1
|
Barrera-Lopez JF, Cumplido-Laso G, Olivera-Gomez M, Garrido-Jimenez S, Diaz-Chamorro S, Mateos-Quiros CM, Benitez DA, Centeno F, Mulero-Navarro S, Roman AC, Carvajal-Gonzalez JM. Early Atf4 activity drives airway club and goblet cell differentiation. Life Sci Alliance 2024; 7:e202302284. [PMID: 38176727 PMCID: PMC10766780 DOI: 10.26508/lsa.202302284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024] Open
Abstract
Activating transcription factor 4 (Atf4), which is modulated by the protein kinase RNA-like ER kinase (PERK), is a stress-induced transcription factor responsible for controlling the expression of a wide range of adaptive genes, enabling cells to withstand stressful conditions. However, the impact of the Atf4 signaling pathway on airway regeneration remains poorly understood. In this study, we used mouse airway epithelial cell culture models to investigate the role of PERK/Atf4 in respiratory tract differentiation. Through pharmacological inhibition and silencing of ATF4, we uncovered the crucial involvement of PERK/Atf4 in the differentiation of basal stem cells, leading to a reduction in the number of secretory cells. ChIP-seq analysis revealed direct binding of ATF4 to regulatory elements of genes associated with osteoblast differentiation and secretory cell function. Our findings provide valuable insights into the role of ATF4 in airway epithelial differentiation and its potential involvement in innate immune responses and cellular adaptation to stress.
Collapse
Affiliation(s)
- Juan F Barrera-Lopez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Guadalupe Cumplido-Laso
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Marcos Olivera-Gomez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Sergio Garrido-Jimenez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Selene Diaz-Chamorro
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Clara M Mateos-Quiros
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Dixan A Benitez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Francisco Centeno
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Sonia Mulero-Navarro
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Angel C Roman
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Jose M Carvajal-Gonzalez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
2
|
Opitz CA, Holfelder P, Prentzell MT, Trump S. The complex biology of aryl hydrocarbon receptor activation in cancer and beyond. Biochem Pharmacol 2023; 216:115798. [PMID: 37696456 PMCID: PMC10570930 DOI: 10.1016/j.bcp.2023.115798] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
The aryl hydrocarbon receptor (AHR) signaling pathway is a complex regulatory network that plays a critical role in various biological processes, including cellular metabolism, development, and immune responses. The complexity of AHR signaling arises from multiple factors, including the diverse ligands that activate the receptor, the expression level of AHR itself, and its interaction with the AHR nuclear translocator (ARNT). Additionally, the AHR crosstalks with the AHR repressor (AHRR) or other transcription factors and signaling pathways and it can also mediate non-genomic effects. Finally, posttranslational modifications of the AHR and its interaction partners, epigenetic regulation of AHR and its target genes, as well as AHR-mediated induction of enzymes that degrade AHR-activating ligands may contribute to the context-specificity of AHR activation. Understanding the complexity of AHR signaling is crucial for deciphering its physiological and pathological roles and developing therapeutic strategies targeting this pathway. Ongoing research continues to unravel the intricacies of AHR signaling, shedding light on the regulatory mechanisms controlling its diverse functions.
Collapse
Affiliation(s)
- Christiane A Opitz
- German Cancer Research Center (DKFZ), Heidelberg, Division of Metabolic Crosstalk in Cancer and the German Cancer Consortium (DKTK), DKFZ Core Center Heidelberg, 69120 Heidelberg, Germany; Neurology Clinic and National Center for Tumor Diseases, 69120 Heidelberg, Germany.
| | - Pauline Holfelder
- German Cancer Research Center (DKFZ), Heidelberg, Division of Metabolic Crosstalk in Cancer and the German Cancer Consortium (DKTK), DKFZ Core Center Heidelberg, 69120 Heidelberg, Germany; Faculty of Bioscience, Heidelberg University, 69120 Heidelberg, Germany
| | - Mirja Tamara Prentzell
- German Cancer Research Center (DKFZ), Heidelberg, Division of Metabolic Crosstalk in Cancer and the German Cancer Consortium (DKTK), DKFZ Core Center Heidelberg, 69120 Heidelberg, Germany; Faculty of Bioscience, Heidelberg University, 69120 Heidelberg, Germany
| | - Saskia Trump
- Molecular Epidemiology Unit, Berlin Institute of Health at Charité and the German Cancer Consortium (DKTK), Partner Site Berlin, a partnership between DKFZ and Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
3
|
Farooqi AA, Rakhmetova V, Kapanova G, Tanbayeva G, Mussakhanova A, Abdykulova A, Ryskulova AG. Role of Ubiquitination and Epigenetics in the Regulation of AhR Signaling in Carcinogenesis and Metastasis: "Albatross around the Neck" or "Blessing in Disguise". Cells 2023; 12:2382. [PMID: 37830596 PMCID: PMC10571945 DOI: 10.3390/cells12192382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
The molecular mechanisms and signal transduction cascades evoked by the activation of aryl hydrocarbon receptor (AhR) are becoming increasingly understandable. AhR is a ligand-activated transcriptional factor that integrates environmental, dietary and metabolic cues for the pleiotropic regulation of a wide variety of mechanisms. AhR mediates transcriptional programming in a ligand-specific, context-specific and cell-type-specific manner. Pioneering cutting-edge research works have provided fascinating new insights into the mechanistic role of AhR-driven downstream signaling in a wide variety of cancers. AhR ligands derived from food, environmental contaminants and intestinal microbiota strategically activated AhR signaling and regulated multiple stages of cancer. Although AhR has classically been viewed and characterized as a ligand-regulated transcriptional factor, its role as a ubiquitin ligase is fascinating. Accordingly, recent evidence has paradigmatically shifted our understanding and urged researchers to drill down deep into these novel and clinically valuable facets of AhR biology. Our rapidly increasing realization related to AhR-mediated regulation of the ubiquitination and proteasomal degradation of different proteins has started to scratch the surface of intriguing mechanisms. Furthermore, AhR and epigenome dynamics have shown previously unprecedented complexity during multiple stages of cancer progression. AhR not only transcriptionally regulated epigenetic-associated molecules, but also worked with epigenetic-modifying enzymes during cancer progression. In this review, we have summarized the findings obtained not only from cell-culture studies, but also from animal models. Different clinical trials are currently being conducted using AhR inhibitors and PD-1 inhibitors (Pembrolizumab and nivolumab), which confirm the linchpin role of AhR-related mechanistic details in cancer progression. Therefore, further studies are required to develop a better comprehension of the many-sided and "diametrically opposed" roles of AhR in the regulation of carcinogenesis and metastatic spread of cancer cells to the secondary organs.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Venera Rakhmetova
- Department of Internal Diseases, Medical University of Astana, Astana 010000, Kazakhstan
| | - Gulnara Kapanova
- Faculty of Medicine and healthcare, Al-Farabi Kazakh National University, 71 Al-Farabi Ave, Almaty 050040, Kazakhstan (G.T.)
- Scientific Center of Anti-Infectious Drugs, 75 Al-Farabi Ave, Almaty 050040, Kazakhstan
| | - Gulnur Tanbayeva
- Faculty of Medicine and healthcare, Al-Farabi Kazakh National University, 71 Al-Farabi Ave, Almaty 050040, Kazakhstan (G.T.)
| | - Akmaral Mussakhanova
- Department of Public Health and Management, Astana Medical University, Astana 010000, Kazakhstan;
| | - Akmaral Abdykulova
- Department of General Medical Practice, General Medicine Faculty, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan;
| | - Alma-Gul Ryskulova
- Department of Public Health and Social Sciences, Kazakhstan Medical University “KSPH”, Utenos Str. 19A, Almaty 050060, Kazakhstan;
| |
Collapse
|
4
|
Salminen A. Aryl hydrocarbon receptor (AhR) impairs circadian regulation: impact on the aging process. Ageing Res Rev 2023; 87:101928. [PMID: 37031728 DOI: 10.1016/j.arr.2023.101928] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/23/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Circadian clocks control the internal sleep-wake rhythmicity of 24hours which is synchronized by the solar cycle. Circadian regulation of metabolism evolved about 2.5 billion years ago, i.e., the rhythmicity has been conserved from cyanobacteria and Archaea through to mammals although the mechanisms utilized have developed with evolution. While the aryl hydrocarbon receptor (AhR) is an evolutionarily conserved defence mechanism against environmental threats, it has gained many novel functions during evolution, such as the regulation of cell cycle, proteostasis, and many immune functions. There is robust evidence that AhR signaling impairs circadian rhythmicity, e.g., by interacting with the core BMAL1/CLOCK complex and disturbing the epigenetic regulation of clock genes. The maintenance of circadian rhythms is impaired with aging, disturbing metabolism and many important functions in aged organisms. Interestingly, it is known that AhR signaling promotes an age-related tissue degeneration, e.g., it is able to inhibit autophagy, enhance cellular senescence, and disrupt extracellular matrix. These alterations are rather similar to those induced by a long-term impairment of circadian rhythms. However, it is not known whether AhR signaling enhances the aging process by impairing circadian homeostasis. I will examine the experimental evidence indicating that AhR signaling is able to promote the age-related degeneration via a disruption of circadian rhythmicity.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
5
|
Wang J, Zhu N, Su X, Gao Y, Yang R. Gut-Microbiota-Derived Metabolites Maintain Gut and Systemic Immune Homeostasis. Cells 2023; 12:cells12050793. [PMID: 36899929 PMCID: PMC10000530 DOI: 10.3390/cells12050793] [Citation(s) in RCA: 173] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The gut microbiota, including bacteria, archaea, fungi, viruses and phages, inhabits the gastrointestinal tract. This commensal microbiota can contribute to the regulation of host immune response and homeostasis. Alterations of the gut microbiota have been found in many immune-related diseases. The metabolites generated by specific microorganisms in the gut microbiota, such as short-chain fatty acids (SCFAs), tryptophan (Trp) and bile acid (BA) metabolites, not only affect genetic and epigenetic regulation but also impact metabolism in the immune cells, including immunosuppressive and inflammatory cells. The immunosuppressive cells (such as tolerogenic macrophages (tMacs), tolerogenic dendritic cells (tDCs), myeloid-derived suppressive cells (MDSCs), regulatory T cells (Tregs), regulatory B cells (Breg) and innate lymphocytes (ILCs)) and inflammatory cells (such as inflammatory Macs (iMacs), DCs, CD4 T helper (Th)1, CD4Th2, Th17, natural killer (NK) T cells, NK cells and neutrophils) can express different receptors for SCFAs, Trp and BA metabolites from different microorganisms. Activation of these receptors not only promotes the differentiation and function of immunosuppressive cells but also inhibits inflammatory cells, causing the reprogramming of the local and systemic immune system to maintain the homeostasis of the individuals. We here will summarize the recent advances in understanding the metabolism of SCFAs, Trp and BA in the gut microbiota and the effects of SCFAs, Trp and BA metabolites on gut and systemic immune homeostasis, especially on the differentiation and functions of the immune cells.
