1
|
Abstract
![]()
The cellular outcomes of chemical
exposure are as much about the
cellular response to the chemical as it is an effect of the chemical. We are growing in our understanding
of the genotoxic interaction between chemistry and biology. For example,
recent data has revealed the biological basis for mutation induction
curves for a methylating chemical, which has been shown to be dependent
on the repair capacity of the cells. However, this is just one end
point in the toxicity pathway from chemical exposure to cell death.
Much remains to be known in order for us to predict how cells will
respond to a certain dose. Methylating agents, a subset of alkylating
agents, are of particular interest, because of the variety of adverse
genetic end points that can result, not only at increasing doses,
but also over time. For instance, methylating agents are mutagenic,
their potency, for this end point, is determined by the cellular repair
capacity of an enzyme called methylguanine DNA-methyltransferase (MGMT)
and its ability to repair the induceed methyl adducts. However, methyl
adducts can become clastogenic. Erroneous biological processing will
convert mutagenic adducts to clastogenic events in the form of double
strand breaks (DSBs). How the cell responds to DSBs is via a cascade
of protein kinases, which is called the DNA damage response (DDR),
which will determine if the damage is repaired effectively, via homologous
recombination, or with errors, via nonhomologous end joining, or whether
the cell dies via apoptosis or enters senescence. The fate of cells
may be determined by the extent of damage and the resulting strength
of DDR signaling. Therefore, thresholds of damage may exist that determine
cell fate. Such thresholds would be dependent on each of the repair
and response mechanisms that these methyl adducts stimulate. The molecular
mechanism of how methyl adducts kill cells is still to be fully resolved.
If we are able to quantify each of these thresholds of damage for
a given cell, then we can ascertain, of the many adducts that are
induced, what proportion of them are mutagenic, what proportion are
clastogenic, and how many of these clastogenic events are toxic. This
review examines the possibility of dose and damage thresholds for
methylating agents, from the perspective of the underlying evolutionary
mechanisms that may be accountable.
Collapse
Affiliation(s)
- Adam D Thomas
- Centre for Research in Biosciences, University of the West of England, Frenchay Campus, Bristol BS16 1QY, United Kingdom
| |
Collapse
|
2
|
Pottenger LH, Boysen G, Brown K, Cadet J, Fuchs RP, Johnson GE, Swenberg JA. Understanding the importance of low-molecular weight (ethylene oxide- and propylene oxide-induced) DNA adducts and mutations in risk assessment: Insights from 15 years of research and collaborative discussions. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:100-121. [PMID: 30536466 PMCID: PMC6590209 DOI: 10.1002/em.22248] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/10/2018] [Accepted: 08/23/2018] [Indexed: 05/11/2023]
Abstract
The interpretation and significance of DNA adduct data, their causal relationship to mutations, and their role in risk assessment have been debated for many years. An extended effort to identify key questions and collect relevant data to address them was focused on the ubiquitous low MW N7-alkyl/hydroxyalkylguanine adducts. Several academic, governmental, and industrial laboratories collaborated to gather new data aimed at better understanding the role and potential impact of these adducts in quantifiable genotoxic events (gene mutations/micronucleus). This review summarizes and evaluates the status of dose-response data for DNA adducts and mutations from recent experimental work with standard mutagenic agents and ethylene oxide and propylene oxide, and the importance for risk assessment. This body of evidence demonstrates that small N7-alkyl/hydroxyalkylguanine adducts are not pro-mutagenic and, therefore, adduct formation alone is not adequate evidence to support a mutagenic mode of action. Quantitative methods for dose-response analysis and derivation of thresholds, benchmark dose (BMD), or other points-of-departure (POD) for genotoxic events are now available. Integration of such analyses of genetox data is necessary to properly assess any role for DNA adducts in risk assessment. Regulatory acceptance and application of these insights remain key challenges that only the regulatory community can address by applying the many learnings from recent research. The necessary tools, such as BMDs and PODs, and the example datasets, are now available and sufficiently mature for use by the regulatory community. Environ. Mol. Mutagen. 60: 100-121, 2019. © 2018 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- L. H. Pottenger
