1
|
Tang Y, Feng Z, Ma C, Jang N, Chen X, He Y, Martin FL, Liu H, Pang W. Chronic exposure to B[a]P induces malignant transformation of breast epithelial cells through the mechanism via TGF-β signaling pathway. Food Chem Toxicol 2025:115574. [PMID: 40419235 DOI: 10.1016/j.fct.2025.115574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/18/2025] [Accepted: 05/23/2025] [Indexed: 05/28/2025]
Abstract
Breast cancer has a high global incidence, and benzo[a]pyrene (B[a]P) is considered a contributing factor that increases carcinogenic risk. This study examined B[a]P's oncogenic mechanisms in mammary epithelial cells. Chronic B[a]P exposure induced morphological changes and enhanced proliferative/clonogenic capacity in MCF-10A cells. Chronic B[a]P exposure altered gene expression in MCF-10A cells, revealing differential levels of circRNAs, lncRNAs, miRNAs, and mRNAs. qRT-PCR validation demonstrated strong alignment with RNA-seq results, ensuring sequencing reliability. Additionally, chronic B[a]P exposure upregulated the protein expression of AhR and ARNT, as well as TGF-β, pSmad2/3, and KRT14, while increasing Vimentin expression and decreasing E-cadherin expression. Notably, treatment with the TGF-β inhibitor SB431542 reversed these protein expression changes in transformed cells. These results show that exposure to Chronic B[a]P induces MCF-10A cell transformation. The underlying mechanisms involve significant transcriptional alterations, AhR/ARNT expression regulation, TGF-β signaling pathway activation, KRT14 protein modulation, and EMT. Furthermore, Chronic B[a]P exposure may drive transformation through TGF-β modulation. Chronic B[a]P exposure promotes breast carcinogenesis, revealing mechanistic insights and potential preventive biomarkers.
Collapse
Affiliation(s)
- Yongjun Tang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Gyangxi, China; School of Public Health, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Zhengning Feng
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Gyangxi, China; School of Public Health, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Chenlu Ma
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Gyangxi, China; School of Public Health, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Nian Jang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Gyangxi, China; School of Public Health, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Xiaolong Chen
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Gyangxi, China; School of Public Health, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Yingxu He
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Gyangxi, China; School of Public Health, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Francis L Martin
- Biocel UK Ltd,Hull HU10 6TS, UK; Clinical Research Centre, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool FY3 8NR, UK
| | - Hui Liu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Gyangxi, China; School of Public Health, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Weiyi Pang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Gyangxi, China; School of Public Health, Guilin Medical University, Guilin 541199, Guangxi, China; School of Humanities and Management, Guilin Medical University, Guilin 541199, Guangxi, China.
| |
Collapse
|
2
|
Pan ZY, Dong DK, Shi ZN, Yuan HJ, Wu Q, Hu TT, Mo XH, Ju Q. The promotion of cell proliferation and invasion in cutaneous squamous cell carcinomas after ARNT downregulation is associated with CXCL3. Cell Signal 2024; 124:111432. [PMID: 39312988 DOI: 10.1016/j.cellsig.2024.111432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/28/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
The aryl hydrocarbon receptor nuclear translocator (ARNT) is a transcription factor associated with adaptive responses to cellular stress. Its role in cutaneous squamous cell carcinoma (cSCC) remains poorly understood. The aim of this study was to investigate the role of ARNT in cSCC. Immunohistochemistry revealed downregulation of ARNT in cSCC, precancerous lesions (actinic keratosis), and cells. Knockdown of ARNT in A431 and SCL-1 cells significantly enhanced cell growth and metastasis. Microarray analysis and Ingenuity Pathway Analysis confirmed that loss of ARNT in A431 cells was highly correlated with cell growth and movement and upregulated CXCL3 expression. Cellular and xenograft experiments further confirmed that ARNT regulates cSCC proliferation and invasiveness in a CXCL3-dependent manner. ARNT may regulate CXCL3 expression through ROS-STAT3 pathway. In conclusion, this study demonstrates that ARNT plays a critical role in the development of cSCC and significantly affects the proliferation and metastatic ability of cSCC cells. It has the potential to serve as an ideal treatment target for cSCC.
Collapse
Affiliation(s)
- Zhan-Yan Pan
- Department of Dermatology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Da-Ke Dong
- Department of Dermatology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhi-Nan Shi
- Department of Dermatology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Hui-Jie Yuan
- Department of Dermatology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China; Department of Dermatology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China
| | - Qiong Wu
- Department of Dermatology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Ting-Ting Hu
- Department of Dermatology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Xiao-Hui Mo
- Department of Dermatology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Qiang Ju
- Department of Dermatology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China.
| |
Collapse
|
3
|
Zou H, Zhang M, Chen J, Aniagu S, Jiang Y, Chen T. AHR-mediated DNA damage contributes to BaP-induced cardiac malformations in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167636. [PMID: 37806592 DOI: 10.1016/j.scitotenv.2023.167636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Benzo[a]pyrene (BaP) is a representative polycyclic aromatic hydrocarbon widely present in the environment. We previously reported that the aryl hydrocarbon receptor (AHR) mediates BaP-induced apoptosis and cardiac malformations in zebrafish embryos, but the underlying molecular mechanisms were unclear. Since BaP is a mutagenetic compound, we hypothesize that BaP induces apoptosis and heart defects via AHR-mediated DNA damage. In this study, zebrafish embryos were exposed to BaP at a concentration of 0.1 μM from 2 to 72 h post fertilization, either with or without inhibitors/agonists. AHR activity and levels of reactive oxygen species (ROS) were examined under a fluorescence microscope. mRNA expression levels were quantified by qPCR. DNA damage and apoptosis were detected by immunofluorescence. Our findings revealed that BaP exposure significantly increased BPDE-DNA adducts, mitochondrial damage, apoptosis and heart defects in zebrafish embryos. These effects were counteracted by inhibiting AHR/cyp1a1 using pharmaceutical inhibitors or genetic knockdown. Furthermore, we observed that spironolactone, an antagonist of nucleotide excision repair (NER), significantly enhanced BaP-induced BPDE-DNA adducts, mitochondrial damage, apoptosis and heart malformation rates. Conversely, SRT1720, a SIRT1 agonist, reduced the adverse effects of BaP. Supplementation with spironolactone also enhanced γ-H2AX signals in the heart of zebrafish embryos exposed to BaP. Additional experiments demonstrated that BaP suppressed the expression of SIRT1. We further established that AHR, when activated by BaP, directly inhibited SIRT1 transcription, leading to downregulation of XPC and XPA, which are essential NER genes involved in the recognition and verification steps of the NER process. Taken together, our results indicate that AHR mediates BaP-induced DNA damage in the heart of zebrafish embryos by inducing BPDE-DNA adduct formation via the AHR/Cyp1a1 signalling pathway, as well as suppressing NER via AHR-mediated inhibition of SIRT1.
Collapse
Affiliation(s)
- Hongmei Zou
- Suzhou Medical College, Soochow University, Suzhou, China; Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou, China
| | - Mingxuan Zhang
- Suzhou Medical College, Soochow University, Suzhou, China; Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou, China
| | - Jin Chen
- Suzhou Medical College, Soochow University, Suzhou, China; Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou, China
| | - Stanley Aniagu
- Toxicology, Risk Assessment, and Research Division, Texas Commission on Environmental Quality, 12015 Park 35 Cir, Austin, TX, USA
| | - Yan Jiang
- Suzhou Medical College, Soochow University, Suzhou, China; Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou, China.
| | - Tao Chen
- Suzhou Medical College, Soochow University, Suzhou, China; Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou, China.
| |
Collapse
|
4
|
Mandal A, Biswas N, Alam MN. Implications of xenobiotic-response element(s) and aryl hydrocarbon receptor in health and diseases. Hum Cell 2023; 36:1638-1655. [PMID: 37329424 DOI: 10.1007/s13577-023-00931-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/01/2023] [Indexed: 06/19/2023]
Abstract
The effect of air pollution on public health is severely detrimental. In humans; the physiological response against pollutants is mainly elicited via the activation of aryl hydrocarbon receptor (AhR). It acts as a prime sensor of xenobiotic chemicals, also functioning as a transcription factor regulating a variety of gene expressions. Along with AhR, another pivotal element of the pollution stress pathway is Xenobiotic Response Elements (XREs). XRE, as studied are some conserved sequences in the DNA, responsible for the physiological response against pollutants. XRE is present at the upstream of the inducible target genes of AhR and it regulates the function of the AhR. XRE(s) are highly conserved in species as it has only eight specific sequences found so far in humans, mice, and rats. Inhalation of toxicants like dioxins, gaseous industrial effluents, and smoke from burning fuel and tobacco leads to predominant damage to the lungs. However, scientists are exploring the involvement of AhR in chronic diseases for example chronic obstructive pulmonary disease (COPD) and also other lethal diseases like lung cancer. In this review, we summarise what is known at this time about the roles played by the XRE and AhR in our molecular systems that have a defined control in the normal maintenance of homeostasis as well as dysfunctions.