Collapse
Affiliation(s)
- Juanjuan Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Ningning Zhu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Xiaomin Su
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Yunhuan Gao
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Correspondence:
| |
Collapse
|
6
|
From Nucleus to Organs: Insights of Aryl Hydrocarbon Receptor Molecular Mechanisms. Int J Mol Sci 2022; 23:ijms232314919. [PMID: 36499247 PMCID: PMC9738205 DOI: 10.3390/ijms232314919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a markedly established regulator of a plethora of cellular and molecular processes. Its initial role in the detoxification of xenobiotic compounds has been partially overshadowed by its involvement in homeostatic and organ physiology processes. In fact, the discovery of its ability to bind specific target regulatory sequences has allowed for the understanding of how AHR modulates such processes. Thereby, AHR presents functions in transcriptional regulation, chromatin architecture modifications and participation in different key signaling pathways. Interestingly, such fields of influence end up affecting organ and tissue homeostasis, including regenerative response both to endogenous and exogenous stimuli. Therefore, from classical spheres such as canonical transcriptional regulation in embryonic development, cell migration, differentiation or tumor progression to modern approaches in epigenetics, senescence, immune system or microbiome, this review covers all aspects derived from the balance between regulation/deregulation of AHR and its physio-pathological consequences.
Collapse
|
7
|
Salminen A. Aryl hydrocarbon receptor (AhR) reveals evidence of antagonistic pleiotropy in the regulation of the aging process. Cell Mol Life Sci 2022; 79:489. [PMID: 35987825 PMCID: PMC9392714 DOI: 10.1007/s00018-022-04520-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/14/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022]
Abstract
The antagonistic pleiotropy hypothesis is a well-known evolutionary theory to explain the aging process. It proposes that while a particular gene may possess beneficial effects during development, it can exert deleterious properties in the aging process. The aryl hydrocarbon receptor (AhR) has a significant role during embryogenesis, but later in life, it promotes several age-related degenerative processes. For instance, AhR factor (i) controls the pluripotency of stem cells and the stemness of cancer stem cells, (ii) it enhances the differentiation of embryonal stem cells, especially AhR signaling modulates the differentiation of hematopoietic stem cells and progenitor cells, (iii) it also stimulates the differentiation of immunosuppressive Tregs, Bregs, and M2 macrophages, and finally, (iv) AhR signaling participates in the differentiation of many peripheral tissues. On the other hand, AhR signaling is involved in many processes promoting cellular senescence and pathological processes, e.g., osteoporosis, vascular dysfunction, and the age-related remodeling of the immune system. Moreover, it inhibits autophagy and aggravates extracellular matrix degeneration. AhR signaling also stimulates oxidative stress, promotes excessive sphingolipid synthesis, and disturbs energy metabolism by catabolizing NAD+ degradation. The antagonistic pleiotropy of AhR signaling is based on the complex and diverse connections with major signaling pathways in a context-dependent manner. The major regulatory steps include, (i) a specific ligand-dependent activation, (ii) modulation of both genetic and non-genetic responses, (iii) a competition and crosstalk with several transcription factors, such as ARNT, HIF-1α, E2F1, and NF-κB, and (iv) the epigenetic regulation of target genes with binding partners. Thus, not only mTOR signaling but also the AhR factor demonstrates antagonistic pleiotropy in the regulation of the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
8
|
Akhtar S, Hourani S, Therachiyil L, Al-Dhfyan A, Agouni A, Zeidan A, Uddin S, Korashy HM. Epigenetic Regulation of Cancer Stem Cells by the Aryl Hydrocarbon Receptor Pathway. Semin Cancer Biol 2022; 83:177-196. [PMID: 32877761 DOI: 10.1016/j.semcancer.2020.08.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 12/14/2022]
Abstract
Compelling evidence has demonstrated that tumor bulk comprises distinctive subset of cells generally referred as cancer stem cells (CSCs) that have been proposed as a strong sustainer and promoter of tumorigenesis and therapeutic resistance. These distinguished properties of CSCs have raised interest in understanding the molecular mechanisms that govern the maintenance of these cells. Numerous experimental and epidemiological studies have demonstrated that exposure to environmental toxins such as the polycyclic aromatic hydrocarbons (PAHs) is strongly involved in cancer initiation and progression. The PAH-induced carcinogenesis is shown to be mediated through the activation of a cytosolic receptor, aryl hydrocarbon receptor (AhR)/Cytochrome P4501A pathway, suggesting a possible direct link between AhR and CSCs. Several recent studies have investigated the role of AhR in CSCs self-renewal and maintenance, however the molecular mechanisms and particularly the epigenetic regulations of CSCs by the AhR/CYP1A pathway have not been reviewed before. In this review, we first summarize the crosstalk between AhR and cancer genetics, with a particular emphasis on the mechanisms relevant to CSCs such as Wnt/β-catenin, Notch, NF-κB, and PTEN-PI3K/Akt signaling pathways. The second part of this review discusses the recent advances and studies highlighting the epigenetic mechanisms mediated by the AhR/CYP1A pathway that control CSC gene expression, self-renewal, and chemoresistance in various human cancers. Furthermore, the review also sheds light on the importance of targeting the epigenetic pathways as a novel therapeutic approach against CSCs.
Collapse
Affiliation(s)
- Sabah Akhtar
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Shireen Hourani
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Lubna Therachiyil
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Abdullah Al-Dhfyan
- Stem Cell & Tissue Re-Engineering, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Asad Zeidan
- Department of Biomedical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
9
|
Watzky M, Huard S, Juricek L, Dairou J, Chauvet C, Coumoul X, Letessier A, Miotto B. Hexokinase 2 is a transcriptional target and a positive modulator of AHR signalling. Nucleic Acids Res 2022; 50:5545-5564. [PMID: 35609998 PMCID: PMC9178003 DOI: 10.1093/nar/gkac360] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/20/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) regulates the expression of numerous genes in response to activation by agonists including xenobiotics. Although it is well appreciated that environmental signals and cell intrinsic features may modulate this transcriptional response, how it is mechanistically achieved remains poorly understood. We show that hexokinase 2 (HK2) a metabolic enzyme fuelling cancer cell growth, is a transcriptional target of AHR as well as a modulator of its activity. Expression of HK2 is positively regulated by AHR upon exposure to agonists both in human cells and in mice lung tissues. Conversely, over-expression of HK2 regulates the abundance of many proteins involved in the regulation of AHR signalling and these changes are linked with altered AHR expression levels and transcriptional activity. HK2 expression also shows a negative correlation with AHR promoter methylation in tumours, and these tumours with high HK2 expression and low AHR methylation are associated with a worse overall survival in patients. In sum, our study provides novel insights into how AHR signalling is regulated which may help our understanding of the context-specific effects of this pathway and may have implications in cancer.
Collapse
Affiliation(s)
- Manon Watzky
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, F-75014 Paris, France
| | - Solène Huard
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, F-75014 Paris, France
| | - Ludmila Juricek
- METATOX, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, INSERM UMR-S1124, F-75006 Paris, France
| | - Julien Dairou
- Université Paris Cité, UFR des Sciences Fondamentales et Biomédicales, Paris, France.,Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS, UMR 8601, Université Paris Cité, F-75006 Paris, France
| | - Caroline Chauvet
- METATOX, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, INSERM UMR-S1124, F-75006 Paris, France.,Université Paris Cité, UFR des Sciences Fondamentales et Biomédicales, Paris, France
| | - Xavier Coumoul
- METATOX, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, INSERM UMR-S1124, F-75006 Paris, France.,Université Paris Cité, UFR des Sciences Fondamentales et Biomédicales, Paris, France
| | - Anne Letessier
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, F-75014 Paris, France
| | - Benoit Miotto
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, F-75014 Paris, France
| |
Collapse
|
10
|
The Aryl Hydrocarbon Receptor (AHR): A Novel Therapeutic Target for Pulmonary Diseases? Int J Mol Sci 2022; 23:ijms23031516. [PMID: 35163440 PMCID: PMC8836075 DOI: 10.3390/ijms23031516] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 01/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a cytoplasmic transcription factor that is well-known for regulating xenobiotic metabolism. Studies in knockout and transgenic mice indicate that the AHR plays a vital role in the development of liver and regulation of reproductive, cardiovascular, hematopoietic, and immune homeostasis. In this focused review on lung diseases associated with acute injury and alveolar development, we reviewed and summarized the current literature on the mechanistic role(s) and therapeutic potential of the AHR in acute lung injury, chronic obstructive pulmonary disease, and bronchopulmonary dysplasia (BPD). Pre-clinical studies indicate that endogenous AHR activation is necessary to protect neonatal and adult lungs against hyperoxia- and cigarette smoke-induced injury. Our goal is to provide insight into the high translational potential of the AHR in the meaningful management of infants and adults with these lung disorders that lack curative therapies.
Collapse
|
11
|
Zhu X, Sun Q, Tan WS, Cai H. Reducing TGF-β1 cooperated with StemRegenin 1 promoted the expansion ex vivo of cord blood CD34 + cells by inhibiting AhR signalling. Cell Prolif 2021; 54:e12999. [PMID: 33522060 PMCID: PMC7941221 DOI: 10.1111/cpr.12999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/13/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE As an inhibitor of the AhR signalling pathway, StemRegenin 1 (SR1) not only promotes the expansion of CD34+ cells but also increases CD34- cell numbers. These CD34- cells influenced the ex vivo expansion of CD34+ cells. In this work, the effects of periodically removing CD34- cells combined with SR1 addition on the ex vivo expansion and biological functions of HSCs were investigated. MATERIALS AND METHODS CD34- cells were removed periodically with SR1 addition to investigate cell subpopulations, cell expansion, biological functions, expanded cell division mode and supernatant TGF-β1 contents. RESULTS After 10-day culture, the expansion of CD34+ cells in the CD34- cell removal plus SR1 group was significantly higher than that in the control group and the SR1 group. Moreover, periodically removing CD34- cells with SR1 addition improved the biological function of expanded CD34+ cells and significantly increased the percentage of self-renewal symmetric division of CD34+ cells. In addition, the concentration of total TGF-β1 and activated TGF-β1 in the supernatant was significantly lower than those in the control group and the SR1 group. RT-qPCR results showed that the periodic removal of CD34- cells with cooperation from SR1 further reduced the expression of AhR-related genes. CONCLUSIONS Periodic removal of CD34- cells plus cooperation with SR1 improved the expansion of CD34+ cells, maintained better biological function of expanded CD34+ cells and reduced the TGF-β1 contents by downregulating AhR signalling.
Collapse
Affiliation(s)
- Xuejun Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Qihao Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
12
|
An introduction to EpiPol (Epigenetic affecting Polymorphism) concept with an in silico identification of CpG-affecting SNPs in the upstream regulatory sequences of human AHR gene. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Wajda A, Łapczuk-Romańska J, Paradowska-Gorycka A. Epigenetic Regulations of AhR in the Aspect of Immunomodulation. Int J Mol Sci 2020; 21:E6404. [PMID: 32899152 PMCID: PMC7504141 DOI: 10.3390/ijms21176404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Environmental factors contribute to autoimmune disease manifestation, and as regarded today, AhR has become an important factor in studies of immunomodulation. Besides immunological aspects, AhR also plays a role in pharmacological, toxicological and many other physiological processes such as adaptive metabolism. In recent years, epigenetic mechanisms have provided new insight into gene regulation and reveal a new contribution to autoimmune disease pathogenesis. DNA methylation, histone modifications, chromatin alterations, microRNA and consequently non-genetic changes in phenotypes connect with environmental factors. Increasing data reveals AhR cross-roads with the most significant in immunology pathways. Although study on epigenetic modulations in autoimmune diseases is still not well understood, therefore future research will help us understand their pathophysiology and help to find new therapeutic strategies. Present literature review sheds the light on the common ground between remodeling chromatin compounds and autoimmune antibodies used in diagnostics. In the proposed review we summarize recent findings that describe epigenetic factors which regulate AhR activity and impact diverse immunological responses and pathological changes.