- Olin Corporation/Blue Cube Operations, LLC, retired, LHP TOX CONSULT, LLCMidlandMIUSA
| | - G. Boysen
- Department of Environmental and Occupational Health and The Winthrop P Rockefeller Cancer Institute University of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - K. Brown
- Leicester Cancer Research CentreUniversity of LeicesterLeicesterUnited Kingdom
| | - J. Cadet
- Institut Nanosciences et Cryogénie, CEA‐GrenobleGrenobleFrance
- Université de SherbrookeSherbrookeCanada
| | - R. P. Fuchs
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068Marseille, 13009France
- CNRS, UMR7258Marseille, 13009France
- Institut Paoli‐CalmettesMarseille, 13009France
- Aix‐Marseille UniversityUM 105, 13284, MarseilleFrance
| | - G. E. Johnson
- Swansea University, Institute of Life SciencesSwanseaUnited Kingdom
| | - J. A. Swenberg
- University of North CarolinaChapel HillNorth CarolinaUSA
| |
Collapse
|
3
|
Niot-Mansart V, Muhamedi A, Arnould JP. A competitive ELISA detecting 7-methylguanosine adduct induced by N-nitrosodimethylamine exposure. Hum Exp Toxicol 2016; 24:89-94. [PMID: 15850283 DOI: 10.1191/0960327105ht501oa] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
N-Nitrosodimethylamine is a chemical compound known to be carcinogenic to animals and probably to humans. It is widespread and it can be found in food, tobacco smoke and in industrial emissions, such as in the rubber industry. N-Nitrosodimethylamine exerts its biological effects after metabolic activation by forming methylating nucleic acids in DNA. The most formed adduct is 7-methylguanosine. Our laboratory has developed and validated a competitive enzyme-linked immunosorbent assay in order to detect this adduct in DNA exposed to N-nitrosodimethylamine in vitro or in vivo. The imidazole ring-opening (iro) of 7-methylguanosine was required because of its stability. When 7-methylguanosine iro and serum were incubated at 48C, the assay was 35 times more sensitive than at 378C (50% inhibition at 37 fmol 7-methylguanosine iro per well at 48C and 1.28 pmol at 378C) with a lower limit of detection at 1.58 fmol 7-methylguanosine iro. This assay is reproducible, can be routinely performed and is sensitive enough to detect 7-methylguanosine adduct in DNA samples from human exposed to N-nitrosodimethylamine. We aim to use this method in further studies on epidemiological assessment in people at high risk, such as smokers.
Collapse
Affiliation(s)
- Vanessa Niot-Mansart
- Université de Picardie Jules Verne, Laboratoire de Toxicologie, Faculté de Pharmacie, 80 037 Amiens cedex, France.
| | | | | |
Collapse
|
4
|
Meira LB, Calvo JA, Shah D, Klapacz J, Moroski-Erkul CA, Bronson RT, Samson LD. Repair of endogenous DNA base lesions modulate lifespan in mice. DNA Repair (Amst) 2014; 21:78-86. [PMID: 24994062 PMCID: PMC4125484 DOI: 10.1016/j.dnarep.2014.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/30/2014] [Accepted: 05/20/2014] [Indexed: 12/21/2022]
Abstract
The accumulation of DNA damage is thought to contribute to the physiological decay associated with the aging process. Here, we report the results of a large-scale study examining longevity in various mouse models defective in the repair of DNA alkylation damage, or defective in the DNA damage response. We find that the repair of spontaneous DNA damage by alkyladenine DNA glycosylase (Aag/Mpg)-initiated base excision repair and O(6)-methylguanine DNA methyltransferase (Mgmt)-mediated direct reversal contributes to maximum life span in the laboratory mouse. We also uncovered important genetic interactions between Aag, which excises a wide variety of damaged DNA bases, and the DNA damage sensor and signaling protein, Atm. We show that Atm plays a role in mediating survival in the face of both spontaneous and induced DNA damage, and that Aag deficiency not only promotes overall survival, but also alters the tumor spectrum in Atm(-/-) mice. Further, the reversal of spontaneous alkylation damage by Mgmt interacts with the DNA mismatch repair pathway to modulate survival and tumor spectrum. Since these aging studies were performed without treatment with DNA damaging agents, our results indicate that the DNA damage that is generated endogenously accumulates with age, and that DNA alkylation repair proteins play a role in influencing longevity.
