1
|
Zhang Y, Guo Y, He Y, You J, Zhang Y, Wang L, Chen S, He X, Yang L, Huang Y, Kang J, Ge Y, Dong Q, Feng J, Cheng W, Yu J. Large-scale proteomic analyses of incident Alzheimer's disease reveal new pathophysiological insights and potential therapeutic targets. Mol Psychiatry 2025; 30:2347-2361. [PMID: 39562718 DOI: 10.1038/s41380-024-02840-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/21/2024]
Abstract
Pathophysiological evolutions in early-stage Alzheimer's disease (AD) are not well understood. We used data of 2923 Olink plasma proteins from 51,296 non-demented middle-aged adults. During a follow-up of 15 years, 689 incident AD cases occurred. Cox-proportional hazard models were applied to identify AD-associated proteins in different time intervals. Through linking to protein categories, changing sequences of protein z-scores can reflect pathophysiological evolutions. Mendelian randomization using blood protein quantitative loci data provided causal evidence for potentially druggable proteins. We identified 48 AD-related proteins, with CEND1, GFAP, NEFL, and SYT1 being top hits in both near-term (HR:1.15-1.77; P:9.11 × 10-65-2.78 × 10-6) and long-term AD risk (HR:1.20-1.54; P:2.43 × 10-21-3.95 × 10-6). These four proteins increased 15 years before AD diagnosis and progressively escalated, indicating early and sustained dysfunction in synapse and neurons. Proteins related to extracellular matrix organization, apoptosis, innate immunity, coagulation, and lipid homeostasis showed early disturbances, followed by malfunctions in metabolism, adaptive immunity, and final synaptic and neuronal loss. Combining CEND1, GFAP, NEFL, and SYT1 with demographics generated desirable predictions for 10-year (AUC = 0.901) and over-10-year AD (AUC = 0.864), comparable to full model. Mendelian randomization supports potential genetic link between CEND1, SYT1, and AD as outcome. Our findings highlight the importance of exploring the pathophysiological evolutions in early stages of AD, which is essential for the development of early biomarkers and precision therapeutics.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Guo
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu He
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia You
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - YaRu Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - LinBo Wang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - ShiDong Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - XiaoYu He
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liu Yang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - YuYuan Huang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - JuJiao Kang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - YiJun Ge
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - JianFeng Feng
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China.
| | - JinTai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
de Geus MB, Nairn AC, Arnold SE, Carlyle BC. A compilation of reported alterations in the cerebrospinal fluid proteome in Alzheimer's disease. Brain Commun 2025; 7:fcaf202. [PMID: 40491829 PMCID: PMC12146149 DOI: 10.1093/braincomms/fcaf202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 05/01/2025] [Accepted: 05/22/2025] [Indexed: 06/11/2025] Open
Abstract
Alzheimer's disease is a multifaceted neurodegenerative disorder, with diverse underlying pathophysiological processes extending beyond amyloid-β and tau accumulation. The heterogeneity of Alzheimer's disease necessitates the identification of a broad array of biomarkers that capture the diverse mechanisms contributing to disease onset and progression. In this study, we systematically compiled and analysed cerebrospinal fluid proteomics data from omics studies utilizing mass spectrometry, Olink, or SomaScan platforms. Systematic literature searches for each platform revealed a total of 264 studies. From this, a set of 18 studies were selected based on sample size, number of markers analysed, and open data availability. We found a total of 1,448 differentially expressed proteins between Alzheimer's disease and amyloid negative controls across these datasets, with 635 being found in more than one study. A 'top' set of 61 differentially expressed proteins were consistently reported in at least six studies. Clustering and functional enrichment analysis of the top differentially expressed proteins indicated involvement in metabolic regulation, glutathione metabolism and proteins of the 14-3-3 family, reflecting importance of reactive oxygen species (ROS) response. Synaptic signalling processes were found to generally be downregulated. We further integrated the top differentially expressed proteins with results from a study on familial Alzheimer's disease cerebrospinal fluid to assess at which stage of disease progression these proteins change, highlighting markers shared between sporadic and familial Alzheimer's disease datasets. Lastly, we examine the overlap of the top differentially expressed proteins between cerebrospinal fluid and brain tissue using a publicly available database. This analysis provides a comprehensive overview of the Alzheimer's disease cerebrospinal fluid proteomic landscape, indicating changes in key pathways and cellular processes associated with Alzheimer's disease pathology. By integrating data from different platforms, we highlight reproducible protein changes that may serve as promising candidates for further biomarker research aimed at improving patient stratification, tracking disease progression, and assessing therapeutic interventions.
Collapse
Affiliation(s)
- Matthijs B de Geus
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Cell & Chemical Biology, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Angus C Nairn
- Department of Psychiatry, Yale University, New Haven, CT 06511, USA
| | - Steven E Arnold
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Becky C Carlyle
- Department of Physiology Anatomy and Genetics, Oxford University, Oxford OX1 3PT, UK
- Kavli Institute for Nanoscience Discovery, Oxford OX1 3QU, UK
| |
Collapse
|
3
|
Han X, Zhang Y, Petrosky JN, Bald S, Sherva RM, Labadorf A, Cherry JD, Chung J, Farrell K, Abdolmohammadi B, Durape S, Martin BM, Palmisano JN, Farrell JJ, Alvarez VE, Huber BR, Dwyer B, Daneshvar DH, Dams-O'Connor K, Jun GR, Lunetta KL, Goldstein LE, Katz DI, Cantu RC, Shenton ME, Cummings JL, Reiman EM, Stern RA, Alosco ML, Tripodis Y, Farrer LA, Stein TD, Crary JF, McKee AC, Mez J. A structural haplotype in the 17q21.31 MAPT region is associated with increased risk for chronic traumatic encephalopathy endophenotypes. Cell Rep Med 2025; 6:102084. [PMID: 40239644 DOI: 10.1016/j.xcrm.2025.102084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/02/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025]
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative tauopathy associated with repetitive head impact (RHI) exposure. Genetic variation in the 17q21.31 region, containing microtubule-associated protein tau (MAPT), has been implicated in tauopathies but has not been investigated in CTE. The region includes a megabase-long inversion (H1/H2) and copy-number variations, including α, β, and γ segments, which can be characterized as nine segregating structural haplotypes. We leveraged array SNP data and a reference panel across the 17q21.31 region to impute structural haplotypes and test their association with CTE endophenotypes in 447 European ancestry brain donors with RHI exposure. The H1β1γ1 haplotype was significantly associated with dementia and semi-quantitative tau burden in multiple cortical and medial temporal regions commonly affected in CTE. H1β1γ1 differential expression analyses in dorsolateral frontal cortex implicated cis-acting genes and inflammatory pathways. Taken together, the H1β1γ1 haplotype may help explain CTE heterogeneity among those with similar RHI exposure.
Collapse
Affiliation(s)
- Xudong Han
- Bioinformatics Graduate Program, Boston University, Boston, MA, USA; Section of Biomedical Genetics, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yichi Zhang
- Bioinformatics Graduate Program, Boston University, Boston, MA, USA
| | | | - Sarah Bald
- Bioinformatics Graduate Program, Boston University, Boston, MA, USA
| | - Richard M Sherva
- Section of Biomedical Genetics, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Adam Labadorf
- Bioinformatics Graduate Program, Boston University, Boston, MA, USA; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston VA Healthcare System, Boston, MA, USA
| | - Jonathan D Cherry
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston VA Healthcare System, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jaeyoon Chung
- Section of Biomedical Genetics, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kurt Farrell
- Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Neuropathology Brain Bank & Research CoRE, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bobak Abdolmohammadi
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Shruti Durape
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA
| | - Brett M Martin
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Joseph N Palmisano
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - John J Farrell
- Section of Biomedical Genetics, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Victor E Alvarez
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston VA Healthcare System, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Bedford VA Healthcare System, Bedford, MA, USA
| | - Bertrand R Huber
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston VA Healthcare System, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Bedford VA Healthcare System, Bedford, MA, USA
| | - Brigid Dwyer
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Daniel H Daneshvar
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Kristen Dams-O'Connor
- Department of Rehabilitation and Human Performance, Brain Injury Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gyungah R Jun
- Section of Biomedical Genetics, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA; Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Lee E Goldstein
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Departments of Biomedical, Electrical & Computer Engineering, Boston University College of Engineering, Boston, MA, USA; Departments of Radiology and Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Douglas I Katz
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Robert C Cantu
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Department of Neurosurgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Department of Neurosurgery, Emerson Hospital, Concord, MA, USA
| | - Martha E Shenton
- Boston VA Healthcare System, Boston, MA, USA; Psychiatry Neuroimaging Laboratory, Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Eric M Reiman
- Banner Alzheimer's Institute, University of Arizona, Arizona State University, Translational Genomics Research Institute, and Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Robert A Stern
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Department of Neurosurgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Michael L Alosco
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Lindsay A Farrer
- Section of Biomedical Genetics, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA; Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston VA Healthcare System, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Bedford VA Healthcare System, Bedford, MA, USA
| | - John F Crary
- Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Neuropathology Brain Bank & Research CoRE, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ann C McKee
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston VA Healthcare System, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Bedford VA Healthcare System, Bedford, MA, USA
| | - Jesse Mez
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA.
| |
Collapse
|
4
|
Murphy KB, Ye Y, Tsalenchuk M, Nott A, Marzi SJ. CHAS infers cell type-specific signatures in bulk brain histone acetylation studies of neurological and psychiatric disorders. CELL REPORTS METHODS 2025; 5:101032. [PMID: 40300607 DOI: 10.1016/j.crmeth.2025.101032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/07/2025] [Accepted: 04/04/2025] [Indexed: 05/01/2025]
Abstract
Epigenomic profiling of the brain has largely been done on bulk tissues, limiting our understanding of cell type-specific epigenetic changes in disease states. Here, we introduce cell type-specific histone acetylation score (CHAS), a computational tool for inferring cell type-specific signatures in bulk brain H3K27ac profiles. We applied CHAS to >300 H3K27ac chromatin immunoprecipitation sequencing samples from studies of Alzheimer's disease, Parkinson's disease, autism spectrum disorder, schizophrenia, and bipolar disorder in bulk postmortem brain tissue. In addition to recapitulating known disease-associated shifts in cellular proportions, we identified cell type-specific biological insights into brain-disorder-associated regulatory variation. In most cases, genetic risk and epigenetic dysregulation targeted different cell types, suggesting independent mechanisms. For instance, genetic risk of Alzheimer's disease was exclusively enriched within microglia, while epigenetic dysregulation predominantly fell within oligodendrocyte-specific H3K27ac regions. In addition, reanalysis of the original datasets using CHAS enabled identification of biological pathways associated with each neurological and psychiatric disorder at cellular resolution.
Collapse
Affiliation(s)
- Kitty B Murphy
- UK Dementia Research Institute at King's College London, London, UK; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Brain Sciences, Imperial College London, London, UK.
| | - Yuqian Ye
- Department of Brain Sciences, Imperial College London, London, UK; UK Dementia Research Institute at Imperial College London, London, UK
| | - Maria Tsalenchuk
- UK Dementia Research Institute at King's College London, London, UK; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Brain Sciences, Imperial College London, London, UK
| | - Alexi Nott
- Department of Brain Sciences, Imperial College London, London, UK; UK Dementia Research Institute at Imperial College London, London, UK
| | - Sarah J Marzi
- UK Dementia Research Institute at King's College London, London, UK; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Brain Sciences, Imperial College London, London, UK.
| |
Collapse
|
5
|
Fulcher JM, Ives AN, Tasaki S, Kelly SS, Williams SM, Fillmore TL, Zhou M, Moore RJ, Qian WJ, Paša-Tolić L, Yu L, Oveisgharan S, Bennett DA, De Jager PL, Petyuk VA. Discovery of Proteoforms Associated with Alzheimer's Disease Through Quantitative Top-Down Proteomics. Mol Cell Proteomics 2025:100983. [PMID: 40334744 DOI: 10.1016/j.mcpro.2025.100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/09/2025] Open
Abstract
The complex nature of Alzheimer's disease (AD) and its heterogenous clinical presentation has prompted numerous large-scale -omic analyses aimed at providing a global understanding of the pathophysiological processes involved. AD involves isoforms, proteolytic products, and post-translationally modified proteins such as amyloid beta (Aβ) and microtuble-associated protein tau. Top-down proteomics (TDP) directly measures these species, and thus, offers a comprehensive view of pathologically relevant proteoforms that are difficult to analyze using traditional proteomic techniques. Here, we broadly explored associations between proteoforms and clinicopathological traits of AD by deploying a quantitative TDP approach across frontal cortex of 103 subjects selected from the ROS and MAP cohorts. The approach identified 1,213 proteins and 11,782 proteoforms, of which 154 proteoforms had at least one significant association with a clinicopathological phenotype. One important finding included identifying Aβ C-terminal truncation state as the key property for differential association between amyloid plaques and cerebral amyloid angiopathy (CAA). Furthermore, various N-terminally truncated forms of Aβ had noticeably stronger association with amyloid plaques and global cognitive function. Additionally, we discovered six VGF neuropeptides that were positively associated with cognitive function independent of pathological burden. The database of brain cortex proteoforms provides a valuable context for functional characterization of the proteins involved in Alzheimer's disease and other late-onset brain pathologies.
Collapse
Affiliation(s)
- James M Fulcher
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ashley N Ives
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Shinya Tasaki
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center; Chicago, IL, USA
| | - Shane S Kelly
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Sarah M Williams
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Thomas L Fillmore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Mowei Zhou
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center; Chicago, IL, USA
| | - Shahram Oveisgharan
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center; Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center; Chicago, IL, USA
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology & Taub Institute for Research on Alzheimer's disease and the Aging Brain, Columbia University Medical Center; New York, NY, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
6
|
Selten M, Bernard C, Mukherjee D, Hamid F, Hanusz-Godoy A, Oozeer F, Zimmer C, Marín O. Regulation of PV interneuron plasticity by neuropeptide-encoding genes. Nature 2025:10.1038/s41586-025-08933-z. [PMID: 40307547 DOI: 10.1038/s41586-025-08933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/24/2025] [Indexed: 05/02/2025]
Abstract
Neuronal activity must be regulated in a narrow permissive band for the proper operation of neural networks. Changes in synaptic connectivity and network activity-for example, during learning-might disturb this balance, eliciting compensatory mechanisms to maintain network function1-3. In the neocortex, excitatory pyramidal cells and inhibitory interneurons exhibit robust forms of stabilizing plasticity. However, although neuronal plasticity has been thoroughly studied in pyramidal cells4-8, little is known about how interneurons adapt to persistent changes in their activity. Here we describe a critical cellular process through which cortical parvalbumin-expressing (PV+) interneurons adapt to changes in their activity levels. We found that changes in the activity of individual PV+ interneurons drive bidirectional compensatory adjustments of the number and strength of inhibitory synapses received by these cells, specifically from other PV+ interneurons. High-throughput profiling of ribosome-associated mRNA revealed that increasing the activity of a PV+ interneuron leads to upregulation of two genes encoding multiple secreted neuropeptides: Vgf and Scg2. Functional experiments demonstrated that VGF is critically required for the activity-dependent scaling of inhibitory PV+ synapses onto PV+ interneurons. Our findings reveal an instructive role for neuropeptide-encoding genes in regulating synaptic connections among PV+ interneurons in the adult mouse neocortex.
Collapse
Affiliation(s)
- Martijn Selten
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Clémence Bernard
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Diptendu Mukherjee
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Fursham Hamid
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Alicia Hanusz-Godoy
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Fazal Oozeer
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Christoph Zimmer
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| |
Collapse
|
7
|
Feng Y, Wigg KG, Barr CL. Overexpression of OTX2 in human neural cells links depression risk genes. Transl Psychiatry 2025; 15:141. [PMID: 40216752 PMCID: PMC11992016 DOI: 10.1038/s41398-025-03320-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/21/2025] [Accepted: 03/14/2025] [Indexed: 04/14/2025] Open
Abstract
Genome wide association studies (GWAS) have implicated the OTX2 (Orthodenticle homeobox 2) gene locus in major depressive disorders (MDD) as well as genetically correlated traits. Of the genes identified by MDD GWAS, the gene for the transcription factor OTX2 stands out as it is responsible for both opening and closing of critical and sensitive brain periods. These are developmental periods where the brain is more sensitive to environmental input and are critical for normal brain development. Evidence suggests that the brain may also be more sensitive to negative environmental impact during sensitive periods. Critically, human and animal models both specifically implicate OTX2 gene expression in the response to stress and risk for depression. Based on the genetic findings, and the potential role of OTX2 as a mediator of environmental risk for depression, we identified genes regulated by OTX2 in human neural precursor cells (NPCs) using CRISPR activation (CRISPRa) to increase expression. We identified 17 significantly differentially expressed genes, including OTX2 which was increased 4-fold. In addition to OTX2, 4 genes of the 17 have been directly implicated in depression/depressive behaviours from human and animal studies (GPER1, VGF, TAFA5, P3H2). Additional differentially expressed genes are involved in processes implicated in depression (e.g. neurogenesis, neuroplasticity, response to stress). These novel findings link OTX2 expression with genes previously implicated in depression from human and animal studies, suggesting OTX2 as a master regulator of depression risk.