Collapse
Affiliation(s)
- Anna Wajda
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland;
| | - Joanna Łapczuk-Romańska
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Agnieszka Paradowska-Gorycka
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland;
| |
Collapse
|
14
|
Trikha P, Lee DA. The role of AhR in transcriptional regulation of immune cell development and function. Biochim Biophys Acta Rev Cancer 2019; 1873:188335. [PMID: 31816350 DOI: 10.1016/j.bbcan.2019.188335] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcriptional factor (TF) that is a member of the Per-Arnt-Sim family of proteins. AhR regulates diverse processes, including malignant transformation, hematopoietic cell development, and fate determination of immune cell lineages. Moreover, AhR forms a crucial link between innate and adaptive arms of the immune system. Malignant cells frequently evolve multiple mechanisms for suppressing tumor-specific responses, including the induction of suppressive pathways involving AhR and its metabolic byproducts in the tumor microenvironment that promote immune evasion and tumor progression. Thus, interest is high in further defining the role of AhR in carcinogenesis and immune development and regulation, particularly regarding the therapeutic interventions that unleash immune responses to cancer cells. Here, we provide an overview of the role of AhR in the regulation of innate and adaptive immune response and discuss the implications of targeting this pathway to augment the immune response in cancer patients.
Collapse
Affiliation(s)
- Prashant Trikha
- Cellular Therapy & Cancer Immunotherapy Program, Center for Childhood Cancer & Blood Diseases, WA-4112 Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, United States of America.
| | - Dean A Lee
- Cellular Therapy & Cancer Immunotherapy Program, Center for Childhood Cancer & Blood Diseases, WA-4112 Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, United States of America
| |
Collapse
|
15
|
Tsai CH, Li CH, Liao PL, Chang YW, Cheng YW, Kang JJ. Aza-PBHA, a potent histone deacetylase inhibitor, inhibits human gastric-cancer cell migration via PKCα-mediated AHR-HDAC interactions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118564. [PMID: 31672612 DOI: 10.1016/j.bbamcr.2019.118564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022]
Abstract
Recently, histone deacetylase inhibitors (HDACi) have become widely used in anti-cancer treatment; however, due to acquired drug resistance and their relatively low specificity, they are largely ineffective against late-stage cancer. Thus, it is critical to elucidate the molecular mechanisms underlying these issues, so as to identify novel therapeutic targets to prevent late-stage cancer progression and resistance acquisition. The present study investigated the Aryl hydrocarbon receptor (AHR), that has been shown to mediate histone acetylation by regulating histone deacetylase (HDAC) activity during HDACi treatment in human gastric-cancer cell lines (i.e. AGS and NCI-N87 cells). The potent HDACi, Aza-PBHA, was thus shown to upregulate AHR expression in both AGS and NCI-N87 cell lines, and to increase histone acetylation levels by facilitating AHR/HDAC interactions. Conversely, AHR knockdown increased HDAC activity. Aza-PBHA also increased PKCα phosphorylation and membrane translocation; however, interestingly, PKCα inhibition reduced the Aza-PBHA-increased AHR and histone acetylation levels, and inhibited the formation of the AHR/HDAC complex, likely upregulating Aza-PBHA-inhibited cell migration. Thus, our results suggest that Aza-PBHA treatment increased AHR levels to suppress HDAC activity, and inhibited cell migration by activating PKCα activation. These findings support the use of drugs to control AHR-related epigenetic regulation as a promising potential method to prevent acquired resistance to cancer treatments.
Collapse
Affiliation(s)
- Chi-Hao Tsai
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan; School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Ching-Hao Li
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taiwan.
| | - Po-Lin Liao
- Institute of Food Safety and Health Assessment, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Wei Chang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Yu-Wen Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy, Taipei Medical University, Taiwan; Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taiwan.
| | - Jaw-Jou Kang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan; Faculty of Pharmacy, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
16
|
Aromatic hydrocarbon receptor regulates chicken cytochrome P450 1A5 transcription: A novel insight into T-2 toxin-induced gene expression and cytotoxicity in LMH cells. Biochem Pharmacol 2019; 168:319-329. [DOI: 10.1016/j.bcp.2019.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022]
|
17
|
Vorontsova JE, Cherezov RO, Kuzin BA, Simonova OB. Aryl-Hydrocarbon Receptor as a Potential Target for Anticancer Therapy. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2019. [DOI: 10.1134/s1990750819010116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Vorontsova JE, Cherezov RO, Kuzin BA, Simonova OB. [Aryl-hydrocarbon receptor as a potential target for anticancer therapy]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2018; 64:397-415. [PMID: 30378556 DOI: 10.18097/pbmc20186405397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aryl-hydrocarbon receptor (Aryl Hydrocarbon Receptor, AHR) is a ligand-dependent transcription factor, whose functions are related to xenobiotic detoxification, response to inflammation, and maintenance of tissue homeostasis. Recent investigations suggest that AHR also plays an important role in the processes of carcinogenesis. Increased expression of AHR is observed in several types of tumors and tumor cell lines. In addition, it turned out that the composition of pharmaceutical drugs used in oncotherapy includes some ligands AHR. These facts allow us to consider an aryl-hydrocarbon receptor as a potential target for anticancer therapy, especially for the treatment of severe cancers whose treatment options are very limited or do not exist at all. In this review the examples of AHR ligands' effect on tumor cell cultures and on model mice lines with AHR-dependent response are discussed.
Collapse
Affiliation(s)
- J E Vorontsova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - R O Cherezov
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - B A Kuzin
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - O B Simonova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
19
|
J J, Vanisree AJ, Ravisankar S, K R. Site specific hypermethylation of CpGs in Connexin genes 30, 26 and 43 in different grades of glioma and attenuated levels of their mRNAs. Int J Neurosci 2018; 129:273-282. [PMID: 30280947 DOI: 10.1080/00207454.2018.1526802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
AIM Gliomas, the intracranial tumours are considered the deadliest malignancies. The gap junctional Connexins (Cxs) that maintain cellular homeostasis perform a unique function in glial tumour suppression. However, the differential methylation patterns of Cxs were not revealed in glioma so far. The current study attempts to categorise promoter methylation of Cx30 and Cx26 and intron methylation of Cx43 in different grades of human glioma. MATERIALS AND METHODS About 85 glioma patients with pathologically confirmed grades and 15 control brain tissues were recruited in the study. Bisulphite-PCR-Single Stranded Conformation analysis(SSCA), Bisulphite sequencing and MeDIP-qPCR were carried out to assess methylation status and Cx mRNA levels were also analysed to evaluate the effect of methylation. RESULTS We found that promoter CpG islands(CpGs) reside in Sp1 and Ap2 sites of Cx30 and 26 were hypermethylated in high grades (HG) of glioma rather than low grades. The input % of both was significantly increased (p < 0.03) in progressive grades. Interestingly, Cx43 could exhibit a significant increase (p < 0.05) in input % only in grade IV. While, Cx30 and 26 mRNAs were downregulated according to their methylation status in progressive fashion with grades, Cx43 was downregulated irrespective of intron methylation. CONCLUSION Thus, we suggest that the sites and extent of methylation of Cxs (30 and 26 but not in 43) are found to be altered. In different grades of glioma can provide better appreciation of the grade of the patient and might help in strategies based on epigenetic approaches.
Collapse
Affiliation(s)
- Jayalakshmi J
- a Department of Biochemistry , University of Madras , Chennai , Tamilnadu , India
| | | | - Shantha Ravisankar
- b Department of Neuropathology , Tamilnadu Multispeciality Hospital , Chennai , Tamilnadu , India
| | - Rama K
- c Department of Neuropathology , Madras Medical College and Government General hospital , Chennai , Tamilnadu , India
| |
Collapse
|
20
|
Chen X, Cai Y, Liu Q, Pan L, Shi S, Liu X, Chen Y, Li J, Wang J, Li Y, Li X, Wang S. ETS1 and SP1 drive DHX15 expression in acute lymphoblastic leukaemia. J Cell Mol Med 2018; 22:2612-2621. [PMID: 29512921 PMCID: PMC5908128 DOI: 10.1111/jcmm.13525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 12/10/2017] [Indexed: 12/19/2022] Open
Abstract
DHX15 plays a role in leukaemogenesis and leukaemia relapse. However, the mechanism underlying the transcriptional regulation of DHX15 in ALL has not been elucidated. Our present study aimed to explore the functional promoter region of DHX15 and to investigate the transcription factors controlling the transcription of this gene. A luciferase assay performed with several truncated constructs identified a 501-bp region as the core promoter region of DHX15. Site-directed mutagenesis, electrophoretic mobility shift and chromatin immunoprecipitation assays showed that ETS1 and SP1 occupied the DHX15 promoter. Furthermore, knockdown of ETS1 and SP1 resulted in suppression of DHX15, whereas the overexpression of these genes led to up-regulation of DHX15. Interestingly, in samples obtained from patients with ALL at diagnosis, both ETS1 and SP1 correlated positively with DHX15 expression. Additionally, differences in methylation of the DHX15 core promoter region were not observed between the patients and controls. In conclusion, we identified the core promoter region of DHX15 and demonstrated that ETS1 and SP1 regulated DHX15 expression in ALL.
