Nt-acetylated. We found that targeted proteomics is superior to a commercially available antibody previously used to analyze Nt-arginylation of β-actin. Significantly, despite the use of sensitive mass spectrometry-based techniques, we could not confirm the existence of the previously claimed Nt-arginylated β-actin (RDDI-) in either wildtype or NAA80-lacking cells. A very minor level of Nt-arginylation of the initially cleaved β-actin (DDDI-) could be identified, but only in NAA80-lacking cells, not in wildtype cells. We also identified small fractions of cleaved and unmodified β-actin (DDI-) as well as cleaved and Nt-acetylated β-actin (Ac-DDI-). In sum, we show that the multi-step Nt-maturation of β-actin is terminated by NAA80, which Nt-acetylates the exposed Nt-Asp residues, in the virtual absence of previously claimed Nt-arginylation.
Collapse
Affiliation(s)
- Adrian Drazic
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| | - Evy Timmerman
- VIB-UGent Center for Medical Biotechnology, B-9000 Ghent, Belgium; VIB Proteomics Core, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Ulrike Kajan
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| | - Michaël Marie
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| | - Sylvia Varland
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway; Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, B-9000 Ghent, Belgium; VIB Proteomics Core, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway; Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway; Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway.
| |
Collapse
|