1
|
Sahu M, Jain U. Activation, interaction and intimation of Nrf2 pathway and their mutational studies causing Nrf2 associated cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167764. [PMID: 40088576 DOI: 10.1016/j.bbadis.2025.167764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/15/2025] [Accepted: 02/25/2025] [Indexed: 03/17/2025]
Abstract
Responses against infection trigger several signaling pathways that lead to the production of cytokines, these cytokines release ROS and RNS, damaging DNA and proteins turn into various diseases including cancer. To combat these harmful cytokines, the Nrf2 pathway is activated. The gene NFE2L2 encodes Nrf2, which is divided into seven conserved domains (Neh1-7). The DLG and ETGE motifs, conserved sequences of amino acid in the Neh2 domain of Nrf2, bind to the BTB domain of Keap1. BTB domain promotes Keap1's homodimerization resulting in Cul3 recruitment providing scaffold formation to E2 ubiquitin ligase to form ubiquitin complex. Under normal conditions, this complex regularly degrades Nrf2. However, once the cell is exposed to oxidative stress by ROS interaction with Keap1 resulting in conformational changes that stabilize the Nrf2. Nrf2 further concentrates on the nucleus where it binds with the transcriptional factor to perform the desired genes transcription for synthesizing SOD, GSH, CAT, and various other proteins which reduce the ROS levels preventing certain diseases. To prevent cells from oxidative stress, molecular hydrogen activates the Nrf2 pathway. To activate the Nrf2 pathway, molecular hydrogen oxidizes the iron porphyrin which acts as an electrophile and interacts with Keap1's cysteine residue.
Collapse
Affiliation(s)
- Mridul Sahu
- School of Health Sciences and Technology (SoHST), UPES, Bidholi, Dehradun - 248007, India
| | - Utkarsh Jain
- School of Health Sciences and Technology (SoHST), UPES, Bidholi, Dehradun - 248007, India.
| |
Collapse
|
2
|
Serrano JJ, Medina MÁ. Metabolic Reprogramming at the Edge of Redox: Connections Between Metabolic Reprogramming and Cancer Redox State. Int J Mol Sci 2025; 26:498. [PMID: 39859211 PMCID: PMC11765076 DOI: 10.3390/ijms26020498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/28/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
The importance of redox systems as fundamental elements in biology is now widely recognized across diverse fields, from ecology to cellular biology. Their connection to metabolism is particularly significant, as it plays a critical role in energy regulation and distribution within organisms. Over recent decades, metabolism has emerged as a relevant focus in studies of biological regulation, especially following its recognition as a hallmark of cancer. This shift has broadened cancer research beyond strictly genetic perspectives. The interaction between metabolism and redox systems in carcinogenesis involves the regulation of essential metabolic pathways, such as glycolysis and the Krebs cycle, as well as the involvement of redox-active components like specific amino acids and cofactors. The feedback mechanisms linking redox systems and metabolism in cancer highlight the development of redox patterns that enhance the flexibility and adaptability of tumor processes, influencing larger-scale biological phenomena such as circadian rhythms and epigenetics.
Collapse
Affiliation(s)
- José J. Serrano
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, E-29071 Málaga, Spain;
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, E-29071 Málaga, Spain;
- Instituto de Investigación Biomédica y Plataforma en Nanomedicina IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER, Spanish Network of Research Center in Rare Diseases), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
3
|
Warner EF, Guneri D, O'Connell MA, MacDonald CJ, Waller ZAE. Modulation of Nrf2 expression by targeting i-motif DNA. Commun Chem 2025; 8:5. [PMID: 39762580 PMCID: PMC11704350 DOI: 10.1038/s42004-024-01387-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a key regulator of cell detoxification, which maintains homoeostasis in healthy cells and promotes chemoresistance in cancer cells. Controlling the expression of this transcription factor is therefore of great interest. There are many compounds that have been shown to induce Nrf2 expression, but ligands that can inhibit Nrf2 are scant. Herein we characterise an i-motif-forming sequence downstream of the Nrf2 promoter, which we hypothesised may regulate the expression of the gene. The Nrf2 i-motif was found to be stable at near-physiological conditions. We identified small molecule ligands that interact with this i-motif structure and one significantly upregulated Nrf2 mRNA expression, and one ligand reduced Nrf2 mRNA expression in human cancer cells. This is the first example of controlling the promoter of Nrf2 by targeting DNA structures and offers an alternative mode of action for the development of compounds to improve the chemotherapeutic responsiveness of existing treatments for cancer.
Collapse
Affiliation(s)
- E F Warner
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich, Norfolk, UK
| | - D Guneri
- UCL School of Pharmacy, London, UK
| | - M A O'Connell
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich, Norfolk, UK
| | - C J MacDonald
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich, Norfolk, UK
| | | |
Collapse
|
4
|
Gohil D, Roy R. Beyond Nucleotide Excision Repair: The Importance of XPF in Base Excision Repair and Its Impact on Cancer, Inflammation, and Aging. Int J Mol Sci 2024; 25:13616. [PMID: 39769376 PMCID: PMC11728164 DOI: 10.3390/ijms252413616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
DNA repair involves various intricate pathways that work together to maintain genome integrity. XPF (ERCC4) is a structural endonuclease that forms a heterodimer with ERCC1 that is critical in both single-strand break repair (SSBR) and double-strand break repair (DSBR). Although the mechanistic function of ERCC1/XPF has been established in nucleotide excision repair (NER), its role in long-patch base excision repair (BER) has recently been discovered through the 5'-Gap pathway. This study briefly explores the roles of XPF in different pathways to emphasize the importance of XPF in DNA repair. XPF deficiency manifests in various diseases, including cancer, neurodegeneration, and aging-related disorders; it is also associated with conditions such as Xeroderma pigmentosum and fertility issues. By examining the molecular mechanisms and pathological consequences linked to XPF dysfunction, this study aims to elucidate the crucial role of XPF in genomic stability as a repair protein in BER and provide perspectives regarding its potential as a therapeutic target in related diseases.
Collapse
Affiliation(s)
| | - Rabindra Roy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA;
| |
Collapse
|
5
|
Krisanits BA, Kaur B, Fahey JW, Turner DP. The Anti-AGEing and RAGEing Potential of Isothiocyanates. Molecules 2024; 29:5986. [PMID: 39770075 PMCID: PMC11677037 DOI: 10.3390/molecules29245986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/03/2025] Open
Abstract
Isothiocyanates (ITCs), found in edible plants such as cruciferous vegetables, are a group of reactive organo-sulfur phytochemicals produced by the hydrolysis of precursors known as glucosinolates. ITCs have been studied extensively both in vivo and in vitro to define their therapeutic potential for the treatment of chronic health conditions. Therapeutically, they have shown an intrinsic ability to inhibit oxidative and inflammatory phenotypes to support enhanced health. This review summarizes the current evidence supporting the observation that the antioxidant and anti-inflammatory activities of ITCs temper the pathogenic effects of a group of reactive metabolites called advanced glycation end products (AGEs). AGE exposure has significantly increased across the lifespan due to health risk factors that include dietary intake, a sedentary lifestyle, and comorbid conditions. By contributing to a chronic cycle of inflammatory stress through the aberrant activation of the transmembrane receptor for AGE (RAGE), increased AGE bioavailability is associated with chronic disease onset, progression, and severity. This review debates the potential molecular mechanisms by which ITCs may inhibit AGE bioavailability to reduce RAGE-mediated pro-oxidant and pro-inflammatory phenotypes. Bringing to light the molecular impact that ITCs may have on AGE biogenesis may stimulate novel intervention strategies for reversing or preventing the impact of lifestyle factors on chronic disease risk.
Collapse
Affiliation(s)
- Bradley A. Krisanits
- Department of Surgery, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA; (B.A.K.); (B.K.)
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Bhoomika Kaur
- Department of Surgery, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA; (B.A.K.); (B.K.)
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Jed W. Fahey
- Departments of Medicine, Pharmacology & Molecular Sciences, Psychiatry & Behavioral Sciences, and iMIND Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- Institute of Medicine, University of Maine, Orono, ME 04469, USA
| | - David P. Turner
- Department of Surgery, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA; (B.A.K.); (B.K.)
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
6
|
Lv B, Xing S, Wang Z, Zhang A, Wang Q, Bian Y, Pei Y, Sun H, Chen Y. NRF2 inhibitors: Recent progress, future design and therapeutic potential. Eur J Med Chem 2024; 279:116822. [PMID: 39241669 DOI: 10.1016/j.ejmech.2024.116822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a crucial transcription factor involved in oxidative stress response, which controls the expression of various cytoprotective genes. Recent research has indicated that constitutively activated NRF2 can enhance patients' resistance to chemotherapy drugs, resulting in unfavorable prognosis. Therefore, the development of NRF2 inhibitors has emerged as a promising approach for overcoming drug resistance in cancer treatment. However, there are limited reports and reviews focusing on NRF2 inhibitors. This review aims to provide a comprehensive analysis of the structure and regulation of the NRF2 signaling pathway, followed by a comprehensive review of reported NRF2 inhibitors. Moreover, the current design strategies and future prospects of NRF2 inhibitors will be discussed, aiming to establish a foundation for the development of more effective NRF2 inhibitors.
Collapse
Affiliation(s)
- Bingbing Lv
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Zhiqiang Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Ao Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Qinjie Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yaoyao Bian
- Jiangsu Provincial Engineering Center of TCM External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yuqiong Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
7
|
Ding C, Wu Y, Zhan C, Naseem A, Chen L, Li H, Yang B, Liu Y. Research progress on the role and inhibitors of Keap1 signaling pathway in inflammation. Int Immunopharmacol 2024; 141:112853. [PMID: 39159555 DOI: 10.1016/j.intimp.2024.112853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024]
Abstract
Inflammation is a protective mechanism against endogenous and exogenous pathogens. It is a typical feature of numerous chronic diseases and their complications. Keap1 is an essential target in oxidative stress and inflammatory diseases. Among them, the Keap1-Nrf2-ARE pathway (including Keap1-Nrf2-HO-1) is the most significant pathway of Keap1 targets, which participates in the control of inflammation in multiple organs (including renal inflammation, lung inflammation, liver inflammation, neuroinflammation, etc.). Identifying new Keap1 inhibitors is crucial for new drug discovery. However, most drugs have specificity issues as they covalently bind to cysteine residues of Keap1, causing off-target effects. Therefore, direct inhibition of Keap1-Nrf2 PPIs is a new research idea. Through non-electrophilic and non-covalent binding, its inhibitors have better specificity and ability to activate Nrf2, and targeting therapy against Keap1-Nrf2 PPIs has become a new method for drug development in chronic diseases. This review summarizes the members and downstream genes of the Keap1-related pathway and their roles in inflammatory disease models. In addition, we summarize all the research progress of anti-inflammatory drugs targeting Keap1 from 2010 to 2024, mainly describing their biological functions, molecular mechanisms of action, and therapeutic roles in inflammatory diseases.
Collapse
Affiliation(s)
- Chao Ding
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Ying Wu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| | - Chaochao Zhan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Anam Naseem
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| |
Collapse
|
8
|
Fitisemanu FM, Padilla-Benavides T. Emerging perspectives of copper-mediated transcriptional regulation in mammalian cell development. Metallomics 2024; 16:mfae046. [PMID: 39375833 PMCID: PMC11503025 DOI: 10.1093/mtomcs/mfae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Copper (Cu) is a vital micronutrient necessary for proper development and function of mammalian cells and tissues. Cu mediates the function of redox active enzymes that facilitate metabolic processes and signaling pathways. Cu levels are tightly regulated by a network of Cu-binding transporters, chaperones, and small molecule ligands. Extensive research has focused on the mammalian Cu homeostasis (cuprostasis) network and pathologies, which result from mutations and perturbations. There are roles for Cu-binding proteins as transcription factors (Cu-TFs) and regulators that mediate metal homeostasis through the activation or repression of genes associated with Cu handling. Emerging evidence suggests that Cu and some Cu-TFs may be involved in the regulation of targets related to development-expanding the biological roles of Cu-binding proteins. Cu and Cu-TFs are implicated in embryonic and tissue-specific development alongside the mediation of the cellular response to oxidative stress and hypoxia. Cu-TFs are also involved in the regulation of targets implicated in neurological disorders, providing new biomarkers and therapeutic targets for diseases such as Parkinson's disease, prion disease, and Friedreich's ataxia. This review provides a critical analysis of the current understanding of the role of Cu and cuproproteins in transcriptional regulation.