Collapse
Affiliation(s)
- Yu Feng
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Karen G Wigg
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Cathy L Barr
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON, Canada.
- Departments of Psychiatry and Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Morderer D, Wren MC, Liu F, Kouri N, Maistrenko A, Khalil B, Pobitzer N, Salemi MR, Phinney BS, Bu G, Zhao N, Dickson DW, Murray ME, Rossoll W. Probe-dependent Proximity Profiling (ProPPr) Uncovers Similarities and Differences in Phospho-Tau-Associated Proteomes Between Tauopathies. Mol Neurodegener 2025; 20:32. [PMID: 40082954 PMCID: PMC11905455 DOI: 10.1186/s13024-025-00817-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/25/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Tauopathies represent a diverse group of neurodegenerative disorders characterized by the abnormal aggregation of the microtubule-associated protein tau. Despite extensive research, the mechanisms underlying the diversity of neuronal and glial tau pathology in different tauopathies are poorly understood. While there is a growing understanding of tauopathy-specific differences in tau isoforms and fibrillar structures, the specific composition of heterogenous tau lesions remains unknown. Here we study the protein composition of tau aggregates in four major tauopathies: Alzheimer's disease (AD), corticobasal degeneration (CBD), Pick's disease (PiD), and progressive supranuclear palsy (PSP). METHODS We developed an approach for in situ proximity labeling and isolation of aggregate-associated proteins using glass slides with formalin-fixed paraffin-embedded (FFPE) human postmortem brain tissue, termed Probe-dependent Proximity Profiling (ProPPr). We used ProPPr for the analysis of proteomes associated with AT8-positive cellular lesions from frontal cortices. Isolated proximity proteomes were analyzed by data-independent acquisition mass spectrometry. Co-immunofluorescence staining and quantitative data analysis for selected proteins in human brain tissue was performed to further investigate associations with diverse tau pathologies. RESULTS Proteomics data analysis identified numerous common and tauopathy-specific proteins associated with phospho-tau aggregates. Extensive validations of candidates through quantitative immunofluorescence imaging of distinct aggregates across disease cases demonstrate successful implementation of ProPPr for unbiased discovery of aggregate-associated proteins in in human brain tissue. Our results reveal the association of retromer complex component vacuolar protein sorting-associated protein 35 (VPS35) and lysosome-associated membrane glycoprotein 2 (LAMP2) with specific types of phospho-tau lesions in tauopathies. Furthermore, we discovered a disease-specific association of certain proteins with distinct pathological lesions, including glycogen synthase kinase alpha (GSK3α), ferritin light chain (FTL), and the neuropeptide precursor VGF. Notably, the identification of FTL-positive microglia in CBD astrocytic plaques indicate their potential role in the pathogenesis of these lesions. CONCLUSIONS Our findings demonstrate the suitability of the ProPPr approach in FFPE brain tissue for unbiased discovery of local proteomes that provide valuable insights into the underlying proteomic landscape of tauopathies, shedding light on the molecular mechanisms underlying tau pathology. This first comprehensive characterization of tau-associated proteomes in a range of distinct tauopathies enhances our understanding of disease heterogeneity and mechanisms, informing strategies for the development of diagnostic biomarkers and targeted therapies.
Collapse
Affiliation(s)
- Dmytro Morderer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Melissa C Wren
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Feilin Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Naomi Kouri
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Bilal Khalil
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Nora Pobitzer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Brett S Phinney
- Proteomics Core, University of California Davis, Davis, CA, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Present address: Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | |
Collapse
|
9
|
de Geus MB, Wu CY, Dodge H, Leslie SN, Wang W, Lam TT, Kahle KT, Chan D, Kivisäkk P, Nairn AC, Arnold SE, Carlyle BC. Unbiased CSF Proteomics in Patients With Idiopathic Normal Pressure Hydrocephalus to Identify Molecular Signatures and Candidate Biomarkers. Neurology 2025; 104:e213375. [PMID: 39951680 PMCID: PMC11837848 DOI: 10.1212/wnl.0000000000213375] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/10/2024] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Idiopathic normal pressure hydrocephalus (iNPH) is a reversible neurologic disorder that remains poorly understood. Accurate differential diagnosis of iNPH and Alzheimer disease (AD) is complicated by overlapping clinical manifestations. Beyond neuroimaging, there are currently no biomarkers available for iNPH leading to frequent misdiagnosis, and proteomic studies into iNPH have been limited by low sample sizes and inadequate analytical depth. In this study, we report the results of a large-scale proteomic analysis of CSF from patients with iNPH to elucidate pathogenesis and identify potential disease biomarkers. METHODS CSF samples were collected through lumbar puncture during diagnostic visits to the Mass General Brigham neurology clinic. Samples were analyzed using mass spectrometry. Differential expression of proteins was studied using linear regression models. Results were integrated with publicly available single-nucleus transcriptomic data to explore potential cellular origins. Biological process enrichment was analyzed using gene-set enrichment analyses. To identify potential diagnostic biomarkers, decision tree-based machine learning algorithms were applied. RESULTS Participants were classified as cognitively unimpaired (N = 53, mean age: 66.5 years, 58.5% female), AD (N = 124, mean age: 71.2 years, 46.0% female), or iNPH (N = 44, mean age: 74.6 years, 34.1% female) based on clinical diagnosis and AD biomarker status. Gene Ontology analyses indicated upregulation of the immune system and coagulation processes and downregulation of neuronal signaling processes in iNPH. Differential expression analysis showed a general downregulation of proteins in iNPH. Integration of differentially expressed proteins with transcriptomic data indicated that changes likely originated from neuronal, endothelial, and glial origins. Using machine learning algorithms, a panel of 12 markers with high diagnostic potential for iNPH were identified, which were not all detected using univariate linear regression models. These markers spanned the various molecular processes found to be affected in iNPH, such as LTBP2, neuronal pentraxin receptor (NPTXR), and coagulation factor 5. DISCUSSION Leveraging the etiologic insights from a typical neurologic clinical cohort, our results indicate that processes of immune response, coagulation, and neuronal signaling are affected in iNPH. We highlight specific markers of potential diagnostic interest. Together, our findings provide novel insights into the pathophysiology of iNPH and may facilitate improved diagnosis of this poorly understood disorder.
Collapse
Affiliation(s)
- Matthijs B de Geus
- Department of Neurology, Massachusetts General Hospital, Boston, MA
- Leiden University Medical Center, the Netherlands
| | - Chao-Yi Wu
- Department of Neurology, Massachusetts General Hospital, Boston, MA
- Harvard University, Boston, MA
| | - Hiroko Dodge
- Department of Neurology, Massachusetts General Hospital, Boston, MA
- Harvard University, Boston, MA
| | - Shannon N Leslie
- Department of Psychiatry, Yale University, New Haven, CT
- Janssen Pharmaceuticals, San Diego, CA
| | - Weiwei Wang
- W.M. Keck Biotechnology Resource Laboratory, Yale School of Medicine, New Haven, CT
| | - TuKiet T Lam
- W.M. Keck Biotechnology Resource Laboratory, Yale School of Medicine, New Haven, CT
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA
- Broad Institute of Harvard and MIT, Boston, MA
- Division of Genetics and Genomics, Boston Children's Hospital, MA
- Department of Neurosurgery, Yale University, New Haven, CT
| | - Diane Chan
- Department of Neurology, Massachusetts General Hospital, Boston, MA
- Picower Institute of Learning and Memory, Massachusetts Institute of Technology, Boston, MA
| | - Pia Kivisäkk
- Department of Neurology, Massachusetts General Hospital, Boston, MA
| | - Angus C Nairn
- Department of Psychiatry, Yale University, New Haven, CT
| | - Steven E Arnold
- Department of Neurology, Massachusetts General Hospital, Boston, MA
| | - Becky C Carlyle
- Department of Neurology, Massachusetts General Hospital, Boston, MA
- Department of Physiology Anatomy and Genetics, Oxford University, United Kingdom; and
- Kavli Institute for Nanoscience Discovery, Oxford, United Kingdom
| |
Collapse
|
10
|
Zeballos L, García-Peral C, Ledesma MM, Auzmendi J, Lazarowski A, López DE. Changes in the Proteomic Profile After Audiogenic Kindling in the Inferior Colliculus of the GASH/Sal Model of Epilepsy. Int J Mol Sci 2025; 26:2331. [PMID: 40076950 PMCID: PMC11900993 DOI: 10.3390/ijms26052331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
Epilepsy is a multifaceted neurological disorder characterized by recurrent seizures and associated with molecular and immune alterations in key brain regions. The GASH/Sal (Genetic Audiogenic Seizure Hamster, Salamanca), a genetic model for audiogenic epilepsy, provides a powerful tool to study seizure mechanisms and resistance in predisposed individuals. This study investigates the proteomic and immune responses triggered by audiogenic kindling in the inferior colliculus, comparing non-responder animals exhibiting reduced seizure severity following repeated stimulation versus GASH/Sal naïve hamsters. To assess auditory pathway functionality, Auditory Brainstem Responses (ABRs) were recorded, revealing reduced neuronal activity in the auditory nerve of non-responders, while central auditory processing remained unaffected. Cytokine profiling demonstrated increased levels of proinflammatory markers, including IL-1 alpha (Interleukin-1 alpha), IL-10 (Interleukin-10), and TGF-beta (Transforming Growth Factor beta), alongside decreased IGF-1 (Insulin-like Growth Factor 1) levels, highlighting systemic inflammation and its interplay with neuroprotection. Building on these findings, a proteomic analysis identified 159 differentially expressed proteins (DEPs). Additionally, bioinformatic approaches, including Gene Set Enrichment Analysis (GSEA) and Weighted Gene Co-expression Network Analysis (WGCNA), revealed disrupted pathways related to metabolic and inflammatory epileptic processes and a module potentially linked to a rise in the threshold of seizures, respectively. Differentially expressed genes, identified through bioinformatic and statistical analyses, were validated by RT-qPCR. This confirmed the upregulation of six genes (Gpc1-Glypican-1; Sdc3-Syndecan-3; Vgf-Nerve Growth Factor Inducible; Cpne5-Copine 5; Agap2-Arf-GAP with GTPase domain, ANK repeat, and PH domain-containing protein 2; and Dpp8-Dipeptidyl Peptidase 8) and the downregulation of two (Ralb-RAS-like proto-oncogene B-and S100b-S100 calcium-binding protein B), aligning with reduced seizure severity. This study may uncover key proteomic and immune mechanisms underlying seizure susceptibility, providing possible novel therapeutic targets for refractory epilepsy.
Collapse
Affiliation(s)
- Laura Zeballos
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, 37007 Salamanca, Spain; (L.Z.); (C.G.-P.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Carlos García-Peral
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, 37007 Salamanca, Spain; (L.Z.); (C.G.-P.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Martín M. Ledesma
- Unidad de Conocimiento Traslacional, Hospital de Alta Complejidad del Bicentenario Esteban Echeverría, Monte Grande B1842, Argentina;
- Hospital de Alta Complejidad en Red El Cruce Dr. N. C. Kirchner SAMIC, Florencio Varela B1888, Argentina
| | - Jerónimo Auzmendi
- Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1417, Argentina; (J.A.); (A.L.)
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz M2290, Argentina
| | - Alberto Lazarowski
- Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1417, Argentina; (J.A.); (A.L.)
| | - Dolores E. López
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, 37007 Salamanca, Spain; (L.Z.); (C.G.-P.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
11
|
Rademacher K, Doric Z, Haddad D, Mamaligas A, Liao SC, Creed RB, Kano K, Chatterton Z, Fu Y, Garcia JH, Vance V, Sei Y, Kreitzer A, Halliday GM, Nelson AB, Margolis EB, Nakamura K. Chronic hyperactivation of midbrain dopamine neurons causes preferential dopamine neuron degeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.05.588321. [PMID: 38645054 PMCID: PMC11030348 DOI: 10.1101/2024.04.05.588321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Parkinson's disease (PD) is characterized by the death of substantia nigra (SNc) dopamine (DA) neurons, but the pathophysiological mechanisms that precede and drive their death remain unknown. The activity of DA neurons is likely altered in PD, but we understand little about if or how chronic changes in activity may contribute to degeneration. To address this question, we developed a chemogenetic (DREADD) mouse model to chronically increase DA neuron activity, and confirmed this increase using ex vivo electrophysiology. Chronic hyperactivation of DA neurons resulted in prolonged increases in locomotor activity during the light cycle and decreases during the dark cycle, consistent with chronic changes in DA release and circadian disturbances. We also observed early, preferential degeneration of SNc projections, recapitulating the PD hallmarks of selective vulnerability of SNc axons and the comparative resilience of ventral tegmental area axons. This was followed by eventual loss of midbrain DA neurons. Continuous DREADD activation resulted in a sustained increase in baseline calcium levels, supporting a role for increased calcium in the neurodegeneration process. Finally, spatial transcriptomics from DREADD mice examining midbrain DA neurons and striatal targets, and cross-validation with human patient samples, provided insights into potential mechanisms of hyperactivity-induced toxicity and PD. Our results thus reveal the preferential vulnerability of SNc DA neurons to increased neural activity, and support a potential role for increased neural activity in driving degeneration in PD.
Collapse
Affiliation(s)
- Katerina Rademacher
- Gladstone Institute for Neurological Disease, Gladstone Institutes, San Francisco, CA
- Graduate Program in Neuroscience, University of California San Francisco, San Francisco , CA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Zak Doric
- Gladstone Institute for Neurological Disease, Gladstone Institutes, San Francisco, CA
- Graduate Program in Neuroscience, University of California San Francisco, San Francisco , CA
| | - Dominik Haddad
- Gladstone Institute for Neurological Disease, Gladstone Institutes, San Francisco, CA
| | - Aphroditi Mamaligas
- Gladstone Institute for Neurological Disease, Gladstone Institutes, San Francisco, CA
| | - Szu-Chi Liao
- Gladstone Institute for Neurological Disease, Gladstone Institutes, San Francisco, CA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA
- Endocrinology Graduate Program, University of California Berkeley, Berkeley, CA
| | - Rose B. Creed
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA
| | - Kohei Kano
- Gladstone Institute for Neurological Disease, Gladstone Institutes, San Francisco, CA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Zac Chatterton
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
- Brain and Mind Centre, Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - YuHong Fu
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
- Brain and Mind Centre, Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Joseph H. Garcia
- Gladstone Institute for Neurological Disease, Gladstone Institutes, San Francisco, CA
- School of Medicine, University of California, San Francisco, California, USA
| | - Victoria Vance
- Gladstone Institute for Neurological Disease, Gladstone Institutes, San Francisco, CA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
- College of Science, Northeastern University, Boston, MA
| | - Yoshitaka Sei
- Gladstone Institute for Neurological Disease, Gladstone Institutes, San Francisco, CA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Anatol Kreitzer
- Gladstone Institute for Neurological Disease, Gladstone Institutes, San Francisco, CA
- Graduate Program in Neuroscience, University of California San Francisco, San Francisco , CA
- UCSF Department of Physiology, University of California San Francisco, CA
| | - Glenda M Halliday
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
- Brain and Mind Centre, Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Alexandra B. Nelson
- Graduate Program in Neuroscience, University of California San Francisco, San Francisco , CA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA
| | - Elyssa B. Margolis
- Graduate Program in Neuroscience, University of California San Francisco, San Francisco , CA
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA
| | - Ken Nakamura
- Gladstone Institute for Neurological Disease, Gladstone Institutes, San Francisco, CA
- Graduate Program in Neuroscience, University of California San Francisco, San Francisco , CA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA
- Graduate Program in Biomedical Sciences, University of California San Francisco, San Francisco
| |
Collapse
|
12
|
Aguzzoli Heberle B, Fox KL, Lobraico Libermann L, Ronchetti Martins Xavier S, Tarnowski Dallarosa G, Carolina Santos R, Fardo DW, Wendt Viola T, Ebbert MTW. Systematic review and meta-analysis of bulk RNAseq studies in human Alzheimer's disease brain tissue. Alzheimers Dement 2025; 21:e70025. [PMID: 40042520 PMCID: PMC11881636 DOI: 10.1002/alz.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 03/09/2025]
Abstract
We systematically reviewed and meta-analyzed bulk RNA sequencing (RNAseq) studies comparing Alzheimer's disease (AD) patients to controls in human brain tissue. We searched PubMed, Web of Science, and Scopus for human brain bulk RNAseq studies, excluding re-analyses and studies limited to small RNAs or gene panels. We developed 10 criteria for quality assessment and performed a meta-analysis on three high-quality datasets. Of 3266 records, 24 qualified for the systematic review, and one study with three datasets qualified for the meta-analysis. The meta-analysis identified 571 differentially expressed genes (DEGs) in the temporal lobe and 189 in the frontal lobe, including CLU and GFAP. Pathway analysis suggested reactivation of developmental processes in the adult AD brain. Limited data availability constrained the meta-analysis. These findings underscore the need for rigorous methods in AD transcriptomic research to better identify transcriptomic changes and advance biomarker and therapeutic development. This review is registered in PROSPERO (CRD42023466522). HIGHLIGHTS Comprehensive review: Conducted the first systematic review and meta-analysis of bulk RNA sequencing (RNAseq) studies comparing Alzheimer's disease (AD) patients with non-demented controls using primary human brain tissue. KEY FINDINGS Identified 571 differentially expressed genes (DEGs) in the temporal lobe and 189 in the frontal lobe of patients with AD, revealing potential therapeutic targets. Pathway discovery: Highlighted key overlapping pathways such as "tube morphogenesis" and "neuroactive ligand-receptor interaction" that may play critical roles in AD. QUALITY ASSESSMENT Emphasized the importance of methodological rigor in transcriptomic studies, including quality assessment tools to guide future research in AD. STUDY LIMITATION Acknowledged limited access to complete data tables and lack of diversity in existing datasets, which constrained some of the analysis.