Collapse
Affiliation(s)
- Lisiane B Meira
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Jennifer A Calvo
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Dharini Shah
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Joanna Klapacz
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Catherine A Moroski-Erkul
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Roderick T Bronson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Rodent Histopathology Core, Harvard Medical School, 126 Goldenson Building, Boston, MA 02115, United States
| | - Leona D Samson
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Biology Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Rodent Histopathology Core, Harvard Medical School, 126 Goldenson Building, Boston, MA 02115, United States.
| |
Collapse
|
5
|
Filser JG, Kessler W, Artati A, Erbach E, Faller T, Kreuzer PE, Li Q, Lichtmannegger J, Numtip W, Klein D, Pütz C, Semder B, Csanády GA. Ethylene oxide in blood of ethylene-exposed B6C3F1 mice, Fischer 344 rats, and humans. Toxicol Sci 2013; 136:344-58. [PMID: 24068676 PMCID: PMC3858200 DOI: 10.1093/toxsci/kft218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/09/2013] [Indexed: 02/04/2023] Open
Abstract
The gaseous olefin ethylene (ET) is metabolized in mammals to the carcinogenic epoxide ethylene oxide (EO). Although ET is the largest volume organic chemical worldwide, the EO burden in ET-exposed humans is still uncertain, and only limited data are available on the EO burden in ET-exposed rodents. Therefore, EO was quantified in blood of mice, rats, or 4 volunteers that were exposed once to constant atmospheric ET concentrations of between 1 and 10 000 ppm (rodents) or 5 and 50 ppm (humans). Both the compounds were determined by gas chromatography. At ET concentrations of between 1 and 10 000 ppm, areas under the concentration-time curves of EO in blood (µmol × h/l) ranged from 0.039 to 3.62 in mice and from 0.086 to 11.6 in rats. At ET concentrations ≤ 30 ppm, EO concentrations in blood were 8.7-fold higher in rats and 3.9-fold higher in mice than that in the volunteer with the highest EO burdens. Based on measured EO concentrations, levels of EO adducts to hemoglobin and lymphocyte DNA were calculated for diverse ET concentrations and compared with published adduct levels. For given ET exposure concentrations, there were good agreements between calculated and measured levels of adducts to hemoglobin in rats and humans and to DNA in rats and mice. Reported hemoglobin adduct levels in mice were higher than calculated ones. Furthermore, information is given on species-specific background adduct levels. In summary, the study provides most relevant data for an improved assessment of the human health risk from exposure to ET.
Collapse
Affiliation(s)
- Johannes Georg Filser
- *Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; and
- †Institut für Toxikologie und Umwelthygiene, Technische Universität München, München, Germany
| | - Winfried Kessler
- *Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; and
| | - Anna Artati
- *Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; and
| | - Eva Erbach
- *Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; and
| | - Thomas Faller
- *Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; and
| | - Paul Erich Kreuzer
- *Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; and
| | - Qiang Li
- *Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; and
| | - Josef Lichtmannegger
- *Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; and
| | - Wanwiwa Numtip
- *Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; and
| | - Dominik Klein
- *Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; and
- †Institut für Toxikologie und Umwelthygiene, Technische Universität München, München, Germany
| | - Christian Pütz
- *Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; and
| | - Brigitte Semder
- *Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; and
| | - György András Csanády
- *Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; and
- †Institut für Toxikologie und Umwelthygiene, Technische Universität München, München, Germany
| |
Collapse
|
6
|
Nagy K, Ádány R, Szűcs S, Ádám B. Susceptibility of lung epithelial cells to alkylating genotoxic insult. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:682-689. [PMID: 23907938 DOI: 10.1002/em.21800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 06/04/2013] [Accepted: 06/04/2013] [Indexed: 06/02/2023]
Abstract
Alkylation is one of the most common types of DNA damage that can lead to mutations and cancer. Lung is the primary target organ of airborne alkylators such as ethylene oxide (EO). However, the ability of EO to cause lung cancer has not been clearly demonstrated yet. The aim of this study was to investigate the susceptibility of lung cells to alkylating DNA insult by detecting EO-mediated DNA damage with the alkaline comet assay in human lung epithelial cells, peripheral blood lymphocytes, and keratinocytes. The susceptibility of these cell types toward the alkylating insult induced by EO was compared against the oxidative DNA insult induced by hydrogen peroxide (H2 O2 ). Due to the volatility of EO, its active concentrations were monitored by gas chromatography during exposure and were found to decrease significantly in a time-dependent manner. EO induced a statistically significant genotoxic effect at the lowest concentration used (16.4 µM) in lung epithelial cells and in lymphocytes, while in keratinocytes, a genotoxic effect was not detected until 55.5 µM EO. However, lung epithelial cells demonstrated increased resistance to oxidative insult. In fact, oxidative DNA damage detectable by endonuclease treatment was minimal in lung cells compared with the other cell types. These results suggest an increased sensitivity of lung epithelial cells toward the alkylating effects of EO, which was not observed for oxidative DNA damage. Our findings point out the importance of DNA alkylation and the possible role of EO on the induction of lung cancer.
