1
|
Sudarjat H, Qin C, Ingabire D, Moothedathu Raynold AA, Pangeni R, Pearcy A, Meng T, Zhao L, Arriaga M, Chow WN, Puetzer JL, Lu X, Moeller FG, Halquist MS, O'Keeffe C, Banks ML, Xu Q. Janus LAAM-loaded electrospun fibrous buccal films for treating opioid use disorder. Biomaterials 2025; 317:123041. [PMID: 39753084 PMCID: PMC11788036 DOI: 10.1016/j.biomaterials.2024.123041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/12/2024] [Accepted: 12/21/2024] [Indexed: 01/18/2025]
Abstract
The opioid crisis has claimed approximately one million lives in the United States since 1999, underscoring a significant public health concern. This surge in opioid use disorder (OUD) fatalities necessitates improved therapeutic options. Current OUD therapies often require daily clinical visits, leading to poor patient compliance and high costs to the health systems. Levo-alpha-acetylmethadol (LAAM) is a long-lasting OUD drug, and the thrice-weekly oral LAAM solution can offer better patient compliance compared to the traditional daily methadone therapies. However, LAAM is FDA-approved but withdrawn from the market. As part of the NIH HEAL Initiative, we aim to reintroduce LAAM back to the market to improve OUD therapeutic options by developing a novel Janus LAAM-loaded fibrous buccal film (LFBF) formulation made of a drug-containing electrospun fibrous layer and a backing layer. The buccal administration of LFBF exhibited superior transmucosal delivery of LAAM to systemic circulation with a nearly 4-fold higher drug bioavailability than the conventional oral LAAM solution in rabbits. Furthermore, upon buccal administration in an opioid-dependent rat model, the LFBF significantly decreased fentanyl choice in the fentanyl-dependent rats, while the conventional oral LAAM solution did not at the same dose. Both the buccal film and oral solution of LAAM reduced somatic withdrawal signs in the experimental animals. These findings highlight the buccal delivery of LAAM using electrospun fibers as a promising strategy with improved drug bioavailability. Furthermore, it sheds light on future clinical applications aiming for enhanced treatment outcomes in the battle against the current opioid crisis.
Collapse
Affiliation(s)
- Hadi Sudarjat
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Chaolong Qin
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Diane Ingabire
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, 23298, USA; Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | | | - Rudra Pangeni
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Adam Pearcy
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Tuo Meng
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Long Zhao
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Michelle Arriaga
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Woon N Chow
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23298, USA; Department of Ophthalmology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Jennifer L Puetzer
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Xiuling Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT, 06269, USA
| | - F Gerard Moeller
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Matthew S Halquist
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Charles O'Keeffe
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Qingguo Xu
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, 23298, USA; Department of Ophthalmology, Virginia Commonwealth University, Richmond, VA, 23298, USA; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23298, USA; Center for Pharmaceutical Engineering, Center for Drug Discovery, Department of Pediatrics, and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
2
|
Arav Y. Advances in Modeling Approaches for Oral Drug Delivery: Artificial Intelligence, Physiologically-Based Pharmacokinetics, and First-Principles Models. Pharmaceutics 2024; 16:978. [PMID: 39204323 PMCID: PMC11359797 DOI: 10.3390/pharmaceutics16080978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Oral drug absorption is the primary route for drug administration. However, this process hinges on multiple factors, including the drug's physicochemical properties, formulation characteristics, and gastrointestinal physiology. Given its intricacy and the exorbitant costs associated with experimentation, the trial-and-error method proves prohibitively expensive. Theoretical models have emerged as a cost-effective alternative by assimilating data from diverse experiments and theoretical considerations. These models fall into three categories: (i) data-driven models, encompassing classical pharmacokinetics, quantitative-structure models (QSAR), and machine/deep learning; (ii) mechanism-based models, which include quasi-equilibrium, steady-state, and physiologically-based pharmacokinetics models; and (iii) first principles models, including molecular dynamics and continuum models. This review provides an overview of recent modeling endeavors across these categories while evaluating their respective advantages and limitations. Additionally, a primer on partial differential equations and their numerical solutions is included in the appendix, recognizing their utility in modeling physiological systems despite their mathematical complexity limiting widespread application in this field.
Collapse
Affiliation(s)
- Yehuda Arav
- Department of Applied Mathematics, Israeli Institute for Biological Research, P.O. Box 19, Ness-Ziona 7410001, Israel
| |
Collapse
|
3
|
Chen Y, Yang Z, Zhou Z, Liu EJ, Luo W, He Z, Han W, Liu Y. Metabolism-dependent mutagenicity of two structurally similar tobacco-specific nitrosamines (N-nitrosonornicotine and N-nitrosoanabasine) in human cells, partially different CYPs being activating enzymes. Toxicology 2024; 504:153774. [PMID: 38490321 DOI: 10.1016/j.tox.2024.153774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
N-nitrosonornicotine (NNN) and N-nitrosoanabasine (NAB) are both tobacco-specific nitrosamines bearing two heterocyclic amino groups, NAB bearing an extra -CH2- group (conferring a hexa- rather than penta-membered cycle) but with significantly decreased carcinogenicity. However, their activating enzymes and related mutagenicity remain unclear. In this study, the chemical-CYP interaction was analyzed by molecular docking, thus the binding energies and conformations of NNN for human CYP2A6, 2A13, 2B6, 2E1 and 3A4 appeared appropriate as a substrate, so did NAB for human CYP1B1, 2A6, 2A13 and 2E1. The micronucleus test in human hepatoma (HepG2) cells with each compound (62.5-1000 μM) exposing for 48 h (two-cell cycle) was negative, however, pretreatment with bisphenol AF (0.1-100 nM, CYPs inducer) and ethanol (0.2% v:v, CYP2E1 inducer) potentiated micronucleus formation by both compounds, while CITCO (1 μM, CYP2B6 inducer) selectively potentiated that by NNN. In C3A cells (endogenous CYPs enhanced over HepG2) both compounds induced micronucleus, which was abolished by 1-aminobenzotriazole (60 μM, CYPs inhibitor) while unaffected by 8-methoxypsoralen (1 μM, CYP2A inhibitor). Consistently, NNN and NAB induced micronucleus in V79-derived recombinant cell lines expressing human CYP2B6/2E1 and CYP1B1/2E1, respectively, while negative in those expressing other CYPs. By immunofluorescent assay both compounds selectively induced centromere-free micronucleus in C3A cells. In PIG-A assays in HepG2 cells NNN and NAB were weakly positive and simply negative, respectively; however, in C3A cells both compounds significantly induced gene mutations, NNN being slight more potent. Conclusively, both NNN and NAB are mutagenic and clastogenic, depending on metabolic activation by partially different CYP enzymes.
Collapse
Affiliation(s)
- Yijing Chen
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Zongying Yang
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China; School of Clinical Technology, Sichuan Vocational College of Health and Rehabilitation, 3 Deming Road, Zigong, Sichuan Province 643000, China
| | - Zhao Zhou
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Ellery J Liu
- International High School Section, Guangzhou Experimental Foreign Language School, 599 Guanghuayi Road, Guangzhou 510440, China
| | - Wenwen Luo
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Zhini He
- Research Center of Food Safety and Health, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Weili Han
- Department of inspection and quarantine, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China.
| |
Collapse
|
4
|
Ramesh A, Halpern LR, Southerland JH, Adunyah SE, Gangula PR. Saliva as a diagnostic tool to measure polycyclic aromatic hydrocarbon exposure in dental patients exposed to intimate partner violence (IPV). Biomed J 2023; 46:100586. [PMID: 36804615 PMCID: PMC10774449 DOI: 10.1016/j.bj.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Social habits such as tobacco use, alcohol consumption, and chemically contaminated diet contribute to poor oral health. Intimate Partner Violence (IPV) is a global public health epidemic which can exacerbate the prevalence of health conditions affecting a victim's lifespan. This study investigates using saliva as a biomarker for detecting levels of benzo(a)pyrene [B(a)P]; a toxicant present in cigarette smoke and barbecued meat in a population of IPV + female patients. METHODS A cross-sectional IRB-approved study utilized 63 female participants (37 African Americans [AA], and 26 non-African Americans [NAA]), who provided consent for the study. Participants submitted samples of saliva, as well as questionnaires about demographics, health history, and a well-validated (IPV) screen. RESULTS The prevalence of IPV was greater in AA compared to NAA. While the concentrations of PAHs/B(a)P detected in saliva of IPV samples in NAA were generally within the range of B(a)P reported for saliva from elsewhere, the concentrations were high in some IPV positive samples. Among the B(a)P metabolites, the concentrations of B(a)P 7,8-diol, B(a)P 3,6- and 6,12-dione metabolites were greater than the other metabolite in both AA and non-AA groups who were positive. CONCLUSION Our study supports the use of saliva as a potential "diagnostic rheostat" to identify toxicants that may exacerbate/precipitate systemic disease in female victims of IPV. In addition, our study is the first to report that IPV may precipitate the accumulation of B(a)P in oral cavity that can alter inflammatory cascades and increase risk of poor health outcomes in this population of patients.
Collapse
Affiliation(s)
- Aramandla Ramesh
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA.
| | - Leslie R Halpern
- Department of Dental Medicine, New York Medical College/ NYCHHC, Metropolitan Hospital, New York, USA
| | - Janet H Southerland
- Departments of Oral and Maxillofacial Surgery, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Samuel E Adunyah
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Pandu R Gangula
- Department of Oral Diagnostic Sciences & Research, School of Dentistry, Meharry Medical College, Nashville, TN, USA
| |
Collapse
|
5
|
Zizza A, Panico A, Grassi T, Recchia V, Grima P, De Giglio O, Bagordo F. Is telomere length in buccal or salivary cells a useful biomarker of exposure to air pollution? A review. MUTATION RESEARCH/GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 883-884:503561. [DOI: 10.1016/j.mrgentox.2022.503561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
|
6
|
Simons P, Olofsen E, van Velzen M, van Lemmen M, Mooren R, van Dasselaar T, Mohr P, Hammes F, van der Schrier R, Niesters M, Dahan A. S-Ketamine Oral Thin Film—Part 1: Population Pharmacokinetics of S-Ketamine, S-Norketamine and S-Hydroxynorketamine. FRONTIERS IN PAIN RESEARCH 2022; 3:946486. [PMID: 35899184 PMCID: PMC9309697 DOI: 10.3389/fpain.2022.946486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/23/2022] [Indexed: 11/20/2022] Open
Abstract
Ketamine is administered predominantly via the intravenous route for the various indications, including anesthesia, pain relief and treatment of depression. Here we report on the pharmacokinetics of sublingual and buccal fast-dissolving oral-thin-films that contain 50 mg of S-ketamine in a population of healthy male and female volunteers. Twenty volunteers received one or two oral thin films on separate occasions in a randomized crossover design. The oral thin films were placed sublingually (n = 15) or buccally (n = 5) and left to dissolve for 10 min in the mouth during which the subjects were not allowed to swallow. For 6 subsequent hours, pharmacokinetic blood samples were obtained after which 20 mg S-ketamine was infused intravenously and blood sampling continued for another 2-hours. A population pharmacokinetic analysis was performed in NONMEM pharmacokinetic model of S-ketamine and its metabolites S-norketamine and S-hydroxynorketamine; p < 0.01 were considered significant. S-ketamine bioavailability was 26 ± 1% (estimate ± standard error of the estimate) with a 20% lower bioavailability of the 100 mg oral thin film relative to the 50 mg film, although this difference did not reach the level of significance. Due to the large first pass-effect, 80% of S-ketamine was metabolized into S-norketamine leading to high plasma levels of S-norketamine following the oral thin film application with 56% of S-ketamine finally metabolized into S-hydroxynorketamine. No differences in pharmacokinetics were observed for the sublingual and buccal administration routes. The S-ketamine oral thin film is a safe and practical alternative to intravenous S-ketamine administration that results in relatively high plasma levels of S-ketamine and its two metabolites.