Collapse
Affiliation(s)
- Xiang‐Lei Chen
- Department of HematologyFujian Institute of HematologyFujian Provincial Key Laboratory on HematologyFujian Medical University Union HospitalFuzhouChina
- Union Clinical Medical CollegesFujian Medical UniversityFuzhouChina
| | - Yuan‐Hua Cai
- Department of HematologyFujian Institute of HematologyFujian Provincial Key Laboratory on HematologyFujian Medical University Union HospitalFuzhouChina
- Union Clinical Medical CollegesFujian Medical UniversityFuzhouChina
| | - Qiao Liu
- Department of HematologyFujian Institute of HematologyFujian Provincial Key Laboratory on HematologyFujian Medical University Union HospitalFuzhouChina
- Union Clinical Medical CollegesFujian Medical UniversityFuzhouChina
| | - Li‐Li Pan
- Department of HematologyFujian Institute of HematologyFujian Provincial Key Laboratory on HematologyFujian Medical University Union HospitalFuzhouChina
- Union Clinical Medical CollegesFujian Medical UniversityFuzhouChina
| | - Shui‐Ling Shi
- Union Clinical Medical CollegesFujian Medical UniversityFuzhouChina
| | - Xiao‐Li Liu
- Union Clinical Medical CollegesFujian Medical UniversityFuzhouChina
| | - Yuan Chen
- Department of HematologyFujian Institute of HematologyFujian Provincial Key Laboratory on HematologyFujian Medical University Union HospitalFuzhouChina
- Union Clinical Medical CollegesFujian Medical UniversityFuzhouChina
| | - Jing‐Gang Li
- Department of HematologyFujian Institute of HematologyFujian Provincial Key Laboratory on HematologyFujian Medical University Union HospitalFuzhouChina
- Union Clinical Medical CollegesFujian Medical UniversityFuzhouChina
| | - Jing Wang
- Union Clinical Medical CollegesFujian Medical UniversityFuzhouChina
| | - Yang Li
- Department of HematologyFujian Institute of HematologyFujian Provincial Key Laboratory on HematologyFujian Medical University Union HospitalFuzhouChina
- Union Clinical Medical CollegesFujian Medical UniversityFuzhouChina
| | - Xiao‐Fan Li
- Union Clinical Medical CollegesFujian Medical UniversityFuzhouChina
| | - Shao‐Yuan Wang
- Department of HematologyFujian Institute of HematologyFujian Provincial Key Laboratory on HematologyFujian Medical University Union HospitalFuzhouChina
- Union Clinical Medical CollegesFujian Medical UniversityFuzhouChina
| |
Collapse
|
21
|
Florean C, Schnekenburger M, Lee JY, Kim KR, Mazumder A, Song S, Kim JM, Grandjenette C, Kim JG, Yoon AY, Dicato M, Kim KW, Christov C, Han BW, Proksch P, Diederich M. Discovery and characterization of Isofistularin-3, a marine brominated alkaloid, as a new DNA demethylating agent inducing cell cycle arrest and sensitization to TRAIL in cancer cells. Oncotarget 2018; 7:24027-49. [PMID: 27006469 PMCID: PMC5029682 DOI: 10.18632/oncotarget.8210] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/02/2016] [Indexed: 12/20/2022] Open
Abstract
We characterized the brominated alkaloid Isofistularin-3 (Iso-3), from the marine sponge Aplysina aerophoba, as a new DNA methyltransferase (DNMT)1 inhibitor. Docking analysis confirmed our in vitro DNMT inhibition data and revealed binding of Iso-3 within the DNA binding site of DNMT1. Subsequent increased expression of tumor suppressor gene aryl hydrocarbon receptor (AHR) could be correlated to decreased methylation of CpG sites within the essential Sp1 regulatory region of its promoter. Iso-3 induced growth arrest of cancer cells in G0/G1 concomitant with increased p21 and p27 expression and reduced cyclin E1, PCNA and c-myc levels. Reduced proliferation was accompanied by morphological changes typical of autophagy revealed by fluorescent and transmission electron microscopy and validated by LC3I-II conversion. Furthermore, Iso-3 strongly synergized with tumor-necrosis-factor related apoptosis inducing ligand (TRAIL) in RAJI [combination index (CI) = 0.22] and U-937 cells (CI = 0.21) and increased TRAIL-induced apoptosis via a mechanism involving reduction of survivin expression but not of Bcl-2 family proteins nor X-linked inhibitor of apoptosis protein (XIAP). Iso-3 treatment decreased FLIPL expression and triggered activation of endoplasmatic reticulum (ER) stress with increased GRP78 expression, eventually inducing TRAIL receptor death receptor (DR)5 surface expression. Importantly, as a potential candidate for further anticancer drug development, Iso-3 reduced the viability, colony and in vivo tumor forming potential without affecting the viability of PBMCs from healthy donors or zebrafish development.
Collapse
Affiliation(s)
- Cristina Florean
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Lëtzebuerg, Luxembourg
| | - Michael Schnekenburger
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Lëtzebuerg, Luxembourg
| | - Jin-Young Lee
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Korea
| | - Kyung Rok Kim
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Korea
| | - Aloran Mazumder
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Korea
| | - Sungmi Song
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Korea
| | - Jae-Myun Kim
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Korea
| | - Cindy Grandjenette
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Lëtzebuerg, Luxembourg
| | - Jeoung-Gyun Kim
- SNU-Harvard Neurovascular Protection Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Korea
| | - Ah-Young Yoon
- SNU-Harvard Neurovascular Protection Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Korea
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Lëtzebuerg, Luxembourg
| | - Kyu-Won Kim
- SNU-Harvard Neurovascular Protection Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Korea
| | | | - Byung-Woo Han
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Korea
| | - Peter Proksch
- Institut für Pharmazeutische Biologie und Biotechnologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Marc Diederich
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Korea
| |
Collapse
|
22
|
Roman ÁC, Carvajal-Gonzalez JM, Merino JM, Mulero-Navarro S, Fernández-Salguero PM. The aryl hydrocarbon receptor in the crossroad of signalling networks with therapeutic value. Pharmacol Ther 2017; 185:50-63. [PMID: 29258844 DOI: 10.1016/j.pharmthera.2017.12.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is well-known for its major contributions to the cellular responses against environmental toxins and carcinogens. Notably, AhR has also emerged as a key transcription factor controlling many physiological processes including cell proliferation and apoptosis, differentiation, adhesion and migration, pluripotency and stemness. These novel functions have broadened our understanding of the signalling pathways and molecular intermediates interacting with AhR under both homeostatic and pathological conditions. Recent discoveries link AhR with the function of essential organs such as liver, skin and gonads, and with complex organismal structures including the immune and cardiovascular systems. The identification of potential endogenous ligands able to regulate AhR activity, opens the possibility of designing ad hoc molecules with pharmacological and/or therapeutic value to treat human diseases in which AhR may have a causal role. Integration of experimental data from in vitro and in vivo studies with "omic" analyses of human patients affected with cancer, immune diseases, inflammation or neurological disorders will likely contribute to validate the clinical relevance of AhR and the possible benefits of modulating its activity by pharmacologically-driven strategies. In this review, we will highlight signalling pathways involved in human diseases that could be targetable by AhR modulators and discuss the feasibility of using such molecules in therapy. The pros and cons of AhR-aimed approaches will be also mentioned.
Collapse
Affiliation(s)
- Ángel C Roman
- Champalimaud Neuroscience Programme, Champalimoud Center for the Unknown, Lisbon, Portugal
| | - José M Carvajal-Gonzalez
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Jaime M Merino
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Sonia Mulero-Navarro
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain.
| | - Pedro M Fernández-Salguero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain.
| |
Collapse
|
23
|
Zhang H, Li L, Li M, Huang X, Xie W, Xiang W, Yao P. Combination of betulinic acid and chidamide inhibits acute myeloid leukemia by suppression of the HIF1α pathway and generation of reactive oxygen species. Oncotarget 2017; 8:94743-94758. [PMID: 29212263 PMCID: PMC5706909 DOI: 10.18632/oncotarget.21889] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/24/2017] [Indexed: 12/04/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disorder of the hematopoietic system with no common genetic “Achilles heel” that can be targeted. Most patients respond well to standard therapy, while a majority relapse, and development of an effective therapy for AML patients is still urgently needed. In this study, we demonstrated that betulinic acid (BA) significantly increased Aryl hydrocarbon receptor (AHR) expression through demethylation on the AHR promoter in AML cells, and the increased AHR expression interacts with and sequesters ARNT, subsequently suppressing hypoxia-inducible factor-1α (HIF1α) pathway. We also found that histone deacetylase inhibitor chidamide (CDM) treatment significantly increased p300 over-acetylation in AML cells with dissociation of p300 with HIF1α, and subsequently suppressed the HIF1α pathway. Further investigation showed that BA/CDM combination additively increased generation of reactive oxygen species (ROS) with DNA damage, apoptosis and mitochondrial dysfunction. Also, BA/CDM combination additively suppressed the HIF1α pathway with decreased VEGF expression. in vivo mice study showed that BA/CDM combination significantly suppressed AML tumor growth, and overexpression of SOD2 and a constitutive HIF1α (HIF1C) completely diminished this effect. We conclude that a BA/CDM combination inhibits AML tumors through ROS over-generation and HIF1α pathway suppression. This is the first time we have shown the potential effect and possible mechanism of BA and CDM on the inhibition of AML tumor growth.
Collapse
Affiliation(s)
- Hongyu Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
| | - Ling Li
- Department of Pediatrics, Maternal and Child Health Care Hospital of Hainan Province, Haikou 570206, P.R. China
| | - Min Li
- Institute of Burns, Tongren Hospital of Wuhan University, Wuhan 430060, P.R. China
| | - Xiaodong Huang
- Institute of Burns, Tongren Hospital of Wuhan University, Wuhan 430060, P.R. China
| | - Weiguo Xie
- Institute of Burns, Tongren Hospital of Wuhan University, Wuhan 430060, P.R. China
| | - Wei Xiang
- Department of Pediatrics, Maternal and Child Health Care Hospital of Hainan Province, Haikou 570206, P.R. China
| | - Paul Yao
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China.,Department of Pediatrics, Maternal and Child Health Care Hospital of Hainan Province, Haikou 570206, P.R. China.,Institute of Burns, Tongren Hospital of Wuhan University, Wuhan 430060, P.R. China
| |
Collapse
|
24
|
Aftabi Y, Hosseinzadeh Colagar A, Mehrnejad F, Seyedrezazadeh E, Moudi E. Aryl hydrocarbon receptor gene transitions (c.-742C>T; c.1661G>A) and idiopathic male infertility: a case-control study with in silico and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:20599-20615. [PMID: 28712079 DOI: 10.1007/s11356-017-9701-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
Aryl hydrocarbon receptor (AHR) is responsible for crucial events in male reproductive biology. Here, the association of the AHR transitions c.-742C>T and c.1661G>A with idiopathic male infertility was investigated in a case-control study, which is followed by a meta-analysis and a bioinformatic investigation. Blood and semen samples were obtained from a total of 135 idiopathic infertile men and 130 healthy controls. Participants were genotyped for the transitions using a PCR-RFLP method. A meta-analysis of five sets of data evaluated the association of c.1661G>A with male infertility, and using an in silico analysis, the possible molecular effects of the transitions predicted. Genotypes and alleles of AHR-c.-742C>T and c.1661G>A polymorphisms were not associated with the risk of male infertility significantly. However, the frequency of C/A haplotype was significantly associated with the increased risk of male infertility, and T/A haplotype was higher among controls significantly. Also, the frequencies of combined genotypes CT/GG, CT/GA and TT/GG were significantly associated with decreased risk of infertility. And, the meta-analysis showed that the AA versus GA/GG recessive model is associated with decreased risk of male infertility among the Iranian population. In silico analysis predicted that c.-742C>T does not alter the binding sites of the proposed transcription factors, but c.1661G>A poses a tolerable structural disturbance in AHR protein. In conclusion, these results showed that AHR c.-742C>T and c.1661G>A transitions separately could not be nominated as a risk or protective factor for male infertility. However, some combined models could affect infertility risk, especially among Iranian men.
Collapse
Affiliation(s)
- Younes Aftabi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Mazandaran, Post Code: 47416-95447, Iran
| | - Abasalt Hosseinzadeh Colagar
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Mazandaran, Post Code: 47416-95447, Iran.
| | - Faramarz Mehrnejad
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box: 14395-1561, Tehran, Iran
| | - Ensiyeh Seyedrezazadeh
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, P.O. Box: 53714-161, Tabriz, Iran
| | - Emadoddin Moudi
- Department of Urology, Babol University of Medical Sciences, P.O. Box: 47745-47176, Babol, Iran
| |
Collapse
|
25
|
Abstract
Pituitary adenomas (PA) represent the largest group of intracranial neoplasms and yet the molecular mechanisms driving this disease remain largely unknown. The aim of this study was to use a high-throughput screening method to identify molecular pathways that may be playing a significant and consistent role in PA. RNA profiling using microarrays on eight local PAs identified the aryl hydrocarbon receptor (AHR) signalling pathway as a key canonical pathway downregulated in all PA types. This was confirmed by real-time PCR in 31 tumours. The AHR has been shown to regulate cell cycle progression in various cell types; however, its role in pituitary tissue has never been investigated. In order to validate the role of AHR in PA behaviour, further functional studies were undertaken. Over-expression of AHR in GH3 cells revealed a tumour suppressor potential independent of exogenous ligand activation by benzo α-pyrene (BαP). Cell cycle analysis and quantitative PCR of cell cycle regulator genes revealed that both unstimulated and BαP-stimulated AHR reduced E2F-driven transcription and altered expression of cell cycle regulator genes, thus increasing the percentage of cells in G0/G1 phase and slowing the proliferation rate of GH3 cells. Co-immunoprecipitation confirmed the interaction between AHR and retinoblastoma (Rb1) protein supporting this as a functional mechanism for the observed reduction. Endogenous Ahr reduction using silencing RNA confirmed the tumour suppressive function of the Ahr. These data support a mechanistic pathway for the putative tumour suppressive role of AHR specifically in PA, possibly through its role as a cell cycle co-regulator, even in the absence of exogenous ligands.