Collapse
Affiliation(s)
- Károly Nagy
- Department of Preventive Medicine, Faculty of Public Health, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | |
Collapse
|
7
|
Wu KY, Chiang SY, Shih WC, Huang CCJ, Chen MF, Swenberg JA. The application of mass spectrometry in molecular dosimetry: ethylene oxide as an example. MASS SPECTROMETRY REVIEWS 2011; 30:733-756. [PMID: 21328599 DOI: 10.1002/mas.20299] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Mass spectrometry plays an increasingly important role in the search for and quantification of novel chemically specific biomarkers. The revolutionary advances in mass spectrometry instrumentation and technology empower scientists to specifically analyze DNA and protein adducts, considered as molecular dosimeters, derived from reactions of a carcinogen or its active metabolites with DNA or protein. Analysis of the adducted DNA bases and proteins can elucidate the chemically reactive species of carcinogens in humans and can serve as risk-associated biomarkers for early prediction of cancer risk. In this article, we review and compare the specificity, sensitivity, resolution, and ease-of-use of mass spectrometry methods developed to analyze ethylene oxide (EO)-induced DNA and protein adducts, particularly N7-(2-hydroxyethyl)guanine (N7-HEG) and N-(2-hydroxyethyl)valine (HEV), in human samples and in animal tissues. GC/ECNCI-MS analysis after HPLC cleanup is the most sensitive method for quantification of N7-HEG, but limited by the tedious sample preparation procedures. Excellent sensitivity and specificity in analysis of N7-HEG can be achieved by LC/MS/MS analysis if the mobile phase, the inlet (split or splitless), and the collision energy are properly optimized. GC/ECNCI-HRMS and GC/ECNCI-MS/MS analysis of HEV achieves the best performance as compared with GC/ECNCI-MS and GC/EI-MS. In conclusion, future improvements in high-throughput capabilities, detection sensitivity, and resolution of mass spectrometry will attract more scientists to identify and/or quantify novel molecular dosimeters or profiles of these biomarkers in toxicological and/or epidemiological studies.