Collapse
Affiliation(s)
- Pieter Simons
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| | - Erik Olofsen
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| | - Monique van Velzen
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| | - Maarten van Lemmen
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| | - René Mooren
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| | - Tom van Dasselaar
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| | - Patrick Mohr
- LTS Lohmann Therapie-Systeme AG, Andernach, Germany
| | | | | | - Marieke Niesters
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
- PainLess Foundation, Leiden, Netherlands
- *Correspondence: Albert Dahan
| |
Collapse
|
7
|
Schwartz M, Neiers F, Charles JP, Heydel JM, Muñoz-González C, Feron G, Canon F. Oral enzymatic detoxification system: Insights obtained from proteome analysis to understand its potential impact on aroma metabolization. Compr Rev Food Sci Food Saf 2021; 20:5516-5547. [PMID: 34653315 DOI: 10.1111/1541-4337.12857] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/02/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022]
Abstract
The oral cavity is an entry path into the body, enabling the intake of nutrients but also leading to the ingestion of harmful substances. Thus, saliva and oral tissues contain enzyme systems that enable the early neutralization of xenobiotics as soon as they enter the body. Based on recently published oral proteomic data from several research groups, this review identifies and compiles the primary detoxification enzymes (also known as xenobiotic-metabolizing enzymes) present in saliva and the oral epithelium. The functions and the metabolic activity of these enzymes are presented. Then, the activity of these enzymes in saliva, which is an extracellular fluid, is discussed with regard to the salivary parameters. The next part of the review presents research evidencing oral metabolization of aroma compounds and the putative involved enzymes. The last part discusses the potential role of these enzymatic reactions on the perception of aroma compounds in light of recent pieces of evidence of in vivo oral metabolization of aroma compounds affecting their release in mouth and their perception. Thus, this review highlights different enzymes appearing as relevant to explain aroma metabolism in the oral cavity. It also points out that further works are needed to unravel the effect of the oral enzymatic detoxification system on the perception of food flavor in the context of the consumption of complex food matrices, while considering the impact of food oral processing. Thus, it constitutes a basis to explore these biochemical mechanisms and their impact on flavor perception.
Collapse
Affiliation(s)
- Mathieu Schwartz
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche Comté, Dijon, France
| | - Fabrice Neiers
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche Comté, Dijon, France
| | - Jean-Philippe Charles
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche Comté, Dijon, France
| | - Jean-Marie Heydel
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche Comté, Dijon, France
| | - Carolina Muñoz-González
- Instituto de investigación en Ciencias de la Alimentación (CIAL), (CSIC-UAM), C/ Nicolás Cabrera, Madrid, Spain
| | - Gilles Feron
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche Comté, Dijon, France
| | - Francis Canon
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche Comté, Dijon, France
| |
Collapse
|
8
|
Sharma M, Shetty SS, Radhakrishnan R. Novel Pathways and Mechanism of Nicotine-Induced Oral Carcinogenesis. Recent Pat Anticancer Drug Discov 2021; 17:66-79. [PMID: 34365933 DOI: 10.2174/1574892816666210806161312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Smokeless Tobacco (SLT) contains 9 times more nicotine than Smoked Tobacco (SMT). The carcinogenic effect of nicotine is intensified by converting nicotine-to-nicotine-derived Nitrosamines (NDNs). METHODS A review of the literature was conducted with a tailored search strategy to unravel the novel pathways and mechanisms of nicotine-induced oral carcinogenesis. RESULTS Nicotine and NDNs act on nicotinic Acetylcholine Receptors (nAChRs) as agonists. Nicotine facilitates cravings through α4β2nAChR and α7nAChR, via enhanced brain dopamine release. Nicotine binding to nAChR promotes proliferation, migration, invasion, chemoresistance, radioresistance, and metastasis of oral cancer cells. Nicotine binding to α7nAChR on keratinocytes triggers Ras/Raf-1/MEK1/ERK cascade promoting anti-apoptosis and pro-proliferative effects. Furthermore, the nicotine-enhanced metastasis is subdued on nAChR blockade through reduced nuclear localization of p-EGFR. CONCLUSION Protracted exposure to nicotine/NDN augments cancer-stimulatory α7nAChR and desensitizes cancer inhibitory α4β2nAChR. Since nAChRs dictate both addictive and carcinogenic effects of nicotine, it seems counterintuitive to designate nicotine just as an addictive agent devoid of any carcinogenicity.
Collapse
Affiliation(s)
- Mohit Sharma
- Department of Oral Pathology, Sudha Rustagi College of Dental Sciences and Research, Faridabad - 121004. India
| | - Smitha S Shetty
- Department of Oral Pathology, Faculty of Dentistry, Melaka Manipal Medical College, Manipal, (Karnataka). India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal - 576104. India
| |
Collapse
|
9
|
Hoes L, Dok R, Verstrepen KJ, Nuyts S. Ethanol-Induced Cell Damage Can Result in the Development of Oral Tumors. Cancers (Basel) 2021; 13:cancers13153846. [PMID: 34359747 PMCID: PMC8345464 DOI: 10.3390/cancers13153846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Alcohol consumption is linked to 26.4% of all lip and oral cavity cancer cases worldwide. Despite this clear causal relationship, the exact molecular mechanisms by which ethanol damages cells are still under investigation. It is well-established that the metabolism of ethanol plays an important role. Ethanol metabolism yields reactive metabolites that can directly damage the DNA. If the damage is repaired incorrectly, mutations can be fixed in the DNA sequence. Whenever mutations affect key regulatory genes, for instance cell cycle regulating genes, uncontrolled cell growth can be the consequence. Recently, global patterns of mutations have been identified. These so-called mutational signatures represent a fingerprint of the different mutational processes over time. Interestingly, there were ethanol-related signatures discovered that did not associate with ethanol metabolism. This finding highlights there might be other molecular effects of ethanol that are yet to be discovered. Abstract Alcohol consumption is an underestimated risk factor for the development of precancerous lesions in the oral cavity. Although alcohol is a well-accepted recreational drug, 26.4% of all lip and oral cavity cancers worldwide are related to heavy drinking. Molecular mechanisms underlying this carcinogenic effect of ethanol are still under investigation. An important damaging effect comes from the first metabolite of ethanol, being acetaldehyde. Concentrations of acetaldehyde detected in the oral cavity are relatively high due to the metabolization of ethanol by oral microbes. Acetaldehyde can directly damage the DNA by the formation of mutagenic DNA adducts and interstrand crosslinks. Additionally, ethanol is known to affect epigenetic methylation and acetylation patterns, which are important regulators of gene expression. Ethanol-induced hypomethylation can activate the expression of oncogenes which subsequently can result in malignant transformation. The recent identification of ethanol-related mutational signatures emphasizes the role of acetaldehyde in alcohol-associated carcinogenesis. However, not all signatures associated with alcohol intake also relate to acetaldehyde. This finding highlights that there might be other effects of ethanol yet to be discovered.
Collapse
Affiliation(s)
- Lore Hoes
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3000 Leuven, Belgium; (L.H.); (K.J.V.)
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, KU Leuven, 3000 Leuven, Belgium
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium;
| | - Rüveyda Dok
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium;
| | - Kevin J. Verstrepen
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3000 Leuven, Belgium; (L.H.); (K.J.V.)
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Sandra Nuyts
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium;
- Department of Radiation Oncology, Leuven Cancer Institute, University Hospital Leuven, 3000 Leuven, Belgium
- Correspondence: ; Tel.: +32-1634-7600; Fax: +32-1634-7623
| |
Collapse
|
10
|
Itin C, Komargodski R, Barasch D, Domb AJ, Hoffman A. Prolonged Delivery of Apomorphine Through the Buccal Mucosa, Towards a Noninvasive Sustained Administration Method in Parkinson's Disease: In Vivo Investigations in Pigs. J Pharm Sci 2020; 110:1824-1833. [PMID: 33333142 DOI: 10.1016/j.xphs.2020.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/20/2020] [Accepted: 12/09/2020] [Indexed: 01/01/2023]
Abstract
In the current work, prolonged systemic delivery of apomorphine via buccal mucosa was shown to be a promising treatment for Parkinson's disease as a substitute for clinically utilized subcutaneous infusions. Due to extensive 'first-pass' metabolism, apomorphine is administered parenterally to bypass liver metabolism. Drawbacks of parenteral administration cause low patient compliance and adherence to treatment. On the other hand, while also bypassing the liver, delivery through buccal mucosa has a superior safety profile, is less costly, lacks pain and discomfort, and possesses excellent accessibility, overall augmenting patient compliance. Current in vivo study in pigs showed: (1) steady plateau levels of apomorphine in plasma were obtained 30 min following administration and remained constant for 8 h until a delivery device was removed, (2) bioavailability of apomorphine was 55%-80% as opposed to <2% peroral and (3) simulation of the pharmacokinetic profile obtained in pigs predicted therapeutically relevant levels of apomorphine in human. Furthermore, antipyrine was incorporated as a permeation marker to enable mechanistic investigation of apomorphine release from the delivery device and its permeation through the buccal mucosa. In addition, limitations of an Ussing diffusion chamber as an ex vivo research tool were also discussed.
Collapse
Affiliation(s)
- Constantin Itin
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 91120, Israel
| | - Rinat Komargodski
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 91120, Israel
| | - Dinorah Barasch
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 91120, Israel
| | - Abraham J Domb
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 91120, Israel
| | - Amnon Hoffman
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 91120, Israel.
| |
Collapse
|
11
|
Wine Consumption and Oral Cavity Cancer: Friend or Foe, Two Faces of Janus. Molecules 2020; 25:molecules25112569. [PMID: 32486484 PMCID: PMC7321235 DOI: 10.3390/molecules25112569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 12/29/2022] Open
Abstract
The health benefits of moderate wine consumption have been extensively studied during the last few decades. Some studies have demonstrated protective associations between moderate drinking and several diseases including oral cavity cancer (OCC). However, due to the various adverse effects related to ethanol content, the recommendation of moderate wine consumption has been controversial. The polyphenolic components of wine contribute to its beneficial effects with different biological pathways, including antioxidant, lipid regulating and anti-inflammatory effects. On the other hand, in the oral cavity, ethanol is oxidized to form acetaldehyde, a metabolite with genotoxic properties. This review is a critical compilation of both the beneficial and the detrimental effects of wine consumption on OCC.
Collapse
|
12
|
de Los A Gutiérrez M, Palmieri MA, Giuliani DS, Colman Lerner JE, Maglione G, Andrinolo D, Tasat DR. Monitoring human genotoxicity risk associated to urban and industrial Buenos Aires air pollution exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:13995-14006. [PMID: 32034600 DOI: 10.1007/s11356-020-07863-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
The quality of life in large megacities is directly affected by its air quality. In urban environments, suspended particles from anthropogenic origin is one of the main air contaminants identified as highly genotoxic, mutagenic, or carcinogenic. Atmospheric monitoring is therefore imperative, and bioassays to detect the effects of genotoxic agents give usually excellent results. Analysis of micronucleus (MN) in exfoliated oral mucosa cells is a sensitive non-invasive method for monitoring genetic damage in human populations. The first aim of this study was to analyze and characterize levels of volatile organic compounds (VOCs), particulate matter (PM), and polycyclic aromatic hydrocarbons (PAHs) in two areas from Buenos Aires: La Plata city, an urban (U) area and Ensenada, an industrial (I) area. Secondly, we evaluated the possible health risk of its inhabitants through a simple genotoxic assay on exfoliated oral mucosa cells. Whole blood cell count and nuclear abnormalities frequencies were evaluated in the exfoliated oral mucosa cells from urban and industrial inhabitants. Smoking habit represented a significant factor increasing MN percentage while, age did not increase the production of any of the nuclear aberrations assayed (micronuclei, binucleated, karyorrhexis) when the inhabitants from the urban and the industrial areas were compared. In addition, changes in MN and binucleated cell percentages in males and females were found to be area-dependent. We suggest that regardless PM concentration, PM-specific characteristics (size, shape, chemical elements, etc.) and VOCs levels could be responsible for the different harmful genotoxic effects seen in the two areas. Although this is a preliminary study, our results allowed to recognize that individuals living in both the urban and the industrial areas could be considered susceptible groups and should periodically undergo biological monitoring and appropriate care.
