1
|
Martínez-López MF, López-Gil JF. Small Fish, Big Answers: Zebrafish and the Molecular Drivers of Metastasis. Int J Mol Sci 2025; 26:871. [PMID: 39940643 PMCID: PMC11817282 DOI: 10.3390/ijms26030871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025] Open
Abstract
Cancer metastasis is a leading cause of cancer-related deaths and represents one of the most challenging processes to study due to its complexity and dynamic nature. Zebrafish (Danio rerio) have become an invaluable model in metastasis research, offering unique advantages such as optical transparency, rapid development, and the ability to visualize tumor interactions with the microenvironment in real time. This review explores how zebrafish models have elucidated the critical steps of metastasis, including tumor invasion, vascular remodeling, and immune evasion, while also serving as platforms for drug testing and personalized medicine. Advances such as patient-derived xenografts and innovative genetic tools have further established zebrafish as a cornerstone in cancer research, particularly in understanding the molecular drivers of metastasis and identifying therapeutic targets. By bridging the experimental findings with clinical relevance, zebrafish continue transforming our understanding of cancer biology and therapy.
Collapse
|
2
|
Chun YS, Passot G, Nishioka Y, Katkhuda R, Arvide EM, Benzerdjeb N, Lopez J, Kopetz SE, Maru DM, Vauthey JN. Colorectal Liver Micrometastases: Association with RAS/TP53 Co-Mutation and Prognosis after Surgery. J Am Coll Surg 2022; 235:8-16. [PMID: 35703957 DOI: 10.1097/xcs.0000000000000223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Micrometastases, defined as microscopic cancer cells spatially separated from the macroscopically evident metastasis, are identified in 24% to 56% of resected colorectal liver metastases (CLMs). Somatic gene mutations have emerged as independent prognostic factors in CLM. This study aimed to determine the prognostic impact and risk factors for the presence of micrometastases, including somatic gene mutations. STUDY DESIGN Prospective evaluation for micrometastases was performed at 2 centers in the US and France from 2015 to 2019. CLM specimens were cut radially from the tumor margin to surrounding grossly normal liver for a distance of 2 cm. Depending on CLM size, 3 to 8 specimens per patient were submitted for microscopic analysis. Somatic gene mutations were detected by next-generation sequencing. RESULTS Among 140 patients undergoing CLM resection in the US (n = 84) and France (n = 56), 36 (26%) patients were found to have micrometastases. Five-year overall and recurrence-free survival rates with micrometastases were 39% and 0%, respectively, compared with 61% and 20% without micrometastases (both p < 0.05). In multivariable analyses, the presence of micrometastases was an independent risk factor for worse overall survival (hazard ratio 2.88, 95% CI 1.46 to 5.70, p = 0.002) and recurrence-free survival (hazard ratio 1.56, 95% CI 1.01 to 2.41, p = 0.046). In binary logistic regression analysis, RAS/TP53 co-mutation was found to significantly increase the risk of micrometastases (odds ratio 2.77, 95% CI 1.15 to 6.71, p = 0.024). CONCLUSIONS Micrometastases are associated with significantly worse survival after CLM resection. RAS/TP53 co-mutation correlated with increased risk of micrometastases. Further studies are needed to determine strategies to eradicate micrometastases.
Collapse
Affiliation(s)
- Yun Shin Chun
- From the Departments of Surgical Oncology (Chun, Nishioka, Arvide, Vauthey), University of Texas MD Anderson Cancer Center, Houston, TX
| | - Guillaume Passot
- the Departments of Digestive Surgery (Passot), Lyon Sud University Hospital, Hospices Civils de Lyon, Lyon, France
| | - Yujiro Nishioka
- From the Departments of Surgical Oncology (Chun, Nishioka, Arvide, Vauthey), University of Texas MD Anderson Cancer Center, Houston, TX
| | - Riham Katkhuda
- Pathology (Katkhuda, Maru), University of Texas MD Anderson Cancer Center, Houston, TX
| | - Elsa M Arvide
- From the Departments of Surgical Oncology (Chun, Nishioka, Arvide, Vauthey), University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nazim Benzerdjeb
- Pathology (Benzerdjeb), Lyon Sud University Hospital, Hospices Civils de Lyon, Lyon, France
| | - Jonathan Lopez
- Biochemistry and Molecular Biology (Lopez), Lyon Sud University Hospital, Hospices Civils de Lyon, Lyon, France
| | - Scott E Kopetz
- Gastrointestinal Medical Oncology (Kopetz), University of Texas MD Anderson Cancer Center, Houston, TX
| | - Dipen M Maru
- Pathology (Katkhuda, Maru), University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jean-Nicolas Vauthey
- From the Departments of Surgical Oncology (Chun, Nishioka, Arvide, Vauthey), University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
3
|
A functional role of S100A4/non-muscle myosin IIA axis for pro-tumorigenic vascular functions in glioblastoma. Cell Commun Signal 2022; 20:46. [PMID: 35392912 PMCID: PMC8991692 DOI: 10.1186/s12964-022-00848-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/16/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most aggressive form of brain tumor and has vascular-rich features. The S100A4/non-muscle myosin IIA (NMIIA) axis contributes to aggressive phenotypes in a variety of human malignancies, but little is known about its involvement in GBM tumorigenesis. Herein, we examined the role of the S100A4/NMIIA axis during tumor progression and vasculogenesis in GBM. METHODS We performed immunohistochemistry for S100A4, NMIIA, and two hypoxic markers, hypoxia-inducible factor-1α (HIF-1α) and carbonic anhydrase 9 (CA9), in samples from 94 GBM cases. The functional impact of S100A4 knockdown and hypoxia were also assessed using a GBM cell line. RESULTS In clinical GBM samples, overexpression of S100A4 and NMIIA was observed in both non-pseudopalisading (Ps) and Ps (-associated) perinecrotic lesions, consistent with stabilization of HIF-1α and CA9. CD34(+) microvascular densities (MVDs) and the interaction of S100A4 and NMIIA were significantly higher in non-Ps perinecrotic lesions compared to those in Ps perinecrotic areas. In non-Ps perinecrotic lesions, S100A4(+)/HIF-1α(-) GBM cells were recruited to the surface of preexisting host vessels in the vascular-rich areas. Elevated vascular endothelial growth factor A (VEGFA) mRNA expression was found in S100A4(+)/HIF-1α(+) GBM cells adjacent to the vascular-rich areas. In addition, GBM patients with high S100A4 protein expression had significantly worse OS and PFS than did patients with low S100A4 expression. Knockdown of S100A4 in the GBM cell line KS-1 decreased migration capability, concomitant with decreased Slug expression; the opposite effects were elicited by blebbistatin-dependent inhibition of NMIIA. CONCLUSION S100A4(+)/HIF-1α(-) GBM cells are recruited to (and migrate along) preexisting vessels through inhibition of NMIIA activity. This is likely stimulated by extracellular VEGF that is released by S100A4(+)/HIF-1α(+) tumor cells in non-Ps perinecrotic lesions. In turn, these events engender tumor progression via acceleration of pro-tumorigenic vascular functions. Video abstract.
Collapse
|
4
|
Li J, Zhang T, Ren T, Liao X, Hao Y, Lim JS, Lee JH, Li M, Shao J, Liu R. Oxygen-sensitive methylation of ULK1 is required for hypoxia-induced autophagy. Nat Commun 2022; 13:1172. [PMID: 35246531 PMCID: PMC8897422 DOI: 10.1038/s41467-022-28831-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 02/10/2022] [Indexed: 02/05/2023] Open
Abstract
Hypoxia is a physiological stress that frequently occurs in solid tissues. Autophagy, a ubiquitous degradation/recycling system in eukaryotic cells, renders cells tolerant to multiple stressors. However, the mechanisms underlying autophagy initiation upon hypoxia remains unclear. Here we show that protein arginine methyltransferase 5 (PRMT5) catalyzes symmetrical dimethylation of the autophagy initiation protein ULK1 at arginine 170 (R170me2s), a modification removed by lysine demethylase 5C (KDM5C). Despite unchanged PRMT5-mediated methylation, low oxygen levels decrease KDM5C activity and cause accumulation of ULK1 R170me2s. Dimethylation of ULK1 promotes autophosphorylation at T180, a prerequisite for ULK1 activation, subsequently causing phosphorylation of Atg13 and Beclin 1, autophagosome formation, mitochondrial clearance and reduced oxygen consumption. Further, expression of a ULK1 R170K mutant impaired cell proliferation under hypoxia. This study identifies an oxygen-sensitive methylation of ULK1 with an important role in hypoxic stress adaptation by promoting autophagy induction.
Collapse
Affiliation(s)
- Jingyi Li
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, 610599, China
| | - Tao Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, 610599, China
| | - Tao Ren
- Oncology Department, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Xiaoyu Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yilong Hao
- Stomatology Hospital, School of Stomatology, Cancer Center, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Clinical Research Center of Oral Diseases of Zhejiang Province, Hangzhou, 310006, Zhejiang, China
| | - Je Sun Lim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Jong-Ho Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
- Department of Biomedical Sciences, Dong-A University, Busan, 49315, Republic of Korea
| | - Mi Li
- MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, 77030, TX, USA
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, 77030, TX, USA
| | - Jichun Shao
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| |
Collapse
|
5
|
Preoperative Helical Dynamic Enhanced Multidetector Row Computed Tomography: Can It Be a Prognostic Indicator in Early-Stage Non-small Cell Lung Cancer? J Comput Assist Tomogr 2022; 46:308-314. [PMID: 35297586 PMCID: PMC8929303 DOI: 10.1097/rct.0000000000001270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Objective This study aimed to investigate the prognostic significance of dynamic contrast-enhanced computed tomography in patients with stage IA non–small cell lung cancer (NSCLC). Methods We retrospectively enrolled 139 patients (77 men, 62 women; mean age, 59 years) with stage IA NSCLC who underwent dynamic contrast-enhanced computed tomography. Data on age, pathologic subtype, peak enhancement, and net enhancement of primary lung cancer were collected and correlated with 5-year survival. Results Peak enhancement had a significant correlation with overall survival in the univariable analysis (hazard ratio [HR], 1.18, confidence interval [CI], 1.01–1.38; P = 0.04) and in the multivariable analysis (HR, 1.19; CI, 1.01–1.39; P = 0.04). Patients with peak enhancement of 90 Hounsfield unit or higher had a significantly increased risk of death compared with patients with less enhancement after curative surgery (HR, 4.15; CI, 1.23–13.95; P = 0.02). Conclusions Our study confirmed the prognostic significance of peak enhancement as an indicator for the overall survival of stage IA NSCLC.
Collapse
|
6
|
Huttala O, Loreth D, Staff S, Tanner M, Wikman H, Ylikomi T. Decellularized In Vitro Capillaries for Studies of Metastatic Tendency and Selection of Treatment. Biomedicines 2022; 10:biomedicines10020271. [PMID: 35203480 PMCID: PMC8869401 DOI: 10.3390/biomedicines10020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 11/19/2022] Open
Abstract
Vascularization plays an important role in the microenvironment of the tumor. Therefore, it should be a key element to be considered in the development of in vitro cancer assays. In this study, we decellularized in vitro capillaries to remove genetic material and optimized the medium used to increase the robustness and versatility of applications. The growth pattern and drug responses of cancer cell lines and patient-derived primary cells were studied on decellularized capillaries. Interestingly, two distinct growth patterns were seen when cancer cells were grown on decellularized capillaries: “network” and “cluster”. Network formation correlated with the metastatic properties of the cells and cluster formation was observed in non-metastatic cells. Drug responses of patient-derived cells correlated better with clinical findings when cells were cultured on decellularized capillaries compared with those cultured on plastic. Decellularized capillaries provide a novel method for cancer cell culture applications. It bridges the gap between complex 3D culture methods and traditional 2D culture methods by providing the ease and robustness of 2D culture as well as an in vivo-like microenvironment and scaffolding for 3D cultures.
