1
|
Zhu L, Zhao Y, Zhou M, Guo X, Zhang Y, Liu D, Guo X. VDAC2 Mediates the Apoptosis of Cashmere Goat Hair Follicle Stem Cells Through the P53 Signaling Pathway. Animals (Basel) 2025; 15:1671. [PMID: 40509137 PMCID: PMC12153577 DOI: 10.3390/ani15111671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/24/2025] [Accepted: 06/03/2025] [Indexed: 06/16/2025] Open
Abstract
Hair follicle stem cells (HFSCs) are pluripotent stem cells located in the bulges of hair follicles. Apoptosis regulates tissue homeostasis by eliminating unnecessary or damaged cells during development and aging. VDAC2, located in the outer mitochondrial membrane (MOM), is a key apoptosis regulator, but its role in cashmere goat hair follicles remains unclear. In previous studies, through proteomic sequencing, we found that VDAC2 was significantly differentially expressed in the anagen, catagen, and telogen phases of the hair follicles of Albas cashmere goats. This study aimed to explore the role of VDAC2 in secondary hair follicle stem cells (SHFSCs) and preliminarily investigate its regulatory mechanism through RNA-seq. Overexpression of VDAC2 promoted apoptosis in SHFSCs, while knockdown had the opposite effect. RNA-seq analysis, together with expression validation of downstream genes, indicates that the P53 signaling pathway may be involved in VDAC2-mediated SHFSC regulation. RT-qPCR and Western blotting confirmed that VDAC2 activated the P53 signaling pathway in SHFSCs. Furthermore, the use of a P53 inhibitor after VDAC2 overexpression partially rescued the apoptosis of cells caused by VDAC2. These results demonstrate that VDAC2 plays an important role in SHFSC apoptosis. Our findings greatly enhance our understanding of the role of VDAC2 in SHFSC apoptosis and hair follicle growth.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xudong Guo
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia Univesity, Hohhot 010021, China; (L.Z.); (Y.Z.); (M.Z.); (X.G.); (Y.Z.); (D.L.)
| |
Collapse
|
2
|
Wang H, Wang Y, Li X, Ma J, Hu Z, Qu Q, Miao Y. Ergothioneine regulates the paracrine of dermal papilla cells through SIRT1/Nrf2 pathway to antagonize oxidative stress and natural hair follicle aging. Free Radic Biol Med 2025:S0891-5849(25)00725-7. [PMID: 40449809 DOI: 10.1016/j.freeradbiomed.2025.05.427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/20/2025] [Accepted: 05/29/2025] [Indexed: 06/03/2025]
Abstract
Hair graying and loss are significant indicators of aging, and oxidative stress plays an essential role in this progression. Ergothioneine (EGT), potent antioxidant from edible fungi and certain prokaryotes, regulates the antioxidant defense system. However, its anti-aging effects on hair follicles (HFs) are remain obscure. We used dermal papilla cells (DPCs) co-culture system, HFs organ culture system, aged mice and H2O2-induced gray hair mice to explore the antioxidative functions and mechanisms of EGT on HFs. Research demonstrated that EGT mitigated H2O2-induced DPCs damage, reduced the secretion of inflammatory factors (IL-6, IL-1β, and TNF-α) and enhanced the production of pigmentation promoting factors (SCF and SDF1) through the SIRT1/Nrf2 pathway in DPCs. In vitro experiments of co-culture system indicated that EGT-treated DPCs remarkably alleviated oxidative damages and promoted cell proliferation in A-375 and HaCaT. Furthermore, it increased tyrosinase activity, melanin content and the expression of key melanin synthesis genes in A-375. Meanwhile, it promoted the expression of K19 and K14 in HaCaT. In vivo experiments revealed that EGT exhibited excellent effects on reducing pigmentation disfunction and hair loss in aged mice and H2O2-induced gray hair mice. In the HFs organ culture, the EGT promoted hair growth and pigmentation via SIRT1/Nrf2 partly. Our research indicated that EGT had potent antioxidant and anti-aging functions for HFs. This not only provided new applications for EGT but also opened up new therapeutic avenues for hair aging.
Collapse
Affiliation(s)
- Hailin Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yueying Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xin Li
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jiayang Ma
- The First Clinical Medical College, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Qian Qu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
3
|
Pham TTQ, Kuo YC, Chang WL, Weng HJ, Huang YH. Double-sided niche regulation in skin stem cell and cancer: mechanisms and clinical applications. Mol Cancer 2025; 24:147. [PMID: 40399946 PMCID: PMC12093937 DOI: 10.1186/s12943-025-02289-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/03/2025] [Indexed: 05/23/2025] Open
Abstract
The niche microenvironment plays a crucial role in regulating the fate of normal skin stem cells (SSCs) and cancer stem cells (CSCs). Therapeutically targeting the CSC niche holds promise as an effective strategy; however, the dual effects of shared SSC niche signaling in CSCs have contributed to the aggressive characteristics of tumors and poor survival rates in skin cancer patients. The lack of a clear underlying mechanism has significantly hindered drug development for effective treatment. This article explores recent advances in understanding how niche factors regulate cell fate determination between skin stem cells and skin CSCs, along with their clinical implications. The dual roles of key components of the adhesive niche, including the dermo-epidermal junction and adherens junction, various cell types-especially immune cells and fibroblasts-as well as major signaling pathways such as Sonic hedgehog (Shh), Wingless-related integration site (Wnt)/β-catenin, YAP (Yes-associated protein)/TAZ (transcriptional coactivator with PDZ-binding motif), and Notch, are highlighted. Additionally, recent advances in clinical trials and drug development targeting these pathways are discussed. Overall, this review provides valuable insights into the complex interactions between skin cancer stem cells and their microenvironment, laying the groundwork for future research and clinical strategies.
Collapse
Affiliation(s)
- Trang Thao Quoc Pham
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yung-Che Kuo
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Wei-Ling Chang
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hao-Jui Weng
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Department of Dermatology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, 23561, Taiwan.
- Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Yen-Hua Huang
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
4
|
Elkoshi Z. New insights into the phenomenon of remissions and relapses in autoimmune diseases and the puzzle of benign autoantibodies in healthy individuals. Front Immunol 2025; 16:1522356. [PMID: 40416990 PMCID: PMC12098588 DOI: 10.3389/fimmu.2025.1522356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/03/2025] [Indexed: 05/27/2025] Open
Abstract
The onset and relapse of autoimmune diseases (AIDs) are triggered by autoimmune attacks on target tissues. However, symptoms are unlikely to appear if damaged cells are rapidly replaced. Addressing the implications of this premise, the present work examines the balance between target tissue destruction and recovery rates as a key factor in the mechanisms of remissions and relapses in AIDs. The theory, supported by published clinical data, suggests that remissions are improbable in AIDs characterized by slow target tissue recovery. Conversely, a high recovery rate is a necessary (though not sufficient) condition for cycles of remission and relapse in AIDs. A high recovery rate of target tissue explains the tendency for remitting-relapsing disease, the likelihood of detecting autoantibodies in healthy individuals and the responsiveness to immunosuppressive drug treatments. Analyzing specific AIDs through the balance of tissue destruction and recovery yields several insights. For example, the difference between androgenic alopecia, a non-remitting-relapsing disease and alopecia areata, a remitting-relapsing AID, is elucidated. A new mechanism underlying relapses and remissions in alopecia areata based on hair follicle regeneration rate is proposed. It is suggested that mild Graves' disease and remitting Hashimoto's thyroiditis would be responsive to corticosteroids or immunosuppressant treatment, unlike more severe forms of these diseases. Additionally, it is proposed that the transition from remitting-relapsing multiple sclerosis to secondary progressive multiple sclerosis is associated with the depletion of brain compensatory reserves. Notably, it is concluded that exercise will not play a neuroprotective role in secondary progressive multiple sclerosis.
Collapse
Affiliation(s)
- Zeev Elkoshi
- Research and Development Department, Taro Pharmaceutical Industries Ltd, Haifa, Israel
| |
Collapse
|
5
|
Li Y, Ao Y, Xie X, Ulan T, Liu D, Guo X. Fgf21 Deficiency Delays Hair Follicle Cycling and Modulates miRNA-Target Gene Interactions in Mice. BIOLOGY 2025; 14:526. [PMID: 40427715 PMCID: PMC12109541 DOI: 10.3390/biology14050526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/03/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025]
Abstract
Fibroblast growth factor 21 (Fgf21) is a key regulator of hair follicle development and cycling. Although microRNAs (miRNAs) are involved in this process, the specific mechanisms through which Fgf21 regulates hair follicle growth remain unclear. This study investigates the role of Fgf21 and its associated miRNAs in hair follicle growth and development. Using CRISPR/Cas9, we generated Fgf21 knockout mice (Fgf21-/-), which exhibited a delayed transition from the telogen to anagen phases compared to wild-type (WT) mice. miRNA sequencing identified differentially expressed miRNAs in Fgf21-/- mice, with dual-luciferase assays confirming that miR-134-5p directly targets vascular endothelial zinc finger 1 (Vezf1) and miR-136-5p targets mitogen-activated protein kinase kinase kinase 1 (Map3k1). Real-time qPCR analysis revealed that Vezf1 and Map3k1 expression was higher in Fgf21-/- mice than in WT mice during catagen, but lower during telogen. These findings indicate that Fgf21 plays a critical role in regulating hair follicle growth and may modulate Vezf1 and Map3k1 expression through miRNAs. This study provides novel insights into the molecular regulation of hair follicle growth and suggests potential therapeutic strategies for hair follicle-related disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Xudong Guo
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010031, China; (Y.L.); (Y.A.); (X.X.); (T.U.); (D.L.)
| |
Collapse
|
6
|
Han XY, Liu JN, Sun NX, Zhang YX, Bai HB, Song WG, Hu X, Liang H, Miao X, He YM, Liu DJ, Guo XD. PSAT1 regulates hair follicle growth and stem cell behavior in cashmere goats. BMC Vet Res 2025; 21:277. [PMID: 40234836 PMCID: PMC12001598 DOI: 10.1186/s12917-025-04736-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 04/03/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND The Arbas Cashmere Goat from Inner Mongolia is renowned for its superior-quality cashmere, which is primarily produced by secondary hair follicles (SHFs). Secondary hair follicle stem cells (SHFSCs) are critical regulators of SHF growth and development. However, the specific regulatory mechanisms of phosphoserine aminotransferase 1 (PSAT1) in SHFSCs remain unclear. This study aimed to examine the expression pattern of the PSAT1 gene during SHF cycle transitions in cashmere goats and analyze its effects on SHFSC survival and wound healing. RESULTS PSAT1 expression was significantly higher in the anagen phase than in the telogen phase, and was predominantly localized to the bulge region. Functional analyses revealed that elevated PSAT1 expression inhibited SHFSC survival and delayed wound healing; on the other hand, a reduced expression promoted SHFSC survival and accelerated healing. Transcriptomic profiling further demonstrated that PSAT1 expression levels markedly altered the gene expression landscape of SHFSCs. Notably, key signaling pathways essential for hair follicle growth and development, such as Wnt/β-catenin, MAPK, and TGF-β, were significantly affected by PSAT1 modulation. CONCLUSIONS This study highlights PSAT1 as a critical regulator of SHFSC function in cashmere goats, affecting both cellular survival and regenerative capacity. Through its modulation of multiple signaling pathways, PSAT1 plays a pivotal role in the SHF cycle and may serve as a potential molecular target for improving cashmere fiber production.