Collapse
|
9
|
Xu Z, Xu C, Lu J, He C, Wang X, Zhu D, Wang A, Zhang Z, Jiang C. Cytochrome P450 F3 promotes colorectal cancer via inhibiting NRF2-mediated ferroptosis. Transl Oncol 2024; 48:102077. [PMID: 39106550 PMCID: PMC11357859 DOI: 10.1016/j.tranon.2024.102077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/27/2024] [Accepted: 08/01/2024] [Indexed: 08/09/2024] Open
Abstract
Cytochrome P450 F3 (CYP4F3) is recognized as a disease-associated immune response initiator that is involved in the synthesis of cholesterol, steroids, and lipids. This study identified the upregulation of CYP4F3 expression in colorectal cancer (CRC) and its association with poor patient prognosis through a comparative analysis between CRC tumor tissues with normal tissues from public databases. The overexpression of CYP4F3 in CT26.wt and SW620, promoted cell proliferation and migration, a reduction of cellular oxidative stress, an up-regulation of the oxidative stress-related pathway NRF2, and an inhibition of cellular ferroptosis. Additionally, inhibition of NRF2 activity stimulated cellular ferroptosis when CYP4F3 was overexpressed. Ferroptosis, characterized by iron-dependent lipid peroxidation, is a non-apoptotic way of cell death with a critical role in cancer development. When given a ferroptosis agonist to CYP4F3-overexpression CRC cells, NRF2 was activated, and cell proliferation and migration were reduced. Furthermore, the mice subcutaneously injected with CYP4F3-overexpression CT26.wt cells formed significantly larger tumors compared to the CYP4F3-vector CT26.wt cell group. This study systematically identified an important role of CYP4F3 in CRC development as a regulator of CRC cells to escape ferroptosis via NRF2, highlighting the significance of CYP4F3 as a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Ziyang Xu
- The Department of Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai 200233, China
| | - Cheng Xu
- The Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai 200233, China
| | - Jie Lu
- The Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai 200233, China
| | - Chenfeng He
- The Department of Integrative Bioanalytics, Aging and Cancer (IDAC), Institute of Development, Tohoku University, Sendai, Japan
| | - Xinyue Wang
- The Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Dongfei Zhu
- The Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aizhong Wang
- The Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai 200233, China.
| | - Zhengyun Zhang
- The Department of Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai 200233, China.
| | - Can Jiang
- The Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai 200233, China.
| |
Collapse
|
10
|
Yamaguchi Y, Sugiki M, Shimizu M, Ogawa K, Kumagai H. Comparative analysis of isothiocyanates in eight cruciferous vegetables and evaluation of the hepatoprotective effects of 4-(methylsulfinyl)-3-butenyl isothiocyanate (sulforaphene) from daikon radish ( Raphanus sativus L.) sprouts. Food Funct 2024; 15:4894-4904. [PMID: 38597802 DOI: 10.1039/d4fo00133h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The contributions of cruciferous vegetables to human health are widely recognised, particularly at the molecular level, where their isothiocyanates play a significant role. However, compared to the well-studied isothiocyanate 4-(methylsulfinyl)butyl isothiocyanate (sulforaphane) produced from broccoli sprouts, less is known about the pharmacological effects of other isothiocyanates and the stage of vegetables preferable to obtain their benefits. We analysed the quantity and quality of isothiocyanates produced in both the sprouts and mature stages of eight cruciferous vegetables using gas chromatography-mass spectrometry (GC-MS). Additionally, we investigated the hepatoprotective effects of isothiocyanates in a mouse model of acute hepatitis induced by carbon tetrachloride (CCl4). Furthermore, we explored the detoxification enzyme-inducing activities of crude sprout extracts in normal rats. Among the eight cruciferous vegetables, daikon radish (Raphanus sativus L.) sprouts produced the highest amount of isothiocyanates, with 4-(methylsulfinyl)-3-butenyl isothiocyanate (sulforaphene) being the dominant compound. The amount of sulforaphene in daikon radish sprouts was approximately 30 times that of sulforaphane in broccoli sprouts. Sulforaphene demonstrated hepatoprotective effects similar to sulforaphane in ameliorating CCl4-induced hepatic injury in mice. A crude extract of 3-day-old daikon radish sprouts upregulated the detoxifying enzyme glutathione S-transferase (GST) in the liver, whereas the crude extract of broccoli sprouts showed limited upregulation. This study highlights that daikon radish sprouts and sulforaphene have the potential to serve as functional food materials with hepatoprotective effects. Furthermore, daikon radish sprouts may exhibit more potent hepatoprotective effects compared to broccoli sprouts.
Collapse
Affiliation(s)
- Yusuke Yamaguchi
- College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan.
| | - Mikio Sugiki
- College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan.
| | - Motomi Shimizu
- College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan.
| | - Kazuki Ogawa
- College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan.
| | - Hitomi Kumagai
- College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan.
| |
Collapse
|
11
|
Chen F, Xiao M, Hu S, Wang M. Keap1-Nrf2 pathway: a key mechanism in the occurrence and development of cancer. Front Oncol 2024; 14:1381467. [PMID: 38634043 PMCID: PMC11021590 DOI: 10.3389/fonc.2024.1381467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
The Keap1-Nrf2 signaling pathway is a major regulator of the cytoprotective response, participating in endogenous and exogenous stress caused by ROS (reactive oxygen species). Nrf2 is the core of this pathway. We summarized the literature on Keap1-Nrf2 signaling pathway and summarized the following three aspects: structure, function pathway, and cancer and clinical application status. This signaling pathway is similar to a double-edged sword: on the one hand, Nrf2 activity can protect cells from oxidative and electrophilic stress; on the other hand, increasing Nrf2 activity can enhance the survival and proliferation of cancer cells. Notably, oxidative stress is also considered a marker of cancer in humans. Keap1-Nrf2 signaling pathway, as a typical antioxidant stress pathway, is abnormal in a variety of human malignant tumor diseases (such as lung cancer, liver cancer, and thyroid cancer). In recent years, research on the Keap1-Nrf2 signaling pathway has become increasingly in-depth and detailed. Therefore, it is of great significance for cancer prevention and treatment to explore the molecular mechanism of the occurrence and development of this pathway.
Collapse
Affiliation(s)
- Feilong Chen
- Sports Medicine Key Laboratory of Sichuan Province, Expert Centre of Sichuan Province, Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Mei Xiao
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Shaofan Hu
- Department of Biochemistry and Molecular Biology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Meng Wang
- Department of Biochemistry and Molecular Biology, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
12
|
Fakhrioliaei A, Tanhaei S, Pakmehr S, Noori Shakir M, Qasim MT, Hariri M, Nouhi Kararoudi A, Valilo M. Potential Role of Nrf2, HER2, and ALDH in Cancer Stem Cells: A Narrative Review. J Membr Biol 2024; 257:3-16. [PMID: 38356054 DOI: 10.1007/s00232-024-00307-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024]
Abstract
Cancer is one of the main causes of death among humans, second only to cardiovascular diseases. In recent years, numerous studies have been conducted on the pathophysiology of cancer, and it has been established that this disease is developed by a group of stem cells known as cancer stem cells (CSCs). Thus, cancer is considered a stem cell disease; however, there is no comprehensive consensus about the characteristics of these cells. Several different signaling pathways including Notch, Hedgehog, transforming growth factor-β (TGF-β), and WNT/β-catenin pathways cause the self-renewal of CSCs. CSCs change their metabolic pathways in order to access easy energy. Therefore, one of the key objectives of researchers in cancer treatment is to destroy CSCs. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays an essential role in the protection of CSCs from reactive oxygen species (ROS) and chemotherapeutic agents by regulating antioxidants and detoxification enzymes. Human epidermal growth factor receptor 2 (HER2) is a member of the tyrosine kinase receptor family, which contributes to the protection of cancer cells against treatment and implicated in the invasion, epithelial-mesenchymal transition (EMT), and tumorigenesis. Aldehyde dehydrogenases (ALDHs) are highly active in CSCs and protect the cells against damage caused by active aldehydes through the regulation of aldehyde metabolism. On the other hand, ALDHs promote the formation and maintenance of tumor cells and lead to drug resistance in tumors through the activation of various signaling pathways, such as the ALDH1A1/HIF-1α/VEGF axis and Wnt/β-catenin, as well as changing the intracellular pH value. Given the growing body of information in this field, in the present narrative review, we attempted to shed light on the function of Nrf2, HER2, and ALDH in CSCs.
Collapse
Affiliation(s)
| | | | | | - Maha Noori Shakir
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | - Maytham T Qasim
- Department of Anesthesia, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Maryam Hariri
- Department of Pathobiology, Auburn University, Auburn, AL, 36832, USA
| | - Alireza Nouhi Kararoudi
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Mohammad Valilo
- Dpartment of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
13
|
Balakina AA, Amozova VI, Sanina NA. Activation of Transcription Factor Nrf2 in HeLa Cells under the Action of Nitrosyl Iron Complex with N-Ethylthiourea. Bull Exp Biol Med 2024; 176:562-566. [PMID: 38724811 DOI: 10.1007/s10517-024-06067-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Indexed: 05/18/2024]
Abstract
We studied the effect of an NO donor, nitrosyl iron complex with N-ethylthiourea, on Nrf2-dependent antioxidant system activation of tumor cells in vitro. The complex increased intracellular accumulation of Nrf2 transcription factor and induced its nuclear translocation. It was shown that both heme oxygenase-1 gene and protein expression increased significantly under the influence of the complex. Nrf2 activation was accompanied by a decrease in the intracellular accumulation of proinflammatory transcription factor NF-κB p65 subunit and expression of its target genes. The cytotoxic effect of N-ethylthiourea leads to induction of Nrf2/HO-1 antioxidant response and suppression of NF-κB-dependent processes in tumor cells.
Collapse
Affiliation(s)
- A A Balakina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia.
| | - V I Amozova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia
| | - N A Sanina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia
- Scientific and Education Centre in Chernogolovka, Federal State University of Education, Mytishchi, Russia
| |
Collapse
|
14
|
Rizwan D, Masoodi FA. Brassica-derived isothiocyanates as anticancer therapeutic agents and their nanodelivery. Phytother Res 2024; 38:331-348. [PMID: 37882581 DOI: 10.1002/ptr.8042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/09/2023] [Accepted: 10/01/2023] [Indexed: 10/27/2023]
Abstract
The isothiocyanates (ITCs) derived from the precursor glucosinolate molecules present in Brassica vegetables are bioactive organo-sulfur compounds with numerous pharmacologically important properties such as antioxidant, antiinflammatory, antimicrobial, and anticancer. Over the years, ITCs have been the focus of several research investigations associated with cancer treatment. Due to their potent chemo-preventive action, ITCs have been considered to be promising therapeutics for cancer therapy in place of the already existing conventional anticancer drugs. However, their wide spread use at the clinical stage is greatly restricted due to several factors such as low solubility in an aqueous medium, low bioavailability, low stability, and hormetic effect. To overcome these hindrances, nanotechnology can be exploited to develop nano-scale delivery systems that have the potential to enhance stability, and bioavailability and minimize the hermetic effect of ITCs.