Collapse
Affiliation(s)
- Outi Huttala
- Cell Biology, Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland;
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland; (S.S.); (M.T.)
- Correspondence: ; Tel.: +358-401909721
| | - Desiree Loreth
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (D.L.); (H.W.)
| | - Synnöve Staff
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland; (S.S.); (M.T.)
- Department of Obstetrics and Gynecology, Tampere University Hospital, 33520 Tampere, Finland
| | - Minna Tanner
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland; (S.S.); (M.T.)
- Department of Oncology, Tampere University Hospital, 33520 Tampere, Finland
- Department of Oncology, Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland
| | - Harriet Wikman
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (D.L.); (H.W.)
| | - Timo Ylikomi
- Cell Biology, Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland;
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland; (S.S.); (M.T.)
| |
Collapse
|
7
|
Li J, Shao J, Zeng Z, He Y, Tang C, Park SH, Lee JH, Liu R. Mechanosensitive turnover of phosphoribosyl pyrophosphate synthetases regulates nucleotide metabolism. Cell Death Differ 2022; 29:206-217. [PMID: 34465890 PMCID: PMC8738752 DOI: 10.1038/s41418-021-00851-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Cells coordinate their behaviors with the mechanical properties of the extracellular matrix (ECM). Tumor cells frequently harbor an enhanced nucleotide synthesis, presumably to meet the increased demands for rapid proliferation. Nevertheless, how ECM rigidity regulates nucleotide metabolism remains elusive. Here we show that shift from stiff to soft matrix blunts glycolysis-derived nucleotide synthesis in tumor cells. Soft ECM results in TNF receptor-associated factor 2 (TRAF2)-dependent K29 ubiquitination and degradation of phosphoribosyl pyrophosphate synthetase (PRPS)1/2. Recruitment of TRAF2 to PRPS1/2 requires phosphorylation of PRPS1 S285 or PRPS2 T285, which is mediated by low stiffness-activated large tumor suppressor (LATS)1/2 kinases. Further, non-phosphoryable or non-ubiquitinatable PRPS1/2 mutations maintain PRPS1/2 expression and nucleotide synthesis at low stiffness, and promote tumor growth and metastasis. Our findings demonstrate that PRPS1/2 stability and nucleotide metabolism is ECM rigidity-sensitive, and thereby highlight a regulatory cascade underlying mechanics-guided tumor metabolism reprogramming.
Collapse
Affiliation(s)
- Jingyi Li
- grid.464276.50000 0001 0381 3718The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China ,grid.413856.d0000 0004 1799 3643School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Jichun Shao
- grid.464276.50000 0001 0381 3718The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Zhijun Zeng
- grid.464276.50000 0001 0381 3718The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Yumin He
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Can Tang
- grid.413856.d0000 0004 1799 3643School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Su Hwan Park
- grid.255166.30000 0001 2218 7142Department of Health Sciences, The Graduate School of Dong-A University, Busan, Republic of Korea
| | - Jong-Ho Lee
- grid.255166.30000 0001 2218 7142Department of Health Sciences, The Graduate School of Dong-A University, Busan, Republic of Korea ,grid.255166.30000 0001 2218 7142Department of Biological Sciences, Dong-A University, Busan, Republic of Korea
| | - Rui Liu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Moret F, Conte C, Esposito D, Dal Poggetto G, Avitabile C, Ungaro F, Tiso N, Romanelli A, Laurienzo P, Reddi E, Quaglia F. Biodegradable nanoparticles combining cancer cell targeting and anti-angiogenic activity for synergistic chemotherapy in epithelial cancer. Drug Deliv Transl Res 2022; 12:2488-2500. [PMID: 34973132 PMCID: PMC9458690 DOI: 10.1007/s13346-021-01090-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/12/2022]
Abstract
A biodegradable engineered nanoplatform combining anti-angiogenic activity and targeting of cancer cells to improve the anticancer activity of docetaxel (DTX) is here proposed. Indeed, we have developed biodegradable nanoparticles (NPs) of poly(ethylene glycol)-poly(ε-caprolactone), exposing on the surface both folate motifs (Fol) for recognition in cells overexpressing Folate receptor-α (FRα) and the anti-angiogenic hexapeptide aFLT1. NPs showed a size around 100 nm, the exposure of 60% of Fol moieties on the surface, and the ability to entrap DTX and sustain its release with time. NPs were stable in simulated biological fluids and slightly interacted with Fetal Bovine serum, especially in the formulation decorated with Fol and aFLT1. The presence of Fol on NPs did not impair the anti-angiogenic activity of aFLT1, as assessed by in vitro tube formation assay in HUVEC endothelial cells. In both 2D and 3D KB cell cultures in vitro, the cytotoxicity of DTX loaded in NPs was not significantly affected by Fol/aFLT1 double decoration compared to free DTX. Remarkably, NPs distributed differently in 3D multicellular spheroids of FRα-positive KB cancer cells depending on the type of ligand displayed on the surface. In particular, NPs unmodified on the surface were randomly distributed in the spheroid, whereas the presence of Fol promoted the accumulation in the outer rims of the spheroid. Finally, NPs with Fol and aFLT1 gave a uniform distribution throughout the spheroid structure. When tested in zebrafish embryos xenografted with KB cells, NPs displaying Fol/aFLT1 reduced DTX systemic toxicity and inhibited the growth of the tumor mass and associated vasculature synergistically. Overall, nanotechnology offers excellent ground for combining therapeutic concepts in cancer, paving the way to novel multifunctional nanopharmaceuticals decorated with bioactive elements that can significantly improve therapeutic outcomes.
Collapse
Affiliation(s)
- Francesca Moret
- Department of Biology, University of Padova, Padova, 35121, Italy
| | - Claudia Conte
- Department of Pharmacy, University of Napoli Federico II, Napoli, 80131, Italy
| | - Diletta Esposito
- Department of Pharmacy, University of Napoli Federico II, Napoli, 80131, Italy
| | | | | | - Francesca Ungaro
- Department of Pharmacy, University of Napoli Federico II, Napoli, 80131, Italy
| | - Natascia Tiso
- Department of Biology, University of Padova, Padova, 35121, Italy
| | - Alessandra Romanelli
- Department of Pharmaceutical Sciences, University of Milan, Milano, 20133, Italy
| | - Paola Laurienzo
- Institute for Polymers, Composites and Biomaterials, CNR, Pozzuoli, 80078, Italy
| | - Elena Reddi
- Department of Biology, University of Padova, Padova, 35121, Italy.
| | - Fabiana Quaglia
- Department of Pharmacy, University of Napoli Federico II, Napoli, 80131, Italy. .,Institute for Polymers, Composites and Biomaterials, CNR, Pozzuoli, 80078, Italy.
| |
Collapse
|
9
|
Nor Hisam NS, Ugusman A, Rajab NF, Ahmad MF, Fenech M, Liew SL, Mohamad Anuar NN. Combination Therapy of Navitoclax with Chemotherapeutic Agents in Solid Tumors and Blood Cancer: A Review of Current Evidence. Pharmaceutics 2021; 13:pharmaceutics13091353. [PMID: 34575429 PMCID: PMC8468743 DOI: 10.3390/pharmaceutics13091353] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 01/19/2023] Open
Abstract
Combination therapy emerges as a fundamental scheme in cancer. Many targeted therapeutic agents are developed to be used with chemotherapy or radiation therapy to enhance drug efficacy and reduce toxicity effects. ABT-263, known as navitoclax, mimics the BH3-only proteins of the BCL-2 family and has a high affinity towards pro-survival BCL-2 family proteins (i.e., BCL-XL, BCL-2, BCL-W) to induce cell apoptosis effectively. A single navitoclax action potently ameliorates several tumor progressions, including blood and bone marrow cancer, as well as small cell lung carcinoma. Not only that, but navitoclax alone also therapeutically affects fibrotic disease. Nevertheless, outcomes from the clinical trial of a single navitoclax agent in patients with advanced and relapsed small cell lung cancer demonstrated a limited anti-cancer activity. This brings accumulating evidence of navitoclax to be used concomitantly with other chemotherapeutic agents in several solid and non-solid tumors that are therapeutically benefiting from navitoclax treatment in preclinical studies. Initially, we justify the anti-cancer role of navitoclax in combination therapy. Then, we evaluate the current evidence of navitoclax in combination with the chemotherapeutic agents comprehensively to indicate the primary regulator of this combination strategy in order to produce a therapeutic effect.
Collapse
Affiliation(s)
- Nur Syahidah Nor Hisam
- Programme of Biomedical Science, Centre for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (N.S.N.H.); (S.L.L.)
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Nor Fadilah Rajab
- Center for Healthy Ageing & Wellness, Programme of Biomedical Science, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (N.F.R.); (M.F.)
| | - Mohd Faizal Ahmad
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Michael Fenech
- Center for Healthy Ageing & Wellness, Programme of Biomedical Science, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (N.F.R.); (M.F.)
- Genome Health Foundation, North Brighton, SA 5048, Australia
| | - Sze Ling Liew
- Programme of Biomedical Science, Centre for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (N.S.N.H.); (S.L.L.)
| | - Nur Najmi Mohamad Anuar
- Programme of Biomedical Science, Centre for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (N.S.N.H.); (S.L.L.)
- Correspondence: ; Tel.: +60-13-3845844
| |
Collapse
|
10
|
Gross Specimen Handling Procedures Do Not Impact the Occurrence of Spread Through Air Spaces (STAS) in Lung Cancer. Am J Surg Pathol 2021; 45:215-222. [PMID: 33323894 DOI: 10.1097/pas.0000000000001642] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Spread Through Air Spaces (STAS) is a form of invasion characterized by neoplastic cell dissemination in the lung parenchyma surrounding the outer edge of the tumor. Its possible artifactual origin is widely debated in the literature. The aim of this study is to investigate the potential impact of gross sampling procedures in causing STAS. A prospective series of 51 surgical lung specimens was collected (35 adenocarcinomas, 68.6%; 13 squamous cell carcinomas, 25.5%; 2 large-cell neuroendocrine carcinomas, 3.9%; 1 atypical carcinoid, 2%). The fresh tissue was sectioned with a new and clean blade for each cut, to obtain a tissue slice comprising the upper lung parenchyma, the tumor, and the lower parenchyma. This slice was cut in half and separately processed. The same procedure was repeated in the residual (specular) specimen after formalin fixation. STAS was identified in 33/51 (64.7%) cases, the predominant pattern being cluster formation (29 cases, 87.9%), the remaining 4 cases having single-cell invasion. Comparing STAS detection in upper and lower lung parenchyma areas (ie, before and after the blade crossed the tumor), no significant preferential STAS distribution was observed, indeed being almost overlapping (60.6% and 63.6% for fresh and 61.3% and 65.6% for fixed tissues, respectively). There was no difference between STAS occurrence in freshly cut and fixed corresponding samples. These findings indicate that STAS is not a pathologist-related artifactual event because of knife transportation of tumor cells during gross specimen handling and support the notion that it is a phenomenon preexisting to surgical tissue processing.
