1
|
Dimayacyac-Esleta BRT, Mira FD, Zarate LM, Porras BJO, Juntilla DLA, Suñga LBL, Pondevida VB, Naval SS, Sayo TMS, Luna HGC, Prieto EI. Discovery of Key Candidate Protein Biomarkers in Early-Stage Nonsmall Cell Lung Carcinoma through Quantitative Proteomics. J Proteome Res 2025; 24:1701-1714. [PMID: 40014793 DOI: 10.1021/acs.jproteome.4c00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Difficulties in early-stage diagnosis are among the factors contributing to the high mortality of nonsmall cell lung carcinoma (NSCLC) patients. Unfortunately, diagnostic biomarkers are currently lacking, limiting options in the clinic. To discover proteins that have potential for biomarker applications, we performed an in-depth quantitative proteomic analysis on a cohort of Filipino early-stage NSCLC lung adenocarcinoma (LUAD) patients. Differentially expressed proteins (DEPs) were obtained by using tandem mass tag (TMT) labeling and mass spectrometry (MS)-based quantitative proteomics. A total of 6240 quantified proteins were identified with 3155 significantly upregulated and 1248 significantly downregulated. Integration of the proteomic result with curated transcriptome data allowed the identification of 33 proteins with biomarker potential. This study also provided insights into relevant pathways in NSCLC LUAD, such as protein translation and metabolic pathways. Interestingly, all of the enzymes in the hexosamine biosynthetic pathway (HBP) are found to be upregulated, suggesting its important role in NSCLC LUAD. It is worthwhile to look at the potential of targeting the metabolic vulnerability of NSCLC LUAD as a new strategy in drug development. All MS data were deposited into ProteomeXchange with the identifier PXD050598.
Collapse
Affiliation(s)
| | - Ferdinand D Mira
- Institute of Chemistry, University of the Philippines Diliman, Metro Manila 1101, Philippines
| | - Lorenzo M Zarate
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Metro Manila 1101, Philippines
| | - Ben Joshua O Porras
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Metro Manila 1101, Philippines
| | - Dave Laurence A Juntilla
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Metro Manila 1101, Philippines
| | - Lara Beatrice L Suñga
- Institute of Chemistry, University of the Philippines Diliman, Metro Manila 1101, Philippines
| | - Venus B Pondevida
- Institute of Chemistry, University of the Philippines Diliman, Metro Manila 1101, Philippines
| | - Sullian S Naval
- Lung Center of the Philippines, Metro Manila 1100, Philippines
| | | | | | - Eloise I Prieto
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Metro Manila 1101, Philippines
| |
Collapse
|
2
|
Tang W, Gao Y, Hong S, Wang S. GFPT1 accelerates immune escape in breast cancer by modifying PD-L1 via O-glycosylation. BMC Cancer 2024; 24:1071. [PMID: 39210323 PMCID: PMC11363670 DOI: 10.1186/s12885-024-12811-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Immune escape is one of the causes of poor prognosis in breast cancer (BC). Glutamine-fructose-6-phosphate transaminase 1 (GFPT1) is the first speed-limiting enzyme of the hexosamine biosynthesis pathway (HBP) and is essential for the progression of BC. Nevertheless, the mechanism of the influence of GFPT1 in BC immune escape is not clear. METHODS First, the level of GFPT1 in BC was analyzed by starbase, and GFPT1 expression in BC tissues was measured by qRT-PCR, western blot and IHC. Then, the O-GlcNAc levels were detected by western blot. Thereafter, Co-IP was applied to examine the relationship between GFPT1 and PD-L1. At last, a mouse model was constructed for validation in vivo. RESULTS Firstly, we discovered that GFPT1 was obviously strengthened in BC. Knockdown or introduction of GFPT1 correspondingly degraded and elevated O-GlcNAc levels in cells. Further researches revealed that there was a reciprocal relationship between GFPT1 and PD-L1. Mechanistically, we disclosed that GFPT1 enhanced PD-L1 protein stability through O-glycosylation. More interestingly, GFPT1 accelerated BC cell immune escape via upregulation of O-glycosylation-modified PD-L1. In vivo, silencing of GFPT1 attenuated immune escape of BC cells by reducing PD-L1 levels. CONCLUSION GFPT1 promoted BC progression and immune escape via O-glycosylation-modified PD-L1. GFPT1 may be a potential target for BC therapy.