Collapse
Affiliation(s)
- Xiao-Yu Han
- Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Jia-Ning Liu
- Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Nan-Xiang Sun
- Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Yin-Xian Zhang
- Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Hao-Bing Bai
- Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
- Inner Mongolia People's Hospital NHC Key Laboratory of Diagnosis & Treatment of COPD/Inner Mongolia Key Laboratory of Respiratory Diseases, Hohhot, 010000, China
| | - Wei-Guo Song
- Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Xiao Hu
- Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
- Medical Engineering Department of Inner Mongolia People's Hospital, Hohhot, 010000, China
| | - Hao Liang
- Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Xiong Miao
- Agriculture and Animal Husbandry Technology Extension Center, Etuoke Banner, 016100, China
| | - Yun-Mei He
- Agriculture and Animal Husbandry Technology Extension Center, Etuoke Banner, 016100, China
| | - Dong-Jun Liu
- Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Xu-Dong Guo
- Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China.
| |
Collapse
|
7
|
Han X, Gao G, Sun N, Dai B, Ren L, Bai H, Liu J, Liu J, Zhao H, Liu D. Comparative proteomic analysis of the telogen-to-anagen transition in cashmere goat secondary hair follicles. Front Vet Sci 2025; 12:1542682. [PMID: 40070920 PMCID: PMC11894581 DOI: 10.3389/fvets.2025.1542682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/20/2025] [Indexed: 03/14/2025] Open
Abstract
Secondary hair follicles (SHFs) in cashmere goats produce high-value cashmere fibers, which cyclic regulation is critical for optimizing cashmere yield and quality. This study explores the phenotypic changes and differential protein expression profiles involved in the telogen-to-anagen transition of SHFs. Through histological observations, proteomic analyses, and immunohistochemical validation, we identified key molecular features and regulatory pathways underlying SHF cyclic renewal. Histological analysis showed that telogen-phase SHFs exhibit a reduced volume, decreased dermal papilla cell (DPC) and hair matrix cell (HMC) activity, compact structure, and superficial localization in the dermis. Anagen-phase SHFs exhibit significantly increased volume, deeper dermal penetration, and active cell proliferation. Proteomic analysis identified 3,654 proteins in skin samples, with 458 differentially expressed proteins (DEPs) significantly associated with biological processes such as cell adhesion, signal transduction, protein synthesis, and metabolism. These DEPs were enriched in key regulatory pathways, including Notch, Wnt, Jak-STAT, PI3K-Akt, and ECM-receptor interaction. Protein-protein interaction analysis identified A Disintegrin and Metalloproteinase Domain 17 (ADAM17), Secreted Frizzled-Related Protein 1 (SFRP1), and Protein Phosphatase 1 Catalytic Subunit Alpha (PPP1CA) as core regulators of SHF cyclic transitions. Validation by RT-qPCR, Western blot, and immunohistochemical analyses confirmed that ADAM17, SFRP1, and PPP1CA were predominantly localized in functional regions, including the outer root sheath (ORS), dermal papilla (DP), and hair matrix (HM). Their expression levels were significantly enhanced during anagen. ADAM17 is suggested to promote the growth of SHFs by regulating ORS cells proliferation and mediating signal transduction in DPCs, while SFRP1, as a modulator of the Wnt signaling pathway, likely supports SHFs growth and regeneration by modulating the activity of Secondary hair follicle stem cells (SHFSCs) and promoting the differentiation of HMCs. PPP1CA may enhance cell proliferation and metabolic activity by modulating phosphorylation states. In conclusion, this study identifies key molecular factors and pathways driving the telogen-to-anagen transition in cashmere goat SHFs. It emphasizes the roles of ADAM17, SFRP1, and PPP1CA in SHF renewal and offers insights into SHF development mechanisms and cashmere fiber improvement.
Collapse
Affiliation(s)
- Xiaoyu Han
- Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Guizhen Gao
- Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
- Peking University Cancer Hospital, Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Nanxiang Sun
- Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Bai Dai
- Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
- Reproductive Medicine Center, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Liqing Ren
- Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Haobing Bai
- Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
- Inner Mongolia People’s Hospital NHC Key Laboratory of Diagnosis and Treatment of COPD, Inner Mongolia Key Laboratory of Respiratory Diseases, Hohhot, China
| | - Jianing Liu
- Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jie Liu
- Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
- Tongliao Institute of Agriculture and Animal Husbandry, Tongliao, China
| | - Hongyan Zhao
- Agriculture and Animal Husbandry Technology Extension Center, Etuoke Banner, China
| | - Dongjun Liu
- Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
8
|
Chu X, Zhou Z, Qian X, Shen H, Cheng H, Zhang J. Functional regeneration strategies of hair follicles: advances and challenges. Stem Cell Res Ther 2025; 16:77. [PMID: 39985119 PMCID: PMC11846195 DOI: 10.1186/s13287-025-04210-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/29/2025] [Indexed: 02/24/2025] Open
Abstract
Hair follicles are essential appendages of human skin that function in protection, sensation, thermoregulation and social interactions. The multicellular components, particularly the dermal papilla, matrix and bulge housing stem cells, enable cyclic hair growth postnatally. However, miniaturization and loss of hair follicles can occur in the context of ageing, trauma and various alopecia-related diseases. Conventional treatments involve the redistribution of existing follicles, which may not be viable in patients lacking follicular resources. Recent progress in the comprehension of morphogenesis and the development of biomaterials has significantly advanced follicle reconstruction, incorporating organ germ assembling, stem cell induction and bioprinting techniques. Despite these advancements, fully restoring hair follicles remains challenging due to the complexities of replicating embryonic signals and sustaining growth cycles. Identifying suitable cell sources for clinical applications also presents a hurdle. Here, we retrospect the progress made in the field of hair follicle regeneration, aiming to offer an exhaustive analysis on the benefits and limitations of these methods, and to foster the development of innovative solutions.
Collapse
Affiliation(s)
- Xi Chu
- Department of Plastic and Cosmetic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, 261 Huansha Road, Hangzhou, 310000, Zhejiang, China
| | - Zhentao Zhou
- Department of Plastic and Cosmetic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, 261 Huansha Road, Hangzhou, 310000, Zhejiang, China
| | - Xifei Qian
- School of Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang, China
| | - Haiyan Shen
- Department of Plastic and Cosmetic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, 261 Huansha Road, Hangzhou, 310000, Zhejiang, China
| | - Hanxiao Cheng
- Department of Plastic and Cosmetic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, 261 Huansha Road, Hangzhou, 310000, Zhejiang, China
| | - Jufang Zhang
- Department of Plastic and Cosmetic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, 261 Huansha Road, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
9
|
Dong TR, Li YJ, Jin SY, Yang FL, Xiong RX, Dai YQ, Song XZ, Guan CP. Progress on mitochondria and hair follicle development in androgenetic alopecia: relationships and therapeutic perspectives. Stem Cell Res Ther 2025; 16:44. [PMID: 39901201 PMCID: PMC11792644 DOI: 10.1186/s13287-025-04182-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
Hair loss has long been a significant concern for many individuals. Recent studies have indicated that mitochondria play a more crucial role in hair loss than previously recognized. This review summarizes the connection between mitochondrial dysfunction and hair follicle development, outlines the links between diseases related to mitochondrial disorders and hair issues, and highlights the influence of mitochondrial dysfunction on androgenetic alopecia. We discuss the cellular and signaling mechanisms associated with hair loss and examine how mitochondrial dysfunction, such as insufficient energy supply, signaling irregularities, protein/gene abnormalities, and programmed cell death, can hinder the normal proliferation, differentiation, and growth of hair follicle cells. Furthermore, we discuss current treatment approaches and potential innovative therapies, including mitochondrion-targeting drugs and advanced techniques that directly target hair follicle cells, providing fresh insights into the crucial role of mitochondria in maintaining hair follicle health and managing hair disorders. Furthermore, this review explores future therapeutic strategies and proposes that mitochondrial research could lead to groundbreaking treatments for hair loss, thus providing optimism and new avenues for the treatment of individuals experiencing hair loss. This review not only underscores the central importance of mitochondria in hair health but also emphasizes the importance of advancing research and treatment in this field.
Collapse
Affiliation(s)
- Ting-Ru Dong
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Yu-Jie Li
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Shi-Yu Jin
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Feng-Lan Yang
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Ren-Xue Xiong
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
- Department of Dermatology, Hangzhou Third People's Hospital, No 38 Xihu Rd, Hangzhou, 310009, China
| | - Ye-Qin Dai
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
- Department of Dermatology, Hangzhou Third People's Hospital, No 38 Xihu Rd, Hangzhou, 310009, China
| | - Xiu-Zu Song
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
- Department of Dermatology, Hangzhou Third People's Hospital, No 38 Xihu Rd, Hangzhou, 310009, China
| | - Cui-Ping Guan
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China.
- Department of Dermatology, Hangzhou Third People's Hospital, No 38 Xihu Rd, Hangzhou, 310009, China.
| |
Collapse
|
10
|
Xu J, He C, Tian R. Screening of Anti-Hair Loss Plant Raw Materials Based on Reverse Network Pharmacology and Experimental Validation. Curr Issues Mol Biol 2025; 47:68. [PMID: 39852183 PMCID: PMC11764182 DOI: 10.3390/cimb47010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/26/2025] Open
Abstract
Hair loss is one of the skin conditions that can affect people's mental health. Plant raw material extracts are of great interest due to their safety. In this study, we utilize reverse network pharmacology to screen for key targets of the Wnt/β-catenin signaling pathway and the TGFβ/BMP signaling pathway, as well as key differential lipids, for plant raw materials selection. The aim is to identify plant raw materials that may have anti-hair loss properties and to validate these findings through cell experiments. Licorice, salvia miltiorrhiza, mulberry leaf, ephedra and curcumae radix were found that may possess anti-hair loss effects. Licorice water extract (LWE), salvia miltiorrhiza water extract (SMWE), mulberry leaf water extract (MLWE), ephedra water extract (EWE) and curcumae radix water extract (CRWE) did not exhibit cytotoxicity on human dermal papilla cells (HDPCs). Through ALP staining, it was found that the expression of ALP in HDPCs treated with LWE, SMWE, MLWE, EWE and CRWE was enhanced. In addition, LWE, SMWE, MLWE, EWE and CRWE have reduced the expression of hair growth inhibitory factor TGF-β1 and inflammatory factor IL-6. Additionally, various water extracts can enhance the secretion of VEGF, with high concentrations of SMWE, EWE and CRWE exhibiting better efficacy. Furthermore, β-catenin, a key factor of the Wnt/β-catenin signaling pathway, was enhanced by LWE, SMWE, MLWE, EWE and CRWE treatment in cultured HDPCs. In conclusion, all five plant raw materials showed some anti-hair loss potential, providing theoretical support for their application in anti-hair loss products.
Collapse
Affiliation(s)
| | - Congfen He
- Beijing Key Laboratory of Plant Resources Research and Development, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (J.X.); (R.T.)
| | | |
Collapse
|
11
|
Ashour NA, El-Masry TA, El-Mahdy NA, E Khodier A, Elmorshedy KE, Gaballa MMS, Negm WA. A novel combination therapy using Dapagliflozin and Cycas media extract in experimentally induced diabetic wounds by targeting novel pathways in wound healing. Int Immunopharmacol 2025; 144:113618. [PMID: 39615109 DOI: 10.1016/j.intimp.2024.113618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/02/2024] [Accepted: 11/08/2024] [Indexed: 12/15/2024]
Abstract
Diabetes mellitus, a globally prevalent condition, often complicates wound healing, leading to chronic, non-healing wounds. This study explores a novel combination therapy using Dapagliflozin and Cycas media extract for treating experimentally induced diabetic wounds in rats. By targeting the Notch signaling pathway, a critical pathway in wound healing, this research investigates the efficacy of this combination therapy in accelerating wound repair. Forty-two male Wistar albino rats were divided into control and treatment groups, receiving various Dapagliflozin and Cycas media gel combinations. The study evaluated wound healing, biochemical markers, gene expression, and histopathological changes. The findings suggest that the combination therapy significantly enhances wound healing, modulates oxidative stress, alters inflammatory responses, and influences key genes in the Notch pathway. This research provides a new perspective on diabetic wound management and underlines the potential of combining Dapagliflozin and Cycas media as a therapeutic approach.