Collapse
|
11
|
Picturing Breast Cancer Brain Metastasis Development to Unravel Molecular Players and Cellular Crosstalk. Cancers (Basel) 2021; 13:cancers13040910. [PMID: 33671551 PMCID: PMC7926545 DOI: 10.3390/cancers13040910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/05/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Breast cancer is a devastating disorder affecting millions of women worldwide. With improved therapeutics for the primary tumor, the appearance of metastasis has been increasing. Breast cancer frequently metastasizes to the brain, constituting a major hurdle without cure and with a poor survival. It is imperative to better understand the mechanisms involved in malignant cell transposition of the brain microvasculature and parenchymal colonization by deciphering the alterations occurring in the tumor and microvascular cells, as well as the occurrence of intercellular communication during the process. We aimed to profile the process of the formation of breast cancer brain metastasis and the timeline of events governing it. We used a specific mouse model of the disease to perform extensive microscopic analyses. We identified phenotypic changes and the activation of relevant molecular players in tumorigenesis, together with vascular alterations, and the occurrence of crosstalk. Our findings unravel putative therapeutic targets to tackle breast cancer brain metastasis. Abstract With breast cancer (BC) therapy improvements, the appearance of brain metastases has been increasing, representing a life-threatening condition. Brain metastasis formation involves BC cell (BCC) extravasation across the blood–brain barrier (BBB) and brain colonization by unclear mechanisms. We aimed to disclose the actors involved in BC brain metastasis formation, focusing on BCCs’ phenotype, growth factor expression, and signaling pathway activation, correlating with BBB alterations and intercellular communication. Hippocampi of female mice inoculated with 4T1 BCCs were examined over time by hematoxylin-eosin, immunohistochemistry and immunofluorescence. Well-established metastases were observed at seven days, increasing thereafter. BCCs entering brain parenchyma presented mesenchymal, migratory, and proliferative features; however, with time, they increasingly expressed epithelial markers, reflecting a mesenchymal–epithelial transition. BCCs also expressed platelet-derived growth factor-B, β4 integrin, and focal adhesion kinase, suggesting autocrine and/or paracrine regulation with adhesion signaling activation, while balance between Rac1 and RhoA was associated with the motility status. Intercellular communication via gap junctions was clear among BCCs, and between BCCs and endothelial cells. Thrombin accumulation, junctional protein impairment, and vesicular proteins increase reflect BBB alterations related with extravasation. Expression of plasmalemma vesicle-associated protein was increased in BCCs, along with augmented vascularization, whereas pericyte contraction indicated mural cells’ activation. Our results provide further understanding of BC brain metastasis formation, disclosing potential therapeutic targets.
Collapse
|
12
|
Chen X, Li Y, Yao T, Jia R. Benefits of Zebrafish Xenograft Models in Cancer Research. Front Cell Dev Biol 2021; 9:616551. [PMID: 33644052 PMCID: PMC7905065 DOI: 10.3389/fcell.2021.616551] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
As a promising in vivo tool for cancer research, zebrafish have been widely applied in various tumor studies. The zebrafish xenograft model is a low-cost, high-throughput tool for cancer research that can be established quickly and requires only a small sample size, which makes it favorite among researchers. Zebrafish patient-derived xenograft (zPDX) models provide promising evidence for short-term clinical treatment. In this review, we discuss the characteristics and advantages of zebrafish, such as their transparent and translucent features, the use of vascular fluorescence imaging, the establishment of metastatic and intracranial orthotopic models, individual pharmacokinetics measurements, and tumor microenvironment. Furthermore, we introduce how these characteristics and advantages are applied other in tumor studies. Finally, we discuss the future direction of the use of zebrafish in tumor studies and provide new ideas for the application of it.
Collapse
Affiliation(s)
- Xingyu Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Tengteng Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
13
|
Abstract
Metastasis, the dispersal of cancer cells from a primary tumor to secondary sites within the body, is the leading cause of cancer-related death. Animal models have been an indispensable tool to investigate the complex interactions between the cancer cells and the tumor microenvironment during the metastatic cascade. The zebrafish (Danio rerio) has emerged as a powerful vertebrate model for studying metastatic events in vivo. The zebrafish has many attributes including ex-utero development, which facilitates embryonic manipulation, as well as optically transparent tissues, which enables in vivo imaging of fluorescently labeled cells in real time. Here, we summarize the techniques which have been used to study cancer biology and metastasis in the zebrafish model organism, including genetic manipulation and transgenesis, cell transplantation, live imaging, and high-throughput compound screening. Finally, we discuss studies using the zebrafish, which have complemented and benefited metastasis research.
Collapse
Affiliation(s)
- Katy R Astell
- The Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Dirk Sieger
- The Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| |
Collapse
|
14
|
Jia M, Yu S, Gao H, Sun PL. Spread Through Air Spaces (STAS) in Lung Cancer: A Multiple-Perspective and Update Review. Cancer Manag Res 2020; 12:2743-2752. [PMID: 32425593 PMCID: PMC7186879 DOI: 10.2147/cmar.s249790] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/09/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Spread through air spaces (STAS) is a spreading phenomenon of lung cancers, which is defined as tumor cells within air spaces in the lung parenchyma beyond the edge of the main tumor. To date, several articles have reviewed the studies concerning the significance of STAS; however, most articles focused on the prognosis without summarizing the significance of STAS on other aspects. In this review, we comprehensively summarized the current literature related to STAS, so as to explore the clinical significance of STAS from multiple perspectives. MAIN BODY This section provided a comprehensive overview of the significance of STAS from multiple perspectives and summarized current controversies and challenges in the diagnosis and clinical application. CONCLUSION STAS is a conspicuous spreading phenomenon of lung cancers indicating worse prognosis; nevertheless, the treatment strategy for patients with STAS remains to be discussed. Further studies are needed to elaborate whether a STAS-positive patient who underwent limited resection needs a second operation or postoperative adjuvant treatment. Meanwhile, the internal mechanism of STAS formation is largely undiscovered. Whether the capability of detachment-migration-reattachment in STAS tumor cells is achieved at the time of primary tumorigenesis or in the progress of tumor development needs to be studied, and the related signal pathways or genetic alterations need to be explored. With this information, it may be possible to improve the prognosis of patients with STAS-positive lung cancers.
Collapse
Affiliation(s)
- Meng Jia
- Department of Pathology, The Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Shili Yu
- Department of Pathology, The Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Hongwen Gao
- Department of Pathology, The Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Ping-Li Sun
- Department of Pathology, The Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
15
|
Yagi Y, Aly RG, Tabata K, Barlas A, Rekhtman N, Eguchi T, Montecalvo J, Hameed M, Manova-Todorova K, Adusumilli PS, Travis WD. Three-Dimensional Histologic, Immunohistochemical, and Multiplex Immunofluorescence Analyses of Dynamic Vessel Co-Option of Spread Through Air Spaces in Lung Adenocarcinoma. J Thorac Oncol 2020; 15:589-600. [PMID: 31887430 PMCID: PMC7288352 DOI: 10.1016/j.jtho.2019.12.112] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Spread through air spaces (STAS) is a method of invasion in lung adenocarcinoma and is associated with tumor recurrence and poor survival. The spatial orientation of STAS cells in the lung alveolar parenchyma is not known. The aim of this study was to use high-resolution and high-quality three-dimensional (3D) reconstruction of images from immunohistochemical (IHC) and multiplex immunofluorescence (IF) experiments to understand the spatial architecture of tumor cell clusters by STAS in the lung parenchyma. METHODS Four lung adenocarcinomas, three micropapillary-predominant and one solid predominant adenocarcinoma subtypes, were investigated. A 3D reconstruction image was created from formalin-fixed, paraffin-embedded blocks. A total of 350 serial sections were obtained and subjected to hematoxylin and eosin (100 slides), IHC (200 slides), and multiplex IF staining (50 slides) with the following antibodies: cluster of differentiation 31, collagen type IV, thyroid transcription factor-1, and E-cadherin. Whole slide images were reconstructed into 3D images for evaluation. RESULTS Serial 3D image analysis by hematoxylin and eosin, IHC, and IF staining revealed that the micropapillary clusters and solid nests of STAS are focally attached to the alveolar walls, away from the main tumor. CONCLUSIONS Our 3D reconstructions found that STAS tumor cells can attach to the alveolar walls rather than appearing free floating, as seen on the two-dimensional sections. This suggests that the tumor cells detach from the main tumor, migrate through air spaces, and reattach to the alveolar walls through vessel co-option, allowing them to survive and grow. This may explain the higher recurrence rate and worse survival of patients with STAS-positive tumors who undergo limited resection than those who undergo lobectomy.
Collapse
Affiliation(s)
- Yukako Yagi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rania G Aly
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology, Alexandria University, Alexandria, Egypt
| | - Kazuhiro Tabata
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology, Nagasaki University Hospital, Nagasaki, Japan
| | - Afsar Barlas
- Molecular Cytology, Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Natasha Rekhtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Takashi Eguchi
- Thoracic Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York; Division of Thoracic Surgery, Department of Surgery, Shinshu University, Matsumoto, Japan
| | - Joeseph Montecalvo
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology, Henry Ford Hospital System, Detroit, Michigan
| | - Meera Hameed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Katia Manova-Todorova
- Molecular Cytology, Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Prasad S Adusumilli
- Thoracic Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William D Travis
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
16
|
Mechanisms underlying synergy between DNA topoisomerase I-targeted drugs and mTOR kinase inhibitors in NF1-associated malignant peripheral nerve sheath tumors. Oncogene 2019; 38:6585-6598. [PMID: 31444410 DOI: 10.1038/s41388-019-0965-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/08/2019] [Accepted: 05/27/2019] [Indexed: 01/08/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are soft-tissue sarcomas that frequently arise in patients with neurofibromatosis type 1 (NF1). Most of these tumors are unresectable at diagnosis and minimally responsive to conventional treatment, lending urgency to the identification of new pathway dependencies and drugs with potent antitumor activities. We therefore examined a series of candidate agents for their ability to induce apoptosis in MPNST cells arising in nf1/tp53-deficient zebrafish. In this study, we found that DNA topoisomerase I-targeted drugs and mTOR kinase inhibitors were the most effective single agents in eliminating MPNST cells without prohibitive toxicity. In addition, three members of these classes of drugs, either AZD2014 or INK128 in combination with irinotecan, acted synergistically to induce apoptosis both in vitro and in vivo. In mechanistic studies, irinotecan not only induces apoptosis by eliciting a DNA damage response, but also acts synergistically with AZD2014 to potentiate the hypophosphorylation of 4E-BP1, a downstream target of mTORC1. Profound hypophosphorylation of 4E-BP1 induced by this drug combination causes an arrest of protein synthesis, which potently induces tumor cell apoptosis. Our findings provide a compelling rationale for further in vivo evaluation of the combination of DNA topoisomerase I-targeted drugs and mTOR kinase inhibitors against these aggressive nerve sheath tumors.