Collapse
Affiliation(s)
- Kuen-Yuh Wu
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | | | |
Collapse
|
8
|
Comparative analysis of urinary N7-(2-hydroxyethyl)guanine for ethylene oxide- and non-exposed workers. Toxicol Lett 2011; 202:237-43. [DOI: 10.1016/j.toxlet.2011.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 02/17/2011] [Accepted: 02/17/2011] [Indexed: 11/19/2022]
|
9
|
Scherer G, Urban M, Hagedorn HW, Serafin R, Feng S, Kapur S, Muhammad R, Jin Y, Sarkar M, Roethig HJ. Determination of methyl-, 2-hydroxyethyl- and 2-cyanoethylmercapturic acids as biomarkers of exposure to alkylating agents in cigarette smoke. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:2520-8. [PMID: 20227354 DOI: 10.1016/j.jchromb.2010.02.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 02/15/2010] [Accepted: 02/17/2010] [Indexed: 10/19/2022]
Abstract
Alkylating agents occur in the environment and are formed endogenously. Tobacco smoke contains a variety of alkylating agents or precursors including, among others, N-nitrosodimethylamine (NDMA), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), acrylonitrile and ethylene oxide. We developed and validated a method for the simultaneous determination of methylmercapturic acid (MMA, biomarker for methylating agents such as NDMA and NNK), 2-hydroxyethylmercapturic acid (HEMA, biomarker for ethylene oxide) and 2-cyanoethylmercapturic acid (CEMA, biomarker for acrylonitrile) in human urine using deuterated internal standards of each compound. The method involves liquid/liquid extraction of the urine sample, solid phase extraction on anion exchange cartridges, derivatization with pentafluorobenzyl bromide (PFBBr), liquid/liquid extraction of the reaction mixture and LC-MS/MS analysis with positive electrospray ionization. The method was linear in the ranges of 5.00-600, 1.00-50.0 and 1.50-900 ng/ml for MMA, HEMA and CEMA, respectively. The method was applied to two clinical studies in adult smokers of conventional cigarettes who either continued smoking conventional cigarettes, were switched to test cigarettes consisting of either an electrically heated cigarette smoking system (EHCSS) or having a highly activated carbon granule filter that were shown to have reduced exposure to specific smoke constituents, or stopped smoking. Urinary excretion of MMA was found to be unaffected by switching to the test cigarettes or stop smoking. Urinary HEMA excretion decreased by 46 to 54% after switching to test cigarettes and by approximately 74% when stopping smoking. Urinary CEMA excretion decreased by 74-77% when switching to test cigarettes and by approximately 90% when stopping smoking. This validated method for urinary alkylmercapturic acids is suitable to distinguish differences in exposure not only between smokers and nonsmokers but also between smoking of conventional and the two test cigarettes investigated in this study.
Collapse
Affiliation(s)
- Gerhard Scherer
- ABF Analytisch-Biologisches Forschungslabor München GmbH, Goethestrasse 20, 80336 Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Boysen G, Pachkowski BF, Nakamura J, Swenberg JA. The formation and biological significance of N7-guanine adducts. Mutat Res 2009; 678:76-94. [PMID: 19465146 PMCID: PMC2739241 DOI: 10.1016/j.mrgentox.2009.05.006] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 05/13/2009] [Indexed: 11/24/2022]
Abstract
DNA alkylation or adduct formation occurs at nucleophilic sites in DNA, mainly the N7-position of guanine. Ever since identification of the first N7-guanine adduct, several hundred studies on DNA adducts have been reported. Major issues addressed include the relationships between N7-guanine adducts and exposure, mutagenesis, and other biological endpoints. It became quickly apparent that N7-guanine adducts are frequently formed, but may have minimal biological relevance, since they are chemically unstable and do not participate in Watson Crick base pairing. However, N7-guanine adducts have been shown to be excellent biomarkers for internal exposure to direct acting and metabolically activated carcinogens. Questions arise, however, regarding the biological significance of N7-guanine adducts that are readily formed, do not persist, and are not likely to be mutagenic. Thus, we set out to review the current literature to evaluate their formation and the mechanistic evidence for the involvement of N7-guanine adducts in mutagenesis or other biological processes. It was concluded that there is insufficient evidence that N7-guanine adducts can be used beyond confirmation of exposure to the target tissue and demonstration of the molecular dose. There is little to no evidence that N7-guanine adducts or their depurination product, apurinic sites, are the cause of mutations in cells and tissues, since increases in AP sites have not been shown unless toxicity is extant. However, more research is needed to define the extent of chemical depurination versus removal by DNA repair proteins. Interestingly, N7-guanine adducts are clearly present as endogenous background adducts and the endogenous background amounts appear to increase with age. Furthermore, the N7-guanine adducts have been shown to convert to ring opened lesions (FAPy), which are much more persistent and have higher mutagenic potency. Studies in humans are limited in sample size and differences between controls and study groups are small. Future investigations should involve human studies with larger numbers of individuals and analysis should include the corresponding ring opened FAPy derivatives.