Collapse
Affiliation(s)
- Bernardo Aguzzoli Heberle
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of Neuroscience, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Kristin L. Fox
- Department of Neuroscience, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Division of Laboratory Animal ResourcesUniversity of KentuckyLexingtonKentuckyUSA
| | - Lucas Lobraico Libermann
- School of MedicineBrain Institute of Rio Grande do SulPontifical Catholic University of Rio Grande do Sul (PUCRS)Porto AlegreRio Grande do SulBrazil
| | | | - Guilherme Tarnowski Dallarosa
- School of MedicineBrain Institute of Rio Grande do SulPontifical Catholic University of Rio Grande do Sul (PUCRS)Porto AlegreRio Grande do SulBrazil
| | - Rhaná Carolina Santos
- School of MedicineUniversity of the Sinos Valley (UNISINOS)São LeopoldoRio Grande do SulBrazil
| | - David W. Fardo
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of BiostatisticsUniversity of KentuckyLexingtonKentuckyUSA
| | - Thiago Wendt Viola
- School of MedicineBrain Institute of Rio Grande do SulPontifical Catholic University of Rio Grande do Sul (PUCRS)Porto AlegreRio Grande do SulBrazil
| | - Mark T. W. Ebbert
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of Neuroscience, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Division of Biomedical Informatics, Internal Medicine, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
13
|
Jin L, Wu L, Zhang J, Jia W, Zhou H, Jiang S, Jiang P, Li Y, Li Y. Quantitative analysis of literature on diagnostic biomarkers of Schizophrenia: revealing research hotspots and future prospects. BMC Psychiatry 2025; 25:186. [PMID: 40025442 PMCID: PMC11872302 DOI: 10.1186/s12888-025-06644-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/20/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Schizophrenia (SCZ) is a complex mental disorder characterized by a wide range of symptoms and cognitive impairments. The search for reliable biomarkers for SCZ has gained increasing attention in recent years, as they hold the potential to improve early diagnosis and intervention strategies. To understand the research trends and collaborations in this field, a comprehensive Bibliometric analysis of SCZ and biomarkers research was conducted. METHODS A systematic search of the Web of Science Core Collection was performed to retrieve relevant articles published from January 2000 to July 2023. The search focused on SCZ and biomarkers. Bibliometric tools, including CiteSpace, VOSviewer, and R package Bibliometrix, were utilized to perform data extraction, quantitative analysis, and visualization. RESULTS The search focused on SCZ and biomarkers, and a total of 2935 articles were included in the analysis. The analysis revealed a gradual increase in the number of publications related to SCZ and biomarkers over the years, indicating a growing research focus in this area. Collaboration and research activity were found to be concentrated in the United States and Western European countries. Among the top ten most active journals, "Schizophrenia Research" emerged as the journal with the highest number of publications and citations related to SCZ and biomarkers. Recent studies published in this journal have highlighted the potential use of facial expressions as a diagnostic biomarker for SCZ, suggesting that facial expression analysis using big data may hold promise for future diagnosis and interventions. Furthermore, the analysis of key research keywords identified inflammatory factors, DNA methylation changes, and glutamate alterations as potential biomarkers for SCZ diagnosis. CONCLUSION This Bibliometric analysis provides valuable insights into the current state of research on SCZ and biomarkers. The identification of reliable biomarkers for SCZ could have significant implications for early diagnosis and interventions, potentially leading to improved outcomes for individuals affected by this challenging mental disorder. Further research and collaborations in this field are encouraged to advance our understanding of SCZ and enhance diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Liuyin Jin
- The Second People'S Hospital of Lishui, Lishui, China
| | - Linman Wu
- Nanchong Mental Health Center of Sichuan Province, Nanchong, China
| | - Jing Zhang
- The Second People'S Hospital of Lishui, Lishui, China
| | - Wenxin Jia
- The Second People'S Hospital of Lishui, Lishui, China
| | - Han Zhou
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Shulan Jiang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Pengju Jiang
- The Second People'S Hospital of Lishui, Lishui, China
| | - Yingfang Li
- The Second People'S Hospital of Lishui, Lishui, China
| | - Yang Li
- The Second People'S Hospital of Lishui, Lishui, China.
| |
Collapse
|
14
|
Alkhatabi HA, Pushparaj PN. Untangling the complex mechanisms associated with Alzheimer's disease in elderly patients using high-throughput RNA sequencing data and next-generation knowledge discovery methods: Focus on potential gene signatures and drugs for dementia. Heliyon 2025; 11:e41266. [PMID: 39834440 PMCID: PMC11743088 DOI: 10.1016/j.heliyon.2024.e41266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 01/22/2025] Open
Abstract
Objectives Alzheimer's disease (AD) is a complex neurodegenerative disorder that primarily affects elderly individuals. This study aimed to elucidate the intricate mechanisms underlying AD in elderly patients compared with healthy aged individuals using high-throughput RNA sequencing (RNA-seq) data and next-generation knowledge discovery methods (NGKD), with a focus on identifying potential therapeutic agents. Methods High-throughput RNA-seq data were obtained from the Gene Expression Omnibus (GEO) database (accession number: GSE104704). These data were derived from healthy and diseased human brains (eight young healthy brains [young], 10 aged healthy brains [Old], and 12 aged diseased brains [AD]). We used NGKD tools such as GEO RNA-seq Experiments Interactive Navigator (GREIN) to obtain differentially expressed genes (DEGs) by comparing the AD versus Old RNA-seq data and further filtered and normalized to obtain differentially regulated Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome and Panther pathways using ExpressAnalyst tool. Besides, WebGestalt was used to identify differentially regulated Gene Ontologies (GO) and the pre-ranked Gene Set Enrichment Analysis (GSEA) was performed using GSEA software. The X2K web tool was used to infer upstream regulator networks and X2K Appyter tool for obtaining transcription factors (TFs) and kinase network information. LFW1000 and L1000CDS2 tools were used to identify specific drugs that reverse AD-associated gene signatures in elderly patients. Results Our study revealed significant downregulation of pathways related to neuroactive receptor-ligand interaction, synaptic vesicle cycle, and neuronal system in elderly individuals with AD. GO analysis showed negative enrichment of functions related to cognition, potassium ion transport, receptor-ligand activity, SNARE binding, and primary lysosomes. The transcription factors SUZ12 and REST, along with increased MAPK signaling, were identified as key regulators of downregulated genes. Several drugs and natural products, including dihydroergocristine, mepacrine, gedunin, amlodipine, and disulfiram have been identified as potential therapeutic agents for reversing AD-associated gene signatures. Conclusions This comprehensive analysis of AD in elderly individuals using RNA-seq data and NGKD tools revealed multiple differentially regulated pathways, gene signatures, and potential drugs for dementia treatment. These findings highlight the complex molecular mechanisms underlying AD and provide insights into potential therapeutic strategies. Further research is needed to validate these findings and to develop personalized treatment approaches for AD in elderly patients.
Collapse
Affiliation(s)
- Hind A. Alkhatabi
- Department of Biological Science, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Peter Natesan Pushparaj
- Institute of Genomic Medicine Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
15
|
Martinez-Sanchez M, Skarnes W, Jain A, Vemula S, Sun L, Rockowitz S, Whitman MC. Chromosome 4 Duplication Associated with Strabismus Leads to Gene Expression Changes in iPSC-Derived Cortical Neurons. Genes (Basel) 2025; 16:80. [PMID: 39858627 PMCID: PMC11764630 DOI: 10.3390/genes16010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Strabismus is the most common ocular disorder of childhood. Three rare, recurrent genetic duplications have been associated with both esotropia and exotropia, but the mechanisms by which they contribute to strabismus are unknown. This work aims to investigate the mechanisms of the smallest of the three, a 23 kb duplication on chromosome 4 (hg38|4:25,554,985-25,578,843). METHODS Using CRISPR and bridging oligos, we introduced the duplication into the Kolf2.1J iPSC line. We differentiated the parent line and the line with the duplication into cortical neurons using a three-dimensional differentiation protocol, and performed bulk RNASeq on neural progenitors (day 14) and differentiated neurons (day 63). RESULTS We successfully introduced the duplication into Kolf2.1J iPSCs by nucleofecting a bridging oligo for the newly formed junction along with cas9 ribonucleoparticles. We confirmed that the cells had a tandem duplication without inversion or deletion. The parent line and the line with the duplication both differentiated into neurons reliably. There were a total of 37 differentially expressed genes (DEGs) at day 63, 25 downregulated and 12 upregulated. There were 55 DEGs at day 14, 18 of which were also DEGs at day 63. The DEGs included a number of protocadherins, several genes involved in neuronal development, including SLITRK2, CSMD1, and VGF, and several genes of unknown function. CONCLUSIONS A copy number variant (CNV) that confers risk for strabismus affects gene expression of several genes involved in neural development, highlighting that strabismus most likely results from abnormal neural development, and identifying several new genes and pathways for further research into the pathophysiology of strabismus.
Collapse
Affiliation(s)
- Mayra Martinez-Sanchez
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA 02115, USA; (M.M.-S.); (S.V.)
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - William Skarnes
- Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA;
| | - Ashish Jain
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, MA 02115, USA; (A.J.); (L.S.); (S.R.)
| | - Sampath Vemula
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA 02115, USA; (M.M.-S.); (S.V.)
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Liang Sun
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, MA 02115, USA; (A.J.); (L.S.); (S.R.)
| | - Shira Rockowitz
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, MA 02115, USA; (A.J.); (L.S.); (S.R.)
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Mary C. Whitman
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA 02115, USA; (M.M.-S.); (S.V.)
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
16
|
Luo ZH, Guo JS, Pang S, Dong W, Ma JX, Zhang L, Qi XL, Guan FF, Gao S, Gao X, Liu N, Pan S, Chen W, Zhang X, Zhang LF, Yang YJ. Discovery of FO-4-15, a novel 1,2,4-oxadiazole derivative, ameliorates cognitive impairments in 3×Tg mice by activating the mGluR1/CaMKIIα pathway. Acta Pharmacol Sin 2025; 46:66-80. [PMID: 39152295 PMCID: PMC11696799 DOI: 10.1038/s41401-024-01362-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 07/18/2024] [Indexed: 08/19/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder characterized by cognitive impairments. Despite the limited efficacy of current treatments for AD, the 1,2,4-oxadiazole structure has garnered significant attention in medicinal chemistry due to its potential impact on mGluR1 and its association with AD therapy. In this study, a series of novel 1,2,4-oxadiazole derivatives were designed, synthesized, and evaluated for the neuroprotective effects in human neuroblastoma (SH-SY5Y) cells. Among all the derivatives tested, FO-4-15 (5f) existed the lowest cytotoxicity and the highest protective effect against H2O2. Based on these in vitro results, FO-4-15 was administered to 3×Tg mice and significantly improved the cognitive impairments of the AD mice. Pathological analysis showed that FO-4-15 significantly reduced Aβ accumulation, Tau hyper-phosphorylation, and synaptic impairments in the 3×Tg mice. Dysfunction of the CaMKIIα/Fos signaling pathway in 3×Tg mice was found to be restored by FO-4-15 and the necessity of the CaMKIIα/Fos for FO-4-15 was subsequently confirmed by the use of a CaMKIIα inhibitor in vitro. Beyond that, mGluR1 was identified to be a potential target of FO-4-15, and the interaction of FO-4-15 and mGluR1 was displayed by Ca2+ flow increase, molecular docking, and interaction energy analysis. The target of FO-4-15 was further confirmed in vitro by JNJ16259685, a nonselective inhibitor of mGluR1. These findings suggest that FO-4-15 may hold promise as a potential treatment for Alzheimer's disease.
Collapse
Affiliation(s)
- Zhuo-Hui Luo
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Jiang-Shan Guo
- Beijing Key Laboratory of Active Substance Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuo Pang
- The Laboratory of Neurological Disorders and Brain Cognition, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wei Dong
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Jia-Xin Ma
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Li Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Xiao-Long Qi
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Fei-Fei Guan
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Shan Gao
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Xiang Gao
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Ning Liu
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Shuo Pan
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Wei Chen
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Xu Zhang
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Lian-Feng Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China.
| | - Ya-Jun Yang
- Beijing Key Laboratory of Active Substance Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
17
|
Ouyang S, Shi S, Ding W, Ge Y, Su Y, Mo J, Peng K, Zhang Q, Liu G, Xiao W, Yue P, Lu J, Wang Y, Xiong X, Zhang X. Neuropeptide Precursor VGF Promotes Liver Metastatic Colonization of Gαq Mutant Uveal Melanoma by Facilitating Tumor Microenvironment via Paracrine Loops. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407967. [PMID: 39422674 PMCID: PMC11633529 DOI: 10.1002/advs.202407967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/27/2024] [Indexed: 10/19/2024]
Abstract
Uveal melanoma (UM), the predominant primary ocular malignancy, often progresses to liver metastasis with limited therapeutic options. The interplay of the tumor microenvironment, encompassing secreted soluble factors, plays a crucial role in facilitating liver metastasis. In this study, the role is elucidated of the neural growth factor-inducible gene (VGF), a secreted neuropeptide precursor, in Gαq mutant UM. Employing a multiomics approach, encompassing transcriptomic and secretomic analyses, the intricate involvement of VGF in UM progression is unveiled. VGF is upregulated in Gαq mutant UM cells and associated with poor prognosis of UM patients. Targeting VGF significantly suppressed the growth of UM in vitro and in vivo. Further evidence shows that VGF is regulated by Gαq through MAPK/CREB pathway. Mechanistically, CREB modulates VGF expression by directly binding to consensus DNA response elements in the promoters of the VGF gene. Combined inhibition of Gαq and MEK remarkably reduces tumor burden in the UM xenograft model. Notably, VGF triggers liver metastatic colonization of UM and activates the fibrosis of hepatic stellate cells (HSCs), creating a favorable microenvironment, through an autocrine and paracrine loop. Furthermore, VGF directly binds to TGFBR2 and regulates TGF-β-SMAD signaling pathway, thereby regulating genes associated with endothelial-mesenchymal transition (EMT) to promote metastasis. Taken together, these findings identify VGF as a pivotal driver in the progression and metastasis of Gαq mutant UM and confers a promising therapeutic target and strategy for UM patients.
