1
|
Xia L, Wu T, Chen L, Mei P, Liu L, Li R, Shu M, Huan Z, Wu C, Fang B. Silicon-Based Biomaterials Modulate the Adaptive Immune Response of T Lymphocytes to Promote Osteogenesis/Angiogenesis via Epigenetic Regulation. Adv Healthc Mater 2023; 12:e2302054. [PMID: 37842937 DOI: 10.1002/adhm.202302054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Silicon (Si)-based biomaterials are widely applied for bone regeneration. However, the underlying mechanisms of the materials function remain largely unknown. T lymphocyte-mediated adaptive immune response plays a vital role in the process of bone regeneration. In the current study, mesoporous silica (MS) is used as a model material of Si-based biomaterials. It shows that the supernatant of CD4+ T lymphocytes pretreated with MS extract significantly promotes the vascularized bone regeneration. The potential mechanism is closely related to the fact that MS extract can reduce the expression of regulatory factor X-1 (RFX-1) in CD4+ T lymphocytes. This may result in the overexpression of interleukin-17A (IL-17A) by boosting histone H3 acetylation and lowering DNA methylation and H3K9 trimethylation. Importantly, the in vivo experiments further reveal that MS particles significantly enhance bone regeneration with improved angiogenesis in the critical-sized calvarial defect mouse model accompanied by upregulation of IL-17A in peripheral blood and the proportion of Th17 cells. This study suggests that modulation of the adaptive immune response of T lymphocytes by silicate-based biomaterials plays an important role for bone regeneration.
Collapse
Affiliation(s)
- Lunguo Xia
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Tingting Wu
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Lei Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Mei
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Lu Liu
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Ruomei Li
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Mengmeng Shu
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Zhiguang Huan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing Fang
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
2
|
Inoue C, Miki Y, Suzuki T. New Perspectives on Sex Steroid Hormones Signaling in Cancer-Associated Fibroblasts of Non-Small Cell Lung Cancer. Cancers (Basel) 2023; 15:3620. [PMID: 37509283 PMCID: PMC10377312 DOI: 10.3390/cancers15143620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The importance of sex hormones, especially estrogen, in the pathogenesis of non-small-cell lung cancer (NSCLC) has attracted attention due to its high incidence among young adults and nonsmokers, especially those who are female. Cancer-associated fibroblasts (CAFs) reside in the cancer stroma and influence cancer growth, invasion, metastasis, and acquisition of drug resistance through interactions with cancer cells and other microenvironmental components. Hormone-mediated cell-cell interactions are classic cell-cell interactions and well-known phenomena in breast cancer and prostate cancer CAFs. In cancers of other organs, including NSCLC, the effects of CAFs on hormone-receptor expression and hormone production in cancer tissues have been reported; however, there are few such studies. Many more studies have been performed on breast and prostate cancers. Recent advances in technology, particularly single-cell analysis techniques, have led to significant advances in the classification and function of CAFs. However, the importance of sex hormones in cell-cell interactions of CAFs in NSCLC remains unclear. This review summarizes reports on CAFs in NSCLC and sex hormones in cancer and immune cells surrounding CAFs. Furthermore, we discuss the prospects of sex-hormone research involving CAFs in NSCLC.
Collapse
Affiliation(s)
- Chihiro Inoue
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yasuhiro Miki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takashi Suzuki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| |
Collapse
|
3
|
Targeting Nuclear Receptors in Lung Cancer—Novel Therapeutic Prospects. Pharmaceuticals (Basel) 2022; 15:ph15050624. [PMID: 35631448 PMCID: PMC9145966 DOI: 10.3390/ph15050624] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 01/27/2023] Open
Abstract
Lung cancer, the second most commonly diagnosed cancer, is the major cause of fatalities worldwide for both men and women, with an estimated 2.2 million new incidences and 1.8 million deaths, according to GLOBOCAN 2020. Although various risk factors for lung cancer pathogenesis have been reported, controlling smoking alone has a significant value as a preventive measure. In spite of decades of extensive research, mechanistic cues and targets need to be profoundly explored to develop potential diagnostics, treatments, and reliable therapies for this disease. Nuclear receptors (NRs) function as transcription factors that control diverse biological processes such as cell growth, differentiation, development, and metabolism. The aberrant expression of NRs has been involved in a variety of disorders, including cancer. Deregulation of distinct NRs in lung cancer has been associated with numerous events, including mutations, epigenetic modifications, and different signaling cascades. Substantial efforts have been made to develop several small molecules as agonists or antagonists directed to target specific NRs for inhibiting tumor cell growth, migration, and invasion and inducing apoptosis in lung cancer, which makes NRs promising candidates for reliable lung cancer therapeutics. The current work focuses on the importance of various NRs in the development and progression of lung cancer and highlights the different small molecules (e.g., agonist or antagonist) that influence NR expression, with the goal of establishing them as viable therapeutics to combat lung cancer.
Collapse
|
4
|
Guo C, Lv S, Liu Y, Li Y. Biomarkers for the adverse effects on respiratory system health associated with atmospheric particulate matter exposure. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126760. [PMID: 34396970 DOI: 10.1016/j.jhazmat.2021.126760] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/17/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Large amounts of epidemiological evidence have confirmed the atmospheric particulate matter (PM2.5) exposure was positively correlated with the morbidity and mortality of respiratory diseases. Nevertheless, its pathogenesis remains incompletely understood, probably resulting from the activation of oxidative stress, inflammation, altered genetic and epigenetic modifications in the lung upon PM2.5 exposure. Currently, biomarker investigations have been widely used in epidemiological and toxicological studies, which may help in understanding the biologic mechanisms underlying PM2.5-elicited adverse health outcomes. Here, the emerging biomarkers to indicate PM2.5-respiratory system interactions were summarized, primarily related to oxidative stress (ROS, MDA, GSH, etc.), inflammation (Interleukins, FENO, CC16, etc.), DNA damage (8-OHdG, γH2AX, OGG1) and also epigenetic modulation (DNA methylation, histone modification, microRNAs). The identified biomarkers shed light on PM2.5-elicited inflammation, fibrogenesis and carcinogenesis, thus may favor more precise interventions in public health. It is worth noting that some inconsistent findings may possibly relate to the inter-study differentials in the airborne PM2.5 sample, exposure mode and targeted subjects, as well as methodological issues. Further research, particularly by -omics technique to identify novel, specific biomarkers, is warranted to illuminate the causal relationship between PM2.5 pollution and deleterious lung outcomes.
Collapse
Affiliation(s)
- Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Songqing Lv
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yufan Liu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
5
|
Goodman S, Chappell G, Guyton KZ, Pogribny IP, Rusyn I. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: An update of a systematic literature review. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108408. [PMID: 35690411 PMCID: PMC9188653 DOI: 10.1016/j.mrrev.2021.108408] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/28/2021] [Accepted: 12/07/2021] [Indexed: 01/03/2023]
Abstract
Epigenetic alterations, such as changes in DNA methylation, histones/chromatin structure, nucleosome positioning, and expression of non-coding RNAs, are recognized among key characteristics of carcinogens; they may occur independently or concomitantly with genotoxic effects. While data on genotoxicity are collected through standardized guideline tests, data collected on epigenetic effects is far less uniform. In 2016, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints to better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints. Since then, the number of studies of epigenetic effects of chemicals has nearly doubled. This review stands as an update on epigenetic alterations induced by occupational and environmental human carcinogens that were previously and recently classified as Group 1 by the International Agency for Research on Cancer. We found that the evidence of epigenetic effects remains uneven across agents. Studies of DNA methylation are most abundant, while reports concerning effects on non-coding RNA have increased over the past 5 years. By contrast, mechanistic toxicology studies of histone modifications and chromatin state alterations remain few. We found that most publications of epigenetic effects of carcinogens were studies in exposed humans or human cells. Studies in rodents represent the second most common species used for epigenetic studies in toxicology, in vivo exposures being the most predominant. Future studies should incorporate dose- and time-dependent study designs and also investigate the persistence of effects following cessation of exposure, considering the dynamic nature of most epigenetic alterations.
Collapse
Affiliation(s)
- Samantha Goodman
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | | | | | - Igor P Pogribny
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
6
|
Wang D, Cheng J, Zhang J, Zhou F, He X, Shi Y, Tao Y. The Role of Respiratory Microbiota in Lung Cancer. Int J Biol Sci 2021; 17:3646-3658. [PMID: 34512172 PMCID: PMC8416743 DOI: 10.7150/ijbs.51376] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
Recently, the impact of microorganisms on tumor growth and metastasis has attracted great attention. The pathogenesis and progression of lung cancer are related to an increase in respiratory bacterial load as well as changes in the bacterial community because the microbiota affects tumors in many ways, including canceration, metastasis, angiogenesis, and treatment. The microbiota may increase tumor susceptibility by altering metabolism and immune responses, promoting inflammation, and increasing toxic effects. The microbiota can regulate tumor metastasis by altering multiple cell signaling pathways and participate in tumor angiogenesis through vascular endothelial growth factors (VEGF), endothelial cells (ECs), inflammatory factors and inflammatory cells. Tumor angiogenesis not only maintains tumor growth at the primary site but also promotes tumor metastasis and invasion. Therefore, angiogenesis is an important mediator of the interaction between microorganisms and tumors. The microbiota also plays a part in antitumor therapy. Alteration of the microbiota caused by antibiotics can regulate tumor growth and metastasis. Moreover, the microbiota also influences the efficacy and toxicity of tumor immunotherapy and chemotherapy. Finally, the effects of air pollution, a risk factor for lung cancer, on microorganisms and the possible role of respiratory microorganisms in the effects of air pollution on lung cancer are discussed.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China
| | - Jingyi Cheng
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China
| | - Jia Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China
| | - Fangyu Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China
| | - Xiao He
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China
| | - Ying Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011 China
| |
Collapse
|
7
|
CRISPR-mediated promoter de/methylation technologies for gene regulation. Arch Pharm Res 2020; 43:705-713. [PMID: 32725389 DOI: 10.1007/s12272-020-01257-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 07/24/2020] [Indexed: 01/10/2023]
Abstract
DNA methylation on cytosines of CpG dinucleotides is well established as a basis of epigenetic regulation in mammalian cells. Since aberrant regulation of DNA methylation in promoters of tumor suppressor genes or proto-oncogenes may contribute to the initiation and progression of various types of human cancer, sequence-specific methylation and demethylation technologies could have great clinical benefit. The CRISPR-Cas9 protein with a guide RNA can target DNA sequences regardless of the methylation status of the target site, making this system superb for precise methylation editing and gene regulation. Targeted methylation-editing technologies employing the dCas9 fusion proteins have been shown to be highly effective in gene regulation without altering the DNA sequence. In this review, we discuss epigenetic alterations in tumorigenesis as well as various dCas9 fusion technologies and their usages in site-specific methylation editing and gene regulation.