Collapse
Affiliation(s)
- Avijit Mandal
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Nabendu Biswas
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Md Nur Alam
- Department of Life Sciences, Presidency University, Kolkata, 700073, India.
| |
Collapse
|
5
|
Bi Y, Yang Q, Li Z, Wang Y, Wang Y, Jia A, Pan Z, Yang R, Liu G. Aryl hydrocarbon receptor nuclear translocator limits the recruitment and function of regulatory neutrophils against colorectal cancer by regulating the gut microbiota. J Exp Clin Cancer Res 2023; 42:53. [PMID: 36859266 PMCID: PMC9976387 DOI: 10.1186/s13046-023-02627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Although the role and mechanism of neutrophils in tumors have been widely studied, the precise effects of aryl hydrocarbon receptor nuclear translocator (ARNT) on neutrophils remain unclear. In this study, we investigated the roles of ARNT in the function of CD11b+Gr1+ neutrophils in colitis-associated colorectal cancer. METHODS Wild-type (WT), ARNT myeloid-specific deficient mice and a colitis-associated colorectal cancer mouse model were used in this study. The level and functions of CD11b+Gr1+ cells were evaluated by flow cytometry and confocal microscopy. RESULTS We found that ARNT deficiency drives neutrophils recruitment, neutrophil extracellular trap (NET) development, inflammatory cytokine secretion and suppressive activities when cells enter the periphery from bone marrow upon colorectal tumorigenesis. ARNT deficiency displays similar effects to aryl hydrocarbon receptor (AHR) deficiency in neutrophils. CXCR2 is required for NET development, cytokine production and recruitment of neutrophils but not the suppressive activities induced by Arnt-/- in colorectal cancer. The gut microbiota is essential for functional alterations in Arnt-/- neutrophils to promote colorectal cancer growth. The colorectal cancer effects of Arnt-/- neutrophils were significantly restored by mouse cohousing or antibiotic treatment. Intragastric administration of the feces of Arnt-/- mice phenocopied their colorectal cancer effects. CONCLUSION Our results defined a new role for the transcription factor ARNT in regulating neutrophils recruitment and function and the gut microbiota with implications for the future combination of gut microbiota and immunotherapy approaches in colorectal cancer.
Collapse
Affiliation(s)
- Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071, Beijing, China.
| | - Qiuli Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Zhengchao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071, Beijing, China
| | - Yuexin Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Yufei Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Anna Jia
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Zhiyuan Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China.
| |
Collapse
|
6
|
Tian X, Yan T, Liu F, Liu Q, Zhao J, Xiong H, Jiang S. Link of sorafenib resistance with the tumor microenvironment in hepatocellular carcinoma: Mechanistic insights. Front Pharmacol 2022; 13:991052. [PMID: 36071839 PMCID: PMC9441942 DOI: 10.3389/fphar.2022.991052] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022] Open
Abstract
Sorafenib, a multi-kinase inhibitor with antiangiogenic, antiproliferative, and proapoptotic properties, is the first-line treatment for patients with late-stage hepatocellular carcinoma (HCC). However, the therapeutic effect remains limited due to sorafenib resistance. Only about 30% of HCC patients respond well to the treatment, and the resistance almost inevitably happens within 6 months. Thus, it is critical to elucidate the underlying mechanisms and identify effective approaches to improve the therapeutic outcome. According to recent studies, tumor microenvironment (TME) and immune escape play critical roles in tumor occurrence, metastasis and anti-cancer drug resistance. The relevant mechanisms were focusing on hypoxia, tumor-associated immune-suppressive cells, and immunosuppressive molecules. In this review, we focus on sorafenib resistance and its relationship with liver cancer immune microenvironment, highlighting the importance of breaking sorafenib resistance in HCC.
Collapse
Affiliation(s)
- Xinchen Tian
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tinghao Yan
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fen Liu
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Qingbin Liu
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Jing Zhao
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining, China
- *Correspondence: Huabao Xiong, ; Shulong Jiang,
| | - Shulong Jiang
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
- *Correspondence: Huabao Xiong, ; Shulong Jiang,
| |
Collapse
|
7
|
Alternative Splicing of the Aryl Hydrocarbon Receptor Nuclear Translocator (ARNT) Is Regulated by RBFOX2 in Lymphoid Malignancies. Mol Cell Biol 2022; 42:e0050321. [PMID: 35404107 PMCID: PMC9119065 DOI: 10.1128/mcb.00503-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aberrant alternative splicing (AS) of pre-mRNAs promotes the development and proliferation of cancerous cells. Accordingly, we had previously observed higher levels of the aryl hydrocarbon receptor nuclear translocator (ARNT) spliced variant isoform 1 in human lymphoid malignancies compared to that in normal lymphoid cells, which is a consequence of increased inclusion of alternative exon 5. ARNT is a transcription factor that has been implicated in the survival of various cancers. Notably, we found that ARNT isoform 1 promoted the growth and survival of lymphoid malignancies, but the regulatory mechanism controlling ARNT AS is unclear. Here, we report cis- and trans-regulatory elements which are important for the inclusion of ARNT exon 5. Specifically, we identified recognition motifs for the RNA-binding protein RBFOX2, which are required for RBFOX2-mediated exon 5 inclusion. RBFOX2 upregulation was observed in lymphoid malignancies, correlating with the observed increase in ARNT exon 5 inclusion. Moreover, suppression of RBFOX2 significantly reduced ARNT isoform 1 levels and cell growth. These observations reveal RBFOX2 as a critical regulator of ARNT AS in lymphoid malignancies and suggest that blocking the ARNT-specific RBFOX2 motifs to decrease ARNT isoform 1 levels is a viable option for targeting the growth of lymphoid malignancies.
Collapse
|
8
|
Vogeley C, Rolfes KM, Krutmann J, Haarmann-Stemmann T. The Aryl Hydrocarbon Receptor in the Pathogenesis of Environmentally-Induced Squamous Cell Carcinomas of the Skin. Front Oncol 2022; 12:841721. [PMID: 35311158 PMCID: PMC8927079 DOI: 10.3389/fonc.2022.841721] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/09/2022] [Indexed: 01/05/2023] Open
Abstract
Cutaneous squamous cell carcinoma (SCC) is one of the most frequent malignancies in humans and academia as well as public authorities expect a further increase of its incidence in the next years. The major risk factor for the development of SCC of the general population is the repeated and unprotected exposure to ultraviolet (UV) radiation. Another important risk factor, in particular with regards to occupational settings, is the chronic exposure to polycyclic aromatic hydrocarbons (PAH) which are formed during incomplete combustion of organic material and thus can be found in coal tar, creosote, bitumen and related working materials. Importantly, both exposomal factors unleash their carcinogenic potential, at least to some extent, by activating the aryl hydrocarbon receptor (AHR). The AHR is a ligand-dependent transcription factor and key regulator in xenobiotic metabolism and immunity. The AHR is expressed in all cutaneous cell-types investigated so far and maintains skin integrity. We and others have reported that in response to a chronic exposure to environmental stressors, in particular UV radiation and PAHs, an activation of AHR and downstream signaling pathways critically contributes to the development of SCC. Here, we summarize the current knowledge about AHR's role in skin carcinogenesis and focus on its impact on defense mechanisms, such as DNA repair, apoptosis and anti-tumor immune responses. In addition, we discuss the possible consequences of a simultaneous exposure to different AHR-stimulating environmental factors for the development of cutaneous SCC.