Collapse
Affiliation(s)
- Gunnar Boysen
- Department of Environmental and Occupational Health, The University of Arkansas for Medical Science, Little Rock, AR
- Department of Environmental Sciences and Engineering, The University of North Carolina, Chapel Hill, NC
| | - Brian F. Pachkowski
- Department of Environmental Sciences and Engineering, The University of North Carolina, Chapel Hill, NC
| | - Jun Nakamura
- Department of Environmental Sciences and Engineering, The University of North Carolina, Chapel Hill, NC
| | - James A Swenberg
- Department of Environmental Sciences and Engineering, The University of North Carolina, Chapel Hill, NC
| |
Collapse
|
11
|
Marsden DA, Jones DJL, Britton RG, Ognibene T, Ubick E, Johnson GE, Farmer PB, Brown K. Dose-response relationships for N7-(2-hydroxyethyl)guanine induced by low-dose [14C]ethylene oxide: evidence for a novel mechanism of endogenous adduct formation. Cancer Res 2009; 69:3052-9. [PMID: 19276345 DOI: 10.1158/0008-5472.can-08-4233] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ethylene oxide (EO) is widely used in the chemical industry and is also formed in humans through the metabolic oxidation of ethylene, generated during physiologic processes. EO is classified as a human carcinogen and is a direct acting alkylating agent, primarily forming N7-(2-hydroxyethyl)guanine (N7-HEG). To conduct accurate human risk assessments, it is vital to ascertain the relative contribution of endogenously versus exogenously derived DNA damage and identify the sources of background lesions. We have therefore defined in vivo dose-response relationships over a concentration range relevant to human EO exposures using a dual-isotope approach. By combining liquid chromatography-tandem mass spectrometry and high-performance liquid chromatography-accelerator mass spectrometry analysis, both the endogenous and exogenous N7-HEG adducts were quantified in tissues of [(14)C]EO-treated rats. Levels of [(14)C]N7-HEG induced in spleen, liver, and stomach DNA increased in a linear manner from 0.002 to 4 adducts/10(8) nucleotides. More importantly, the extent of damage arising through this route was insignificant compared with the background abundance of N7-HEG naturally present. However, at the two highest doses, [(14)C]EO exposure caused a significant increase in endogenous N7-HEG formation in liver and spleen, suggesting that EO can induce physiologic pathways responsible for ethylene generation in vivo and thereby indirectly promote N7-HEG production. We present evidence for a novel mechanism of adduct formation to explain this phenomenon, involving oxidative stress and 1-aminocyclopropane-1-carboxylic acid as a potential biosynthetic precursor to ethylene in mammalian cells. Based on the proposed pathway, N7-HEG may have potential as a biomarker of cellular oxidative stress.
Collapse
Affiliation(s)
- Debbie A Marsden
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Bathaie SZ, Sedghgoo F, Jafarnejad A, Farzami B, Khayatian M. Spectroscopic studies of STZ-induced methylated-DNA in both in vivo and in vitro conditions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2008; 71:803-808. [PMID: 18353708 DOI: 10.1016/j.saa.2008.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 01/28/2008] [Accepted: 02/01/2008] [Indexed: 05/26/2023]
Abstract
Alkylating agents after formation of DNA adduct not only possess their harmful role on living cells but also can transfer this information to the next generation. Different techniques have been introduced to study the alkylated DNA, most of which are specific and designed for investigation of specific target DNA. But the exact differences between spectroscopic and functional properties of alkylated DNA are not seen in the literature. In the present study DNA was methylated using streptozotocin (STZ) by both in vitro and in vivo protocols, then methylated-DNA was investigated by various techniques. Our results show that (1) the binding of ethidium bromide as an intercalating dye decreases to methylated-DNA in comparison with normal DNA, (2) CD spectra of methylated-DNA show changes including a decrease in the positive band at 275 nm and a shift from 258 nm crossover to a longer wavelength, which is caused by reduction of water around it, due to the presence of additional hydrophobic methyl groups, (3) the stability of methylated-DNA against DTAB as a denaturant is decreased and (4) the enzyme-like activity of methylated-DNA in an electron transfer reaction is reduced. In conclusion, additional methyl groups not only protrude water around DNA, but also cause the loss of hydrogen bonding, loosening of conformation, preventing desired interactions and thus normal function of DNA.