Collapse
Affiliation(s)
- Weifang Tang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, No. 107, East Huanhu Road, Hefei, Anhui, 230001, China
| | - Yuan Gao
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, No. 107, East Huanhu Road, Hefei, Anhui, 230001, China
| | - Shikai Hong
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, No. 107, East Huanhu Road, Hefei, Anhui, 230001, China
| | - Shengying Wang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, No. 107, East Huanhu Road, Hefei, Anhui, 230001, China.
| |
Collapse
|
3
|
Duan Z, Shi R, Gao B, Cai J. N-linked glycosylation of PD-L1/PD-1: an emerging target for cancer diagnosis and treatment. J Transl Med 2024; 22:705. [PMID: 39080767 PMCID: PMC11290144 DOI: 10.1186/s12967-024-05502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
During tumorigenesis and progression, the immune checkpoint programmed death-1 (PD-1) and its ligand programmed death ligand-1 (PD-L1) play critical roles in suppressing T cell-mediated anticancer immune responses, leading to T-cell exhaustion and subsequent tumor evasion. Therefore, anti-PD-L1/PD-1 therapy has been an attractive strategy for treating cancer over the past decade. However, the overall efficacy of this approach remains suboptimal, revealing an urgent need for novel insights. Interestingly, increasing evidence indicates that both PD-L1 on tumor cells and PD-1 on tumor-specific T cells undergo extensive N-linked glycosylation, which is essential for the stability and interaction of these proteins, and this modification promotes tumor evasion. In various preclinical models, targeting the N-linked glycosylation of PD-L1/PD-1 was shown to significantly increase the efficacy of PD-L1/PD-1 blockade therapy. Furthermore, deglycosylation of PD-L1 strengthens the signal intensity in PD-L1 immunohistochemistry (IHC) assays, improving the diagnostic and therapeutic relevance of this protein. In this review, we provide an overview of the regulatory mechanisms underlying the N-linked glycosylation of PD-L1/PD-1 as well as the crucial role of N-linked glycosylation in PD-L1/PD-1-mediated immune evasion. In addition, we highlight the promising implications of targeting the N-linked glycosylation of PD-L1/PD-1 in the clinical diagnosis and treatment of cancer. Our review identifies knowledge gaps and sheds new light on the cancer research field.
Collapse
Affiliation(s)
- Zhiyun Duan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, P.R. China
| | - Runhan Shi
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, P.R. China
- Department of Ophthalmology and Vision Science, Shanghai Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, P.R. China
| | - Bo Gao
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, P.R. China
| | - Jiabin Cai
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Fudan University, Shanghai, 200032, P.R. China.
- Department of Liver Surgery, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, 361015, P.R. China.
| |
Collapse
|
4
|
Wang R, He S, Long J, Wang Y, Jiang X, Chen M, Wang J. Emerging therapeutic frontiers in cancer: insights into posttranslational modifications of PD-1/PD-L1 and regulatory pathways. Exp Hematol Oncol 2024; 13:46. [PMID: 38654302 DOI: 10.1186/s40164-024-00515-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
The interaction between programmed cell death ligand 1 (PD-L1), which is expressed on the surface of tumor cells, and programmed cell death 1 (PD-1), which is expressed on T cells, impedes the effective activation of tumor antigen-specific T cells, resulting in the evasion of tumor cells from immune-mediated killing. Blocking the PD-1/PD-L1 signaling pathway has been shown to be effective in preventing tumor immune evasion. PD-1/PD-L1 blocking antibodies have garnered significant attention in recent years within the field of tumor treatments, given the aforementioned mechanism. Furthermore, clinical research has substantiated the efficacy and safety of this immunotherapy across various tumors, offering renewed optimism for patients. However, challenges persist in anti-PD-1/PD-L1 therapies, marked by limited indications and the emergence of drug resistance. Consequently, identifying additional regulatory pathways and molecules associated with PD-1/PD-L1 and implementing judicious combined treatments are imperative for addressing the intricacies of tumor immune mechanisms. This review briefly outlines the structure of the PD-1/PD-L1 molecule, emphasizing the posttranslational modification regulatory mechanisms and related targets. Additionally, a comprehensive overview on the clinical research landscape concerning PD-1/PD-L1 post-translational modifications combined with PD-1/PD-L1 blocking antibodies to enhance outcomes for a broader spectrum of patients is presented based on foundational research.