Collapse
Affiliation(s)
- María de Los A Gutiérrez
- Center for Environmental Research (CIM) Faculty of Exact Sciences, CONICET, National University of La Plata, Boulevard 120 No. 1489, Buenos Aires, Argentina
| | - Mónica A Palmieri
- Biodiversity and Experimental Biology Department, School of Exact and Natural Sciences, University of Buenos Aires, Av. Int. Güiraldes No. 2160, Buenos Aires, Argentina
| | - Daniela S Giuliani
- Center for Environmental Research (CIM) Faculty of Exact Sciences, CONICET, National University of La Plata, Boulevard 120 No. 1489, Buenos Aires, Argentina
| | - Jorge E Colman Lerner
- Center for Research and Development in Applied Sciences (CINDECA), Faculty of Exact Sciences, CONICET, CIC-PBA, National University of La Plata, 47 y 115 No. 257, Buenos Aires, Argentina.
| | - Guillermo Maglione
- Department of Histology and Embryology, School of Dentistry, University of Buenos Aires, Marcelo T. de Alvear 2142, Buenos Aires, Argentina
| | - Darío Andrinolo
- Center for Environmental Research (CIM) Faculty of Exact Sciences, CONICET, National University of La Plata, Boulevard 120 No. 1489, Buenos Aires, Argentina
| | - Deborah R Tasat
- Department of Histology and Embryology, School of Dentistry, University of Buenos Aires, Marcelo T. de Alvear 2142, Buenos Aires, Argentina
- School of Science and Technology, National University of San Martín, 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
| |
Collapse
|
13
|
Ployon S, Brulé M, Andriot I, Morzel M, Canon F. Understanding retention and metabolization of aroma compounds using an in vitro model of oral mucosa. Food Chem 2020; 318:126468. [PMID: 32126464 DOI: 10.1016/j.foodchem.2020.126468] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 12/15/2022]
Abstract
The mechanism leading to aroma persistence during eating is not fully described. This study aims at better understanding the role of the oral mucosa in this phenomenon. Release of 14 volatile compounds from different chemical classes was studied after exposure to in vitro models of oral mucosa, at equilibrium by Gas-Chromatography-Flame Ionization Detection (GC-FID) and in dynamic conditions by Proton Transfer Reaction- Mass Spectrometry (PTR-MS). Measurements at equilibrium showed that mucosal hydration reduced the release of only two compounds, pentan-2-one and linalool (p < 0.05), and suggested that cells could metabolize aroma compounds from different chemical families (penta-2,3-dione, trans-2-hexen-1-al, ethyl hexanoate, nonan- and decan-2-one). Dynamic analyses for pentan-2-one and octan-2-one evidenced that the constituents of the mucosal pellicle influenced release kinetics differently depending on molecule hydrophobicity. This work suggests that mucosal cells can metabolize aroma compounds and that non-covalent interactions occur between aroma compounds and oral mucosa depending on aroma chemical structure.
Collapse
Affiliation(s)
- Sarah Ployon
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, Dijon F-21000, France
| | - Marine Brulé
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, Dijon F-21000, France
| | - Isabelle Andriot
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, Dijon F-21000, France; ChemoSens Platform, CSGA, Dijon F-21000, France
| | - Martine Morzel
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, Dijon F-21000, France
| | - Francis Canon
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, Dijon F-21000, France.
| |
Collapse
|
14
|
Kiene K, Hayasi N, Burhenne J, Uchitomi R, Sünderhauf C, Schmid Y, Haschke M, Haefeli WE, Krähenbühl S, Mikus G, Inada H, Huwyler J. Microdosed midazolam for the determination of cytochrome P450 3A activity: Development and clinical evaluation of a buccal film. Eur J Pharm Sci 2019; 135:77-82. [DOI: 10.1016/j.ejps.2019.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/06/2019] [Accepted: 05/13/2019] [Indexed: 11/28/2022]
|
15
|
Elzaki MEA, Xue RR, Hu L, Wang JD, Zeng RS, Song YY. Bioactivation of aflatoxin B1 by a cytochrome P450, CYP6AE19 induced by plant signaling methyl jasmonate in Helicoverpa armigra (Hübner). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 157:211-218. [PMID: 31153471 DOI: 10.1016/j.pestbp.2019.03.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/20/2019] [Accepted: 03/31/2019] [Indexed: 06/09/2023]
Abstract
Herbivore attack leads to enhanced production of defensive compounds to mount anti-herbivore defense in plants via activation of the jasmonate signaling pathway. On the other hand, some herbivores can eavesdrop on plants defense signaling and up-regulate their cytochrome P450 genes to increase detoxification of defensive compounds. However, the ecological risk of eavesdropping on plant defense signaling is largely unknown. In this study, we examined the induction of cytochrome P450s by methyl jasmonate (MeJA) and its consequence on the toxicity of aflatoxin B1 (AFB1) to Helicoverpa armigra larvae. The results show that MeJA applications either in a diet or volatile exposure enhanced the toxicity of AFB1 to the larvae. RNA sequences analysis revealed that cytochrome P450 CYP6AE19 was highly induced when MeJA was applied with AFB1. In addition, HaGST encoding glutathione-S-transferase that mainly transforms aflatoxin B1 exo-8,9-epoxide to aflatoxin B1 exo-8,9-glutathione was also induced. RNA interference of CYP6AE19 via injecting a double-stranded RNA decreased mortality of larvae exposed to AFB1; while injecting a double-stranded RNA of HaGST increased larval mortality. Furthermore, a protein model was generated and a subsequent docking simulation for AFB1 suggests the bioactivation as a major mechanism of AFB1. This study provides evidence that MeJA increased larval mortality of H. armigera via induction of CYP6AE19 that can bioactivate AFB1.
Collapse
Affiliation(s)
- Mohammed Esmail Abdalla Elzaki
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rong-Rong Xue
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin Hu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jin-da Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ren-Sen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan-Yuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
16
|
Çakmak G, Eraydın D, Berkkan A, Yağar S, Burgaz S. Genetic damage of operating and recovery room personnel occupationally exposed to waste anaesthetic gases. Hum Exp Toxicol 2018; 38:3-10. [PMID: 29932008 DOI: 10.1177/0960327118783532] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Occupational exposure to the waste anaesthetic gases (WAGs) is a crucial problem for healthcare personnel. Cancer is among the potential long-term adverse effects of WAGs. The present occupational molecular epidemiology study was conducted in healthcare personnel (anaesthetists, nurses and technicians; n = 46), working in operating rooms (ORs; n = 34) and recovery units (RUs; n = 12) of the same hospital, to assess the genotoxicity risk of WAGs exposure. Twenty-one healthy available hospital staff allocated to other wards, without the history of working in ORs and RUs were the control group. A micronucleus test was carried out for peripheral blood lymphocytes (PBLs) and buccal epithelial cells (BECs). Exposure to the anaesthetics was assessed with sevoflurane concentrations and inorganic fluoride levels in post-shift urine samples of the healthcare staff. As an exposure marker, sevoflurane concentrations in ORs and RUs were measured using passive samplers. The micronuclei frequencies were increased in both PBLs (approximately two times) and BECs (approximately three times) of the healthcare personnel. Urinary sevoflurane concentrations exceeded the biological equivalent level in 23 personnel. Air sevoflurane levels in the breathing zone in three ORs and one RU did not exceed the established occupational exposure limits. Both in surrogate tissue (PBLs) and in target tissue (BECs) of the personnel of RUs and ORs of the same hospital, the genotoxicity risk was evident and similar. Originality of this study, in addition to the WAGs exposure confirmation of the healthcare personnel, was the involvement of the RU personnel for the genotoxicity assessment, which was the first time in the scientific literature.
Collapse
Affiliation(s)
- G Çakmak
- 1 Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - D Eraydın
- 1 Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - A Berkkan
- 2 Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - S Yağar
- 3 Clinic of Anaesthesiology and Reanimation, Türkiye Yüksek Ihtisas Training and Research Hospital, Ankara, Turkey
| | - S Burgaz
- 1 Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
17
|
Oesch F, Fabian E, Landsiedel R. Xenobiotica-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models. Arch Toxicol 2018; 92:2411-2456. [PMID: 29916051 PMCID: PMC6063329 DOI: 10.1007/s00204-018-2232-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 12/26/2022]
Abstract
Studies on the metabolic fate of medical drugs, skin care products, cosmetics and other chemicals intentionally or accidently applied to the human skin have become increasingly important in order to ascertain pharmacological effectiveness and to avoid toxicities. The use of freshly excised human skin for experimental investigations meets with ethical and practical limitations. Hence information on xenobiotic-metabolizing enzymes (XME) in the experimental systems available for pertinent studies compared with native human skin has become crucial. This review collects available information of which—taken with great caution because of the still very limited data—the most salient points are: in the skin of all animal species and skin-derived in vitro systems considered in this review cytochrome P450 (CYP)-dependent monooxygenase activities (largely responsible for initiating xenobiotica metabolism in the organ which provides most of the xenobiotica metabolism of the mammalian organism, the liver) are very low to undetectable. Quite likely other oxidative enzymes [e.g. flavin monooxygenase, COX (cooxidation by prostaglandin synthase)] will turn out to be much more important for the oxidative xenobiotic metabolism in the skin. Moreover, conjugating enzyme activities such as glutathione transferases and glucuronosyltransferases are much higher than the oxidative CYP activities. Since these conjugating enzymes are predominantly detoxifying, the skin appears to be predominantly protected against CYP-generated reactive metabolites. The following recommendations for the use of experimental animal species or human skin in vitro models may tentatively be derived from the information available to date: for dermal absorption and for skin irritation esterase activity is of special importance which in pig skin, some human cell lines and reconstructed skin models appears reasonably close to native human skin. With respect to genotoxicity and sensitization reactive-metabolite-reducing XME in primary human keratinocytes and several reconstructed human skin models appear reasonably close to human skin. For a more detailed delineation and discussion of the severe limitations see the Conclusions section in the end of this review.
Collapse
Affiliation(s)
- F Oesch
- Institute of Toxicology, Johannes Gutenberg-University, Obere Zahlbacherstr. 67, 55131, Mainz, Germany
| | - E Fabian
- Experimental Toxicology and Ecology, GV/TB, Z470, BASF SE, Carl-Bosch-Str. 38, 67056, Ludwigshafen, Germany
| | - Robert Landsiedel
- Experimental Toxicology and Ecology, GV/TB, Z470, BASF SE, Carl-Bosch-Str. 38, 67056, Ludwigshafen, Germany.
| |
Collapse
|
18
|
Nieminen MT, Salaspuro M. Local Acetaldehyde-An Essential Role in Alcohol-Related Upper Gastrointestinal Tract Carcinogenesis. Cancers (Basel) 2018; 10:E11. [PMID: 29303995 PMCID: PMC5789361 DOI: 10.3390/cancers10010011] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023] Open
Abstract
The resident microbiome plays a key role in exposure of the upper gastrointestinal (GI) tract mucosa to acetaldehyde (ACH), a carcinogenic metabolite of ethanol. Poor oral health is a significant risk factor for oral and esophageal carcinogenesis and is characterized by a dysbiotic microbiome. Dysbiosis leads to increased growth of opportunistic pathogens (such as Candida yeasts) and may cause an up to 100% increase in the local ACH production, which is further modified by organ-specific expression and gene polymorphisms of ethanol-metabolizing and ACH-metabolizing enzymes. A point mutation in the aldehyde dehydrogenase 2 gene has randomized millions of alcohol consumers to markedly increased local ACH exposure via saliva and gastric juice, which is associated with a manifold risk for upper GI tract cancers. This human cancer model proves conclusively the causal relationship between ACH and upper GI tract carcinogenesis and provides novel possibilities for the quantitative assessment of ACH carcinogenicity in the human oropharynx. ACH formed from ethanol present in "non-alcoholic" beverages, fermented food, or added during food preparation forms a significant epidemiologic bias in cancer epidemiology. The same also concerns "free" ACH present in mutagenic concentrations in multiple beverages and foodstuffs. Local exposure to ACH is cumulative and can be reduced markedly both at the population and individual level. At best, a person would never consume tobacco, alcohol, or both. However, even smoking cessation and moderation of alcohol consumption are associated with a marked decrease in local ACH exposure and cancer risk, especially among established risk groups.
Collapse
Affiliation(s)
- Mikko T Nieminen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, and Helsinki University Central Hospital, University of Helsinki, Biomedicum Helsinki P.O. Box 63, 00014 Helsinki, Finland.