Collapse
Affiliation(s)
- Danish Rizwan
- Department of Food Science and Technology, University of Kashmir, Jammu and Kashmir, India
| | - Farooq Ahmad Masoodi
- Department of Food Science and Technology, University of Kashmir, Jammu and Kashmir, India
| |
Collapse
|
15
|
Rodriguez-Colman MJ, Dansen TB, Burgering BMT. FOXO transcription factors as mediators of stress adaptation. Nat Rev Mol Cell Biol 2024; 25:46-64. [PMID: 37710009 DOI: 10.1038/s41580-023-00649-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 09/16/2023]
Abstract
The forkhead box protein O (FOXO, consisting of FOXO1, FOXO3, FOXO4 and FOXO6) transcription factors are the mammalian orthologues of Caenorhabditis elegans DAF-16, which gained notoriety for its capability to double lifespan in the absence of daf-2 (the gene encoding the worm insulin receptor homologue). Since then, research has provided many mechanistic details on FOXO regulation and FOXO activity. Furthermore, conditional knockout experiments have provided a wealth of data as to how FOXOs control development and homeostasis at the organ and organism levels. The lifespan-extending capabilities of DAF-16/FOXO are highly correlated with their ability to induce stress response pathways. Exogenous and endogenous stress, such as cellular redox stress, are considered the main drivers of the functional decline that characterizes ageing. Functional decline often manifests as disease, and decrease in FOXO activity indeed negatively impacts on major age-related diseases such as cancer and diabetes. In this context, the main function of FOXOs is considered to preserve cellular and organismal homeostasis, through regulation of stress response pathways. Paradoxically, the same FOXO-mediated responses can also aid the survival of dysfunctional cells once these eventually emerge. This general property to control stress responses may underlie the complex and less-evident roles of FOXOs in human lifespan as opposed to model organisms such as C. elegans.
Collapse
Affiliation(s)
| | - Tobias B Dansen
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Boudewijn M T Burgering
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands.
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
16
|
Mukherjee AG, Gopalakrishnan AV. The mechanistic insights of the antioxidant Keap1-Nrf2 pathway in oncogenesis: a deadly scenario. Med Oncol 2023; 40:248. [PMID: 37480500 DOI: 10.1007/s12032-023-02124-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023]
Abstract
The Nuclear factor erythroid 2-related factor 2 (Nrf2) protein has garnered significant interest due to its crucial function in safeguarding cells and tissues. The Nrf2 protein is crucial in preserving tissue integrity by safeguarding cells against metabolic, xenobiotic and oxidative stress. Due to its various functions, Nrf2 is a potential pharmacological target for reducing the incidence of diseases such as cancer. However, mutations in Keap1-Nrf2 are not consistently favored in all types of cancer. Instead, they seem to interact with specific driver mutations of tumors and their respective tissue origins. The Kelch-like ECH-associated protein 1 (Keap1)-Nrf2 pathway mutations are a powerful cancer adaptation that utilizes inherent cytoprotective pathways, encompassing nutrient metabolism and ROS regulation. The augmentation of Nrf2 activity elicits significant alterations in the characteristics of neoplastic cells, such as resistance to radiotherapy and chemotherapy, safeguarding against apoptosis, heightened invasiveness, hindered senescence, impaired autophagy and increased angiogenesis. The altered activity of Nrf2 can arise from diverse genetic and epigenetic modifications that instantly impact Nrf2 regulation. The present study aims to showcase the correlation between the Keap1-Nrf2 pathway and the progression of cancers, emphasizing genetic mutations, metabolic processes, immune regulation, and potential therapeutic strategies. This article delves into the intricacies of Nrf2 pathway anomalies in cancer, the potential ramifications of uncontrolled Nrf2 activity, and therapeutic interventions to modulate the Keap1-Nrf2 pathway.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
17
|
Li K, Sun S, Xiao L, Zhang Z. Bioactivity-guided fractionation of Helicteres angustifolia L. extract and its molecular evidence for tumor suppression. Front Cell Dev Biol 2023; 11:1157172. [PMID: 37427379 PMCID: PMC10323433 DOI: 10.3389/fcell.2023.1157172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
Helicteres angustifolia L. (Helicteres angustifolia) has been commonly used in folk medicine to treat cancer; however, its mechanisms of action remain obscure. In our earlier work, we reported that aqueous extract of H. angustifolia root (AQHAR) possesses attractive anticancer properties. In the present study, we isolated five ethanol fractions from AQHAR and investigated their therapeutic efficacy in human non-small cell lung cancer (NSCLC) cells. The results showed that among the five fractions, the 40% ethanol fraction (EF40) containing multiple bioactive compounds exhibited the best selective killing effect on NSCLC cells with no obvious toxicity to normal human fibroblasts. Mechanistically, EF40 reduced the expression of nuclear factor-E2-related factor 2 (Nrf2), which is constitutively expressed at high levels in many types of cancers. As a result, Nrf2-dependent cellular defense responses are suppressed, leading to the intracellular accumulation of reactive oxygen species (ROS). Extensive biochemical analyses revealed that EF40 caused cell cycle arrest and apoptosis through activation of the ROS-mediated DNA damage response. Furthermore, treatment with EF40 compromised NSCLC cell migration, as evidenced by the downregulation of matrix metalloproteinases (MMPs) and heterogeneous nuclear ribonucleoprotein K (hnRNP-K). In vivo studies using A549 xenografts in nude mice also revealed significant suppression of tumor growth and lung metastasis in the treated group. We propose that EF40 may serve as a potential natural anti-NSCLC drug that warrants further mechanistic and clinical attention.
Collapse
Affiliation(s)
- Kejuan Li
- College of Life Science, Sichuan Normal University, Chengdu, China
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shuang Sun
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Long Xiao
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
18
|
DeBlasi JM, Falzone A, Caldwell S, Prieto-Farigua N, Prigge JR, Schmidt EE, Chio IIC, Karreth FA, DeNicola GM. Distinct Nrf2 Signaling Thresholds Mediate Lung Tumor Initiation and Progression. Cancer Res 2023; 83:1953-1967. [PMID: 37062029 PMCID: PMC10267679 DOI: 10.1158/0008-5472.can-22-3848] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/03/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
Mutations in the KEAP1-NRF2 (Kelch-like ECH-associated protein 1-nuclear factor-erythroid 2 p45-related factor 2) pathway occur in up to a third of non-small cell lung cancer (NSCLC) cases and often confer resistance to therapy and poor outcomes. Here, we developed murine alleles of the KEAP1 and NRF2 mutations found in human NSCLC and comprehensively interrogated their impact on tumor initiation and progression. Chronic NRF2 stabilization by Keap1 or Nrf2 mutation was not sufficient to induce tumorigenesis, even in the absence of tumor suppressors, p53 or LKB1. When combined with KrasG12D/+, constitutive NRF2 activation promoted lung tumor initiation and early progression of hyperplasia to low-grade tumors but impaired their progression to advanced-grade tumors, which was reversed by NRF2 deletion. Finally, NRF2 overexpression in KEAP1 mutant human NSCLC cell lines was detrimental to cell proliferation, viability, and anchorage-independent colony formation. Collectively, these results establish the context-dependence and activity threshold for NRF2 during the lung tumorigenic process. SIGNIFICANCE Stabilization of the transcription factor NRF2 promotes oncogene-driven tumor initiation but blocks tumor progression, indicating distinct, threshold-dependent effects of the KEAP1/NRF2 pathway in different stages of lung tumorigenesis.
Collapse
Affiliation(s)
- Janine M. DeBlasi
- Department of Metabolism & Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology PhD Program, University of South Florida, Tampa, Florida
| | - Aimee Falzone
- Department of Metabolism & Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Samantha Caldwell
- Department of Metabolism & Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Nicolas Prieto-Farigua
- Department of Metabolism & Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Justin R. Prigge
- Microbiology & Cell Biology Department, Montana State University, Bozeman, Montana
| | - Edward E. Schmidt
- Microbiology & Cell Biology Department, Montana State University, Bozeman, Montana
| | - Iok In Christine Chio
- Department of Genetics and Development, Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Florian A. Karreth
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Gina M. DeNicola
- Department of Metabolism & Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
19
|
Zheng J, Zhang Q, Zhao Z, Qiu Y, Zhou Y, Wu Z, Jiang C, Wang X, Jiang X. Epigenetically silenced lncRNA SNAI3-AS1 promotes ferroptosis in glioma via perturbing the m 6A-dependent recognition of Nrf2 mRNA mediated by SND1. J Exp Clin Cancer Res 2023; 42:127. [PMID: 37202791 DOI: 10.1186/s13046-023-02684-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Ferroptosis has been linked to tumor progression and resistance to antineoplastic therapy. Long noncoding RNA (lncRNA) exerts a regulatory role in various biological processes of tumor cells, while the function and molecular mechanism of lncRNA in ferroptosis are yet to be clarified in glioma. METHODS Both gain-of-function and loss-of-function experiments were employed to investigate the effects of SNAI3-AS1 on the tumorigenesis and ferroptosis susceptibility of glioma in vitro and in vivo. Bioinformatics analysis, Bisulfite sequencing PCR, RNA pull-down, RIP, MeRIP and dual-luciferase reporter assay were performed to explore the low expression mechanism of SNAI3-AS1 and the downstream mechanism of SNAI3-AS1 in ferroptosis susceptibility of glioma. RESULTS We found that ferroptosis inducer erastin downregulates SNAI3-AS1 expression in glioma by increasing the DNA methylation level of SNAI3-AS1 promoter. SNAI3-AS1 functions as a tumor suppressor in glioma. Importantly, SNAI3-AS1 enhances the anti-tumor activity of erastin by promoting ferroptosis both in vitro and in vivo. Mechanistically, SNAI3-AS1 competitively binds to SND1 and perturbs the m6A-dependent recognition of Nrf2 mRNA 3'UTR by SND1, thereby reducing the mRNA stability of Nrf2. Rescue experiments confirmed that SND1 overexpression and silence can rescue the gain- and loss-of-function ferroptotic phenotypes of SNAI3-AS1, respectively. CONCLUSIONS Our findings elucidate the effect and detailed mechanism of SNAI3-AS1/SND1/Nrf2 signalling axis in ferroptosis, and provide a theoretical support for inducing ferroptosis to improve glioma treatment.
Collapse
Affiliation(s)
- Jianglin Zheng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhen Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Qiu
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yujie Zhou
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhipeng Wu
- Department of Neurosurgery, Weifang People's Hospital, Weifang, Shandong, China
| | - Cheng Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuan Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
20
|
Wang R, Liang L, Matsumoto M, Iwata K, Umemura A, He F. Reactive Oxygen Species and NRF2 Signaling, Friends or Foes in Cancer? Biomolecules 2023; 13:biom13020353. [PMID: 36830722 PMCID: PMC9953152 DOI: 10.3390/biom13020353] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The imbalance between reactive oxygen species (ROS) production and clearance causes oxidative stress and ROS, which play a central role in regulating cell and tissue physiology and pathology. Contingent upon concentration, ROS influence cancer development in contradictory ways, either stimulating cancer survival and growth or causing cell death. Cells developed evolutionarily conserved programs to sense and adapt redox the fluctuations to regulate ROS as either signaling molecules or toxic insults. The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2)-KEAP1 system is the master regulator of cellular redox and metabolic homeostasis. NRF2 has Janus-like roles in carcinogenesis and cancer development. Short-term NRF2 activation suppresses tissue injury, inflammation, and cancer initiation. However, cancer cells often exhibit constitutive NRF2 activation due to genetic mutations or oncogenic signaling, conferring advantages for cancer cells' survival and growth. Emerging evidence suggests that NRF2 hyperactivation, as an adaptive cancer phenotype under stressful tumor environments, regulates all hallmarks of cancer. In this review, we summarized the source of ROS, regulation of ROS signaling, and cellular sensors for ROS and oxygen (O2), we reviewed recent progress on the regulation of ROS generation and NRF2 signaling with a focus on the new functions of NRF2 in cancer development that reach beyond what we originally envisioned, including regulation of cancer metabolism, autophagy, macropinocytosis, unfolded protein response, proteostasis, and circadian rhythm, which, together with anti-oxidant and drug detoxification enzymes, contributes to cancer development, metastasis, and anticancer therapy resistance.