Collapse
|
8
|
Liu Z, Wang K, Yan Q, Wang H, Zhang N, Gong A, Guo X. Beryllium inhibits apoptosis via mitochondria in beryllium-induced lung disease in the rat. Exp Lung Res 2019; 45:92-100. [PMID: 31155972 DOI: 10.1080/01902148.2019.1621409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Objective: We aimed to determine whether beryllium toxicity was associated with mitochondria apoptosis pathway in SD rats. Methods: Thirty-two SD rats were given an intratracheal instillation dose of 10 g/l beryllium oxide (0.5 ml per rat). Additional 32 rats were given an intratracheal instillation dose of 0.9% normal saline (0.5 ml per rat). The percentage of apoptosis, mitochondrial membrane potential, the expression level of apoptosis related genes and proteins, including bcl2, Bax and Caspase-3 were detected. Results: The average of percentage of apoptosis, the expression of caspase-3, bax, and cytochrome c were decreased significantly in lung tissues from rats exposed to beryllium oxide compared to normal controls. The expression of bcl2 and ADP were increased significantly at 80 d after exposure. Conclusions: We conclude that inhibition of apoptosis by beryllium oxide involves mitochondrial apoptosis pathway in rat model of beryllium oxide-induced pulmonary disease.
Collapse
Affiliation(s)
- Zhihong Liu
- a School of Public Health , Health Science Center of Xi'an Jiaotong University , Xi'an , P.R. China.,b NHC Key Laboratory of Trace Elements and Endemic Diseases , Xi'an Jiaotong University , Xi'an , P.R. China.,c School of Public Health and Management , Ningxia Medical University , Yinchuan , Ningxia , P.R. China
| | - Kai Wang
- c School of Public Health and Management , Ningxia Medical University , Yinchuan , Ningxia , P.R. China
| | - Qing Yan
- d School of Basic Medicine , Ningxia Medical University , Yinchuan , Ningxia , P.R. China
| | - Hejing Wang
- c School of Public Health and Management , Ningxia Medical University , Yinchuan , Ningxia , P.R. China
| | - Na Zhang
- c School of Public Health and Management , Ningxia Medical University , Yinchuan , Ningxia , P.R. China
| | - Aihong Gong
- e General Hospital of Ningxia Medical University , Yinchuan , Ningxia , P.R. China
| | - Xiong Guo
- a School of Public Health , Health Science Center of Xi'an Jiaotong University , Xi'an , P.R. China.,b NHC Key Laboratory of Trace Elements and Endemic Diseases , Xi'an Jiaotong University , Xi'an , P.R. China
| |
Collapse
|
9
|
Dang S, Ding D, Lu Y, Su Q, Lin T, Zhang X, Zhang H, Wang X, Tan H, Zhu Z, Li H. PM 2.5 exposure during pregnancy induces hypermethylation of estrogen receptor promoter region in rat uterus and declines offspring birth weights. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:851-861. [PMID: 30245447 DOI: 10.1016/j.envpol.2018.09.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/28/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
Particulate matter 2.5 (PM2.5) exposures during pregnancy could lead to declined birth weight, intrauterine developmental restriction, and premature delivery, however, the underlying mechanisms are still not elucidated. There are few studies concerning the effects of PM2.5 exposure on maternal and child health in Xi'an (one of the cities with severe air pollution of PM2.5 in North China). Then, this study aimed to investigate the effect of PM2.5 exposure in Xi'an on the offspring birth weights and the possibly associated epigenetic mechanisms. We found the Low and High groups: the offspring with declined birth weights; the decreased mRNA and protein expression of the estrogen receptor (ERs) and eNOs in the uterus; the decreased endometria vascular diameter maximum (EVDM); the increased mRNA and protein expressions of the DNMT1 and 3b in the uterus; the elevated methylation levels of the CpG sites in the CpG island of ERα promoter region in the uterus. However, no differences were observed in the mRNA or protein expressions of ERβ and DNMT3a between the Clean and PM2.5 exposure groups, as well as endometriavascular density (EVD). Additionally, PM2.5 level was negatively correlated with the ERα protein expression, EVDM and offspring birth weight, as well as the methylation level of the CpG sites in the CpG island of ERα promoter region and the ERα protein expression in the uterus; whereas the ERα protein expression was positively correlated with the offspring birth weight, as well as PM2.5 level and the methylation level of the CpG sites in the CpG island of ERα promoter region in the uterus. Taken together, elevated methylation level of the CpG sites in the CpG island of ERα promoter region reduces ERα expression in the uterus, which could be one of the epigenetic mechanisms that pregnant PM2.5 exposure reduces the offspring birth weights.
Collapse
Affiliation(s)
- Shaokang Dang
- Division of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ding Ding
- Division of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yong Lu
- Department of Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Qian Su
- Division of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Tianwei Lin
- Key Laboratory of Shaanxi Province Biomedicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710061, China
| | - Xiaoxiao Zhang
- Key Laboratory of Shaanxi Province Biomedicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710061, China
| | - Huiping Zhang
- Division of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xuebin Wang
- Department of Thermal Engineering, Energy and Power Engineering College of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Houzhang Tan
- Department of Thermal Engineering, Energy and Power Engineering College of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhongliang Zhu
- Key Laboratory of Shaanxi Province Biomedicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710061, China
| | - Hui Li
- Division of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
10
|
Chaudhuri I, Fruijtier-Pölloth C, Ngiewih Y, Levy L. Evaluating the evidence on genotoxicity and reproductive toxicity of carbon black: a critical review. Crit Rev Toxicol 2017; 48:143-169. [DOI: 10.1080/10408444.2017.1391746] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ishrat Chaudhuri
- Safety, Health and Environment, Cabot Corporation, Billerica, MA, USA
| | | | | | - Len Levy
- School of Water, Energy and Environment, Cranfield University, Cranfield, UK
| |
Collapse
|
11
|
Seidel C, Kirsch A, Fontana C, Visvikis A, Remy A, Gaté L, Darne C, Guichard Y. Epigenetic changes in the early stage of silica-induced cell transformation. Nanotoxicology 2017; 11:923-935. [PMID: 28958182 DOI: 10.1080/17435390.2017.1382599] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 08/31/2017] [Accepted: 09/18/2017] [Indexed: 01/03/2023]
Abstract
The increasing use of nanomaterials in numerous domains has led to growing concern about their potential toxicological properties, and the potential risk to human health posed by silica nanoparticles remains under debate. Recent studies proposed that these particles could alter gene expression through the modulation of epigenetic marks, and the possible relationship between particle exposure and these mechanisms could represent a critical factor in carcinogenicity. In this study, using the Bhas 42 cell model, we compare the effects of exposure to two transforming particles, a pyrogenic amorphous silica nanoparticle NM-203 to those of the crystalline silica particle Min-U-Sil® 5. Short-term treatment by Min-U-Sil® 5 decreased global DNA methylation and increased the expression of the two de novo DNMTs, DNMT3a and DNMT3b. NM-203 treatment affected neither the expression of these enzymes nor DNA methylation. Moreover, modified global histone H4 acetylation status and HDAC protein levels were observed only in the Min-U-Sil® 5-treated cells. Finally, both types of particle treatment induced strong c-Myc expression in the early stage of cell transformation and this correlated with enrichment in RNA polymerase II as well as histone active marks on its promoter. Lastly, almost all parameters that were modulated in the early stage were restored in transformed cells suggesting their involvement mainly in the first steps of cell transformation.
Collapse
Affiliation(s)
- Carole Seidel
- a Département Toxicologie et Biométrologie , Institut National de Recherche et Sécurité (INRS) , Vandoeuvre-lès-Nancy Cedex , France
| | - Anaïs Kirsch
- a Département Toxicologie et Biométrologie , Institut National de Recherche et Sécurité (INRS) , Vandoeuvre-lès-Nancy Cedex , France
| | - Caroline Fontana
- a Département Toxicologie et Biométrologie , Institut National de Recherche et Sécurité (INRS) , Vandoeuvre-lès-Nancy Cedex , France
| | - Athanase Visvikis
- b Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA) , UMR 7365 CNRS-Université de Lorraine, Biopôle, Campus Biologie Santé , Vandoeuvre-lès-Nancy , France
| | - Aurélie Remy
- a Département Toxicologie et Biométrologie , Institut National de Recherche et Sécurité (INRS) , Vandoeuvre-lès-Nancy Cedex , France
| | - Laurent Gaté
- a Département Toxicologie et Biométrologie , Institut National de Recherche et Sécurité (INRS) , Vandoeuvre-lès-Nancy Cedex , France
| | - Christian Darne
- a Département Toxicologie et Biométrologie , Institut National de Recherche et Sécurité (INRS) , Vandoeuvre-lès-Nancy Cedex , France
| | - Yves Guichard
- a Département Toxicologie et Biométrologie , Institut National de Recherche et Sécurité (INRS) , Vandoeuvre-lès-Nancy Cedex , France
| |
Collapse
|
12
|
Kim HJ, Choi MG, Park MK, Seo YR. Predictive and Prognostic Biomarkers of Respiratory Diseases due to Particulate Matter Exposure. J Cancer Prev 2017; 22:6-15. [PMID: 28382281 PMCID: PMC5380184 DOI: 10.15430/jcp.2017.22.1.6] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 12/11/2022] Open
Abstract
Air pollution is getting severe and concerns about its toxicity effects on airway and lung disease are also increasing. Particulate matter (PM) is major component of air pollutant. It causes respiratory diseases, such as asthma, chronic obstructive pulmonary disease, lung cancer, and so on. PM particles enter the airway and lung by inhalation, causing damages to them. Especially, PM2.5 can penetrate into the alveolus and pass to the systemic circulation. It can affect the cardiopulmonary system and cause cardiopulmonary disorders. In this review, we focused on PM-inducing toxicity mechanisms in the framework of oxidative stress, inflammation, and epigenetic changes. We also reviewed its correlation with respiratory diseases. In addition, we reviewed biomarkers related to PM-induced respiratory diseases. These biomarkers might be used for disease prediction and early diagnosis. With recent trend of using genomic analysis tools in the field of toxicogenomics, respiratory disease biomarkers associated with PM will be continuously investigated. Effective biomarkers derived from earlier studies and further studies might be utilized to reduce respiratory diseases.