Collapse
Affiliation(s)
- R Formosa
- Department of MedicineFaculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - J Borg
- Department of Applied Biomedical ScienceFaculty of Health Sciences, University of Malta, Msida, Malta
| | - J Vassallo
- Department of MedicineFaculty of Medicine and Surgery, University of Malta, Msida, Malta
- Department of MedicineNeuroendocrine Clinic, Mater Dei Hospital, Msida, Malta
| |
Collapse
|
26
|
Kolluri SK, Jin UH, Safe S. Role of the aryl hydrocarbon receptor in carcinogenesis and potential as an anti-cancer drug target. Arch Toxicol 2017; 91:2497-2513. [PMID: 28508231 PMCID: PMC6357772 DOI: 10.1007/s00204-017-1981-2] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 05/08/2017] [Indexed: 12/31/2022]
Abstract
The aryl hydrocarbon receptor (AhR) was initially identified as the receptor that binds and mediates the toxic effects induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and structurally related halogenated aromatics. Other toxic compounds including some polynuclear aromatic hydrocarbons act through the AhR; however, during the last 25 years, it has become apparent that the AhR plays an essential role in maintaining cellular homeostasis. Moreover, the scope of ligands that bind the AhR includes endogenous compounds such as multiple tryptophan metabolites, other endogenous biochemicals, pharmaceuticals and health-promoting phytochemicals including flavonoids, indole-3-carbinol and its metabolites. It has also been shown that like other receptors, the AhR is a drug target for multiple diseases including cancer, where both AhR agonists and antagonists effectively block many of the critical hallmarks of cancer in multiple tumor types. This review describes the anti-cancer activities of AhR ligands and demonstrates that it is time to separate the AhR from TCDD and exploit the potential of the AhR as a novel target for cancer chemotherapy.
Collapse
Affiliation(s)
- Siva Kumar Kolluri
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA
| | - Un-Ho Jin
- Department of Veterinary Physiology and Pharmacology, Texas A & M University, 4466 TAMU, College Station, TX, 77843, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A & M University, 4466 TAMU, College Station, TX, 77843, USA.
| |
Collapse
|
27
|
Formosa R, Vassallo J. The Complex Biology of the Aryl Hydrocarbon Receptor and Its Role in the Pituitary Gland. Discov Oncol 2017. [PMID: 28634910 DOI: 10.1007/s12672-017-0300-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor best known for its ability to mediate the effects of environmental toxins such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or dioxin), polycyclic aromatic hydrocarbons (PAHs), benzene, and polychlorinated biphenyls (PCBs) through the initiation of transcription of a number of metabolically active enzymes. Therefore, the AHR has been studied mostly in the context of xenobiotic signaling. However, several studies have shown that the AHR is constitutively active and plays an important role in general cell physiology, independently of its activity as a xenobiotic receptor and in the absence of exogenous ligands. Within the pituitary, activation of the AHR by environmental toxins has been implicated in disruption of gonadal development and fertility. Studies carried out predominantly in mouse models have revealed the detrimental influence of several environmental toxins on specific cell lineages of the pituitary tissue mediated by activation of AHR and its downstream effectors. Activation of AHR during fetal development adversely affected pituitary development while adult models exposed to AHR ligands demonstrated varying degrees of pituitary dysfunction. Such dysfunction may arise as a result of direct effects on pituitary cells or indirect effects on the hypothalamic-pituitary-gonadal axis. This review offers in-depth analysis of all aspects of AHR biology, with a particular focus on its role and activity within the adenohypophysis and specifically in pituitary tumorigenesis. A novel mechanism by which the AHR may play a direct role in pituitary cell proliferation and tumor formation is postulated. This review therefore attempts to cover all aspects of the AHR's role in the pituitary tissue, from fetal development to adult physiology and the pathophysiology underlying endocrine disruption and pituitary tumorigenesis.
Collapse
Affiliation(s)
- Robert Formosa
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, MSD 2080, Msida, Malta
| | - Josanne Vassallo
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, MSD 2080, Msida, Malta. .,Neuroendocrine Clinic, Department of Medicine, Mater Dei Hospital, Msida, Malta.
| |
Collapse
|
28
|
Targeting the aryl hydrocarbon receptor nuclear translocator complex with DMOG and Stemregenin 1 improves primitive hematopoietic stem cell expansion. Stem Cell Res 2017; 21:124-131. [DOI: 10.1016/j.scr.2017.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 04/09/2017] [Accepted: 04/11/2017] [Indexed: 01/14/2023] Open
|
29
|
Fracchiolla NS, Annaloro C, Guidotti F, Fattizzo B, Cortelezzi A. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) role in hematopoiesis and in hematologic diseases: A critical review. Toxicology 2016; 374:60-68. [PMID: 27765685 DOI: 10.1016/j.tox.2016.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/03/2016] [Accepted: 10/13/2016] [Indexed: 12/12/2022]
Abstract
Dioxin exposure and its effect on hematopoiesis and cancer have been largely investigated in both human and non-human settings. Here we systematically reviewed literature to address the question of what we know about TCDD biology and exposure. Most effects are due to TCDD interaction with a receptor of xenobiotics called AHR, which is ubiquitously represented and also works on hematopoietic myeloid and lymphoid stem cells, inducing proliferation and stem cell release from bone marrow to peripheral circulation. Epidemiologic studies on TCDD exposure demonstrated an association with onco-hematologic diseases, particularly with non Hodgkin lymphomas and multiple myeloma, and non hematologic cancers, such as sarcomas, although these relationships are affected by multiple confounding factors.
Collapse
Affiliation(s)
- Nicola Stefano Fracchiolla
- UO Onco-Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via F. Sforza 35, 20100, Milano, Italy.
| | - Claudio Annaloro
- UO Onco-Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via F. Sforza 35, 20100, Milano, Italy
| | - Francesca Guidotti
- UO Onco-Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via F. Sforza 35, 20100, Milano, Italy
| | - Bruno Fattizzo
- UO Onco-Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via F. Sforza 35, 20100, Milano, Italy
| | - Agostino Cortelezzi
- UO Onco-Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via F. Sforza 35, 20100, Milano, Italy; UO Onco-Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via F Sforza 35, 20100, Milano, Italy
| |
Collapse
|
30
|
Mulero-Navarro S, Fernandez-Salguero PM. New Trends in Aryl Hydrocarbon Receptor Biology. Front Cell Dev Biol 2016; 4:45. [PMID: 27243009 PMCID: PMC4863130 DOI: 10.3389/fcell.2016.00045] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/28/2016] [Indexed: 12/28/2022] Open
Abstract
Traditionally considered as a critical intermediate in the toxic and carcinogenic response to dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD), the Aryl hydrocarbon/Dioxin receptor (AhR) has proven to be also an important regulator of cell physiology and organ homeostasis. AhR has become an interesting and actual area of research mainly boosted by a significant number of recent studies analyzing its contribution to the proper functioning of the immune, hepatic, cardiovascular, vascular and reproductive systems. At the cellular level, AhR establishes functional interactions with signaling pathways governing cell proliferation and cell cycle, cell morphology, cell adhesion and cell migration. Two exciting new aspects in AhR biology deal with its implication in the control of cell differentiation and its more than likely involvement in cell pluripotency and stemness. In fact, it is possible that AhR could help modulate the balance between differentiation and pluripotency in normal and transformed tumor cells. At the molecular level, AhR regulates an increasingly large array of physiologically relevant genes either by traditional transcription-dependent mechanisms or by unforeseen processes involving genomic insulators, chromatin dynamics and the transcription of mobile genetic elements. AhR is also closely related to epigenetics, not only from the point of view of target gene expression but also with respect to its own regulation by promoter methylation. It is reasonable to consider that deregulation of these many functions could have a causative role, or at least contribute to, human disease. Consequently, several laboratories have proposed that AhR could be a valuable tool as diagnostic marker and/or therapeutic target in human pathologies. An additional point of interest is the possibility of regulating AhR activity by endogenous non-toxic low weight molecules agonist or antagonist molecules that could be present or included in the diet. In this review, we will address these molecular and functional features of AhR biology within physiological and pathological contexts.
Collapse
Affiliation(s)
- Sonia Mulero-Navarro
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura Badajoz, Spain
| | - Pedro M Fernandez-Salguero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura Badajoz, Spain
| |
Collapse
|
31
|
Sakamoto A, Akiyama Y, Shimada S, Zhu WG, Yuasa Y, Tanaka S. DNA Methylation in the Exon 1 Region and Complex Regulation of Twist1 Expression in Gastric Cancer Cells. PLoS One 2015; 10:e0145630. [PMID: 26695186 PMCID: PMC4687923 DOI: 10.1371/journal.pone.0145630] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/06/2015] [Indexed: 02/06/2023] Open
Abstract
Twist1 overexpression is frequently observed in various cancers including gastric cancer (GC). Although DNA methylation of the Twist1 gene has been reported in cancer cells, the mechanisms underlying transcriptional activation remain uncertain. In this study, we first examined epigenetic alterations of the Twist1 using Twist1 transcription-positive and -negative cell lines that are derived from our established diffuse-type GC mouse model. Treatment with a DNA demethylation agent 5-aza-dC re-activated Twist1 expression in Twist1 expression-negative GC cells. According to methylation-specific PCR and bisulfite sequencing analysis, methylation at the CpG-rich region within Twist1 coding exon 1, rather than its promoter region, was tightly linked to transcriptional silencing of the Twist1 expression in mouse GC cells. Chromatin immunoprecipitation assays revealed that active histone mark H3K4me3 was enriched in Twist1 expression-positive cells, and inactive histone mark H3K9me3 was enriched in Twist1 expression-negative cells. The expression levels of Suv39h1 and Suv39h2, histone methyltransferases for H3K9me3, were inversely correlated with Twist1 expression, and knockdown of Suv39h1 or Suv39h2 induced Twist1 expression. Moreover, Sp1 transcription factor bound to the exon 1 CpG-rich region in Twist1 expression-positive cell lines, and Twist1 expression was diminished by mithramycin, which that interferes with Sp1 binding to CpG-rich regulatory sequences. Our studies suggested that the Twist1 transcription in GC cells might be regulated through potential cooperation of DNA methylation, histone modification in complex with Sp1 binding to CpG-rich regions within the exon 1 region.