Collapse
Affiliation(s)
- Rong Wang
- Department of Pathology, Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian, China
| | - Shiwei He
- School of Basic Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jun Long
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China.
| | - Yian Wang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Mingfen Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, Fujian, China
| | - Jie Wang
- Department of Pathology, Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
5
|
Zhang F, Jiang R, Sun S, Wu C, Yu Q, Awadasseid A, Wang J, Zhang W. Recent advances and mechanisms of action of PD-L1 degraders as potential therapeutic agents. Eur J Med Chem 2024; 268:116267. [PMID: 38422701 DOI: 10.1016/j.ejmech.2024.116267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/01/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
PD-L1 is an important immune checkpoint protein that can bind to T cells' PD-1 receptor, thereby promoting immune escape from tumors. In recent years, many researchers have developed strategies to degrade PD-L1 to improve the effect of immunotherapy. The study of degrading PD-L1 provides new opportunities for immunotherapy. Here, we mainly summarize and review the current active molecules and mechanisms that mediate the degradation of immature and mature PD-L1 during the post-translational modification stages, involving PD-L1 phosphorylation, glycosylation, palmitoylation, ubiquitination, and the autophagy-lysosomal process. This review expects that by degrading PD-L1 protein, we will not only gain a better understanding of oncogenic mechanisms involving tumor PD-L1 protein but also provide a new way to improve immunotherapy.
Collapse
Affiliation(s)
- Feng Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ruiya Jiang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shishi Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Caiyun Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qimeng Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Annoor Awadasseid
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China; Moganshan Institute, Zhejiang University of Technology, Deqing, China
| | - Jianwei Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Wen Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
6
|
Kim D, Min D, Kim J, Kim MJ, Seo Y, Jung BH, Kwon SH, Ro H, Lee S, Sa JK, Lee JY. Nutlin-3a induces KRAS mutant/p53 wild type lung cancer specific methuosis-like cell death that is dependent on GFPT2. J Exp Clin Cancer Res 2023; 42:338. [PMID: 38093368 PMCID: PMC10720203 DOI: 10.1186/s13046-023-02922-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Oncogenic KRAS mutation, the most frequent mutation in non-small cell lung cancer (NSCLC), is an aggressiveness risk factor and leads to the metabolic reprogramming of cancer cells by promoting glucose, glutamine, and fatty acid absorption and glycolysis. Lately, sotorasib was approved by the FDA as a first-in-class KRAS-G12C inhibitor. However, sotorasib still has a derivative barrier, which is not effective for other KRAS mutation types, except for G12C. Additionally, resistance to sotorasib is likely to develop, demanding the need for alternative therapeutic strategies. METHODS KRAS mutant, and wildtype NSCLC cells were used in vitro cell analyses. Cell viability, proliferation, and death were measured by MTT, cell counting, colony analyses, and annexin V staining for FACS. Cell tracker dyes were used to investigate cell morphology, which was examined by holotomograpy, and confocal microscopes. RNA sequencing was performed to identify key target molecule or pathway, which was confirmed by qRT-PCR, western blotting, and metabolite analyses by UHPLC-MS/MS. Zebrafish and mouse xenograft model were used for in vivo analysis. RESULTS In this study, we found that nutlin-3a, an MDM2 antagonist, inhibited the KRAS-PI3K/Akt-mTOR pathway and disrupted the fusion of both autophagosomes and macropinosomes with lysosomes. This further elucidated non-apoptotic and catastrophic macropinocytosis associated methuosis-like cell death, which was found to be dependent on GFPT2 of the hexosamine biosynthetic pathway, specifically in KRAS mutant /p53 wild type NSCLC cells. CONCLUSION These results indicate the potential of nutlin-3a as an alternative agent for treating KRAS mutant/p53 wild type NSCLC cells.
Collapse
Affiliation(s)
- Dasom Kim
- Department of Pathology, Korea University College of Medicine, 73, Goryeodae-Ro, Seongbuk-Gu, Seoul, 02841, South Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Dongwha Min
- Department of Pathology, Korea University College of Medicine, 73, Goryeodae-Ro, Seongbuk-Gu, Seoul, 02841, South Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Joohee Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, South Korea
| | - Min Jung Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, South Korea
| | - Yerim Seo
- Center for Advanced Biomolecular Recognition, Korea Instiute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Byung Hwa Jung
- Center for Advanced Biomolecular Recognition, Korea Instiute of Science and Technology (KIST), Seoul, 02792, Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, South Korea
| | - Seung-Hae Kwon
- Korea Basic Science Institute, Seoul Center, Seoul, South Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Korea
| | - Seoee Lee
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Korea
| | - Jason K Sa
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea
| | - Ji-Yun Lee
- Department of Pathology, Korea University College of Medicine, 73, Goryeodae-Ro, Seongbuk-Gu, Seoul, 02841, South Korea.