Collapse
Affiliation(s)
- Hyo Jeong Kim
- Institute of Environmental Medicine for Green Chemistry, Department of Life Science, Dongguk Bio-Med Campus, Dongguk University, Goyang, Korea
| | - Min Gi Choi
- Institute of Environmental Medicine for Green Chemistry, Department of Life Science, Dongguk Bio-Med Campus, Dongguk University, Goyang, Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Young Rok Seo
- Institute of Environmental Medicine for Green Chemistry, Department of Life Science, Dongguk Bio-Med Campus, Dongguk University, Goyang, Korea
| |
Collapse
|
13
|
Tekpli X, Skaug V, Bæra R, Phillips DH, Haugen A, Mollerup S. Estrogen receptor expression and gene promoter methylation in non-small cell lung cancer - a short report. Cell Oncol (Dordr) 2016; 39:583-589. [PMID: 27572263 DOI: 10.1007/s13402-016-0295-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2016] [Indexed: 11/29/2022] Open
Abstract
PURPOSE In the past, anomalous estrogen receptor (ER) regulation has been associated with various lung pathologies, but so far its involvement in lung cancer initiation and/or progression has remained unclear. Here, we aimed at assessing in vivo and in vitro ER expression and its possible epigenetic regulation in non-small cell lung cancer (NSCLC) samples and their corresponding normal tissues and cells. METHODS ERα and ERβ gene expression levels were assessed using real time quantitative PCR (RT-qPCR), whereas ERα and ERβ gene promoter methylation levels were assessed using DNA bisulfite conversion followed by pyrosequencing. We included NSCLC (n = 87) and adjacent histologically normal lung tissue samples from lung cancer patients (n = 184), primary normal bronchial epithelial-derived cell cultures (n = 11), immortalized bronchial epithelial-derived cell lines (n = 3) and NSCLC derived cell lines (n = 9). RESULTS Using RT-qPCR we found significantly lower ERα and ERβ expression levels in the NSCLC tissue samples compared to their normal adjacent tissue samples. These lower ER expression levels were confirmed in vitro using primary normal bronchial epithelial-derived cell cultures, immortalized bronchial epithelial-derived cell lines and NSCLC-derived cell lines. By using this latter panel of cells, we found that ER gene promoter hypermethylation was associated with decreased ER expression. In addition we found that in tumor and normal lung tissues, smoking was associated with decreased ER expression and that normal lung tissues with a low ERβ expression level exhibited increased smoking-related DNA adducts. CONCLUSIONS Taken together, our results indicate that decreased ER expression mediated by DNA methylation may play a role in NSCLC development.
Collapse
Affiliation(s)
- Xavier Tekpli
- Section for Toxicology and Biological Working Environment, Department of Biological and Chemical Working Environment, National Institute of Occupational Health, PO box 8149, Dep., Gydas vei 8, N-0033, Oslo, Norway. .,Department of Genetics, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway.
| | - Vidar Skaug
- Section for Toxicology and Biological Working Environment, Department of Biological and Chemical Working Environment, National Institute of Occupational Health, PO box 8149, Dep., Gydas vei 8, N-0033, Oslo, Norway
| | - Rita Bæra
- Section for Toxicology and Biological Working Environment, Department of Biological and Chemical Working Environment, National Institute of Occupational Health, PO box 8149, Dep., Gydas vei 8, N-0033, Oslo, Norway
| | - David H Phillips
- Analytical and Environmental Sciences, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Aage Haugen
- Section for Toxicology and Biological Working Environment, Department of Biological and Chemical Working Environment, National Institute of Occupational Health, PO box 8149, Dep., Gydas vei 8, N-0033, Oslo, Norway
| | - Steen Mollerup
- Section for Toxicology and Biological Working Environment, Department of Biological and Chemical Working Environment, National Institute of Occupational Health, PO box 8149, Dep., Gydas vei 8, N-0033, Oslo, Norway
| |
Collapse
|
14
|
Chen R, Qiao L, Li H, Zhao Y, Zhang Y, Xu W, Wang C, Wang H, Zhao Z, Xu X, Hu H, Kan H. Fine Particulate Matter Constituents, Nitric Oxide Synthase DNA Methylation and Exhaled Nitric Oxide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:11859-65. [PMID: 26372312 DOI: 10.1021/acs.est.5b02527] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
It remains unknown how fine particulate matter (PM2.5) constituents affect differently the fractional concentration of exhaled nitric oxide (FeNO, a biomarker of airway inflammation) and the DNA methylation of its encoding gene (NOS2A). We aimed to investigate the short-term effects of PM2.5 constituents on NOS2A methylation and FeNO. We designed a longitudinal study among chronic obstructive pulmonary disease (COPD) patients with six repeated health measurements in Shanghai, China. We applied linear mixed-effect models to evaluate the associations. We observed that the inverse association between PM2.5 and methylation at position 1 was limited within 24 h, and the positive association between PM2.5 and FeNO was the strongest at lag 1 day. Organic carbon, element carbon, NO3(-) and NH4(+) were robustly and significantly associated with decreased methylation and elevated FeNO. An interquartile range increase in total PM2.5 and the four constituents was associated with decreases of 1.19, 1.63, 1.62, 1.17, and 1.14 in percent methylation of NOS2A, respectively, and increases of 13.30%,16.93%, 8.97%, 18.26%, and 11.42% in FeNO, respectively. Our results indicated that organic carbon, element carbon, NO3(-) and NH4(+) might be mainly responsible for the effects of PM2.5 on the decreased NOS2A DNA methylation and elevated FeNO in COPD patients.
Collapse
Affiliation(s)
- Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, & Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University , Shanghai 200032, China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University , Shanghai 200032, China
| | - Liping Qiao
- State Environmental Protection Key Lab of the Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences , Shanghai 200233, China
| | - Huichu Li
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, & Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University , Shanghai 200032, China
| | - Yan Zhao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, & Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University , Shanghai 200032, China
| | - Yunhui Zhang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, & Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University , Shanghai 200032, China
| | - Wenxi Xu
- Huangpu District Center for Disease Control and Prevention, Shanghai 200023, China
| | - Cuicui Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, & Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University , Shanghai 200032, China
| | - Hongli Wang
- State Environmental Protection Key Lab of the Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences , Shanghai 200233, China
| | - Zhuohui Zhao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, & Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University , Shanghai 200032, China
| | - Xiaohui Xu
- Department of Epidemiology & Biostatistics, Texas A&M School of Public Health , College Station, Texas 77843, United States
| | - Hui Hu
- Department of Epidemiology, College of Public Health and Health Professionals, College of Medicine, University of Florida , Gainesville, Florida 32611, United States
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, & Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University , Shanghai 200032, China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University , Shanghai 200032, China
| |
Collapse
|
15
|
Environmental pollution and DNA methylation: carcinogenesis, clinical significance, and practical applications. Front Med 2015; 9:261-74. [PMID: 26290283 DOI: 10.1007/s11684-015-0406-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/12/2015] [Indexed: 01/25/2023]
Abstract
Environmental pollution is one of the main causes of human cancer. Exposures to environmental carcinogens result in genetic and epigenetic alterations which induce cell transformation. Epigenetic changes caused by environmental pollution play important roles in the development and progression of environmental pollution-related cancers. Studies on DNA methylation are among the earliest and most conducted epigenetic research linked to cancer. In this review, the roles of DNA methylation in carcinogenesis and their significance in clinical medicine were summarized, and the effects of environmental pollutants, particularly air pollutants, on DNA methylation were introduced. Furthermore, prospective applications of DNA methylation to environmental pollution detection and cancer prevention were discussed.
Collapse
|
16
|
Lomniczi A, Wright H, Ojeda SR. Epigenetic regulation of female puberty. Front Neuroendocrinol 2015; 36:90-107. [PMID: 25171849 PMCID: PMC6824271 DOI: 10.1016/j.yfrne.2014.08.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/15/2014] [Accepted: 08/20/2014] [Indexed: 12/18/2022]
Abstract
Substantial progress has been made in recent years toward deciphering the molecular and genetic underpinnings of the pubertal process. The availability of powerful new methods to interrogate the human genome has led to the identification of genes that are essential for puberty to occur. Evidence has also emerged suggesting that the initiation of puberty requires the coordinated activity of gene sets organized into functional networks. At a cellular level, it is currently thought that loss of transsynaptic inhibition, accompanied by an increase in excitatory inputs, results in the pubertal activation of GnRH release. This concept notwithstanding, a mechanism of epigenetic repression targeting genes required for the pubertal activation of GnRH neurons was recently identified as a core component of the molecular machinery underlying the central restraint of puberty. In this chapter we will discuss the potential contribution of various mechanisms of epigenetic regulation to the hypothalamic control of female puberty.
Collapse
Affiliation(s)
- Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave, Beaverton, OR 97006, USA.
| | - Hollis Wright
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave, Beaverton, OR 97006, USA
| | - Sergio R Ojeda
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave, Beaverton, OR 97006, USA.
| |
Collapse
|
17
|
Zhou DM, Zhu DD, Lu QF, Qiao WB, Zhuang YZ. The complete mitochondrial genome sequence and mutations of the lung cancer model inbred rat strain (Muridae; Rattus). Mitochondrial DNA A DNA Mapp Seq Anal 2014; 27:1260-1. [PMID: 25391029 DOI: 10.3109/19401736.2014.945546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We reported the complete mitochondrial genome sequencing of an important Lung cancer model inbred rat strain for the first time. The total length of the mitogenome was 16,312 bp. It harbored 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and 1 non-coding control region. The mutation sites were analyzed by comparing with the reference BN strain.
Collapse
Affiliation(s)
- Da-Ming Zhou
- a Department of Oncology Ward Two , Daqing Oil Field General Hospital , Daqing , People's Republic of China and
| | - Dan-Dan Zhu
- a Department of Oncology Ward Two , Daqing Oil Field General Hospital , Daqing , People's Republic of China and
| | - Qing-Feng Lu
- a Department of Oncology Ward Two , Daqing Oil Field General Hospital , Daqing , People's Republic of China and
| | - Wen-Bo Qiao
- b Department of Oncology , Cancer Hospital of Harbin , Harbin , People's Republic of China
| | - Yong-Zhi Zhuang
- a Department of Oncology Ward Two , Daqing Oil Field General Hospital , Daqing , People's Republic of China and
| |
Collapse
|
18
|
Li J, Huang Q, Zeng F, Li W, He Z, Chen W, Zhu W, Zhang B. The prognostic value of global DNA hypomethylation in cancer: a meta-analysis. PLoS One 2014; 9:e106290. [PMID: 25184628 PMCID: PMC4153632 DOI: 10.1371/journal.pone.0106290] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/29/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Aberrant methylation of the global genome has been investigated as a prognostic indicator in various cancers, but the results are controversial and ambiguous. METHODS AND FINDINGS This meta-analysis presents pooled estimates of the evidence to elucidate this issue. We searched the electronic databases: PubMed, Embase, ISI Web of Science and the Cochrane library (up to August 2013) to identify all of the relevant studies. The association between the level of surrogates' indexes of genome-wide hypomethylation (LINE-1, Alu and Sat-α) and the overall survival (OS) of cancer patients was examined. In addition, the pooled hazard ratios (HRs) with their 95% confidence interval (95%CI) were calculated to estimate the influences through fixed-effects and random-effects model. Finally, twenty studies with total population of 5447 met the inclusion criteria. The results indicate that the summary HRs for the studies employing LINE-1, Alu, and Sat-α repetitive elements also show that the global DNA hypomethylation have significant desirable effects on the tumour prognostic value. The pooled HRs (and CIs) of LINE-1, Alu and Sat-α were 1.83 (1.38-2.44), 2.00 (1.16-3.45), and 2.92 (1.04-8.25), with a heterogeneity measure index of I2 (and p-value) shows of 66.6% (p = 0.001), 57.1% (p = 0.053) and 68.2% (p = 0.076) respectively. The meta-regression and subgroup analysis indicated that the percentage of hypomethylated sample of cancer patients is one source of heterogeneity. CONCLUSION Our meta-analysis findings support the hypothesis that the global DNA hypomethylation is associated with a detrimental prognosis in tumour patients.