Collapse
Affiliation(s)
- Ayuna Sakamoto
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, 100191, China
| | - Yasuhito Yuasa
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
32
|
Oliveira LH, Schiavinato JL, Fráguas MS, Lucena-Araujo AR, Haddad R, Araújo AG, Dalmazzo LF, Rego EM, Covas DT, Zago MA, Panepucci RA. Potential roles of microRNA-29a in the molecular pathophysiology of T-cell acute lymphoblastic leukemia. Cancer Sci 2015; 106:1264-77. [PMID: 26251039 PMCID: PMC4637998 DOI: 10.1111/cas.12766] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/08/2015] [Accepted: 08/03/2015] [Indexed: 12/26/2022] Open
Abstract
Recent evidence has shown that deregulated expression of members of the microRNA-29 (miR-29) family may play a critical role in human cancer, including hematological malignancies. However, the roles of miR-29 in the molecular pathophysiology of T-cell acute lymphoblastic leukemia (T-ALL) has not been investigated. Here, we show that lower levels of miR-29a were significantly associated with higher blast counts in the bone marrow and with increased disease-free survival in T-ALL patients. Furthermore, miR-29a levels are extremely reduced in T-ALL cells compared to normal T cells. Microarray analysis following introduction of synthetic miR-29a mimics into Jurkat cells revealed the downregulation of several predicted targets (CDK6, PXDN, MCL1, PIK3R1, and CXXC6), including targets with roles in active and passive DNA demethylation (such as DNMT3a, DNMT3b, and members of the TET family and TDG). Restoring miR-29a levels in Jurkat and Molt-4 T-ALL cells led to the demethylation of many genes commonly methylated in T-ALL. Overall, our results suggest that reduced miR-29a levels may contribute to the altered epigenetic status of T-ALL, highlighting its relevance in the physiopathology of this disease.
Collapse
Affiliation(s)
- Lucila H Oliveira
- Department of Internal Medicine, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
- Center for Cell Based Therapy, Regional Blood CenterRibeirão Preto, Brazil
| | - Josiane L Schiavinato
- Department of Genetics, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
- Center for Cell Based Therapy, Regional Blood CenterRibeirão Preto, Brazil
| | - Mariane S Fráguas
- Department of Internal Medicine, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
- Center for Cell Based Therapy, Regional Blood CenterRibeirão Preto, Brazil
| | | | - Rodrigo Haddad
- School of Ceilandia, University of BrasiliaBrasilia, Brazil
| | - Amélia G Araújo
- Department of Internal Medicine, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
- Center for Cell Based Therapy, Regional Blood CenterRibeirão Preto, Brazil
| | - Leandro F Dalmazzo
- Department of Internal Medicine, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
| | - Eduardo M Rego
- Department of Internal Medicine, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
- Center for Cell Based Therapy, Regional Blood CenterRibeirão Preto, Brazil
| | - Dimas T Covas
- Department of Internal Medicine, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
- Center for Cell Based Therapy, Regional Blood CenterRibeirão Preto, Brazil
| | - Marco A Zago
- Department of Internal Medicine, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
- Center for Cell Based Therapy, Regional Blood CenterRibeirão Preto, Brazil
| | - Rodrigo A Panepucci
- Department of Internal Medicine, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
- Department of Genetics, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
- Center for Cell Based Therapy, Regional Blood CenterRibeirão Preto, Brazil
| |
Collapse
|
33
|
Wang X, Li K, Liu L, Shi Q, Song P, Jian Z, Guo S, Wang G, Li C, Gao T. AHR promoter variant modulates its transcription and downstream effectors by allele-specific AHR-SP1 interaction functioning as a genetic marker for vitiligo. Sci Rep 2015; 5:13542. [PMID: 26370050 PMCID: PMC4570213 DOI: 10.1038/srep13542] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/30/2015] [Indexed: 12/28/2022] Open
Abstract
Vitiligo is an acquired depigmentation disorder largely caused by defective melanocyte- or autoimmunity-induced melanocyte destruction. The aryl hydrocarbon receptor (AHR) is essential for melanocyte homeostasis and immune process, and abnormal AHR was observed in vitiligo. We previously identified the T allele of AHR -129C > T variant as a protective factor against vitiligo. However, biological characterization underlying such effects is not fully certain, further validation by mechanistic research is warranted and was conducted in the present study. We showed that -129T allele promoted AHR transcriptional activity through facilitating its interaction with SP1 transcription factor (SP1) compared with -129C allele. We subsequently found reduced peripheral AHR and SP1 transcript expressions in vitiligo and a negative correlation of AHR level with disease duration. We also investigated AHR-related cytokines and observed increased serum TNF-α concentration and diminished serum levels of IL-10 and TGF-β1 in vitiligo. Further genetic analysis showed that -129T carriers possessed higher levels of AHR and IL-10 than -129C carriers. Therefore, our study indicates that the modulation of AHR transcription by a promoter variant has a profound influence on vitiligo, not only advancing our understanding on AHR function but also providing novel insight into the pathogenesis of degenerative or autoimmune diseases including vitiligo.
Collapse
Affiliation(s)
- Xiaowen Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Kai Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Ling Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Qiong Shi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Pu Song
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zhe Jian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
34
|
Contador-Troca M, Alvarez-Barrientos A, Merino JM, Morales-Hernández A, Rodríguez MI, Rey-Barroso J, Barrasa E, Cerezo-Guisado MI, Catalina-Fernández I, Sáenz-Santamaría J, Oliver FJ, Fernandez-Salguero PM. Dioxin receptor regulates aldehyde dehydrogenase to block melanoma tumorigenesis and metastasis. Mol Cancer 2015; 14:148. [PMID: 26242870 PMCID: PMC4524442 DOI: 10.1186/s12943-015-0419-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/22/2015] [Indexed: 01/16/2023] Open
Abstract
Background The dioxin (AhR) receptor can have oncogenic or tumor suppressor activities depending on the phenotype of the target cell. We have shown that AhR knockdown promotes melanoma primary tumorigenesis and lung metastasis in the mouse and that human metastatic melanomas had reduced AhR levels with respect to benign nevi. Methods Mouse melanoma B16F10 cells were engineered by retroviral transduction to stably downregulate AhR expression, Aldh1a1 expression or both. They were characterized for Aldh1a1 activity, stem cell markers and migration and invasion in vitro. Their tumorigenicity in vivo was analyzed using xenografts and lung metastasis assays as well as in vivo imaging. Results Depletion of aldehyde dehydrogenase 1a1 (Aldh1a1) impairs the pro-tumorigenic and pro-metastatic advantage of melanoma cells lacking AhR expression (sh-AhR). Thus, Aldh1a1 knockdown in sh-AhR cells (sh-AhR + sh-Aldh1a1) diminished their migration and invasion potentials and blocked tumor growth and metastasis to the lungs in immunocompetent AhR+/+ recipient mice. However, Aldh1a1 downmodulation in AhR-expressing B16F10 cells did not significantly affect tumor growth in vivo. Aldh1a1 knockdown reduced the high levels of CD133+/CD29+/CD44+ cells, melanosphere size and the expression of the pluripotency marker Sox2 in sh-AhR cells. Interestingly, Sox2 increased Aldh1a1 expression in sh-AhR but not in sh-AhR + sh-Aldh1a1 cells, suggesting that Aldh1a1 and Sox2 may be co-regulated in melanoma cells. In vivo imaging revealed that mice inoculated with AhR + Aldh1a1 knockdown cells had reduced tumor burden and enhanced survival than those receiving Aldh1a1-expressing sh-AhR cells. Conclusions Aldh1a1 overactivation in an AhR-deficient background enhances melanoma progression. Since AhR may antagonize the protumoral effects of Aldh1a1, the AhRlow-Aldh1a1high phenotype could be indicative of bad outcome in melanoma. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0419-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- María Contador-Troca
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, 06071, Badajoz, Spain.
| | | | - Jaime M Merino
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, 06071, Badajoz, Spain.
| | | | - María I Rodríguez
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, 18016, Granada, Spain.
| | - Javier Rey-Barroso
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, 06071, Badajoz, Spain.
| | - Eva Barrasa
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, 06071, Badajoz, Spain.
| | - María I Cerezo-Guisado
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, 06071, Badajoz, Spain.
| | | | - Javier Sáenz-Santamaría
- Servicio de Anatomía Patológica, Hospital Universitario Infanta Cristina, 06071, Badajoz, Spain.
| | - Francisco J Oliver
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, 18016, Granada, Spain.
| | | |
Collapse
|
35
|
Ding J, Dirks WG, Ehrentraut S, Geffers R, MacLeod RAF, Nagel S, Pommerenke C, Romani J, Scherr M, Vaas LAI, Zaborski M, Drexler HG, Quentmeier H. BCL6--regulated by AhR/ARNT and wild-type MEF2B--drives expression of germinal center markers MYBL1 and LMO2. Haematologica 2015; 100:801-9. [PMID: 25769544 DOI: 10.3324/haematol.2014.120048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/04/2015] [Indexed: 12/28/2022] Open
Abstract
Genetic heterogeneity is widespread in tumors, but poorly documented in cell lines. According to immunoglobulin hypermutation analysis, the diffuse large B-cell lymphoma cell line U-2932 comprises two subpopulations faithfully representing original tumor subclones. We set out to identify molecular causes underlying subclone-specific expression affecting 221 genes including surface markers and the germinal center oncogenes BCL6 and MYC. Genomic copy number variations explained 58/221 genes differentially expressed in the two U-2932 clones. Subclone-specific expression of the aryl-hydrocarbon receptor (AhR) and the resulting activity of the AhR/ARNT complex underlaid differential regulation of 11 genes including MEF2B. Knock-down and inhibitor experiments confirmed that AhR/ARNT regulates MEF2B, a key transcription factor for BCL6. AhR, MEF2B and BCL6 levels correlated not only in the U-2932 subclones but in the majority of 23 cell lines tested, indicting overexpression of AhR as a novel mechanism behind BCL6 diffuse large B-cell lymphoma. Enforced modulation of BCL6 affected 48/221 signature genes. Although BCL6 is known as a transcriptional repressor, 28 genes were up-regulated, including LMO2 and MYBL1 which, like BCL6, signify germinal center diffuse large B-cell lymphoma. Supporting the notion that BCL6 can induce gene expression, BCL6 and the majority of potential targets were co-regulated in a series of B-cell lines. In conclusion, genomic copy number aberrations, activation of AhR/ARNT, and overexpression of BCL6 are collectively responsible for differential expression of more than 100 genes in subclones of the U-2932 cell line. It is particularly interesting that BCL6 - regulated by AhR/ARNT and wild-type MEF2B - may drive expression of germinal center markers in diffuse large B-cell lymphoma.
Collapse
Affiliation(s)
- Jie Ding
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig
| | - Wilhelm G Dirks
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig
| | - Stefan Ehrentraut
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig
| | - Robert Geffers
- Helmholtz Centre for Infection Research, Genome Analysis Research Group, Braunschweig
| | - Roderick A F MacLeod
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig
| | - Stefan Nagel
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig
| | - Claudia Pommerenke
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig
| | - Julia Romani
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig
| | - Michaela Scherr
- Medical School Hannover, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Germany
| | - Lea A I Vaas
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig
| | - Margarete Zaborski
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig
| | - Hans G Drexler
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig
| | - Hilmar Quentmeier
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig
| |
Collapse
|
36
|
Yang BH, Floess S, Hagemann S, Deyneko IV, Groebe L, Pezoldt J, Sparwasser T, Lochner M, Huehn J. Development of a unique epigenetic signature during in vivo Th17 differentiation. Nucleic Acids Res 2015; 43:1537-48. [PMID: 25593324 PMCID: PMC4330377 DOI: 10.1093/nar/gkv014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Activated naive CD4+ T cells are highly plastic cells that can differentiate into various T helper (Th) cell fates characterized by the expression of effector cytokines like IFN-γ (Th1), IL-4 (Th2) or IL-17A (Th17). Although previous studies have demonstrated that epigenetic mechanisms including DNA demethylation can stabilize effector cytokine expression, a comprehensive analysis of the changes in the DNA methylation pattern during differentiation of naive T cells into Th cell subsets is lacking. Hence, we here performed a genome-wide methylome analysis of ex vivo isolated naive CD4+ T cells, Th1 and Th17 cells. We could demonstrate that naive CD4+ T cells share more demethylated regions with Th17 cells when compared to Th1 cells, and that overall Th17 cells display the highest number of demethylated regions, findings which are in line with the previously reported plasticity of Th17 cells. We could identify seven regions located in Il17a, Zfp362, Ccr6, Acsbg1, Dpp4, Rora and Dclk1 showing pronounced demethylation selectively in ex vivo isolated Th17 cells when compared to other ex vivo isolated Th cell subsets and in vitro generated Th17 cells, suggesting that this unique epigenetic signature allows identifying and functionally characterizing in vivo generated Th17 cells.