Collapse
Affiliation(s)
- Shumin Ouyang
- National‐Local Joint Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Shuo Shi
- National‐Local Joint Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Wen Ding
- National‐Local Joint Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Yang Ge
- National‐Local Joint Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Yingxue Su
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510060China
| | - Jianshan Mo
- National‐Local Joint Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Keren Peng
- National‐Local Joint Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Qiyi Zhang
- National‐Local Joint Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Guopin Liu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510060China
| | - Wei Xiao
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510060China
| | - Peibin Yue
- Department of MedicineDivision of Hematology‐Oncologyand Samuel Oschin Comprehensive Cancer InstituteCedars‐Sinai Medical CenterLos AngelesCA90048USA
| | - Jinjian Lu
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacao999078China
| | - Yandong Wang
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510060China
| | - Xiaofeng Xiong
- National‐Local Joint Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Xiaolei Zhang
- National‐Local Joint Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| |
Collapse
|
18
|
Seifar F, Fox EJ, Shantaraman A, Liu Y, Dammer EB, Modeste E, Duong DM, Yin L, Trautwig AN, Guo Q, Xu K, Ping L, Reddy JS, Allen M, Quicksall Z, Heath L, Scanlan J, Wang E, Wang M, Linden AV, Poehlman W, Chen X, Baheti S, Ho C, Nguyen T, Yepez G, Mitchell AO, Oatman SR, Wang X, Carrasquillo MM, Runnels A, Beach T, Serrano GE, Dickson DW, Lee EB, Golde TE, Prokop S, Barnes LL, Zhang B, Haroutunian V, Gearing M, Lah JJ, De Jager P, Bennett DA, Greenwood A, Ertekin‐Taner N, Levey AI, Wingo A, Wingo T, Seyfried NT. Large-scale deep proteomic analysis in Alzheimer's disease brain regions across race and ethnicity. Alzheimers Dement 2024; 20:8878-8897. [PMID: 39535480 PMCID: PMC11667503 DOI: 10.1002/alz.14360] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/09/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, yet our comprehension predominantly relies on studies within non-Hispanic White (NHW) populations. Here we provide an extensive survey of the proteomic landscape of AD across diverse racial/ethnic groups. METHODS Two cortical regions, from multiple centers, were harmonized by uniform neuropathological diagnosis. Among 998 unique donors, 273 donors self-identified as African American, 229 as Latino American, and 434 as NHW. RESULTS While amyloid precursor protein and the microtubule-associated protein tau demonstrated higher abundance in AD brains, no significant race-related differences were observed. Further proteome-wide and focused analyses (specific amyloid beta [Aβ] species and the tau domains) supported the absence of racial differences in these AD pathologies within the brain proteome. DISCUSSION Our findings indicate that the racial differences in AD risk and clinical presentation are not underpinned by dramatically divergent patterns in the brain proteome, suggesting that other determinants account for these clinical disparities. HIGHLIGHTS We present a large-scale proteome (∼10,000 proteins) of DLPFC (998) and STG (244) across AD cases. About 50% of samples were from racially and ethnically diverse brain donors. Key AD proteins (amyloid and tau) correlated with CERAD and Braak stages. No significant race-related differences in amyloid and tau protein levels were observed in AD brains. AD-associated protein changes showed a strong correlation between the brain proteomes of African American and White individuals. This dataset advances understanding of ethnoracial-specific AD pathways and potential therapies.
Collapse
|
19
|
Heberle BA, Fox KL, Libermann LL, Xavier SRM, Dallarosa GT, Santos RC, Fardo DW, Viola TW, Ebbert MTW. Systematic review and meta-analysis of bulk RNAseq studies in human Alzheimer's disease brain tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622520. [PMID: 39574617 PMCID: PMC11580990 DOI: 10.1101/2024.11.07.622520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
Objective To systematically review and meta-analyze bulk RNA sequencing studies comparing Alzheimer's disease (AD) patients with controls in human brain tissue, assessing study quality and identifying key genes and pathways. Methods We searched PubMed, Web of Science, and Scopus on September 23, 2023, for studies using bulk RNAseq on primary human brain tissue from AD patients and controls. Excluded were non-primary tissue, re-analyses without new data, limited RNA types and gene panels. Quality was assessed with a 10-category tool. Meta-analysis used high-quality datasets. Results From 3,266 records, 24 studies met criteria. Meta-analysis found 571 differentially expressed genes (DEGs) in temporal lobe and 189 in frontal lobe; overlapping pathways included "Tube morphogenesis" and "Neuroactive ligand-receptor interaction." Limitations Study heterogeneity and limited data tables constrained the review. Conclusions Rigorous methods are vital in AD transcriptomic studies. Findings enhance understanding of transcriptomic changes, aiding biomarker and therapeutic development. Registration PROSPERO (CRD42023466522).
Collapse
Affiliation(s)
- Bernardo Aguzzoli Heberle
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY
| | - Kristin L Fox
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY
- Division of Laboratory Animal Resources, University of Kentucky, Lexington, KY
| | - Lucas Lobraico Libermann
- School of Medicine, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | | | - Guilherme Tarnowski Dallarosa
- School of Medicine, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Rhaná Carolina Santos
- School of Medicine, University of the Sinos Valley (UNISINOS), Porto Alegre, RS, Brazil
| | - David W Fardo
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Thiago Wendt Viola
- School of Medicine, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Mark T W Ebbert
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY
- Division of Biomedical Informatics, Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
| |
Collapse
|
20
|
Ropri AS, Lam TG, Kalia V, Buchanan HM, Bartosch AMW, Youth EHH, Xiao H, Ross SK, Jain A, Chakrabarty JK, Kang MS, Boyett D, Spinazzi EF, Iodice G, McGovern RA, Honig LS, Brown LM, Miller GW, McKhann GM, Teich AF. Alzheimer's disease CSF biomarkers correlate with early pathology and alterations in neuronal and glial gene expression. Alzheimers Dement 2024; 20:7090-7103. [PMID: 39192661 PMCID: PMC11485399 DOI: 10.1002/alz.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION Normal pressure hydrocephalus (NPH) patients undergoing cortical shunting frequently show early Alzheimer's disease (AD) pathology on cortical biopsy, which is predictive of progression to clinical AD. The objective of this study was to use samples from this cohort to identify cerebrospinal fluid (CSF) biomarkers for AD-related central nervous system (CNS) pathophysiologic changes using tissue and fluids with early pathology, free of post mortem artifact. METHODS We analyzed Simoa, proteomic, and metabolomic CSF data from 81 patients with previously documented pathologic and transcriptomic changes. RESULTS AD pathology on biopsy correlates with CSF β-amyloid-42/40, neurofilament light chain (NfL), and phospho-tau-181(p-tau181)/β-amyloid-42, while several gene expression modules correlate with NfL. Proteomic analysis highlights seven core proteins that correlate with pathology and gene expression changes on biopsy, and metabolomic analysis of CSF identifies disease-relevant groups that correlate with biopsy data. DISCUSSION As additional biomarkers are added to AD diagnostic panels, our work provides insight into the CNS pathophysiology these markers are tracking. HIGHLIGHTS AD CSF biomarkers correlate with CNS pathology and transcriptomic changes. Seven proteins correlate with CNS pathology and gene expression changes. Inflammatory and neuronal gene expression changes correlate with YKL-40 and NPTXR, respectively. CSF metabolomic analysis identifies pathways that correlate with biopsy data. Fatty acid metabolic pathways correlate with β-amyloid pathology.
Collapse
Affiliation(s)
- Ali S. Ropri
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Tiffany G. Lam
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Vrinda Kalia
- Department of Environmental Health Sciences, Mailman School of Public HealthColumbia UniversityNew YorkNew YorkUSA
| | - Heather M. Buchanan
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Anne Marie W. Bartosch
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Elliot H. H. Youth
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Harrison Xiao
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Sophie K. Ross
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Anu Jain
- Quantitative Proteomics and Metabolomics Center, Department of Biological SciencesColumbia UniversityNew YorkNew YorkUSA
| | - Jayanta K. Chakrabarty
- Quantitative Proteomics and Metabolomics Center, Department of Biological SciencesColumbia UniversityNew YorkNew YorkUSA
| | - Min Suk Kang
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Deborah Boyett
- Department of NeurosurgeryColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Eleonora F. Spinazzi
- Department of NeurosurgeryColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Gail Iodice
- Ankyra TherapeuticsCambridgeMassachusettsUSA
| | - Robert A. McGovern
- Department of NeurosurgeryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Lawrence S. Honig
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Lewis M. Brown
- Quantitative Proteomics and Metabolomics Center, Department of Biological SciencesColumbia UniversityNew YorkNew YorkUSA
| | - Gary W. Miller
- Department of Environmental Health Sciences, Mailman School of Public HealthColumbia UniversityNew YorkNew YorkUSA
| | - Guy M. McKhann
- Department of NeurosurgeryColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Andrew F. Teich
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
21
|
Carvalho R, Santos L, Conde I, Leitão R, Ferreira HR, Gomes C, Silva AP, Schmitt F, Carvalho-Maia C, Lobo J, Jerónimo C, Paredes J, Ribeiro AS. Nerve growth factor inducible (VGF) is a secreted mediator for metastatic breast cancer tropism to the brain. J Pathol 2024; 264:132-147. [PMID: 39072726 DOI: 10.1002/path.6319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 07/30/2024]
Abstract
Brain metastases are one of the most serious clinical problems in breast cancer (BC) progression, associated with lower survival rates and a lack of effective therapies. Thus, to dissect the early stages of the brain metastatic process, we studied the impact of brain organotropic BC cells' secretomes on the establishment of the brain pre-metastatic niche (PMN). We found that BC cells with specific tropism to the brain caused significant blood-brain barrier (BBB) disruption, as well as microglial activation, in both in vitro and in vivo models. Further, we searched for a brain-organotropic metastatic signature, as a promising source for the discovery of new biomarkers involved in brain metastatic progression. Of relevance, we identified VGF (nerve growth factor inducible) as a key mediator in this process, also impacting the BBB and microglial functions both in vitro and in vivo. In a series of human breast tumors, VGF was found to be expressed in both cancer cells and the adjacent stroma. Importantly, VGF-positive tumors showed a significantly worse prognosis and were associated with HER2 (human epidermal growth factor receptor 2) overexpression and triple-negative molecular signatures. Further clinical validation in primary tumors from metastatic BC cases showed a significant association between VGF and the brain metastatic location, clearly and significantly impacting on the prognosis of BC patients with brain metastasis. In conclusion, our study reveals a unique secretome signature for BC with a tropism for the brain, highlighting VGF as a crucial mediator in this process. Furthermore, its specific impact as a poor prognostic predictor for BC patients with brain metastasis opens new avenues to target VGF to control the progression of brain metastatic disease. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Rita Carvalho
- Cancer Metastasis group, i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Liliana Santos
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- iCBR - Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Inês Conde
- Cancer Metastasis group, i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Ricardo Leitão
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- iCBR - Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Hugo Rs Ferreira
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- iCBR - Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Célia Gomes
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- iCBR - Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ana Paula Silva
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- iCBR - Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Fernando Schmitt
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- CINTESIS@RISE, Porto, Portugal
- FMUP - Faculty of Medicine, University of Porto, Porto, Portugal
| | - Carina Carvalho-Maia
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC) & CI-IPOP@RISE (Health Research Network), Porto, Portugal
| | - João Lobo
- Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC) & CI-IPOP@RISE (Health Research Network), Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC) & CI-IPOP@RISE (Health Research Network), Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), Porto, Portugal
| | - Joana Paredes
- Cancer Metastasis group, i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- FMUP - Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ana Sofia Ribeiro
- Cancer Metastasis group, i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| |
Collapse
|
22
|
Diniz BS, Chen Z, Steffens DC, Pilling L, Fortinsky RH, Kuchel GA, Kuo CL. Proteogenomic signature of risk of Alzheimer's disease and related dementia risk in individuals with a history of major depression disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.11.24313493. [PMID: 39314945 PMCID: PMC11419236 DOI: 10.1101/2024.09.11.24313493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The mechanisms linking a history of major depressive disorder (MDD) to an increased risk of Alzheimer's disease and related dementia (ADRD) are not fully understood. Using the UK Biobank available proteomic and genomic data, we evaluated the biological mechanisms linking both conditions. In participants with a history of MDD at baseline (n=3,615), we found that plasma levels of NfL, GFAP, PSG1 were associated with higher risk (HR=1.38; 1.37; 1.34, respectively; all adjusted p-values<0.05), while VGF, GET3, and HPGDS were associated with lower risk of incident ADRD (n=150) (HR=0.73; 0.71; 0.66, respectively; all adjusted p-values<0.05) during a mean follow-up of 13.7 years (SD=2.2). Two-sample Mendelian randomization analysis using cis-pQTLs genetic instruments revealed that a lower protein expression of apolipoprotein E and higher IL-10 receptor subunit B were causally linked to incident ADRD. Finally, we developed a Proteomic Risk Score (PrRSMDD-ADRD), which showed strong discriminative power (C-statistic = 0.84) to identify participants with MDD that developed ADRD upon follow-up. In addition to demonstrating an association between plasma proteins associated with inflammation and future ADRD risk in individuals with MDD, our findings include an element of causality using Mendelian Randomization (MR) and PrRSMDD-ADRD can be useful to identify individuals with the highest risk to develop ADRD in a highly vulnerable population.
Collapse
Affiliation(s)
- Breno Satler Diniz
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Psychiatry, University of Connecticut Health Center, Farmington, CT, USA
| | - Zhiduo Chen
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| | - David C Steffens
- Department of Psychiatry, University of Connecticut Health Center, Farmington, CT, USA
| | - Luke Pilling
- Epidemiology and Public Health Group, Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Richard H Fortinsky
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| | - George A Kuchel
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| | - Chia-Ling Kuo
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Public Health Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
23
|
Ghatak S, Diedrich JK, Talantova M, Bhadra N, Scott H, Sharma M, Albertolle M, Schork NJ, Yates JR, Lipton SA. Single-Cell Patch-Clamp/Proteomics of Human Alzheimer's Disease iPSC-Derived Excitatory Neurons Versus Isogenic Wild-Type Controls Suggests Novel Causation and Therapeutic Targets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400545. [PMID: 38773714 PMCID: PMC11304297 DOI: 10.1002/advs.202400545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/03/2024] [Indexed: 05/24/2024]
Abstract
Standard single-cell (sc) proteomics of disease states inferred from multicellular organs or organoids cannot currently be related to single-cell physiology. Here, a scPatch-Clamp/Proteomics platform is developed on single neurons generated from hiPSCs bearing an Alzheimer's disease (AD) genetic mutation and compares them to isogenic wild-type controls. This approach provides both current and voltage electrophysiological data plus detailed proteomics information on single-cells. With this new method, the authors are able to observe hyperelectrical activity in the AD hiPSC-neurons, similar to that observed in the human AD brain, and correlate it to ≈1400 proteins detected at the single neuron level. Using linear regression and mediation analyses to explore the relationship between the abundance of individual proteins and the neuron's mutational and electrophysiological status, this approach yields new information on therapeutic targets in excitatory neurons not attainable by traditional methods. This combined patch-proteomics technique creates a new proteogenetic-therapeutic strategy to correlate genotypic alterations to physiology with protein expression in single-cells.
Collapse
Affiliation(s)
- Swagata Ghatak
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
- Present address:
School of Biological SciencesNational Institute of Science Education and Research (NISER)‐Bhubaneswar, an OCC of Homi Bhabha National InstituteJataniOdisha752050India
| | - Jolene K. Diedrich
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Maria Talantova
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Nivedita Bhadra
- Quantitative Medicine and Systems BiologyThe Translational Genomics Research InstitutePhoenixAZ85004USA
| | - Henry Scott
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Meetal Sharma
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Matthew Albertolle
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
- Present address:
Drug Metabolism and Pharmacokinetics DepartmentTakeda Development Center AmericasSan DiegoCA92121USA
| | - Nicholas J. Schork
- Quantitative Medicine and Systems BiologyThe Translational Genomics Research InstitutePhoenixAZ85004USA
| | - John R. Yates
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Stuart A. Lipton
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
- Department of NeurosciencesSchool of MedicineUniversity of California, San DiegoLa JollaCA92093USA
| |
Collapse
|
24
|
Barba L, Bellomo G, Oeckl P, Chiasserini D, Gaetani L, Torrigiani EG, Paoletti FP, Steinacker P, Abu-Rumeileh S, Parnetti L, Otto M. CSF neurosecretory proteins VGF and neuroserpin in patients with Alzheimer's and Lewy body diseases. J Neurol Sci 2024; 462:123059. [PMID: 38850771 DOI: 10.1016/j.jns.2024.123059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND VGF and neuroserpin are neurosecretory proteins involved in the pathophysiology of neurodegenerative diseases. We aimed to evaluate their cerebrospinal fluid (CSF) concentrations in patients with Alzheimer's disease (AD) and Lewy body disease (LBD). METHODS We measured CSF VGF [AQEE] peptide and neuroserpin levels in 108 LBD patients, 76 AD patients and 37 controls, and tested their associations with clinical scores and CSF AD markers. RESULTS We found decreased CSF levels of VGF [AQEE] in patients with LBD and dementia compared to controls (p = 0.016) and patients with AD-dementia (p = 0.011), but with significant influence of age and sex distribution. Moreover, we observed, on the one hand, a significant associations between lower VGF [AQEE] and neuroserpin levels and poorer cognitive performance (i.e., lower Mini-Mental State Examination scores). On the other hand, higher levels of CSF tau proteins, especially pTau181, were significantly associated with higher concentrations of VGF [AQEE] and neuroserpin. Indeed, LBD patients with AD-like CSF profiles, especially T+ profiles, had higher levels of VGF [AQEE] and neuroserpin compared to controls and LBD/T- cases. DISCUSSION CSF VGF [AQEE] and neuroserpin may show a complex relationship with cognitive decline when the levels are reduced, and with AD pathology when levels are increased. They may represent novel markers of neurosecretory impairment in neurodegenerative disorders.