Collapse
Affiliation(s)
- Nada A Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Thanaa A El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Nageh A El-Mahdy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Ahmed E Khodier
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| | - Kadreya E Elmorshedy
- Department of Anatomy, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; Department of Anatomy, Faculty of Medicine, King Khaled University, Saudi Arabia
| | - Mohamed M S Gaballa
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
12
|
Xia W, Wang C, Guo B, Tang Z, Ye X, Dang Y. Gpr54 deletion accelerates hair cycle and hair regeneration. EMBO Rep 2025; 26:200-217. [PMID: 39587329 PMCID: PMC11724127 DOI: 10.1038/s44319-024-00327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/03/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024] Open
Abstract
GPR54, or KiSS-1R (Kisspeptin receptor), is key in puberty initiation and tumor metastasis prevention, but its role on hair follicles remains unclear. Our study shows that Gpr54 knockout (KO) accelerates hair cycle, synchronized hair regeneration and transplanted hair growth in mice. In Gpr54 KO mice, DPC (dermal papilla cell) activity is enhanced, with elevated expression of Wnts, VEGF, and IGF-1, which stimulate HFSCs. Gpr54 deletion also raises the number of CD34+ and Lgr5+ HFSCs. The Gpr54 inhibitor, kisspeptin234, promotes hair shaft growth in cultured mouse hair follicles and boosts synchronized hair regeneration in vivo. Mechanistically, Gpr54 deletion suppresses NFATC3 expression in DPCs and HFSCs, and decreases levels of SFRP1, a Wnt inhibitor. It also activates the Wnt/β-catenin pathway, promoting β-catenin nuclear localization and upregulating target genes such as Lef1 and ALP. Our findings suggest that Gpr54 deletion may accelerate the hair cycle and promote hair regeneration in mice by regulating the NAFTc3-SFRP1-Wnt signaling pathway. These findings suggest that Gpr54 could be a possible target for future hair loss treatments.
Collapse
Affiliation(s)
- Weili Xia
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Shandong Mental Health Center, Shandong University, Jinan, Shandong, 250014, China
| | - Caibing Wang
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Biao Guo
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zexin Tang
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiyun Ye
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Yongyan Dang
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
13
|
Zhou G, Wang X, Chen Y, Kang D. Potential Involvement of miR-144 in the Regulation of Hair Follicle Development and Cycle Through Interaction with Lhx2. Genes (Basel) 2024; 15:1454. [PMID: 39596654 PMCID: PMC11594492 DOI: 10.3390/genes15111454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Cashmere, known as "soft gold", is a highly prized fiber from Cashmere goats, produced by secondary hair follicles. Dermal papilla cells, located at the base of these follicles, regulate the proliferation and differentiation of hair matrix cells, which are essential for hair growth and cashmere formation. Recent studies emphasize the role of microRNAs (miRNAs) in controlling gene expression within these processes. METHODS This study centered on exploring the targeted regulatory interaction between miR-144 and the Lhx2 gene. Utilizing methodologies like miRNA target prediction, luciferase reporter assays, and quantitative PCR, they assessed the interplay between miR-144 and Lhx2. Dermal papilla cells derived from Cashmere goats were cultured and transfected with either miR-144 mimics or inhibitors to observe the subsequent effects on Lhx2 expression. RESULTS The results demonstrated that miR-144 directly targets the Lhx2 gene by binding to its mRNA, leading to a decrease in Lhx2 expression. This modulation of Lhx2 levels influenced the behavior of dermal papilla cells, affecting their ability to regulate hair matrix cell proliferation and differentiation. Consequently, the manipulation of miR-144 levels had a significant impact on the growth cycle of cashmere wool. CONCLUSIONS The findings suggest miR-144 regulates hair follicle dynamics by targeting Lhx2, offering insights into hair growth mechanisms. This could lead to innovations in enhancing cashmere production, fleece quality, and addressing hair growth disorders. Future research may focus on adjusting miR-144 levels to optimize Lhx2 expression and promote hair follicle activity.
Collapse
Affiliation(s)
- Guangxian Zhou
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Xiaolong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (X.W.); (Y.C.)
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (X.W.); (Y.C.)
| | - Danju Kang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China;
| |
Collapse
|
14
|
Wang Q, Zeng S, Liang Y, Zhou R, Wang D. ASH2L Mediates Epidermal Differentiation and Hair Follicle Morphogenesis through H3K4me3 Modification. J Invest Dermatol 2024; 144:2406-2416.e10. [PMID: 38582368 DOI: 10.1016/j.jid.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
The processes of epidermal development in mammals are regulated by complex molecular mechanisms, such as histone modifications. Histone H3 lysine K4 methylation mediated by COMPASS (complex of proteins associated with Set1) methyltransferase is associated with gene activation, but its effect on epidermal lineage development remains unclear. Therefore, we constructed a mouse model of specific ASH2L (COMPASS methyltransferase core subunit) deletion in epidermal progenitor cells and investigated its effect on the development of mouse epidermal lineage. Furthermore, downstream target genes regulated by H3K4me3 were screened using RNA sequencing combined with Cleavage Under Targets and Tagmentation sequencing. Deletion of ASH2L in epidermal progenitor cells caused thinning of the suprabasal layer of the epidermis and delayed hair follicle morphogenesis in newborn mice. These phenotypes may be related to the reduced proliferative capacity of epidermal and hair follicle progenitor cells. ASH2L depletion may also lead to depletion of the epidermal stem cell pools in late mouse development. Finally, genes related to hair follicle development (Shh, Edar, and Fzd6), Notch signaling pathway (Notch2, Notch3, Hes5, and Nrarp), and ΔNp63 were identified as downstream target genes regulated by H3K4me3. Collectively, ASH2L-dependent H3K4me3 modification served as an upstream epigenetic regulator in epidermal differentiation and hair follicle morphogenesis in mice.
Collapse
Affiliation(s)
- Qirui Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyi Zeng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimin Liang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renpeng Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Danru Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
Muangsanguan A, Ruksiriwanich W, Arjin C, Jamjod S, Prom-u-Thai C, Jantrawut P, Rachtanapun P, Hnorkaew P, Satsook A, Sainakham M, Castagnini JM, Sringarm K. Comparison of In Vitro Hair Growth Promotion and Anti-Hair Loss Potential of Thai Rice By-Product from Oryza sativa L. cv. Buebang 3 CMU and Sanpatong. PLANTS (BASEL, SWITZERLAND) 2024; 13:3079. [PMID: 39519997 PMCID: PMC11548315 DOI: 10.3390/plants13213079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The bioactive compounds in herbal extracts may provide effective hair loss treatments with fewer side effects compared to synthetic medicines. This study evaluated the effects of Buebang 3 CMU and Sanpatong rice bran extracts, macerated with dichloromethane or 95% ethanol, on hair growth promotion and hair loss prevention. Overall, Buebang 3 CMU extracts contained significantly higher levels of bioactive compounds, including γ-oryzanol, tocopherols, and various polyphenols such as phytic acid, ferulic acid, and chlorogenic acid, compared to Sanpatong extracts. Additionally, ethanolic extracts demonstrated greater bioactive content and antioxidant activities than those extracted with dichloromethane. These compounds enhanced the proliferation of human hair follicle dermal papilla cells (HFDPCs) by 124.28 ± 1.08% (p < 0.05) and modulated anti-inflammatory pathways by reducing nitrite production to 3.20 ± 0.36 µM (p < 0.05). Key hair growth signaling pathways, including Wnt/β-catenin (CTNNB1), Sonic Hedgehog (SHH, SMO, GLI1), and vascular endothelial growth factor (VEGF), were activated by approximately 1.5-fold to 2.5-fold compared to minoxidil. Also, in both human prostate cancer (DU-145) and HFDPC cells, the ethanolic Buebang 3 CMU extract (Et-BB3-CMU) suppressed SRD5A1, SRD5A2, and SRD5A3 expression-key pathways in hair loss-by 2-fold and 1.5-fold more than minoxidil and finasteride, respectively. These findings suggest that Et-BB3-CMU holds promise for promoting hair growth and preventing hair loss.
Collapse
Affiliation(s)
- Anurak Muangsanguan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.M.); (P.J.); (M.S.)
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.M.); (P.J.); (M.S.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Chaiwat Arjin
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sansanee Jamjod
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (S.J.); (C.P.-u.-T.)
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chanakan Prom-u-Thai
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (S.J.); (C.P.-u.-T.)
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.M.); (P.J.); (M.S.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Pornchai Rachtanapun
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Patipan Hnorkaew
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (P.H.); (A.S.)
| | - Apinya Satsook
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (P.H.); (A.S.)
| | - Mathukorn Sainakham
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.M.); (P.J.); (M.S.)
| | - Juan Manuel Castagnini
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avenida Vicent Andrés Estellés s/n, 46100 Burjassot, Spain;
| | - Korawan Sringarm
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
16
|
Mao Y, Liu P, Wei J, Xie Y, Zheng Q, Hu X, Yao J, Meng W. Exosomes derived from Umbilical cord mesenchymal stem cell promote hair regrowth in C57BL6 mice through upregulation of the RAS/ERK signaling pathway. J Transl Int Med 2024; 12:478-494. [PMID: 39513036 PMCID: PMC11538887 DOI: 10.1515/jtim-2024-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Background and Objectives Androgenetic alopecia is one of the common types of hair loss and has become a medical and social problem due to its increasingly young onset. Existing therapies, although effective, have serious side effects and therefore better treatments need to be sought. The aim of this study was to evaluate the efficacy of umbilical cord mesenchymal stem cell-derived exosomes in the treatment of androgenetic alopecia and to investigate the mechanism of exosome regulation of hair growth. Methods First, we randomly divided 20 C57BL/6J mice into blank group, model group, positive control group and exosomal hydrogel group, and mice were treated with hair removal on the back. The mice were injected intraperitoneally with dihydrotestosterone solution except for the blank group. At the end of the experiment, new hairs were collected and the differences in length, diameter and number of hair follicles were compared among the groups; the histopathological changes of hair follicles were observed by HE staining; the expression of androgen receptor mRNA and protein in skin tissues were compared; and the skin tissues were analyzed by real-time PCR, western blotting, immunofluorescence staining and transcriptome sequencing. Finally, the results of transcriptome sequencing experiments were verified by real-time PCR, western blotting and other techniques for the corresponding genes and proteins. Results Compared with the blank group, mice in the model group had shorter hair length and reduced hair diameter, and pathological observation showed that the total number of hair follicles was significantly reduced and the hair follicles were miniaturized; compared with the model group, mice in the positive control and exosome groups had longer hair length, larger hair diameter and more hair follicles; the androgen receptor mRNA content and protein expression in the skin tissue of mice in the model group were significantly higher than those in the blank group, and the protein expression in the exosome gel group was lower than that in the model group. Similarly, compared with the model group, the expression of stemness-related proteins K15 and CD200 in the skin tissues of mice in the exosome group increased, and the expression of PCNA, a protein related to cell proliferation, increased. The KEGG data showed that the differential genes were mainly enriched in the RAS/ERK pathway. Conclusions In this study, we demonstrated the therapeutic effect of umbilical cord MSC-derived exosomes on androgenetic alopecia and verified that exosomes regulate hair follicle stem cell stemness through the RAS/ERK pathway to promote hair proliferation and thus hair growth in mice with androgenetic alopecia, providing a potential therapeutic strategy for androgenetic alopecia.