Collapse
Affiliation(s)
- Jinhui Li
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, P.R. China
| | - Qingyuan Huang
- Department of Thoracic Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Fangfang Zeng
- Department of Epidemiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Medical Statistics & Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Wenxue Li
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, P.R. China
| | - Zhini He
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Wen Chen
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Wei Zhu
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, P.R. China
| | - Bo Zhang
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
19
|
Fry RC, Rager JE, Bauer R, Sebastian E, Peden DB, Jaspers I, Alexis NE. Air toxics and epigenetic effects: ozone altered microRNAs in the sputum of human subjects. Am J Physiol Lung Cell Mol Physiol 2014; 306:L1129-37. [PMID: 24771714 DOI: 10.1152/ajplung.00348.2013] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ozone (O3) is a criteria air pollutant that is associated with numerous adverse health effects, including altered respiratory immune responses. Despite its deleterious health effects, possible epigenetic mechanisms underlying O3-induced health effects remain understudied. MicroRNAs (miRNAs) are epigenetic regulators of genomic response to environmental insults and unstudied in relationship to O3 inhalation exposure. Our objective was to test whether O3 inhalation exposure significantly alters miRNA expression profiles within the human bronchial airways. Twenty healthy adult human volunteers were exposed to 0.4 ppm O3 for 2 h. Induced sputum samples were collected from each subject 48 h preexposure and 6 h postexposure for evaluation of miRNA expression and markers of inflammation in the airways. Genomewide miRNA expression profiles were evaluated by microarray analysis, and in silico predicted mRNA targets of the O3-responsive miRNAs were identified and validated against previously measured O3-induced changes in mRNA targets. Biological network analysis was performed on the O3-associated miRNAs and mRNA targets to reveal potential associated response signaling and functional enrichment. Expression analysis of the sputum samples revealed that O3 exposure significantly increased the expression levels of 10 miRNAs, namely miR-132, miR-143, miR-145, miR-199a*, miR-199b-5p, miR-222, miR-223, miR-25, miR-424, and miR-582-5p. The miRNAs and their predicted targets were associated with a diverse range of biological functions and disease signatures, noted among them inflammation and immune-related disease. The present study shows that O3 inhalation exposure disrupts select miRNA expression profiles that are associated with inflammatory and immune response signaling. These findings provide novel insight into epigenetic regulation of responses to O3 exposure.
Collapse
Affiliation(s)
- Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina; Curriculum in Toxicology, University of North Carolina, Chapel Hill, North Carolina; Center for Environmental Health and Susceptibility, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Julia E Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Rebecca Bauer
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, North Carolina
| | - Elizabeth Sebastian
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - David B Peden
- Center for Environmental Medicine, Asthma, and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina; and Department of Pediatrics, University of North Carolina, School of Medicine University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ilona Jaspers
- Center for Environmental Medicine, Asthma, and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina; and Department of Pediatrics, University of North Carolina, School of Medicine University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma, and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina; and Department of Pediatrics, University of North Carolina, School of Medicine University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
20
|
Cheng RYS, Shang Y, Limjunyawong N, Dao T, Das S, Rabold R, Sham JSK, Mitzner W, Tang WY. Alterations of the lung methylome in allergic airway hyper-responsiveness. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:244-255. [PMID: 24446183 PMCID: PMC4125208 DOI: 10.1002/em.21851] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/20/2013] [Accepted: 12/28/2013] [Indexed: 05/29/2023]
Abstract
Asthma is a chronic airway disorder characterized by recurrent attacks of breathlessness and wheezing, affecting 300 million people around the world (available at: www.who.int). To date, genetic factors associated with asthma susceptibility have been unable to explain the full etiology of asthma. Recent studies have demonstrated that the epigenetic disruption of gene expression plays an equally important role in the development of asthma through interaction with our environment. We sensitized 6-week-old C57BL/6J mice with house-dust-mite (HDM) extracts intraperitoneally followed by 5 weeks of exposure to HDM challenges (three times a week) intratracheally. HDM-exposed mice showed an increase in airway hyper-responsiveness (AHR) and inflammation together with structural remodeling of the airways. We applied methylated DNA immunoprecipitation-next generation sequencing (MeDIP-seq) for profiling of DNA methylation changes in the lungs in response to HDM. We observed about 20 million reads by a single-run of massive parallel sequencing. We performed bioinformatics and pathway analysis on the raw sequencing data to identify differentially methylated candidate genes in HDM-exposed mice. Specifically, we have revealed that the transforming growth factor beta signaling pathway is epigenetically modulated by chronic exposure to HDM. Here, we demonstrated that a specific allergen may play a role in AHR through an epigenetic mechanism by disrupting the expression of genes in lungs that might be involved in airway inflammation and remodeling. Our findings provide new insights into the potential mechanisms by which environmental allergens induce allergic asthma and such insights may assist in the development of novel preventive and therapeutic options for this debilitative disease.
Collapse
Affiliation(s)
- Robert YS Cheng
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Yan Shang
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
- Department of Respiratory Diseases, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Nathachit Limjunyawong
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Tyna Dao
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Sandhya Das
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Richard Rabold
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - James SK Sham
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Wayne Mitzner
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Wan-Yee Tang
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| |
Collapse
|
21
|
Kile ML, Fang S, Baccarelli AA, Tarantini L, Cavallari J, Christiani DC. A panel study of occupational exposure to fine particulate matter and changes in DNA methylation over a single workday and years worked in boilermaker welders. Environ Health 2013; 12:47. [PMID: 23758843 PMCID: PMC3700827 DOI: 10.1186/1476-069x-12-47] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 06/04/2013] [Indexed: 05/03/2023]
Abstract
BACKGROUND Exposure to pollutants including metals and particulate air pollution can alter DNA methylation. Yet little is known about intra-individual changes in DNA methylation over time in relationship to environmental exposures. Therefore, we evaluated the effects of acute- and chronic metal-rich PM2.5 exposures on DNA methylation. METHODS Thirty-eight male boilermaker welders participated in a panel study for a total of 54 person days. Whole blood was collected prior to any welding activities (pre-shift) and immediately after the exposure period (post-shift). The percentage of methylated cytosines (%mC) in LINE-1, Alu, and inducible nitric oxide synthase gene (iNOS) were quantified using pyrosequencing. Personal PM2.5 (particulate matter with an aerodynamic diameter ≤ 2.5 μm) was measured over the work-shift. A questionnaire assessed job history and years worked as a boilermaker. Linear mixed models with repeated measures evaluated associations between DNA methylation, PM2.5 concentration (acute exposure), and years worked as a boilermaker (chronic exposure). RESULTS PM2.5 exposure was associated with increased methylation in the promoter region of the iNOS gene (β = 0.25, SE: 0.11, p-value = 0.04). Additionally, the number of years worked as a boilermaker was associated with increased iNOS methylation (β = 0.03, SE: 0.01, p-value = 0.03). No associations were observed for Alu or LINE-1. CONCLUSIONS Acute and chronic exposure to PM2.5 generated from welding activities was associated with a modest change in DNA methylation of the iNOS gene. Future studies are needed to confirm this association and determine if the observed small increase in iNOS methylation are associated with changes in NO production or any adverse health effect.
Collapse
Affiliation(s)
- Molly L Kile
- Oregon State University, College of Public Health and Human Sciences, 15 Milam, Corvallis, OR 97331, USA
| | - Shona Fang
- Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Andrea A Baccarelli
- Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Letizia Tarantini
- Center of Molecular and Genetic Epidemiology, Department of Environmental and Occupational Health, University of Milan, Milan, Italy
| | - Jennifer Cavallari
- University of Connecticut, School of Medicine, Community Medicine & Health Care, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - David C Christiani
- Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| |
Collapse
|
22
|
Janssen BG, Godderis L, Pieters N, Poels K, Kiciński M, Cuypers A, Fierens F, Penders J, Plusquin M, Gyselaers W, Nawrot TS. Placental DNA hypomethylation in association with particulate air pollution in early life. Part Fibre Toxicol 2013; 10:22. [PMID: 23742113 PMCID: PMC3686623 DOI: 10.1186/1743-8977-10-22] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 05/27/2013] [Indexed: 12/13/2022] Open
Abstract
Background There is evidence that altered DNA methylation is an important epigenetic mechanism in prenatal programming and that developmental periods are sensitive to environmental stressors. We hypothesized that exposure to fine particles (PM2.5) during pregnancy could influence DNA methylation patterns of the placenta. Methods In the ENVIRONAGE birth cohort, levels of 5’-methyl-deoxycytidine (5-mdC) and deoxycytidine (dC) were quantified in placental DNA from 240 newborns. Multiple regression models were used to study placental global DNA methylation and in utero exposure to PM2.5 over various time windows during pregnancy. Results PM2.5 exposure during pregnancy averaged (25th-75th percentile) 17.4 (15.4-19.3) μg/m3. Placental global DNA methylation was inversely associated with PM2.5 exposures during whole pregnancy and relatively decreased by 2.19% (95% confidence interval [CI]: -3.65, -0.73%, p = 0.004) for each 5 μg/m3 increase in exposure to PM2.5. In a multi-lag model in which all three trimester exposures were fitted as independent variables in the same regression model, only exposure to PM2.5 during trimester 1 was significantly associated with lower global DNA methylation (-2.13% per 5 μg/m3 increase, 95% CI: -3.71, -0.54%, p = 0.009). When we analyzed shorter time windows of exposure within trimester 1, we observed a lower placental DNA methylation at birth during all implantation stages but exposure during the implantation range (6-21d) was strongest associated (-1.08% per 5 μg/m3 increase, 95% CI: -1.80, -0.36%, p = 0.004). Conclusions We observed a lower degree of placental global DNA methylation in association with exposure to particulate air pollution in early pregnancy, including the critical stages of implantation. Future studies should elucidate genome-wide and gene-specific methylation patterns in placental tissue that could link particulate exposure during in utero life and early epigenetic modulations.