Collapse
Affiliation(s)
- Christian Vogeley
- IUF - Leibniz-Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Katharina M Rolfes
- IUF - Leibniz-Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Jean Krutmann
- IUF - Leibniz-Research Institute for Environmental Medicine, Düsseldorf, Germany
| | | |
Collapse
|
9
|
Nyamsuren G, Rapp G, Dihazi H, Zeisberg EM, Tampe D, Tampe B, Zeisberg M. PP2A phosphatase inhibition is anti-fibrotic through Ser77 phosphorylation-mediated ARNT/ARNT homodimer formation. Sci Rep 2021; 11:24075. [PMID: 34912030 PMCID: PMC8674365 DOI: 10.1038/s41598-021-03523-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 11/02/2021] [Indexed: 11/09/2022] Open
Abstract
Aryl hydrocarbon receptor nuclear translocator (ARNT) mediates anti-fibrotic activity in kidney and liver through induction of ALK3-receptor expression and subsequently increased Smad1/5/8 signaling. While expression of ARNT can be pharmacologically induced by sub-immunosuppressive doses of FK506 or by GPI1046, its anti-fibrotic activity is only realized when ARNT-ARNT homodimers form, as opposed to formation of ARNT-AHR or ARNT-HIF1α heterodimers. Mechanisms underlying ARNTs dimerization decision to specifically form ARNT–ARNT homodimers and possible cues to specifically induce ARNT homodimerization have been previously unknown. Here, we demonstrate that phosphorylation of the Ser77 residue is critical for ARNT–ARNT homodimer formation and stabilization. We further demonstrate that inhibition of PP2A phosphatase activity by LB100 enhances ARNT–ARNT homodimers both in vivo and in vitro (mouse tubular epithelial cells and human embryonic kidney cells). In murine models of kidney fibrosis, and also of liver fibrosis, combinations of FK506 or GPI1046 (to induce ARNT expression) with LB100 (to enhance ARNT homodimerization) elicit additive anti-fibrotic activities. Our study provides additional evidence for the anti-fibrotic activity of ARNT–ARNT homodimers and reveals Ser77 phosphorylation as a novel pharmacological target to realize the therapeutic potential of increased ARNT transactivation activity.
Collapse
Affiliation(s)
- Gunsmaa Nyamsuren
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen, Germany
| | - Gregor Rapp
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen, Germany
| | - Hassan Dihazi
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen, Germany
| | - Elisabeth M Zeisberg
- Department of Cardiology and Pneumology, Göttingen University Medical Center, Georg August University, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Robert Koch Street 40, Göttingen, Germany
| | - Desiree Tampe
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen, Germany
| | - Björn Tampe
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen, Germany.
| | - Michael Zeisberg
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen, Germany. .,German Center for Cardiovascular Research (DZHK), Robert Koch Street 40, Göttingen, Germany.
| |
Collapse
|
10
|
Meng H, Li G, Wei W, Bai Y, Feng Y, Fu M, Guan X, Li M, Li H, Wang C, Jie J, Wu X, He M, Zhang X, Wei S, Li Y, Guo H. Epigenome-wide DNA methylation signature of benzo[a]pyrene exposure and their mediation roles in benzo[a]pyrene-associated lung cancer development. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125839. [PMID: 33887567 DOI: 10.1016/j.jhazmat.2021.125839] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Benzo[a]pyrene (B[a]P) is a typical carcinogen associated with increased lung cancer risk, but the underlying mechanisms remain unclear. This study aimed to investigate epigenome-wide DNA methylation associated with B[a]P exposure and their mediation effects on B[a]P-lung cancer association in two lung cancer case-control studies of 462 subjects. Their plasma levels of benzo[a]pyrene diol epoxide-albumin (BPDE-Alb) adducts and genome-wide DNA methylations were separately detected in peripheral blood by using enzyme-linked immunosorbent assay (ELISA) and genome-wide methylation arrays. The epigenome-wide meta-analysis was performed to analyze the associations between BPDE-Alb adducts and DNA methylations. Mediation analysis was applied to assess effect of DNA methylation on the B[a]P-lung cancer association. We identified 15 CpGs associated with BPDE-Alb adducts (P-meta < 1.0 × 10-5), among which the methylation levels at five loci (cg06245338, cg24256211, cg15107887, cg02211741, and cg04354393 annotated to UBE2O, SAMD4A, ACBD6, DGKZ, and SLFN13, respectively) mediated a separate 38.5%, 29.2%, 41.5%, 47.7%, 56.5%, and a joint 58.2% of the association between BPDE-Alb adducts and lung cancer risk. Compared to the traditional factors [area under the curve (AUC) = 0.788], addition of these CpGs exerted improved discriminations for lung cancer, with AUC ranging 0.828-0.861. Our results highlight DNA methylation alterations as potential mediators in lung tumorigenesis induced by B[a]P exposure.
Collapse
Affiliation(s)
- Hua Meng
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guyanan Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Wei
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yansen Bai
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Feng
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Fu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Guan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengying Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hang Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chenming Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiali Jie
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiulong Wu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meian He
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sheng Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yangkai Li
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
11
|
Miles FL, Mashchak A, Filippov V, Orlich MJ, Duerksen-Hughes P, Chen X, Wang C, Siegmund K, Fraser GE. DNA Methylation Profiles of Vegans and Non-Vegetarians in the Adventist Health Study-2 Cohort. Nutrients 2020; 12:E3697. [PMID: 33266012 PMCID: PMC7761449 DOI: 10.3390/nu12123697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022] Open
Abstract
We sought to determine if DNA methylation patterns differed between vegans and non-vegetarians in the Adventist Health Study-2 cohort. Genome-wide DNA methylation derived from buffy coat was profiled in 62 vegans and 142 non-vegetarians. Using linear regression, methylation of CpG sites and genes was categorized or summarized according to various genic/intergenic regions and CpG island-related regions, as well as the promoter. Methylation of genes was measured as the average methylation of available CpG's annotated to the nominated region of the respective gene. A permutation method defining the null distribution adapted from Storey et al. was used to adjust for false discovery. Differences in methylation of several CpG sites and genes were detected at a false discovery rate < 0.05 in region-specific and overall analyses. A vegan diet was associated predominantly with hypomethylation of genes, most notably methyltransferase-like 1 (METTL1). Although a limited number of differentially methylated features were detected in the current study, the false discovery method revealed that a much larger proportion of differentially methylated genes and sites exist, and could be detected with a larger sample size. Our findings suggest modest differences in DNA methylation in vegans and non-vegetarians, with a much greater number of detectable significant differences expected with a larger sample.
Collapse
Affiliation(s)
- Fayth L. Miles
- Adventist Health Study, Loma Linda University, Loma Linda, CA 92350, USA; (F.L.M.); (A.M.); (M.J.O.)
- Center for Nutrition, Healthy Lifestyle, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA
- Department of Preventive Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (V.F.); (P.D.-H.); (X.C.); (C.W.)
| | - Andrew Mashchak
- Adventist Health Study, Loma Linda University, Loma Linda, CA 92350, USA; (F.L.M.); (A.M.); (M.J.O.)
| | - Valery Filippov
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (V.F.); (P.D.-H.); (X.C.); (C.W.)
| | - Michael J. Orlich
- Adventist Health Study, Loma Linda University, Loma Linda, CA 92350, USA; (F.L.M.); (A.M.); (M.J.O.)
- Center for Nutrition, Healthy Lifestyle, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA
- Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Penelope Duerksen-Hughes
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (V.F.); (P.D.-H.); (X.C.); (C.W.)
| | - Xin Chen
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (V.F.); (P.D.-H.); (X.C.); (C.W.)