Collapse
|
17
|
Abstract
All solid tumours require a vascular supply in order to progress. Although the ability to induce angiogenesis (new blood vessel growth) has long been regarded as essential to this purpose, thus far, anti-angiogenic therapies have shown only modest efficacy in patients. Importantly, overshadowed by the literature on tumour angiogenesis is a long-standing, but continually emerging, body of research indicating that tumours can grow instead by hijacking pre-existing blood vessels of the surrounding nonmalignant tissue. This process, termed vessel co-option, is a frequently overlooked mechanism of tumour vascularization that can influence disease progression, metastasis and response to treatment. In this Review, we describe the evidence that tumours located at numerous anatomical sites can exploit vessel co-option. We also discuss the proposed molecular mechanisms involved and the multifaceted implications of vessel co-option for patient outcomes.
Collapse
Affiliation(s)
- Elizabeth A Kuczynski
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, UK.
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.
| | - Peter B Vermeulen
- HistoGeneX, Antwerp, Belgium
- Translational Cancer Research Unit, GZA Hospitals St Augustinus, University of Antwerp, Wilrijk-Antwerp, Belgium
- Tumour Biology Team, Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Francesco Pezzella
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Robert S Kerbel
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Andrew R Reynolds
- Tumour Biology Team, Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
- Oncology Translational Medicine Unit, IMED Biotech Unit, AstraZeneca, Cambridge, UK.
| |
Collapse
|
18
|
Ugwuagbo KC, Maiti S, Omar A, Hunter S, Nault B, Northam C, Majumder M. Prostaglandin E2 promotes embryonic vascular development and maturation in zebrafish. Biol Open 2019; 8:bio.039768. [PMID: 30890523 PMCID: PMC6504002 DOI: 10.1242/bio.039768] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Prostaglandin (PG)-E2 is essential for growth and development of vertebrates. PGE2 binds to G-coupled receptors to regulate embryonic stem cell differentiation and maintains tissue homeostasis. Overproduction of PGE2 by breast tumor cells promotes aggressive breast cancer phenotypes and tumor-associated lymphangiogenesis. In this study, we investigated novel roles of PGE2 in early embryonic vascular development and maturation with the microinjection of PGE2 in fertilized zebrafish (Danio rerio) eggs. We injected Texas Red dextran to trace vascular development. Embryos injected with the solvent of PGE2 served as vehicle. Distinct developmental changes were noted from 28-96 h post fertilization (hpf), showing an increase in embryonic tail flicks, pigmentation, growth, hatching and larval movement post-hatching in the PGE2-injected group compared to the vehicle. We recorded a significant increase in trunk vascular fluorescence and maturation of vascular anatomy, embryo heartbeat and blood vessel formation in the PGE2 injected group. At 96 hpf, all larvae were euthanized to measure vascular marker mRNA expression. We observed a significant increase in the expression of stem cell markers efnb2a, ephb4a, angiogenesis markers vegfa, kdrl, etv2 and lymphangiogenesis marker prox1 in the PGE2-group compared to the vehicle. This study shows the novel roles of PGE2 in promoting embryonic vascular maturation and angiogenesis in zebrafish.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | - Sujit Maiti
- Department of Biology, Brandon University, Brandon, Manitoba R7A 6A9, Canada
| | - Ahmed Omar
- Department of Biology, Brandon University, Brandon, Manitoba R7A 6A9, Canada
| | - Stephanie Hunter
- Department of Biology, Brandon University, Brandon, Manitoba R7A 6A9, Canada
| | - Braydon Nault
- Department of Biology, Brandon University, Brandon, Manitoba R7A 6A9, Canada
| | - Caleb Northam
- Department of Biology, Brandon University, Brandon, Manitoba R7A 6A9, Canada
| | - Mousumi Majumder
- Department of Biology, Brandon University, Brandon, Manitoba R7A 6A9, Canada
| |
Collapse
|
19
|
Britto DD, Wyroba B, Chen W, Lockwood RA, Tran KB, Shepherd PR, Hall CJ, Crosier KE, Crosier PS, Astin JW. Macrophages enhance Vegfa-driven angiogenesis in an embryonic zebrafish tumour xenograft model. Dis Model Mech 2018; 11:dmm.035998. [PMID: 30396905 PMCID: PMC6307908 DOI: 10.1242/dmm.035998] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/25/2018] [Indexed: 12/11/2022] Open
Abstract
Tumour angiogenesis has long been a focus of anti-cancer therapy; however, anti-angiogenic cancer treatment strategies have had limited clinical success. Tumour-associated myeloid cells are believed to play a role in the resistance of cancer towards anti-angiogenesis therapy, but the mechanisms by which they do this are unclear. An embryonic zebrafish xenograft model has been developed to investigate the mechanisms of tumour angiogenesis and as an assay to screen anti-angiogenic compounds. In this study, we used cell ablation techniques to remove either macrophages or neutrophils and assessed their contribution towards zebrafish xenograft angiogenesis by quantitating levels of graft vascularisation. The ablation of macrophages, but not neutrophils, caused a strong reduction in tumour xenograft vascularisation and time-lapse imaging demonstrated that tumour xenograft macrophages directly associated with the migrating tip of developing tumour blood vessels. Finally, we found that, although macrophages are required for vascularisation in xenografts that either secrete VEGFA or overexpress zebrafish vegfaa, they are not required for the vascularisation of grafts with low levels of VEGFA, suggesting that zebrafish macrophages can enhance Vegfa-driven tumour angiogenesis. The importance of macrophages to this angiogenic response suggests that this model could be used to further investigate the interplay between myeloid cells and tumour vascularisation. Summary: Zebrafish embryonic macrophages associate with the distal tips of tumour xenograft blood vessels and are required for Vegfa-driven angiogenesis.
Collapse
Affiliation(s)
- Denver D Britto
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Barbara Wyroba
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| | - Wenxuan Chen
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Rhoswen A Lockwood
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Khanh B Tran
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Peter R Shepherd
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Christopher J Hall
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Kathryn E Crosier
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Philip S Crosier
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Jonathan W Astin
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
20
|
Li H, Ma SQ, Huang J, Chen XP, Zhou HH. Roles of long noncoding RNAs in colorectal cancer metastasis. Oncotarget 2018; 8:39859-39876. [PMID: 28418892 PMCID: PMC5503659 DOI: 10.18632/oncotarget.16339] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/20/2017] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is the 3rd most common malignancies worldwide. Metastasis is responsible for more than 90% CRC patients' death. Long noncoding RNAs (lncRNAs) are an important class of transcribed RNA molecules greater than 200 nucleotides in length. With the development of whole genome sequencing technologies, they have been gained more attention. Accumulating evidences suggest that abnormal expression of lncRNAs in diverse diseases are involved in various biological functions such as proliferation, apoptosis, metastasis and differentiation by acting as epigenetic, splicing, transcriptional or post-transcriptional regulators. Aberrant expression of lncRNAs has also been found in CRC. Besides, recent studies have indicated that lncRNAs play important roles in tumourigenesis and cancer metastasis. They participate in the process of metastasis by activing or inhibiting the metastatic pathways. However, their functions on the development of cancer metastasis are poorly understood. In this review, we highlight the findings of roles for lncRNAs in CRC metastasis and review the metastatic pathways of lncRNAs leading to cancer metastasis in CRC, including escape of apoptosis, epithelial-mesenchymal transition (EMT), angiogenesis and invasion, migration and proliferation. Furthermore, we also discuss the potential clinical application of lncRNAs in CRC as diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- He Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - Si-Qing Ma
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - Jin Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China.,Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China.,Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| |
Collapse
|
21
|
Coelho AL, Gomes MP, Catarino RJ, Rolfo C, Lopes AM, Medeiros RM, Araújo AM. Angiogenesis in NSCLC: is vessel co-option the trunk that sustains the branches? Oncotarget 2018; 8:39795-39804. [PMID: 26950275 PMCID: PMC5503654 DOI: 10.18632/oncotarget.7794] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/09/2016] [Indexed: 12/21/2022] Open
Abstract
The critical role of angiogenesis in tumor development makes its inhibition a valuable new approach in therapy, rapidly making anti-angiogenesis a major focus in research. While the VEGF/VEGFR pathway is the main target of the approved anti-angiogenic molecules in NSCLC treatment, the results obtained are still modest, especially due to resistance mechanisms. Accumulating scientific data show that vessel co-option is an alternative mechanism to angiogenesis during tumor development in well-vascularized organs such as the lungs, where tumor cells highjack the existing vasculature to obtain its blood supply in a non-angiogenic fashion. This can explain the low/lack of response to current anti-angiogenic strategies. The same principle applies to lung metastases of other primary tumors. The exact mechanisms of vessel co-option need to be further elucidated, but it is known that the co-opted vessels regress by the action of Angiopoietin-2 (Ang-2), a vessel destabilizing cytokine expressed by the endothelial cells of the pre-existing mature vessels. In the absence of VEGF, vessel regression leads to tumor cell loss and hypoxia, with a subsequent switch to a neoangiogenic phenotype by the remaining tumor cells. Unravelling the vessel co-option mechanisms and involved players may be fruitful for numerous reasons, and the particularities of this form of vascularization should be carefully considered when planning anti-angiogenic interventions or designing clinical trials for this purpose. In view of the current knowledge, rationale for therapeutic approaches of dual inhibition of Ang-2 and VEGF are swiftly gaining strength and may serve as a launchpad to more successful NSCLC anti-vascular treatments.
Collapse
Affiliation(s)
- Ana Luísa Coelho
- Instituto Português de Oncologia, Molecular Oncology Group, Porto, Portugal.,Faculdade de Medicina, University of Porto, Porto, Portugal
| | - Mónica Patrícia Gomes
- Instituto Português de Oncologia, Molecular Oncology Group, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Raquel Jorge Catarino
- Instituto Português de Oncologia, Molecular Oncology Group, Porto, Portugal.,Faculdade de Medicina, University of Porto, Porto, Portugal
| | - Christian Rolfo
- Phase I, Early Clinical Trials Unit, Antwerp University Hospital, Edegem, Belgium.,Centre of Oncological Research (CORE), Antwerp University, Edegem, Belgium
| | - Agostinho Marques Lopes
- Faculdade de Medicina, University of Porto, Porto, Portugal.,Centro Hospitalar de S. João, Pulmonology Department, Porto, Portugal
| | - Rui Manuel Medeiros
- Instituto Português de Oncologia, Molecular Oncology Group, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal.,Liga Portuguesa Contra o Cancro (NRNorte), Research Department, Porto, Portugal
| | - António Manuel Araújo
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal.,Centro Hospitalar do Porto, Medical Oncology Department, Porto, Portugal
| |
Collapse
|
22
|
Jerónimo A, Rodrigues G, Vilas-Boas F, Martins GG, Bagulho A, Real C. Hydrogen peroxide regulates angiogenesis-related factors in tumor cells. Biochem Cell Biol 2017; 95:679-685. [DOI: 10.1139/bcb-2017-0083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Tumor angiogenesis is required for tumor development and growth, and is regulated by several factors including ROS. H2O2 is a ROS with an important role in cell signaling, but how H2O2 regulates tumor angiogenesis is still poorly understood. We have xenografted tumor cells with altered levels of H2O2 by catalase overexpression into zebrafish embryos to study redox-induced tumor neovascularization. We found that vascular recruitment and invasion were impaired if catalase was overexpressed. In addition, the overexpression of catalase altered the transcriptional levels of several angiogenesis-related factors in tumor cells, including TIMP-3 and THBS1. These two anti-angiogenic factors were found to be H2O2-regulated by two different mechanisms: TIMP-3 expression in a cell-autonomous manner; and, THBS1 expression that was non-cell-autonomous. Our work shows that intracellular H2O2 regulates the expression of angiogenic factors and the formation of a vessel network. Understanding the molecular mechanisms that govern this multifunctional effect of H2O2 on tumor angiogenesis could be important for the development of more efficient anti-angiogenic therapies.