Collapse
Affiliation(s)
- Lorenzo Barba
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120 Halle (Saale), Germany
| | - Giovanni Bellomo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1/8, 06129 Perugia, Italy
| | - Patrick Oeckl
- Department of Neurology, Ulm University, Helmholzstrasse 8/1, 89081 Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE e.V.), Helmholzstrasse 8/1, 89081 Ulm, Germany
| | - Davide Chiasserini
- Section of Biochemistry, Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1/8, 06129 Perugia, Italy
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1/8, 06129 Perugia, Italy
| | - Edoardo Guido Torrigiani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1/8, 06129 Perugia, Italy
| | - Federico Paolini Paoletti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1/8, 06129 Perugia, Italy
| | - Petra Steinacker
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120 Halle (Saale), Germany
| | - Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120 Halle (Saale), Germany
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1/8, 06129 Perugia, Italy
| | - Markus Otto
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120 Halle (Saale), Germany.
| |
Collapse
|
25
|
Meng QN, Zhu Y, Liu SW, Hu B, Chai DJ, Dong CX. Study on the treatment of dysphagia after stroke with electromyographic biofeedback intensive training. World J Clin Cases 2024; 12:3725-3733. [PMID: 38994319 PMCID: PMC11235442 DOI: 10.12998/wjcc.v12.i19.3725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Dysphagia, or swallowing disorder, is a common complication following stroke, significantly impacting patients' quality of life. Electromyographic biofeedback (EMGBF) therapy has emerged as a potential rehabilitation technique to improve swallowing function, but its efficacy in comparison with conventional treatments remains to be further explored. AIM To investigate the effects of different treatment intensities of EMGBF on swallowing function and motor speed after stroke. METHODS The participants were divided into three groups, all of which received routine neurological drug therapy and motor function rehabilitation training. On the basis of routine swallowing disorder training, the EMGBF group received additional EMGBF training, while the enhanced EMGBF group received two additional training sessions. Four weeks before and after treatment, the degree of swallowing disorder was evaluated using the degree of swallowing disorder score (VGF) and the Rosenbek penetration-aspiration scale (PAS). RESULTS Initially, there was no significant difference in VGF and PAS scores among the groups (P > 0.05). After four weeks, all groups showed significant improvement in both VGF scores and PAS scores. Furthermore, the standardized swallowing assessment and videofluoroscopic dysphagia scale scores also improved significantly post-treatment, indicating enhanced swallowing function and motor function of the hyoid-bone laryngeal complex, particularly in the intensive EMGBF group. CONCLUSION EMGBF training is more effective than traditional swallowing training in improving swallowing function and the movement rate of the hyoid laryngeal complex in patients with post-stroke dysphagia.
Collapse
Affiliation(s)
- Qing-Nan Meng
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar 161000, Heilongjiang Province, China
| | - Yue Zhu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar 161000, Heilongjiang Province, China
| | - Si-Wen Liu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar 161000, Heilongjiang Province, China
| | - Bin Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar 161000, Heilongjiang Province, China
| | - De-Jun Chai
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar 161000, Heilongjiang Province, China
| | - Chun-Xue Dong
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar 161000, Heilongjiang Province, China
| |
Collapse
|
26
|
Sukumar SK, Antonydhason V, Molander L, Sandakly J, Kleit M, Umapathy G, Mendoza-Garcia P, Masudi T, Schlosser A, Nässel DR, Wegener C, Shirinian M, Palmer RH. The Alk receptor tyrosine kinase regulates Sparkly, a novel activity regulating neuropeptide precursor in the Drosophila central nervous system. eLife 2024; 12:RP88985. [PMID: 38904987 PMCID: PMC11196111 DOI: 10.7554/elife.88985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
Numerous roles for the Alk receptor tyrosine kinase have been described in Drosophila, including functions in the central nervous system (CNS), however the molecular details are poorly understood. To gain mechanistic insight, we employed Targeted DamID (TaDa) transcriptional profiling to identify targets of Alk signaling in the larval CNS. TaDa was employed in larval CNS tissues, while genetically manipulating Alk signaling output. The resulting TaDa data were analyzed together with larval CNS scRNA-seq datasets performed under similar conditions, identifying a role for Alk in the transcriptional regulation of neuroendocrine gene expression. Further integration with bulk and scRNA-seq datasets from larval brains in which Alk signaling was manipulated identified a previously uncharacterized Drosophila neuropeptide precursor encoded by CG4577 as an Alk signaling transcriptional target. CG4577, which we named Sparkly (Spar), is expressed in a subset of Alk-positive neuroendocrine cells in the developing larval CNS, including circadian clock neurons. In agreement with our TaDa analysis, overexpression of the Drosophila Alk ligand Jeb resulted in increased levels of Spar protein in the larval CNS. We show that Spar protein is expressed in circadian (clock) neurons, and flies lacking Spar exhibit defects in sleep and circadian activity control. In summary, we report a novel activity regulating neuropeptide precursor gene that is regulated by Alk signaling in the Drosophila CNS.
Collapse
Affiliation(s)
- Sanjay Kumar Sukumar
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of GothenburgGothenburgSweden
| | - Vimala Antonydhason
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of GothenburgGothenburgSweden
| | - Linnea Molander
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of GothenburgGothenburgSweden
| | - Jawdat Sandakly
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of BeirutBeirutLebanon
| | - Malak Kleit
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of BeirutBeirutLebanon
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of GothenburgGothenburgSweden
| | - Patricia Mendoza-Garcia
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of GothenburgGothenburgSweden
| | - Tafheem Masudi
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of GothenburgGothenburgSweden
| | - Andreas Schlosser
- Julius-Maximilians-Universität Würzburg, Rudolf-Virchow-Center, Center for Integrative and Translational BioimagingWürzburgGermany
| | - Dick R Nässel
- Department of Zoology, Stockholm UniversityStockholmSweden
| | - Christian Wegener
- Julius-Maximilians-Universität Würzburg, Biocenter, Theodor-Boveri-Institute, Neurobiology and GeneticsWürzburgGermany
| | - Margret Shirinian
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of BeirutBeirutLebanon
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of GothenburgGothenburgSweden
| |
Collapse
|
27
|
Hou Y, Chu X, Park J, Zhu Q, Hussain M, Li Z, Madsen HB, Yang B, Wei Y, Wang Y, Fang EF, Croteau DL, Bohr VA. Urolithin A improves Alzheimer's disease cognition and restores mitophagy and lysosomal functions. Alzheimers Dement 2024; 20:4212-4233. [PMID: 38753870 PMCID: PMC11180933 DOI: 10.1002/alz.13847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Compromised autophagy, including impaired mitophagy and lysosomal function, plays pivotal roles in Alzheimer's disease (AD). Urolithin A (UA) is a gut microbial metabolite of ellagic acid that stimulates mitophagy. The effects of UA's long-term treatment of AD and mechanisms of action are unknown. METHODS We addressed these questions in three mouse models of AD with behavioral, electrophysiological, biochemical, and bioinformatic approaches. RESULTS Long-term UA treatment significantly improved learning, memory, and olfactory function in different AD transgenic mice. UA also reduced amyloid beta (Aβ) and tau pathologies and enhanced long-term potentiation. UA induced mitophagy via increasing lysosomal functions. UA improved cellular lysosomal function and normalized lysosomal cathepsins, primarily cathepsin Z, to restore lysosomal function in AD, indicating the critical role of cathepsins in UA-induced therapeutic effects on AD. CONCLUSIONS Our study highlights the importance of lysosomal dysfunction in AD etiology and points to the high translational potential of UA. HIGHLIGHTS Long-term urolithin A (UA) treatment improved learning, memory, and olfactory function in Alzheimer's disease (AD) mice. UA restored lysosomal functions in part by regulating cathepsin Z (Ctsz) protein. UA modulates immune responses and AD-specific pathophysiological pathways.
Collapse
Affiliation(s)
- Yujun Hou
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
- DNA Repair SectionNational Institute on AgingBaltimoreMarylandUSA
| | - Xixia Chu
- DNA Repair SectionNational Institute on AgingBaltimoreMarylandUSA
| | - Jae‐Hyeon Park
- DNA Repair SectionNational Institute on AgingBaltimoreMarylandUSA
| | - Qing Zhu
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
| | - Mansoor Hussain
- DNA Repair SectionNational Institute on AgingBaltimoreMarylandUSA
| | - Zhiquan Li
- Danish Center for Healthy Aging, ICMMUniversity of CopenhagenCopenhagenDenmark
| | | | - Beimeng Yang
- DNA Repair SectionNational Institute on AgingBaltimoreMarylandUSA
| | - Yong Wei
- DNA Repair SectionNational Institute on AgingBaltimoreMarylandUSA
| | - Yue Wang
- DNA Repair SectionNational Institute on AgingBaltimoreMarylandUSA
| | - Evandro F. Fang
- Department of Clinical Molecular BiologyUniversity of Oslo and Akershus University HospitalLørenskogNorway
- The Norwegian Centre on Healthy Ageing (NO‐Age)OsloAkershusNorway
| | - Deborah L. Croteau
- DNA Repair SectionNational Institute on AgingBaltimoreMarylandUSA
- Computational Biology & Genomics Core, LGGNational Institute on AgingBaltimoreMarylandUSA
| | - Vilhelm A. Bohr
- DNA Repair SectionNational Institute on AgingBaltimoreMarylandUSA
- Danish Center for Healthy Aging, ICMMUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
28
|
Morderer D, Wren MC, Liu F, Kouri N, Maistrenko A, Khalil B, Pobitzer N, Salemi M, Phinney BS, Dickson DW, Murray ME, Rossoll W. Probe-dependent Proximity Profiling (ProPPr) Uncovers Similarities and Differences in Phospho-Tau-Associated Proteomes Between Tauopathies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.585597. [PMID: 38585836 PMCID: PMC10996607 DOI: 10.1101/2024.03.25.585597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Tauopathies represent a diverse group of neurodegenerative disorders characterized by the abnormal aggregation of the microtubule-associated protein tau. Despite extensive research, the precise mechanisms underlying the complexity of different types of tau pathology remain incompletely understood. Here we describe an approach for proteomic profiling of aggregate-associated proteomes on slides with formalin-fixed, paraffin-embedded (FFPE) tissue that utilizes proximity labelling upon high preservation of aggregate morphology, which permits the profiling of pathological aggregates regardless of their size. To comprehensively investigate the common and unique protein interactors associated with the variety of tau lesions present across different human tauopathies, Alzheimer's disease (AD), corticobasal degeneration (CBD), Pick's disease (PiD), and progressive supranuclear palsy (PSP), were selected to represent the major tauopathy diseases. Implementation of our widely applicable Probe-dependent Proximity Profiling (ProPPr) strategy, using the AT8 antibody, permitted identification and quantification of proteins associated with phospho-tau lesions in well-characterized human post-mortem tissue. The analysis revealed both common and disease-specific proteins associated with phospho-tau aggregates, highlighting potential targets for therapeutic intervention and biomarker development. Candidate validation through high-resolution co-immunofluorescence of distinct aggregates across disease and control cases, confirmed the association of retromer complex protein VPS35 with phospho-tau lesions across the studied tauopathies. Furthermore, we discovered disease-specific associations of proteins including ferritin light chain (FTL) and the neuropeptide precursor VGF within distinct pathological lesions. Notably, examination of FTL-positive microglia in CBD astrocytic plaques indicate a potential role for microglial involvement in the pathogenesis of these tau lesions. Our findings provide valuable insights into the proteomic landscape of tauopathies, shedding light on the molecular mechanisms underlying tau pathology. This first comprehensive characterization of tau-associated proteomes across different tauopathies enhances our understanding of disease heterogeneity and provides a resource for future functional investigation, as well as development of targeted therapies and diagnostic biomarkers.
Collapse
|
29
|
Morgan GR, Carlyle BC. Interrogation of the human cortical peptidome uncovers cell-type specific signatures of cognitive resilience against Alzheimer's disease. Sci Rep 2024; 14:7161. [PMID: 38531951 DOI: 10.1038/s41598-024-57104-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Alzheimer's disease (AD) is characterised by age-related cognitive decline. Brain accumulation of amyloid-β plaques and tau tangles is required for a neuropathological AD diagnosis, yet up to one-third of AD-pathology positive community-dwelling elderly adults experience no symptoms of cognitive decline during life. Conversely, some exhibit chronic cognitive impairment in absence of measurable neuropathology, prompting interest into cognitive resilience-retained cognition despite significant neuropathology-and cognitive frailty-impaired cognition despite low neuropathology. Synapse loss is widespread within the AD-dementia, but not AD-resilient, brain. Recent evidence points towards critical roles for synaptic proteins, such as neurosecretory VGF, in cognitive resilience. However, VGF and related proteins often signal as peptide derivatives. Here, nontryptic peptidomic mass spectrometry was performed on 102 post-mortem cortical samples from individuals across cognitive and neuropathological spectra. Neuropeptide signalling proteoforms derived from VGF, somatostatin (SST) and protachykinin-1 (TAC1) showed higher abundance in AD-resilient than AD-dementia brain, whereas signalling proteoforms of cholecystokinin (CCK) and chromogranin (CHG) A/B and multiple cytoskeletal molecules were enriched in frail vs control brain. Integrating our data with publicly available single nuclear RNA sequencing (snRNA-seq) showed enrichment of cognition-related genes in defined cell-types with established links to cognitive resilience, including SST interneurons and excitatory intratelencephalic cells.
Collapse
Affiliation(s)
- G R Morgan
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, OX1 3QU, UK
| | - B C Carlyle
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, OX1 3QU, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
30
|
Wen-Jing Z, Rui-Zhi T, Si-Yuan H, Xiao-Mei D, Qiong-Dan H, Xiao-Qian Z, Wen-Hua H, Hong-Wei S, Jian L, Qiong Z, Li W. Data independent acquisition reveals in-depth serum proteome changes in uremic pruritus. Front Physiol 2024; 15:1287072. [PMID: 38577622 PMCID: PMC10991838 DOI: 10.3389/fphys.2024.1287072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/29/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction: Uremic pruritus (UP) is a prevalent symptom in patients suffering from uremia, yet its underlying etiology and mechanisms remain incompletely elucidated. Given the significant incidence of UP, identifying specific alterations in proteins present in the blood of UP patients could offer insights into the potential biological pathways associated with UP and facilitate the exploration of biomarkers. Methods: In this study, we employed LC-MS/MS-based data-independent acquisition (DIA) mode to analyze serum samples obtained from 54 UP patients categorized as DKD-UP, HN-UP, and GN-UP (n = 18 for each subgroup), along with 18 uremic patients without pruritus (Negative) and 18 CKD patients without pruritus (CKD). Through DIA mode analysis, a total of 7075 peptides and 959 proteins were quantified. Within these, we identified four upregulated and 13 downregulated Differentially Expressed Proteins (DEPs) in DKD-UP versus Negative, five upregulated and 22 downregulated DEPs in HN-UP versus Negative, and three upregulated and 23 downregulated DEPs in GN-UP versus Negative. Furthermore, we conducted an intersection analysis of the DEPs across these three comparison groups to derive a set of common DEPs (COMP). Subsequently, a total of 67 common DEPs were identified in the three UP groups when compared to the CKD group, with 40 DEPs showing upregulation and 27 DEPs displaying downregulation. Results: Following Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein-Protein Interaction (PPI) analyses, we observed that the DEPs distinguishing UP from CKD were primarily associated with mitochondrial function (MT-CYB, PRDX2, TOMM22), inflammation (CD59, CSF1), renal injury (WFDC2), and neural function (CAP1, VGF). Discussion: Our findings contribute to a potential molecular comprehension of UP pathogenesis, shedding light on the identification of these DEPs as plausible biomarkers for UP.