Collapse
Affiliation(s)
- Ruolei Wang
- The Center for Cancer Research, Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lirong Liang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Misaki Matsumoto
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kazumi Iwata
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Atsushi Umemura
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Correspondence: (A.U.); (F.H.); Tel.: +75-251-5332 (A.U.); +86-21-5132-2501 (F.H.)
| | - Feng He
- The Center for Cancer Research, Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Correspondence: (A.U.); (F.H.); Tel.: +75-251-5332 (A.U.); +86-21-5132-2501 (F.H.)
| |
Collapse
|
21
|
Selective disruption of NRF2-KEAP1 interaction leads to NASH resolution and reduction of liver fibrosis in mice. JHEP Rep 2022; 5:100651. [PMID: 36866391 PMCID: PMC9971056 DOI: 10.1016/j.jhepr.2022.100651] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/25/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Background & Aims Oxidative stress is recognized as a major driver of non-alcoholic steatohepatitis (NASH) progression. The transcription factor NRF2 and its negative regulator KEAP1 are master regulators of redox, metabolic and protein homeostasis, as well as detoxification, and thus appear to be attractive targets for the treatment of NASH. Methods Molecular modeling and X-ray crystallography were used to design S217879 - a small molecule that could disrupt the KEAP1-NRF2 interaction. S217879 was highly characterized using various molecular and cellular assays. It was then evaluated in two different NASH-relevant preclinical models, namely the methionine and choline-deficient diet (MCDD) and diet-induced obesity NASH (DIO NASH) models. Results Molecular and cell-based assays confirmed that S217879 is a highly potent and selective NRF2 activator with marked anti-inflammatory properties, as shown in primary human peripheral blood mononuclear cells. In MCDD mice, S217879 treatment for 2 weeks led to a dose-dependent reduction in NAFLD activity score while significantly increasing liver Nqo1 mRNA levels, a specific NRF2 target engagement biomarker. In DIO NASH mice, S217879 treatment resulted in a significant improvement of established liver injury, with a clear reduction in both NAS and liver fibrosis. αSMA and Col1A1 staining, as well as quantification of liver hydroxyproline levels, confirmed the reduction in liver fibrosis in response to S217879. RNA-sequencing analyses revealed major alterations in the liver transcriptome in response to S217879, with activation of NRF2-dependent gene transcription and marked inhibition of key signaling pathways that drive disease progression. Conclusions These results highlight the potential of selective disruption of the NRF2-KEAP1 interaction for the treatment of NASH and liver fibrosis. Impact and implications We report the discovery of S217879 - a potent and selective NRF2 activator with good pharmacokinetic properties. By disrupting the KEAP1-NRF2 interaction, S217879 triggers the upregulation of the antioxidant response and the coordinated regulation of a wide spectrum of genes involved in NASH disease progression, leading ultimately to the reduction of both NASH and liver fibrosis progression in mice.
Collapse
Key Words
- 4-HNE, 4-hydroxynonenal
- ARE, antioxidant response element
- DIO, diet-induced obesity
- GSEA, Gene Set Enrichment Analysis
- HEC, hydroxyethyl cellulose
- HSCs, Hepatic Stellate Cells
- KEAP1, Kelch-like ECH associated protein 1
- LPS, lipopolysaccharide
- MCDD, methionine- and choline-deficient diet
- NAFLD, non-alcoholic fatty liver disease
- NAS, NAFLD activity score
- NASH
- NASH, non-alcoholic steatohepatitis
- NRF2
- NRF2, nuclear factor erythroid 2–related factor 2
- PPI, Protein-protein interaction
- PSR, Picrosirius red
- ROS, reactive oxygen species
- fibrosis
- hPBMCs, human peripheral blood mononuclear cells
- oxidative stress
Collapse
|
22
|
Nrf2 Modulation in Breast Cancer. Biomedicines 2022; 10:biomedicines10102668. [PMID: 36289931 PMCID: PMC9599257 DOI: 10.3390/biomedicines10102668] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 12/05/2022] Open
Abstract
Reactive oxygen species (ROS) are identified to control the expression and activity of various essential signaling intermediates involved in cellular proliferation, apoptosis, and differentiation. Indeed, ROS represents a double-edged sword in supporting cell survival and death. Many common pathological processes, including various cancer types and neurodegenerative diseases, are inflammation and oxidative stress triggers, or even initiate them. Keap1-Nrf2 is a master antioxidant pathway in cytoprotective mechanisms through Nrf2 target gene expression. Activation of the Nfr2 pathway benefits cells in the early stages and reduces the level of ROS. In contrast, hyperactivation of Keap1-Nrf2 creates a context that supports the survival of both healthy and cancerous cells, defending them against oxidative stress, chemotherapeutic drugs, and radiotherapy. Considering the dual role of Nrf2 in suppressing or expanding cancer cells, determining its inhibitory/stimulatory position and targeting can represent an impressive role in cancer treatment. This review focused on Nrf2 modulators and their roles in sensitizing breast cancer cells to chemo/radiotherapy agents.
Collapse
|
23
|
Ghosh S, Singh R, Vanwinkle ZM, Guo H, Vemula PK, Goel A, Haribabu B, Jala VR. Microbial metabolite restricts 5-fluorouracil-resistant colonic tumor progression by sensitizing drug transporters via regulation of FOXO3-FOXM1 axis. Theranostics 2022; 12:5574-5595. [PMID: 35910798 PMCID: PMC9330515 DOI: 10.7150/thno.70754] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022] Open
Abstract
The survival rate of colorectal cancer patients is adversely affected by the selection of tumors resistant to conventional anti-cancer drugs such as 5-fluorouracil (5FU). Although there is mounting evidence that commensal gut microbiota is essential for effective colon cancer treatment, the detailed molecular mechanisms and the role of gut microbial metabolites remain elusive. The goal of this study is to decipher the impact and mechanisms of gut microbial metabolite, urolithin A (UroA) and its structural analogue, UAS03 on reversal of 5FU-resistant (5FUR) colon cancers. Methods: We have utilized the SW480 and HCT-116 parental (5FU-sensitive) and 5FUR colon cancer cells to examine the chemosensitization effects of UroA or UAS03 by using both in vitro and in vivo models. The effects of mono (UroA/UAS03/5FU) and combinatorial therapy (UroA/UAS03 + 5FU) on cell proliferation, apoptosis, cell migration and invasion, regulation of epithelial mesenchymal transition (EMT) mediators, expression and activities of drug transporters, and their regulatory transcription factors were examined using molecular, cellular, immunological and flowcytometric methods. Further, the anti-tumor effects of mono/combination therapy (UroA or UAS03 or 5FU or UroA/UAS03 + 5FU) were examined using pre-clinical models of 5FUR-tumor xenografts in NRGS mice and azoxymethane (AOM)-dextran sodium sulfate (DSS)-induced colon tumors. Results: Our data showed that UroA or UAS03 in combination with 5FU significantly inhibited cell viability, proliferation, invasiveness as well as induced apoptosis of the 5FUR colon cancer cells compared to mono treatments. Mechanistically, UroA or UAS03 chemosensitized the 5FUR cancer cells by downregulating the expression and activities of drug transporters (MDR1, BCRP, MRP2 and MRP7) leading to a decrease in the efflux of 5FU. Further, our data suggested the UroA or UAS03 chemosensitized 5FUR cancer cells to 5FU treatment through regulating FOXO3-FOXM1 axis. Oral treatment with UroA or UAS03 in combination with low dose i.p. 5FU significantly reduced the growth of 5FUR-tumor xenografts in NRGS mice. Further, combination therapy significantly abrogated colonic tumors in AOM-DSS-induced colon tumors in mice. Conclusions: In summary, gut microbial metabolite UroA and its structural analogue UAS03 chemosensitized the 5FUR colon cancers for effective 5FU chemotherapy. This study provided the novel characteristics of gut microbial metabolites to have significant translational implications in drug-resistant cancer therapeutics.
Collapse
Affiliation(s)
- Sweta Ghosh
- Department of Microbiology and Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, USA
| | - Rajbir Singh
- Department of Microbiology and Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, USA
| | - Zachary Matthew Vanwinkle
- Department of Microbiology and Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, USA
| | - Haixun Guo
- Department of Radiology, Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
| | - Praveen Kumar Vemula
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), GKVK campus, Bangalore, Karnataka 560065, India
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, USA
| | - Venkatakrishna Rao Jala
- Department of Microbiology and Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, USA
| |
Collapse
|
24
|
Giudice A, Aliberti SM, Barbieri A, Pentangelo P, Bisogno I, D'Arena G, Cianciola E, Caraglia M, Capunzo M. Potential Mechanisms by which Glucocorticoids Induce Breast Carcinogenesis through Nrf2 Inhibition. FRONT BIOSCI-LANDMRK 2022; 27:223. [PMID: 35866405 DOI: 10.31083/j.fbl2707223] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 01/03/2025]
Abstract
Breast cancer is the most common malignancy among women worldwide. Several studies indicate that, in addition to established risk factors for breast cancer, other factors such as cortisol release related to psychological stress and drug treatment with high levels of glucocorticoids may also contribute significantly to the initiation of breast cancer. There are several possible mechanisms by which glucocorticoids might promote neoplastic transformation of breast tissue. Among these, the least known and studied is the inhibition of the nuclear erythroid factor 2-related (Nrf2)-antioxidant/electrophile response element (ARE/EpRE) pathway by high levels of glucocorticoids. Specifically, Nrf2 is a potent transcriptional activator that plays a central role in the basal and inducible expression of many cytoprotective genes that effectively protect mammalian cells from various forms of stress and reduce the propensity of tissues and organisms to develop disease or malignancy including breast cancer. Consequently, a loss of Nrf2 in response to high levels of gluco-corticoids may lead to a decrease in cellular defense against oxidative stress, which plays an important role in the initiation of human mammary carcinogenesis. In the present review, we provide a comprehensive overview of the current state of knowledge of the cellular mechanisms by which both glucocorticoid pharmacotherapy and endogenous GCs (cortisol in humans and corticosterone in rodents) may contribute to breast cancer development through inhibition of the Nrf2-ARE/EpRE pathway and the protective role of melatonin against glucocorticoid-induced apoptosis in the immune system.
Collapse
Affiliation(s)
- Aldo Giudice
- Animal Facility, Istituto Nazionale Tumori - "Fondazione G. Pascale" - IRCCS, 80131 Naples, Italy
| | - Silvana Mirella Aliberti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Salerno, Italy
| | - Antonio Barbieri
- Animal Facility, Istituto Nazionale Tumori - "Fondazione G. Pascale" - IRCCS, 80131 Naples, Italy
| | - Paola Pentangelo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Salerno, Italy
| | - Ilaria Bisogno
- Department of Radiological, Oncological and Anatomo-Pathological Science, University of Rome "Sapienza", 00161 Rome, Italy
| | - Giovanni D'Arena
- Hematology Service, San Luca Hospital, ASL Salerno, 84124 Salerno, Italy
| | - Emidio Cianciola
- Anesthesia and Intensive Care Unit, "Immacolata di Sapri" Hospital- ASL Salerno, 84073 Salerno, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Mario Capunzo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Salerno, Italy
| |
Collapse
|
25
|
Melatonin improves arsenic-induced hypertension through the inactivation of the Sirt1/autophagy pathway in rat. Biomed Pharmacother 2022; 151:113135. [PMID: 35598369 DOI: 10.1016/j.biopha.2022.113135] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 11/20/2022] Open
Abstract
Arsenic (As), a metalloid chemical element, is classified as heavy metal. Previous studies proposed that As induces vascular toxicity by inducing autophagy, apoptosis, and oxidative stress. It has been shown that melatonin (Mel) can decrease oxidative stress and apoptosis, and modulate autophagy in different pathological situations. Hence, this study aimed to investigate the Mel effect on As-induced vascular toxicity through apoptosis and autophagy regulation. Forty male rats were treated with As (15 mg/kg; oral gavage) and Mel (10 and 20 mg/kg, intraperitoneally; i.p.) for 28 days. The systolic blood pressure (SBP) changes, oxidative stress markers, the aorta histopathological injuries, contractile and relaxant responses, the level of apoptosis (Bnip3 and caspase-3) and autophagy (Sirt1, Beclin-1 and LC3 II/I ratio) proteins were determined in rats aorta. The As exposure significantly increased SBP and enhanced MDA level while reduced GSH content. The exposure to As caused substantial histological damage in aorta tissue and changed vasoconstriction and vasorelaxation responses to KCl, PE, and Ach in isolated rat aorta. The levels of HO-1 and Nrf-2, apoptosis markers, Sirt1, and autophagy proteins also enhanced in As group. Interestingly, Mel could reduce changes in oxidative stress, blood pressure, apoptosis, and autophagy induced by As. On the other hand, Mel led to more increased the levels of Nrf-2 and HO-1 proteins compared with the As group. In conclusion, our findings showed that Mel could have a protective effect against As-induced vascular toxicity by inhibiting apoptosis and the Sirt1/autophagy pathway.