Collapse
Affiliation(s)
- Ana Jerónimo
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Gonçalo Rodrigues
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Filipe Vilas-Boas
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Gabriel G. Martins
- cE3c – Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Ana Bagulho
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Carla Real
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
23
|
Zeng A, Ye T, Cao D, Huang X, Yang Y, Chen X, Xie Y, Yao S, Zhao C. Identify a Blood-Brain Barrier Penetrating Drug-TNB using Zebrafish Orthotopic Glioblastoma Xenograft Model. Sci Rep 2017; 7:14372. [PMID: 29085081 PMCID: PMC5662771 DOI: 10.1038/s41598-017-14766-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 10/12/2017] [Indexed: 02/05/2023] Open
Abstract
The blood-brain barrier (BBB) is necessary for maintaining brain homeostasis, but it also represents a major challenge for drug delivery to the brain tumors. A suitable in vivo Glioblastoma Multiforme (GBM) model is needed for efficient testing of BBB crossable pharmaceuticals. In this study, we firstly confirmed the BBB functionality in 3dpf zebrafish embryos by Lucifer Yellow, Evans Blue and DAPI microinjection. We then transplanted human GBM tumor cells into the zebrafish brain, in which implanted GBM cells (U87 and U251) were highly mitotic and invasive, mimicking their malignancy features in rodents' brain. Interestingly, we found that, although extensive endothelial proliferation and vessel dilation were observed in GBM xenografts, the BBB was still not disturbed. Next, using the zebrafish orthotopic GBM xenograft model as an in vivo visual readout, we successfully identified a promising small compound named TNB, which could efficiently cross the zebrafish BBB and inhibit the progression of orthotopic GBM xenografts. These results indicate that TNB is a promising BBB crossable GBM drug worth to be further characterized in human BBB setting, also suggest the zebrafish orthotopic GBM model as an efficient visual readout for the BBB penetrating anti-GBM drugs.
Collapse
Affiliation(s)
- Anqi Zeng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, P.R. China
| | - Tinghong Ye
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, P.R. China
| | - Dan Cao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, P.R. China
| | - Xi Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, P.R. China
| | - Yu Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, P.R. China
| | - Xiuli Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, P.R. China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, P.R. China
| | - Shaohua Yao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, P.R. China.
| | - Chengjian Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, P.R. China.
| |
Collapse
|
24
|
Xuesong D, Wei X, Heng L, Xiao C, Shunan W, Yu G, Weiguo Z. Evaluation of neovascularization patterns in an orthotopic rat glioma model with dynamic contrast-enhanced MRI. Acta Radiol 2017; 58:1138-1146. [PMID: 27956462 DOI: 10.1177/0284185116681038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has been proved useful in evaluating glioma angiogenesis, but the utility in evaluating neovascularization patterns has not been reported. Purpose To evaluate in vivo real-time glioma neovascularization patterns by measuring glioma perfusion quantitatively using DCE-MRI. Material and Methods Thirty Sprague-Dawley rats were used to establish C6 orthotopic glioma model and underwent MRI and pathology detections. As MRI and pathology were performed at six time points (i.e. 4, 8, 12, 16, 20, and 24 days) post transplantation, neovascularization patterns were evaluated via DCE-MRI. Results Four neovascularization patterns were observed in glioma tissues. Sprout angiogenesis and intussusceptive microvascular growth located inside tumor, while vascular co-option and vascular mimicry were found in the tumor margin and necrotic area, respectively. Sprout angiogenesis and intussusceptive microvascular growth increased with Ktrans, Kep, and Vp inside tumor tissue. In addition, Kep and Vp were positively correlated with sprout angiogenesis and intussusceptive microvascular growth. Vascular co-option was decreased at 12 and 16 days post transplantation and correlated negatively with Ktrans and Kep detected in the glioma margin, respectively. Changes of vascular mimicry showed no significant statistical difference at the six time points. Conclusion Our results indicate that DCE-MRI can evaluate neovascularization patterns in a glioma model. Furthermore, DCE-MRI could be an imaging biomarker for guidance of antiangiogenic treatments in humans in the future.
Collapse
Affiliation(s)
- Du Xuesong
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Xue Wei
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Liu Heng
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Chen Xiao
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Wang Shunan
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Guo Yu
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Zhang Weiguo
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, PR China
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, PR China
| |
Collapse
|
25
|
Brown HK, Schiavone K, Tazzyman S, Heymann D, Chico TJ. Zebrafish xenograft models of cancer and metastasis for drug discovery. Expert Opin Drug Discov 2017; 12:379-389. [PMID: 28277839 DOI: 10.1080/17460441.2017.1297416] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Patients with metastatic cancer suffer the highest rate of cancer-related death, but existing animal models of metastasis have disadvantages that limit our ability to understand this process. The zebrafish is increasingly used for cancer modelling, particularly xenografting of human cancer cell lines, and drug discovery, and may provide novel scientific and therapeutic insights. However, this model system remains underexploited. Areas covered: The authors discuss the advantages and disadvantages of the zebrafish xenograft model for the study of cancer, metastasis and drug discovery. They summarise previous work investigating the metastatic cascade, such as tumour-induced angiogenesis, intravasation, extravasation, dissemination and homing, invasion at secondary sites, assessing metastatic potential and evaluation of cancer stem cells in zebrafish. Expert opinion: The practical advantages of zebrafish for basic biological study and drug discovery are indisputable. However, their ability to sufficiently reproduce and predict the behaviour of human cancer and metastasis remains unproven. For this to be resolved, novel mechanisms must to be discovered in zebrafish that are subsequently validated in humans, and for therapeutic interventions that modulate cancer favourably in zebrafish to successfully translate to human clinical studies. In the meantime, more work is required to establish the most informative methods in zebrafish.
Collapse
Affiliation(s)
- Hannah K Brown
- a Department of Oncology and Metabolism , The Medical School, University of Sheffield , Sheffield , UK.,b Sarcoma Research Unit, Medical School , INSERM, European Associated Laboratory, University of Sheffield , Sheffield , UK
| | - Kristina Schiavone
- a Department of Oncology and Metabolism , The Medical School, University of Sheffield , Sheffield , UK.,b Sarcoma Research Unit, Medical School , INSERM, European Associated Laboratory, University of Sheffield , Sheffield , UK
| | - Simon Tazzyman
- a Department of Oncology and Metabolism , The Medical School, University of Sheffield , Sheffield , UK.,c The Bateson Centre for Lifecourse Biology , University of Sheffield, Western Bank , Sheffield , UK
| | - Dominique Heymann
- a Department of Oncology and Metabolism , The Medical School, University of Sheffield , Sheffield , UK.,b Sarcoma Research Unit, Medical School , INSERM, European Associated Laboratory, University of Sheffield , Sheffield , UK.,d UMR 957, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours , Nantes University Hospital , Nantes , France.,e Faculty of Medicine , INSERM, UMR 957, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Equipe Ligue 2012, University of Nantes , Nantes , France
| | - Timothy Ja Chico
- c The Bateson Centre for Lifecourse Biology , University of Sheffield, Western Bank , Sheffield , UK.,f Department of Infection, Immunity & Cardiovascular Disease , The Medical School, University of Sheffield , Sheffield , UK
| |
Collapse
|
26
|
Arrieta O, Zatarain-Barrón ZL, Cardona AF, Carmona A, Lopez-Mejia M. Ramucirumab in the treatment of non-small cell lung cancer. Expert Opin Drug Saf 2017; 16:637-644. [PMID: 28395526 DOI: 10.1080/14740338.2017.1313226] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Therapeutic options for treating Non-Small Cell Lung Cancer (NSCLC) have recently increased. Ramucirumab (Cyramza), an anti-angionenic agent was approved in 2014 for treatment of several malignancies, including second-line treatment of patients with NSCLC with disease progression on or after platinum-based chemotherapy. Areas covered: We performed a comprehensive search of the literature focused on clinical trials with use of ramucirumab, targeting its evolution in the treatment of NSCLC. This review summarizes the results regarding its safety and efficacy. Expert opinion: Angiogenesis has been widely recognized as a quintessential feature in cancer, intrinsically mediating tumor survival and progression. Ramucirumab, an anti-VEGFR2 agent, combined with docetaxel, was FDA-approved for NSCLC patients. Results from a phase III trial have demonstrated the usefulness of this combination, with benefits in progression free survival and overall survival for NSCLC patients. A greater magnitude of benefit is seen in patients with aggressive tumor behavior. Treatment with ramucirumab is generally tolerable, however, there is potential for severe toxicity. Adverse events reported with this combination include neutropenia, febrile neutropenia and hypertension. Also, there is the intrinsic risk of bleeding resulting from the mechanism of action. As such, adverse events should be identified timely, so drug-related complications can be prevented.
Collapse
MESH Headings
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Carcinoma, Non-Small-Cell Lung/blood supply
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/pathology
- Disease Progression
- Disease-Free Survival
- Humans
- Lung Neoplasms/blood supply
- Lung Neoplasms/drug therapy
- Lung Neoplasms/pathology
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/pathology
- Survival Rate
- Ramucirumab
Collapse
Affiliation(s)
- Oscar Arrieta
- a Thoracic Oncology Unit , Instituto Nacional de Cancerologia
| | | | - Andrés F Cardona
- b Clinical and Traslational Oncology Group , Clínica del Country , Bogotá , Colombia
- c Foundation for Clinical and Applied Cancer Research - FICMAC , Bogotá , Colombia
| | - Amir Carmona
- a Thoracic Oncology Unit , Instituto Nacional de Cancerologia
- d Comprehensive Cancer Center , Médica Sur Clinic and Foundation , Mexico
| | | |
Collapse
|
27
|
Custódio-Santos T, Videira M, Brito MA. Brain metastasization of breast cancer. Biochim Biophys Acta Rev Cancer 2017; 1868:132-147. [PMID: 28341420 DOI: 10.1016/j.bbcan.2017.03.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/17/2017] [Accepted: 03/18/2017] [Indexed: 01/15/2023]
Abstract
Central nervous system metastases have been reported in 15-25% of breast cancer patients, and the incidence is increasing. Moreover, the survival of these patients is generally poor, with reports of a 1-year survival rate of 20%. Therefore, a better knowledge about the determinants of brain metastasization is essential for the improvement of the clinical outcomes. Here, we summarize the current data about the metastatic cascade, ranging from the output of cancer cells from the primary tumour to their colonization in the brain, which involves the epithelial-mesenchymal transition, invasion of mammary tissue, intravasation into circulation, and homing into and extravasation towards the brain. The phenotypic change in malignant cells, and the importance of the microenvironment in the formation of brain metastases are also inspected. Finally, the importance of genetic and epigenetic changes, and the recently disclosed effects of microRNAs in brain metastasization of breast cancer are highlighted.