Collapse
Affiliation(s)
- Yongcui Mao
- First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Pinyan Liu
- First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Jiayun Wei
- First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Ye Xie
- First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Qiuxia Zheng
- First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Xuekai Hu
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu Province, China
| | - Jia Yao
- First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, Gansu Province, China
| | - Wenbo Meng
- First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
- Department of General Surgery, the First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, Gansu Province, China
| |
Collapse
|
17
|
Muangsanguan A, Ruksiriwanich W, Linsaenkart P, Jantrawut P, Rachtanapun P, Jantanasakulwong K, Sommano SR, Sringarm K, Arjin C, Sainakham M, Castagnini JM. Synergistic Phytochemical and Pharmacological Actions of Hair Rise TM Microemulsion: A Novel Herbal Formulation for Androgenetic Alopecia and Hair Growth Stimulation. PLANTS (BASEL, SWITZERLAND) 2024; 13:2802. [PMID: 39409672 PMCID: PMC11479085 DOI: 10.3390/plants13192802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/28/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024]
Abstract
Androgenetic alopecia (AGA) is a genetic condition characterized by an excessive response to androgens, leading to hairline regression in men and hair thinning at the vertex in women, which can negatively impact self-esteem. Conventional synthetic treatments for AGA are often limited by their side effects. In contrast, Thai medicinal plants offer a promising alternative with fewer adverse effects. This study investigates the synergistic phytochemical and pharmacological effects of a novel Hair RiseTM microemulsion, formulated with bioactive extracts from rice bran (Oryza sativa), shallot bulb (Allium ascalonicum), licorice root (Glycyrrhiza glabra), and corn kernels (Zea mays), for the treatment of hair loss. The microemulsion, in concentrations of 50%, 75%, and 100% (v/v), significantly enhanced the proliferation of human hair follicle dermal papilla cells (HFDPCs) compared to minoxidil. Additionally, it upregulated critical hair growth signaling pathways, including Wnt/β-catenin (CTNNB1), Sonic Hedgehog (SHH, SMO, GLI1), and vascular endothelial growth factor (VEGF), surpassing standard controls such as minoxidil and purmorphamine. The microemulsion also demonstrated potent anti-inflammatory and antioxidant properties by reducing nitric oxide production and oxidative stress, factors that contribute to inflammation and follicular damage in AGA. Furthermore, Hair RiseTM inhibited 5α-reductase (types 1-3), a key enzyme involved in androgen metabolism, in both human prostate cancer cells (DU-145) and HFDPCs. These findings suggest that Hair RiseTM microemulsion presents a promising natural therapy for promoting hair growth and reducing hair loss via multiple synergistic mechanisms, offering a potent, plant-based alternative to synthetic treatments.
Collapse
Affiliation(s)
- Anurak Muangsanguan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.M.); (P.L.); (P.J.); (M.S.)
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.M.); (P.L.); (P.J.); (M.S.)
- Cluster of Valorization and Bio-Green Transformation for Translation Research Innovation of Raw Materials and Products, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (K.S.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.)
| | - Pichchapa Linsaenkart
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.M.); (P.L.); (P.J.); (M.S.)
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.M.); (P.L.); (P.J.); (M.S.)
- Cluster of Valorization and Bio-Green Transformation for Translation Research Innovation of Raw Materials and Products, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (K.S.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.)
| | - Pornchai Rachtanapun
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.)
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kittisak Jantanasakulwong
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.)
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Sarana Rose Sommano
- Cluster of Valorization and Bio-Green Transformation for Translation Research Innovation of Raw Materials and Products, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (K.S.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.)
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Korawan Sringarm
- Cluster of Valorization and Bio-Green Transformation for Translation Research Innovation of Raw Materials and Products, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (K.S.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.)
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Chaiwat Arjin
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Mathukorn Sainakham
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.M.); (P.L.); (P.J.); (M.S.)
| | - Juan M. Castagnini
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avenida Vicent Andrés Estellés s/n, 46100 Burjassot, Spain;
| |
Collapse
|
18
|
Docshin P, Panshin D, Malashicheva A. Molecular Interplay in Cardiac Fibrosis: Exploring the Functions of RUNX2, BMP2, and Notch. Rev Cardiovasc Med 2024; 25:368. [PMID: 39484128 PMCID: PMC11522771 DOI: 10.31083/j.rcm2510368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 11/03/2024] Open
Abstract
Cardiac fibrosis, characterized by the excessive deposition of extracellular matrix proteins, significantly contributes to the morbidity and mortality associated with cardiovascular diseases. This article explores the complex interplay between Runt-related transcription factor 2 (RUNX2), bone morphogenetic protein 2 (BMP2), and Notch signaling pathways in the pathogenesis of cardiac fibrosis. Each of these pathways plays a crucial role in the regulation of cellular functions and interactions that underpin fibrotic processes in the heart. Through a detailed review of current research, we highlight how the crosstalk among RUNX2, BMP2, and Notch not only facilitates our understanding of the fibrotic mechanisms but also points to potential biomolecular targets for intervention. This article delves into the regulatory networks, identifies key molecular mediators, and discusses the implications of these signaling pathways in cardiac structural remodeling. By synthesizing findings from recent studies, we provide insights into the cellular and molecular mechanisms that could guide future research directions, aiming to uncover new therapeutic strategies to manage and treat cardiac fibrosis effectively.
Collapse
Affiliation(s)
- Pavel Docshin
- Laboratory of Regenerative Biomedicine, Institute of Cytology Russian Academy of Science, 194064 St. Petersburg, Russia
| | - Daniil Panshin
- Laboratory of Regenerative Biomedicine, Institute of Cytology Russian Academy of Science, 194064 St. Petersburg, Russia
| | - Anna Malashicheva
- Laboratory of Regenerative Biomedicine, Institute of Cytology Russian Academy of Science, 194064 St. Petersburg, Russia
| |
Collapse
|
19
|
Wang M, Lai Z, Zhang H, Yang W, Zheng F, He D, Liu X, Zhong R, Qahar M, Yang G. Diabetes Mellitus Inhibits Hair Follicle Regeneration by Inducing Macrophage Reprogramming-Mediated Pyroptosis. J Inflamm Res 2024; 17:6781-6796. [PMID: 39372592 PMCID: PMC11451467 DOI: 10.2147/jir.s469239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/21/2024] [Indexed: 10/08/2024] Open
Abstract
Background Diabetes mellitus (DM) is known to inhibit skin self-renewal and hair follicle stem cell (HFSC) activation, which may be key in the formation of chronic diabetic wounds. This study aimed to investigate the reasons behind the suppression of HFSC activation in DM mice. Methods Type 1 DM (T1DM) was induced in 6-week-old mice via streptozotocin, and hair follicle growth was subsequently monitored. RNA sequencing, bioinformatics analyses, qRT‒PCR, immunostaining, and cellular experiments were carried out to investigate the underlying mechanisms involved. Results T1DM inhibited HFSC activation, which correlated with an increase in caspase-dependent programmed cell death. Additionally, T1DM triggered apoptosis and pyroptosis, predominantly in HFSCs and epidermal regions, with pyroptosis being more pronounced in the inner root sheath of hair follicles. Notably, significant cutaneous immune imbalances were observed, particularly in macrophages. Cellular experiments demonstrated that M1 macrophages inhibited HaCaT cell proliferation and induced cell death, whereas high-glucose environments alone did not have the same effect. Conclusion T1DM inhibits HFSC activation via macrophage reprogramming-mediated caspase-dependent pyroptosis, and there is a significant regional characterization of cell death. Moreover, T1DM-induced programmed cell death in the skin may be more closely related to immune homeostasis imbalance than to hyperglycemia itself. These findings shed light on the pathogenesis of diabetic ulcers and provide a theoretical basis for the use of hair follicle grafts in wound repair.
Collapse
Affiliation(s)
- Minghui Wang
- Division of Renal Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518036, People’s Republic of China
| | - Zhiwei Lai
- Division of Renal Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518036, People’s Republic of China
| | - Hua Zhang
- Division of Renal Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518036, People’s Republic of China
| | - Weiqi Yang
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People’s Republic of China
| | - Fengping Zheng
- Division of Renal Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518036, People’s Republic of China
| | - Dehua He
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People’s Republic of China
| | - Xiaofang Liu
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People’s Republic of China
| | - Rong Zhong
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People’s Republic of China
| | - Mulan Qahar
- Division of Renal Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518036, People’s Republic of China
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People’s Republic of China
| | - Guang Yang
- Division of Renal Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518036, People’s Republic of China
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People’s Republic of China
- Department of Life Sciences, Yuncheng University, Yuncheng, 044011, People’s Republic of China
| |
Collapse
|
20
|
Hussain Z, Hu T, Gou Y, He M, Lv X, Wang S, Sun W. CRABP1 Enhances the Proliferation of the Dermal Papilla Cells of Hu Sheep through the Wnt/β-catenin Pathway. Genes (Basel) 2024; 15:1291. [PMID: 39457415 PMCID: PMC11507202 DOI: 10.3390/genes15101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The homologous proteins identified as cellular retinoic acid-binding proteins I and II (CRABP-I and CRABP-II) belong to a subset of intracellular proteins characterized by their robust affinity for retinoic acid, which plays an indispensable role in the development of hair follicle, including differentiation, proliferation, and apoptosis in keratinocytes. Previous research on Hu sheep hair follicles revealed the specific expression CRABP1 in dermal papilla cells (DPCs), suggesting that CRABP1 has a potential role in regulating the DPC population. Therefore, the main purpose of this study is to expose the performance of the CRABP1 genes in the development and proliferation of DPCs. METHODS Initially, overexpression and inhibition of CRABP1 in the DPCs were conducted through overexpression vector and siRNA. CCK-8, EDU, and RT-PCR cell cycle assays and immunostaining were performed to evaluate the proliferation and cell cycle of dermal papilla cells (DPCs). Although, the influence of CRABP1 upon β-catenin in dermal papilla cells (DPCs) was found using immunofluorescence labeling. Finally, RT-PCR was conducted to assess the impact of CRABP1 on the expression levels of CTNNB1, TCF4, and LEF1 in DPCs involved in the Wnt/β-catenin signaling pathway. RESULTS The results showed that CRABP1 overexpression promotes the growth rates of DPCs and significantly enhances the proportion of S-phase cells compared with the control group (p < 0.05). The results were the opposite when CRABP1 was a knockdown. In contrast, there was a significant decline in the mRNA expression levels of CTNNβ1, LEF1 (p < 0.05), and TCF4 (p < 0.01) by CRABP1 knockdown. CONCLUSIONS This study found that CRABP1 influences the expression of important genes within the Wnt/β-catenin signaling pathway and promotes DPC proliferation. This investigation provides a theoretical framework to explain the mechanisms that control hair follicle morphogenesis and development.