Collapse
|
23
|
Herceg Z, Lambert MP, van Veldhoven K, Demetriou C, Vineis P, Smith MT, Straif K, Wild CP. Towards incorporating epigenetic mechanisms into carcinogen identification and evaluation. Carcinogenesis 2013; 34:1955-67. [PMID: 23749751 DOI: 10.1093/carcin/bgt212] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Remarkable progress in the field of epigenetics has turned academic, medical and public attention to the potential applications of these new advances in medicine and various fields of biomedical research. The result is a broader appreciation of epigenetic phenomena in the a etiology of common human diseases, most notably cancer. These advances also represent an exciting opportunity to incorporate epigenetics and epigenomics into carcinogen identification and safety assessment. Current epigenetic studies, including major international sequencing projects, are expected to generate information for establishing the 'normal' epigenome of tissues and cell types as well as the physiological variability of the epigenome against which carcinogen exposure can be assessed. Recently, epigenetic events have emerged as key mechanisms in cancer development, and while our search of the Monograph Volume 100 revealed that epigenetics have played a modest role in evaluating human carcinogens by the International Agency for Research on Cancer (IARC) Monographs so far, epigenetic data might play a pivotal role in the future. Here, we review (i) the current status of incorporation of epigenetics in carcinogen evaluation in the IARC Monographs Programme, (ii) potential modes of action for epigenetic carcinogens, (iii) current in vivo and in vitro technologies to detect epigenetic carcinogens, (iv) genomic regions and epigenetic modifications and their biological consequences and (v) critical technological and biological issues in assessment of epigenetic carcinogens. We also discuss the issues related to opportunities and challenges in the application of epigenetic testing in carcinogen identification and evaluation. Although the application of epigenetic assays in carcinogen evaluation is still in its infancy, important data are being generated and valuable scientific resources are being established that should catalyse future applications of epigenetic testing.
Collapse
Affiliation(s)
- Zdenko Herceg
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, F-69008 Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Durham A, Chou PC, Kirkham P, Adcock IM. Epigenetics in asthma and other inflammatory lung diseases. Epigenomics 2012; 2:523-37. [PMID: 22121972 DOI: 10.2217/epi.10.27] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Asthma is a chronic inflammatory disease of the airways. The causes of asthma and other inflammatory lung diseases are thought to be both environmental and heritable. Genetic studies do not adequately explain the heritability and susceptabilty to the disease, and recent evidence suggests that epigentic changes may underlie these processes. Epigenetics are heritable noncoding changes to DNA and can be influenced by environmental factors such as smoking and traffic pollution, which can cause genome-wide and gene-specific changes in DNA methylation. In addition, alterations in histone acetyltransferase/deacetylase activities can be observed in the cells of patients with lung diseases such as severe asthma and chronic obstructive pulmonary disease, and are often linked to smoking. Drugs such as glucocorticoids, which are used to control inflammation, are dependent on histone deacetylase activity, which may be important in patients with severe asthma and chronic obstructive pulmonary disease who do not respond well to glucocorticoid therapy. Future work targeting specific histone acetyltransferases/deacetylases or (de)methylases may prove to be effective future anti-inflammatory treatments for patients with treatment-unresponsive asthma.
Collapse
Affiliation(s)
- Andrew Durham
- Airways Disease Section, National Heart & Lung Institute, Imperial College, Dovehouse Street, London, SW3 6LY, UK.
| | | | | | | |
Collapse
|
25
|
On the role of low-dose effects and epigenetics in toxicology. EXPERIENTIA SUPPLEMENTUM (2012) 2012; 101:499-550. [PMID: 22945581 DOI: 10.1007/978-3-7643-8340-4_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
For a long time, scientists considered genotoxic effects as the major issue concerning the influence of environmental chemicals on human health. Over the last decades, a new layer superimposed the genome, i.e., the epigenome, tremendously changing this point of view. The term "epigenetics" comprises stable alterations in gene expression potential arising from variations in DNA methylation and a variety of histone modifications, without changing the underlying DNA sequence. Recently, also gene silencing by small noncoding RNAs (ncRNAs), in particular by microRNAs, was included in the list of epigenetic mechanisms. Multiple studies in vivo as well as in vitro have shown that a multitude of different environmental factors are capable of changing the epigenetic pattern as well as miRNA expression in certain cell types, leading to aberrant gene expression profiles in cells and tissues. These changes may have extensive effects concerning the proper gene expression necessary in a specified cell type and can even lead into a state of disease. Especially the roles of epigenetic modifications and miRNA alterations in tumorigenesis have been a major focus in research over the last years. This chapter will give an overview on epigenetic features and on the spectrum of epigenetic changes observed after exposure against environmental chemicals and pollutants.
Collapse
|
26
|
|
27
|
Christensen BC, Marsit CJ. Epigenomics in environmental health. Front Genet 2011; 2:84. [PMID: 22303378 PMCID: PMC3268636 DOI: 10.3389/fgene.2011.00084] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 11/04/2011] [Indexed: 12/29/2022] Open
Abstract
This review considers the emerging relationships between environmental factors and epigenetic alterations and the application of genome-wide assessments to better define these relationships. First we will briefly cover epigenetic programming in development, one-carbon metabolism, and exposures that may disrupt normal developmental programming of epigenetic states. In addition, because a large portion of epigenetic research has focused on cancer, we discuss exposures associated with carcinogenesis including asbestos, alcohol, radiation, arsenic, and air pollution. Research on other exposures that may affect epigenetic states such as endocrine disruptors is also described, and we also review the evidence for epigenetic alterations associated with aging that may reflect cumulative effects of exposures. From this evidence, we posit potential mechanisms by which exposures modify epigenetic states, noting that understanding the true effect of environmental exposures on the human epigenome will require additional research with appropriate epidemiologic studies and application of novel technologies. With a more comprehensive understanding of the affects of exposures on the epigenome, including consideration of genetic background, the prediction of the toxic potential of new compounds may be more readily achieved, and may lead to the development of more personalized disease prevention and treatment strategies.
Collapse
Affiliation(s)
- Brock C Christensen
- Section on Biostatistics and Epidemiology, Department of Community and Family Medicine, Dartmouth Medical School Hanover, NH, USA
| | | |
Collapse
|
28
|
Hou L, Zhang X, Tarantini L, Nordio F, Bonzini M, Angelici L, Marinelli B, Rizzo G, Cantone L, Apostoli P, Bertazzi PA, Baccarelli A. Ambient PM exposure and DNA methylation in tumor suppressor genes: a cross-sectional study. Part Fibre Toxicol 2011; 8:25. [PMID: 21878113 PMCID: PMC3180673 DOI: 10.1186/1743-8977-8-25] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 08/30/2011] [Indexed: 12/20/2022] Open
Abstract
Exposure to ambient air particles matter (PM) has been associated with increased risk of lung cancer. Aberrant tumor suppressor gene promoter methylation has emerged as a promising biomarker for cancers, including lung cancer. Whether exposure to PM is associated with peripheral blood leukocyte (PBL) DNA methylation in tumor suppressor genes has not been evaluated. In 63 male healthy steel workers with well-characterized exposure to metal-rich particles nearby Brescia, Italy, we evaluated whether exposure to PM and metal components was associated with PBL DNA methylation in 4 tumor suppressor genes (i.e., APC, p16, p53 and RASSF1A). Blood samples were obtained on the 1st (baseline) and 4th day (post-exposure) of the same work week and DNA methylation was measured using pyrosequencing. A linear mixed model was used to examine the correlations of the exposure with promoter methylation levels. Mean promoter DNA methylation levels of APC or p16 were significantly higher in post-exposure samples compared to that in baseline samples (p-values = 0.005 for APC, and p-value = 0.006 for p16). By contrast, the mean levels of p53 or RASSF1A promoter methylation was decreased in post-exposure samples compared to that in baseline samples (p-value = 0.015 for p53; and p-value < 0.001 for RASSF1A). In post-exposure samples, APC methylation was positively associated with PM10 (β = 0.27, 95% CI: 0.13-0.40), and PM1 (β = 0.23, 95% CI: 0.09-0.38). In summary, ambient PM exposure was associated with PBL DNA methylation levels of tumor suppressor genes of APC, p16, p53 and RASSF1A, suggesting that such methylation alterations may reflect processes related to PM-induced lung carcinogenesis.
Collapse
Affiliation(s)
- Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 680 N, Lakeshore Drive, Chicago, 60611, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Madrigano J, Baccarelli A, Mittleman MA, Wright RO, Sparrow D, Vokonas PS, Tarantini L, Schwartz J. Prolonged exposure to particulate pollution, genes associated with glutathione pathways, and DNA methylation in a cohort of older men. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:977-82. [PMID: 21385671 PMCID: PMC3222977 DOI: 10.1289/ehp.1002773] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 03/08/2011] [Indexed: 05/21/2023]
Abstract
BACKGROUND DNA methylation is a potential pathway linking environmental exposures to disease. Exposure to particulate air pollution has been associated with increased cardiovascular morbidity and mortality, and lower blood DNA methylation has been found in processes related to cardiovascular morbidity. OBJECTIVE We hypothesized that prolonged exposure to particulate pollution would be associated with hypomethylation of repetitive DNA elements and that this association would be modified by genes involved in glutathione metabolism and other host characteristics. METHODS DNA methylation of the long interspersed nucleotide element-1 (LINE-1) and the short interspersed nucleotide element Alu were measured by quantitative polymerase chain reaction pyrosequencing in 1,406 blood samples from 706 elderly participants in the Normative Aging Study. We estimated changes in repetitive element DNA methylation associated with ambient particles (particulate matter ≤ 2.5 µm in aerodynamic diameter), black carbon (BC), and sulfates (SO₄), with mixed models. We examined multiple exposure windows (1-6 months) before DNA methylation measurement. We investigated whether this association was modified by genotype and phenotype. RESULTS An interquartile range (IQR) increase in BC over a 90-day period was associated with a decrease of 0.31% 5-methylcytosine (5mC) (95% confidence interval, 0.12-0.50%) in Alu. An IQR increase in SO₄ over a 90-day period was associated with a decrease of 0.27% 5mC (0.02-0.52%) in LINE-1. The glutathione S-transferase mu-1-null genotype strengthened the association between BC and Alu hypomethylation. CONCLUSION Prolonged exposure to BC and SO₄ particles was associated with hypomethylation of two types of repetitive elements.
Collapse
Affiliation(s)
- Jaime Madrigano
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
microRNAs: implications for air pollution research. Mutat Res 2011; 717:38-45. [PMID: 21515291 DOI: 10.1016/j.mrfmmm.2011.03.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 03/22/2011] [Accepted: 03/31/2011] [Indexed: 11/20/2022]
Abstract
The purpose of this review is to provide an update of the current understanding on the role of microRNAs in mediating genetic responses to air pollutants and to contemplate on how these responses ultimately control susceptibility to ambient air pollution. Morbidity and mortality attributable to air pollution continues to be a growing public health concern worldwide. Despite several studies on the health effects of ambient air pollution, underlying molecular mechanisms of susceptibility and disease remain elusive. In the last several years, special attention has been given to the role of epigenetics in mediating, not only genetic and physiological responses to certain environmental insults, but also in regulating underlying susceptibility to environmental stressors. Epigenetic mechanisms control the expression of gene products, both basally and as a response to a perturbation, without affecting the sequence of DNA itself. These mechanisms include structural regulation of the chromatin structure, such as DNA methylation and histone modifications, and post-transcriptional gene regulation, such as microRNA mediated repression of gene expression. microRNAs are small noncoding RNAs that have been quickly established as key regulators of gene expression. As such, miRNAs have been found to control several cellular processes including apoptosis, proliferation and differentiation. More recently, research has emerged suggesting that changes in the expression of some miRNAs may be critical for mediating biological, and ultimately physiological, responses to air pollutants. Although the study of microRNAs, and epigenetics as a whole, has come quite far in the field of cancer, the understanding of how these mechanisms regulate gene-environment interactions to environmental exposures in everyday life is unclear. This article does not necessarily reflect the views and policies of the US EPA.