Collapse
Affiliation(s)
- Tânia Custódio-Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Mafalda Videira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Department of Galenic Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria Alexandra Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
28
|
Yang J, Pei H, Luo H, Fu A, Yang H, Hu J, Zhao C, Chai L, Chen X, Shao X, Wang C, Wu W, Wan L, Ye H, Qiu Q, Peng A, Wei Y, Yang L, Chen L. Non-toxic dose of liposomal honokiol suppresses metastasis of hepatocellular carcinoma through destabilizing EGFR and inhibiting the downstream pathways. Oncotarget 2016; 8:915-932. [PMID: 27906672 PMCID: PMC5352206 DOI: 10.18632/oncotarget.13687] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/05/2016] [Indexed: 02/05/2023] Open
Abstract
At present, there is no specific anti-metastasis drug in HCC treatment. Drugs used for primary HCC tumors and tumor metastasis are very similar, among which cytotoxic drugs are prevalent, such as cisplatin, doxorubicin and 5-FU. The EGFR pathway plays an important role in promoting hepatocellular carcinoma (HCC) metastasis. Hence, development of non-toxic anti-metastasis drugs, such as EGFR or downstream pathways inhibitors, is of great importance. In our present study, we found non-toxic dose of liposomal honokiol (LH) could inhibit the HCC metastasis by destabilizing EGFR and inhibiting the downstream pathways. Non-toxic dose of LH significantly inhibited the motility, migration and lamellipodia formation of HepG2 cells in vitro and decreased extravasation of HepG2 cells in a novel metastasis model of transgenic zebrafish. In two lung metastasis models (HepG2 and B16F10) and a spontaneous metastasis model of HepG2 cells, LH remarkably inhibited pulmonary metastasis and regional lymph nodes metastasis without obvious toxicity. Further study showed that destabilizing EGFR and inhibiting the downstream pathways were the main mechanisms of non-toxic dose of LH on metastasis inhibition. Our results provide the preclinical rationale and the underlying mechanisms of LH to suppress HCC metastasis, implicating LH as a potential therapeutic agent to block HCC metastasis without severe side effects.
Collapse
Affiliation(s)
- Jianhong Yang
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Heying Pei
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Hong Luo
- 2 Department of Ultrasonic Medicine, West China Second Hospital, Sichuan University, Chengdu, China
| | - Afu Fu
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Hansuo Yang
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Jia Hu
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Chengjian Zhao
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - LuLu Chai
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Xiang Chen
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Ximing Shao
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Chunyu Wang
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Wenshuang Wu
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Li Wan
- 3 School of Pharmacy, Chengdu University of TCM, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Haoyu Ye
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Qiang Qiu
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Aihua Peng
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Yuquan Wei
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Li Yang
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Lijuan Chen
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| |
Collapse
|
29
|
Grasso G, Landi A, Alafaci C. Pathogenetic Mechanisms of Intratumoral Hemorrhage in Meningioma: The Role of Microvascular Differentiation. World Neurosurg 2016; 95:599-600. [DOI: 10.1016/j.wneu.2016.07.118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 07/30/2016] [Indexed: 12/25/2022]
|
30
|
Pinto MP, Sotomayor P, Carrasco-Avino G, Corvalan AH, Owen GI. Escaping Antiangiogenic Therapy: Strategies Employed by Cancer Cells. Int J Mol Sci 2016; 17:ijms17091489. [PMID: 27608016 PMCID: PMC5037767 DOI: 10.3390/ijms17091489] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 08/22/2016] [Accepted: 08/30/2016] [Indexed: 12/29/2022] Open
Abstract
Tumor angiogenesis is widely recognized as one of the "hallmarks of cancer". Consequently, during the last decades the development and testing of commercial angiogenic inhibitors has been a central focus for both basic and clinical cancer research. While antiangiogenic drugs are now incorporated into standard clinical practice, as with all cancer therapies, tumors can eventually become resistant by employing a variety of strategies to receive nutrients and oxygen in the event of therapeutic assault. Herein, we concentrate and review in detail three of the principal mechanisms of antiangiogenic therapy escape: (1) upregulation of compensatory/alternative pathways for angiogenesis; (2) vasculogenic mimicry; and (3) vessel co-option. We suggest that an understanding of how a cancer cell adapts to antiangiogenic therapy may also parallel the mechanisms employed in the bourgeoning tumor and isolated metastatic cells delivering responsible for residual disease. Finally, we speculate on strategies to adapt antiangiogenic therapy for future clinical uses.
Collapse
Affiliation(s)
- Mauricio P Pinto
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile.
| | - Paula Sotomayor
- Center for Integrative Medicine and Innovative Science, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370071, Chile.
| | - Gonzalo Carrasco-Avino
- Department of Pathology, Faculty of Medicine, Universidad de Chile, Santiago 8380456, Chile.
| | - Alejandro H Corvalan
- Department of Hematology-Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330032, Chile.
- Center UC Investigation in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago 8330023, Chile.
| | - Gareth I Owen
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile.
- Center UC Investigation in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago 8330023, Chile.
- Biomedical Research Consortium of Chile, Santiago 8331150, Chile.
- Millennium Institute on Immunology & Immunotherapy, Santiago 8331150, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago 8380492, Chile.
| |
Collapse
|
31
|
Wang YC, Wu YN, Wang SL, Lin QH, He MF, Liu QL, Wang JH. Docosahexaenoic Acid Modulates Invasion and Metastasis of Human Ovarian Cancer via Multiple Molecular Pathways. Int J Gynecol Cancer 2016; 26:994-1003. [PMID: 27258728 PMCID: PMC4920273 DOI: 10.1097/igc.0000000000000746] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 03/23/2016] [Accepted: 03/28/2016] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE We investigated the effect of docosahexaenoic acid (DHA) on the invasion and metastasis of ovarian cancer cells (A2780, HO8910, and SKOV-3). METHODS Cytotoxicity assay was performed to determine the optimal doses of DHA in this experiment. The effects of DHA on invasion ability were assessed by invasion assay. The expressions of messenger RNA and/or proteins associated with invasion or metastasis were detected by quantitative Real Time-Polymerase Chain Reaction or Western blot. The effect of DHA on cell metastasis was assessed in xenograft model of zebrafish. RESULTS Docosahexaenoic acid and α-linolenic acid could reduce the cell vitalities in dose-dependent manner. However, DHA inhibited the invasion and metastasis of ovarian cancer cells, but α-linolenic acid did not (**P < 0.01). Docosahexaenoic acid could downregulate the expressions of WAVE3, vascular endothelial cell growth factor, and MMP-9, and upregulate KISS-1, TIMP-1, and PPAR-γ, which negatively correlated with cell invasion and metastasis (*P < 0.05). Docosahexaenoic acid restrained the development of subintestinal vessels and cancer cell metastasis in xenograft model of zebrafish (**P < 0.01). CONCLUSIONS Docosahexaenoic acid inhibited the invasion and metastasis of ovarian cancer cells in vitro and in vivo through the modulation of NF-κB signaling pathway, suggesting that DHA is a promising candidate for ovarian cancer therapy.
Collapse
Affiliation(s)
- Ying-Chun Wang
- *Department of Gynecological Oncology Surgery, Jiangsu Cancer Hospital & Institute, Nanjing Medical University; †China Pharmaceutical University; ‡Nanjing University of Technology School of Pharmaceutical Science; §Department of Obstetrics and Gynecology, Jiangning Hospital, Nanjing Medical University; and ∥Jinling Hospital, Nanjing University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Zebrafish represents a powerful model for cancer research. Particularly, the xenotransplantation of human cancer cells into zebrafish has enormous potential for further evaluation of cancer progression and drug discovery. Various cancer models have been established in adults, juveniles and embryos of zebrafish. This xenotransplantation zebrafish model provides a unique opportunity to monitor cancer proliferation, tumor angiogenesis, metastasis, self-renewal of cancer stem cells, and drug response in real time in vivo. This review summarizes the use of zebrafish as a model for cancer xenotransplantation, and highlights its advantages and disadvantages.
Collapse
|
33
|
Cai Y, Wu J, Li Z, Long Q. Mathematical Modelling of a Brain Tumour Initiation and Early Development: A Coupled Model of Glioblastoma Growth, Pre-Existing Vessel Co-Option, Angiogenesis and Blood Perfusion. PLoS One 2016; 11:e0150296. [PMID: 26934465 PMCID: PMC4774981 DOI: 10.1371/journal.pone.0150296] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/11/2016] [Indexed: 01/12/2023] Open
Abstract
We propose a coupled mathematical modelling system to investigate glioblastoma growth in response to dynamic changes in chemical and haemodynamic microenvironments caused by pre-existing vessel co-option, remodelling, collapse and angiogenesis. A typical tree-like architecture network with different orders for vessel diameter is designed to model pre-existing vasculature in host tissue. The chemical substances including oxygen, vascular endothelial growth factor, extra-cellular matrix and matrix degradation enzymes are calculated based on the haemodynamic environment which is obtained by coupled modelling of intravascular blood flow with interstitial fluid flow. The haemodynamic changes, including vessel diameter and permeability, are introduced to reflect a series of pathological characteristics of abnormal tumour vessels including vessel dilation, leakage, angiogenesis, regression and collapse. Migrating cells are included as a new phenotype to describe the migration behaviour of malignant tumour cells. The simulation focuses on the avascular phase of tumour development and stops at an early phase of angiogenesis. The model is able to demonstrate the main features of glioblastoma growth in this phase such as the formation of pseudopalisades, cell migration along the host vessels, the pre-existing vasculature co-option, angiogenesis and remodelling. The model also enables us to examine the influence of initial conditions and local environment on the early phase of glioblastoma growth.
Collapse
Affiliation(s)
- Yan Cai
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- * E-mail:
| | - Jie Wu
- School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Zhiyong Li
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Quan Long
- Brunel Institute for Bioengineering, School of Engineering and Design, Brunel University, Uxbridge, Middlesex, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Lin CY, Chiang CY, Tsai HJ. Zebrafish and Medaka: new model organisms for modern biomedical research. J Biomed Sci 2016; 23:19. [PMID: 26822757 PMCID: PMC4730764 DOI: 10.1186/s12929-016-0236-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 01/20/2016] [Indexed: 12/18/2022] Open
Abstract
Although they are primitive vertebrates, zebrafish (Danio rerio) and medaka (Oryzias latipes) have surpassed other animals as the most used model organisms based on their many advantages. Studies on gene expression patterns, regulatory cis-elements identification, and gene functions can be facilitated by using zebrafish embryos via a number of techniques, including transgenesis, in vivo transient assay, overexpression by injection of mRNAs, knockdown by injection of morpholino oligonucleotides, knockout and gene editing by CRISPR/Cas9 system and mutagenesis. In addition, transgenic lines of model fish harboring a tissue-specific reporter have become a powerful tool for the study of biological sciences, since it is possible to visualize the dynamic expression of a specific gene in the transparent embryos. In particular, some transgenic fish lines and mutants display defective phenotypes similar to those of human diseases. Therefore, a wide variety of fish model not only sheds light on the molecular mechanisms underlying disease pathogenesis in vivo but also provides a living platform for high-throughput screening of drug candidates. Interestingly, transgenic model fish lines can also be applied as biosensors to detect environmental pollutants, and even as pet fish to display beautiful fluorescent colors. Therefore, transgenic model fish possess a broad spectrum of applications in modern biomedical research, as exampled in the following review.