Collapse
Affiliation(s)
- S Z Bathaie
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran.
| | | | | | | | | |
Collapse
|
13
|
Huang CCJ, Shih WC, Wu CF, Chen MF, Chen YL, Lin YH, Wu KY. Rapid and sensitive on-line liquid chromatographic/tandem mass spectrometric determination of an ethylene oxide-DNA adduct, N7-(2-hydroxyethyl)guanine, in urine of nonsmokers. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:706-710. [PMID: 18257114 DOI: 10.1002/rcm.3414] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Ethylene oxide (EtO) is classified as a known human carcinogen. The formation of EtO-DNA adducts is considered as an important early event in the EtO carcinogenic process. An isotope-dilution on-line solid-phase extraction and liquid chromatography coupled with tandem mass spectrometry method was then developed to analyze one of the EtO-DNA adducts, N7-(2-hydroxyethyl)guanine (N7-HEG), in urine of 46 nonsmokers with excellent accuracy, sensitivity and specificity. The merits of this method include small sample volume (only 120 microL urine required), automated sample cleanup, and short total run time (12 minutes per sample). This method demonstrates its high-throughput capacity for future molecular epidemiology studies on the potential health effects resulting from the low-dose EtO exposure.
Collapse
Affiliation(s)
- Chih-Chun Jean Huang
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, 35 Keyan Rd., Zhunan Town, Miaoli County 35053, Taiwan
| | | | | | | | | | | | | |
Collapse
|
14
|
Yong LC, Schulte PA, Kao CY, Giese RW, Boeniger MF, Strauss GHS, Petersen MR, Wiencke JK. DNA adducts in granulocytes of hospital workers exposed to ethylene oxide. Am J Ind Med 2007; 50:293-302. [PMID: 17354254 DOI: 10.1002/ajim.20443] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Ethylene oxide (EtO), an important industrial chemical intermediate and sterilant, is classified as a human carcinogen. Occupational EtO exposure in many countries is regulated at 1 ppm (8-hr TWA), but levels of EtO-DNA adducts in humans with low occupational EtO exposures have not been reported. METHODS We examined the formation of N7-(2'-hydroxyethyl)guanine (N7-HEG), a major DNA adduct of EtO, in 58 EtO-exposed sterilizer operators and six nonexposed workers from ten hospitals. N7-HEG was quantified in granulocyte DNA (0.1-11.5 microg) by a highly sensitive and specific gas chromatography-electron capture-mass spectrometry method. Cumulative exposure to EtO (ppm-hour) was estimated during the 4-month period before the collection of blood samples. RESULTS There was considerable inter-individual variability in the levels of N7-HEG with a range of 1.6-241.3 adducts/10(7) nucleotides. The mean levels in the nonexposed, low (< or =32 ppm-hour), and high (>32 ppm-hour) EtO-exposure groups were 3.8, 16.3, and 20.3 adducts/10(7) nucleotides, respectively, after the adjustment for cigarette smoking and other potential confounders, but the differences were not statistically significant. CONCLUSIONS This study has demonstrated for the first time, detectable levels of N7-HEG adducts in granulocytes of hospital workers with EtO exposures at levels less than the current U.S. standard of 1 ppm (8-hr TWA). A nonsignificant increase in adduct levels with increasing EtO exposure indicates that further studies of EtO-exposed workers are needed to clarify the relationship between EtO exposure and N7-HEG adduct formation.