Collapse
Affiliation(s)
- Bi-Huei Yang
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Floess
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefanie Hagemann
- Institute for Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Igor V Deyneko
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lothar Groebe
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Joern Pezoldt
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Tim Sparwasser
- Institute for Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Matthias Lochner
- Institute for Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
37
|
Ahrenhoerster LS, Leuthner TC, Tate ER, Lakatos PA, Laiosa MD. Developmental exposure to 2,3,7,8 tetrachlorodibenzo-p-dioxin attenuates later-life Notch1-mediated T cell development and leukemogenesis. Toxicol Appl Pharmacol 2015; 283:99-108. [PMID: 25585350 DOI: 10.1016/j.taap.2014.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/26/2014] [Accepted: 12/31/2014] [Indexed: 01/04/2023]
Abstract
Over half of T cell acute lymphoblastic leukemia (T-ALL) patients have activating mutations in the Notch gene. Moreover, the contaminant 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) is a known carcinogen that mediates its toxicity through the aryl hydrocarbon receptor (AHR), and crosstalk between activated AHR and Notch signaling pathways has previously been observed. Given the importance of Notch signaling in thymocyte development and T-ALL disease progression, we hypothesized that the activated AHR potentiates disease initiation and progression in an in vivo model of Notch1-induced thymoma. This hypothesis was tested utilizing adult and developmental exposure paradigms to TCDD in mice expressing a constitutively active Notch1 transgene (Notch(ICN-TG)). Following exposure of adult Notch(ICN-TG) mice to a single high dose of TCDD, we observed a significant increase in the efficiency of CD8 thymocyte generation. We next exposed pregnant mice to 3μg/kg of TCDD throughout gestation and lactation to elucidate effects of developmental AHR activation on later-life T cell development and T-ALL-like thymoma susceptibility induced by Notch1. We found that the vehicle-exposed Notch(ICN-TG) offspring have a peripheral T cell pool heavily biased toward the CD4 lineage, while TCDD-exposed Notch(ICN-TG) offspring were biased toward the CD8 lineage. Furthermore, while the vehicle-exposed NotchICN-TG mice showed increased splenomegaly and B to T cell ratios indicative of disease, mice developmentally exposed to TCDD were largely protected from disease. These studies support a model where developmental AHR activation attenuates later-life Notch1-dependent impacts on thymocyte development and disease progression.
Collapse
Affiliation(s)
- Lori S Ahrenhoerster
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Tess C Leuthner
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Everett R Tate
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Peter A Lakatos
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Michael D Laiosa
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States.
| |
Collapse
|
38
|
Brauze D, Fijalkiewicz K, Szaumkessel M, Kiwerska K, Bednarek K, Rydzanicz M, Richter J, Grenman R, Jarmuz-Szymczak M. Diversified expression of aryl hydrocarbon receptor dependent genes in human laryngeal squamous cell carcinoma cell lines treated with β-naphthoflavone. Toxicol Lett 2014; 231:99-107. [DOI: 10.1016/j.toxlet.2014.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 08/08/2014] [Accepted: 09/05/2014] [Indexed: 02/05/2023]
|
39
|
Jablonska A, Polouliakh N. In silico discovery of novel transcription factors regulated by mTOR-pathway activities. Front Cell Dev Biol 2014; 2:23. [PMID: 25364730 PMCID: PMC4206986 DOI: 10.3389/fcell.2014.00023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/09/2014] [Indexed: 12/21/2022] Open
Abstract
The mammalian target of rapamycine (mTOR) pathway is a key regulator of cellular growth, development, and ageing, and unraveling its control is essential for understanding life and death of biological organisms. A motif-discovery workbench including nine tools was used to identify transcription factors involved in five basic (Insulin, MAPK, VEGF, Hypoxia, and mTOR core) activities of the mTOR pathway. Discovered transcription factors are classified as “process-specific” or “pathway-ubiquitous” with highlights toward their regulating/regulated activities within the mTOR pathway. Our transcription regulation results will facilitate further research on investigating the control mechanism in mTOR pathway.
Collapse
Affiliation(s)
- Agnieszka Jablonska
- Faculty of Biotechnology and Food Sciences, Lodz University of Technology Lodz, Poland
| | - Natalia Polouliakh
- Fundamental Research Laboratories, Sony Computer Science Laboratories Inc. Tokyo, Japan ; Systems Biology Institute Tokyo, Japan ; Graduate School of Medicine, Yokohama City University Yokohama, Japan
| |
Collapse
|
40
|
Safi SZ, Qvist R, Yan GOS, Ismail ISB. Differential expression and role of hyperglycemia induced oxidative stress in epigenetic regulation of β1, β2 and β3-adrenergic receptors in retinal endothelial cells. BMC Med Genomics 2014; 7:29. [PMID: 24885710 PMCID: PMC4050418 DOI: 10.1186/1755-8794-7-29] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 05/20/2014] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Aberrant epigenetic profiles are concomitant with a spectrum of developmental defects and diseases. Role of methylation is an increasingly accepted factor in the pathophysiology of diabetes and its associated complications. This study aims to examine the correlation between oxidative stress and methylation of β1, β2 and β3-adrenergic receptors and to analyze the differential variability in the expression of these genes under hyperglycemic conditions. METHODS Human retinal endothelial cells were cultured in CSC complete medium in normal (5 mM) or high (25 mM) glucose to mimic a diabetic condition. Reverse transcription PCR and Western Blotting were performed to examine the expression of β1, β2 and β3-adrenergic receptors. For detections, immunocytochemistry was used. Bisulfite sequencing method was used for promoter methylation analysis. Apoptosis was determined by the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Dichlorodihydrofluorescein diacetate (DCFH-DA) assay was used to measure reactive oxygen species (ROS) production in the cells. RESULTS β1 and β3-adrenergic receptors were expressed in retinal endothelial cells while β2-adrenergic receptor was not detectable both at protein and mRNA levels. Hyperglycemia had no significant effect on β1 and β2-adrenergic receptors methylation and expression however β3-adrenergic receptors showed a significantly higher expression (p < 0.05) and methylation (p < 0.01) in high and low glucose concentration respectively. Apoptosis and oxidative stress were inversely correlated with β3-adrenergic receptors methylation with no significant effect on β1 and β2-adrenergic receptors. β2-adrenergic receptor was hypermethylated with halted expression. CONCLUSION Our study demonstrates that β1 and β3-adrenergic receptors expressed in human retinal endothelial cells. Oxidative stress and apoptosis are inversely proportional to the extent of promoter methylation, suggesting that methylation loss might be due to oxidative stress-induced DNA damage.
Collapse
Affiliation(s)
- Sher Zaman Safi
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Rajes Qvist
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Gracie Ong Siok Yan
- Department of Anesthesiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ikram Shah Bin Ismail
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
41
|
Gasiewicz TA, Singh KP, Bennett JA. The Ah receptor in stem cell cycling, regulation, and quiescence. Ann N Y Acad Sci 2014; 1310:44-50. [PMID: 24495120 DOI: 10.1111/nyas.12361] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Processes that regulate quiescence, self-renewal, and differentiation of hematopoietic stem cells (HSCs) are not well understood. Owing, in part, to the ability of xenobiotic ligands to have persistent effects on the immune system in experimental animals, there has been much work to define a physiological role of the aryl hydrocarbon receptor (AhR) and its relationship to human disease. Persistent AhR activation by dioxin, a potent agonist, results in altered numbers and function of HSCs in mice. HSCs from AhR(-/-) knockout (KO) mice are hyperproliferative and have an altered cell cycle. Aging KO mice show characteristics consistent with premature bone marrow exhaustion. We propose that the increased proliferation of HSCs lacking AhR expression or activity is a result of loss of quiescence, and as such, AhR normally acts as a negative regulator to curb excessive or unnecessary proliferation. Similarly, prolonged and/or inappropriate stimulation of AhR activity may compromise the ability of HSCs to sense environmental signals that allow these cells to balance quiescence, proliferation, migration, and differentiation. These data and others support a hypothesis that deregulation of AhR function has an important role in HSC regulation and in the etiology and/or progression of certain hematopoietic diseases, many of which are associated with aging.
Collapse
Affiliation(s)
- Thomas A Gasiewicz
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| | | | | |
Collapse
|
42
|
Li D, Liu C, Yu H, Zeng X, Xing X, Chen L, Gao C, Zhang Z, Xiao Y, Duan H, Zheng Y, Wang Q, Chen W. AhR is negatively regulated by miR-203 in response to TCDD or BaP treatment. Toxicol Res (Camb) 2014. [DOI: 10.1039/c3tx50083g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
43
|
Singh KP, Bennett JA, Casado FL, Walrath JL, Welle SL, Gasiewicz TA. Loss of aryl hydrocarbon receptor promotes gene changes associated with premature hematopoietic stem cell exhaustion and development of a myeloproliferative disorder in aging mice. Stem Cells Dev 2013; 23:95-106. [PMID: 24138668 DOI: 10.1089/scd.2013.0346] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Loss of immune function and increased hematopoietic disease are among the most clinically significant consequences of aging. Hematopoietic stem cells (HSCs) from mice lacking aryl hydrocarbon receptor (AhR) have high rates of cell division. Studies were designed to test the hypothesis that aging AhR-null allele (AhR-KO) mice develop premature HSC exhaustion, and changes leading to hematological disease. Compared to wild-type, aging AhR-KO mice showed a decreased survival rate, splenomegaly, increased circulating white blood cells, hematopoietic cell accumulation in tissues, and anemia. Analysis of bone marrow indicated increased numbers of stem/progenitor and lineage-committed cells, but decreased erythroid progenitors. There was also decreased self-renewal capacity of HSCs determined by competitive repopulation and serial transplantation. HSCs also showed increased levels of reactive oxygen species (ROS), Ki-67, and γ-H2A.X, but decreased p16(Ink4a). Splenic cells from aging KO mice had abnormal expression of genes, including Gata-1, Sh2d3c, Gfi-1, p21, and c-myc, involved in trafficking and associated with leukemia. HSCs from AhR-KO mice had gene changes related to HSC maintenance and consistent with phenotype observed. The most prominent gene changes (overexpression of Srpk2, Creb1, Hes1, mtor, pdp1) have been associated with HSC hyperproliferation, leukemia, and accelerated aging. Pathway analyses also indicated an enrichment of genes associated with oxidative stress, acute myelogenous leukemia, aging, and heat shock response, and the β-catenin/Wnt pathways. These data indicate that loss of AhR and associated changes in multiple signaling pathways promote premature HSC exhaustion and development of a myeloproliferative disorder. They also implicate a critical role of the AhR in the regulation of HSCs.