| |
Collapse
|
7
|
Zou Y, Liu Z, Liu W, Liu Z. Current knowledge and potential intervention of hexosamine biosynthesis pathway in lung cancer. World J Surg Oncol 2023; 21:334. [PMID: 37880766 PMCID: PMC10601224 DOI: 10.1186/s12957-023-03226-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/14/2023] [Indexed: 10/27/2023] Open
Abstract
Lung cancer is a highly prevalent malignancy characterized by significant metabolic alterations. Understanding the metabolic rewiring in lung cancer is crucial for the development of effective therapeutic strategies. The hexosamine biosynthesis pathway (HBP) is a metabolic pathway that plays a vital role in cellular metabolism and has been implicated in various cancers, including lung cancer. Abnormal activation of HBP is involved in the proliferation, progression, metastasis, and drug resistance of tumor cells. In this review, we will discuss the function and regulation of metabolic enzymes related to HBP in lung cancer. Furthermore, the implications of targeting the HBP for lung cancer treatment are also discussed, along with the challenges and future directions in this field. This review provides a comprehensive understanding of the role and intervention of HBP in lung cancer. Future research focusing on the HBP in lung cancer is essential to uncover novel treatment strategies and improve patient outcomes.
Collapse
Affiliation(s)
- Yi Zou
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Zongkai Liu
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Wenjia Liu
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Zhaidong Liu
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China.
| |
Collapse
|
8
|
Feng C, Zhang L, Chang X, Qin D, Zhang T. Regulation of post-translational modification of PD-L1 and advances in tumor immunotherapy. Front Immunol 2023; 14:1230135. [PMID: 37554324 PMCID: PMC10405826 DOI: 10.3389/fimmu.2023.1230135] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
The immune checkpoint molecules programmed cell death receptor 1 (PD-1) and programmed death ligand 1 (PD-L1) are one of the most promising targets for tumor immunotherapy. PD-L1 is overexpressed on the surface of tumor cells and inhibits T cell activation upon binding to PD⁃1 on the surface of T cells, resulting in tumor immune escape. The therapeutic strategy of targeting PD-1/PD-L1 involves blocking this binding and restoring the tumor-killing effect of immune cells. However, in clinical settings, a relatively low proportion of cancer patients have responded well to PD-1/PD-L1 blockade, and clinical outcomes have reached a bottleneck and no substantial progress has been made. In recent years, PD-L1 post-translation modifications (PTMs) have gradually become a hot topic in the field of PD-L1 research, which will provide new insights to improve the efficacy of current anti-PD-1/PD-L1 therapies. Here, we summarized and discussed multiple PTMs of PD-L1, including glycosylation, ubiquitination, phosphorylation, acetylation and palmitoylation, with a major emphasis on mechanism-based therapeutic strategies (including relevant enzymes and targets that are already in clinical use and that may become drugs in the future). We also summarized the latest research progress of PTMs of PD-L1/PD-1 in regulating immunotherapy. The review provided novel strategies and directions for tumor immunotherapy research based on the PTMs of PD-L1/PD-1.
Collapse
Affiliation(s)
- Chong Feng
- Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Lening Zhang
- Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xin Chang
- Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Dongliang Qin
- Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Tao Zhang
- Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
9
|
Paneque A, Fortus H, Zheng J, Werlen G, Jacinto E. The Hexosamine Biosynthesis Pathway: Regulation and Function. Genes (Basel) 2023; 14:genes14040933. [PMID: 37107691 PMCID: PMC10138107 DOI: 10.3390/genes14040933] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The hexosamine biosynthesis pathway (HBP) produces uridine diphosphate-N-acetyl glucosamine, UDP-GlcNAc, which is a key metabolite that is used for N- or O-linked glycosylation, a co- or post-translational modification, respectively, that modulates protein activity and expression. The production of hexosamines can occur via de novo or salvage mechanisms that are catalyzed by metabolic enzymes. Nutrients including glutamine, glucose, acetyl-CoA, and UTP are utilized by the HBP. Together with availability of these nutrients, signaling molecules that respond to environmental signals, such as mTOR, AMPK, and stress-regulated transcription factors, modulate the HBP. This review discusses the regulation of GFAT, the key enzyme of the de novo HBP, as well as other metabolic enzymes that catalyze the reactions to produce UDP-GlcNAc. We also examine the contribution of the salvage mechanisms in the HBP and how dietary supplementation of the salvage metabolites glucosamine and N-acetylglucosamine could reprogram metabolism and have therapeutic potential. We elaborate on how UDP-GlcNAc is utilized for N-glycosylation of membrane and secretory proteins and how the HBP is reprogrammed during nutrient fluctuations to maintain proteostasis. We also consider how O-GlcNAcylation is coupled to nutrient availability and how this modification modulates cell signaling. We summarize how deregulation of protein N-glycosylation and O-GlcNAcylation can lead to diseases including cancer, diabetes, immunodeficiencies, and congenital disorders of glycosylation. We review the current pharmacological strategies to inhibit GFAT and other enzymes involved in the HBP or glycosylation and how engineered prodrugs could have better therapeutic efficacy for the treatment of diseases related to HBP deregulation.