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Charles Wang
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (V.F.); (P.D.-H.); (X.C.); (C.W.)
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Kimberly Siegmund
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA;
| | - Gary E. Fraser
- Adventist Health Study, Loma Linda University, Loma Linda, CA 92350, USA; (F.L.M.); (A.M.); (M.J.O.)
- Center for Nutrition, Healthy Lifestyle, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA
- Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
12
|
Donini CF, El Helou M, Wierinckx A, Győrffy B, Aires S, Escande A, Croze S, Clezardin P, Lachuer J, Diab-Assaf M, Ghayad SE, Fervers B, Cavaillès V, Maguer-Satta V, Cohen PA. Long-Term Exposure of Early-Transformed Human Mammary Cells to Low Doses of Benzo[a]pyrene and/or Bisphenol A Enhances Their Cancerous Phenotype via an AhR/GPR30 Interplay. Front Oncol 2020; 10:712. [PMID: 32670863 PMCID: PMC7326103 DOI: 10.3389/fonc.2020.00712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
It is of utmost importance to decipher the role of chronic exposure to low doses of environmental carcinogens on breast cancer progression. The early-transformed triple-negative human mammary MCF10AT1 cells were chronically (60 days) exposed to low doses (10−10 M) of Benzo[a]pyrene (B[a]P), a genotoxic agent, and/or Bisphenol A (BPA), an endocrine disruptor. Our study revealed that exposed MCF10AT1 cells developed, in a time-dependent manner, an acquired phenotype characterized by an increase in cancerous properties (anchorage independent growth and stem-like phenotype). Co-exposure of MCF10AT1 cells to B[a]P and BPA led to a significantly greater aggressive phenotype compared to B[a]P or BPA alone. This study provided new insights into the existence of a functional interplay between the aryl hydrocarbon receptor (AhR) and the G protein-coupled receptor 30 (GPR30) by which chronic and low-dose exposure of B[a]P and/or BPA fosters the progression of MCF10AT1 cells into a more aggressive substage. Experiments using AhR or GPR30 antagonists, siRNA strategies, and RNAseq analysis led us to propose a model in which AhR signaling plays a “driver role” in the AhR/GPR30 cross-talk in mediating long-term and low-dose exposure of B[a]P and/or BPA. Retrospective analysis of two independent breast cancer cohorts revealed that the AhR/GPR30 mRNA expression signature resulted in poor breast cancer prognosis, in particular in the ER-negative and the triple-negative subtypes. Finally, the study identified targeting AhR and/or GPR30 with specific antagonists as a strategy capable of inhibiting carcinogenesis associated with chronic exposure to low doses of B[a]P and BPA in MCF10AT1 cells. Altogether, our results indicate that the engagement of both AhR and GPR30 functions, in particular in an ER-negative/triple-negative context of breast cells, favors tumor progression and leads to poor prognosis.
Collapse
Affiliation(s)
- Caterina F Donini
- Université Lyon 1, Lyon, France.,CRCL-Centre de Recherche en Cancérologie de Lyon-Inserm U1052-CNRS U5286, Lyon, France.,Département Cancer et Environnement, Centre Léon Bérard, Lyon, France
| | - Myriam El Helou
- Université Lyon 1, Lyon, France.,CRCL-Centre de Recherche en Cancérologie de Lyon-Inserm U1052-CNRS U5286, Lyon, France.,Faculty of sciences II, Lebanese University, Fanar, Lebanon
| | - Anne Wierinckx
- Université Lyon 1, Lyon, France.,CRCL-Centre de Recherche en Cancérologie de Lyon-Inserm U1052-CNRS U5286, Lyon, France.,ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, Lyon, France
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University and TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary
| | - Sophie Aires
- Université Lyon 1, Lyon, France.,CRCL-Centre de Recherche en Cancérologie de Lyon-Inserm U1052-CNRS U5286, Lyon, France
| | | | - Séverine Croze
- Université Lyon 1, Lyon, France.,ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, Lyon, France
| | | | - Joël Lachuer
- Université Lyon 1, Lyon, France.,CRCL-Centre de Recherche en Cancérologie de Lyon-Inserm U1052-CNRS U5286, Lyon, France.,ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, Lyon, France
| | | | | | - Béatrice Fervers
- Université Lyon 1, Lyon, France.,CRCL-Centre de Recherche en Cancérologie de Lyon-Inserm U1052-CNRS U5286, Lyon, France.,Département Cancer et Environnement, Centre Léon Bérard, Lyon, France
| | - Vincent Cavaillès
- IRCM - Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, CNRS, Montpellier, France
| | | | - Pascale A Cohen
- Université Lyon 1, Lyon, France.,CRCL-Centre de Recherche en Cancérologie de Lyon-Inserm U1052-CNRS U5286, Lyon, France.,Département Cancer et Environnement, Centre Léon Bérard, Lyon, France.,ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, Lyon, France.,INSERM, UMR1033 LYOS, Lyon, France
| |
Collapse
|
13
|
Role of the Aryl Hydrocarbon Receptor in Environmentally Induced Skin Aging and Skin Carcinogenesis. Int J Mol Sci 2019; 20:ijms20236005. [PMID: 31795255 PMCID: PMC6928879 DOI: 10.3390/ijms20236005] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/19/2022] Open
Abstract
The skin is constantly exposed to a variety of environmental threats, including solar electromagnetic radiation, microbes, airborne particulate matter, and chemicals. Acute exposure to these environmental factors results in the activation of different signaling pathways that orchestrate adaptive stress responses to maintain cell and tissue homeostasis. Chronic exposure of skin to these factors, however, may lead to the accumulation of damaged macromolecules and loss of cell and tissue integrity, which, over time, may facilitate aging processes and the development of aging-related malignancies. One transcription factor that is expressed in all cutaneous cells and activated by various environmental stressors, including dioxins, polycyclic aromatic hydrocarbons, and ultraviolet radiation, is the aryl hydrocarbon receptor (AHR). By regulating keratinocyte proliferation and differentiation, epidermal barrier function, melanogenesis, and immunity, a certain degree of AHR activity is critical to maintain skin integrity and to adapt to acute stress situations. In contrast, a chronic activation of cutaneous AHR signaling critically contributes to premature aging and the development of neoplasms by affecting metabolism, extracellular matrix remodeling, inflammation, pigmentation, DNA repair, and apoptosis. This article provides an overview of the detrimental effects associated with sustained AHR activity in chronically stressed skin and pinpoints AHR as a promising target for chemoprevention.
Collapse
|
14
|
Pushparajah DS, Ioannides C. Antagonistic and synergistic interactions during the binding of binary mixtures of polycyclic aromatic hydrocarbons to the aryl hydrocarbon receptor. Toxicol In Vitro 2018; 50:54-61. [DOI: 10.1016/j.tiv.2018.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/18/2017] [Accepted: 02/16/2018] [Indexed: 12/29/2022]
|
15
|
Capuano E, Dekker M, Verkerk R, Oliviero T. Food as Pharma? The Case of Glucosinolates. Curr Pharm Des 2018; 23:2697-2721. [PMID: 28117016 DOI: 10.2174/1381612823666170120160832] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/24/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Glucosinolates (GLSs) are dietary plant secondary metabolites occurring in the order Brassicales with potential health effects, in particular as anti-carcinogenic compounds. GLSs are converted into a variety of breakdown products (BPs) upon plant tissue damage and by the gut microbiota. GLS biological activity is related to BPs rather than to GLSs themselves. METHODS we have reviewed the most recent scientific literature on the metabolic fate and the biological effect of GLSs with particular emphasis on the epidemiological evidence for health effect and evidence from clinical trials. An overview of potential molecular mechanisms underlying GLS biological effect is provided. The potential toxic or anti-nutritional effect has also been discussed. RESULTS Epidemiological and human in vivo evidence point towards a potential anti-cancer effect for sulforaphane, indole-3-carbinol and 3,3-diindolylmethane. A number of new human clinical trials are on-going and will likely shed further light on GLS protective effect towards cancer as well as other diseases. BPs biological effect is the results of a plurality of molecular mechanisms acting simultaneously which include modulation of xenobiotic metabolism, modulation of inflammation, regulation of apoptosis, cell cycle arrest, angiogenesis and metastasis and regulation of epigenetic events. BPs have been extensively investigated for their protective effect towards cancer but in recent years the interest also includes other diseases. CONCLUSION It appears that certain BPs may protect against and may even represent a therapeutic strategy against several forms of cancer. Whether this latter effect can be achieved through diet or supplements should be investigated more thoroughly.