Collapse
Affiliation(s)
- Zahid Hussain
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.H.); (T.H.); (Y.G.); (M.H.); (X.L.); (S.W.)
| | - Tingyan Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.H.); (T.H.); (Y.G.); (M.H.); (X.L.); (S.W.)
| | - Yuan Gou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.H.); (T.H.); (Y.G.); (M.H.); (X.L.); (S.W.)
| | - Mingliang He
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.H.); (T.H.); (Y.G.); (M.H.); (X.L.); (S.W.)
| | - Xiaoyang Lv
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.H.); (T.H.); (Y.G.); (M.H.); (X.L.); (S.W.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.H.); (T.H.); (Y.G.); (M.H.); (X.L.); (S.W.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.H.); (T.H.); (Y.G.); (M.H.); (X.L.); (S.W.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
21
|
Liu Z, He Z, Ai X, Guo T, Feng N. Cardamonin-loaded liposomal formulation for improving percutaneous penetration and follicular delivery for androgenetic alopecia. Drug Deliv Transl Res 2024; 14:2444-2460. [PMID: 38353836 DOI: 10.1007/s13346-024-01519-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 11/01/2024]
Abstract
Androgenic alopecia (AGA) has a considerable impact on the physical and mental health of patients. Nano preparations have apparent advantages and high feasibility in the treatment of AGA. Cardamonin (CAR) has a wide range of pharmacological activities, but it has the problems of poor solubility in water and low bioavailability. There are few, if any, researches on the use of nano-loaded CAR to improve topical skin delivery of AGA. In this study, a CAR-loaded liposomal formulation (CAR@Lip and CAR@Lip Gel) was developed and characterized. The prepared CAR@Lip exhibited a uniform and rounded vesicle in size. CAR@Lip and CAR@Lip Gel can significantly improve the cumulative release of CAR. Additionally, CAR@Lip can obviously promote the proliferation and migration of human dermal papilla cells (hDPCs). Cell uptake revealed that the uptake of CAR@Lip significantly increased compared with the free drug. Furthermore, both CAR@Lip and CAR@Lip Gel groups could markedly improve the transdermal performance of CAR, and increase the topical content of the drug in the hair follicle compared with CAR. The ratchet effect of hair follicles could improve the skin penetration depth of nanoformulations. Notably, Anti-AGA tests in the mice showed that CAR@Lip and CAR@Lip Gel groups could promote hair growth, and accelerate the transition of hair follicles to the growth stage. The anti-androgen effect was revealed by regulating the expression of IGF-1, VEGF, KGF, and TGF-β, participating in SHH/Gli and Wnt/β-catenin pathways. Importantly, the nanoformulations had no obvious skin irritation. Thus, our study showed that CAR-loaded liposomal formulation has potential application in the treatment of AGA.
Collapse
Affiliation(s)
- Zhenda Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai, 201203, P.R. China
| | - Zehui He
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xinyi Ai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai, 201203, P.R. China
| | - Teng Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai, 201203, P.R. China.
| | - Nianping Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai, 201203, P.R. China.
| |
Collapse
|
22
|
Lee SH, Platt S, Lim CH, Ito M, Myung P. The development of hair follicles and nail. Dev Biol 2024; 513:3-11. [PMID: 38759942 DOI: 10.1016/j.ydbio.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
The hair follicle and nail unit develop and regenerate through epithelial-mesenchymal interactions. Here, we review some of the key signals and molecular interactions that regulate mammalian hair follicle and nail formation during embryonic development and how these interactions are reutilized to promote their regeneration during adult homeostasis and in response to skin wounding. Finally, we highlight the role of some of these signals in mediating human hair follicle and nail conditions.
Collapse
Affiliation(s)
- Soung-Hoon Lee
- The Ronald O. Perelman Department of Dermatology and Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Sarah Platt
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Chae Ho Lim
- The Ronald O. Perelman Department of Dermatology and Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Mayumi Ito
- The Ronald O. Perelman Department of Dermatology and Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Peggy Myung
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
23
|
Hou J, Jie J, Wei X, Shen X, Zhao Q, Chai X, Pang H, Shen Z, Wang J, Wu L, Xu J. A core-shell-type nanosystem promotes diabetic wound healing through Photothermal-responsive release of transforming growth factor β. J Nanobiotechnology 2024; 22:449. [PMID: 39080658 PMCID: PMC11287882 DOI: 10.1186/s12951-024-02675-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/25/2024] [Indexed: 08/03/2024] Open
Affiliation(s)
- Jinfei Hou
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China.
| | - Junjin Jie
- Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xinwei Wei
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiangqian Shen
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Qingfang Zhao
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Xupeng Chai
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Hao Pang
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Zeren Shen
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Jinqiang Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Linping Wu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Key Laboratory of Immune Response and Immunotherapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Beijing, China.
| | - Jinghong Xu
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
24
|
Dermitzakis I, Kampitsi DD, Manthou ME, Evangelidis P, Vakirlis E, Meditskou S, Theotokis P. Ontogeny of Skin Stem Cells and Molecular Underpinnings. Curr Issues Mol Biol 2024; 46:8118-8147. [PMID: 39194698 DOI: 10.3390/cimb46080481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Skin stem cells (SCs) play a pivotal role in supporting tissue homeostasis. Several types of SCs are responsible for maintaining and regenerating skin tissue. These include bulge SCs and others residing in the interfollicular epidermis, infundibulum, isthmus, sebaceous glands, and sweat glands. The emergence of skin SCs commences during embryogenesis, where multipotent SCs arise from various precursor populations. These early events set the foundation for the diverse pool of SCs that will reside in the adult skin, ready to respond to tissue repair and regeneration demands. A network of molecular cues regulates skin SC behavior, balancing quiescence, self-renewal, and differentiation. The disruption of this delicate equilibrium can lead to SC exhaustion, impaired wound healing, and pathological conditions such as skin cancer. The present review explores the intricate mechanisms governing the development, activation, and differentiation of skin SCs, shedding light on the molecular signaling pathways that drive their fate decisions and skin homeostasis. Unraveling the complexities of these molecular drivers not only enhances our fundamental knowledge of skin biology but also holds promise for developing novel strategies to modulate skin SC fate for regenerative medicine applications, ultimately benefiting patients with skin disorders and injuries.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Despoina Dimitria Kampitsi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Evangelidis
- Hematology Unit-Hemophilia Centre, 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Efstratios Vakirlis
- First Department of Dermatology and Venereology, School of Medicine, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
25
|
Lee J, Choi JE, Ha J, Kim Y, Lee C, Hong KW. Genetic Differences between Male and Female Pattern Hair Loss in a Korean Population. Life (Basel) 2024; 14:939. [PMID: 39202681 PMCID: PMC11355467 DOI: 10.3390/life14080939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Studies on androgenetic alopecia (AGA or patterned hair loss (PHL)) have suggested different underlying pathological mechanisms between males and females. While many genetic factors for male hair loss have been identified through genome-wide association studies (GWASs), the genetic determinants of female hair loss remain unclear. In this study, we analyzed approximately 1000 individuals (436 males and 568 females) to identify sex-specific genetic factors. We conducted three independent GWASs for the total, male-only, and female-only groups, identifying three novel loci (rs7814359, rs2163085, and rs4793158 of the TSNARE1, FZD1, and GJC1 genes, respectively). rs7814359 showed a significant genome-wide association with AGA in the combined sex group and a weak association in both the male-only and female-only groups. The single nucleotide polymorphism (SNP) rs2163085 showed a significant genome-wide association with AGA in the combined group and notable significance in females. The rs4793158 SNP showed a suggestive association with AGA in both the combined and female-only groups. TSNARE1, related to rs7814359, is involved in vesicle transport. FZD1 is a key regulator of the Wnt signaling pathway. GJC1 is a gap junction protein. The associations of FZD1 and GJC1 with female-specific AGA suggest that sex hormones, such as estrogen, may influence FPHL through these genes. These findings will contribute to our understanding of the sex-specific pathophysiology of AGA.
Collapse
Affiliation(s)
- Jihyun Lee
- Easy Hydrogen Corporation, Jeju City 63196, Republic of Korea;
| | - Ja-Eun Choi
- Institute of Advanced Technology, Theragen Health Co., Ltd., Seongnam 13493, Republic of Korea;
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Youngjoo Kim
- Department of Urology, College of Medicine, Jeju National University, Jeju City 63243, Republic of Korea;
| | - Changhyun Lee
- Chunjieh Cooperation, Jeju City 63359, Republic of Korea;
| | - Kyung-Won Hong
- Institute of Advanced Technology, Theragen Health Co., Ltd., Seongnam 13493, Republic of Korea;
| |
Collapse
|
26
|
Cheng M, Ma C, Chen HD, Wu Y, Xu XG. The Roles of Exosomes in Regulating Hair Follicle Growth. Clin Cosmet Investig Dermatol 2024; 17:1603-1612. [PMID: 38984321 PMCID: PMC11232880 DOI: 10.2147/ccid.s465963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/08/2024] [Indexed: 07/11/2024]
Abstract
Alopecia is considered a widespread yet troubling health issue, with limited treatment options. As membranous structures derived from cells carrying proteins, nucleic acids and lipids, exosomes functionally medicate intercellular communication and alter the responses of recipient cells, resulting in disease restraint or promotion. Exosomes have broad prospects in diagnosis and treatment of diseases. Studies using animal models and at the cellular level have clearly shown that exosomes from several types of cells, including dermal papilla cells and mesenchymal stem cells, have a notable capacity to promote hair growth, suggesting that exosomes may provide a new option to treat alopecia. Here, we present a thorough review of the most recent progress in the application of exosomes to hair growth.
Collapse
Affiliation(s)
- Ming Cheng
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, 110000, People’s Republic of China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC; National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, 110000, People’s Republic of China
| | - Cong Ma
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, 110000, People’s Republic of China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC; National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, 110000, People’s Republic of China
- Department of Dermatology and Sexually Transmitted Diseases, The First Hospital of Inner Mongolia University for Nationalities, Tongliao, 028000, People’s Republic of China
| | - Hong-Duo Chen
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, 110000, People’s Republic of China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC; National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, 110000, People’s Republic of China
| | - Yan Wu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, 110000, People’s Republic of China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC; National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, 110000, People’s Republic of China
| | - Xue-Gang Xu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, 110000, People’s Republic of China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC; National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, 110000, People’s Republic of China
| |
Collapse
|
27
|
Sintos AML, Cabrera HS. Network Pharmacology Reveals Curcuma aeruginosa Roxb. Regulates MAPK and HIF-1 Pathways to Treat Androgenetic Alopecia. BIOLOGY 2024; 13:497. [PMID: 39056691 PMCID: PMC11274231 DOI: 10.3390/biology13070497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Androgenetic alopecia (AGA) is the most prevalent hair loss disorder worldwide, driven by excessive sensitivity or response to androgen. Herbal extracts, such as Curcuma aeruginosa Roxb., have shown promise in AGA treatment due to their anti-androgenic activities and hair growth effects. However, the precise mechanism of action remains unclear. Hence, this study aims to elucidate the active compounds, putative targets, and underlying mechanisms of C. aeruginosa for the therapy of AGA using network pharmacology and molecular docking. This study identified 66 bioactive compounds from C. aeruginosa, targeting 59 proteins associated with AGA. Eight hub genes were identified from the protein-protein interaction network, namely, CASP3, AKT1, AR, IL6, PPARG, STAT3, HIF1A, and MAPK3. Topological analysis of components-targets network revealed trans-verbenol, myrtenal, carvone, alpha-atlantone, and isoaromandendrene epoxide as the core components with potential significance in AGA treatment. The molecular docking verified the binding affinity between the hub genes and core compounds. Moreover, the enrichment analyses showed that C. aeruginosa is involved in hormone response and participates in HIF-1 and MAPK pathways to treat AGA. Overall, this study contributes to understanding the potential anti-AGA mechanism of C. aeruginosa by highlighting its multi-component interactions with several targets involved in AGA pathogenesis.
Collapse
Affiliation(s)
- Aaron Marbyn L. Sintos
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines;
| | - Heherson S. Cabrera
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines;
- Department of Biology, School of Health Sciences, Mapúa University, Makati 1200, Philippines
| |
Collapse
|
28
|
Zhou SY, Giang NN, Kim H, Chien PN, Le LTT, Trinh TT, Nga PT, Kwon HJ, Ham JR, Lee WK, Gu YJ, Zhang XR, Jin YX, Nam SY, Heo CY. Assessing the efficacy of mesotherapy products: Ultra Exo Booster, and Ultra S Line Plus in hair growth: An ex vivo study. Skin Res Technol 2024; 30:e13780. [PMID: 39031929 PMCID: PMC11259544 DOI: 10.1111/srt.13780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 07/22/2024]
Abstract
In this study, scalp tissues from Korean adults between 20 and 80 without skin disease were used. Scalp tissues were processed, and hair follicles were isolated and cultured with different treatments (including Bioscalp, Ultra Exo Booster, and Ultra S Line Plus) from Ultra V company. Over 12 days, observations and measurements of hair follicle characteristics were recorded at intervals (Days 0, 3, 6, 9, and 12). The study assessed the impact of these substances on hair follicle growth and morphology. Bioscalp, combined with Ultra Exo Booster and Ultra S Line Plus, showed significant hair elongation in ex vivo. Preservation of hair bulb diameter was observed, indicating potential for sustained hair growth by exosome-based products. The hair growth cycle analysis suggested a lower transition to the catagen stage in test products from Ultra V compared to non-treated groups. The research findings indicated that the tested formulations, especially the combination of Bioscalp, Ultra Exo Booster, and Ultra S Line Plus, demonstrated significant effectiveness in promoting hair growth, maintaining the integrity of the hair bulb, and reducing the transition to the catagen stage. The study suggests promising alternative treatments for hair loss, illustrating results that were as good as those of the conventional testing product groups.