Collapse
Affiliation(s)
- Alysta Paneque
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Harvey Fortus
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Julia Zheng
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Guy Werlen
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
10
|
Dysregulation of hexosamine biosynthetic pathway wiring metabolic signaling circuits in cancer. Biochim Biophys Acta Gen Subj 2023; 1867:130250. [PMID: 36228878 DOI: 10.1016/j.bbagen.2022.130250] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022]
Abstract
Metabolite sensing, a fundamental biological process, plays a key role in metabolic signaling circuit rewiring. Hexosamine biosynthetic pathway (HBP) is a glucose metabolic pathway essential for the synthesis of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), which senses key nutrients and integrally maintains cellular homeostasis. UDP-GlcNAc dynamically regulates protein N-glycosylation and O-linked-N-acetylglucosamine modification (O-GlcNAcylation). Dysregulated HBP flux leads to abnormal protein glycosylation, and contributes to cancer development and progression by affecting protein function and cellular signaling. Furthermore, O-GlcNAcylation regulates cellular signaling pathways, and its alteration is linked to various cancer characteristics. Additionally, recent findings have suggested a close association between HBP stimulation and cancer stemness; an elevated HBP flux promotes cancer cell conversion to cancer stem cells and enhances chemotherapy resistance via downstream signal activation. In this review, we highlight the prominent roles of HBP in metabolic signaling and summarize the recent advances in HBP and its downstream signaling, relevant to cancer.
Collapse
|
11
|
Cao P, Yang X, Liu D, Ye S, Yang W, Xie Z, Lei X. Research progress of
PD‐L1
non‐glycosylation in cancer immunotherapy. Scand J Immunol 2022. [DOI: 10.1111/sji.13205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pu Cao
- School of Pharmacy, Hengyang Medical College, University of South China Hengyang Hunan P.R. China
| | - Xiaoyan Yang
- School of Pharmacy, Hengyang Medical College, University of South China Hengyang Hunan P.R. China
| | - Daquan Liu
- School of Pharmacy, Hengyang Medical College, University of South China Hengyang Hunan P.R. China
| | - Simin Ye
- School of Pharmacy, Hengyang Medical College, University of South China Hengyang Hunan P.R. China
| | - Wei Yang
- School of Pharmacy, Hengyang Medical College, University of South China Hengyang Hunan P.R. China
| | - Zhizhong Xie
- School of Pharmacy, Hengyang Medical College, University of South China Hengyang Hunan P.R. China
| | - Xiaoyong Lei
- School of Pharmacy, Hengyang Medical College, University of South China Hengyang Hunan P.R. China
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China Hengyang Hunan P.R. China
| |
Collapse
|
12
|
Hsu YS, Wu PJ, Jeng YM, Hu CM, Lee WH. Differential effects of glucose and N-acetylglucosamine on genome instability. Am J Cancer Res 2022; 12:1556-1576. [PMID: 35530290 PMCID: PMC9077085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023] Open
Abstract
Aberrant sugar metabolism is linked to an increased risk of pancreatic cancer. Previously, we found that high glucose induces genome instability and de novo oncogenic KRAS mutation preferentially in pancreatic cells through dysregulation of O-GlcNAcylation. Increasing O-GlcNAcylation by extrinsically supplying N-acetyl-D-glucosamine (GlcNAc) causes genome instability in all kinds of cell types regardless of pancreatic origin. Since many people consume excessive amount of sugar (glucose, fructose, and sucrose) in daily life, whether high sugar consumption directly causes genome instability in animals remains to be elucidated. In this communication, we show that excess sugar in the daily drink increases DNA damage and protein O-GlcNAcylation preferentially in pancreatic tissue but not in other kinds of tissue of mice. The effect of high sugar on the pancreatic tissue may be attributed to the intrinsic ratio of GFAT and PFK activity, a limiting factor that dictates UDP-GlcNAc levels. On the other hand, GlcNAc universally induces DNA damage in all six organs examined. Either inhibiting O-GlcNAcylation or supplementing dNTP pool diminishes the induced DNA damage in these organs, indicating that the mechanism of action is similar to that of high glucose treatment in pancreatic cells. Taken together, these results suggest the potential hazards of high sugar drinks and high glucosamine intake to genomic instability and possibly cancer initiation.