Collapse
Affiliation(s)
- Edoardo Capuano
- Food Quality Design, WU Agrotechnology & Food Sciences, Axis building 118, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
| | - Matthijs Dekker
- Food Quality & Design Group, Wageningen University, Axis building, 6708WG, Wageningen, Netherlands
| | - Ruud Verkerk
- Food Quality & Design Group, Wageningen University, Axis building, 6708WG, Wageningen, Netherlands
| | - Teresa Oliviero
- Food Quality & Design Group, Wageningen University, Axis building, 6708WG, Wageningen, Netherlands
| |
Collapse
|
16
|
Shi Q, Fijten RR, Spina D, Riffo Vasquez Y, Arlt VM, Godschalk RW, Van Schooten FJ. Altered gene expression profiles in the lungs of benzo[a]pyrene-exposed mice in the presence of lipopolysaccharide-induced pulmonary inflammation. Toxicol Appl Pharmacol 2017; 336:8-19. [PMID: 28987381 PMCID: PMC5703654 DOI: 10.1016/j.taap.2017.09.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/22/2017] [Accepted: 09/29/2017] [Indexed: 12/13/2022]
Abstract
Patients with inflammatory lung diseases are often additionally exposed to polycyclic aromatic hydrocarbons like B[a]P and B[a]P-induced alterations in gene expression in these patients may contribute to the development of lung cancer. Mice were intra-nasally treated with lipopolysaccharide (LPS, 20μg/mouse) to induce pulmonary inflammation and subsequently exposed to B[a]P (0.5mg/mouse) by intratracheal instillation. Gene expression changes were analyzed in mouse lungs by RNA microarrays. Analysis of genes that are known to be involved in the cellular response to B[a]P indicated that LPS significantly inhibited gene expression of various enzymes linked to B[a]P metabolism, which was confirmed by phenotypic analyses of enzyme activity. Ultimately, these changes resulted in higher levels of B[a]P-DNA adducts in the lungs of mice exposed to B[a]P with prior LPS treatment compared to the lungs of mice exposed to B[a]P alone. Using principle component analysis (PCA), we found that of all the genes that were significantly altered in their expression, those that were able to separate the different exposure conditions were predominantly related to immune-response. Moreover, an overall analysis of differentially expressed genes indicated that cell-cell adhesion and cell-cell communication was inhibited in lungs of mice that received both B[a]P and LPS. Our results indicate that pulmonary inflammation increased the genotoxicity of B[a]P via inhibition of both phase I and II metabolism. Therefore, inflammation could be a critical contributor to B[a]P-induced carcinogenesis in humans.
Collapse
Affiliation(s)
- Q Shi
- Department of Toxicology & Pharmacology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - R R Fijten
- Department of Toxicology & Pharmacology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - D Spina
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Y Riffo Vasquez
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - V M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environmental & Health, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - R W Godschalk
- Department of Toxicology & Pharmacology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands.
| | - F J Van Schooten
- Department of Toxicology & Pharmacology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| |
Collapse
|
17
|
Gardella KA, Muro I, Fang G, Sarkar K, Mendez O, Wright CW. Aryl hydrocarbon receptor nuclear translocator (ARNT) isoforms control lymphoid cancer cell proliferation through differentially regulating tumor suppressor p53 activity. Oncotarget 2017; 7:10710-22. [PMID: 26909609 PMCID: PMC4905433 DOI: 10.18632/oncotarget.7539] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/22/2016] [Indexed: 12/25/2022] Open
Abstract
The aryl hydrocarbon receptor nuclear translocator (ARNT) is involved in xenobiotic and hypoxic responses, and we previously showed that ARNT also regulates nuclear factor-κB (NF-κB) signaling by altering the DNA binding activity of the RelB subunit. However, our initial study of ARNT-mediated RelB modulation was based on simultaneous suppression of the two ARNT isoforms, isoform 1 and 3, and precluded the examination of their individual functions. We find here that while normal lymphocytes harbor equal levels of isoform 1 and 3, lymphoid malignancies exhibit a shift to higher levels of ARNT isoform 1. These elevated levels of ARNT isoform 1 are critical to the proliferation of these cancerous cells, as suppression of isoform 1 in a human multiple myeloma (MM) cell line, and an anaplastic large cell lymphoma (ALCL) cell line, triggered S-phase cell cycle arrest, spontaneous apoptosis, and sensitized cells to doxorubicin treatment. Furthermore, co-suppression of RelB or p53 with ARNT isoform 1 prevented cell cycle arrest and blocked doxorubicin induced apoptosis. Together our findings reveal that certain blood cancers rely on ARNT isoform 1 to potentiate proliferation by antagonizing RelB and p53-dependent cell cycle arrest and apoptosis. Significantly, our results identify ARNT isoform 1 as a potential target for anticancer therapies.
Collapse
Affiliation(s)
- Kacie A Gardella
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Israel Muro
- Division of Pharmacology and Toxicology, and The Center for Molecular and Cellular Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Gloria Fang
- Division of Pharmacology and Toxicology, and The Center for Molecular and Cellular Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Krishnakali Sarkar
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Omayra Mendez
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Casey W Wright
- Division of Pharmacology and Toxicology, and The Center for Molecular and Cellular Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
18
|
Pushparajah D, Lewis DFV, Ioannides C. Up-regulation of CYP1A1 and phase II enzymes by 5-ring isomeric polycyclic aromatic hydrocarbons in precision-cut rat hepatic slices: Importance of molecular shape. Toxicol In Vitro 2017; 40:203-213. [DOI: 10.1016/j.tiv.2017.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/21/2016] [Accepted: 01/15/2017] [Indexed: 01/05/2023]
|
19
|
Vogel CFA, Haarmann-Stemmann T. The aryl hydrocarbon receptor repressor - More than a simple feedback inhibitor of AhR signaling: Clues for its role in inflammation and cancer. CURRENT OPINION IN TOXICOLOGY 2017; 2:109-119. [PMID: 28971163 DOI: 10.1016/j.cotox.2017.02.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aryl hydrocarbon receptor repressor (AhRR) was first described as a specific competitive repressor of aryl hydrocarbon receptor (AhR) activity based on its ability to dimerize with the AhR nuclear translocator (ARNT) and through direct competition of AhR/ARNT and AhRR/ARNT complexes for binding to dioxin-responsive elements (DREs). Like AhR, AhRR belongs to the basic Helix-Loop-Helix/Per-ARNT-Sim (bHLH/PAS) protein family but lacks functional ligand-binding and transactivation domains. Transient transfection experiments with ARNT and AhRR mutants examining the inhibitory mechanism of AhRR suggested a more complex mechanism than the simple mechanism of negative feedback through sequestration of ARNT to regulate AhR signaling. Recently, AhRR has been shown to act as a tumor suppressor gene in several types of cancer cells. Furthermore, epidemiological studies have found epigenetic changes and silencing of AhRR associated with exposure to cigarette smoke and cancer development. Additional studies from our laboratories have demonstrated that AhRR represses other signaling pathways including NF-κB and is capable of regulating inflammatory responses. A better understanding of the regulatory mechanisms of AhRR in AhR signaling and adverse outcome pathways leading to deregulated inflammatory responses contributing to tumor promotion and other adverse health effects is expected from future studies. This review article summarizes the characteristics of AhRR as an inhibitor of AhR activity and highlights more recent findings pointing out the role of AhRR in inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
20
|
Pushparajah DS, Plant KE, Plant NJ, Ioannides C. Synergistic and antagonistic interactions of binary mixtures of polycyclic aromatic hydrocarbons in the upregulation of CYP1 activity and mRNA levels in precision-cut rat liver slices. ENVIRONMENTAL TOXICOLOGY 2017; 32:764-775. [PMID: 27099206 DOI: 10.1002/tox.22276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
The current studies investigate whether synergistic or antagonistic interactions in the upregulation of CYP1 activity occur in binary mixtures of polycyclic aromatic hydrocarbons (PAHs) involving benzo[a]pyrene and five other structurally diverse PAHs of varying carcinogenic activity. Precision-cut rat liver slices were incubated with benzo[a]pyrene alone or in combination with a range of concentrations of a second PAH, and ethoxyresorufin O-deethylase, CYP1A1 and CYP1B1 mRNA levels determined. Concurrent incubation of benzo[a]pyrene with either dibenzo[a,h]anthracene or fluoranthene in liver slices led to a synergistic interaction, at least at low concentrations, in that ethoxyresorufin O-deethylase activity was statistically higher than the added effects when the slices were incubated with the individual compounds. In contrast, benzo[b]fluoranthene and, at high doses only, dibenzo[a,l]pyrene gave rise to antagonism, whereas 1-methylphenanthrene had no effect at all concentrations studied. When CYP1A1 mRNA levels were monitored, benzo[b]fluoranthene gave rise to an antagonistic response when incubated with benzo[a]pyrene, whereas all other compounds displayed synergism, with 1-methylphenathrene being the least effective. A similar picture emerged when CYP1B1 mRNA levels were determined, though the effects were less pronounced. In conclusion, it has been demonstrated that the benzo[a]pyrene-mediated upregulation of CYP1, at the mRNA and activity levels, is synergistically and antagonistically modulated by other PAHs. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 764-775, 2017.