Collapse
|
26
|
Bromage DI, Trevelin SC, Huntington J, Yang VX, Muthukumar A, Mackie SJ, Sawyer G, Zhang X, Santos CXC, Safinia N, Smyrnias I, Giacca M, Ivetic A, Shah AM. Nrf2 attenuates the innate immune response after experimental myocardial infarction. Biochem Biophys Res Commun 2022; 606:10-16. [PMID: 35338853 DOI: 10.1016/j.bbrc.2022.03.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND There is compelling evidence implicating dysregulated inflammation in the mechanism of ventricular remodeling and heart failure (HF) after MI. The transcription factor nuclear factor erythroid-derived 2-like 2 (Nrf2, encoded by Nfe2l2) is a promising target in this context since it impedes transcriptional upregulation of pro-inflammatory cytokines and is anti-inflammatory in various murine models. OBJECTIVES We aimed to investigate the contribution of Nrf2 to the inflammatory response after experimental myocardial infarction (MI). METHODS We subjected Nrf2-/- mice and wild type (WT) controls to permanent left coronary artery (LCA) ligation. The inflammatory response was investigated with fluorescence-activated cell sorting (FACS) analysis of peripheral blood and heart cell suspensions, together with qRT-PCR of infarcted tissue for chemokines and their receptors. To investigate whether Nrf2-mediated transcription is a dedicated function of leukocytes, we interrogated publicly available RNA-sequencing (RNA-seq) data from mouse hearts after permanent LCA ligation for Nrf2-regulated gene (NRG) expression. RESULTS FACS analysis demonstrated a profoundly inflamed phenotype in the hearts of global Nrf2-/- mice as compared to WT mice after MI. Moreover, infarcted tissue from Nrf2-/- mice displayed higher expression of mRNA coding for inflammatory cytokines, chemokines, and their receptors, including IL-6, Ccl2, and Cxcr4. RNA-seq analysis showed upregulated NRG expression in WT mice after MI compared to naive mice, which was significantly higher in bioinformatically isolated CCR2+ cells. CONCLUSIONS Taken together, the results suggest that Nrf2 signalling in leukocytes, and possibly CCR2+ monocytes and monocyte-derived cardiac resident macrophages, may be potential targets to prevent post-MI ventricular remodeling.
Collapse
Affiliation(s)
- Daniel I Bromage
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK.
| | - Silvia C Trevelin
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Josef Huntington
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Victoria X Yang
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Ananya Muthukumar
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Sarah J Mackie
- School of Cancer and Pharmaceutical Sciences, SGDP Centre, King's College London, Memory Lane, London, SE5 8AF, UK
| | - Greta Sawyer
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Xiaohong Zhang
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Celio X C Santos
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Niloufar Safinia
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, King's College London, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Ioannis Smyrnias
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK; School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey, GU2 7AL, UK
| | - Mauro Giacca
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Aleksandar Ivetic
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Ajay M Shah
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| |
Collapse
|
27
|
Ulasov AV, Rosenkranz AA, Georgiev GP, Sobolev AS. Nrf2/Keap1/ARE signaling: Towards specific regulation. Life Sci 2022; 291:120111. [PMID: 34732330 PMCID: PMC8557391 DOI: 10.1016/j.lfs.2021.120111] [Citation(s) in RCA: 278] [Impact Index Per Article: 92.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023]
Abstract
The Nrf2 transcription factor governs the expression of hundreds genes involved in cell defense against oxidative stress, the hallmark of numerous diseases such as neurodegenerative, cardiovascular, some viral pathologies, diabetes and others. The main route for Nrf2 activity regulation is via interactions with the Keap1 protein. Under the normoxia the Keap1 binds the Nrf2 and targets it to the proteasomal degradation, while the Keap1 is regenerated. Upon oxidative stress the interactions between Nrf2 and Keap1 are interrupted and the Nrf2 activates the transcription of the protective genes. Currently, the Nrf2 system activation is considered as a powerful cytoprotective strategy for treatment of different pathologies, which pathogenesis relies on oxidative stress including viral diseases of pivotal importance such as COVID-19. The implementation of this strategy is accomplished mainly through the inactivation of the Keap1 "guardian" function. Two approaches are now developing: the Keap1 modification via electrophilic agents, which leads to the Nrf2 release, and direct interruption of the Nrf2:Keap1 protein-protein interactions (PPI). Because of theirs chemical structure, the Nrf2 electrophilic inducers could non-specifically interact with others cellular proteins leading to undesired effects. Whereas the non-electrophilic inhibitors of the Nrf2:Keap1 PPI could be more specific, thereby widening the therapeutic window.
Collapse
Affiliation(s)
- Alexey V Ulasov
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia.
| | - Andrey A Rosenkranz
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; Faculty of Biology, Moscow State University, 1-12 Leninskiye Gory St., 119234 Moscow, Russia
| | - Georgii P Georgiev
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Alexander S Sobolev
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; Faculty of Biology, Moscow State University, 1-12 Leninskiye Gory St., 119234 Moscow, Russia
| |
Collapse
|
28
|
Gao W, Guo L, Yang Y, Wang Y, Xia S, Gong H, Zhang BK, Yan M. Dissecting the Crosstalk Between Nrf2 and NF-κB Response Pathways in Drug-Induced Toxicity. Front Cell Dev Biol 2022; 9:809952. [PMID: 35186957 PMCID: PMC8847224 DOI: 10.3389/fcell.2021.809952] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Nrf2 and NF-κB are important regulators of the response to oxidative stress and inflammation in the body. Previous pharmacological and genetic studies have confirmed crosstalk between the two. The deficiency of Nrf2 elevates the expression of NF-κB, leading to increased production of inflammatory factors, while NF-κB can affect the expression of downstream target genes by regulating the transcription and activity of Nrf2. At the same time, many therapeutic drug-induced organ toxicities, including hepatotoxicity, nephrotoxicity, cardiotoxicity, pulmonary toxicity, dermal toxicity, and neurotoxicity, have received increasing attention from researchers in clinical practice. Drug-induced organ injury can destroy body function, reduce the patients’ quality of life, and even threaten the lives of patients. Therefore, it is urgent to find protective drugs to ameliorate drug-induced injury. There is substantial evidence that protective medications can alleviate drug-induced organ toxicity by modulating both Nrf2 and NF-κB signaling pathways. Thus, it has become increasingly important to explore the crosstalk mechanism between Nrf2 and NF-κB in drug-induced toxicity. In this review, we summarize the potential molecular mechanisms of Nrf2 and NF-κB pathways and the important effects on adverse effects including toxic reactions and look forward to finding protective drugs that can target the crosstalk between the two.
Collapse
Affiliation(s)
- Wen Gao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Lin Guo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Yang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shuang Xia
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bi-Kui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Miao Yan,
| |
Collapse
|
29
|
Scuto M, Ontario ML, Salinaro AT, Caligiuri I, Rampulla F, Zimbone V, Modafferi S, Rizzolio F, Canzonieri V, Calabrese EJ, Calabrese V. Redox modulation by plant polyphenols targeting vitagenes for chemoprevention and therapy: Relevance to novel anti-cancer interventions and mini-brain organoid technology. Free Radic Biol Med 2022; 179:59-75. [PMID: 34929315 DOI: 10.1016/j.freeradbiomed.2021.12.267] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 12/26/2022]
Abstract
The scientific community, recently, has focused notable attention on the chemopreventive and therapeutic effects of dietary polyphenols for human health. Emerging evidence demonstrates that polyphenols, flavonoids and vitamins counteract and neutralize genetic and environmental stressors, particularly oxidative stress and inflammatory process closely connected to cancer initiation, promotion and progression. Interestingly, polyphenols can exert antioxidant or pro-oxidant cytotoxic effects depending on their endogenous concentration. Notably, polyphenols at high dose act as pro-oxidants in a wide type of cancer cells by inhibiting Nrf2 pathway and the expression of antioxidant vitagenes, such as NAD(P)H-quinone oxidoreductase (NQO1), glutathione transferase (GT), GPx, heme oxygenase-1 (HO-1), sirtuin-1 (Sirt1) and thioredoxin (Trx) system which play an essential role in the metabolism of reactive oxygen species (ROS), detoxification of xenobiotics and inhibition of cancer progression, by inducing apoptosis and cell cycle arrest according to the hormesis approach. Importantly, mutagenesis of Nrf2 pathway can exacerbate its "dark side" role, representing a crucial event in the initiation stage of carcinogenesis. Herein, we review the hormetic effects of polyphenols and nanoincapsulated-polyphenols in chemoprevention and treatment of brain tumors via activation or inhibition of Nrf2/vitagenes to suppress carcinogenesis in the early stages, and thus inhibit its progression. Lastly, we discuss innovative preclinical approaches through mini-brain tumor organoids to study human carcinogenesis, from basic cancer research to clinical practice, as promising tools to recapitulate the arrangement of structural neuronal tissues and biological functions of the human brain, as well as test drug toxicity and drive personalized and precision medicine in brain cancer.
Collapse
Affiliation(s)
- Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy; Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy.
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy
| | - Francesco Rampulla
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy
| | - Vincenzo Zimbone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, 30123, Venezia, Italy
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, 34127, Trieste, Italy
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy.
| |
Collapse
|
30
|
Park TY, Leiserson MD, Klau GW, Raphael BJ. SuperDendrix algorithm integrates genetic dependencies and genomic alterations across pathways and cancer types. CELL GENOMICS 2022; 2. [PMID: 35382456 PMCID: PMC8979493 DOI: 10.1016/j.xgen.2022.100099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent genome-wide CRISPR-Cas9 loss-of-function screens have identified genetic dependencies across many cancer cell lines. Associations between these dependencies and genomic alterations in the same cell lines reveal phenomena such as oncogene addiction and synthetic lethality. However, comprehensive identification of such associations is complicated by complex interactions between genes across genetically heterogeneous cancer types. We introduce and apply the algorithm SuperDendrix to CRISPR-Cas9 loss-of-function screens from 769 cancer cell lines, to identify differential dependencies across cell lines and to find associations between differential dependencies and combinations of genomic alterations and cell-type-specific markers. These associations respect the position and type of interactions within pathways: for example, we observe increased dependencies on downstream activators of pathways, such as NFE2L2, and decreased dependencies on upstream activators of pathways, such as CDK6. SuperDendrix also reveals dozens of dependencies on lineage-specific transcription factors, identifies cancer-type-specific correlations between dependencies, and enables annotation of individual mutated residues. Using SuperDendrix, Park et al. examine associations between genetic dependencies in 769 cancer cell lines. They report 127 genetic dependencies explained by combinations of mutually exclusive somatic mutations congregating into a few oncogenic pathways across cancer subtypes. These present a small number of prominent and highly specific genetic vulnerabilities in cancer. Graphical abstract
Collapse
|
31
|
Lau CH, Pendleton D, Drury NL, Zhao J, Li Y, Zhang R, Wright GA, Hoffmann AR, Johnson NM. NRF2 Protects against Altered Pulmonary T Cell Differentiation in Neonates Following In Utero Ultrafine Particulate Matter Exposure. Antioxidants (Basel) 2022; 11:202. [PMID: 35204086 PMCID: PMC8868442 DOI: 10.3390/antiox11020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/18/2022] Open
Abstract
Early life exposure to particulate matter (PM) air pollution negatively impacts neonatal health. The underlying mechanisms following prenatal exposure, particularly to ultrafine particles (UFP, diameter ≤ 0.1 μm), are not fully understood; To evaluate the role of Nrf2 in response to in utero UFP exposure, we exposed time-mated Nrf2-deficient (Nrf2-/-) or wildtype (WT) mice to filtered air (FA) or 100 μg/m3 ultrafine PM daily throughout pregnancy. Offspring were evaluated for pulmonary immunophenotypes and pulmonary/systemic oxidative stress on postnatal day 5, a timepoint at which we previously demonstrated viral respiratory infection susceptibility; Nrf2-/- offspring exposed to FA had significantly lower average body weights compared to FA-exposed WT pups. Moreover, PM-exposed Nrf2-/- offspring weighed significantly less than PM-exposed WT pups. Notably, PM-exposed Nrf2-/- offspring showed a decreased pulmonary Th1/Th2 ratio, indicating a Th2 bias. Th17 cells were increased in FA-exposed Nrf2-/- neonates yet decreased in PM-exposed Nrf2-/- neonates. Analysis of oxidative stress-related genes in lung and oxidative stress biomarkers in liver tissues did not vary significantly across exposure groups or genotypes. Collectively, these findings indicate that the lack of Nrf2 causes growth inhibitory effects in general and in response to gestational UFP exposure. Prenatal UFP exposure skews CD4+ T lymphocyte differentiation toward Th2 in neonates lacking Nrf2, signifying its importance in maternal exposure and infant immune responses.