Collapse
Affiliation(s)
- Yuan-Sheng Hsu
- Graduate Institute of Biomedical Science, China Medical UniversityTaichung 40402, Taiwan
- Genomics Research Center, Academia SinicaTaipei 11529, Taiwan
| | - Pei-Jung Wu
- Genomics Research Center, Academia SinicaTaipei 11529, Taiwan
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University Hospital, Graduate Institute of Pathology, College of Medicine, National Taiwan UniversityTaipei 10041, Taiwan
| | - Chun-Mei Hu
- Graduate Institute of Biomedical Science, China Medical UniversityTaichung 40402, Taiwan
- Genomics Research Center, Academia SinicaTaipei 11529, Taiwan
| | - Wen-Hwa Lee
- Genomics Research Center, Academia SinicaTaipei 11529, Taiwan
- Drug Development Center, China Medical UniversityTaichung 40402, Taiwan
- Department of Biological Chemistry, University of CaliforniaIrvine, California 92697, USA
| |
Collapse
|
13
|
Tang E, Liu S, Zhang Z, Zhang R, Huang D, Gao T, Zhang T, Xu G. Therapeutic Potential of Glutamine Pathway in Lung Cancer. Front Oncol 2022; 11:835141. [PMID: 35223460 PMCID: PMC8873175 DOI: 10.3389/fonc.2021.835141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/31/2021] [Indexed: 12/31/2022] Open
Abstract
Cancer cells tend to obtain the substances needed for their development depending on altering metabolic characteristics. Among the reorganized metabolic pathways, Glutamine pathway, reprogrammed to be involved in the physiological process including energy supply, biosynthesis and redox homeostasis, occupies an irreplaceable role in tumor cells and has become a hot topic in recent years. Lung cancer currently maintains a high morbidity and mortality rate among all types of tumors and has been a health challenge that researchers have longed to overcome. Therefore, this study aimed to clarify the essential role of glutamine pathway played in the metabolism of lung cancer and its potential therapeutic value in the interventions of lung cancer.
Collapse
|
14
|
Li H, Zhao S, Chen X, Feng G, Chen Z, Fan S. MiR-145 modulates the radiosensitivity of non-small cell lung cancer cells by suppression of TMOD3. Carcinogenesis 2021; 43:288-296. [PMID: 34888652 DOI: 10.1093/carcin/bgab121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 12/18/2022] Open
Abstract
Radioresistance is a major problem encountered in the treatment of non-small cell lung cancer (NSCLC). Aberrant microRNA (miRNA) expression contributes to multiple cancer‑associated signaling pathways, and profoundly influences effects of radiotherapy (RT) in cancers. MicroRNA-145-5p (miR-145) is recognized as a tumor suppresser in NSCLC. However, the roles of miR-145 during radiotherapy of NSCLC are largely unknown. The present study aimed to investigate the function and underlying mechanism of miR-145 in modulation of radiosensitivity in NSCLC. We generated radioresistant H460 and A549 subclones, named H460R and A549R, respectively, and found that irradiation (IR) could suppress the expression levels of miR-145 in radioresistant NSCLC cells. Furthermore, overexpression of miR-145 could sensitize radioresistant NSCLC cells to IR, while knockdown of miR-145 in NSCLC cells acted the converse manner. Mechanically, miR-145 was able to directly target 3'UTR of tropomodulin 3 (TMOD3) mRNA and decrease the expression of TMOD3 at the levels of mRNA and protein. Additionally, we confirmed that miR-145 could enhance the radiosensitivity of radioresistant NSCLC cells by targeting TMOD3 in vitro and in vivo, and could be used as a target in clinical treatment of NSCLC. Collectively, restoration of miR-145 expression increases the radiosensitivity of radioresistant NSCLC cells by suppression of TMOD3, and miR-145 can act as a new radiosensitizer for NSCLC therapy.
Collapse
Affiliation(s)
- Hang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Shuya Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Xin Chen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Guoxing Feng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Zhiyuan Chen
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| |
Collapse
|