Collapse
Affiliation(s)
- Shu Yi Zhou
- Department of MedicineCollege of MedicineSeoul National UniversitySeoulSouth Korea
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
| | - Nguyen Ngan Giang
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
- Department of Medical Device DevelopmentCollege of MedicineSeoul National UniversitySeoulSouth Korea
| | - Hyunjee Kim
- Korean Institute of Nonclinical StudyH&Bio. Co. Ltd.SeongnamSouth Korea
| | - Pham Ngoc Chien
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
- Korean Institute of Nonclinical StudyH&Bio. Co. Ltd.SeongnamSouth Korea
| | - Linh Thi Thuy Le
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
- Department of Biomedical ScienceCollege of MedicineSeoul National UniversitySeoulSouth Korea
- Faculty of Medical TechniqueHai Phong University of Medicine and PharmacyHaiphongVietnam
| | - Thuy‐Tien Thi Trinh
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
- Korean Institute of Nonclinical StudyH&Bio. Co. Ltd.SeongnamSouth Korea
| | - Pham Thi Nga
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
- Korean Institute of Nonclinical StudyH&Bio. Co. Ltd.SeongnamSouth Korea
| | | | | | - Won Ku Lee
- UltraV Co., Ltd. R&D CenterSeoulSouth Korea
| | - Yeon Ju Gu
- UltraV Co., Ltd. R&D CenterSeoulSouth Korea
| | - Xin Rui Zhang
- Department of MedicineCollege of MedicineSeoul National UniversitySeoulSouth Korea
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
| | - Yong Xun Jin
- Department of MedicineCollege of MedicineSeoul National UniversitySeoulSouth Korea
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
| | - Sun Young Nam
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
| | - Chan Yeong Heo
- Department of MedicineCollege of MedicineSeoul National UniversitySeoulSouth Korea
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
- Department of Medical Device DevelopmentCollege of MedicineSeoul National UniversitySeoulSouth Korea
- Korean Institute of Nonclinical StudyH&Bio. Co. Ltd.SeongnamSouth Korea
| |
Collapse
|
29
|
Kiselev A, Park S. Immune niches for hair follicle development and homeostasis. Front Physiol 2024; 15:1397067. [PMID: 38711955 PMCID: PMC11070776 DOI: 10.3389/fphys.2024.1397067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024] Open
Abstract
The hair follicle is a dynamic mini-organ that has specialized cycles and architectures with diverse cell types to form hairs. Previous studies for several decades have investigated morphogenesis and signaling pathways during embryonic development and adult hair cycles in both mouse and human skin. In particular, hair follicle stem cells and mesenchymal niches received major attention as key players, and their roles and interactions were heavily revealed. Although resident and circulating immune cells affect cellular function and interactions in the skin, research on immune cells has mainly received attention on diseases rather than development or homeostasis. Recently, many studies have suggested the functional roles of diverse immune cells as a niche for hair follicles. Here, we will review recent findings about immune niches for hair follicles and provide insight into mechanisms of hair growth and diseases.
Collapse
Affiliation(s)
- Artem Kiselev
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, United States
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Sangbum Park
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, United States
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
30
|
Sun S, Zhao B, Li J, Zhang X, Yao S, Bao Z, Cai J, Yang J, Chen Y, Wu X. Regulation of Hair Follicle Growth and Development by Different Alternative Spliceosomes of FGF5 in Rabbits. Genes (Basel) 2024; 15:409. [PMID: 38674344 PMCID: PMC11049220 DOI: 10.3390/genes15040409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/23/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
This study investigated the regulatory effect of alternative spliceosomes of the fibroblast growth factor 5 (FGF5) gene on hair follicle (HF) growth and development in rabbits. The FGF5 alternative spliceosomes (called FGF5-X1, FGF5-X2, FGF5-X3) were cloned. The overexpression vector and siRNA of spliceosomes were transfected into dermal papilla cells (DPCs) to analyze the regulatory effect on DPCs. The results revealed that FGF5-X2 and FGF5-X3 overexpression significantly decreased LEF1 mRNA expression (p < 0.01). FGF5-X1 overexpression significantly reduced CCND1 expression (p < 0.01). FGF5-X1 and FGF5-X2 possibly downregulated the expression level of FGF2 mRNA (p < 0.05), and FGF5-X3 significantly downregulated the expression level of FGF2 mRNA (p < 0.01). The FGF5 alternative spliceosomes significantly downregulated the BCL2 mRNA expression level in both cases (p < 0.01). FGF5-X1 and FGF5-X2 significantly increased TGFβ mRNA expression (p < 0.01). All three FGF5 alternative spliceosomes inhibited DPC proliferation. In conclusion, the expression profile of HF growth and development-related genes can be regulated by FGF5 alternative spliceosomes, inhibiting the proliferation of DPCs and has an influence on the regulation of HF growth in rabbits. This study provides insights to further investigate the mechanism of HF development in rabbits via FGF5 regulation.
Collapse
Affiliation(s)
- Shaoning Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
| | - Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
| | - Jiali Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
| | - Xiyu Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
| | - Shuyu Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
| | - Zhiyuan Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
| | - Jiawei Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
| | - Jie Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
31
|
Lee EJ, Kim MW, Gil HN, Chung YJ, Kim EM. In vitro hair growth-promoting effect of Lgr5-binding octapeptide in human primary hair cells. J Cosmet Dermatol 2024; 23:986-998. [PMID: 37905348 DOI: 10.1111/jocd.16036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Accepted: 10/05/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Hair loss occurs due to various biological and environmental causes, which can have psychosocial consequences. The Wnt/β-catenin signaling is well-known for its role in hair growth and regeneration, as it induces the proliferation and differentiation of hair cells. When the leucine-rich G protein-coupled receptor 5 (Lgr5) interacts with the R-spondins, the frizzled receptor (FZD), a Wnt receptor, becomes stabilized, resulting in an increased β-catenin activity. AIM We investigated whether the octapeptide that binds to Lgr5 enhances proliferation and differentiation of human primary hair cells through the activation of Wnt/β-catenin signaling. METHODS The binding affinity of the octapeptide to Lgr5 was evaluated using surface plasmon resonance (SPR). We confirmed changes in proliferation and related factors like β-catenin activation and growth factors (GFs) expression in human hair follicle dermal papilla cells (HHFDPCs). Additionally, we observed the proliferation and the expression of differentiation markers in human hair follicle outer root sheath cells (HHFORSCs), human hair follicle germinal matrix cells (HHFGMCs), and human hair follicle stem cells (HHFSCs). We used three-dimensional HHFDPC spheroid culture treated with dihydrotestosterone (DHT) to create in vitro conditions that mimic androgenetic alopecia, and we studied the effects of octapeptide on Wnt expression and HHFSC differentiation. RESULTS The binding of the octapeptide to Lgr5 was confirmed using SPR analysis. In HHFDPCs, treatment with octapeptide resulted in a concentration-dependent increase in proliferation. We also observed increased nuclear translocation of β-catenin and increased expression of its downstream targets. HHFDPCs treated with octapeptide exhibited increased expression of growth factors and phosphorylation of Akt and ERK. In addition, we confirmed that octapeptide increased proliferation and induced differentiation in HHFORSCs, HHFGMCs, and HHFSCs. Under the HHFDPC spheroid culture conditions, we found that octapeptide restored the inhibition of Wnt-5a and Wnt-10b expressions by DHT. In HHFSCs treated with HHFDPC spheroid culture media, we observed that octapeptide recovered the inhibition of differentiation by DHT. CONCLUSION We found that octapeptides activated the Wnt/β-catenin signaling and induced the proliferation and differentiation of human primary hair cells by acting as an exogenous ligand for Lgr5. In addition, octapeptides recovered inhibited hair regeneration characters by DHT in androgenetic alopecia-mimic in vitro model. These findings suggest that octapeptides may be a promising therapeutic option for treating hair loss.
Collapse
Affiliation(s)
| | | | - Ha-Na Gil
- Caregen R&D center, Anyang-si, Korea
| | | | | |
Collapse
|
32
|
Zhang Y, Cui J, Cang Z, Pei J, Zhang X, Song B, Fan X, Ma X, Li Y. Hair follicle stem cells promote epidermal regeneration under expanded condition. Front Physiol 2024; 15:1306011. [PMID: 38455843 PMCID: PMC10917960 DOI: 10.3389/fphys.2024.1306011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
Skin soft tissue expansion is the process of obtaining excess skin mixed with skin development, wound healing, and mechanical stretching. Previous studies have reported that tissue expansion significantly induces epidermal proliferation throughout the skin. However, the mechanisms underlying epidermal regeneration during skin soft tissue expansion are yet to be clarified. Hair follicle stem cells (HFSCs) have been recognized as a promising approach for epidermal regeneration. This study examines HFSC-related epidermal regeneration mechanisms under expanded condition and proposes a potential method for its cellular and molecular regulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xing Fan
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xianjie Ma
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yang Li
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
33
|
Yang Y, Ma B, Chen J, Liu D, Ma J, Li B, Hao J, Zhou X. Epigenetic regulation and factors that influence the effect of iPSCs-derived neural stem/progenitor cells (NS/PCs) in the treatment of spinal cord injury. Clin Epigenetics 2024; 16:30. [PMID: 38383473 PMCID: PMC10880347 DOI: 10.1186/s13148-024-01639-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
Spinal cord injury (SCI) is a severe neurological disorder that causes neurological impairment and disability. Neural stem/progenitor cells (NS/PCs) derived from induced pluripotent stem cells (iPSCs) represent a promising cell therapy strategy for spinal cord regeneration and repair. However, iPSC-derived NS/PCs face many challenges and issues in SCI therapy; one of the most significant challenges is epigenetic regulation and that factors that influence this mechanism. Epigenetics refers to the regulation of gene expression and function by DNA methylation, histone modification, and chromatin structure without changing the DNA sequence. Previous research has shown that epigenetics plays a crucial role in the generation, differentiation, and transplantation of iPSCs, and can influence the quality, safety, and outcome of transplanted cells. In this study, we review the effects of epigenetic regulation and various influencing factors on the role of iPSC-derived NS/PCs in SCI therapy at multiple levels, including epigenetic reprogramming, regulation, and the adaptation of iPSCs during generation, differentiation, and transplantation, as well as the impact of other therapeutic tools (e.g., drugs, electrical stimulation, and scaffolds) on the epigenetic status of transplanted cells. We summarize our main findings and insights in this field and identify future challenges and directions that need to be addressed and explored.