Collapse
|
31
|
The role of epigenetic dysregulation in the epidemic of allergic disease. Clin Epigenetics 2011; 2:223-232. [PMID: 21949548 PMCID: PMC3156327 DOI: 10.1007/s13148-011-0028-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 03/13/2011] [Indexed: 12/14/2022] Open
Abstract
The epidemic of allergic disease in early life is one of the clearest indicators that the developing immune system is vulnerable to modern environmental changes. A range of environmental exposures epidemiologically associated with allergic disease have been shown to have effects on the foetal immune function in pregnancy, including microbial burden, dietary changes and environmental pollutants. Preliminary studies now suggest that these early effects on immune development may be mediated epigenetically through a variety of processes that collectively modify gene expression and allergic susceptibility and that these effects are potentially heritable across generations. It is also possible that rising rates of maternal allergy, a recognised direct risk factor for infant allergic disease, may be further amplifying the effects of environmental changes. Whilst effective prevention strategies are the ultimate goal in reversing the allergy epidemic, the specific environmental drivers, target genes, and intracellular pathways and mechanisms of early life immune programming are still unclear. It is hoped that identifying genes that are differentially regulated in association with subsequent allergic disease will assist in identifying causal pathways and upstream contributing environmental factors. In this way, epigenetic paradigms are likely to provide valuable insights into how the early environment can be modified to more favourably drive immune development and reverse the allergic epidemic.
Collapse
|
32
|
Durham AL, Wiegman C, Adcock IM. Epigenetics of asthma. Biochim Biophys Acta Gen Subj 2011; 1810:1103-9. [PMID: 21397662 DOI: 10.1016/j.bbagen.2011.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 02/18/2011] [Accepted: 03/03/2011] [Indexed: 01/11/2023]
Abstract
Asthma is caused by both heritable and environmental factors. It has become clear that genetic studies do not adequately explain the heritability and susceptibility to asthma. The study of epigenetics, heritable non-coding changes to DNA may help to explain the heritable component of asthma. Additionally, epigenetic modifications can be influenced by the environment, including pollution and cigarette smoking, which are known asthma risk factors. These environmental trigger-induced epigenetic changes may be involved in skewing the immune system towards a Th2 phenotype following in utero exposure and thereby enhancing the risk of asthma. Alternatively, they may directly or indirectly modulate the immune and inflammatory processes in asthmatics via effects on treatment responsiveness. The study of epigenetics may therefore play an important role in our understanding and possible treatment of asthma and other allergic diseases. This article is part of a Special Issue entitled: Biochemistry of Asthma.
Collapse
Affiliation(s)
- Andrew L Durham
- National Heart and Lung Institute, Imperial College London, UK.
| | | | | |
Collapse
|
33
|
Abstract
Accumulating epidemiological, clinical, and experimental evidence supports the conclusion of a critical role of epigenetic factors in immune programming. This understanding provides the basis for elucidating how the intricate interactions of the genome, epigenome, and transcriptome shape immune responses and maintain immune tolerance to self-antigens. Deciphering the precise contribution of epigenetic factors to autoimmunity, and in particular to lupus, has become an active research area. On one hand, it is well established that environmental factors have an impact on the epigenome and, therefore, on the transcriptional and translational machinery of specific cell types; on the other, the environment also plays an important role in the severity of lupus and other autoimmunity diseases. Determining how epigenetics "connects" the environment to cell biology and to autoreactivity will be key for advancing our understanding in this field and, possibly, for developing novel preventive strategies.
Collapse
Affiliation(s)
- Moncef Zouali
- Inserm UMR-S 606, University Diderot-Paris 7, Paris, France.
| |
Collapse
|
34
|
Wettergren Y, Odin E, Carlsson G, Gustavsson B. MTHFR, MTR, and MTRR polymorphisms in relation to p16INK4A hypermethylation in mucosa of patients with colorectal cancer. Mol Med 2010. [PMID: 20549016 DOI: 10.2119/molmed.2009-00156] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We recently analyzed the hypermethylation status of the p16INK4a (p16) gene promoter in normal-appearing mucosa obtained from patients with colorectal cancer. Hypermethylation of p16 was associated with reduced survival of these patients. In the present study, germ line polymorphisms in the folate- and methyl-associated genes, methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTR) and methionine synthase reductase (MTRR), were analyzed in the same patient cohort to find a possible link between these genetic variants and p16 hypermethylation. Genomic DNA was extracted from blood of patients (n = 181) and controls (n = 300). Genotype analyses were run on an ABI PRISM(®) 7900HT sequence-detection system (Applied Biosystems), using real-time polymerase chain reaction and TaqMan chemistry. The results showed that the genotype distributions of the patient and control groups were similar. No significant differences in cancer-specific or disease-free survival of stage I-III patients according to polymorphic variants were detected, nor were any differences in cancer-specific or disease-free survival detected when patients were subgrouped according to the MTHFR or MTR genotype groups and dichotomized by p16 hypermethylation status in mucosa. However, patients with the MTRR 66 AA/AG genotypes were found to have a significantly worse cancer-specific survival when the mucosa were positive, compared with negative, for p16 hypermethylation (hazard ratio 2.7; 95% confidence interval 1.2-6.4; P = 0.023). In contrast, there was no difference in survival among patients with the MTRR 66 GG genotype stratified by p16 hypermethylation status. These results indicate a relationship between genetic germ-line variants of the MTRR gene and p16 hypermethylation in mucosa, which may affect the clinical outcome of patients with colorectal cancer.
Collapse
Affiliation(s)
- Yvonne Wettergren
- Department of General Surgery, University of Gothenburg, Sahlgrenska University Hospital/Ostra, Gothenburg, Sweden.
| | | | | | | |
Collapse
|
35
|
Wettergren Y, Odin E, Carlsson G, Gustavsson B. MTHFR, MTR, and MTRR polymorphisms in relation to p16INK4A hypermethylation in mucosa of patients with colorectal cancer. Mol Med 2010; 16:425-32. [PMID: 20549016 DOI: 10.2119/molmed.2009.00156] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 06/10/2010] [Indexed: 12/17/2022] Open
Abstract
We recently analyzed the hypermethylation status of the p16INK4a (p16) gene promoter in normal-appearing mucosa obtained from patients with colorectal cancer. Hypermethylation of p16 was associated with reduced survival of these patients. In the present study, germ line polymorphisms in the folate- and methyl-associated genes, methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTR) and methionine synthase reductase (MTRR), were analyzed in the same patient cohort to find a possible link between these genetic variants and p16 hypermethylation. Genomic DNA was extracted from blood of patients (n = 181) and controls (n = 300). Genotype analyses were run on an ABI PRISM(®) 7900HT sequence-detection system (Applied Biosystems), using real-time polymerase chain reaction and TaqMan chemistry. The results showed that the genotype distributions of the patient and control groups were similar. No significant differences in cancer-specific or disease-free survival of stage I-III patients according to polymorphic variants were detected, nor were any differences in cancer-specific or disease-free survival detected when patients were subgrouped according to the MTHFR or MTR genotype groups and dichotomized by p16 hypermethylation status in mucosa. However, patients with the MTRR 66 AA/AG genotypes were found to have a significantly worse cancer-specific survival when the mucosa were positive, compared with negative, for p16 hypermethylation (hazard ratio 2.7; 95% confidence interval 1.2-6.4; P = 0.023). In contrast, there was no difference in survival among patients with the MTRR 66 GG genotype stratified by p16 hypermethylation status. These results indicate a relationship between genetic germ-line variants of the MTRR gene and p16 hypermethylation in mucosa, which may affect the clinical outcome of patients with colorectal cancer.
Collapse
Affiliation(s)
- Yvonne Wettergren
- Department of General Surgery, University of Gothenburg, Sahlgrenska University Hospital/Ostra, Gothenburg, Sweden.
| | | | | | | |
Collapse
|
36
|
Deng D, Liu Z, Du Y. Epigenetic alterations as cancer diagnostic, prognostic, and predictive biomarkers. ADVANCES IN GENETICS 2010; 71:125-76. [PMID: 20933128 DOI: 10.1016/b978-0-12-380864-6.00005-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alterations of DNA methylation and transcription of microRNAs (miRNAs) are very stable phenomena in tissues and body fluids and suitable for sensitive detection. These advantages enable us to translate some important discoveries on epigenetic oncology into biomarkers for control of cancer. A few promising epigenetic biomarkers are emerging. Clinical trials using methylated CpG islands of p16, Septin9, and MGMT as biomarkers are carried out for predication of cancer development, diagnosis, and chemosensitivity. Circulating miRNAs are promising biomarkers, too. Breakthroughs in the past decade imply that epigenetic biomarkers may be useful in reducing the burden of cancer.
Collapse
Affiliation(s)
- Dajun Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry ofEducation), Peking University School of Oncology, Beijing Cancer Hospitaland Institute, Fu-Cheng-Lu, Haidian District, Beijing, 100142, PR China
| | | | | |
Collapse
|
37
|
Dynamic changes in DNA methylation during multistep rat lung carcinogenesis induced by 3-methylcholanthrene and diethylnitrosamine. Toxicol Lett 2009; 189:5-13. [PMID: 19409458 DOI: 10.1016/j.toxlet.2009.04.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Revised: 04/21/2009] [Accepted: 04/21/2009] [Indexed: 01/19/2023]
Abstract
3-methylcholanthrene (MCA) and diethylnitrosamine (DEN) are typical genotoxic carcinogens that can induce tumors in a variety of human and rodent tissues. However, the epigenetic mechanisms underlying their tumorigenesis are unclear. In this study we used a MCA/DEN-induced multistep lung carcinogenesis rat model to study the evolution of alterations in DNA methylation. Rats were treated with a single dose of MCA and DEN in iodized oil by left intra-bronchial instillation. The animals were killed on days 15, 35, 55, 65 and 75 and samples of various pathological phases during carcinogenesis were obtained on these days. The status of global methylation was analyzed for each sample using a monoclonal antibody specific for 5-methycytosine (5-mC) and quantified by image analysis software. We found that the degree of global methylation was, in general, higher in basal cells compared to luminal cells of normal, precancerous and tumor tissues. The combined 5-mC scores of different types of tissues decreased gradually during the progression of carcinogenesis. We also used methylation-sensitive arbitrarily primed PCR (MS-AP-PCR) to screen a total of eight differentially methylated DNA fragments in both precancerous and tumor tissues isolated using laser capture microdissection (LCM), and observed that both unique hypomethylation and hypermethylation fragments coexist after exposure to genotoxic carcinogens. Remarkably, epigenetic alterations in p16 (CDKN2A), but not in p15 (CDKN2B), were observed, and these correlated with the presence of pathologic lung lesions and loss of p16 protein expression. Moreover, defective expression of p16 in methylated primary tumor cell lines recovered markedly after treated with 5-aza-2'-deoxycytidine (5-aza-dC). These results suggest that DNA methylation alterations are an early event in tumorigenesis and play an important role during MCA/DEN-induced multistep rat lung carcinogenesis.