Collapse
Affiliation(s)
- Zhao Wen-Jing
- Research Center of Intergated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Department of Nephrology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Tan Rui-Zhi
- Research Center of Intergated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - He Si-Yuan
- School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Du Xiao-Mei
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Hu Qiong-Dan
- Research Center of Intergated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Zhang Xiao-Qian
- Research Center of Intergated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Huang Wen-Hua
- School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Su Hong-Wei
- Department of Urology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Liu Jian
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Zhang Qiong
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Wang Li
- Research Center of Intergated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
31
|
Mravinacová S, Alanko V, Bergström S, Bridel C, Pijnenburg Y, Hagman G, Kivipelto M, Teunissen C, Nilsson P, Matton A, Månberg A. CSF protein ratios with enhanced potential to reflect Alzheimer's disease pathology and neurodegeneration. Mol Neurodegener 2024; 19:15. [PMID: 38350954 PMCID: PMC10863228 DOI: 10.1186/s13024-024-00705-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Amyloid and tau aggregates are considered to cause neurodegeneration and consequently cognitive decline in individuals with Alzheimer's disease (AD). Here, we explore the potential of cerebrospinal fluid (CSF) proteins to reflect AD pathology and cognitive decline, aiming to identify potential biomarkers for monitoring outcomes of disease-modifying therapies targeting these aggregates. METHOD We used a multiplex antibody-based suspension bead array to measure the levels of 49 proteins in CSF from the Swedish GEDOC memory clinic cohort at the Karolinska University Hospital. The cohort comprised 148 amyloid- and tau-negative individuals (A-T-) and 65 amyloid- and tau-positive individuals (A+T+). An independent sample set of 26 A-T- and 26 A+T+ individuals from the Amsterdam Dementia Cohort was used for validation. The measured proteins were clustered based on their correlation to CSF amyloid beta peptides, tau and NfL levels. Further, we used support vector machine modelling to identify protein pairs, matched based on their cluster origin, that reflect AD pathology and cognitive decline with improved performance compared to single proteins. RESULTS The protein-clustering revealed 11 proteins strongly correlated to t-tau and p-tau (tau-associated group), including mainly synaptic proteins previously found elevated in AD such as NRGN, GAP43 and SNCB. Another 16 proteins showed predominant correlation with Aβ42 (amyloid-associated group), including PTPRN2, NCAN and CHL1. Support vector machine modelling revealed that proteins from the two groups combined in pairs discriminated A-T- from A+T+ individuals with higher accuracy compared to single proteins, as well as compared to protein pairs composed of proteins originating from the same group. Moreover, combining the proteins from different groups in ratios (tau-associated protein/amyloid-associated protein) significantly increased their correlation to cognitive decline measured with cognitive scores. The results were validated in an independent cohort. CONCLUSIONS Combining brain-derived proteins in pairs largely enhanced their capacity to discriminate between AD pathology-affected and unaffected individuals and increased their correlation to cognitive decline, potentially due to adjustment of inter-individual variability. With these results, we highlight the potential of protein pairs to monitor neurodegeneration and thereby possibly the efficacy of AD disease-modifying therapies.
Collapse
Affiliation(s)
- Sára Mravinacová
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Vilma Alanko
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Sofia Bergström
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Claire Bridel
- Neurochemistry Lab, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| | - Yolande Pijnenburg
- Department of Neurology, Alzheimer Centre, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| | - Göran Hagman
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Miia Kivipelto
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Ageing Epidemiology (AGE) Research Unit, Imperial College London, London, United Kingdom
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Charlotte Teunissen
- Neurochemistry Lab, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| | - Peter Nilsson
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Anna Matton
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Ageing Epidemiology (AGE) Research Unit, Imperial College London, London, United Kingdom
| | - Anna Månberg
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden.
| |
Collapse
|
32
|
Gobom J, Brinkmalm A, Brinkmalm G, Blennow K, Zetterberg H. Alzheimer's Disease Biomarker Analysis Using Targeted Mass Spectrometry. Mol Cell Proteomics 2024; 23:100721. [PMID: 38246483 PMCID: PMC10926085 DOI: 10.1016/j.mcpro.2024.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by several neuropathological changes, mainly extracellular amyloid aggregates (plaques), intraneuronal inclusions of phosphorylated tau (tangles), as well as neuronal and synaptic degeneration, accompanied by tissue reactions to these processes (astrocytosis and microglial activation) that precede neuronal network disturbances in the symptomatic phase of the disease. A number of biomarkers for these brain tissue changes have been developed, mainly using immunoassays. In this review, we discuss how targeted mass spectrometry (TMS) can be used to validate and further characterize classes of biomarkers reflecting different AD pathologies, such as tau- and amyloid-beta pathologies, synaptic dysfunction, lysosomal dysregulation, and axonal damage, and the prospect of using TMS to measure these proteins in clinical research and diagnosis. TMS advantages and disadvantages in relation to immunoassays are discussed, and complementary aspects of the technologies are discussed.
Collapse
Affiliation(s)
- Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.
| | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
33
|
Li M, Larsen PA. Single-cell sequencing of entorhinal cortex reveals widespread disruption of neuropeptide networks in Alzheimer's disease. Alzheimers Dement 2023; 19:3575-3592. [PMID: 36825405 DOI: 10.1002/alz.12979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 02/25/2023]
Abstract
INTRODUCTION Abnormalities of neuropeptides (NPs) that play important roles in modulating neuronal activities are commonly observed in Alzheimer's disease (AD). We hypothesize that NP network disruption is widespread in AD brains. METHODS Single-cell transcriptomic data from the entorhinal cortex (EC) were used to investigate the NP network disruption in AD. Bulk RNA-sequencing data generated from the temporal cortex by independent groups and machine learning were employed to identify key NPs involved in AD. The relationship between aging and AD-associated NP (ADNP) expression was studied using GTEx data. RESULTS The proportion of cells expressing NPs but not their receptors decreased significantly in AD. Neurons expressing higher level and greater diversity of NPs were disproportionately absent in AD. Increased age coincides with decreased ADNP expression in the hippocampus. DISCUSSION NP network disruption is widespread in AD EC. Neurons expressing more NPs may be selectively vulnerable to AD. Decreased expression of NPs participates in early AD pathogenesis. We predict that the NP network can be harnessed for treatment and/or early diagnosis of AD.
Collapse
Affiliation(s)
- Manci Li
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Peter A Larsen
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
34
|
Yu L, Petyuk VA, de Paiva Lopes K, Tasaki S, Menon V, Wang Y, Schneider JA, De Jager PL, Bennett DA. Associations of VGF with Neuropathologies and Cognitive Health in Older Adults. Ann Neurol 2023; 94:232-244. [PMID: 37177846 PMCID: PMC10524948 DOI: 10.1002/ana.26676] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVE VGF is proposed as a potential therapeutic target for Alzheimer's (AD) and other neurodegenerative conditions. The cell-type specific and, separately, peptide specific associations of VGF with pathologic and cognitive outcomes remain largely unknown. We leveraged gene expression and protein data from the human neocortex and investigated the VGF associations with common neuropathologies and late-life cognitive decline. METHODS Community-dwelling older adults were followed every year, died, and underwent brain autopsy. Cognitive decline was captured via annual cognitive testing. Common neurodegenerative and cerebrovascular conditions were assessed during neuropathologic evaluations. Bulk brain RNASeq and targeted proteomics analyses were conducted using frozen tissues from dorsolateral prefrontal cortex of 1,020 individuals. Cell-type specific gene expressions were quantified in a subsample (N = 424) following single nuclei RNASeq analysis from the same cortex. RESULTS The bulk brain VGF gene expression was primarily associated with AD and Lewy bodies. The VGF gene association with cognitive decline was in part accounted for by neuropathologies. Similar associations were observed for the VGF protein. Cell-type specific analyses revealed that, while VGF was differentially expressed in most major cell types in the cortex, its association with neuropathologies and cognitive decline was restricted to the neuronal cells. Further, the peptide fragments across the VGF polypeptide resembled each other in relation to neuropathologies and cognitive decline. INTERPRETATION Multiple pathways link VGF to cognitive health in older age, including neurodegeneration. The VGF gene functions primarily in neuronal cells and its protein associations with pathologic and cognitive outcomes do not map to a specific peptide. ANN NEUROL 2023;94:232-244.
Collapse
Affiliation(s)
- Lei Yu
- Rush Alzheimer’s Disease Center, Rush University Medical Center; Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center; Chicago, IL, USA
| | | | - Katia de Paiva Lopes
- Rush Alzheimer’s Disease Center, Rush University Medical Center; Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center; Chicago, IL, USA
| | - Shinya Tasaki
- Rush Alzheimer’s Disease Center, Rush University Medical Center; Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center; Chicago, IL, USA
| | - Vilas Menon
- Center for Translational and Computational Neuroimmunology, Department of Neurology & Taub Institute for Research on Alzheimer’s disease and the Aging Brain, Columbia University Irving Medical Center; New York, NY, USA
| | - Yanling Wang
- Rush Alzheimer’s Disease Center, Rush University Medical Center; Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center; Chicago, IL, USA
| | - Julie A. Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center; Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center; Chicago, IL, USA
- Department of Pathology, Rush University Medical Center; Chicago, IL, USA
| | - Philip L. De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology & Taub Institute for Research on Alzheimer’s disease and the Aging Brain, Columbia University Irving Medical Center; New York, NY, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center; Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center; Chicago, IL, USA
| |
Collapse
|
35
|
Modeste ES, Ping L, Watson CM, Duong DM, Dammer EB, Johnson ECB, Roberts BR, Lah JJ, Levey AI, Seyfried NT. Quantitative proteomics of cerebrospinal fluid from African Americans and Caucasians reveals shared and divergent changes in Alzheimer's disease. Mol Neurodegener 2023; 18:48. [PMID: 37468915 PMCID: PMC10355042 DOI: 10.1186/s13024-023-00638-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Despite being twice as likely to get Alzheimer's disease (AD), African Americans have been grossly underrepresented in AD research. While emerging evidence indicates that African Americans with AD have lower cerebrospinal fluid (CSF) levels of Tau compared to Caucasians, other differences in AD CSF biomarkers have not been fully elucidated. Here, we performed unbiased proteomic profiling of CSF from African Americans and Caucasians with and without AD to identify both common and divergent AD CSF biomarkers. METHODS Multiplex tandem mass tag-based mass spectrometry (TMT-MS) quantified 1,840 proteins from 105 control and 98 AD patients of which 100 identified as Caucasian while 103 identified as African American. We used differential protein expression and co-expression approaches to assess how changes in the CSF proteome are related to race and AD. Co-expression network analysis organized the CSF proteome into 14 modules associated with brain cell-types and biological pathways. A targeted mass spectrometry method, selected reaction monitoring (SRM), with heavy labeled internal standards was used to measure a panel of CSF module proteins across a subset of African Americans and Caucasians with or without AD. A receiver operating characteristic (ROC) curve analysis assessed the performance of each protein biomarker in differentiating controls and AD by race. RESULTS Consistent with previous findings, the increase of Tau levels in AD was greater in Caucasians than in African Americans by both immunoassay and TMT-MS measurements. CSF modules which included 14-3-3 proteins (YWHAZ and YWHAG) demonstrated equivalent disease-related elevations in both African Americans and Caucasians with AD, whereas other modules demonstrated more profound disease changes within race. Modules enriched with proteins involved with glycolysis and neuronal/cytoskeletal proteins, including Tau, were more increased in Caucasians than in African Americans with AD. In contrast, a module enriched with synaptic proteins including VGF, SCG2, and NPTX2 was significantly lower in African Americans than Caucasians with AD. Following SRM and ROC analysis, VGF, SCG2, and NPTX2 were significantly better at classifying African Americans than Caucasians with AD. CONCLUSIONS Our findings provide insight into additional protein biomarkers and pathways reflecting underlying brain pathology that are shared or differ by race.
Collapse
Affiliation(s)
- Erica S. Modeste
- School of Medicine, Department of Biochemistry, Emory University, Atlanta, GA USA
| | - Lingyan Ping
- School of Medicine, Department of Biochemistry, Emory University, Atlanta, GA USA
| | - Caroline M. Watson
- School of Medicine, Department of Neurology, Emory University, Atlanta, GA USA
| | - Duc M. Duong
- School of Medicine, Department of Biochemistry, Emory University, Atlanta, GA USA
| | - Eric B. Dammer
- School of Medicine, Department of Biochemistry, Emory University, Atlanta, GA USA
| | - Erik C. B. Johnson
- School of Medicine, Department of Neurology, Emory University, Atlanta, GA USA
| | - Blaine R. Roberts
- School of Medicine, Department of Biochemistry, Emory University, Atlanta, GA USA
| | - James J. Lah
- School of Medicine, Department of Neurology, Emory University, Atlanta, GA USA
| | - Allan I. Levey
- School of Medicine, Department of Neurology, Emory University, Atlanta, GA USA
| | - Nicholas T. Seyfried
- School of Medicine, Department of Biochemistry, Emory University, Atlanta, GA USA
- School of Medicine, Department of Neurology, Emory University, Atlanta, GA USA
| |
Collapse
|
36
|
Duarte ML, Wang M, Gomes I, Liu C, Sharma A, Fakira AK, Gupta A, Mack SM, Zhang B, Devi LA. Multiomics Analyses Identify Proline Endopeptidase-Like Protein As a Key Regulator of Protein Trafficking, a Pathway Underlying Alzheimer's Disease Pathogenesis. Mol Pharmacol 2023; 104:1-16. [PMID: 37147110 PMCID: PMC10289242 DOI: 10.1124/molpharm.122.000641] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/22/2023] [Accepted: 04/12/2023] [Indexed: 05/07/2023] Open
Abstract
Current treatments for Alzheimer's disease (AD) help reduce symptoms for a limited time but do not treat the underlying pathology. To identify potential therapeutic targets for AD, an integrative network analysis was previously carried out using 364 human postmortem control, mild cognitive impairment, and AD brains. This analysis identified proline endopeptidase-like protein (PREPL), an understudied protein, as a downregulated protein in late-onset AD patients. In this study we investigate the role of PREPL. Analyses of data from human postmortem samples and PREPL knockdown (KD) cells suggest that PREPL expression modulates pathways associated with protein trafficking, synaptic activities, and lipid metabolism. Furthermore, PREPL KD impairs cell proliferation and modulates the structure of vesicles, levels of neuropeptide-processing enzymes, and secretion of neuropeptides. In addition, decrease in PREPL levels leads to changes in the levels of a number of synaptic proteins as well as changes in the levels of secreted amyloid beta (Aβ) 42 peptide and Tau phosphorylation. Finally, we report that local decrease in PREPL levels in mouse hippocampus attenuates long-term potentiation, suggesting a role in synaptic plasticity. Together, our results indicate that PREPL affects neuronal function by modulating protein trafficking and synaptic function, an important mechanism of AD pathogenesis. SIGNIFICANCE STATEMENT: Integrative network analysis reveals proline endopeptidase-like protein (PREPL) to be downregulated in human sporadic late-onset Alzheimer's disease brains. Down regulation of PREPL leads to increases in amyloid beta secretion, Tau phosphorylation, and decreases in protein trafficking and long-term potentiation.