- Research Unit on Acetaldehyde and Cancer, University of Helsinki, Biomedicum Helsinki P.O. Box 63, 00014 Helsinki, Finland.
| | - Mikko Salaspuro
- Research Unit on Acetaldehyde and Cancer, University of Helsinki, Biomedicum Helsinki P.O. Box 63, 00014 Helsinki, Finland.
| |
Collapse
|
19
|
Marxen E, Jacobsen J, Hyrup B, Janfelt C. Permeability Barriers for Nicotine and Mannitol in Porcine Buccal Mucosa Studied by High-Resolution MALDI Mass Spectrometry Imaging. Mol Pharm 2018; 15:519-526. [PMID: 29226683 DOI: 10.1021/acs.molpharmaceut.7b00891] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Improved nicotine permeability across buccal mucosa may enable more effective oromucosal nicotine replacement therapy products. It is essential to know the location and composition of the main barrier for drug diffusion to enhance the drug permeability. Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) is a rapidly evolving technique that can be used to image the spatial distribution of drugs and drug metabolites in tissue cryo-sections, without prior labeling of the drug. In this study, the distribution of nicotine and mannitol in porcine buccal mucosa was imaged with 10 μm spatial resolution after apical as well as submucosal application of the drugs in order to localize the main permeability barrier(s). This was supported by ex vivo permeability studies across separated porcine buccal epithelium and submucosa. Lastly, the metabolism of nicotine in porcine buccal mucosa was evaluated by imaging of the main metabolite, cotinine. The results showed that the main permeability barrier to both nicotine and mannitol was located in the outer fourth of the epithelium. Further, it was shown that cotinine was sparsely distributed in excised porcine buccal mucosa, indicating that nicotine metabolism in excised porcine buccal mucosa was negligible. MALDI MSI was shown to be a useful method for imaging spatial distribution of drugs in buccal mucosa.
Collapse
Affiliation(s)
- Eva Marxen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, Copenhagen 2100, Denmark
| | - Jette Jacobsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, Copenhagen 2100, Denmark
| | | | - Christian Janfelt
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, Copenhagen 2100, Denmark
| |
Collapse
|
20
|
Elkomy MH, El Menshawe SF, Abou-Taleb HA, Elkarmalawy MH. Loratadine bioavailability via buccal transferosomal gel: formulation, statistical optimization, in vitro/in vivo characterization, and pharmacokinetics in human volunteers. Drug Deliv 2017; 24:781-791. [PMID: 28480758 PMCID: PMC8241167 DOI: 10.1080/10717544.2017.1321061] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/14/2017] [Accepted: 04/17/2017] [Indexed: 10/25/2022] Open
Abstract
Loratadine (LTD) is an antihistaminic drug that suffers limited solubility, poor oral bioavailability (owing to extensive first-pass metabolism), and highly variable oral absorption. This study was undertaken to develop and statistically optimize transfersomal gel for transbuccal delivery of LTD. Transfersomes bearing LTD were prepared by conventional thin film hydration method and optimized using sequential Quality-by-Design approach that involved Placket-Burman design for screening followed by constrained simplex-centroid design for optimization of a Tween-80/Span-60/Span-80 mixture. The transferosomes were characterized for entrapment efficiency, particle size, and shape. Optimized transferosomes were incorporated in a mucoadhesive gel. The gel was characterized for rheology, ex vivo permeation across chicken pouch buccal mucosa, in vitro release, and mucoadhesion. Pharmacokinetic behavior of LTD formulations was investigated in healthy volunteers following administration of a single 10-mg dose. Optimal transferosomes characterized by submicron size (380 nm), spherical shape and adequate loading capacity (60%) were obtained by using quasi-equal ratio surfactant mixture. In terms of amount permeated, percentage released, and mucoadhesion time, the transferosomal gel proved superior to control, transferosome-free gel. Bioavailability of the transferosomal gel was comparable to Claritin® oral tablets. However, inter-individual variability in Cmax and AUC was reduced by 76 and 90%, respectively, when the buccal gel was used. Linear Correlation of in vitro release with in vivo buccal absorption fractions was established with excellent correlation coefficient (R2>0.97). In summary, a novel buccal delivery system for LTD was developed. However, further clinical investigation is warranted to evaluate its therapeutic effectiveness and utility.
Collapse
Affiliation(s)
- Mohammed H. Elkomy
- Department of Pharmaceutics and Industrial Pharmacy, Beni-Suef University, Beni-Suef, Egypt and
| | - Shahira F. El Menshawe
- Department of Pharmaceutics and Industrial Pharmacy, Beni-Suef University, Beni-Suef, Egypt and
| | - Heba A. Abou-Taleb
- Department of Pharmaceutics and Clinical Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Marwa H. Elkarmalawy
- Department of Pharmaceutics and Clinical Pharmacy, Nahda University, Beni-Suef, Egypt
| |
Collapse
|
21
|
Key role of local acetaldehyde in upper GI tract carcinogenesis. Best Pract Res Clin Gastroenterol 2017; 31:491-499. [PMID: 29195668 DOI: 10.1016/j.bpg.2017.09.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/11/2017] [Accepted: 09/22/2017] [Indexed: 01/31/2023]
Abstract
Ethanol is neither genotoxic nor mutagenic. Its first metabolite acetaldehyde, however, is a powerful local carcinogen. Point mutation in ALDH2 gene proves the causal relationship between acetaldehyde and upper digestive tract cancer in humans. Salivary acetaldehyde concentration and exposure time are the two major and quantifiable factors regulating the degree of local acetaldehyde exposure in the ideal target organ, oropharynx. Instant microbial acetaldehyde formation from alcohol represents >70% of total ethanol associated acetaldehyde exposure in the mouth. In the oropharynx and achlorhydric stomach acetaldehyde is not metabolized to safe products, instead in the presence of alcohol it accumulates in saliva and gastric juice in mutagenic concentrations. A common denominator in alcohol, tobacco and food associated upper digestive tract carcinogenesis is acetaldehyde. Epidemiological studies on upper GI tract cancer are biased, since they miss information on acetaldehyde exposure derived from alcohol and acetaldehyde present in 'non-alcoholic' beverages and food.
Collapse
|
22
|
Swortwood MJ, Newmeyer MN, Andersson M, Abulseoud OA, Scheidweiler KB, Huestis MA. Cannabinoid disposition in oral fluid after controlled smoked, vaporized, and oral cannabis administration. Drug Test Anal 2017; 9:905-915. [PMID: 27647820 PMCID: PMC5357602 DOI: 10.1002/dta.2092] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/15/2016] [Accepted: 09/15/2016] [Indexed: 11/09/2022]
Abstract
Oral fluid (OF) is an important matrix for monitoring drugs. Smoking cannabis is common, but vaporization and edible consumption also are popular. OF pharmacokinetics are available for controlled smoked cannabis, but few data exist for vaporized and oral routes. Frequent and occasional cannabis smokers were recruited as participants for four dosing sessions including one active (6.9% Δ9 -tetrahydrocannabinol, THC) or placebo cannabis-containing brownie, followed by one active or placebo cigarette, or one active or placebo vaporized cannabis dose. Only one active dose was administered per session. OF was collected before and up to 54 (occasional) or 72 (frequent) h after dosing from cannabis smokers. THC, 11-hydroxy-THC (11-OH-THC), 11-nor-9-carboxy-THC (THCCOOH), tetrahydrocannabivarin (THCV), cannabidiol (CBD), and cannabigerol (CBG) were quantified by liquid chromatography-tandem mass spectrometry. OF cannabinoid Cmax occurred during or immediately after cannabis consumption due to oral mucosa contamination. Significantly greater THC Cmax and significantly later THCV, CBD, and CBG tlast were observed after smoked and vaporized cannabis compared to oral cannabis in frequent smokers only. No significant differences in THC, 11-OH-THC, THCV, CBD, or CBG tmax between routes were observed for either group. For occasional smokers, more 11-OH-THC and THCCOOH-positive specimens were observed after oral dosing than after inhaled routes, increasing % positive cannabinoid results and widening metabolite detection windows after oral cannabis consumption. Utilizing 0.3 µg/L THCV and CBG cut-offs resulted in detection windows indicative of recent cannabis intake. OF pharmacokinetics after high potency CBD cannabis are not yet available precluding its use currently as a marker of recent use. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Madeleine J. Swortwood
- Chemistry and Drug Metabolism Section, Clinical Pharmacology and Therapeutics Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD
| | - Matthew N. Newmeyer
- Chemistry and Drug Metabolism Section, Clinical Pharmacology and Therapeutics Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD
- Program in Toxicology, University of Maryland Baltimore, Baltimore, MD
| | - Maria Andersson
- Chemistry and Drug Metabolism Section, Clinical Pharmacology and Therapeutics Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD
| | - Osama A. Abulseoud
- Chemistry and Drug Metabolism Section, Clinical Pharmacology and Therapeutics Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD
| | - Karl B. Scheidweiler
- Chemistry and Drug Metabolism Section, Clinical Pharmacology and Therapeutics Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD
| | | |
Collapse
|
23
|
Zanetti F, Titz B, Sewer A, Lo Sasso G, Scotti E, Schlage WK, Mathis C, Leroy P, Majeed S, Torres LO, Keppler BR, Elamin A, Trivedi K, Guedj E, Martin F, Frentzel S, Ivanov NV, Peitsch MC, Hoeng J. Comparative systems toxicology analysis of cigarette smoke and aerosol from a candidate modified risk tobacco product in organotypic human gingival epithelial cultures: A 3-day repeated exposure study. Food Chem Toxicol 2017; 101:15-35. [PMID: 28025120 DOI: 10.1016/j.fct.2016.12.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/01/2016] [Accepted: 12/20/2016] [Indexed: 12/17/2022]
Abstract
Smoking is one of the major lifestyle-related risk factors for periodontal diseases. Modified risk tobacco products (MRTP) offer a promising alternative in the harm reduction strategy for adult smokers unable to quit. Using a systems toxicology approach, we investigated and compared the exposure effects of a reference cigarette (3R4F) and a heat-not-burn technology-based candidate MRTP, the Tobacco Heating System (THS) 2.2. Human gingival epithelial organotypic cultures were repeatedly exposed (3 days) for 28 min at two matching concentrations of cigarette smoke (CS) or THS2.2 aerosol. Results showed only minor histopathological alterations and minimal cytotoxicity upon THS2.2 aerosol exposure compared to CS (1% for THS2.2 aerosol vs. 30% for CS, at the high concentration). Among the 14 proinflammatory mediators analyzed, only 5 exhibited significant alterations with THS2.2 exposure compared with 11 upon CS exposure. Transcriptomic and metabolomic analysis indicated a general reduction of the impact in THS2.2 aerosol-exposed samples with respect to CS (∼79% lower biological impact for the high THS2.2 aerosol concentration compared to CS, and 13 metabolites significantly perturbed for THS2.2 vs. 181 for CS). This study indicates that exposure to THS2.2 aerosol had a lower impact on the pathophysiology of human gingival organotypic cultures than CS.
Collapse
Affiliation(s)
- Filippo Zanetti
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland.
| | - Bjoern Titz
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Alain Sewer
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Giuseppe Lo Sasso
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Elena Scotti
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Walter K Schlage
- Biology Consultant, Max-Baermann-Str. 21, 51429 Bergisch Gladbach, Germany
| | - Carole Mathis
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Patrice Leroy
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Shoaib Majeed
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Laura Ortega Torres
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | | | - Ashraf Elamin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Keyur Trivedi
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Emmanuel Guedj
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Florian Martin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Stefan Frentzel
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
24
|
Torpet LA, Kragelund C, Reibel J, Nauntofte B. Oral Adverse Drug Reactions to Cardiovascular Drugs. ACTA ACUST UNITED AC 2016; 15:28-46. [PMID: 14761898 DOI: 10.1177/154411130401500104] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A great many cardiovascular drugs (CVDs) have the potential to induce adverse reactions in the mouth. The prevalence of such reactions is not known, however, since many are asymptomatic and therefore are believed to go unreported. As more drugs are marketed and the population includes an increasing number of elderly, the number of drug prescriptions is also expected to increase. Accordingly, it can be predicted that the occurrence of adverse drug reactions (ADRs), including the oral ones (ODRs), will continue to increase. ODRs affect the oral mucous membrane, saliva production, and taste. The pathogenesis of these reactions, especially the mucosal ones, is largely unknown and appears to involve complex interactions among the drug in question, other medications, the patient’s underlying disease, genetics, and life-style factors. Along this line, there is a growing interest in the association between pharmacogenetic polymorphism and ADRs. Research focusing on polymorphism of the cytochrome P450 system (CYPs) has become increasingly important and has highlighted the intra- and inter-individual responses to drug exposure. This system has recently been suggested to be an underlying candidate regarding the pathogenesis of ADRs in the oral mucous membrane. This review focuses on those CVDs reported to induce ODRs. In addition, it will provide data on specific drugs or drug classes, and outline and discuss recent research on possible mechanisms linking ADRs to drug metabolism patterns. Abbreviations used will be as follows: ACEI, ACE inhibitor; ADR, adverse drug reaction; ANA, antinuclear antigen; ARB, angiotensin II receptor blocker; BAB, beta-adrenergic blocker; CCB, calcium-channel blocker; CDR, cutaneous drug reaction; CVD, cardiovascular drug; CYP, cytochrome P450 enzyme; EM, erythema multiforme; FDE, fixed drug eruption; I, inhibitor of CYP isoform activity; HMG-CoA, hydroxymethyl-glutaryl coenzyme A; NAT, N-acetyltransferase; ODR, oral drug reaction; RDM, reactive drug metabolite; S, substrate for CYP isoform; SJS, Stevens-Johnson syndrome; SLE, systemic lupus erythematosus; and TEN, toxic epidermal necrolysis.