Collapse
Affiliation(s)
- Carmen H. Lau
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA; (C.H.L.); (G.A.W.)
| | - Drew Pendleton
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX 77843, USA; (D.P.); (N.L.D.)
| | - Nicholas L. Drury
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX 77843, USA; (D.P.); (N.L.D.)
| | - Jiayun Zhao
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA; (J.Z.); (Y.L.); (R.Z.)
| | - Yixin Li
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA; (J.Z.); (Y.L.); (R.Z.)
| | - Renyi Zhang
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA; (J.Z.); (Y.L.); (R.Z.)
- Department of Atmospheric Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Gus A. Wright
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA; (C.H.L.); (G.A.W.)
- Flow Cytometry Facility, Texas A&M University, College Station, TX 77843, USA
| | - Aline Rodrigues Hoffmann
- Department of Comparative, Diagnostic, and Population Medicine, University of Florida, Gainesville, FL 32653, USA;
| | - Natalie M. Johnson
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX 77843, USA; (D.P.); (N.L.D.)
| |
Collapse
|
32
|
Camiña N, Penning TM. Genetic and epigenetic regulation of the NRF2-KEAP1 pathway in human lung cancer. Br J Cancer 2021; 126:1244-1252. [PMID: 34845361 DOI: 10.1038/s41416-021-01642-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 10/23/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
Electrophilic and oxidative stress is caused when homeostatic mechanisms are disrupted. A major defense mechanism involves the activation of the nuclear factor erythroid 2-related factor 2 (NRF2) transcription factor encoded by the NFE2L2 gene, which can accelerate the detoxification of electrophilic carcinogens and prevent cancer and on the other hand in certain exposure contexts may exacerbate the carcinogenic process. NRF2-target genes activated under these conditions can be used as biomarkers of stress signalling, while activation of NRF2 can also reveal the epigenetic mechanisms that modulate NFE2L2 expression. Epigenetic mechanisms that regulate NFE2L2 and the gene for its adaptor protein KEAP1 include DNA methylation, histone modifications and microRNA. Understanding the activation of the NRF2-KEAP1 signalling pathway in human lung cancer, its epigenetic regulation and its role in oncogenesis is the subject of this review.
Collapse
Affiliation(s)
- Nuria Camiña
- Department of Systems Pharmacology & Translational Therapeutics, Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Trevor M Penning
- Department of Systems Pharmacology & Translational Therapeutics, Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Beneficial Oxidative Stress-Related trans-Resveratrol Effects in the Treatment and Prevention of Breast Cancer. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112211041] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Resveratrol is one of the most investigated polyphenols for its multiple biological activities and many beneficial effects. These are mainly related to its ability to scavenge free radicals and reduce oxidative stress. Resveratrol has also been shown to have the ability to stimulate the production of antioxidant enzymes, which interact with numerous signaling pathways involved in tumor development, and to possess side effects associated with the use of chemotherapy drugs. In this review article we summarized the main discoveries about the impact resveratrol can have in helping to prevent, as well as adjuvant treating, breast cancer. A brief overview of the primary sources of resveratrol as well as some approaches for improving its bioavailability have been also discussed.
Collapse
|
34
|
Aydos OS, Yukselten Y, Aydos D, Sunguroglu A, Aydos K. Relationship between functional Nrf2 gene promoter polymorphism and sperm DNA damage in male infertility. Syst Biol Reprod Med 2021; 67:399-412. [PMID: 34541983 DOI: 10.1080/19396368.2021.1972359] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study examines the association of the -617 C > A polymorphism in the Nrf2 gene (rs6721961) with male infertility in a Turkish population and determines its functional role in spermatogenesis in correlation with the impact of different levels of DNA damage on the genotypes. A total of 100 infertile men and 100 healthy fertile men were included in the study. Nrf2 genotyping was performed with the PCR-based restriction fragment length gene polymorphism (RFLP-PCR) analysis. According to our results, the Nrf2 CC, CA, and AA genotype distribution frequencies were 58.6%, 38.4%, and 3% in the control group, respectively, and 38%, 48%, and 14% in the infertile men, respectively. The AA genotype was significantly higher in the patient group. In smokers, a significant difference was found in progressive motility values between the genotypes (p = 0.001). Also, sperm progressive motility and concentration decreased significantly in those smokers with the AA genotype; smokers carrying this genotype were also 5.75 times more likely to have oligoasthenozoospermia than those with CC (p < 0.05). There was a significant relationship between the number of cases with high sperm-DNA damage when comparing the frequency of Nrf2 AA genotype carriers with the CC genotype 16.3% vs. 6.9%, respectively (p < 0.001). These results suggest the importance of the Nrf2 gene C > A (rs 6,721,961) polymorphism in the etiology of sperm DNA damage as a risk factor for male infertility. Smokers carrying the AA genotype are more likely to impair seminal parameters through antioxidant mechanisms.Abbreviations: Polymerase chain reaction (PCR)-based restriction fragment length gene polymorphism (RFLP-PCR); reactive oxygen species (ROS); deoxyribonucleic acid (DNA); catalases (CATs); superoxide dismutase (SOD); glutathione peroxidase (GPX); glutathione-S-transferase (GST); Nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2); basic leucine zipper (bZIP); antioxidant response element (ARE); World Health Organization (WHO);normospermia(NS);asthenozoospermia(AS);oligozoospermia(OS);oligoasthenozoospermia (OAS); follicle stimulating hormone (FSH); ultraviolet (UV); low-melting-point agarose (LMA); normal-melting-point agarose (NMA); arbitrary units (AU); total comet score (TCS); A one-way analysis of variance (ANOVA); standard deviation (SD); N-acetyltransferase (NAT2); small non-coding RNAs (ncRNAs); microRNAs (miRNA).
Collapse
Affiliation(s)
- O Sena Aydos
- Department of Medical Biology, School of Medicine, Ankara University, Ankara, Turkey
| | - Yunus Yukselten
- Department of Medical Biology, School of Medicine, Ankara University, Ankara, Turkey.,Research Laboratories for Health Science, Y Gen Biotechnology Company Ltd, Ankara, Turkey
| | - Dunya Aydos
- Department of Stem Cells and Regenerative Medicine, Stem Cell Institute, Ankara University Ankara, Turkey
| | - Asuman Sunguroglu
- Department of Medical Biology, School of Medicine, Ankara University, Ankara, Turkey
| | - Kaan Aydos
- Department of Urology, School of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
35
|
Xia X, Zhang X, Liu M, Duan M, Zhang S, Wei X, Liu X. Toward improved human health: efficacy of dietary selenium on immunity at the cellular level. Food Funct 2021; 12:976-989. [PMID: 33443499 DOI: 10.1039/d0fo03067h] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Selenium, an essential trace element in the body, participates in various biological processes in the form of selenoproteins. In humans, a suitable concentration of selenium is essential for maintaining normal cellular function. Decreased levels of selenoproteins can lead to obstruction of the normal physiological functions of tissues and cells and even death. In addition, the level of selenium in the body affects cellular immunity, humoral immunity, and the balance between type 2 and type 1 helper T cells. Selenium can affect the immune function of the body through the reactive oxygen species (ROS), NF-κB, ferroptosis and NRF2 pathways. This paper reviews the immune effect of selenium on the body and the process of signal transduction and aims to serve as a reference for follow-up studies of immune function and research on the development of new selenium compounds and active targets.
Collapse
Affiliation(s)
- Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, PR China.
| | - Xiulin Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, Shanxi, PR China
| | - Mingcheng Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, PR China.
| | - Mingyuan Duan
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, PR China.
| | - Shanshan Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, PR China.
| | - Xiaobing Wei
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, PR China.
| | - Xingyou Liu
- Xinxiang University, Xinxiang 453003, Henan, PR China.
| |
Collapse
|
36
|
Schmidlin CJ, Shakya A, Dodson M, Chapman E, Zhang DD. The intricacies of NRF2 regulation in cancer. Semin Cancer Biol 2021; 76:110-119. [PMID: 34020028 DOI: 10.1016/j.semcancer.2021.05.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023]
Abstract
The complex role of NRF2 in the context of cancer continues to evolve. As a transcription factor, NRF2 regulates various genes involved in redox homeostasis, protein degradation, DNA repair, and xenobiotic metabolism. As such, NRF2 is critical in preserving cell function and viability, particularly during stress. Importantly, NRF2 itself is regulated via a variety of mechanisms, and the mode of NRF2 activation often dictates the duration of NRF2 signaling and its role in either preventing cancer initiation or promoting cancer progression. Herein, different modes of NRF2 regulation, including oxidative stress, autophagy dysfunction, protein-protein interactions, and epigenetics, as well as pharmacological modulators targeting this cascade in cancer, are explored. Specifically, how the timing and duration of these different mechanisms of NRF2 induction affect tumor initiation, progression, and metastasis are discussed. Additionally, progress in the discovery and development of NRF2 inhibitors for the treatment of NRF2-addicted cancers is highlighted, including modulators that inhibit specific NRF2 downstream targets. Overall, a better understanding of the intricate nature of NRF2 regulation in specific cancer contexts should facilitate the generation of novel therapeutics designed to not only prevent tumor initiation, but also halt progression and ultimately improve patient wellbeing and survival.
Collapse
Affiliation(s)
- Cody J Schmidlin
- Deparment of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Aryatara Shakya
- Deparment of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Matthew Dodson
- Deparment of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Eli Chapman
- Deparment of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Donna D Zhang
- Deparment of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA; University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
37
|
Avolio R, Bechara E, Tartaglia GG. The quest for long non-coding RNAs involved in aging. NATURE AGING 2021; 1:418-419. [PMID: 37118017 DOI: 10.1038/s43587-021-00069-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Rosario Avolio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Elias Bechara
- Center for Human Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Gian Gaetano Tartaglia
- Center for Human Technology, Istituto Italiano di Tecnologia, Genoa, Italy.
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy.
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy.
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
38
|
Wang Q, Bao Y. Nanodelivery of natural isothiocyanates as a cancer therapeutic. Free Radic Biol Med 2021; 167:125-140. [PMID: 33711418 DOI: 10.1016/j.freeradbiomed.2021.02.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/31/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022]
Abstract
Natural isothiocyanates (ITCs) are phytochemicals abundant in cruciferous vegetables with the general structure, R-NCS. They are bioactive organosulfur compounds derived from the hydrolysis of glucosinolates by myrosinase. A significant number of isothiocyanates have been isolated from different plant sources that include broccoli, Brussels sprouts, cabbage, cauliflower, kale, mustard, wasabi, and watercress. Several ITCs have been demonstrated to possess significant pharmacological properties including: antioxidant, anti-inflammatory, anti-cancer and antimicrobial activities. Due to their chemopreventive effects on many types of cancer, ITCs have been regarded as a promising anti-cancer therapeutic agent without major toxicity concerns. However, their clinical application has been hindered by several factors including their low aqueous solubility, low bioavailability, instability as well as their hormetic effect. Moreover, the typical dietary uptake of ITCs consumed for promotion of good health may be far from their bioactive (or cytotoxic) dose necessary for cancer prevention and/or treatment. Nanotechnology is one of best options to attain enhanced efficacy and minimize hormetic effect for ITCs. Nanoformulation of ITCs leads to enhance stability of ITCs in plasma and emphasize on their chemopreventive effects. This review provides a summary of the potential bioactivities of ITCs, their mechanisms of action for the prevention and treatment of cancer, as well as the recent research progress in their nanodelivery strategies to enhance solubility, bioavailability, and anti-cancer efficacy.