Collapse
Affiliation(s)
- Daphnee S Pushparajah
- Molecular Toxicology Group, Department of Biochemistry, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| | - Kathryn E Plant
- Molecular Toxicology Group, Department of Biochemistry, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| | - Nick J Plant
- Molecular Toxicology Group, Department of Biochemistry, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| | - Costas Ioannides
- Molecular Toxicology Group, Department of Biochemistry, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| |
Collapse
|
21
|
Abdull Razis AF, Noor NM. Naturally-Occurring Glucosinolates, Glucoraphanin and Glucoerucin, are Antagonists to Aryl Hydrocarbon Receptor as Their Chemopreventive Potency. Asian Pac J Cancer Prev 2016; 16:5801-5. [PMID: 26320454 DOI: 10.7314/apjcp.2015.16.14.5801] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
As a cytosolic transcription factor, the aryl hydrocarbon (Ah) receptor is involved in several patho- physiological events leading to immunosuppression and cancer; hence antagonists of the Ah receptor may possess chemoprevention properties. It is known to modulate carcinogen-metabolising enzymes, for instance the CYP1 family of cytochromes P450 and quinone reductase, both important in the biotransformation of many chemical carcinogens via regulating phase I and phase II enzyme systems. Utilising chemically-activated luciferase expression (CALUX) assay it was revealed that intact glucosinolates, glucoraphanin and glucoerucin, isolated from Brassica oleracea L. var. acephala sabellica and Eruca sativa ripe seeds, respectively, are such antagonists. Both glucosinolates were poor ligands for the Ah receptor; however, they effectively antagonised activation of the receptor by the avid ligand benzo[a]pyrene. Indeed, intact glucosinolate glucoraphanin was a more potent antagonist to the receptor than glucoerucin. It can be concluded that both glucosinolates effectively act as antagonists for the Ah receptor, and this may contribute to their established chemoprevention potency.
Collapse
Affiliation(s)
- Ahmad Faizal Abdull Razis
- Food Safety Research Centre (FOSREC), Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, E-mail :
| | | |
Collapse
|
22
|
Hong CH, Lee CH, Yu HS, Huang SK. Benzopyrene, a major polyaromatic hydrocarbon in smoke fume, mobilizes Langerhans cells and polarizes Th2/17 responses in epicutaneous protein sensitization through the aryl hydrocarbon receptor. Int Immunopharmacol 2016; 36:111-117. [PMID: 27129092 DOI: 10.1016/j.intimp.2016.04.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 01/27/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is a common disease with genetic and environmental interactions. We previously reported lifetime exposure to cigarette smoke is associated with adult-onset AD. Aryl hydrocarbon receptor (AhR) is important in regulating environmental exposure to xenobiotics, including benzopyrenes (BP), a major polycyclic aromatic hydrocarbon (PAH) present in cigarette smoke. However, how AhR regulates immune responses in sensitization phase of AD remained elusive. METHODS We investigated how BP affects epicutaneous sensitization response through AhR axis. We compared AhR expression in skin from AD patients and healthy controls. We measured immune responses (Langerhans cell migration and T cell polarization in epicutaneous Ova sensitization in mice with or without AhR defect. RESULTS We found AhR and ARNT (AhR nuclear translocator) are upregulated in AD skin. BP exposure increases Langerhans cell migration, and increases IL-5, IL-13, and IL-17 levels when lymph node cells were re-challenged with Ova. The increased cytokine levels were attenuated in AhR defected mice. AhR agonists (BP and ITE) decreased E-cadherin expression, while AhR antagonist (CH223191) increased it in human primary keratinocytes. CONCLUSIONS These results suggested AhR interacts with BP to polarize T cell responses, along with Langerhans cell migration. This study revealed a regulatory mechanism how cigarette smoking affects atopic sensitization through the benzopyrene-AhR interaction.
Collapse
Affiliation(s)
- Chien-Hui Hong
- Department of Dermatology, National Yang Ming University, Taipei, Taiwan; Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung, Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Department of Dermatology, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Su Yu
- Department of Dermatology, Kaohsiung Medical University, Kaohsiung, Taiwan; National Health Research Institute, Miao-Li, Taiwan
| | - Shau-Ku Huang
- National Health Research Institute, Miao-Li, Taiwan.
| |
Collapse
|
23
|
Huang CR, Lee CT, Chang KY, Chang WC, Liu YW, Lee JC, Chen BK. Down-regulation of ARNT promotes cancer metastasis by activating the fibronectin/integrin β1/FAK axis. Oncotarget 2016; 6:11530-46. [PMID: 25839165 PMCID: PMC4484474 DOI: 10.18632/oncotarget.3448] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/25/2015] [Indexed: 01/11/2023] Open
Abstract
The aryl hydrocarbon receptor nuclear translocator (ARNT) is broadly involved in regulating tumorigenesis by inducing genes that are involved in tumor growth and angiogenesis. Tumorigenesis usually involves normoxic conditions. However, the role of ARNT in tumor metastasis during normoxia remains unclear. Here, we demonstrate that ARNT protein levels were decreased in late-stage human colorectal cancer using immunohistochemical analysis. Down-regulation of ARNT protein promoted cancer cell migration and invasion, which was mediated by activation of the fibronectin/integrin β1/FAK signaling axis. In addition, the enhancement of migration and invasion in ANRT knockdown cells was blocked when ARNT was restored in the cells. In xenografts in severe combined immunodeficiency mice, tumor growth was significantly inhibited in the ARNT-knockdown condition. However, the tail-vein injection animal model revealed that the depletion of ARNT-induced metastatic lung colonies was further enhanced when ARNT expression was recovered post-injection. Interestingly, chemotherapeutic drugs inhibited ARNT expression and promoted the invasion of residual tumor cells. These results suggest that ARNT may play a positive role during tumor growth (either in early-stage tumor growth or in organ metastases), but plays a negative role in tumor migration and invasion. Therefore, the efficiency of ARNT-targeted therapy during different cancer stages should be carefully evaluated.