Collapse
Affiliation(s)
- Lis Andersen Torpet
- Department of Oral Medicine, Clinical Oral Physiology, Oral Pathology & Anatomy, School of Dentistry, Faculty of Health Sciences, University of Copenhagen, 20 Norre Allé, DK-2200 Copenhagen N, Denmark
| | | | | | | |
Collapse
|
25
|
Singh SA, Choudhury JH, Kapfo W, Kundu S, Dhar B, Laskar S, Das R, Kumar M, Ghosh SK. Influence of the CYP1A1 T3801C Polymorphism on Tobacco and Alcohol-Associated Head and Neck Cancer Susceptibility in Northeast India. Asian Pac J Cancer Prev 2016; 16:6953-61. [PMID: 26514474 DOI: 10.7314/apjcp.2015.16.16.6953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tobacco and alcohol contain or may generate carcinogenic compounds related to cancers. CYP1A1 enzymes act upon these carcinogens before elimination from the body. The aim of this study was to investigate whether CYP1A1 T3801C polymorphism modulates the relationship between tobacco and alcohol- associated head and neck cancer (HNC) susceptibility among the northeast Indian population. MATERIALS AND METHODS One hundred and seventy histologically confirmed HNC cases and 230 controls were included within the study. The CYP1A1 T3801C polymorphism was determined using PCR-RFLP, and the results were confirmed by DNA sequencing. Logistic regression (LR) and multifactor dimensionality reduction (MDR) approaches were applied for statistical analysis. RESULTS The CYP1A1 CC genotype was significantly associated with HNC risk (P=0.045). A significantly increased risk of HNC (OR=6.09; P<0.0001) was observed in individuals with combined habits of smoking, alcohol drinking and tobacco-betel quid chewing. Further, gene-environment interactions revealed enhanced risks of HNC among smokers, alcohol drinkers and tobacco-betel quid chewers carrying CYP1A1 TC or CC genotypes. The highest risk of HNC was observed among smokers (OR=7.55; P=0.009) and chewers (OR=10.8; P<0.0001) carrying the CYP1A1 CC genotype. In MDR analysis, the best model for HNC risk was the three-factor model combination of smoking, tobacco-betel quid chewing and the CYP1A1 variant genotype (CVC=99/100; TBA=0.605; P<0.0001); whereas interaction entropy graphs showed synergistic interaction between tobacco habits and CYP1A1. CONCLUSIONS Our results confirm that the CYP1A1 T3801C polymorphism modifies the risk of HNC and further demonstrated importance of gene-environment interaction.
Collapse
Affiliation(s)
- Seram Anil Singh
- Molecular Medicine Laboratory, Department of Biotechnology, Assam University, Silchar, Assam, India E-mail :
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zanetti F, Sewer A, Mathis C, Iskandar AR, Kostadinova R, Schlage WK, Leroy P, Majeed S, Guedj E, Trivedi K, Martin F, Elamin A, Merg C, Ivanov NV, Frentzel S, Peitsch MC, Hoeng J. Systems Toxicology Assessment of the Biological Impact of a Candidate Modified Risk Tobacco Product on Human Organotypic Oral Epithelial Cultures. Chem Res Toxicol 2016; 29:1252-69. [PMID: 27404394 DOI: 10.1021/acs.chemrestox.6b00174] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cigarette smoke (CS) has been reported to increase predisposition to oral cancer and is also recognized as a risk factor for many conditions including periodontal diseases, gingivitis, and other benign mucosal disorders. Smoking cessation remains the most effective approach for minimizing the risk of smoking-related diseases. However, reduction of harmful constituents by heating rather than combusting tobacco, without modifying the amount of nicotine, is a promising new paradigm in harm reduction. In this study, we compared effects of exposure to aerosol derived from a candidate modified risk tobacco product, the tobacco heating system (THS) 2.2, with those of CS generated from the 3R4F reference cigarette. Human organotypic oral epithelial tissue cultures (EpiOral, MatTek Corporation) were exposed for 28 min to 3R4F CS or THS2.2 aerosol, both diluted with air to comparable nicotine concentrations (0.32 or 0.51 mg nicotine/L aerosol/CS for 3R4F and 0.31 or 0.46 mg/L for THS2.2). We also tested one higher concentration (1.09 mg/L) of THS2.2. A systems toxicology approach was employed combining cellular assays (i.e., cytotoxicity and cytochrome P450 activity assays), comprehensive molecular investigations of the buccal epithelial transcriptome (mRNA and miRNA) by means of computational network biology, measurements of secreted proinflammatory markers, and histopathological analysis. We observed that the impact of 3R4F CS was greater than THS2.2 aerosol in terms of cytotoxicity, morphological tissue alterations, and secretion of inflammatory mediators. Analysis of the transcriptomic changes in the exposed oral cultures revealed significant perturbations in various network models such as apoptosis, necroptosis, senescence, xenobiotic metabolism, oxidative stress, and nuclear factor (erythroid-derived 2)-like 2 (NFE2L2) signaling. The stress responses following THS2.2 aerosol exposure were markedly decreased, and the exposed cultures recovered more completely compared with those exposed to 3R4F CS.
Collapse
Affiliation(s)
- Filippo Zanetti
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Alain Sewer
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Carole Mathis
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Anita R Iskandar
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Radina Kostadinova
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Walter K Schlage
- Biology Consultant , Max-Baermann-Str. 21, 51429 Bergisch Gladbach, Germany
| | - Patrice Leroy
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Shoaib Majeed
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Emmanuel Guedj
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Keyur Trivedi
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Florian Martin
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Ashraf Elamin
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Céline Merg
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Stefan Frentzel
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| |
Collapse
|
27
|
Choudhury JH, Singh SA, Kundu S, Choudhury B, Talukdar FR, Srivasta S, Laskar RS, Dhar B, Das R, Laskar S, Kumar M, Kapfo W, Mondal R, Ghosh SK. Tobacco carcinogen-metabolizing genes CYP1A1, GSTM1, and GSTT1 polymorphisms and their interaction with tobacco exposure influence the risk of head and neck cancer in Northeast Indian population. Tumour Biol 2015; 36:5773-83. [PMID: 25724184 DOI: 10.1007/s13277-015-3246-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/10/2015] [Indexed: 11/29/2022] Open
Abstract
Genetic polymorphisms in tobacco-metabolizing genes may modulate the risk of head and neck cancer (HNC). In Northeast India, head and neck cancers and tobacco consumption remains most prevalent. The aim of the study was to investigate the combined effect of cytochrome P450 1A1 (CYP1A1) T3801C, glutathione S-transferases (GSTs) genes polymorphisms and smoking and tobacco-betel quid chewing in the risk of HNC. The study included 420 subjects (180 cases and 240 controls) from Northeast Indian population. Polymorphisms of CYP1A1 T3801C and GST (M1 & T1) were studied by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) and multiplex PCR, respectively. Logistic regression (LR) and multifactor dimensionality reduction (MDR) approach were applied for statistical analysis. LR analysis revealed that subjects carrying CYP1A1 TC/CC + GSTM1 null genotypes had 3.52-fold (P < 0.001) increase the risk of head and neck squamous cell carcinoma (HNSCC). Smokers carrying CYP1A1 TC/CC + GSTM1 null and CYP1A1 TC/CC + GSTT1 null genotypes showed significant association with HNC risk (odds ratio [OR] = 6.42; P < 0.001 and 3.86; P = 0.005, respectively). Similarly, tobacco-betel quid chewers carrying CYP1A1 TC/CC + GSTM1 null genotypes also had several fold increased risk of HNC (P < 0.001). In MDR analysis, the best model for HNSCC risk was the four-factor model of tobacco-betel quid chewing, smoking, CYP1A1 TC/CC, and GSTM1 null genotypes (testing balance accuracy [TBA] = 0.6292; cross-validation consistency [CVC] = 9/10 and P < 0.0001). These findings suggest that interaction of combined genotypes of carcinogen-metabolizing genes with environmental factors might modulate susceptibility of HNC in Northeast Indian population.
Collapse
Affiliation(s)
- Javed Hussain Choudhury
- Molecular Medicine Laboratory, Department of Biotechnology, Assam University, Silchar, Assam, 788011, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cone EJ, DePriest AZ, Heltsley R, Black DL, Mitchell JM, LoDico C, Flegel R. Prescription Opioids. IV: Disposition of Hydrocodone in Oral Fluid and Blood Following Single-Dose Administration. J Anal Toxicol 2015; 39:510-8. [PMID: 25962610 DOI: 10.1093/jat/bkv050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Substance Abuse and Mental Health Services Administration (SAMHSA) is currently evaluating hydrocodone (HC) for inclusion in the Mandatory Guidelines for Federal Workplace Drug Testing Programs. This study evaluated the time course of HC, norhydrocodone (NHC), dihydrocodeine (DHC) and hydromorphone (HM) in paired oral fluid and whole blood specimens by liquid chromatography-tandem mass spectrometry (limit of quantitation = 1 ng/mL of oral fluid, 5 ng/mL of blood) over a 52-h period. A single dose of HC bitartrate, 20 mg, was administered to 12 subjects. Analyte prevalence was as follows: oral fluid, HC > NHC > DHC; and blood, HC > NHC. HM was not detected in any specimen. HC was frequently detected within 15 min in oral fluid and 30 min in blood. Mean oral fluid to blood (OF : BL) ratios and correlations were 3.2 for HC (r = 0.73) and 0.7 for NHC (r = 0.42). The period of detection for oral fluid exceeded blood at all evaluated thresholds. At a 1-ng/mL threshold for oral fluid, mean detection time was 30 h for HC and 18 h for NHC and DHC. This description of HC and metabolite disposition in oral fluid following single-dose administration provides valuable interpretive guidance of HC test results.
Collapse
Affiliation(s)
- Edward J Cone
- Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Anne Z DePriest
- Aegis Sciences Corporation, 515 Great Circle Road, Nashville, TN 37228, USA University of Tennessee Health Science Center, College of Pharmacy, Memphis, TN, USA
| | - Rebecca Heltsley
- Aegis Sciences Corporation, 515 Great Circle Road, Nashville, TN 37228, USA
| | - David L Black
- Aegis Sciences Corporation, 515 Great Circle Road, Nashville, TN 37228, USA Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, USA
| | | | - Charles LoDico
- Division of Workplace Programs, Substance Abuse and Mental Health Services Administration, Rockville, MD, USA
| | - Ron Flegel
- Division of Workplace Programs, Substance Abuse and Mental Health Services Administration, Rockville, MD, USA
| |
Collapse
|
29
|
Cone EJ, DePriest AZ, Heltsley R, Black DL, Mitchell JM, LoDico C, Flegel R. Prescription Opioids. III. Disposition of Oxycodone in Oral Fluid and Blood Following Controlled Single-Dose Administration. J Anal Toxicol 2015; 39:192-202. [DOI: 10.1093/jat/bku176] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
30
|
Abstract
Aflatoxins are toxic carcinogenic secondary metabolites produced predominantly by two fungal species: Aspergillus flavus and Aspergillus parasiticus. These fungal species are contaminants of foodstuff as well as feeds and are responsible for aflatoxin contamination of these agro products. The toxicity and potency of aflatoxins make them the primary health hazard as well as responsible for losses associated with contaminations of processed foods and feeds. Determination of aflatoxins concentration in food stuff and feeds is thus very important. However, due to their low concentration in foods and feedstuff, analytical methods for detection and quantification of aflatoxins have to be specific, sensitive, and simple to carry out. Several methods including thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), mass spectroscopy, enzyme-linked immune-sorbent assay (ELISA), and electrochemical immunosensor, among others, have been described for detecting and quantifying aflatoxins in foods. Each of these methods has advantages and limitations in aflatoxins analysis. This review critically examines each of the methods used for detection of aflatoxins in foodstuff, highlighting the advantages and limitations of each method. Finally, a way forward for overcoming such obstacles is suggested.