Collapse
Affiliation(s)
- Qi Wang
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK.
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK.
| |
Collapse
|
39
|
The hormetic dose-response mechanism: Nrf2 activation. Pharmacol Res 2021; 167:105526. [DOI: 10.1016/j.phrs.2021.105526] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022]
|
40
|
Chikkegowda P, Pookunoth BC, Bovilla VR, Veeresh PM, Leihang Z, Thippeswamy T, Padukudru MA, Hathur B, Kanchugarakoppal RS, Madhunapantula SV. Design, Synthesis, Characterization, and Crystal Structure Studies of Nrf2 Modulators for Inhibiting Cancer Cell Growth In Vitro and In Vivo. ACS OMEGA 2021; 6:10054-10071. [PMID: 34056161 PMCID: PMC8153663 DOI: 10.1021/acsomega.0c06345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/24/2021] [Indexed: 05/03/2023]
Abstract
Nrf2 is one of the important therapeutic targets studied extensively in several cancers including the carcinomas of the colon and rectum. However, to date, not many Nrf2 inhibitors showed promising results for retarding the growth of colorectal cancers (CRCs). Therefore, in this study, first, we have demonstrated the therapeutic effect of siRNA-mediated downmodulation of Nrf2 on the proliferation rate of CRC cell lines. Next, we have designed, synthesized, characterized, and determined the crystal structures for a series of tetrahydrocarbazoles (THCs) and assessed their potential to modulate the activity of Nrf2 target gene NAD(P)H:quinone oxidoreductase (NQO1) activity by treating colorectal carcinoma cell line HCT-116. Later, the cytotoxic potential of compounds was assessed against cell lines expressing varying amounts of Nrf2, viz., breast cancer cell lines MDA-MB-231 and T47D (low functionally active Nrf2), HCT-116 (moderately active Nrf2), and lung cancer cell line A549 (highly active Nrf2), and the lead compound 5b was tested for its effect on cell cycle progression in vitro and for retarding the growth of Ehrlich ascites carcinomas (EACs) in mice. Data from our study demonstrated that among various compounds 5b exhibited better therapeutic index and retarded the growth of EAC cells in mice. Therefore, compound 5b is recommended for further development to target cancers.
Collapse
Affiliation(s)
- Prathima Chikkegowda
- Department
of Pharmacology, JSS Medical College, JSS
Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - Baburajeev C. Pookunoth
- Laboratory
of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore 570005, Karnataka, India
| | - Venugopal R. Bovilla
- Department
of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
- Center
of Excellence in Molecular Biology and Regenerative Medicine (CEMR,
DST-FIST Supported Center), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - Prashanthkumar M. Veeresh
- Department
of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
- Center
of Excellence in Molecular Biology and Regenerative Medicine (CEMR,
DST-FIST Supported Center), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - Zonunsiami Leihang
- Department
of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
- Center
of Excellence in Molecular Biology and Regenerative Medicine (CEMR,
DST-FIST Supported Center), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - Thippeswamy Thippeswamy
- Department
of General Medicine, JSS Medical College and Hospital, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - Mahesh A. Padukudru
- Department
of Respiratory Medicine, JSS Medical College, and Hospital, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - Basavanagowdappa Hathur
- Center
of Excellence in Molecular Biology and Regenerative Medicine (CEMR,
DST-FIST Supported Center), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
- Department
of General Medicine, JSS Medical College and Hospital, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
- Faculty
of Medicine, JSS Medical College and Hospital, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
- JSS
Medical College and Hospital, JSS Academy
of Higher Education & Research, Mysore 570015, Karnataka, India
- Special
Interest Group in Patient Care Management, JSS Medical College and
Hospital, JSS Academy of Higher Education
& Research, Mysore 570015, Karnataka, India
| | | | - SubbaRao V. Madhunapantula
- Department
of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
- . Mobile: +91-810-527-8621
| |
Collapse
|
41
|
Elkashty OA, Tran SD. Sulforaphane as a Promising Natural Molecule for Cancer Prevention and Treatment. Curr Med Sci 2021; 41:250-269. [PMID: 33877541 DOI: 10.1007/s11596-021-2341-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 04/24/2020] [Indexed: 12/13/2022]
Abstract
Tumorigenicity-inhibiting compounds have been identified in our daily diet. For example, isothiocyanates (ITCs) found in cruciferous vegetables were reported to have potent cancer-prevention activities. The best characterized ITC is sulforaphane (SF). SF can simultaneously modulate multiple cellular targets involved in carcinogenesis, including (1) modulating carcinogen-metabolizing enzymes and blocking the action of mutagens; (2) inhibition of cell proliferation and induction of apoptosis; and (3) inhibition of neo-angiogenesis and metastasis. SF targets cancer stem cells through modulation of nuclear factor kappa B (NF-κB), Sonic hedgehog (SHH), epithelial-mesenchymal transition, and Wnt/β-catenin pathways. Conventional chemotherapy/SF combination was tested in several studies and resulted in favorable outcomes. With its favorable toxicological profile, SF is a promising agent in cancer prevention and/or therapy. In this article, we discuss the human metabolism of SF and its effects on cancer prevention, treatment, and targeting cancer stem cells, as well as providing a brief review of recent human clinical trials on SF.
Collapse
Affiliation(s)
- Osama A Elkashty
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, H3A 0G4, Canada.,Department of Oral Pathology, Faculty of Dentistry, Mansoura University, Mansoura, 35516, Egypt
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, H3A 0G4, Canada.
| |
Collapse
|
42
|
Thresholds for carcinogens. Chem Biol Interact 2021; 341:109464. [PMID: 33823170 DOI: 10.1016/j.cbi.2021.109464] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023]
Abstract
Current regulatory cancer risk assessment principles and practices assume a linear dose-response relationship-the linear no-threshold (LNT) model-that theoretically estimates cancer risks occurring following low doses of carcinogens by linearly extrapolating downward from experimentally determined risks at high doses. The two-year rodent bioassays serve as experimental vehicles to determine the high-dose cancer risks in animals and then to predict, by extrapolation, the number of carcinogen-induced tumors (tumor incidence) that will arise during the lifespans of humans who are exposed to environmental carcinogens at doses typically orders of magnitude below those applied in the rodent assays. An integrated toxicological analysis is conducted herein to reconsider an alternative and once-promising approach, tumor latency, for estimating carcinogen-induced cancer risks at low doses. Tumor latency measures time-to-tumor following exposure to a carcinogen, instead of tumor incidence. Evidence for and against the concept of carcinogen-induced tumor latency is presented, discussed, and then examined with respect to its relationship to dose, dose rates, and the dose-related concepts of initiation, tumor promotion, tumor regression, tumor incidence, and hormesis. Considerable experimental evidence indicates: (1) tumor latency (time-to-tumor) is inversely related to the dose of carcinogens and (2) lower doses of carcinogens display quantifiably discrete latency thresholds below which the promotion and, consequently, the progression and growth of tumors are delayed or prevented during a normal lifespan. Besides reconciling well with the concept of tumor promotion, such latency thresholds also reconcile favorably with the existence of thresholds for tumor incidence, the stochastic processes of tumor initiation, and the compensatory repair mechanisms of hormesis. Most importantly, this analysis and the arguments presented herein provide sound theoretical, experimental, and mechanistic rationales for rethinking the foundational premises of low-dose linearity and updating the current practices of cancer risk assessment to include the concept of carcinogen thresholds.
Collapse
|
43
|
Tang YC, Hsiao JR, Jiang SS, Chang JY, Chu PY, Liu KJ, Fang HL, Lin LM, Chen HH, Huang YW, Chen YT, Tsai FY, Lin SF, Chuang YJ, Kuo CC. c-MYC-directed NRF2 drives malignant progression of head and neck cancer via glucose-6-phosphate dehydrogenase and transketolase activation. Theranostics 2021; 11:5232-5247. [PMID: 33859744 PMCID: PMC8039948 DOI: 10.7150/thno.53417] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Rationale: NRF2, a redox sensitive transcription factor, is up-regulated in head and neck squamous cell carcinoma (HNSCC), however, the associated impact and regulatory mechanisms remain unclear. Methods: The protein expression of NRF2 in HNSCC specimens was examined by IHC. The regulatory effect of c-MYC on NRF2 was validated by ChIP-qPCR, RT-qPCR and western blot. The impacts of NRF2 on malignant progression of HNSCC were determined through genetic manipulation and pharmacological inhibition in vitro and in vivo. The gene-set enrichment analysis (GSEA) on expression data of cDNA microarray combined with ChIP-qPCR, RT-qPCR, western blot, transwell migration/ invasion, cell proliferation and soft agar colony formation assays were used to investigate the regulatory mechanisms of NRF2. Results: NRF2 expression is positively correlated with malignant features of HNSCC. In addition, carcinogens, such as nicotine and arecoline, trigger c-MYC-directed NRF2 activation in HNSCC cells. NRF2 reprograms a wide range of cancer metabolic pathways and the most notable is the pentose phosphate pathway (PPP). Furthermore, glucose-6-phosphate dehydrogenase (G6PD) and transketolase (TKT) are critical downstream effectors of NRF2 that drive malignant progression of HNSCC; the coherently expressed signature NRF2/G6PD/TKT gene set is a potential prognostic biomarker for prediction of patient overall survival. Notably, G6PD- and TKT-regulated nucleotide biosynthesis is more important than redox regulation in determining malignant progression of HNSCC. Conclusions: Carcinogens trigger c-MYC-directed NRF2 activation. Over-activation of NRF2 promotes malignant progression of HNSCC through reprogramming G6PD- and TKT-mediated nucleotide biosynthesis. Targeting NRF2-directed cellular metabolism is an effective strategy for development of novel treatments for head and neck cancer.
Collapse
|
44
|
AKTEPE OH, ŞAHİN TK, GÜNER G, ARIK Z, YALÇIN Ş. Lycopene sensitizes the cervical cancer cells to cisplatin via targeting nuclear factor- kappa B (NF-κB) pathway. Turk J Med Sci 2021; 51:368-374. [PMID: 32718121 PMCID: PMC7991865 DOI: 10.3906/sag-2005-413] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/21/2020] [Indexed: 12/24/2022] Open
Abstract
Background/aim Lycopene is associated with anticancer effects in various tumor types. However, the exact underlying mechanisms of action of lycopene in human cervical cancer remain to be determined. This study aimed to determine anticancer efficacy and mechanism of lycopene in human cervical carcinoma (HeLa) cells. Materials and methods HeLa cells were treated with cisplatin (1 μM) alone, lycopene (10 μM) alone, and in combination for 72 h. The cell viability of HeLa cells was assessed via MTS assay. Western blot was used to analyze the expression levels of the nuclear factor-kappa B (NF-κB), B-cell-associated X protein (Bax), nuclear factor erythroid 2-related factor (Nrf2), and B-cell lymphoma 2 (Bcl-2). Results We found that lycopene acts as a synergistic agent with cisplatin in preventing the growth of HeLa cells. The rates of HeLa cells’ viability were 65.6% and 71.1% with lycopene and cisplatin treatment alone compared to the control group, respectively (P < 0.001). The inhibitory effect of cisplatin was enhanced with lycopene addition by declining the cell viability to 37.4% (P < 0.0001). Lycopene treatment significantly increased Bax expression (P < 0.0001) and decreased Bcl-2 expression (P < 0.0001) in HeLa cells. Furthermore, lycopene markedly activated the Nrf2 expression (P < 0.001) and suppressed the NF-κB signaling pathway (P < 0.0001). Conclusion Lycopene increases the sensitization of cervical cancer cells to cisplatin via inhibition of cell viability, up-regulation of Bax expression, and down-regulation of Bcl-2 expression. Furthermore, the anticancer effect of lycopene might be also associated with suppression of NF-κB-mediated inflammatory responses, and modulation of Nrf2-mediated oxidative stress. The results of the present study suggest that lycopene and concurrent cisplatin chemotherapy might have a role in improving the treatment of cervical cancer.