Collapse
Affiliation(s)
- Chi-Ruei Huang
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Taiwan, ROC.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taiwan, ROC
| | - Chung-Ta Lee
- Department of Pathology, National Cheng Kung University Hospital, Taiwan, ROC
| | - Kwang-Yu Chang
- National Institute of Cancer Research, National Health Research Institutes, Taiwan, ROC.,Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Taiwan, ROC
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taiwan, ROC
| | - Yao-Wen Liu
- Department of Pathology, Kuo General Hospital, Taiwan, ROC
| | - Jenq-Chang Lee
- Department of Surgery, National Cheng Kung University Hospital, Taiwan, ROC
| | - Ben-Kuen Chen
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Taiwan, ROC.,Department of Pharmacology, College of Medicine, National Cheng Kung University, Taiwan, ROC.,Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taiwan, ROC
| |
Collapse
|
24
|
Kanda M, Sugimoto H, Kodera Y. Genetic and epigenetic aspects of initiation and progression of hepatocellular carcinoma. World J Gastroenterol 2015; 21:10584-10597. [PMID: 26457018 PMCID: PMC4588080 DOI: 10.3748/wjg.v21.i37.10584] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/08/2015] [Accepted: 09/02/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary cancer of the liver that is predominant in developing countries and is responsible for nearly 600000 deaths each year worldwide. Similar to many other tumors, the development of HCC must be understood as a multistep process involving the accumulation of genetic and epigenetic alterations in regulatory genes, leading to the activation of oncogenes and the inactivation or loss of tumor suppressor genes. Extensive research over the past decade has identified a number of molecular biomarkers, including aberrant expression of HCC-related genes and microRNAs. The challenge facing HCC research and clinical care at this time is to address the heterogeneity and complexity of these genetic and epigenetic alterations and to use this information to direct rational diagnosis and treatment strategies. The multikinase inhibitor sorafenib was the first molecularly targeted drug for HCC to show some extent of survival benefits in patients with advanced tumors. Although the results obtained using sorafenib support the importance of molecular therapies in the treatment of HCC, there is still room for improvement. In addition, no molecular markers for drug sensitivity, recurrence and prognosis are currently clinically available. In this review, we provide an overview of recently published articles addressing HCC-related genes and microRNAs to update what is currently known regarding genetic and epigenetic aspects of the pathogenesis of HCC and propose novel promising candidates for use as diagnostic and therapeutic targets in HCC.
Collapse
|
25
|
Li W, Liang Y, Yang B, Sun H, Wu W. Downregulation of ARNT2 promotes tumor growth and predicts poor prognosis in human hepatocellular carcinoma. J Gastroenterol Hepatol 2015; 30:1085-93. [PMID: 25611915 DOI: 10.1111/jgh.12905] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/02/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIM Aryl-hydrocarbon receptor nuclear translocator 2 (ARNT2) is a transcriptional regulator and member of the basic helix-loop-helix/Per-ARNT-SIM (bHLH/PAS) superfamily. Recently, evidence of that ARNT is involved in carcinogenesis and cancer progression has emerged. The aim of current study was to investigate the role of ARNT2, a homolog of ARNT, in tumor growth, invasion, and prognosis of hepatocellular carcinoma (HCC). METHODS Tissue microarray and immunohistochemical staining were used to examine the expression of ARNT2 in 195 HCC tissues. Factors associated with ARNT2 levels were assessed by univariate and multivariate Cox regression analyses. Cell proliferation, migration, and invasion assays were performed by using ARNT2 silencing and overexpressing HCCLM6 cell line. Orthotopic xenograft HCC model was used to elucidate the effects of ARNT2 on HCC progression in vivo. RESULTS High intratumoral of ARNT2 level was well correlated with longer overall survival (OS) and lower tumor to recurrence (TTR) of HCC patients after resection. Multivariate analysis revealed that intratumoral ARNT2 overexpression was an independent prognostic factor for both OS and TTR. Knockdown of ARNT2 in HCCLM6 cells was significantly enhanced while overexpression of ARNT2 significantly inhibited the ability of cell proliferation, invasion, and migration. In animal studies, downregulation of ARNT2 in HCCLM6 cells promoted, whereas upregulation of ARNT2 in HCCLM6 cells reduced HCCLM6 growth in vivo. CONCLUSIONS Our data demonstrate that ARNT2 plays an inhibitory role in HCC progression and suggest that ARNT2 may be a potential prognostic predictor and therapeutic target for HCC.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
26
|
Yang B, Yang E, Liao H, Wang Z, Den Z, Ren H. ARNT2 is downregulated and serves as a potential tumor suppressor gene in non-small cell lung cancer. Tumour Biol 2015; 36:2111-9. [PMID: 25613063 DOI: 10.1007/s13277-014-2820-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/06/2014] [Indexed: 01/12/2023] Open
Abstract
The present study aims to investigate the expression pattern of aryl hydrocarbon receptor nuclear translocator 2 (ARNT2) protein and its clinical significance in human non-small cell lung cancer (NSCLC). We investigated the expression levels of ARNT2 in 104 NSCLC surgical specimens by immunohistochemistry and then analyzed its clinical significance. Additionally, the role of ARNT2 on the biological properties of the NSCLC line HCC827 was experimentally tested in vitro and in vivo to confirm the clinical observations. We found that the expression level of ARNT2 was significantly higher in normal lung tissues compared with NSCLC tissues (P < 0.01). Overall survival (OS) of patients with a high intratumoral ARNT2 level was significantly longer than survival of those with a low ARNT2 level (P = 0.004). In addition, intratumoral ARNT2 expression was an independent prognostic factors for OS (hazard ratio [HR] = 0.529; P = 0.001). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that the ARNT2 overexpression inhibited cell viability, while ARNT2 knockdown promoted cell growth in NSCLC cell lines HCC827 and A549. Annexin V/PI assay showed that ARNT2 overexpression increased cell apoptosis, while ARNT2 knockdown decreased cell apoptosis in HCC827 and A549 cells. Moreover, in vivo study showed that attenuated ARNT2 expression in HCC827 cells greatly promoted tumor growth, while overexpressed ARNT2 remarkably inhibited tumor growth in a HCC827 xenograft model. Taken together, our data demonstrate that ARNT2 might serve as a tumor suppressor in NSCLC progression.
Collapse
Affiliation(s)
- Bo Yang
- Second Department of Thoracic Surgery, The First Affiliated Hospital of Health Science Center, Xi'an Jiao Tong University, 277 The West of Yan Ta Road, Xi'an, 710061, Shanxi, China
| | | | | | | | | | | |
Collapse
|
27
|
García-Heredia JM, Felipe-Abrio B, Cano DA, Carnero A. Genetic modification of hypoxia signaling in animal models and its effect on cancer. Clin Transl Oncol 2014; 17:90-102. [PMID: 25351170 DOI: 10.1007/s12094-014-1236-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/24/2014] [Indexed: 12/19/2022]
Abstract
Conditions that cause hypoxemia or generalized tissue hypoxia, which can last for days, months, or even years, are very common in the human population and are among the leading causes of morbidity, disability, and mortality. Therefore, the molecular pathophysiology of hypoxia and its potential deleterious effects on human health are important issues at the forefront of biomedical research. Generalized hypoxia is a consequence of highly prevalent medical disorders that can severely reduce the capacity for O2 exchange between the air and pulmonary capillaries. In recent years, some of the key O2-dependent signaling pathways have been characterized at the molecular level. In particular, the prolyl hydroxylase (PHD)-hypoxia-inducible factor (HIF) cascade has emerged as the master regulator of a general gene expression program involved in cell/tissue/organ adaptation to hypoxia. Hypoxia has emerged as a critical factor in cancer because it can promote tumor initiation, progression, and resistance to therapy. Beyond its role in neovascularization as a mechanism of tumor adaptation to nutrient and O2 deprivation, hypoxia has been linked to prolonged cellular lifespan and immortalization, the generation of "oncometabolites", deregulation of stem cell proliferation, and inflammation, among other tumor hallmarks. Hypoxia may contribute to cancer through several independent pathways, the inter-connections of which have yet to be elucidated. Furthermore, the relevance of chronic hypoxemia in the initiation and progression of cancer has not been studied in depth in the whole organism. Therefore, we explore here the contributions of hypoxia to the whole organism by reviewing studies on genetically modified mice with alterations in the key molecular factors regulating hypoxia.