Collapse
|
31
|
Oesch F, Fabian E, Guth K, Landsiedel R. Xenobiotic-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models. Arch Toxicol 2014; 88:2135-90. [PMID: 25370008 PMCID: PMC4247477 DOI: 10.1007/s00204-014-1382-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/02/2014] [Indexed: 02/01/2023]
Abstract
The exposure of the skin to medical drugs, skin care products, cosmetics, and other chemicals renders information on xenobiotic-metabolizing enzymes (XME) in the skin highly interesting. Since the use of freshly excised human skin for experimental investigations meets with ethical and practical limitations, information on XME in models comes in the focus including non-human mammalian species and in vitro skin models. This review attempts to summarize the information available in the open scientific literature on XME in the skin of human, rat, mouse, guinea pig, and pig as well as human primary skin cells, human cell lines, and reconstructed human skin models. The most salient outcome is that much more research on cutaneous XME is needed for solid metabolism-dependent efficacy and safety predictions, and the cutaneous metabolism comparisons have to be viewed with caution. Keeping this fully in mind at least with respect to some cutaneous XME, some models may tentatively be considered to approximate reasonable closeness to human skin. For dermal absorption and for skin irritation among many contributing XME, esterase activity is of special importance, which in pig skin, some human cell lines, and reconstructed skin models appears reasonably close to human skin. With respect to genotoxicity and sensitization, activating XME are not yet judgeable, but reactive metabolite-reducing XME in primary human keratinocytes and several reconstructed human skin models appear reasonably close to human skin. For a more detailed delineation and discussion of the severe limitations see the “Overview and Conclusions” section in the end of this review.
Collapse
Affiliation(s)
- F Oesch
- Oesch-Tox Toxicological Consulting and Expert Opinions GmbH&Co.KG, Rheinblick 21, 55263, Wackernheim, Germany
| | | | | | | |
Collapse
|
32
|
Feki-Tounsi M, Khlifi R, Mhiri MN, Rebai A, Hamza-Chaffai A. Cytogenetic damage in the oral mucosa cells of bladder cancer patients exposed to tobacco in Southern Tunisia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:12922-7. [PMID: 24981033 DOI: 10.1007/s11356-014-3200-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/11/2014] [Indexed: 06/03/2023]
Abstract
Bladder cancer was associated to exposure to several pollutants which can be absorbed, inhaled, or possibly ingested. We analyzed the frequency of micronuclei (MNC) and binucleated cells (BNC) in exfoliated cells of the oral mucosa of 24 bladder cancer (BC) patients and 48 controls residing in Southern Tunisia. An assessment was carried out on the incidence of MNC and BNC in 1,000 cells per individual. The data were analyzed with SPSS, using the chi-square and the Mann-Whitney U test, α = 0.05. The frequency of MN cells in BC cases was 2.5-fold higher, than in the control group (P < 0.001), while the difference for BNC between both groups was not significant. The smoking habits, age, and gender significantly influenced the MN but not the BNC alterations. The results of our study showed significantly increased frequencies of MN but not of BNC in exfoliated oral cells of BC patients associated with the smoking status, sex, and age. This study provides preliminary evidence that the frequency of MN in oral mucosa could be a predictive biomarker for cancers in parts of the body other than the upper aerodigestive tract, such as BC. Further scrupulous investigations are certainly warranted in order to implement this assay as a routine test in the planning and validation of cancer surveillance and prevention programs.
Collapse
Affiliation(s)
- Molka Feki-Tounsi
- Unit of Marine and Environmental Toxicology. IPEIS, Sfax University, PB 805, 3018, Sfax, Tunisia,
| | | | | | | | | |
Collapse
|
33
|
Schlage WK, Iskandar AR, Kostadinova R, Xiang Y, Sewer A, Majeed S, Kuehn D, Frentzel S, Talikka M, Geertz M, Mathis C, Ivanov N, Hoeng J, Peitsch MC. In vitro systems toxicology approach to investigate the effects of repeated cigarette smoke exposure on human buccal and gingival organotypic epithelial tissue cultures. Toxicol Mech Methods 2014; 24:470-87. [PMID: 25046638 PMCID: PMC4219813 DOI: 10.3109/15376516.2014.943441] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/20/2014] [Accepted: 06/29/2014] [Indexed: 11/13/2022]
Abstract
Smoking has been associated with diseases of the lung, pulmonary airways and oral cavity. Cytologic, genomic and transcriptomic changes in oral mucosa correlate with oral pre-neoplasia, cancer and inflammation (e.g. periodontitis). Alteration of smoking-related gene expression changes in oral epithelial cells is similar to that in bronchial and nasal epithelial cells. Using a systems toxicology approach, we have previously assessed the impact of cigarette smoke (CS) seen as perturbations of biological processes in human nasal and bronchial organotypic epithelial culture models. Here, we report our further assessment using in vitro human oral organotypic epithelium models. We exposed the buccal and gingival organotypic epithelial tissue cultures to CS at the air-liquid interface. CS exposure was associated with increased secretion of inflammatory mediators, induction of cytochrome P450s activity and overall weak toxicity in both tissues. Using microarray technology, gene-set analysis and a novel computational modeling approach leveraging causal biological network models, we identified CS impact on xenobiotic metabolism-related pathways accompanied by a more subtle alteration in inflammatory processes. Gene-set analysis further indicated that the CS-induced pathways in the in vitro buccal tissue models resembled those in the in vivo buccal biopsies of smokers from a published dataset. These findings support the translatability of systems responses from in vitro to in vivo and demonstrate the applicability of oral organotypical tissue models for an impact assessment of CS on various tissues exposed during smoking, as well as for impact assessment of reduced-risk products.
Collapse
Affiliation(s)
- Walter K. Schlage
- Philip Morris International R&D, Philip Morris Products S.A.NeuchâtelSwitzerland
| | - Anita R. Iskandar
- Philip Morris International R&D, Philip Morris Products S.A.NeuchâtelSwitzerland
| | - Radina Kostadinova
- Philip Morris International R&D, Philip Morris Products S.A.NeuchâtelSwitzerland
| | - Yang Xiang
- Philip Morris International R&D, Philip Morris Products S.A.NeuchâtelSwitzerland
| | - Alain Sewer
- Philip Morris International R&D, Philip Morris Products S.A.NeuchâtelSwitzerland
| | - Shoaib Majeed
- Philip Morris International R&D, Philip Morris Products S.A.NeuchâtelSwitzerland
| | - Diana Kuehn
- Philip Morris International R&D, Philip Morris Products S.A.NeuchâtelSwitzerland
| | - Stefan Frentzel
- Philip Morris International R&D, Philip Morris Products S.A.NeuchâtelSwitzerland
| | - Marja Talikka
- Philip Morris International R&D, Philip Morris Products S.A.NeuchâtelSwitzerland
| | - Marcel Geertz
- Philip Morris International R&D, Philip Morris Products S.A.NeuchâtelSwitzerland
| | - Carole Mathis
- Philip Morris International R&D, Philip Morris Products S.A.NeuchâtelSwitzerland
| | - Nikolai Ivanov
- Philip Morris International R&D, Philip Morris Products S.A.NeuchâtelSwitzerland
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A.NeuchâtelSwitzerland
| | - Manuel C. Peitsch
- Philip Morris International R&D, Philip Morris Products S.A.NeuchâtelSwitzerland
| |
Collapse
|
34
|
Pickering G, Macian N, Libert F, Cardot JM, Coissard S, Perovitch P, Maury M, Dubray C. Buccal acetaminophen provides fast analgesia: two randomized clinical trials in healthy volunteers. Drug Des Devel Ther 2014; 8:1621-7. [PMID: 25302017 PMCID: PMC4189711 DOI: 10.2147/dddt.s63476] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Acetaminophen (APAP) by oral or intravenous (iv) routes is used for mild to moderate pain but may take time to be effective. When fast relief is required and/or oral or iv routes are not available because of the patient's condition, the transmucosal route may be an alternative. METHODOLOGY A new transmucosal/buccal (b) pharmaceutical form of APAP dissolved in 50% wt alcohol is compared with other routes of administration. Two consecutive randomized, crossover, double-blind clinical trials (CT1: NCT00982215 and CT2: NCT01206985) included 16 healthy volunteers. CT1 compared the pharmacology of 250 mg bAPAP with 1 g iv APAP. CT2 compared the pharmacodynamics of 125 mg bAPAP with 1 g iv and 125 mg sublingual (s) APAP. Mechanical pain thresholds are recorded in response to mechanical stimuli applied on the forearm several times during 120 minutes. The objective is to compare the time of onset of antinociception and the antinociception (area under the curve) between the routes of administration with analysis of variance (significance P<0.05). RESULTS bAPAP has a faster time of antinociception onset (15 minutes, P<0.01) and greater antinociception at 50 minutes (P<0.01, CT1) and 30 minutes (P<0.01, CT2) than ivAPAP and sAPAP. All routes are similar after 50 minutes. CONCLUSION bAPAP has a faster antinociceptive action in healthy volunteers. This attractive alternative to other routes would be useful in situations where oral or iv routes are not available. This finding must now be confirmed in patients suffering from acute pain of mild and moderate intensity.
Collapse
Affiliation(s)
- Gisèle Pickering
- CHU Clermont-Ferrand, Centre de Pharmacologie Clinique, Clermont-Ferrand, France
- Inserm, Clermont-Ferrand, France
- Clermont Université, Laboratoire de Pharmacologie, Faculté de Médecine, Clermont-Ferrand, France
| | - Nicolas Macian
- CHU Clermont-Ferrand, Centre de Pharmacologie Clinique, Clermont-Ferrand, France
| | - Frédéric Libert
- Inserm, Clermont-Ferrand, France
- Laboratoire de Pharmacologie, CHU Clermont-Ferrand, France
| | - J Michel Cardot
- CHU Clermont-Ferrand, Centre de Pharmacologie Clinique, Clermont-Ferrand, France
| | - Séverine Coissard
- CHU Clermont-Ferrand, Centre de Pharmacologie Clinique, Clermont-Ferrand, France
| | | | | | - Claude Dubray
- CHU Clermont-Ferrand, Centre de Pharmacologie Clinique, Clermont-Ferrand, France
- Inserm, Clermont-Ferrand, France
- Clermont Université, Laboratoire de Pharmacologie, Faculté de Médecine, Clermont-Ferrand, France
| |
Collapse
|
35
|
Gao X, Bhattacharya S, Chan WK, Jasti BR, Upadrashta B, Li X. Expression of P-glycoprotein and CYP3A4 along the porcine oral-gastrointestinal tract: implications on oral mucosal drug delivery. Drug Dev Ind Pharm 2014; 40:599-603. [DOI: 10.3109/03639045.2014.884118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
Khlifi R, Chakroun A, Hamza-Chaffai A, Rebai A. Association of CYP1A1 and CYP2D6 gene polymorphisms with head and neck cancer in Tunisian patients. Mol Biol Rep 2014; 41:2591-600. [PMID: 24449363 DOI: 10.1007/s11033-014-3117-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 01/10/2014] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to investigate the relationship between head and neck cancer (HNC) and environmental agents and polymorphisms in CYP1A1, CYP2D6, NAT1 and NAT2 metabolic enzymes genes. To the best of our knowledge, this is the first report on polymorphisms in CYP1A1 6310C>T, CYP2D6 Arg365His, NAT1 52936A>T and NAT2 Arg268Lys (NAT2*12A) genes and susceptibility to HNC in Tunisian population. We study the prevalence of these polymorphisms in 169 patients with HNC and 261 control subjects using polymerase chain reaction based methods in a Tunisian population. We detected an association between HNC and CYP1A1 6310C>T (TT) and CYP2D6 Arg365His (His/His) variant carriers (OR 1.75, P = 0.008 and OR 1.66, P = 0.016, respectively). No association was found between the polymorphisms genotypes of NAT1 52936T>A and NAT2 Arg268Lys and risk of HNC. An association between HNC and CYP1A1 (TT) genotype was found among patients with smoking (P = 0.011) and drinking habit (P = 0.009). The combinations of NAT1 (AT or AA) and NAT2 (AA) at-risk genotypes increased HNC risk (OR 4.23, P = 0.005 and OR 3.60, P = 0.048, respectively). However, the combinations of CYP1A1 (AA) and CYP2D6 (CC) genotypes decreased risk of HNC (OR 0.20; P = 0.006). Genetic polymorphisms in CYP1A1 and CYP2D6 may significantly associate with HNC in the Tunisian population. The results of this study suggest a possible gene-environment interaction for certain carcinogen metabolizing enzymes, but larger studies that fully evaluate the interaction are needed.