Collapse
Affiliation(s)
- Cheng-Yung Lin
- Graduate Institute of Biomedical Sciences, Mackay Medical College, No.46, Section 3, Zhongzheng Rd., Sanzhi Dist., New Taipei City, 252, Taiwan
| | - Cheng-Yi Chiang
- Graduate Institute of Biomedical Sciences, Mackay Medical College, No.46, Section 3, Zhongzheng Rd., Sanzhi Dist., New Taipei City, 252, Taiwan
| | - Huai-Jen Tsai
- Graduate Institute of Biomedical Sciences, Mackay Medical College, No.46, Section 3, Zhongzheng Rd., Sanzhi Dist., New Taipei City, 252, Taiwan.
| |
Collapse
|
35
|
Endothelial Cords Promote Tumor Initial Growth prior to Vascular Function through a Paracrine Mechanism. Sci Rep 2016; 6:19404. [PMID: 26762853 PMCID: PMC4725875 DOI: 10.1038/srep19404] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/17/2015] [Indexed: 02/05/2023] Open
Abstract
The angiogenic switch is an important oncogenic step that determines whether microtumors remain dormant or progresses further. It has been generally perceived that the primary function of this tumorgenic event is to supply oxygen and nutrients through blood circulation. Using in vivo imaging of zebrafish and mouse tumor models, we showed that endothelial cords aggressively penetrated into microtumors and remained non-circulatory for several days before undergoing vascular blood perfusion. Unexpectedly, we found that initial tumor growth in both models was significantly reduced if endothelial cords were removed by blocking VEGF-VEGFR2 signaling or using a vascular deficient zebrafish mutant. It was further shown that soluble factors including IL-8, secreted by endothelial cells (ECs) were responsible for stimulating tumor cells proliferation. These findings establish that tumor angiogenesis play a much earlier and broader role in promoting tumor growth, which is independent of vascular circulation. Understanding this novel mechanism of angiogenic tumor progression offers new entry points for cancer therapeutics.
Collapse
|
36
|
Eccles SA, Court W, Patterson L. In Vitro Assays for Endothelial Cell Functions Required for Angiogenesis: Proliferation, Motility, Tubular Differentiation, and Matrix Proteolysis. Methods Mol Biol 2016; 1430:121-147. [PMID: 27172950 DOI: 10.1007/978-1-4939-3628-1_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This chapter deconstructs the process of angiogenesis into its component parts in order to provide simple assays to measure discrete endothelial cell functions. The techniques described will be suitable for studying stimulators and/or inhibitors of angiogenesis and determining which aspect of the process is modulated. The assays are designed to be robust and straightforward, using human umbilical vein endothelial cells, but with an option to use other sources such as microvascular endothelial cells from various tissues or lymphatic endothelial cells. It must be appreciated that such reductionist approaches cannot cover the complexity of the angiogenic process as a whole, incorporating as it does a myriad of positive and negative signals, three-dimensional interactions with host tissues and many accessory cells including fibroblasts, macrophages, pericytes and platelets. The extent to which in vitro assays predict physiological or pathological processes in vivo (e.g., wound healing, tumor angiogenesis) or surrogate techniques such as the use of Matrigel™ plugs, sponge implants, corneal assays etc remains to be determined.
Collapse
Affiliation(s)
- Suzanne A Eccles
- Cancer Research UK Cancer Therapeutics Unit, Centre for Cancer Imaging, The Institute of Cancer Research, Cotswold Rd., Sutton, Surrey, SM2 5NG, UK.
| | - William Court
- Cancer Research UK Cancer Therapeutics Unit, Centre for Cancer Imaging, The Institute of Cancer Research, Cotswold Rd., Sutton, Surrey, SM2 5NG, UK
| | - Lisa Patterson
- Cancer Research UK Cancer Therapeutics Unit, Centre for Cancer Imaging, The Institute of Cancer Research, Cotswold Rd., Sutton, Surrey, SM2 5NG, UK
| |
Collapse
|
37
|
Moen I, Gebre M, Alonso-Camino V, Chen D, Epstein D, McDonald DM. Anti-metastatic action of FAK inhibitor OXA-11 in combination with VEGFR-2 signaling blockade in pancreatic neuroendocrine tumors. Clin Exp Metastasis 2015; 32:799-817. [PMID: 26445848 DOI: 10.1007/s10585-015-9752-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/08/2015] [Indexed: 02/08/2023]
Abstract
The present study sought to determine the anti-tumor effects of OXA-11, a potent, novel small-molecule amino pyrimidine inhibitor (1.2 pM biochemical IC(50)) of focal adhesion kinase (FAK). In studies of cancer cell lines, OXA-11 inhibited FAK phosphorylation at phospho-tyrosine 397 with a mechanistic IC(50) of 1 nM in TOV21G tumor cells, which translated into functional suppression of proliferation in 3-dimensional culture with an EC(50) of 9 nM. Studies of OXA-11 activity in TOV21G tumor-cell xenografts in mice revealed a pharmacodynamic EC(50) of 1.8 nM, indicative of mechanistic inhibition of pFAK [Y397] in these tumors. OXA-11 inhibited TOV21G tumor growth in a dose-dependent manner and also potentiated effects of cisplatin on tumor cell proliferation and apoptosis in vitro and on tumor growth in mice. Studies of pancreatic neuroendocrine tumors in RIP-Tag2 transgenic mice revealed OXA-11 suppression of pFAK [Y397] and pFAK [Y861] in tumors and liver. OXA-11 given daily from age 14 to 17 weeks reduced tumor vascularity, invasion, and when given together with the anti-VEGFR-2 antibody DC101 reduced the incidence, abundance, and size of liver metastases. Liver micrometastases were found in 100 % of mice treated with vehicle, 84 % of mice treated with OXA-11, and 79 % of mice treated with DC101 (19-24 mice per group). In contrast, liver micrometastases were found in only 52 % of 21 mice treated with OXA-11 plus DC101, and those present were significantly smaller and less numerous. Together, these findings indicate that OXA-11 is a potent and selective inhibitor of FAK phosphorylation in vitro and in vivo. OXA-11 slows tumor growth, potentiates the anti-tumor actions of cisplatin and--when combined with VEGFR-2 blockade--reduces metastasis of pancreatic neuroendocrine tumors in RIP-Tag2 mice.
Collapse
Affiliation(s)
- Ingrid Moen
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute, and Department of Anatomy, University of California - San Francisco, 513 Parnassus Avenue, Room S1349, San Francisco, CA, 94143-0452, USA.,Department of Biomedicine, University of Bergen, Bergen, Norway.,Oxy Solutions, Parkveien 33B, Oslo, Norway
| | - Matthew Gebre
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute, and Department of Anatomy, University of California - San Francisco, 513 Parnassus Avenue, Room S1349, San Francisco, CA, 94143-0452, USA.,School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Vanesa Alonso-Camino
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute, and Department of Anatomy, University of California - San Francisco, 513 Parnassus Avenue, Room S1349, San Francisco, CA, 94143-0452, USA.,Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Debbie Chen
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute, and Department of Anatomy, University of California - San Francisco, 513 Parnassus Avenue, Room S1349, San Francisco, CA, 94143-0452, USA.,School of Medicine, University of California - Davis, Sacramento, CA, USA
| | - David Epstein
- Cancer & Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Donald M McDonald
- UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute, and Department of Anatomy, University of California - San Francisco, 513 Parnassus Avenue, Room S1349, San Francisco, CA, 94143-0452, USA.
| |
Collapse
|
38
|
Vittori M, Motaln H, Turnšek TL. The study of glioma by xenotransplantation in zebrafish early life stages. J Histochem Cytochem 2015; 63:749-61. [PMID: 26109632 DOI: 10.1369/0022155415595670] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/19/2015] [Indexed: 12/31/2022] Open
Abstract
Zebrafish (Danio rerio) and their transparent embryos are becoming an increasingly popular tool for studying processes involved in tumor progression and in the search for novel tumor treatment approaches. The xenotransplantation of fluorescently labeled mammalian cancer cells into zebrafish embryos is an approach enabling relatively high-throughput in vivo analyses. The small size of the embryos as well as the relative simplicity of their manipulation and maintenance allow for large numbers of embryos to be processed efficiently in a short time and at low cost. Furthermore, the possibility of fluorescence microscopic imaging of tumor progression within zebrafish embryos and larvae holds unprecedented potential for the real-time visualization of these processes in vivo. This review presents the methodologies of xenotransplantation studies on zebrafish involving research on tumor invasion, proliferation, tumor-induced angiogenesis and screening for antitumor therapeutics. We further focus on the application of these zebrafish to the study of glioma; in particular, its most common and malignant form, glioblastoma.
Collapse
Affiliation(s)
- Miloš Vittori
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia (MV, HM, TLT)
| | - Helena Motaln
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia (MV, HM, TLT)
| | - Tamara Lah Turnšek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia (MV, HM, TLT)
| |
Collapse
|
39
|
Meierjohann S. Hypoxia-independent drivers of melanoma angiogenesis. Front Oncol 2015; 5:102. [PMID: 26000250 PMCID: PMC4419834 DOI: 10.3389/fonc.2015.00102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/15/2015] [Indexed: 12/28/2022] Open
Abstract
Tumor angiogenesis is a process which is traditionally regarded as the tumor’s response to low nutrient supply occurring under hypoxic conditions. However, hypoxia is not a pre-requisite for angiogenesis. The fact that even single tumor cells or small tumor cell aggregates are capable of attracting blood vessels reveals the early metastatic capability of tumor cells. This review sheds light on the hypoxia-independent mechanisms of tumor angiogenesis in melanoma.
Collapse
Affiliation(s)
- Svenja Meierjohann
- Department of Physiological Chemistry, Biocenter, University of Würzburg , Würzburg , Germany ; Comprehensive Cancer Center Mainfranken, University Hospital Würzburg , Würzburg , Germany
| |
Collapse
|
40
|
Oxygen transport in a three-dimensional microvascular network incorporated with early tumour growth and preexisting vessel cooption: numerical simulation study. BIOMED RESEARCH INTERNATIONAL 2015; 2015:476964. [PMID: 25695084 PMCID: PMC4324812 DOI: 10.1155/2015/476964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 11/17/2014] [Accepted: 11/17/2014] [Indexed: 02/03/2023]
Abstract
We propose a dynamic mathematical model of tissue oxygen transport by a preexisting three-dimensional microvascular network which provides nutrients for an in situ cancer at the very early stage of primary microtumour growth. The expanding tumour consumes oxygen during its invasion to the surrounding tissues and cooption of host vessels. The preexisting vessel cooption, remodelling and collapse are modelled by the changes of haemodynamic conditions due to the growing tumour. A detailed computational model of oxygen transport in tumour tissue is developed by considering (a) the time-varying oxygen advection diffusion equation within the microvessel segments, (b) the oxygen flux across the vessel walls, and (c) the oxygen diffusion and consumption within the tumour and surrounding healthy tissue. The results show the oxygen concentration distribution at different time points of early tumour growth. In addition, the influence of preexisting vessel density on the oxygen transport has been discussed. The proposed model not only provides a quantitative approach for investigating the interactions between tumour growth and oxygen delivery, but also is extendable to model other molecules or chemotherapeutic drug transport in the future study.