Collapse
Affiliation(s)
- Mariana Lemos Duarte
- Department of Pharmacological Sciences (M.L.D., I.G., C.L., A.S., A.K.F., A.G., S.M.M., L.A.D.), Department of Genetics and Genomics (M.W., B.Z.), and Department of Neurology (M.L.D.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Minghui Wang
- Department of Pharmacological Sciences (M.L.D., I.G., C.L., A.S., A.K.F., A.G., S.M.M., L.A.D.), Department of Genetics and Genomics (M.W., B.Z.), and Department of Neurology (M.L.D.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ivone Gomes
- Department of Pharmacological Sciences (M.L.D., I.G., C.L., A.S., A.K.F., A.G., S.M.M., L.A.D.), Department of Genetics and Genomics (M.W., B.Z.), and Department of Neurology (M.L.D.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Chenge Liu
- Department of Pharmacological Sciences (M.L.D., I.G., C.L., A.S., A.K.F., A.G., S.M.M., L.A.D.), Department of Genetics and Genomics (M.W., B.Z.), and Department of Neurology (M.L.D.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ali Sharma
- Department of Pharmacological Sciences (M.L.D., I.G., C.L., A.S., A.K.F., A.G., S.M.M., L.A.D.), Department of Genetics and Genomics (M.W., B.Z.), and Department of Neurology (M.L.D.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Amanda K Fakira
- Department of Pharmacological Sciences (M.L.D., I.G., C.L., A.S., A.K.F., A.G., S.M.M., L.A.D.), Department of Genetics and Genomics (M.W., B.Z.), and Department of Neurology (M.L.D.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Achla Gupta
- Department of Pharmacological Sciences (M.L.D., I.G., C.L., A.S., A.K.F., A.G., S.M.M., L.A.D.), Department of Genetics and Genomics (M.W., B.Z.), and Department of Neurology (M.L.D.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Seshat M Mack
- Department of Pharmacological Sciences (M.L.D., I.G., C.L., A.S., A.K.F., A.G., S.M.M., L.A.D.), Department of Genetics and Genomics (M.W., B.Z.), and Department of Neurology (M.L.D.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Bin Zhang
- Department of Pharmacological Sciences (M.L.D., I.G., C.L., A.S., A.K.F., A.G., S.M.M., L.A.D.), Department of Genetics and Genomics (M.W., B.Z.), and Department of Neurology (M.L.D.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lakshmi A Devi
- Department of Pharmacological Sciences (M.L.D., I.G., C.L., A.S., A.K.F., A.G., S.M.M., L.A.D.), Department of Genetics and Genomics (M.W., B.Z.), and Department of Neurology (M.L.D.), Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
37
|
Hershkovits AS, Gelley S, Hanna R, Kleifeld O, Shulman A, Fishman A. Shifting the balance: soluble ADAM10 as a potential treatment for Alzheimer's disease. Front Aging Neurosci 2023; 15:1171123. [PMID: 37266401 PMCID: PMC10229884 DOI: 10.3389/fnagi.2023.1171123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/20/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction Accumulation of amyloid β in the brain is regarded as a key initiator of Alzheimer's disease pathology. Processing of the amyloid precursor protein (APP) in the amyloidogenic pathway yields neurotoxic amyloid β species. In the non-amyloidogenic pathway, APP is processed by membrane-bound ADAM10, the main α-secretase in the nervous system. Here we present a new enzymatic approach for the potential treatment of Alzheimer's disease using a soluble form of ADAM10. Methods The ability of the soluble ADAM10 to shed overexpressed and endogenous APP was determined with an ADAM10 knockout cell line and a human neuroblastoma cell line, respectively. We further examined its effect on amyloid β aggregation by thioflavin T fluorescence, HPLC, and confocal microscopy. Using N-terminal and C-terminal enrichment proteomic approaches, we identified soluble ADAM10 substrates. Finally, a truncated soluble ADAM10, based on the catalytic domain, was expressed in Escherichia coli for the first time, and its activity was evaluated. Results The soluble enzyme hydrolyzes APP and releases the neuroprotective soluble APPα when exogenously added to cell cultures. The soluble ADAM10 inhibits the formation and aggregation of characteristic amyloid β extracellular neuronal aggregates. The proteomic investigation identified new and verified known substrates, such as VGF and N-cadherin, respectively. The truncated variant also exhibited α-secretase capacity as shown with a specific ADAM10 fluorescent substrate in addition to shedding overexpressed and endogenous APP. Discussion Our in vitro study demonstrates that exogenous treatment with a soluble variant of ADAM10 would shift the balance toward the non-amyloidogenic pathway, thus utilizing its natural neuroprotective effect and inhibiting the main neurotoxic amyloid β species. The potential of such a treatment for Alzheimer's disease needs to be further evaluated in vivo.
Collapse
Affiliation(s)
- Ayelet Sarah Hershkovits
- Department of Biotechnology and Food Engineering Technion-Israel Institute of Technology, Haifa, Israel
- The Interdisciplinary Program for Biotechnology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Sivan Gelley
- Department of Biotechnology and Food Engineering Technion-Israel Institute of Technology, Haifa, Israel
| | - Rawad Hanna
- Department of Biology Technion-Israel Institute of Technology, Haifa, Israel
| | - Oded Kleifeld
- Department of Biology Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Ayelet Fishman
- Department of Biotechnology and Food Engineering Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
38
|
Quinn J, Ethier EC, Novielli A, Malone A, Ramirez CE, Salloum L, Trombetta BA, Kivisäkk P, Bremang M, Selzer S, Fournier M, Das S, Xing Y, Arnold SE, Carlyle BC. Cerebrospinal Fluid and Brain Proteoforms of the Granin Neuropeptide Family in Alzheimer's Disease. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:649-667. [PMID: 36912488 PMCID: PMC10080684 DOI: 10.1021/jasms.2c00341] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/11/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The granin neuropeptide family is composed of acidic secretory signaling molecules that act throughout the nervous system to help modulate synaptic signaling and neural activity. Granin neuropeptides have been shown to be dysregulated in different forms of dementia, including Alzheimer's disease (AD). Recent studies have suggested that the granin neuropeptides and their protease-cleaved bioactive peptides (proteoforms) may act as both powerful drivers of gene expression and as a biomarker of synaptic health in AD. The complexity of granin proteoforms in human cerebrospinal fluid (CSF) and brain tissue has not been directly addressed. We developed a reliable nontryptic mass spectrometry assay to comprehensively map and quantify endogenous neuropeptide proteoforms in the brain and CSF of individuals diagnosed with mild cognitive impairment and dementia due to AD compared to healthy controls, individuals with preserved cognition despite AD pathology ("Resilient"), and those with impaired cognition but no AD or other discernible pathology ("Frail"). We drew associations between neuropeptide proteoforms, cognitive status, and AD pathology values. Decreased levels of VGF proteoforms were observed in CSF and brain tissue from individuals with AD compared to controls, while select proteoforms from chromogranin A showed the opposite effect. To address mechanisms of neuropeptide proteoform regulation, we showed that the proteases Calpain-1 and Cathepsin S can cleave chromogranin A, secretogranin-1, and VGF into proteoforms found in both the brain and CSF. We were unable to demonstrate differences in protease abundance in protein extracts from matched brains, suggesting that regulation may occur at the level of transcription.
Collapse
Affiliation(s)
- James
P. Quinn
- Massachusetts
General Hospital Department of Neurology, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Elizabeth C. Ethier
- Massachusetts
General Hospital Department of Neurology, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Angelo Novielli
- Massachusetts
General Hospital Department of Neurology, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Aygul Malone
- Advanced
Proteomics Facility, Department of Biochemistry, University of Oxford, Oxford, Oxfordshire OX1 3QU, United Kingdom
| | - Christopher E. Ramirez
- Massachusetts
General Hospital Department of Neurology, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Lauren Salloum
- Massachusetts
General Hospital Department of Neurology, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Bianca A. Trombetta
- Massachusetts
General Hospital Department of Neurology, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Pia Kivisäkk
- Massachusetts
General Hospital Department of Neurology, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Michael Bremang
- Proteome
Sciences LLC, Frankfurt am Main, Hessen 60438, Germany
| | - Stefan Selzer
- Proteome
Sciences LLC, Frankfurt am Main, Hessen 60438, Germany
| | - Marjorie Fournier
- Advanced
Proteomics Facility, Department of Biochemistry, University of Oxford, Oxford, Oxfordshire OX1 3QU, United Kingdom
| | - Sudeshna Das
- Massachusetts
General Hospital Department of Neurology, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Yaoyi Xing
- Department
of Physiology, Anatomy & Genetics, University
of Oxford, Oxford, Oxfordshire OX1 3QU, United Kingdom
- Kavli
Institute for Nanoscience Discovery, University
of Oxford, Oxford OX1 3QU, United
Kingdom
| | - Steven E. Arnold
- Massachusetts
General Hospital Department of Neurology, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Becky C. Carlyle
- Massachusetts
General Hospital Department of Neurology, Harvard Medical School, Boston, Massachusetts 02129, United States
- Department
of Physiology, Anatomy & Genetics, University
of Oxford, Oxford, Oxfordshire OX1 3QU, United Kingdom
- Kavli
Institute for Nanoscience Discovery, University
of Oxford, Oxford OX1 3QU, United
Kingdom
| |
Collapse
|
39
|
Gillis HL, Kalinina A, Xue Y, Yan K, Turcotte-Cardin V, Todd MAM, Young KG, Lagace D, Picketts DJ. VGF is required for recovery after focal stroke. Exp Neurol 2023; 362:114326. [PMID: 36682400 DOI: 10.1016/j.expneurol.2023.114326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/06/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
The high incidence of ischemic stroke worldwide and poor efficacy of neuroprotective drugs has increased the need for novel therapies in stroke recovery. Transcription of the neurosecretory protein VGF (non-acronym) is enhanced following ischemic stroke and proposed to be important for stroke recovery. To determine the requirement for VGF in recovery, we created Vgffl/fl:Nestin-Cre conditional knockout (Vgf cKO) mice and induced a photothrombotic focal ischemic stroke. Naïve Vgf cKO mice had significant less body weight in the absence of gross defects in brain size, cortical lamination, or deficits in locomotor activity compared to wildtype controls. Following a focal stroke, the Vgf cKO mice had greater deficits including impaired recovery of forepaw motor deficits at 2- and 4-weeks post stroke. The increase in deficits occurred in the absence of any difference in lesion size and was accompanied by a striking loss of stroke-induced migration of SVZ-derived immature neurons to the peri-infarct region. Importantly, exogenous adenoviral delivery of VGF (AdVGF) significantly improved recovery in the Vgf cKO mice and was able to rescue the immature neuron migration defect observed. Taken together, our results define a requirement for VGF in post stroke recovery and identify VGF peptides as a potential future therapeutic.
Collapse
Affiliation(s)
- Hannah L Gillis
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Departments of Biochemistry, Microbiology and Immunology, K1H 8M5, Canada
| | - Alena Kalinina
- Departments of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Yingben Xue
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Keqin Yan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Valérie Turcotte-Cardin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Departments of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Matthew A M Todd
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Departments of Biochemistry, Microbiology and Immunology, K1H 8M5, Canada
| | - Kevin G Young
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Diane Lagace
- Departments of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - David J Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Departments of Biochemistry, Microbiology and Immunology, K1H 8M5, Canada; Departments of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
40
|
Tesfaye M, Wu J, Biedrzycki RJ, Grantz KL, Joseph P, Tekola-Ayele F. Prenatal social support in low-risk pregnancy shapes placental epigenome. BMC Med 2023; 21:12. [PMID: 36617561 PMCID: PMC9827682 DOI: 10.1186/s12916-022-02701-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Poor social support during pregnancy has been linked to inflammation and adverse pregnancy and childhood health outcomes. Placental epigenetic alterations may underlie these links but are still unknown in humans. METHODS In a cohort of low-risk pregnant women (n = 301) from diverse ethnic backgrounds, social support was measured using the ENRICHD Social Support Inventory (ESSI) during the first trimester. Placental samples collected at delivery were analyzed for DNA methylation and gene expression using Illumina 450K Beadchip Array and RNA-seq, respectively. We examined association between maternal prenatal social support and DNA methylation in placenta. Associated cytosine-(phosphate)-guanine sites (CpGs) were further assessed for correlation with nearby gene expression in placenta. RESULTS The mean age (SD) of the women was 27.7 (5.3) years. The median (interquartile range) of ESSI scores was 24 (22-25). Prenatal social support was significantly associated with methylation level at seven CpGs (PFDR < 0.05). The methylation levels at two of the seven CpGs correlated with placental expression of VGF and ILVBL (PFDR < 0.05), genes known to be involved in neurodevelopment and energy metabolism. The genes annotated with the top 100 CpGs were enriched for pathways related to fetal growth, coagulation system, energy metabolism, and neurodevelopment. Sex-stratified analysis identified additional significant associations at nine CpGs in male-bearing pregnancies and 35 CpGs in female-bearing pregnancies. CONCLUSIONS The findings suggest that prenatal social support is linked to placental DNA methylation changes in a low-stress setting, including fetal sex-dependent epigenetic changes. Given the relevance of some of these changes in fetal neurodevelopmental outcomes, the findings signal important methylation targets for future research on molecular mechanisms of effect of the broader social environment on pregnancy and fetal outcomes. TRIAL REGISTRATION NCT00912132 ( ClinicalTrials.gov ).
Collapse
Affiliation(s)
- Markos Tesfaye
- Section of Sensory Science and Metabolism (SenSMet), National Institute on Alcohol Abuse and Alcoholism & National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA.,Department of Psychiatry, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Jing Wu
- Glotech, Inc., contractor for Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Richard J Biedrzycki
- Glotech, Inc., contractor for Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Katherine L Grantz
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, MD, Bethesda, USA
| | - Paule Joseph
- Section of Sensory Science and Metabolism (SenSMet), National Institute on Alcohol Abuse and Alcoholism & National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, MD, Bethesda, USA.
| |
Collapse
|
41
|
Llano DA, Devanarayan P, Devanarayan V. CSF peptides from VGF and other markers enhance prediction of MCI to AD progression using the ATN framework. Neurobiol Aging 2023; 121:15-27. [PMID: 36368195 DOI: 10.1016/j.neurobiolaging.2022.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 12/14/2022]
Abstract
The amyloid beta, tau, neurodegenerative markers framework has been proposed to serve as a system to classify and combine biomarkers for Alzheimer's Disease (AD). Although cerebrospinal (CSF) fluid AT (amyloid beta and tau)-based biomarkers have a well-established track record to distinguish AD from control subjects and to predict conversion from mild cognitive impairment (MCI) to AD, there is not an established non-tau based neurodegenerative ("N") marker from CSF. Here, we examine the ability of several candidate peptides in the CSF to serve as "N" markers to both classify disease state and predict MCI to AD conversion. We observed that although many putative N markers involved in synaptic processing and neuroinflammation were able to, when examined in isolation, distinguish MCI converters from non-converters, a derivative from VGF, when combined with AT markers, most strongly enhanced prediction of MCI to AD conversion. Low CSF VGF levels were also predictive of MCI to dementia conversion in the setting of normal AT markers, suggesting that it may serve as a very early predictor of dementia conversion. Other markers derived from neuronal pentraxin 2, GAP-43 and a 14-3-3 protein were also able to enhance MCI to AD prediction when used as a marker of neurodegeneration, but VGF had the highest predictive capacity. Thus, we propose that low levels of VGF in CSF may serve as "N" in the amyloid beta, tau, neurodegenerative markers framework to enhance the prediction of MCI to AD conversion.
Collapse
Affiliation(s)
- Daniel A Llano
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, IL, USA; Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, Urbana, IL, USA; Carle Neuroscience Institute, Urbana, IL, USA.
| | - Priya Devanarayan
- Department of Biology and Schreyer Honors College, Pennsylvania State University, University Park, PA, USA
| | - Viswanath Devanarayan
- Eisai, Inc., Nutley, NJ, USA; Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|
42
|
The Pathology of Primary Familial Brain Calcification: Implications for Treatment. Neurosci Bull 2022; 39:659-674. [PMID: 36469195 PMCID: PMC10073384 DOI: 10.1007/s12264-022-00980-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/10/2022] [Indexed: 12/08/2022] Open
Abstract
AbstractPrimary familial brain calcification (PFBC) is an inherited neurodegenerative disorder mainly characterized by progressive calcium deposition bilaterally in the brain, accompanied by various symptoms, such as dystonia, ataxia, parkinsonism, dementia, depression, headaches, and epilepsy. Currently, the etiology of PFBC is largely unknown, and no specific prevention or treatment is available. During the past 10 years, six causative genes (SLC20A2, PDGFRB, PDGFB, XPR1, MYORG, and JAM2) have been identified in PFBC. In this review, considering mechanistic studies of these genes at the cellular level and in animals, we summarize the pathogenesis and potential preventive and therapeutic strategies for PFBC patients. Our systematic analysis suggests a classification for PFBC genetic etiology based on several characteristics, provides a summary of the known composition of brain calcification, and identifies some potential therapeutic targets for PFBC.