Collapse
Affiliation(s)
- Rim Khlifi
- Unit of Marine and Environmental Toxicology, UR 09-03, IPEIS, Sfax University, BP 1172, 3018, Sfax, Tunisia,
| | | | | | | |
Collapse
|
37
|
Demircigil GÇ, Erdem O, Gaga EO, Altuğ H, Demirel G, Özden Ö, Arı A, Örnektekin S, Döğeroğlu T, van Doorn W, Burgaz S. Cytogenetic biomonitoring of primary school children exposed to air pollutants: micronuclei analysis of buccal epithelial cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:1197-1207. [PMID: 23884878 DOI: 10.1007/s11356-013-2001-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/10/2013] [Indexed: 06/02/2023]
Abstract
There is an increasing attempt in the world to determine the exposures of children to environmental chemicals. To analyze the genotoxic effect of air pollution, micronucleus (MN) assay was carried out in buccal epithelial cells (BECs) of children living in an urban city of Turkey. Children from two schools at urban-traffic and suburban sites were investigated in summer and winter seasons for the determination of BEC-MN frequency (per mille) and frequency of BEC with MN (per mille). The same children were also recruited for lung function measurements within a MATRA project ("Together Towards Clean Air in Eskisehir and Iskenderun") Measured NO2 and SO2 concentrations did not exceed the European Union (EU) limit levels either in urban-traffic or suburban regions. Higher O3 concentrations were measured in the suburban site especially in the summer period. Particulate matter (PM2.5 and PM10) levels which did not differ statistically between two regions were above the EU limits in general. Although BEC-MN frequencies of children living in the suburban sites were higher in general, the difference between two regions was not significant either in the summer or winter periods. BEC-MN frequencies of the urban-traffic children were found to be significantly higher in summer period (mean ± SD, 2.68 ± 1.99) when compared to winter period (1.64 ± 1.59; p = 0.004). On the other hand, no seasonality was observed for the suburban children. Similar results have been obtained in the BEC frequency with MN in our study. In summer, BEC-MN frequencies were significantly increased with the decrease in pulmonary function levels based on forced expiratory flow between 25 and 75% of vital capacity (FEF25-75%) levels (p < 0.05). As a conclusion, children living in urban-traffic and suburban areas in the city of Eskişehir exhibited similar genotoxicity. Seasonal variation in genotoxicity may be interpreted as relatively high ozone levels and increasing time spent at outdoors in the summer.
Collapse
|
38
|
Lee D, Huestis MA. Current knowledge on cannabinoids in oral fluid. Drug Test Anal 2014; 6:88-111. [PMID: 23983217 PMCID: PMC4532432 DOI: 10.1002/dta.1514] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 11/09/2022]
Abstract
Oral fluid (OF) is a new biological matrix for clinical and forensic drug testing, offering non-invasive and directly observable sample collection reducing adulteration potential, ease of multiple sample collections, lower biohazard risk during collection, recent exposure identification, and stronger correlation with blood than urine concentrations. Because cannabinoids are usually the most prevalent analytes in illicit drug testing, application of OF drug testing requires sufficient scientific data to support sensitive and specific OF cannabinoid detection. This review presents current knowledge of OF cannabinoids, evaluating pharmacokinetic properties, detection windows, and correlation with other biological matrices and impairment from field applications and controlled drug administration studies. In addition, onsite screening technologies, confirmatory analytical methods, drug stability, and effects of sample collection procedure, adulterants, and passive environmental exposure are reviewed. Delta-9-tetrahydrocannabinol OF concentrations could be >1000 µg/L shortly after smoking, whereas minor cannabinoids are detected at 10-fold and metabolites at 1000-fold lower concentrations. OF research over the past decade demonstrated that appropriate interpretation of test results requires a comprehensive understanding of distinct elimination profiles and detection windows for different cannabinoids, which are influenced by administration route, dose, and drug use history. Thus, each drug testing program should establish cut-off criteria, collection/analysis procedures, and storage conditions tailored to its purposes. Building a scientific basis for OF testing is ongoing, with continuing OF cannabinoids research on passive environmental exposure, drug use history, donor physiological conditions, and oral cavity metabolism needed to better understand mechanisms of cannabinoid OF disposition and expand OF drug testing applicability. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Dayong Lee
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | | |
Collapse
|
39
|
Chen HJC, Lee CR. Detection and simultaneous quantification of three smoking-related ethylthymidine adducts in human salivary DNA by liquid chromatography tandem mass spectrometry. Toxicol Lett 2013; 224:101-7. [PMID: 24140497 DOI: 10.1016/j.toxlet.2013.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 11/26/2022]
Abstract
Smoking cigarette increases levels of certain ethylated DNA adducts in certain tissues and urine. Cigarette smoking is a major risk factor of various cancers and DNA ethylation is involved in smoking-related carcinogenesis. Among the ethylated DNA adducts, O(2)-ethylthymidine (O(2)-edT) and the promutagenic O(4)-ethylthymidine (O(4)-edT) are poorly repaired and they can accumulate in vivo. Using an accurate, highly sensitive, and quantitative assay based on stable isotope dilution nanoflow liquid chromatography-nanospray ionization tandem mass spectrometry (nanoLC-NSI/MS/MS), O(2)-edT, N(3)-edT (N(3)-ethylthymidine), and O(4)-edT adducts in human salivary DNA were simultaneous detected and quantified. Saliva is easily accessible and available and it can be a potential target in searching for noninvasive biomarkers. Under the highly selected reaction monitoring (H-SRM) mode, salivary samples from 20 smokers and 13 nonsmokers were analyzed. Starting with 50 μg of DNA isolated from about 3.5 mL of saliva, levels of O(2)-edT, N(3)-edT, and O(4)-edT in 20 smokers' salivary DNA samples were 5.3±6.2, 4.5±5.7, 4.2±8.0 in 10(8) normal nucleotides, respectively, while those in 13 nonsmokers were non-detectable. In addition, statistically significant correlations (p<0.0001) were observed between levels of O(2)-edT and N(3)-edT (γ=0.7388), between levels of O(2)-edT and O(4)-edT (γ=0.8839), and between levels of N(3)-edT, and O(4)-edT (γ=0.7835). To the best of our knowledge, this is the first report of detection and quantification of these three ethylthymidine adducts in human salivary DNA, which might be potential biomarkers for exposure to ethylating agents and possibly for cancer risk assessment.
Collapse
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan.
| | | |
Collapse
|
40
|
Camacho-Alonso F, Sánchez-Siles M, Gilbel-del Águila O. No Evidence of Genotoxic Damage in a Group of Patients with Titanium Dental Implants and Different Metal Restorations in the Oral Cavity. Clin Implant Dent Relat Res 2013; 17:811-21. [DOI: 10.1111/cid.12163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Anizan S, Milman G, Desrosiers N, Barnes AJ, Gorelick DA, Huestis MA. Oral fluid cannabinoid concentrations following controlled smoked cannabis in chronic frequent and occasional smokers. Anal Bioanal Chem 2013; 405:8451-61. [PMID: 23954944 PMCID: PMC3823692 DOI: 10.1007/s00216-013-7291-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 11/25/2022]
Abstract
Oral fluid (OF) is an alternative biological matrix for monitoring cannabis intake in drug testing, and drugged driving (DUID) programs, but OF cannabinoid test interpretation is challenging. Controlled cannabinoid administration studies provide a scientific database for interpreting cannabinoid OF tests. We compared differences in OF cannabinoid concentrations from 19 h before to 30 h after smoking a 6.8% THC cigarette in chronic frequent and occasional cannabis smokers. OF was collected with the Statsure Saliva Sampler™ OF device. 2D-GC-MS was used to quantify cannabinoids in 357 OF specimens; 65 had inadequate OF volume within 3 h after smoking. All OF specimens were THC-positive for up to 13.5 h after smoking, without significant differences between frequent and occasional smokers over 30 h. Cannabidiol (CBD) and cannabinol (CBN) had short median last detection times (2.5-4 h for CBD and 6-8 h for CBN) in both groups. THCCOOH was detected in 25 and 212 occasional and frequent smokers' OF samples, respectively. THCCOOH provided longer detection windows than THC in all frequent smokers. As THCCOOH is not present in cannabis smoke, its presence in OF minimizes the potential for false positive results from passive environmental smoke exposure, and can identify oral THC ingestion, while OF THC cannot. THC ≥ 1 μg/L, in addition to CBD ≥ 1 μg/L or CBN ≥ 1 μg/L suggested recent cannabis intake (≤13.5 h), important for DUID cases, whereas THC ≥ 1 μg/L or THC ≥ 2 μg/L cutoffs had longer detection windows (≥30 h), important for workplace testing. THCCOOH windows of detection for chronic, frequent cannabis smokers extended beyond 30 h, while they were shorter (0-24 h) for occasional cannabis smokers.
Collapse
Affiliation(s)
- Sebastien Anizan
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute of Drug Abuse, NIH, 251 Bayview Boulevard, Baltimore, 20892 MD, USA
| | - Garry Milman
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute of Drug Abuse, NIH, 251 Bayview Boulevard, Baltimore, 20892 MD, USA
| | - Nathalie Desrosiers
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute of Drug Abuse, NIH, 251 Bayview Boulevard, Baltimore, 20892 MD, USA
- Program in Toxicology, University of Maryland Baltimore, 660 West Redwood Street, Baltimore, 21224 MD, USA
| | - Allan J. Barnes
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute of Drug Abuse, NIH, 251 Bayview Boulevard, Baltimore, 20892 MD, USA
| | - David A. Gorelick
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute of Drug Abuse, NIH, 251 Bayview Boulevard, Baltimore, 20892 MD, USA
| | - Marilyn A. Huestis
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute of Drug Abuse, NIH, 251 Bayview Boulevard, Baltimore, 20892 MD, USA
| |
Collapse
|
42
|
Bbosa GS, Kitya D, Odda J, Ogwal-Okeng J. Aflatoxins metabolism, effects on epigenetic mechanisms and their role in carcinogenesis. Health (London) 2013. [DOI: 10.4236/health.2013.510a1003] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Lee D, Milman G, Schwope DM, Barnes AJ, Gorelick DA, Huestis MA. Cannabinoid stability in authentic oral fluid after controlled cannabis smoking. Clin Chem 2012; 58:1101-9. [PMID: 22532594 PMCID: PMC3717354 DOI: 10.1373/clinchem.2012.184929] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Defining cannabinoid stability in authentic oral fluid (OF) is critically important for result interpretation. There are few published OF stability data, and of those available, all employed fortified synthetic OF solutions or elution buffers; none included authentic OF following controlled cannabis smoking. METHODS An expectorated OF pool and a pool of OF collected with Quantisal™ devices were prepared for each of 10 participants. Δ⁹-tetrahydrocannabinol (THC), 11-nor-9-carboxy-THC (THCCOOH), cannabidiol (CBD), and cannabinol (CBN) stability in each of 10 authentic expectorated and Quantisal-collected OF pools were determined after storage at 4 °C for 1 and 4 weeks and at -20 °C for 4 and 24 weeks. Results within ±20% of baseline concentrations analyzed within 24 h of collection were considered stable. RESULTS All Quantisal OF cannabinoid concentrations were stable for 1 week at 4 °C. After 4 weeks at 4 °C, as well as 4 and 24 weeks at -20 °C, THC was stable in 90%, 80%, and 80% and THCCOOH in 89%, 40%, and 50% of Quantisal samples, respectively. Cannabinoids in expectorated OF were less stable than in Quantisal samples when refrigerated or frozen. After 4 weeks at 4 and -20 °C, CBD and CBN were stable in 33%-100% of Quantisal and expectorated samples; by 24 weeks at -20 °C, CBD and CBN were stable in ≤ 44%. CONCLUSIONS Cannabinoid OF stability varied by analyte, collection method, and storage duration and temperature, and across participants. OF collection with a device containing an elution/stabilization buffer, sample storage at 4 °C, and analysis within 4 weeks is preferred to maximize result accuracy.