Collapse
Affiliation(s)
- J M García-Heredia
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013, Seville, Spain
| | | | | | | |
Collapse
|
28
|
Subashchandrabose S, Krishnan K, Gratton E, Megharaj M, Naidu R. Potential of fluorescence imaging techniques to monitor mutagenic PAH uptake by microalga. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:9152-9160. [PMID: 25020149 PMCID: PMC4140530 DOI: 10.1021/es500387v] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 07/14/2014] [Accepted: 07/14/2014] [Indexed: 05/30/2023]
Abstract
Benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon (PAH), is one of the major environmental pollutants that causes mutagenesis and cancer. BaP has been shown to accumulate in phytoplankton and zooplankton. We have studied the localization and aggregation of BaP in Chlorella sp., a microalga that is one of the primary producers in the food chain, using fluorescence confocal microscopy and fluorescence lifetime imaging microscopy with the phasor approach to characterize the location and the aggregation of BaP in the cell. Our results show that BaP accumulates in the lipid bodies of Chlorella sp. and that there is Förster resonance energy transfer between BaP and photosystems of Chlorella sp., indicating the close proximity of the two molecular systems. The lifetime of BaP fluorescence was measured to be 14 ns in N,N-dimethylformamide, an average of 7 ns in Bold's basal medium, and 8 ns in Chlorella cells. Number and brightness analysis suggests that BaP does not aggregate inside Chlorella sp. (average brightness = 5.330), while it aggregates in the supernatant. In Chlorella grown in sediments spiked with BaP, in 12 h the BaP uptake could be visualized using fluorescence microscopy.
Collapse
Affiliation(s)
- Suresh
Ramraj Subashchandrabose
- Centre
for Environmental Risk Assessment and Remediation, University of South Australia and CRC CARE, Mawson Lakes, Adelaide, South Australia 5095, Australia
| | - Kannan Krishnan
- Centre
for Environmental Risk Assessment and Remediation, University of South Australia and CRC CARE, Mawson Lakes, Adelaide, South Australia 5095, Australia
| | - Enrico Gratton
- Laboratory
for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, California 92697, United States
| | - Mallavarapu Megharaj
- Centre
for Environmental Risk Assessment and Remediation, University of South Australia and CRC CARE, Mawson Lakes, Adelaide, South Australia 5095, Australia
| | - Ravi Naidu
- Centre
for Environmental Risk Assessment and Remediation, University of South Australia and CRC CARE, Mawson Lakes, Adelaide, South Australia 5095, Australia
| |
Collapse
|
29
|
Tsay JJ, Tchou-Wong KM, Greenberg AK, Pass H, Rom WN. Aryl hydrocarbon receptor and lung cancer. Anticancer Res 2013; 33:1247-1256. [PMID: 23564762 PMCID: PMC3771678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The leading cause of lung cancer is exposure to cigarette smoke and other environmental pollutants, which include formaldehyde, acrolein, benzene, dioxin, and polycyclic aromatic hydrocarbons (PAHs). PAHs and dioxins are exogenous ligands that directly bind to the aryl hydrocarbon receptor (AhR), a transcription factor that activates xenobiotic metabolism, histone modification (an important step in DNA methylation) and, ultimately, tumorigenesis. In this review article we summarize the current understanding of AhR and its role in the development of lung cancer, including its influence on cell proliferation, angiogenesis, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Junchieh J Tsay
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY, USA.
| | | | | | | | | |
Collapse
|
30
|
Abdull Razis AF, Hanlon N, Soltys E, Krizova V, Iori R, Plant KE, Plant N, Ioannides C. The naturally occurring aliphatic isothiocyanates sulforaphane and erucin are weak agonists but potent non-competitive antagonists of the aryl hydrocarbon receptor. Arch Toxicol 2012; 86:1505-14. [DOI: 10.1007/s00204-012-0875-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/16/2012] [Indexed: 01/24/2023]
|
31
|
Abdull Razis AF, Konsue N, Dervetzoglou M, Plant KE, Plant N, Ioannides C. Phenethyl isothiocyanate, a naturally occurring phytochemical, is an antagonist of the aryl hydrocarbon receptor. Mol Nutr Food Res 2011; 56:425-34. [DOI: 10.1002/mnfr.201100548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/19/2011] [Accepted: 10/07/2011] [Indexed: 12/16/2022]
|
32
|
Zhang X, Xiao T, Cheng S, Tong T, Gao Y. Cigarette smoke suppresses the ubiquitin-dependent degradation of OLC1. Biochem Biophys Res Commun 2011; 407:753-7. [PMID: 21439932 DOI: 10.1016/j.bbrc.2011.03.095] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 03/19/2011] [Indexed: 02/07/2023]
Abstract
The newly identified gene, overexpressed in lung cancer 1 (OLC1), is highly expressed as OLC1 protein in the tumor tissues of lung cancer patients with histories of cigarette smoking. However, the underlying mechanisms of how the gene is affected by cigarette smoke have been poorly characterized. In this study, we investigated how OLC1 is regulated in lung cancer cells by cigarette smoke condensate (CSC). Compared to the controls, CSC treatment increased OLC1 protein levels in a dose- and time-dependent manner without affecting OLC1 mRNA levels in lung cancer cells. Ubiquitination of OLC1 protein was blocked upon CSC treatment. Biochemical analysis revealed that the ubiquitin E3 ligase anaphase promoting complex (APC) and its activators cell-division cycle protein 20 (CDC20) and cadherin-1 (CDH1) are responsible for the degradation of OLC1. However, upon introducing CSC the binding of OLC1 to the proteins CDC20, CDH1, and APC2 was impaired. These results demonstrate that CSC regulates OLC1 expression in lung cancer cells by compromising its ubiquitination and subsequent degradation through the ubiquitin E3 ligase APC.
Collapse
Affiliation(s)
- Xiaojing Zhang
- State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | | | | | | | | |
Collapse
|
33
|
Niestroy J, Barbara A, Herbst K, Rode S, van Liempt M, Roos PH. Single and concerted effects of benzo[a]pyrene and flavonoids on the AhR and Nrf2-pathway in the human colon carcinoma cell line Caco-2. Toxicol In Vitro 2011; 25:671-83. [PMID: 21256954 DOI: 10.1016/j.tiv.2011.01.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Revised: 01/10/2011] [Accepted: 01/11/2011] [Indexed: 01/07/2023]
Abstract
As phytochemicals have the potential to counteract adverse effects of carcinogens we investigated the influence of the flavonoids quercetin and kaempferol on benzo[a]pyrene (BaP) mediated effects on human colon cancer cells, Caco-2. We focused on concerted effects on the expression of AhR and Nrf2 pathway components. In contrast to kaempferol, BaP and quercetin efficiently induced CYP1A1, CYP1A2 and CYP1B1-mRNA in Caco-2 cells. BaP not only acted via AhR activation but sustainably also by increasing AhR and by down-regulating AhRR mRNA. The flavonoids did not affect AhR expression but counteracted the BaP mediated AhRR repression. Only quercetin was found to induce AhRR mRNA. ARNT mRNA appeared to be slightly but significantly down-regulated by BaP as well as by flavonoids while expression of AIP was not or only slightly modulated. The Nrf2 pathway was activated by BaP and by the flavonoids shown by induction of Nrf2 and several of its target genes such as NQO1, GSTP1, GSTA1 and GCLC. Induction effects of 10 μm BaP on Nrf2, GSTP1 and NQO1 were abolished by the flavonoids. In summary, we show that quercetin supports AhR mediated effects. Both flavonoids, however, may counteract the effects of BaP on expression of AhR, AhRR, Nrf2, GSTP1 and NQO1. In conclusion, quercetin appears to have two faces, a flavonoid-like one and a PAH-like one which supports Ahr-mediated effects while kaempferol acts "just like a flavonoid". Thus, flavonoids have to be treated individually with respect to their anti-adverse activity.
Collapse
Affiliation(s)
- Jeanette Niestroy
- Leibniz Research Centre for Working Environment and Human Factors, D-44139 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|