Collapse
Affiliation(s)
- Kameshwar P Singh
- 1 Department of Environmental Medicine, University of Rochester School of Medicine , Rochester, New York
| | | | | | | | | | | |
Collapse
|
44
|
|
45
|
The role of Sp1 and EZH2 in the regulation of LMX1A in cervical cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3206-3217. [PMID: 24018208 DOI: 10.1016/j.bbamcr.2013.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 08/28/2013] [Accepted: 08/30/2013] [Indexed: 12/26/2022]
Abstract
We have reported previously that LIM homeobox transcription factor 1α (LMX1A) is hypermethylated and functions as a metastasis suppressor in cervical cancer cells. However, the regulation of LMX1A in carcinogenesis has not been reported. We aim to clarify whether specificity protein 1 (Sp1) and enhancer of zeste homolog 2 (EZH2) are involved in the regulation of LMX1A in cervical cancer. First we characterized the LMX1A promoter and used overexpression, knockdown, and reporter assays to show that Sp1 increased LMX1A promoter activity. Next, we used site-directed mutagenesis and electrophoresis mobility shift assays (EMSAs) to demonstrate that Sp1-binding sites were important for Sp1-mediated activation of the LMX1A promoter. Chromatin immunoprecipitation data demonstrated that Sp1 could bind directly to the LMX1A promoter and activate endogenous LMX1A expression in cells pretreated with 5-aza-2'-deoxycytidine (5-aza-dC). Knockdown of EZH2 decreased H3K27me3 histone modification but was insufficient to restore LMX1A expression. To explore the effect of EZH2 on the endogenous LMX1A promoter, we treated EZH2-knockdown cells with 5-aza-dC and trichostatin A (TSA) and then depleted the cells of drugs for 3days. H3K14ac was enriched at the LMX1A promoter in EZH2-knockdown cells and LMX1A mRNA was still expressed. Taken together, these data imply that Sp1 may activate LMX1A expression upon oncogenic stress during cervical cancer development. Moreover, suppression of EZH2 may delay resilencing of LMX1A after the removal of 5-aza-dC and TSA.
Collapse
|
46
|
Contador-Troca M, Alvarez-Barrientos A, Barrasa E, Rico-Leo EM, Catalina-Fernández I, Menacho-Márquez M, Bustelo XR, García-Borrón JC, Gómez-Durán A, Sáenz-Santamaría J, Fernández-Salguero PM. The dioxin receptor has tumor suppressor activity in melanoma growth and metastasis. Carcinogenesis 2013; 34:2683-93. [PMID: 23843039 DOI: 10.1093/carcin/bgt248] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Melanoma is a highly metastatic and malignant skin cancer having poor rates of patient survival. Since the incidence of melanoma is steadily increasing in the population, finding prognostic and therapeutic targets are crucial tasks in cancer. The dioxin receptor (AhR) is required for xenobiotic-induced toxicity and carcinogenesis and for cell physiology and organ homeostasis. Yet, the mechanisms by which AhR affects tumor growth and dissemination are largely uncharacterized. We report here that AhR contributes to the tumor-stroma interaction, blocking melanoma growth and metastasis when expressed in the tumor cell but supporting melanoma when expressed in the stroma. B16F10 cells engineered to lack AhR (small hairpin RNA for AhR) exacerbated melanoma primary tumorigenesis and lung metastasis when injected in AhR+/+ recipient mice but not when injected in AhR- /- mice or when co-injected with AhR-/- fibroblasts in an AhR+/+ stroma. Contrary, B16F10 cells expressing a constitutively active AhR had reduced tumorigenicity and invasiveness in either AhR genetic background. The tumor suppressor role of AhR in melanoma cells correlated with reduced migration and invasion, with lower numbers of cancer stem-like cells and with altered levels of β1-integrin and caveolin1. Human melanoma cell lines with highest AHR expression also had lowest migration and invasion. Moreover, AHR expression was reduced in human melanomas with respect to nevi lesions. We conclude that AhR knockdown in melanoma cells requires stromal AhR for maximal tumor progression and metastasis. Thus, AhR can be a molecular marker in melanoma and its activity in both tumor and stromal compartments should be considered.
Collapse
|
47
|
James SR, Cedeno CD, Sharma A, Zhang W, Mohler JL, Odunsi K, Wilson EM, Karpf AR. DNA methylation and nucleosome occupancy regulate the cancer germline antigen gene MAGEA11. Epigenetics 2013; 8:849-63. [PMID: 23839233 DOI: 10.4161/epi.25500] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
MAGEA11 is a cancer germline (CG) antigen and androgen receptor co-activator. Its expression in cancers other than prostate, and its mechanism of activation, has not been reported. In silico analyses reveal that MAGEA11 is frequently expressed in human cancers, is increased during tumor progression, and correlates with poor prognosis and survival. In prostate and epithelial ovarian cancers (EOC), MAGEA11 expression was associated with promoter and global DNA hypomethylation, and with activation of other CG genes. Pharmacological or genetic inhibition of DNA methyltransferases (DNMTs) and/or histone deacetylases (HDACs) activated MAGEA11 in a cell line specific manner. MAGEA11 promoter activity was directly repressed by DNA methylation, and partially depended on Sp1, as pharmacological or genetic targeting of Sp1 reduced MAGEA11 promoter activity and endogenous gene expression. Importantly, DNA methylation regulated nucleosome occupancy specifically at the -1 positioned nucleosome of MAGEA11. Methylation of a single Ets site near the transcriptional start site (TSS) correlated with -1 nucleosome occupancy and, by itself, strongly repressed MAGEA11 promoter activity. Thus, DNA methylation regulates nucleosome occupancy at MAGEA11, and this appears to function cooperatively with sequence-specific transcription factors to regulate gene expression. MAGEA11 regulation is highly instructive for understanding mechanisms regulating CG antigen genes in human cancer.
Collapse
Affiliation(s)
- Smitha R James
- Department of Pharmacology and Therapeutics; Roswell Park Cancer Institute; Buffalo, NY USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
The evolving role of the aryl hydrocarbon receptor (AHR) in the normophysiology of hematopoiesis. Stem Cell Rev Rep 2013; 8:1223-35. [PMID: 22628113 DOI: 10.1007/s12015-012-9384-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In addition to its role as a toxicological signal mediator, the Aryl Hydrocarbon Receptor (AHR) is also a transcription factor known to regulate cellular responses to oxidative stress and inflammation through transcriptional regulation of molecules involved in the signaling of nucear factor-erythroid 2-related factor-2 (Nrf2), p53 (TRP53), retinoblastoma (RB1), and NFκB. Recent research suggests that AHR activation of these signaling pathways may provide the molecular basis for understanding AHR's evolving role in endogenous developmental functions during hematopoietic stem-cell maintenance and differentiation. Recent developments into the hematopoietic roles for AHR are reviewed, aiming to reconcile divergent findings as to the endogenous function of AHR in hematopoiesis. Potential mechanistic explanations for AHR's involvement in hematopoietic differentiation are discussed, focusing on its known role as a cell cycle mediator and its interactions with Hypoxia-inducible transcription factor-1 alpha (HIF1-α). Understanding the physiological mechanisms of AHR activation and signaling have far reaching implications ranging from explaining the action of various toxicological agents to providing novel ways to expand stem cell populations ex vivo for use in transplant therapies.
Collapse
|
49
|
Anderson G, Beischlag TV, Vinciguerra M, Mazzoccoli G. The circadian clock circuitry and the AHR signaling pathway in physiology and pathology. Biochem Pharmacol 2013; 85:1405-16. [PMID: 23438471 DOI: 10.1016/j.bcp.2013.02.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/14/2013] [Accepted: 02/14/2013] [Indexed: 12/14/2022]
Abstract
Life forms populating the Earth must face environmental challenges to assure individual and species survival. The strategies predisposed to maintain organismal homeostasis and grant selective advantage rely on anticipatory phenomena facing periodic modifications, and compensatory phenomena facing unpredictable changes. Biological processes bringing about these responses are respectively driven by the circadian timing system, a complex of biological oscillators entrained to the environmental light/dark cycle, and by regulatory and metabolic networks that precisely direct the body's adjustments to variations of external conditions and internal milieu. A critical role in organismal homeostatic functions is played by the aryl hydrocarbon receptor (AHR) complex, which senses environmental and endogenous compounds, influences metabolic responses controlling phase I/II gene expression, and modulates vital phenomena such as development, inflammation and adaptive immunity. A physiological cross-talk between circadian and AHR signaling pathways has been evidenced. The alteration of AHR signaling pathway deriving from genetic damage with polymorphisms or mutations, or produced by exogenous or endogenous AHR activation, and chronodisruption caused by mismatch between the body's internal clock and geophysical time/social schedules, are capable of triggering pathological mechanisms involved in metabolic, immune-related and neoplastic diseases. On the other hand, the molecular components of the circadian clock circuitry and AHR signaling pathway may represent useful tools for preventive interventions and valuable targets of therapeutic approaches.
Collapse
Affiliation(s)
- George Anderson
- Clinical Research Centre/Communications, Glasgow, United Kingdom
| | | | | | | |
Collapse
|
50
|
Rico-Leo EM, Alvarez-Barrientos A, Fernandez-Salguero PM. Dioxin receptor expression inhibits basal and transforming growth factor β-induced epithelial-to-mesenchymal transition. J Biol Chem 2013; 288:7841-7856. [PMID: 23382382 DOI: 10.1074/jbc.m112.425009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recent studies have emphasized the role of the dioxin receptor (AhR) in maintaining cell morphology, adhesion, and migration. These novel AhR functions depend on the cell phenotype, and although AhR expression maintains mesenchymal fibroblasts migration, it inhibits keratinocytes motility. These observations prompted us to investigate whether AhR modulates the epithelial-to-mesenchymal transition (EMT). For this, we have used primary AhR(+/+) and AhR(-/-) keratinocytes and NMuMG cells engineered to knock down AhR levels (sh-AhR) or to express a constitutively active receptor (CA-AhR). Both AhR(-/-) keratinocytes and sh-AhR NMuMG cells had increased migration, reduced levels of epithelial markers E-cadherin and β-catenin, and increased expression of mesenchymal markers Snail, Slug/Snai2, vimentin, fibronectin, and α-smooth muscle actin. Consistently, AhR(+/+) and CA-AhR NMuMG cells had reduced migration and enhanced expression of epithelial markers. AhR activation by the agonist FICZ (6-formylindolo[3,2-b]carbazole) inhibited NMuMG migration, whereas the antagonist α-naphthoflavone induced migration as did AhR knockdown. Exogenous TGFβ exacerbated the promigratory mesenchymal phenotype in both AhR-expressing and AhR-depleted cells, although the effects on the latter were more pronounced. Rescuing AhR expression in sh-AhR cells reduced Snail and Slug/Snai2 levels and cell migration and restored E-cadherin levels. Interference of AhR in human HaCaT cells further supported its role in EMT. Interestingly, co-immunoprecipitation and immunofluorescence assays showed that AhR associates in common protein complexes with E-cadherin and β-catenin, suggesting the implication of AhR in cell-cell adhesion. Thus, basal or TGFβ-induced AhR down-modulation could be relevant in the acquisition of a motile EMT phenotype in both normal and transformed epithelial cells.
Collapse
Affiliation(s)
- Eva M Rico-Leo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | | | - Pedro M Fernandez-Salguero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain.
| |
Collapse
|