Collapse
Affiliation(s)
- Dayong Lee
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore
| | - Garry Milman
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore
| | - David M. Schwope
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore
| | - Allan J. Barnes
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore
| | - David A. Gorelick
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore
| | - Marilyn A. Huestis
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore
| |
Collapse
|
44
|
Lee D, Schwope DM, Milman G, Barnes AJ, Gorelick DA, Huestis MA. Cannabinoid disposition in oral fluid after controlled smoked cannabis. Clin Chem 2012; 58:748-56. [PMID: 22273566 PMCID: PMC3717347 DOI: 10.1373/clinchem.2011.177881] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND We measured Δ(9)-tetrahydrocannabinol (THC), 11-nor-9-carboxy-THC (THCCOOH), cannabidiol (CBD), and cannabinol (CBN) disposition in oral fluid (OF) following controlled cannabis smoking to evaluate whether monitoring multiple cannabinoids in OF improved OF test interpretation. METHODS Cannabis smokers provided written informed consent for this institutional review board-approved study. OF was collected with the Quantisal™ device following ad libitum smoking of one 6.8% THC cigarette. Cannabinoids were quantified by 2-dimensional GC-MS. We evaluated 8 alternative cutoffs based on different drug testing program needs. RESULTS 10 participants provided 86 OF samples -0.5 h before and 0.25, 0.5, 1, 2, 3, 4, 6, and 22 h after initiation of smoking. Before smoking, OF samples of 4 and 9 participants were positive for THC and THCCOOH, respectively, but none were positive for CBD and CBN. Maximum THC, CBD, and CBN concentrations occurred within 0.5 h, with medians of 644, 30.4, and 49.0 μg/L, respectively. All samples were THC positive at 6 h (2.1-44.4 μg/L), and 4 of 6 were positive at 22 h. CBD and CBN were positive only up to 6 h in 3 (0.6-2.1 μg/L) and 4 (1.0-4.4 μg/L) participants, respectively. The median maximum THCCOOH OF concentration was 115 ng/L, with all samples positive to 6 h (14.8-263 ng/L) and 5 of 6 positive at 22 h. CONCLUSIONS By quantifying multiple cannabinoids and evaluating different analytical cutoffs after controlled cannabis smoking, we determined windows of drug detection, found suggested markers of recent smoking, and minimized the potential for passive contamination.
Collapse
Affiliation(s)
- Dayong Lee
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD
| | - David M. Schwope
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD
| | - Garry Milman
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD
| | - Allan J. Barnes
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD
| | - David A. Gorelick
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD
| | - Marilyn A. Huestis
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD
| |
Collapse
|
45
|
Ramot Y, Vered M, Malarkey DE, Hooth MJ, Painter JT, Dayan D, Clayton N, Masinde T, Nyska A. Immunohistochemical features of 3,3',4,4'-tetrachloroazobenzene-induced rat gingival lesions. Toxicol Pathol 2012; 40:577-92. [PMID: 22317924 DOI: 10.1177/0192623311436185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gingival lesions of squamous hyperplasia, cystic keratinizing hyperplasia (CKH), and squamous cell carcinoma (SCC) can be induced in rats treated by chronic gavage with 10-100 mg/kg 3,3',4,4'-tetrachloroazobenzene. We evaluated gingival squamous hyperplasia (GSH), CKH, and SCC for the immunohistochemical pattern of expression of carcinogenesis-associated markers. The 3 types of lesions and controls were stained with proliferation markers (proliferating cell nuclear antigen [PCNA] and cyclin-D1), tumor-suppressor markers (β-catenin and mammary serine protease inhibitor [maspin]) and stroma-related markers (α-smooth muscle actin [SMA] and osteonectin/SPARC). The lesions had common immunohistochemical characteristics that differed in their expression patterns among the various diagnoses. PCNA and cyclin-D1 expression was higher in GSH, CKH, and SCC than in controls. The normal membranous expression of β-catenin was lower in GSH, and almost absent in CKH and SCC. Maspin expression was similar in GSH and controls, whereas both CKH and SCC showed decreased expression. SMA and/or osteonectin/SPARC were seen in stromal cells in CKH and SCC. Collectively, there appears to be a progression from hyperplastic and cystic lesions toward malignancy based on the morphological changes, supported by the expression of carcinogenesis-associated proteins. The exact sequence of events leading to SCC remains to be defined in a time-dependent manner.
Collapse
Affiliation(s)
- Yuval Ramot
- Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Chen HJC, Lin WP. Quantitative analysis of multiple exocyclic DNA adducts in human salivary DNA by stable isotope dilution nanoflow liquid chromatography-nanospray ionization tandem mass spectrometry. Anal Chem 2011; 83:8543-51. [PMID: 21958347 DOI: 10.1021/ac201874d] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Exocyclic DNA adducts, including 1,N(2)-propano-2'-deoxyguanosine derived from acrolein (AdG) and crotonaldehyde (CdG) and the three lipid peroxidation-related etheno adducts 1,N(6)-etheno-2'-deoxyadenosine (εdAdo), 3,N(4)-etheno-2'-deoxycytidine (εdCyt), and 1,N(2)-etheno-2'-deoxyguanosine (1,N(2)-εdGuo), play an important role in cancer formation and they are associated with oxidative-stress-induced DNA damage. Saliva is an easily accessible and available biological fluid and a potential target of noninvasive biomarkers. In this study, a highly sensitive and specific assay based on isotope dilution nanoflow LC-nanospray ionization tandem mass spectrometry (nanoLC-NSI/MS/MS) is developed for simultaneous detection and quantification of these five adducts in human salivary DNA. The levels of AdG, CdG, εdAdo, εdCyd, and 1,N(2)-εdGuo, measured in 27 human salivary DNA samples from healthy volunteers, were determined as 104 ± 50, 7.6 ± 12, 99 ± 50, 72 ± 49, 391 ± 198 (mean ± SD) in 10(8) normal nucleotides, respectively, starting with 25 μg of DNA isolated from an average of 3 mL of saliva. Statistically significant correlations were found between levels of εdAdo and εdCyd (γ = 0.8007, p < 0.0001), between levels of εdAdo and 1,N(2)-εdGuo (γ = 0.6778, p = 0.0001), between levels of εdCyd and 1,N(2)-εdGuo (γ = 0.5643, p = 0.0022), between levels of AdG and 1,N(2)-εdGuo (γ = 0.5756, p = 0.0017), and between levels of AdG and εdAdo (γ = 0.3969, p = 0.0404). Only 5 μg of DNA sample was analyzed for simultaneous quantification of these adducts. The easy accessibility and availability of saliva and the requirement for the small amount of DNA samples make this nanoLC-NSI/MS/MS assay clinically feasible in assessing the possibility of measuring 1,N(2)-propano-2'-deoxyguanosine and etheno adducts levels in human salivary DNA as noninvasive biomarkers for DNA damage resulting from oxidative stress and for evaluating their roles in cancer formation and prevention.
Collapse
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, Ming-Hsiung, Chia-Yi, Taiwan.
| | | |
Collapse
|
47
|
Ruwali M, Singh M, Pant MC, Parmar D. Polymorphism in glutathione S-transferases: Susceptibility and treatment outcome for head and neck cancer. Xenobiotica 2011; 41:1122-30. [DOI: 10.3109/00498254.2011.614020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Turesky RJ, Le Marchand L. Metabolism and biomarkers of heterocyclic aromatic amines in molecular epidemiology studies: lessons learned from aromatic amines. Chem Res Toxicol 2011; 24:1169-214. [PMID: 21688801 PMCID: PMC3156293 DOI: 10.1021/tx200135s] [Citation(s) in RCA: 229] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aromatic amines and heterocyclic aromatic amines (HAAs) are structurally related classes of carcinogens that are formed during the combustion of tobacco or during the high-temperature cooking of meats. Both classes of procarcinogens undergo metabolic activation by N-hydroxylation of the exocyclic amine group to produce a common proposed intermediate, the arylnitrenium ion, which is the critical metabolite implicated in toxicity and DNA damage. However, the biochemistry and chemical properties of these compounds are distinct, and different biomarkers of aromatic amines and HAAs have been developed for human biomonitoring studies. Hemoglobin adducts have been extensively used as biomarkers to monitor occupational and environmental exposures to a number of aromatic amines; however, HAAs do not form hemoglobin adducts at appreciable levels, and other biomarkers have been sought. A number of epidemiologic studies that have investigated dietary consumption of well-done meat in relation to various tumor sites reported a positive association between cancer risk and well-done meat consumption, although some studies have shown no associations between well-done meat and cancer risk. A major limiting factor in most epidemiological studies is the uncertainty in quantitative estimates of chronic exposure to HAAs, and thus, the association of HAAs formed in cooked meat and cancer risk has been difficult to establish. There is a critical need to establish long-term biomarkers of HAAs that can be implemented in molecular epidemioIogy studies. In this review, we highlight and contrast the biochemistry of several prototypical carcinogenic aromatic amines and HAAs to which humans are chronically exposed. The biochemical properties and the impact of polymorphisms of the major xenobiotic-metabolizing enzymes on the biological effects of these chemicals are examined. Lastly, the analytical approaches that have been successfully employed to biomonitor aromatic amines and HAAs, and emerging biomarkers of HAAs that may be implemented in molecular epidemiology studies are discussed.
Collapse
Affiliation(s)
- Robert J Turesky
- Division of Environmental Health Sciences, Wadsworth Center , Albany, New York 12201, United States.
| | | |
Collapse
|
49
|
Bessette EE, Spivack SD, Goodenough AK, Wang T, Pinto S, Kadlubar FF, Turesky RJ. Identification of carcinogen DNA adducts in human saliva by linear quadrupole ion trap/multistage tandem mass spectrometry. Chem Res Toxicol 2010; 23:1234-44. [PMID: 20443584 DOI: 10.1021/tx100098f] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA adducts of carcinogens derived from tobacco smoke and cooked meat were identified by liquid chromatography-electrospray ionization/multistage tandem mass spectrometry (LC-ESI/MS/MS(n)) in saliva samples from 37 human volunteers on unrestricted diets. The N-(deoxyguanosin-8-yl) (dG-C8) adducts of the heterocyclic aromatic amines 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-9H-pyrido[2,3-b]indole (AalphaC), 2-amino-3,8-dimethylmidazo[4,5-f]quinoxaline (MeIQx), and the aromatic amine, 4-aminobiphenyl (4-ABP), were characterized and quantified by LC-ESI/MS/MS(n), employing consecutive reaction monitoring at the MS(3) scan stage mode with a linear quadrupole ion trap (LIT) mass spectrometer (MS). DNA adducts of PhIP were found most frequently: dG-C8-PhIP was detected in saliva samples from 13 of 29 ever-smokers and in saliva samples from 2 of 8 never-smokers. dG-C8-AalphaC and dG-C8-MeIQx were identified solely in saliva samples of three current smokers, and dG-C8-4-ABP was detected in saliva from two current smokers. The levels of these different adducts ranged from 1 to 9 adducts per 10(8) DNA bases. These findings demonstrate that PhIP is a significant DNA-damaging agent in humans. Saliva appears to be a promising biological fluid in which to assay DNA adducts of tobacco and dietary carcinogens by selective LIT MS techniques.
Collapse
Affiliation(s)
- Erin E Bessette
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Sam SS, Thomas V, Reddy KS, Surianarayanan G, Chandrasekaran A. Gene–gene interactions of drug metabolizing enzymes and transporter protein in the risk of upper aerodigestive tract cancers among Indians. Cancer Epidemiol 2010; 34:626-33. [DOI: 10.1016/j.canep.2010.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 05/12/2010] [Accepted: 05/15/2010] [Indexed: 01/11/2023]
|