Collapse
|
38
|
Tarantini L, Bonzini M, Apostoli P, Pegoraro V, Bollati V, Marinelli B, Cantone L, Rizzo G, Hou L, Schwartz J, Bertazzi PA, Baccarelli A. Effects of particulate matter on genomic DNA methylation content and iNOS promoter methylation. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:217-22. [PMID: 19270791 PMCID: PMC2649223 DOI: 10.1289/ehp.11898] [Citation(s) in RCA: 249] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 09/25/2008] [Indexed: 05/04/2023]
Abstract
BACKGROUND Altered patterns of gene expression mediate the effects of particulate matter (PM) on human health, but mechanisms through which PM modifies gene expression are largely undetermined. OBJECTIVES We aimed at identifying short- and long-term effects of PM exposure on DNA methylation, a major genomic mechanism of gene expression control, in workers in an electric furnace steel plant with well-characterized exposure to PM with aerodynamic diameters < 10 microm (PM(10)). METHODS We measured global genomic DNA methylation content estimated in Alu and long interspersed nuclear element-1 (LINE-1) repeated elements, and promoter DNA methylation of iNOS (inducible nitric oxide synthase), a gene suppressed by DNA methylation and induced by PM exposure in blood leukocytes. Quantitative DNA methylation analysis was performed through bisulfite PCR pyrosequencing on blood DNA obtained from 63 workers on the first day of a work week (baseline, after 2 days off work) and after 3 days of work (postexposure). Individual PM(10) exposure was between 73.4 and 1,220 microg/m(3). RESULTS Global methylation content estimated in Alu and LINE-1 repeated elements did not show changes in postexposure measures compared with baseline. PM(10) exposure levels were negatively associated with methylation in both Alu [beta = -0.19 %5-methylcytosine (%5mC); p = 0.04] and LINE-1 [beta = -0.34 %5mC; p = 0.04], likely reflecting long-term PM(10) effects. iNOS promoter DNA methylation was significantly lower in postexposure blood samples compared with baseline (difference = -0.61 %5mC; p = 0.02). CONCLUSIONS We observed changes in global and gene specific methylation that should be further characterized in future investigations on the effects of PM.
Collapse
Affiliation(s)
- Letizia Tarantini
- Laboratory of Environmental Epigenetics, Department of Preventive Medicine and Department of Environmental and Occupational Health, University of Milan and IRCCS Maggiore Hospital, Mangiagalli and Regina Elena Foundation, Milan, Italy
| | - Matteo Bonzini
- Laboratory of Environmental Epigenetics, Department of Preventive Medicine and Department of Environmental and Occupational Health, University of Milan and IRCCS Maggiore Hospital, Mangiagalli and Regina Elena Foundation, Milan, Italy
| | - Pietro Apostoli
- Department of Experimental and Applied Medicine, Occupational Medicine and Industrial Hygiene, University of Brescia, Brescia, Italy
| | - Valeria Pegoraro
- Laboratory of Environmental Epigenetics, Department of Preventive Medicine and Department of Environmental and Occupational Health, University of Milan and IRCCS Maggiore Hospital, Mangiagalli and Regina Elena Foundation, Milan, Italy
| | - Valentina Bollati
- Laboratory of Environmental Epigenetics, Department of Preventive Medicine and Department of Environmental and Occupational Health, University of Milan and IRCCS Maggiore Hospital, Mangiagalli and Regina Elena Foundation, Milan, Italy
| | - Barbara Marinelli
- Laboratory of Environmental Epigenetics, Department of Preventive Medicine and Department of Environmental and Occupational Health, University of Milan and IRCCS Maggiore Hospital, Mangiagalli and Regina Elena Foundation, Milan, Italy
| | - Laura Cantone
- Laboratory of Environmental Epigenetics, Department of Preventive Medicine and Department of Environmental and Occupational Health, University of Milan and IRCCS Maggiore Hospital, Mangiagalli and Regina Elena Foundation, Milan, Italy
| | - Giovanna Rizzo
- Laboratory of Environmental Epigenetics, Department of Preventive Medicine and Department of Environmental and Occupational Health, University of Milan and IRCCS Maggiore Hospital, Mangiagalli and Regina Elena Foundation, Milan, Italy
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Joel Schwartz
- Exposure, Epidemiology and Risk Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Pier Alberto Bertazzi
- Laboratory of Environmental Epigenetics, Department of Preventive Medicine and Department of Environmental and Occupational Health, University of Milan and IRCCS Maggiore Hospital, Mangiagalli and Regina Elena Foundation, Milan, Italy
| | - Andrea Baccarelli
- Laboratory of Environmental Epigenetics, Department of Preventive Medicine and Department of Environmental and Occupational Health, University of Milan and IRCCS Maggiore Hospital, Mangiagalli and Regina Elena Foundation, Milan, Italy
- Exposure, Epidemiology and Risk Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
- Address correspondence to A. Baccarelli, Laboratory of Environmental Epigenetics, Department of Environmental and Occupational Health, University of Milan and Maggiore Hospital, Mangiagalli and Regina Elena Foundation, Via San Barnaba 8, 20122 Milan, Italy. Telephone: 39 02 503 20145. Fax: 39 02 503 20103. E-mail:
| |
Collapse
|
39
|
Baccarelli A, Wright RO, Bollati V, Tarantini L, Litonjua AA, Suh HH, Zanobetti A, Sparrow D, Vokonas PS, Schwartz J. Rapid DNA methylation changes after exposure to traffic particles. Am J Respir Crit Care Med 2009; 179:572-8. [PMID: 19136372 DOI: 10.1164/rccm.200807-1097oc] [Citation(s) in RCA: 494] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
RATIONALE Exposure to particulate air pollution has been related to increased hospitalization and death, particularly from cardiovascular disease. Lower blood DNA methylation content is found in processes related to cardiovascular outcomes, such as oxidative stress, aging, and atherosclerosis. OBJECTIVES We evaluated whether particulate pollution modifies DNA methylation in heavily methylated sequences with high representation throughout the human genome. METHODS We measured DNA methylation of long interspersed nucleotide element (LINE)-1 and Alu repetitive elements by quantitative polymerase chain reaction-pyrosequencing of 1,097 blood samples from 718 elderly participants in the Boston area Normative Aging Study. We used covariate-adjusted mixed models to account for within-subject correlation in repeated measures. We estimated the effects on DNA methylation of ambient particulate pollutants (black carbon, particulate matter with aerodynamic diameter < or = 2.5 microm [PM2.5], or sulfate) in multiple time windows (4 h to 7 d) before the examination. We estimated standardized regression coefficients (beta) expressing the fraction of a standard deviation change in DNA methylation associated with a standard deviation increase in exposure. MEASUREMENTS AND MAIN RESULTS Repetitive element DNA methylation varied in association with time-related variables, such as day of the week and season. LINE-1 methylation decreased after recent exposure to higher black carbon (beta = -0.11; 95% confidence interval [CI], -0.18 to -0.04; P = 0.002) and PM2.5 (beta = -0.13; 95% CI, -0.19 to -0.06; P < 0.001 for the 7-d moving average). In two-pollutant models, only black carbon, a tracer of traffic particles, was significantly associated with LINE-1 methylation (beta = -0.09; 95% CI, -0.17 to -0.01; P = 0.03). No association was found with Alu methylation (P > 0.12). CONCLUSIONS We found decreased repeated-element methylation after exposure to traffic particles. Whether decreased methylation mediates exposure-related health effects remains to be determined.
Collapse
Affiliation(s)
- Andrea Baccarelli
- Laboratory of Environmental Epigenetics, Department of Environmental and Occupational Health, University of Milan, Via San Barnaba 8, 20122 Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Peterson LE, Miller RL. Association between radioactive fallout from 1951–1962 US nuclear tests at the Nevada Test Site and cancer mortality in midwestern US populations. RUSS J ECOL+ 2008. [DOI: 10.1134/s1067413608070060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol 2008; 82:493-512. [PMID: 18496671 DOI: 10.1007/s00204-008-0313-y] [Citation(s) in RCA: 692] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 04/30/2008] [Indexed: 02/07/2023]
Abstract
Mechanisms of carcinogenicity are discussed for metals and their compounds, classified as carcinogenic to humans or considered to be carcinogenic to humans: arsenic, antimony, beryllium, cadmium, chromium, cobalt, lead, nickel and vanadium. Physicochemical properties govern uptake, intracellular distribution and binding of metal compounds. Interactions with proteins (e.g., with zinc finger structures) appear to be more relevant for metal carcinogenicity than binding to DNA. In general, metal genotoxicity is caused by indirect mechanisms. In spite of diverse physicochemical properties of metal compounds, three predominant mechanisms emerge: (1) interference with cellular redox regulation and induction of oxidative stress, which may cause oxidative DNA damage or trigger signaling cascades leading to stimulation of cell growth; (2) inhibition of major DNA repair systems resulting in genomic instability and accumulation of critical mutations; (3) deregulation of cell proliferation by induction of signaling pathways or inactivation of growth controls such as tumor suppressor genes. In addition, specific metal compounds exhibit unique mechanisms such as interruption of cell-cell adhesion by cadmium, direct DNA binding of trivalent chromium, and interaction of vanadate with phosphate binding sites of protein phosphatases.
Collapse
|
42
|
Baccarelli A, Cassano PA, Litonjua A, Park SK, Suh H, Sparrow D, Vokonas P, Schwartz J. Cardiac autonomic dysfunction: effects from particulate air pollution and protection by dietary methyl nutrients and metabolic polymorphisms. Circulation 2008; 117:1802-9. [PMID: 18378616 PMCID: PMC3093965 DOI: 10.1161/circulationaha.107.726067] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Particulate air pollution is associated with cardiovascular mortality and morbidity. To help identify mechanisms of action and protective/susceptibility factors, we evaluated whether the effect of particulate matter <2.5 mum in aerodynamic diameter (PM(2.5)) on heart rate variability was modified by dietary intakes of methyl nutrients (folate, vitamins B(6) and B(12), methionine) and related gene polymorphisms (C677T methylenetetrahydrofolate reductase [MTHFR] and C1420T cytoplasmic serine hydroxymethyltransferase [cSHMT]). METHODS AND RESULTS Heart rate variability and dietary data were obtained between 2000 and 2005 from 549 elderly men from the Normative Aging Study. In carriers of [CT/TT] MTHFR genotypes, the SD of normal-to-normal intervals was 17.1% (95% CI, 6.5 to 26.4; P=0.002) lower than in CC MTHFR subjects. In the same [CT/TT] MTHFR subjects, each 10-mug/m(3) increase in PM(2.5) in the 48 hours before the examination was associated with a further 8.8% (95% CI, 0.2 to 16.7; P=0.047) decrease in the SDNN. In [CC] cSHMT carriers, PM(2.5) was associated with an 11.8% (95% CI, 1.8 to 20.8; P=0.02) decrease in SDNN. No PM(2.5)-SSDN association was found in subjects with either [CC] MTHFR or [CT/TT] cSHMT genotypes. The negative effects of PM(2.5) were abrogated in subjects with higher intakes (above median levels) of B(6), B(12), or methionine. PM(2.5) was negatively associated with heart rate variability in subjects with lower intakes, but no PM(2.5) effect was found in the higher intake groups. CONCLUSIONS Genetic and nutritional variations in the methionine cycle affect heart rate variability either independently or by modifying the effects of PM(2.5).