Collapse
Affiliation(s)
- Lee C Yong
- Division of Surveillance, Hazard Evaluations and Field Studies, National Institute for Occupational Safety and Health, CDC, Cincinnati, Ohio 45226, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Aging is a complex progressive physiological alteration of the organism which ultimately leads to death. During the whole life a human being is confronted with oxidative stress. To measure how this oxidative stress is developing during the aging process and how it changes the cellular metabolism several substances have been pronounced as biomarkers including lipid peroxidation (LPO) products, protein oxidation products, antioxidative acting enzymes, minerals, vitamins, glutathione, flavonoids, bilirubin and uric acid (UA). But none of them could develop to the leading one which is accepted by the whole scientific community to determine the life expectancy of the individual person or biological age or age-related health status. Further there are many conflicting data about the changes of each single biomarker during the aging process. There are so many different influences acting on the concentration or activity of single substances or single enzymes that it is not possible to measure only one clinical marker and determine how healthy an individual is or to predict the life expectancy of the corresponding person. Therefore, always a set or pattern of clinical biomarkers should be used to determine the oxidation status of the person. This set should include at least one marker for the LPO, the protein oxidation and the total antioxidative status and ideally also one for DNA damages.
Collapse
Affiliation(s)
- Peter Voss
- Research Institute for Environmental Medicine, Molecular Aging Research, Heinrich Heine University Duesseldorf, D-40225, Duesseldorf, Germany
| | | |
Collapse
|
16
|
Hu JJ, Hall MC, Grossman L, Hedayati M, McCullough DL, Lohman K, Case LD. Deficient nucleotide excision repair capacity enhances human prostate cancer risk. Cancer Res 2004; 64:1197-201. [PMID: 14871857 DOI: 10.1158/0008-5472.can-03-2670] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prostate cancer (CaP) is the most commonly diagnosed non-skin cancer and the second leading cause of cancer death in American men. The etiology of CaP is not fully understood. Because most of the DNA adducts generated by some CaP-related carcinogens, including polycyclic aromatic hydrocarbons, heterocyclic amines, and pesticides, are removed by the nucleotide excision repair (NER) pathway, we pilot tested the hypothesis that CaP is associated with deficient NER capacity (NERC), measured by a plasmid-based host reactivation assay. Using cryopreserved lymphocytes collected in an ongoing, clinic-based case-control study, our results showed that the mean NERC was significantly lower (P = 0.03) in 140 cases (mean +/- SD, 8.06 +/- 5.17) than in 96 controls (9.64 +/- 5.49). There was a significant association between below-median NERC and CaP risk: odds ratio (OR), 2.14; 95% confidence interval (CI), 1.19-3.86, after adjustment for age, race/ethnicity, smoking history, benign prostatic hyperplasia, and family history. This association was stronger in younger (<60 years of age) subjects (OR, 3.98; 95% CI, 1.13-14.02) compared with older (> or = 60) subjects (OR, 1.74; 95% CI, 0.90-3.37). When we stratified NERC values by quartiles of controls, there was a significant dose-dependent association between lower NERC and elevated CaP risk (p (test for linear trend), 0.01). Compared with the highest quartile of NERC as the referent group, the adjusted ORs for the 75th, 50th, and 25th quartiles were: 1.09 (95% CI, 0.46-2.59); 1.81 (95% CI, 0.77-4.27); and 2.63 (95% CI, 1.17-5.95), respectively. This pilot study is the first direct evidence associating deficient NERC with human CaP risk.
Collapse
Affiliation(s)
- Jennifer J Hu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Kolman A, Chovanec M, Osterman-Golkar S. Genotoxic effects of ethylene oxide, propylene oxide and epichlorohydrin in humans: update review (1990-2001). Mutat Res 2002; 512:173-94. [PMID: 12464351 DOI: 10.1016/s1383-5742(02)00067-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ethylene oxide (EtO), propylene oxide (PO) and epichlorohydrin (ECH) are important industrial chemicals widely used as intermediates for various synthetic products. EtO and PO are also environmental pollutants. In this review we summarize data published during the period 1990-2001 concerning both the genotoxic and carcinogenic effects of these epoxides in humans. The use of DNA and hemoglobin adducts as biomarkers of exposure and the role of polymorphism, as well as confounding factors, are discussed. We have also included recent in vitro data comprising genotoxic effects induced by EtO, PO and ECH in mammalian cells. The uncertainties regarding cancer risk estimation still persist, in spite of the large database collected.
Collapse
Affiliation(s)
- Ada Kolman
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91, Stockholm, Sweden.
| | | | | |
Collapse
|