Collapse
Affiliation(s)
- Yubiao Yang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Boyuan Ma
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Jinyu Chen
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Derong Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Jun Ma
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Bo Li
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jian Hao
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
| | - Xianhu Zhou
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
| |
Collapse
|
34
|
Kang HY, Woo MJ, Paik SJ, Choi HJ, Bach TT, Quang BH, Eum SM, Paik JH, Jung SK. Recovery Effects of Nephelium lappaceum var. pallens (Hiern) Leenh. Extract on Testosterone-Induced Inhibition of Hair Growth in C57BL/6 Mice and Human Follicular Dermal Papilla Cells. J Med Food 2024; 27:167-175. [PMID: 38174988 DOI: 10.1089/jmf.2023.k.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Although various hair health medicines have been developed and are used today, additional safe and effective natural hair growth therapies still need to be developed. Nephelium lappaceum var. pallens (Hiern) Leenh. extract (NLE) reportedly exhibits anticancer, antidiabetic, and antioxidant effects, which could be linked to androgenic processes; however, there are no reports of its effects on testosterone (TS)-inhibited hair growth. The present study investigated the effects of NLE on TS-induced inhibition of hair growth in C57BL/6 mice and human follicular dermal papilla cells. Oral administration of NLE restored hair growth that was suppressed following subcutaneous injection of TS more effectively than finasteride, a drug used for treating hair loss. Histological analysis demonstrated that oral NLE administration increased the number and diameter of hair follicles in the dorsal skin of C57BL/6 mice. In addition, western blot and immunofluorescence assays showed that the oral NLE administration restored TS-induced suppression of cyclin D1, proliferating cell nuclear antigen, and loricrin expression in the skin cells of the mice. Finally, TS suppression of cell proliferation in human follicular dermal papilla cells was significantly reversed by NLE pretreatment. The results suggest that NLE is a promising nutraceutical for hair growth because it promotes hair growth in androgenetic alopecia-like models.
Collapse
Affiliation(s)
- Ha Yeong Kang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Min Jeong Woo
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Korea
| | - So Jeong Paik
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Hee Jung Choi
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Tran The Bach
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology (VAST), Ha Noi, Vietnam
| | - Bui Hong Quang
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology (VAST), Ha Noi, Vietnam
| | - Sang Mi Eum
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Jin-Hyub Paik
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Sung Keun Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Korea
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu, Korea
| |
Collapse
|
35
|
Ma C, Cheng M, Wu Y, Xu X. The Role of Mesenchymal Stem Cells in Hair Regeneration and Hair Cycle. Stem Cells Dev 2024; 33:1-10. [PMID: 37847179 DOI: 10.1089/scd.2023.0156] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
The health of hair is directly related to people's health and appearance. Hair has key physiological functions, including skin protection and temperature regulation. Hair follicle (HF) is a vital mini-organ that directly impacts hair growth. Besides, various signaling pathways and molecules regulate the growth cycle transition of HFs. Hair and its regeneration studies have attracted much interest in recent years with the increasing rate of alopecia. Mesenchymal stem cells (MSCs), as pluripotent stem cells, can differentiate into fat, bone, and cartilage and stimulate regeneration and immunological regulation. MSCs have been widely employed to treat various clinical diseases, such as bone and cartilage injury, nerve injury, and lung injury. Besides, MSCs can be used for treatment of hair diseases due to their regenerative and immunomodulatory abilities. This review aimed to assess MSCs' treatment for alopecia, pertinent signaling pathways, and new material for hair regeneration in the last 5 years.
Collapse
Affiliation(s)
- Cong Ma
- Department of Dermatology, The First Hospital of Inner Mongolia University for Nationalities, Tongliao, China
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC, National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, Liaoning, China
| | - Ming Cheng
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC, National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, Liaoning, China
| | - Yan Wu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC, National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, Liaoning, China
| | - Xuegang Xu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC, National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, Liaoning, China
| |
Collapse
|
36
|
Lee E, Kim D, Seo H, Hahm J, Seo J, Lee S, Kim D, Ahn J, Jung CH. Akkermansia muciniphila promotes testosterone-mediated hair growth inhibition in mice. FASEB Bioadv 2023; 5:521-527. [PMID: 38094156 PMCID: PMC10714060 DOI: 10.1096/fba.2023-00056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2024] Open
Abstract
The beneficial effects of Akkermansia muciniphila (Akk) on gut health and inflammation reduction have been demonstrated; however, scientific evidence of hair growth enhancement by Akk has not been reported. Therefore, this study was undertaken to investigate the effect of Akk on improving testosterone-mediated hair growth inhibition. Hair growth inhibition was induced through subcutaneous injection of testosterone into the shaved dorsal skin of C57BL/6 male mice. Live and pasteurized Akk were orally administered at a concentration of 1 × 108 colony-forming unit. After 5 weeks, hair length and skin tissues were analyzed. The live and pasteurized Akk significantly stimulated hair growth, countering the inhibitory effect of testosterone compared to the testosterone-alone group. Hematoxylin and eosin staining revealed a significant increase in hair follicle size in the Akk-treated group. An increase in β-catenin levels, which are associated with hair growth and cell cycle progression, was also observed. Moreover, the Akk-treated group exhibited increased levels of fibroblast growth factors, including Fgf7, Igf1, Fgf7, Fgf10, and Fgf21. However, no significant difference was observed between the live and pasteurized Akk groups. These results underscore the potential of live and pasteurized Akk in improving testosterone-mediated hair growth inhibition.
Collapse
Affiliation(s)
- Eunyoung Lee
- Aging and Metabolism Research GroupKorea Food Research InstituteWanju‐gunJeollabuk‐doRepublic of Korea
| | - Daedong Kim
- Aging and Metabolism Research GroupKorea Food Research InstituteWanju‐gunJeollabuk‐doRepublic of Korea
- Department of Food BiotechnologyUniversity of Science and TechnologyWanju‐gunJeollabuk‐doRepublic of Korea
| | - Hyo‐Deok Seo
- Aging and Metabolism Research GroupKorea Food Research InstituteWanju‐gunJeollabuk‐doRepublic of Korea
| | - Jeong‐Hoon Hahm
- Aging and Metabolism Research GroupKorea Food Research InstituteWanju‐gunJeollabuk‐doRepublic of Korea
| | - Jae‐Gu Seo
- R&D centerEnterobiome Inc.Goyang‐siRepublic of Korea
| | - Sang‐Nam Lee
- R&D centerEnterobiome Inc.Goyang‐siRepublic of Korea
| | - Do‐Hak Kim
- R&D centerEnterobiome Inc.Goyang‐siRepublic of Korea
| | - Jiyun Ahn
- Aging and Metabolism Research GroupKorea Food Research InstituteWanju‐gunJeollabuk‐doRepublic of Korea
- Department of Food BiotechnologyUniversity of Science and TechnologyWanju‐gunJeollabuk‐doRepublic of Korea
| | - Chang Hwa Jung
- Aging and Metabolism Research GroupKorea Food Research InstituteWanju‐gunJeollabuk‐doRepublic of Korea
- Department of Food BiotechnologyUniversity of Science and TechnologyWanju‐gunJeollabuk‐doRepublic of Korea
| |
Collapse
|
37
|
Roets B. Potential application of PBM use in hair follicle organoid culture for the treatment of androgenic alopecia. Mater Today Bio 2023; 23:100851. [PMID: 38024838 PMCID: PMC10663892 DOI: 10.1016/j.mtbio.2023.100851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
Androgenic alopecia is a hereditary condition of pattern hair loss in genetically susceptible individuals. The condition has a significant impact on an individual's quality of life, with decreased self-esteem, body image issues and depression being the main effects. Various conventional treatment options, such as minoxidil, finasteride and herbal supplements, aim to slow down hair loss and promote hair growth. However, due to the chronic nature of the condition the financial cost of treatment for androgenic alopecia is very high and conventional treatment options are not universally effective and come with a host of side effects. Therefore, to address the limitations of current treatment options a novel regenerative treatment option is required. One promising approach is organoids, organoids are 3D cell aggregates with similar structures and functions to a target organ. Hair follicle organoids can be developed in vitro. However, the main challenges are to maintain the cell populations within the organoid in a proliferative and inductive state, as well as to promote the maturation of organoids. Photobiomodulation is a form of light therapy that stimulates endogenous chromophores. PBM has been shown to improve cell viability, proliferation, migration, differentiation and gene expression in dermal papilla cells and hair follicle stem cells. Therefore, photobiomodulation is a potential adjunct to hair follicle organoid culture to improve the proliferation and inductive capacity of cells.
Collapse
Affiliation(s)
- Brendon Roets
- Biomedical Science, Faculty of Health Science, University of Johannesburg, Johannesburg, 2028, South Africa
| |
Collapse
|
38
|
Abstract
Diseases affecting the hair follicle are common in domestic animals, but despite the importance of an intact skin barrier and a fully functional hair coat, knowledge about the detailed morphological features and the diversity of these complex mini-organs are often limited, although mandatory to evaluate skin biopsies with a history of alopecia. The factors that regulate the innate hair follicle formation and the postnatal hair cycle are still not completely understood in rodents, only rudimentarily known in humans, and are poorly understood in our companion animals. This review aims to summarize the current knowledge about hair follicle and hair shaft anatomy, the arrangement of hair follicles, hair follicle morphogenesis in the embryo, and the lifelong regeneration during the postnatal hair cycle in domestic animals. The role of follicular stem cells and the need for a multitude of interacting signaling events during hair follicle morphogenesis and regeneration is unquestioned. Because of the lack of state of the art methods that can be applied in rodents but are not feasible in companion animals, most of the information in this review is based on rodent studies. However, the few data from domestic animals that are available will be discussed, and it can be assumed that at least the principal molecular mechanisms are similar in rodents and other species.
Collapse
|
39
|
Kim MH, Jin SC, Baek HK, Yang WM. Astragalus membranaceus and Cinnamomum cassia Stimulate the Hair Follicle Differentiation-Related Growth Factor by the Wnt/β-Catenin Signaling Pathway. Curr Issues Mol Biol 2023; 45:8607-8621. [PMID: 37998718 PMCID: PMC10670826 DOI: 10.3390/cimb45110541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 11/25/2023] Open
Abstract
Astragalus membranaceus and Cinnamomum cassia are used as spices and flavorful ingredients, or medicinal herbs with pharmacological effects. In this study, the hair-growth-promoting effects of the YH complex, a newly developed formula consisting of membranaceus and C. cassia, are investigated with the prediction of its molecular mechanism. The target gene of the YH complex was about 74.8% overlapped with the gene set of 'Hair growth' on the GO Biological Process database. The oral administration of the YH complex promoted hair regrowth and increased hair-shaft thickness in depilated hair loss mice. In addition, the anagen/telogen hair follicle ratio was significantly increased by the YH complex. The growth factors affecting the growth of hair follicles were dose-dependently increased by treatment with the YH complex. The Wnt/β-catenin signaling pathway expressions in skin tissues were apparently increased by the administration of the YH complex. In conclusion, the YH complex consisting of A. membranaceus and C. cassia induced hair follicle differentiation and preserved the growing-anagen phase by increasing growth factors and the Wnt/β-catenin signaling pathway, leading to the restoration of hair loss. The YH complex can be a remedy for hair loss diseases, such as alopecia areata, androgenetic alopecia, telogen effluvium, and chemotherapy-induced alopecia.