Collapse
Affiliation(s)
- Oktay Halit AKTEPE
- Department of Medical Oncology, Faculty of Medicine, Hacettepe University, AnkaraTurkey
| | - Taha Koray ŞAHİN
- Department of Internal Medicine, Faculty of Medicine, Hacettepe University, AnkaraTurkey
| | - Gürkan GÜNER
- Department of Medical Oncology, Faculty of Medicine, Hacettepe University, AnkaraTurkey
| | - Zafer ARIK
- Department of Medical Oncology, Faculty of Medicine, Hacettepe University, AnkaraTurkey
| | - Şuayib YALÇIN
- Department of Medical Oncology, Faculty of Medicine, Hacettepe University, AnkaraTurkey
| |
Collapse
|
45
|
Oshi M, Angarita FA, Tokumaru Y, Yan L, Matsuyama R, Endo I, Takabe K. High Expression of NRF2 Is Associated with Increased Tumor-Infiltrating Lymphocytes and Cancer Immunity in ER-Positive/HER2-Negative Breast Cancer. Cancers (Basel) 2020; 12:E3856. [PMID: 33371179 PMCID: PMC7766649 DOI: 10.3390/cancers12123856] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a key modifier in breast cancer. It is unclear whether NRF2 suppresses or promotes breast cancer progression. We studied the clinical relevance of NRF2 expression by conducting in silico analyses in 5443 breast cancer patients from several large patient cohorts (METABRIC, GSE96058, GSE25066, GSE20194, and GSE75688). NRF2 expression was significantly associated with better survival, low Nottingham pathological grade, and ER-positive/HER2-negative and triple negative breast cancer (TNBC). High NRF2 ER-positive/HER2-negative breast cancer enriched inflammation- and immune-related gene sets by GSEA. NRF2 expression was elevated in immune, stromal, and cancer cells. High NRF2 tumors were associated with high infiltration of immune cells (CD8+, CD4+, and dendritic cells (DC)) and stromal cells (adipocyte, fibroblasts, and keratinocytes), and with low fraction of Th1 cells. NRF2 expression significantly correlated with area under the curve (AUC) of several drug response in multiple ER-positive breast cancer cell lines, however, there was no significant association between NRF2 and pathologic complete response (pCR) rate after neoadjuvant chemotherapy in human samples. Finally, high NRF2 breast cancer was associated with high expression of immune checkpoint molecules. In conclusion, NRF2 expression was associated with enhanced tumor-infiltrating lymphocytes in ER-positive/HER2-negative breast cancer.
Collapse
Affiliation(s)
- Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (F.A.A.); (Y.T.)
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
| | - Fernando A. Angarita
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (F.A.A.); (Y.T.)
| | - Yoshihisa Tokumaru
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (F.A.A.); (Y.T.)
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (F.A.A.); (Y.T.)
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14263, USA
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8520, Japan
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
46
|
Hellyer JA, Padda SK, Diehn M, Wakelee HA. Clinical Implications of KEAP1-NFE2L2 Mutations in NSCLC. J Thorac Oncol 2020; 16:395-403. [PMID: 33307193 DOI: 10.1016/j.jtho.2020.11.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022]
Abstract
The KEAP1-NFE2L2 pathway is an important modulator of cell homeostasis. Mutations in this pathway are common in NSCLC and have been associated with enhanced tumor growth and aggressiveness. In addition, tumors with mutations in the KEAP1-NFE2L2 pathway have been reported in preclinical and clinical studies to convey refractoriness to cancer-directed therapy such as radiation, chemotherapy, and targeted therapy. The role of immunotherapy in this patient population is less clear, and there are conflicting studies on the efficacy of immune checkpoint inhibitors in KEAP1-NFE2L2-mutant NSCLC. Here, we review the current clinical evidence on several classes of anticancer therapeutics in KEAP1-NFE2L2-mutant tumors. Furthermore, we provide an overview of the landscape of the current clinical trials in this patient population, highlighting the work being done with mTORC1, mTORC2, and glutaminase inhibition.
Collapse
Affiliation(s)
- Jessica A Hellyer
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Sukhmani K Padda
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Maximilian Diehn
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Heather A Wakelee
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
47
|
Liang X, Hu C, Liu C, Yu K, Zhang J, Jia Y. Dihydrokaempferol (DHK) ameliorates severe acute pancreatitis (SAP) via Keap1/Nrf2 pathway. Life Sci 2020; 261:118340. [PMID: 32860805 DOI: 10.1016/j.lfs.2020.118340] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022]
Abstract
Severe acute pancreatitis (SAP) is a non-bacterial inflammatory disease that clinically causes a very high rate of mortality. Dihydrokaempferol (DHK) is a natural flavonoid extracted from Bauhinia championii. Our research aimed to establish the treatment function of DHK on SAP-induced pancreas injury and delve into its potential mechanism. In this study, SAP was induced by caerulein (CER) and Lipopolysaccharide (LPS). DHK was administered orally at different doses of 20, 40, or 80 mg/kg. Results from serum amylase/lipase, pancreas hematoxylin-eosin staining technique, pancreas malondialdehyde (MDA), glutathione (GSH), and reactive oxygen species (ROS) showed the therapeutic effect of DHK in a mice SAP model. MTT revealed DHK alleviated CER + LPS induced cytotoxicity in a dose-dependent manner in the pancreatic acinar cells of mice. Next, we verified DHK suppressed the level of Keap1 and promoted transcriptional activation of nuclear Nrf2 in the presence of CER + LPS. The molecular docking study suggested that there is a potential interaction between DHK and Keap1. To further look at the role of Keap1 using in vitro and in vivo models, Keap1 overexpression adenovirus (ad-Keap1) was performed. The results revealed that ad-Keap1suppressed the nuclear translocation of Nrf2 which is enhanced by DHK, and suppressed the antioxidative functionality of DHK both in mice and cell models. Collectively, this research demonstrated that DHK bettered the SAP induced pancreas injury by regulating the Keap1/Nrf2 pathway and regulating oxidative stress injury.
Collapse
Affiliation(s)
- Xiaoqiang Liang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Cheng Hu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Congying Liu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Kui Yu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jingzhe Zhang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Yiqun Jia
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
48
|
Calabrese EJ, Kozumbo WJ. The phytoprotective agent sulforaphane prevents inflammatory degenerative diseases and age-related pathologies via Nrf2-mediated hormesis. Pharmacol Res 2020; 163:105283. [PMID: 33160067 DOI: 10.1016/j.phrs.2020.105283] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022]
Abstract
In numerous experimental models, sulforaphane (SFN) is shown herein to induce hormetic dose responses that are not only common but display endpoints of biomedical and clinical relevance. These hormetic responses are mediated via the activation of nuclear factor erythroid- derived 2 (Nrf2) antioxidant response elements (AREs) and, as such, are characteristically biphasic, well integrated, concentration/dose dependent, and specific with regard to the targeted cell type and the temporal profile of response. In experimental disease models, the SFN-induced hormetic activation of Nrf2 was shown to effectively reduce the occurrence and severity of a wide range of human-related pathologies, including Parkinson's disease, Alzheimer's disease, stroke, age-related ocular damage, chemically induced brain damage, and renal nephropathy, amongst others, while also enhancing stem cell proliferation. Although SFN was broadly chemoprotective within an hormetic dose-response context, it also enhanced cell proliferation/cell viability at low concentrations in multiple tumor cell lines. Although the implications of the findings in tumor cells are largely uncertain at this time and warrant further consideration, the potential utility of SFN in cancer treatment has not been precluded. This assessment of SFN complements recent reports of similar hormesis-based chemoprotections by other widely used dietary supplements, such as curcumin, ginkgo biloba, ginseng, green tea, and resveratrol. Interestingly, the mechanistic profile of SFN is similar to that of numerous other hormetic agents, indicating that activation of the Nrf2/ARE pathway is probably a central, integrative, and underlying mechanism of hormesis itself. The Nrf2/ARE pathway provides an explanation for how large numbers of agents that both display hormetic dose responses and activate Nrf2 can function to limit age-related damage, the progression of numerous disease processes, and chemical- and radiation- induced toxicities. These findings extend the generality of the hormetic dose response to include SFN and many other chemical activators of Nrf2 that are cited in the biomedical literature and therefore have potentially important public health and clinical implications.
Collapse
Affiliation(s)
- Edward J Calabrese
- Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, United States.
| | | |
Collapse
|
49
|
Matsunaga T, Okumura N, Saito H, Morikawa Y, Suenami K, Hisamatsu A, Endo S, Ikari A. Significance of aldo-keto reductase 1C3 and ATP-binding cassette transporter B1 in gain of irinotecan resistance in colon cancer cells. Chem Biol Interact 2020; 332:109295. [PMID: 33096057 DOI: 10.1016/j.cbi.2020.109295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 11/29/2022]
Abstract
Irinotecan (CPT11) is widely prescribed for treatment of various intractable cancers such as advanced and metastatic colon cancer cells, but its continuous treatment promotes the resistance development. In this study, we established CPT11-resistant variants of three human colon cancer (DLD1, RKO and LoVo) cell lines, and found that gain of the resistance elicited an up-regulation of aldo-keto reductase (AKR) 1C3 in the cells. Additionally, the sensitivity to CPT11 toxicity was decreased and increased by overexpression and knockdown, respectively, of the enzyme. Moreover, the resistant cells suppressed formation of reactive 4-hydroxy-2-nonenal by CPT11 treatment, and the suppressive effect was almost completely abolished by addition of an AKR1C3 inhibitor. These results suggest that up-regulated AKR1C3 contributes to promotion of the chemoresistance by detoxifying the reactive aldehyde. Western blot and real-time polymerase-chain reaction analyses and ATP-binding cassette (ABC) B1-functional assay revealed that, among three ABC transporters, ABCB1 was the most highly up-regulated by development of the CPT11 resistance, inferring a significant contribution of pregnane-X receptor-dependent signaling to the ABCB1 up-regulation. The combined treatment with inhibitors of AKR1C3 and ABCB1 potently sensitized the resistant cells to CPT11 and its active metabolite SN38. Taken together, our results suggest that combination of AKR1C3 and ABCB1 inhibitors is effective as adjuvant therapy to enhance CPT11 sensitivity of intractable colon cancer cells.
Collapse
Affiliation(s)
- Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 502-8585, Japan.
| | - Naoko Okumura
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Haruhi Saito
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Yoshifumi Morikawa
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Koichi Suenami
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Aki Hisamatsu
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 502-8585, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| |
Collapse
|
50
|
NFE2L2 Is a Potential Prognostic Biomarker and Is Correlated with Immune Infiltration in Brain Lower Grade Glioma: A Pan-Cancer Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3580719. [PMID: 33101586 PMCID: PMC7569466 DOI: 10.1155/2020/3580719] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/17/2020] [Accepted: 09/20/2020] [Indexed: 01/07/2023]
Abstract
Nuclear factor, erythroid 2 like 2 (NFE2L2, NRF2) is a transcription factor that regulates various antioxidant enzymes. It plays a vital physiological role in regulating oxidative stress and inflammatory response. However, the roles of NFE2L2 in human cancers are still unclear. Our study is aimed at analyzing the prognostic value of NFE2L2 in pan-cancer and at revealing the relationship between NFE2L2 expression and tumor immunity. The present study revealed that NFE2L2 was abnormally expressed and significantly correlated with mismatch repair (MMR) gene mutation levels and DNA methyltransferase expression in human pan-cancer. In particular, pan-cancer survival analysis indicated that NFE2L2 expression was associated with adverse outcomes-overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI)-in adrenocortical carcinoma (ACC), brain lower grade glioma (LGG), and pancreatic adenocarcinoma (PAAD) patients. A positive relationship was also found between NFE2L2 expression and immune infiltration, including B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells, especially in breast invasive carcinoma (BRCA), colon adenocarcinoma (COAD), kidney renal clear cell carcinoma (KIRC), LGG, liver hepatocellular carcinoma (LIHC), and prostate adenocarcinoma (PRAD). Additionally, NFE2L2 expression was positively correlated with the immune score and the expression of immune checkpoint markers in LGG. In conclusion, these results indicate that transcription factor NFE2L2 is a potential prognostic biomarker and is correlated with immune infiltration in LGG.
Collapse
|