Collapse
Affiliation(s)
- Andrea Baccarelli
- Department of Environmental Health, Harvard School of Public Health, Boston, Mass 02215, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Molecular analysis of a multistep lung cancer model induced by chronic inflammation reveals epigenetic regulation of p16 and activation of the DNA damage response pathway. Neoplasia 2007; 9:840-52. [PMID: 17971904 DOI: 10.1593/neo.07517] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 08/10/2007] [Accepted: 08/14/2007] [Indexed: 12/13/2022] Open
Abstract
The molecular hallmarks of inflammation-mediated lung carcinogenesis have not been fully clarified, mainly due to the scarcity of appropriate animal models. We have used a silica-induced multistep lung carcinogenesis model driven by chronic inflammation to study the evolution of molecular markers and genetic alterations. We analyzed markers of DNA damage response (DDR), proliferative stress, and telomeric stress: gamma-H2AX, p16, p53, and TERT. Lung cancer-related epigenetic and genetic alterations, including promoter hypermethylation status of p16(CDKN2A), APC, CDH13, Rassf1, and Nore1A, as well as mutations of Tp53, epidermal growth factor receptor, K-ras, N-ras, and c-H-ras, have been also studied. Our results showed DDR pathway activation in preneoplastic lesions, in association with inducible nitric oxide synthase and p53 induction. p16 was also induced in early tumorigenic progression and was inactivated in bronchiolar dysplasias and tumors. Remarkably, lack of mutations of Ras and epidermal growth factor receptor, and a very low frequency of Tp53 mutations suggest that they are not required for tumorigenesis in this model. In contrast, epigenetic alterations in p16(CDKN2A), CDH13, and APC, but not in Rassf1 and Nore1A, were clearly observed. These data suggest the existence of a specific molecular signature of inflammation-driven lung carcinogenesis that shares some, but not all, of the molecular landmarks of chemically induced lung cancer.
Collapse
|
44
|
Liu J, Ballaney M, Al-alem U, Quan C, Jin X, Perera F, Chen LC, Miller RL. Combined inhaled diesel exhaust particles and allergen exposure alter methylation of T helper genes and IgE production in vivo. Toxicol Sci 2007; 102:76-81. [PMID: 18042818 DOI: 10.1093/toxsci/kfm290] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Changes in methylation of CpG sites at the interleukin (IL)-4 and interferon (IFN)-gamma promoters are associated with T helper (Th) 2 polarization in vitro. No previous studies have examined whether air pollution or allergen exposure alters methylation of these two genes in vivo. We hypothesized that diesel exhaust particles (DEP) would induce hypermethylation of the IFN-gamma promoter and hypomethylation of IL-4 in CD4+ T cells among mice sensitized to the fungus allergen Aspergillus fumigatus. We also hypothesized that DEP-induced methylation changes would affect immunoglobulin (Ig) E regulation. BALB/c mice were exposed to a 3-week course of inhaled DEP exposure while undergoing intranasal sensitization to A. fumigatus. Purified DNA from splenic CD4+ cells underwent bisulfite treatment, PCR amplification, and pyrosequencing. Sera IgE levels were compared with methylation levels at several CpG sites in the IL-4 and IFN-gamma promoter. Total IgE production was increased following intranasal sensitization A. fumigatus. IgE production was augmented further following combined exposure to A. fumigatus and DEP exposure. Inhaled DEP exposure and intranasal A. fumigatus induced hypermethylation at CpG(-45), CpG(-53), CpG(-205) sites of the IFN-gamma promoter and hypomethylation at CpG(-408) of the IL-4 promoter. Altered methylation of promoters of both genes was correlated significantly with changes in IgE levels. This study is the first to demonstrate that inhaled environmental exposures influence methylation of Th genes in vivo, supporting a new paradigm in asthma pathogenesis.
Collapse
Affiliation(s)
- Jinming Liu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Bollati V, Baccarelli A, Hou L, Bonzini M, Fustinoni S, Cavallo D, Byun HM, Jiang J, Marinelli B, Pesatori AC, Bertazzi PA, Yang AS. Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res 2007; 67:876-80. [PMID: 17283117 DOI: 10.1158/0008-5472.can-06-2995] [Citation(s) in RCA: 463] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aberrant DNA methylation patterns, including global hypomethylation, gene-specific hypermethylation/hypomethylation, and loss of imprinting (LOI), are common in acute myelogenous leukemia (AML) and other cancer tissues. We investigated for the first time whether such epigenetic changes are induced in healthy subjects by low-level exposure to benzene, a widespread pollutant associated with AML risk. Blood DNA samples and exposure data were obtained from subjects with different levels of benzene exposure, including 78 gas station attendants, 77 traffic police officers, and 58 unexposed referents in Milan, Italy (personal airborne benzene range, < 6-478 microg/m(3)). Bisulfite-PCR pyrosequencing was used to quantitate DNA methylation in long interspersed nuclear element-1 (LINE-1) and AluI repetitive elements as a surrogate of genome-wide methylation and examine gene-specific methylation of MAGE-1 and p15. Allele-specific pyrosequencing of the H19 gene was used to detect LOI in 96 subjects heterozygous for the H19 imprinting center G/A single-nucleotide polymorphism. Airborne benzene was associated with a significant reduction in LINE-1 (-2.33% for a 10-fold increase in airborne benzene levels; P = 0.009) and AluI (-1.00%; P = 0.027) methylation. Hypermethylation in p15 (+0.35%; P = 0.018) and hypomethylation in MAGE-1 (-0.49%; P = 0.049) were associated with increasing airborne benzene levels. LOI was found only in exposed subjects (4 of 73, 5.5%) and not in referents (0 of 23, 0.0%). However, LOI was not significantly associated with airborne benzene (P > 0.20). This is the first human study to link altered DNA methylation, reproducing the aberrant epigenetic patterns found in malignant cells, to low-level carcinogen exposure.
Collapse
Affiliation(s)
- Valentina Bollati
- Molecular Epidemiology Laboratory, Department of Environmental and Occupational Health, University of Milan, Via San Barnaba 8, 20122 Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gibbons MC, Brock M, Alberg AJ, Glass T, LaVeist TA, Baylin S, Levine D, Fox CE. The sociobiologic integrative model (SBIM): enhancing the integration of sociobehavioral, environmental, and biomolecular knowledge in urban health and disparities research. J Urban Health 2007; 84:198-211. [PMID: 17216571 PMCID: PMC2231640 DOI: 10.1007/s11524-006-9141-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Disentangling the myriad determinants of disease, within the context of urban health or health disparities, requires a transdisciplinary approach. Transdisciplinary approaches draw on concepts from multiple scientific disciplines to develop a novel, integrated perspective from which to conduct scientific investigation. Most historic and contemporary conceptual models of health were derived either from the sociobehavioral sciences or the biomolecular sciences. Those models deriving from the sociobehavioral sciences generally lack detail on involved biological mechanisms whereas those derived from the biomolecular sciences largely do not consider socioenvironmental determinants. As such, advances in transdisciplinary characterizations of health in complex systems like the urban environment or health disparities may be impeded. This paper suggests a sociobiologic organizing model that encourages a multilevel, integrative perspective in the study of urban health and health disparities.
Collapse
|
47
|
Gómez Raposo C, De Castro Carpeño J, González Barón M. Factores etiológicos del cáncer de pulmón: fumador activo, fumador pasivo, carcinógenos medioambientales y factores genéticos. Med Clin (Barc) 2007; 128:390-6. [PMID: 17386247 DOI: 10.1157/13099973] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Every year, in Spain 18,000 new cases of lung cancer (LC) are diagnosed. Approximately, 80-90% LC in men and women are directly attributable to tobacco abuse. Cigarette smoke contains over 300 chemicals, 40 of which are known to be potent carcinogens. In the last decade, as in Spain, prevalence of smoking in women has generally increased in the European Union. LC risk can be substantially reduced after smoking cessation, yet never reaches baseline. On the other hand, environmental tobacco smoke exposure (passive smoking) in nonsmokers appears to have a significantly increased risk of LC. An updated of etiology factors of LC, risk related to duration as well as intensity of smoking, relationship between environmental tobacco smoke exposure and LC risk, genetic predisposition and a variety of occupational and environmental exposures implicated as potential risk factors for the development of LC will be reviewed here.
Collapse
Affiliation(s)
- César Gómez Raposo
- Servicio de Oncología Médica, Hospital Universitario La Paz, Madrid, España.
| | | | | |
Collapse
|
48
|
Okada F. Beyond foreign-body-induced carcinogenesis: Impact of reactive oxygen species derived from inflammatory cells in tumorigenic conversion and tumor progression. Int J Cancer 2007; 121:2364-72. [PMID: 17893867 DOI: 10.1002/ijc.23125] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Foreign-body-induced carcinogenesis is a traditional, maybe old, way of understanding cancer development. A number of novel approaches are available today to elucidate cancer development. However, there are things we learn from the old, and thus I bring out some examples of various clinical cases and experimental models of foreign-body-induced tumorigenesis. What is notable is that the foreign bodies themselves are unrelated to each other, whereas commonly underlying in them is to induce inflammatory reaction, especially stromal proliferation, where those exogenous materials are incorporated and undigested. Such foreign-body-induced carcinogenesis is also recognized in the step of tumor progression, the final step of carcinogenesis that tumor cells acquire malignant phenotypes including metastatic properties. And the phenomenon is universally observed in several cell lines of different origins. In this review I would like to show the evidence that tumor development and progression are accelerated inevitably by inflammation caused from foreign bodies, and that reactive oxygen species derived from inflammatory cells are one of the most important genotoxic mediators to accelerate the process.
Collapse
Affiliation(s)
- Futoshi Okada
- Department of Biomolecular Function, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| |
Collapse
|
49
|
An Ecological Study of the Association of Metal Air Pollutants with Lung Cancer Incidence in Texas. J Thorac Oncol 2006. [DOI: 10.1097/01243894-200609000-00009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Coyle YM, Minahjuddin AT, Hynan LS, Minna JD. An Ecological Study of the Association of Metal Air Pollutants with Lung Cancer Incidence in Texas. J Thorac Oncol 2006. [DOI: 10.1016/s1556-0864(15)30377-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|