Collapse
|
43
|
Gómez de San José N, Goossens J, Al Shweiki MR, Halbgebauer S, Oeckl P, Steinacker P, Danzer KM, Graf H, Schönfeldt-Lecuona C, Belbin O, Lleó A, Vanmechelen E, Otto M. Glutamate receptor 4 as a fluid biomarker for the diagnosis of psychiatric disorders. J Psychiatr Res 2022; 156:390-397. [PMID: 36323141 DOI: 10.1016/j.jpsychires.2022.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/02/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Psychiatric disorders are widely underreported diseases, especially in their early stages. So far, there is no fluid biomarker to confirm the diagnosis of these disorders. Proteomics data suggest the synaptic protein glutamate receptor 4 (GluR4), part of the AMPA receptor, as a potential diagnostic biomarker of major depressive disorder (MDD). A novel sandwich ELISA was established and analytically validated to detect GluR4 in cerebrospinal fluid (CSF) samples. A total of 85 subjects diagnosed with MDD (n = 36), bipolar disorder (BD, n = 12), schizophrenia (SCZ, n = 12) and neurological controls (CON, n = 25) were analysed. The data exhibited a significant correlation (r = 0.74; CI:0.62 to 0.82; p < 0.0001) with the antibody-free multiple reaction monitoring (MRM) mass spectrometry (MS) data. CSF GluR4 levels were lower in MDD (p < 0.002) and BD (p = 0.012) than in CON. Moreover, subjects with SCZ described a trend towards lower levels than CON (p = 0.13). The novel GluR4 ELISA may favour the clinical application of this protein as a potential diagnostic biomarker of psychiatric disorders and may facilitate the understanding of the pathophysiological mechanisms behind these disorders.
Collapse
Affiliation(s)
| | | | | | - Steffen Halbgebauer
- Department of Neurology, University of Ulm, 89075, Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE E.V.), Ulm, Germany.
| | - Patrick Oeckl
- Department of Neurology, University of Ulm, 89075, Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE E.V.), Ulm, Germany.
| | - Petra Steinacker
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| | - Karin M Danzer
- Department of Neurology, University of Ulm, 89075, Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE E.V.), Ulm, Germany.
| | - Heiko Graf
- Department of Psychiatry and Psychotherapy III, University of Ulm, 89075, Ulm, Germany.
| | | | - Olivia Belbin
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Sant Antoni Maria Claret, 167, 08025, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.
| | - Alberto Lleó
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Sant Antoni Maria Claret, 167, 08025, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.
| | | | - Markus Otto
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| |
Collapse
|
44
|
Kishi JY, Liu N, West ER, Sheng K, Jordanides JJ, Serrata M, Cepko CL, Saka SK, Yin P. Light-Seq: light-directed in situ barcoding of biomolecules in fixed cells and tissues for spatially indexed sequencing. Nat Methods 2022; 19:1393-1402. [PMID: 36216958 PMCID: PMC9636025 DOI: 10.1038/s41592-022-01604-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/10/2022] [Indexed: 11/21/2022]
Abstract
We present Light-Seq, an approach for multiplexed spatial indexing of intact biological samples using light-directed DNA barcoding in fixed cells and tissues followed by ex situ sequencing. Light-Seq combines spatially targeted, rapid photocrosslinking of DNA barcodes onto complementary DNAs in situ with a one-step DNA stitching reaction to create pooled, spatially indexed sequencing libraries. This light-directed barcoding enables in situ selection of multiple cell populations in intact fixed tissue samples for full-transcriptome sequencing based on location, morphology or protein stains, without cellular dissociation. Applying Light-Seq to mouse retinal sections, we recovered thousands of differentially enriched transcripts from three cellular layers and discovered biomarkers for a very rare neuronal subtype, dopaminergic amacrine cells, from only four to eight individual cells per section. Light-Seq provides an accessible workflow to combine in situ imaging and protein staining with next generation sequencing of the same cells, leaving the sample intact for further analysis post-sequencing.
Collapse
Affiliation(s)
- Jocelyn Y Kishi
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | - Ninning Liu
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Emma R West
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Kuanwei Sheng
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Jack J Jordanides
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Matthew Serrata
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Constance L Cepko
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| | - Sinem K Saka
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
45
|
Joshi R, Salton SRJ. Neurotrophin Crosstalk in the Etiology and Treatment of Neuropsychiatric and Neurodegenerative Disease. Front Mol Neurosci 2022; 15:932497. [PMID: 35909451 PMCID: PMC9335126 DOI: 10.3389/fnmol.2022.932497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/23/2022] [Indexed: 12/27/2022] Open
Abstract
This article reviews the current progress in our understanding of the mechanisms by which growth factors, including brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF), and select neurotrophin-regulated gene products, such as VGF (non-acronymic) and VGF-derived neuropeptides, function in the central nervous system (CNS) to modulate neuropsychiatric and neurodegenerative disorders, with a discussion of the possible therapeutic applications of these growth factors to major depressive disorder (MDD) and Alzheimer’s disease (AD). BDNF and VEGF levels are generally decreased regionally in the brains of MDD subjects and in preclinical animal models of depression, changes that are associated with neuronal atrophy and reduced neurogenesis, and are reversed by conventional monoaminergic and novel ketamine-like antidepressants. Downstream of neurotrophins and their receptors, VGF was identified as a nerve growth factor (NGF)- and BDNF-inducible secreted protein and neuropeptide precursor that is produced and trafficked throughout the CNS, where its expression is greatly influenced by neuronal activity and exercise, and where several VGF-derived peptides modulate neuronal activity, function, proliferation, differentiation, and survival. Moreover, levels of VGF are reduced in the CSF of AD subjects, where it has been repetitively identified as a disease biomarker, and in the hippocampi of subjects with MDD, suggesting possible shared mechanisms by which reduced levels of VGF and other proteins that are similarly regulated by neurotrophin signaling pathways contribute to and potentially drive the pathogenesis and progression of co-morbid neuropsychiatric and neurodegenerative disorders, particularly MDD and AD, opening possible therapeutic windows.
Collapse
Affiliation(s)
- Rajeev Joshi
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stephen R. J. Salton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, United States
- Brookdale Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- *Correspondence: Stephen R. J. Salton,
| |
Collapse
|
46
|
Podvin S, Jiang Z, Boyarko B, Rossitto LA, O’Donoghue A, Rissman RA, Hook V. Dysregulation of Neuropeptide and Tau Peptide Signatures in Human Alzheimer's Disease Brain. ACS Chem Neurosci 2022; 13:1992-2005. [PMID: 35758417 PMCID: PMC9264367 DOI: 10.1021/acschemneuro.2c00222] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Synaptic dysfunction and loss occur in Alzheimer's disease (AD) brains, which results in cognitive deficits and brain neurodegeneration. Neuropeptides comprise the major group of synaptic neurotransmitters in the nervous system. This study evaluated neuropeptide signatures that are hypothesized to differ in human AD brain compared to age-matched controls, achieved by global neuropeptidomics analysis of human brain cortex synaptosomes. Neuropeptidomics demonstrated distinct profiles of neuropeptides in AD compared to controls consisting of neuropeptides derived from chromogranin A (CHGA) and granins, VGF (nerve growth factor inducible), cholecystokinin, and others. The differential neuropeptide signatures indicated differences in proteolytic processing of their proneuropeptides. Analysis of cleavage sites showed that dibasic residues at the N-termini and C-termini of neuropeptides were the main sites for proneuropeptide processing, and data also showed that the AD group displayed differences in preferred residues adjacent to the cleavage sites. Notably, tau peptide signatures differed in the AD compared to age-matched control human brain cortex synaptosomes. Unique tau peptides were derived from the tau protein through proteolysis using similar and differential cleavage sites in the AD brain cortex compared to the control. Protease profiles differed in the AD compared to control, indicated by proteomics data. Overall, these results demonstrate that dysregulation of neuropeptides and tau peptides occurs in AD brain cortex synaptosomes compared to age-matched controls, involving differential cleavage site properties for proteolytic processing of precursor proteins. These dynamic changes in neuropeptides and tau peptide signatures may be associated with the severe cognitive deficits of AD.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Zhenze Jiang
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Ben Boyarko
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Leigh-Ana Rossitto
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, California 92093, United States
| | - Anthony O’Donoghue
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Robert A. Rissman
- Department
of Neurosciences, University of California
San Diego, La Jolla, California 92093, United States
- Veterans
Affairs San Diego Health System, La Jolla, California 92093, United States
| | - Vivian Hook
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
47
|
Wang Y, Qin X, Han Y, Li B. VGF: A prospective biomarker and therapeutic target for neuroendocrine and nervous system disorders. Biomed Pharmacother 2022; 151:113099. [PMID: 35594706 DOI: 10.1016/j.biopha.2022.113099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022] Open
Abstract
Neuroendocrine regulatory polypeptide VGF (nerve growth factor inducible) was firstly found in the rapid induction of nerve growth factor on PC12 cells. It was selectively distributed in neurons and many neuroendocrine tissues. This paper reviewed the latest literatures on the gene structure, transcriptional regulation, protein processing, distribution and potential receptors of VGF. The neuroendocrine roles of VGF and its derived polypeptides in regulating energy, water electrolyte balance, circadian rhythm and reproductive activities were also summarized. Furthermore, based on the experimental evidence in vivo and in vitro, dysregulation of VGF in different neuroendocrine diseases and the possible mechanism mediated by VGF polypeptides were discussed. We next discussed the potential as the clinical diagnosis and therapy for VGF related diseases in the future.
Collapse
Affiliation(s)
- Yibei Wang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, China Medical University, Shenyang, Liaoning Province, China.
| | - Xiaoxue Qin
- Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, China Medical University, Shenyang, Liaoning Province, China.
| | - Yun Han
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Bo Li
- Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
48
|
Muqaku B, Oeckl P. Peptidomic Approaches and Observations in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23137332. [PMID: 35806335 PMCID: PMC9266836 DOI: 10.3390/ijms23137332] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/16/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Mass spectrometry (MS), with its immense technological developments over the last two decades, has emerged as an unavoidable technique in analyzing biomolecules such as proteins and peptides. Its multiplexing capability and explorative approach make it a valuable tool for analyzing complex clinical samples concerning biomarker research and investigating pathophysiological mechanisms. Peptides regulate various biological processes, and several of them play a critical role in many disease-related pathological conditions. One important example in neurodegenerative diseases is the accumulation of amyloid-beta peptides (Aβ) in the brain of Alzheimer’s disease (AD) patients. When investigating brain function and brain-related pathologies, such as neurodegenerative diseases, cerebrospinal fluid (CSF) represents the most suitable sample because of its direct contact with the brain. In this review, we evaluate publications applying peptidomics analysis to CSF samples, focusing on neurodegenerative diseases. We describe the methodology of peptidomics analysis and give an overview of the achievements of CSF peptidomics over the years. Finally, publications reporting peptides regulated in AD are discussed.
Collapse
Affiliation(s)
- Besnik Muqaku
- German Center for Neurodegenerative Diseases (DZNE e.V.), 89081 Ulm, Germany;
| | - Patrick Oeckl
- German Center for Neurodegenerative Diseases (DZNE e.V.), 89081 Ulm, Germany;
- Department of Neurology, Ulm University Hospital, 89081 Ulm, Germany
- Correspondence: ; Tel.: +49-731-500-63143
| |
Collapse
|
49
|
Carlyle BC, Kitchen RR, Mattingly Z, Celia AM, Trombetta BA, Das S, Hyman BT, Kivisäkk P, Arnold SE. Technical Performance Evaluation of Olink Proximity Extension Assay for Blood-Based Biomarker Discovery in Longitudinal Studies of Alzheimer's Disease. Front Neurol 2022; 13:889647. [PMID: 35734478 PMCID: PMC9207419 DOI: 10.3389/fneur.2022.889647] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/13/2022] [Indexed: 11/28/2022] Open
Abstract
The core Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers; amyloid-β (Aß), total tau (t-tau), and phosphorylated tau (p-tau181), are strong indicators of the presence of AD pathology, but do not correlate well with disease progression, and can be difficult to implement in longitudinal studies where repeat biofluid sampling is required. As a result, blood-based biomarkers are increasingly being sought as alternatives. In this study, we aimed to evaluate a promising blood biomarker discovery technology, Olink Proximity Extension Assays for technical reproducibility characteristics in order to highlight the advantages and disadvantages of using this technology in biomarker discovery in AD. We evaluated the performance of five Olink Proteomic multiplex proximity extension assays (PEA) in plasma samples. Three technical control samples included on each plate allowed calculation of technical variability. Biotemporal stability was measured in three sequential annual samples from 54 individuals with and without AD. Coefficients of variation (CVs), analysis of variance (ANOVA), and variance component analyses were used to quantify technical and individual variation over time. We show that overall, Olink assays are technically robust, with the largest experimental variation stemming from biological differences between individuals for most analytes. As a powerful illustration of one of the potential pitfalls of using a multi-plexed technology for discovery, we performed power calculations using the baseline samples to demonstrate the size of study required to overcome the need for multiple test correction with this technology. We show that the power of moderate effect size proteins was strongly reduced, and as a result investigators should strongly consider pooling resources to perform larger studies using this multiplexed technique where possible.
Collapse
Affiliation(s)
- Becky C. Carlyle
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Robert R. Kitchen
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Zoe Mattingly
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Amanda M. Celia
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Bianca A. Trombetta
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Bradley T. Hyman
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Pia Kivisäkk
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Steven E. Arnold
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- *Correspondence: Steven E. Arnold
| |
Collapse
|
50
|
Santana DA, Bedrat A, Puga RD, Turecki G, Mechawar N, Faria TC, Gigek CO, Payão SL, Smith MA, Lemos B, Chen ES. The role of H3K9 acetylation and gene expression in different brain regions of Alzheimer's disease patients. Epigenomics 2022; 14:651-670. [PMID: 35588246 DOI: 10.2217/epi-2022-0096] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: To evaluate H3K9 acetylation and gene expression profiles in three brain regions of Alzheimer's disease (AD) patients and elderly controls, and to identify AD region-specific abnormalities. Methods: Brain samples of auditory cortex, hippocampus and cerebellum from AD patients and controls underwent chromatin immunoprecipitation sequencing, RNA sequencing and network analyses. Results: We found a hyperacetylation of AD cerebellum and a slight hypoacetylation of AD hippocampus. The transcriptome revealed differentially expressed genes in the hippocampus and auditory cortex. Network analysis revealed Rho GTPase-mediated mechanisms. Conclusions: These findings suggest that some crucial mechanisms, such as Rho GTPase activity and cytoskeletal organization, are differentially dysregulated in brain regions of AD patients at the epigenetic and transcriptomic levels, and might contribute toward future research on AD pathogenesis.
Collapse
Affiliation(s)
- Daliléia A Santana
- Department of Morphology & Genetics, Universidade Federal de São Paulo (UNIFESP), São Paulo,SP, 04023-062, Brazil
| | - Amina Bedrat
- Department of Environmental Health & Molecular & Integrative Physiological Sciences Program, Harvard TH Chan School of Public Health, Boston, MA 02115-5810, USA
| | - Renato D Puga
- Hermes Pardini Institute, São Paulo, SP, 04038-030, Brazil
| | - Gustavo Turecki
- Department of Psychiatry, Douglas Hospital Research Center, McGill University, Montreal, QC, H4H1R3, Canada
| | - Naguib Mechawar
- Department of Psychiatry, Douglas Hospital Research Center, McGill University, Montreal, QC, H4H1R3, Canada
| | - Tathyane C Faria
- Department of Morphology & Genetics, Universidade Federal de São Paulo (UNIFESP), São Paulo,SP, 04023-062, Brazil
| | - Carolina O Gigek
- Department of Pathology, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, 04023-062, Brazil
| | - Spencer Lm Payão
- Department of Genetics, Blood Center, Faculdade de Medicina de Marília (FAMEMA), Marília, SP, 17519-050, Brazil
| | - Marília Ac Smith
- Department of Morphology & Genetics, Universidade Federal de São Paulo (UNIFESP), São Paulo,SP, 04023-062, Brazil
| | - Bernardo Lemos
- Department of Environmental Health & Molecular & Integrative Physiological Sciences Program, Harvard TH Chan School of Public Health, Boston, MA 02115-5810, USA
| | - Elizabeth S Chen
- Department of Morphology & Genetics, Universidade Federal de São Paulo (UNIFESP), São Paulo,SP, 04023-062, Brazil.,Department of Environmental Health & Molecular & Integrative Physiological Sciences Program, Harvard TH Chan School of Public Health, Boston, MA 02115-5810, USA
| |
Collapse
|