Collapse
Affiliation(s)
- Mi Hye Kim
- College of Korean Medicine, Woosuk University, Wanju 55338, Republic of Korea;
| | - Seong Chul Jin
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.C.J.); (H.K.B.)
| | - Hee Kyung Baek
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.C.J.); (H.K.B.)
| | - Woong Mo Yang
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.C.J.); (H.K.B.)
| |
Collapse
|
40
|
Qin X, He J, Wang X, Wang J, Yang R, Chen X. The functions and clinical application potential of exosomes derived from mesenchymal stem cells on wound repair: a review of recent research advances. Front Immunol 2023; 14:1256687. [PMID: 37691943 PMCID: PMC10486026 DOI: 10.3389/fimmu.2023.1256687] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Wound repair is a complex problem for both clinical practitioners and scientific investigators. Conventional approaches to wound repair have been associated with several limitations, including prolonged treatment duration, high treatment expenses, and significant economic and psychological strain on patients. Consequently, there is a pressing demand for more efficacious and secure treatment modalities to enhance the existing treatment landscapes. In the field of wound repair, cell-free therapy, particularly the use of mesenchymal stem cell-derived exosomes (MSC-Exos), has made notable advancements in recent years. Exosomes, which are small lipid bilayer vesicles discharged by MSCs, harbor bioactive constituents such as proteins, lipids, microRNA (miRNA), and messenger RNA (mRNA). These constituents facilitate material transfer and information exchange between the cells, thereby regulating their biological functions. This article presents a comprehensive survey of the function and mechanisms of MSC-Exos in the context of wound healing, emphasizing their beneficial impact on each phase of the process, including the regulation of the immune response, inhibition of inflammation, promotion of angiogenesis, advancement of cell proliferation and migration, and reduction of scar formation.
Collapse
Affiliation(s)
- Xinchi Qin
- Zunyi Medical University, Zunyi, China
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China
| | - Jia He
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China
| | - Xiaoxiang Wang
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jingru Wang
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China
| | - Ronghua Yang
- Department of Burn and Plastic Surgery, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Xiaodong Chen
- Zunyi Medical University, Zunyi, China
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China
| |
Collapse
|
41
|
Cherkashina OL, Morgun EI, Rippa AL, Kosykh AV, Alekhnovich AV, Stoliarzh AB, Terskikh VV, Vorotelyak EA, Kalabusheva EP. Blank Spots in the Map of Human Skin: The Challenge for Xenotransplantation. Int J Mol Sci 2023; 24:12769. [PMID: 37628950 PMCID: PMC10454653 DOI: 10.3390/ijms241612769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Most of the knowledge about human skin homeostasis, development, wound healing, and diseases has been accumulated from human skin biopsy analysis by transferring from animal models and using different culture systems. Human-to-mouse xenografting is one of the fundamental approaches that allows the skin to be studied in vivo and evaluate the ongoing physiological processes in real time. Humanized animals permit the actual techniques for tracing cell fate, clonal analysis, genetic modifications, and drug discovery that could never be employed in humans. This review recapitulates the novel facts about mouse skin self-renewing, regeneration, and pathology, raises issues regarding the gaps in our understanding of the same options in human skin, and postulates the challenges for human skin xenografting.
Collapse
Affiliation(s)
- Olga L. Cherkashina
- Laboratory of Cell Biology, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elena I. Morgun
- Laboratory of Cell Biology, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Alexandra L. Rippa
- Laboratory of Cell Biology, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Anastasiya V. Kosykh
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Alexander V. Alekhnovich
- Federal Government-Financed Institution “National Medical Research Center of High Medical Technologies n.a. A.A. Vishnevsky”, 143421 Krasnogorsk, Russia
| | - Aleksey B. Stoliarzh
- Federal Government-Financed Institution “National Medical Research Center of High Medical Technologies n.a. A.A. Vishnevsky”, 143421 Krasnogorsk, Russia
| | - Vasiliy V. Terskikh
- Laboratory of Cell Biology, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ekaterina A. Vorotelyak
- Laboratory of Cell Biology, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ekaterina P. Kalabusheva
- Laboratory of Cell Biology, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
42
|
Soe ZC, Ei ZZ, Visuttijai K, Chanvorachote P. Potential Natural Products Regulation of Molecular Signaling Pathway in Dermal Papilla Stem Cells. Molecules 2023; 28:5517. [PMID: 37513389 PMCID: PMC10384366 DOI: 10.3390/molecules28145517] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Stem cells have demonstrated significant potential for tissue engineering and repair, anti-aging, and rejuvenation. Hair follicle stem cells can be found in the dermal papilla at the base of the follicle and the bulge region, and they have garnered increased attention because of their potential to regenerate hair as well as their application for tissue repair. In recent years, these cells have been shown to affect hair restoration and prevent hair loss. These stem cells are endowed with mesenchymal characteristics and exhibit self-renewal and can differentiate into diverse cell types. As research in this field continues, it is probable that insights regarding stem cell maintenance, as well as their self-renewal and differentiation abilities, will benefit the application of these cells. In addition, an in-depth discussion is required regarding the molecular basis of cellular signaling and the influence of nature-derived compounds in stimulating the stemness properties of dermal papilla stem cells. This review summarizes (i) the potential of the mesenchymal cells component of the hair follicle as a target for drug action; (ii) the molecular mechanism of dermal papilla stem cells for maintenance of their stem cell function; and (iii) the positive effects of the natural product compounds in stimulating stemness in dermal papilla stem cells. Together, these insights may help facilitate the development of novel effective hair loss prevention and treatment.
Collapse
Affiliation(s)
- Zar Chi Soe
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Zin Zin Ei
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kittichate Visuttijai
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Pithi Chanvorachote
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
43
|
Gao Y, Song W, Hao F, Duo L, Zhe X, Gao C, Guo X, Liu D. Effect of Fibroblast Growth Factor 10 and an Interacting Non-Coding RNA on Secondary Hair Follicle Dermal Papilla Cells in Cashmere Goats' Follicle Development Assessed by Whole-Transcriptome Sequencing Technology. Animals (Basel) 2023; 13:2234. [PMID: 37444032 DOI: 10.3390/ani13132234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Cashmere, a keratinised product of secondary hair follicles (SHFs) in cashmere goats, holds an important place in international high-end textiles. However, research on the complex molecular and signal regulation during the development and growth of hair follicles (HFs), which is essential for the development of the cashmere industry, is limited. Moreover, increasing evidence indicates that non-coding RNAs (ncRNAs) participate in HF development. Herein, we systematically investigated a competing endogenous RNA (ceRNA) regulatory network mediated by circular RNAs (circRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs) in skin samples of cashmere goat embryos, using whole-transcriptome sequencing technology. We obtained 6468, 394, and 239 significantly differentially expressed mRNAs, circRNAs, and miRNAs, respectively. These identified RNAs were further used to construct a ceRNA regulatory network, mediated by circRNAs, for cashmere goats at a late stage of HF development. Among the molecular species identified, miR-184 and fibroblast growth factor (FGF) 10 exhibited competitive targeted interactions. In secondary HF dermal papilla cells (SHF-DPCs), miR-184 promotes proliferation, inhibits apoptosis, and alters the cell cycle via the competitive release of FGF10. This study reports that FGF10 and its interaction with ncRNAs significantly affect SHF-DPCs, providing a reference for research on the biology of HFs in cashmere goats and other mammals.
Collapse
Affiliation(s)
- Yuan Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Weiguo Song
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Fei Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Lei Duo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xiaoshu Zhe
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Chunyan Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xudong Guo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Dongjun Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
44
|
Wu C, Yuan L, Cao W, Ye X, Ma X, Qin C, Li B, Yu F, Fu X. Regulation of secondary hair follicle cycle in cashmere goats by miR-877-3p targeting IGFBP5 gene. J Anim Sci 2023; 101:skad314. [PMID: 37777862 PMCID: PMC10583983 DOI: 10.1093/jas/skad314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/29/2023] [Indexed: 10/02/2023] Open
Abstract
Cashmere, a highly valuable animal product derived from cashmere goats, holds significant economic importance. MiRNAs serve as crucial regulators in the developmental processes of mammalian hair follicles. Understanding the regulation of miRNAs during the hair follicle cycle is essential for enhancing cashmere quality. In this investigation, we employed high-throughput sequencing technology to analyze the expression profiles of miRNAs in the secondary hair follicles of Jiangnan cashmere goats at different stages. Through bioinformatics analysis, we identified differentially expressed miRNAs (DE miRNAs). The regulatory relationships between miRNAs and their target genes were verified using multiple techniques, including RT-qPCR, western blot, Dual-Luciferase Reporter, and CKK-8 assays. Our findings revealed the presence of 193 DE miRNAs during various stages of the hair follicle cycle in Jiangnan cashmere goats. Based on the previously obtained mRNA data, the target genes of DE miRNA were predicted, and 1,472 negative regulatory relationships between DE miRNAs and target genes were obtained. Notably, the expression of chi-miR-877-3p was down-regulated during the telogen (Tn) phase compared to the anagen (An) and catagen (Cn) phases, while the IGFBP5 gene exhibited up-regulation. Further validation experiments confirmed that overexpression of chi-miR-877-3p in dermal papilla cells suppressed IGFBP5 gene expression and facilitated cell proliferation. The results of this study provide novel insights for analyzing the hair follicle cycle.
Collapse
Affiliation(s)
- Cuiling Wu
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, School of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, China
| | - Liang Yuan
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, School of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, China
| | - Wenzhi Cao
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, School of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, China
| | - Xiaofang Ye
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, School of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, China
| | - Xiaolin Ma
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, School of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, China
| | - Chongkai Qin
- Xinjiang Aksu Prefecture Animal Husbandry Technology Extension Center, Aksu, China
| | - Bin Li
- Xinjiang Aksu Prefecture Animal Husbandry Technology Extension Center, Aksu, China
| | - Fei Yu
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, School of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, China
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-sheep Cashmere-goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Xinjiang Urumqi, China
| |
Collapse
|
45
|
Wood FM. The Role of Cell-Based Therapies in Acute Burn Wound Skin Repair: A Review. J Burn Care Res 2023; 44:S42-S47. [PMID: 36567469 DOI: 10.1093/jbcr/irac146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tissue engineering solutions for skin have been developed over the last few decades with a focus initially on a two-layered structure with epithelial and dermal repair. An essential element of skin restoration is a source of cells capable of differentiating into the appropriate phenotype. The need to repair areas of skin when traditional techniques were not adequate addressed led to cell based therapies being developed initially as a laboratory-based tissue expansion opportunity, both as sheets of cultured epithelial autograft and in composite laboratory-based skin substitutes. The time to availability of the cell-based therapies has been solved in a number of ways, from using allograft cell-based solutions to the use of point of care skin cell harvesting for immediate clinical use. More recently pluripotential cells have been explored providing a readily available source of cells and cells which can express the broad range of phenotypes seen in the mature skin construct. The lessons learnt from the use of cell based techniques has driven the exploration of the use of 3D printing technology, with controlled accurate placement of the cells within a specific printed construct to optimise the phenotypic expression and tissue generation.
Collapse
Affiliation(s)
- Fiona M Wood
- University of Western Australia, Fiona Stanley Hospital, Perth Children's Hospital, Burns Service of WA, Level 4 Fiona Stanley Hospital, 11 Robin Warren Drive, Murdoch Western, Australia 6150
| |
Collapse
|
46
|
Role of wound microbiome, strategies of microbiota delivery system and clinical management. Adv Drug Deliv Rev 2023; 192:114671. [PMID: 36538989 DOI: 10.1016/j.addr.2022.114671] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/23/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Delayed wound healing is one of the most global public health threats affecting nearly 100 million people each year, particularly the chronic wounds. Many confounding factors such as aging, diabetic disease, medication, peripheral neuropathy, immunocompromises or arterial and venous insufficiency hyperglycaemia are considered to inhibit wound healing. Therapeutic approaches for slow wound healing include anti-infection, debridement and the use of various wound dressings. However, the current clinical outcomes are still unsatisfied. In this review, we discuss the role of skin and wound commensal microbiota in the different healing stages, including inflammation, cell proliferation, re-epithelialization and remodelling phase, followed by multiple immune cell responses to commensal microbiota. Current clinical management in treating surgical wounds and chronic wounds was also reviewed together with potential controlled delivery systems which may be utilized in the future for the topical administration of probiotics and microbiomes. This review aims to introduce advances, novel strategies, and pioneer ideas in regulating the wound microbiome and the design of controlled delivery systems.
Collapse
|