Collapse
|
41
|
Deng S, Wu Q, Zhao Y, Zheng X, Wu N, Pang J, Li X, Bi C, Liu X, Yang L, Liu L, Su W, Wei Y, Gong C. Biodegradable polymeric micelle-encapsulated doxorubicin suppresses tumor metastasis by killing circulating tumor cells. NANOSCALE 2015; 7:5270-80. [PMID: 25721713 DOI: 10.1039/c4nr07641a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Doxorubicin (Dox) micelles showed improved anti-metastasis activity by killing circulating tumor cells (CTCs) in zebrafish and mouse models, which may have potential applications in cancer therapy.
Collapse
Affiliation(s)
- Senyi Deng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy
- Cancer Center
- West China Hospital
- Sichuan University
- Chengdu, P. R. China
| | - Qinjie Wu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy
- Cancer Center
- West China Hospital
- Sichuan University
- Chengdu, P. R. China
| | - Yuwei Zhao
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy
- Cancer Center
- West China Hospital
- Sichuan University
- Chengdu, P. R. China
| | - Xin Zheng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy
- Cancer Center
- West China Hospital
- Sichuan University
- Chengdu, P. R. China
| | - Ni Wu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy
- Cancer Center
- West China Hospital
- Sichuan University
- Chengdu, P. R. China
| | - Jing Pang
- Department of Medical Oncology
- Cancer Center
- West China Hospital
- West China Medical School
- Sichuan University
| | - Xuejing Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy
- Cancer Center
- West China Hospital
- Sichuan University
- Chengdu, P. R. China
| | - Cheng Bi
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy
- Cancer Center
- West China Hospital
- Sichuan University
- Chengdu, P. R. China
| | - Xinyu Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy
- Cancer Center
- West China Hospital
- Sichuan University
- Chengdu, P. R. China
| | - Li Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy
- Cancer Center
- West China Hospital
- Sichuan University
- Chengdu, P. R. China
| | - Lei Liu
- Department of Medical Oncology
- Cancer Center
- West China Hospital
- West China Medical School
- Sichuan University
| | - Weijun Su
- School of Medicine
- Nankai University
- Tianjin, P. R. China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy
- Cancer Center
- West China Hospital
- Sichuan University
- Chengdu, P. R. China
| | - Changyang Gong
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy
- Cancer Center
- West China Hospital
- Sichuan University
- Chengdu, P. R. China
| |
Collapse
|
42
|
Yang JH, Hu J, Wan L, Chen LJ. Barbigerone inhibits tumor angiogenesis, growth and metastasis in melanoma. Asian Pac J Cancer Prev 2014; 15:167-74. [PMID: 24528020 DOI: 10.7314/apjcp.2014.15.1.167] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tumor angiogenesis, growth and metastasis are three closely related processes. We therefore investigated the effects of barbigerone on all three in the B16F10 tumor model established in both zebrafish and mouse models, and explored underlying molecular mechanisms. In vitro, barbigerone inhibited B16F10 cell proliferation, survival, migration and invasion and suppressed human umbilical vascular endothelial cell migration, invasion and tube formation in concentration-dependent manners. In the transgenic zebrafish model, treatment with 10μM barbigerone remarkably inhibited angiogenesis and tumor-associated angiogenesis by reducing blood vessel development more than 90%. In vivo, barbigerone significantly suppressed angiogenesis as measured by H and E staining of matrigel plugs and CD31 staining of B16F10 melanoma tumors in C57BL/6 mice. Furthermore, it exhibited highly potent activity at inhibiting tumor growth and metastasis to the lung of B16F10 melanoma cells injected into C57BL/6 mice. Western blotting revealed that barbigerone inhibited phosphorylation of AKT, FAK and MAPK family members, including ERK, JNK, and p38 MAPKs, in B16F10 cells mainly through the MEK3/6/p38 MAPK signaling pathway. These findings suggested for the first time that barbigerone could inhibit tumor-angiogenesis, tumor growth and lung metastasis via downregulation of the MEK3/6/p38 MAPK signaling pathway. The findings support further investigation of barbigerone as a potential anti-cancer drug.
Collapse
Affiliation(s)
- Jian-Hong Yang
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China E-mail : ,
| | | | | | | |
Collapse
|
43
|
Cisneros LH, Newman TJ. Quantifying metastatic inefficiency: rare genotypes versus rare dynamics. Phys Biol 2014; 11:046003. [PMID: 25033031 DOI: 10.1088/1478-3975/11/4/046003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We introduce and solve a 'null model' of stochastic metastatic colonization. The model is described by a single parameter θ: the ratio of the rate of cell division to the rate of cell death for a disseminated tumour cell in a given secondary tissue environment. We are primarily interested in the case in which colonizing cells are poorly adapted for proliferation in the local tissue environment, so that cell death is more likely than cell division, i.e. θ < 1. We quantify the rare event statistics for the successful establishment of a metastatic colony of size N. For N >> 1, we find that the probability of establishment is exponentially rare, as expected, and yet the mean time for such rare events is of the form ~log (N)/(1 - θ) while the standard deviation of colonization times is ~1/(1 - θ). Thus, counter to naive expectation, for θ < 1, the average time for establishment of successful metastatic colonies decreases with decreasing cell fitness, and colonies seeded from lower fitness cells show less stochastic variation in their growth. These results indicate that metastatic growth from poorly adapted cells is rare, exponentially explosive and essentially deterministic. These statements are brought into sharper focus by the finding that the temporal statistics of the early stages of metastatic colonization from low-fitness cells (θ < 1) are statistically indistinguishable from those initiated from high-fitness cells (θ > 1), i.e. the statistics show a duality mapping (1 - θ) --> (θ - 1). We conclude our analysis with a study of heterogeneity in the fitness of colonising cells, and describe a phase diagram delineating parameter regions in which metastatic colonization is dominated either by low or high fitness cells, showing that both are plausible given our current knowledge of physiological conditions in human cancer.
Collapse
Affiliation(s)
- Luis H Cisneros
- Center for Convergence of Physical Science and Cancer Biology, Arizona State University, Tempe, AZ 85287, USA
| | | |
Collapse
|
44
|
Yang J, He S, Li S, Zhang R, Peng A, Chen L. In vitro and in vivo antiangiogenic activity of caged polyprenylated xanthones isolated from Garcinia hanburyi Hook. f. Molecules 2013; 18:15305-13. [PMID: 24335612 PMCID: PMC6270171 DOI: 10.3390/molecules181215305] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 02/05/2023] Open
Abstract
Eleven known caged polyprenylated xanthones 1–11 were isolated from the resin of Garcinia hanburyi Hook. f., and their structures were identified by their MS, NMR and UV spectra. These xanthones showed significant cytotoxicities against four human cancer cell lines (HeLa, A549, HCT-116, and HepG-2) and strong inhibition against the proliferation of the HUVEC cell line in vitro by the MTT method. Furthermore, in an in vivo zebrafish model, xanthones 3 (morellic acid), 7 (gambogenin) and 9 (isogambogenic acid) showed comparable antiangiogenic activities with less toxicities than xanthone 1 (gambogic acid), as evaluated by death and heart rates of treated zebrafish. Xanthone 7 exhibited antiangiogenic activity with no toxicity at concentrations ranging from 8 µM to 16 µM. Meanwhile, xanthones 1, 3, 7 and 9 strongly inhibited the migration of HUVEC at a low concentration of 0.5 µM in HUVEC cell migration assay in vitro. Taken together, these findings strongly suggest that xanthone 7 might be a novel angiogenesis inhibitor.
Collapse
Affiliation(s)
| | | | | | | | | | - Lijuan Chen
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
45
|
Abstract
The zebrafish is a recent addition to animal models of human cancer, and studies using this model are rapidly contributing major insights. Zebrafish develop cancer spontaneously, after mutagen exposure and through transgenesis. The tumours resemble human cancers at the histological, gene expression and genomic levels. The ability to carry out in vivo imaging, chemical and genetic screens, and high-throughput transgenesis offers a unique opportunity to functionally characterize the cancer genome. Moreover, increasingly sophisticated modelling of combinations of genetic and epigenetic alterations will allow the zebrafish to complement what can be achieved in other models, such as mouse and human cell culture systems.
Collapse
Affiliation(s)
- Richard White
- Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.
| | | | | |
Collapse
|
46
|
Tobia C, Gariano G, De Sena G, Presta M. Zebrafish embryo as a tool to study tumor/endothelial cell cross-talk. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1371-7. [DOI: 10.1016/j.bbadis.2013.01.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/14/2013] [Accepted: 01/17/2013] [Indexed: 01/20/2023]
|
47
|
Schaafhausen MK, Yang WJ, Centanin L, Wittbrodt J, Bosserhoff A, Fischer A, Schartl M, Meierjohann S. Tumor angiogenesis is caused by single melanoma cells in a manner dependent on reactive oxygen species and NF-κB. J Cell Sci 2013; 126:3862-72. [PMID: 23843609 DOI: 10.1242/jcs.125021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Melanomas have a high angiogenic potential, but respond poorly to medical treatment and metastasize very early. To understand the early events in tumor angiogenesis, animal models with high tumor resolution and blood vessel resolution are required, which provide the opportunity to test the ability of small molecule inhibitors to modulate the angiogenic tumor program. We have established a transgenic melanoma angiogenesis model in the small laboratory fish species Japanese medaka. Here, pigment cells are transformed by an oncogenic receptor tyrosine kinase in fish expressing GFP throughout their vasculature. We show that angiogenesis occurs in a reactive oxygen species (ROS)- and NF-κB-dependent, but hypoxia-independent manner. Intriguingly, we observed that blood vessel sprouting is induced even by single transformed pigment cells. The oncogenic receptor as well as human melanoma cells harboring other oncogenes caused the production of pro-angiogenic factors, most prominently angiogenin, through NF-κB signaling. Inhibiting NF-κB prevented tumor angiogenesis and led to the regression of existing tumor blood vessels. In conclusion, our high-resolution medaka melanoma model discloses that ROS and NF-κB signaling from single tumor cells causes hypoxia-independent angiogenesis, thus, demonstrating that the intrinsic malignant tumor cell features are sufficient to initiate and maintain a pro-angiogenic signaling threshold.
Collapse
Affiliation(s)
- Maximilian K Schaafhausen
- Department of Physiological Chemistry I, Biocenter, Am Hubland, University of Wurzburg, Wurzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Donnem T, Hu J, Ferguson M, Adighibe O, Snell C, Harris AL, Gatter KC, Pezzella F. Vessel co-option in primary human tumors and metastases: an obstacle to effective anti-angiogenic treatment? Cancer Med 2013; 2:427-36. [PMID: 24156015 PMCID: PMC3799277 DOI: 10.1002/cam4.105] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/03/2013] [Accepted: 06/03/2013] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis has been regarded as essential for tumor growth and progression. Studies of many human tumors, however, suggest that their microcirculation may be provided by nonsprouting vessels and that a variety of tumors can grow and metastasize without angiogenesis. Vessel co-option, where tumor cells migrate along the preexisting vessels of the host organ, is regarded as an alternative tumor blood supply. Vessel co-option may occur in many malignancies, but so far mostly reported in highly vascularized tissues such as brain, lung, and liver. In primary and metastatic lung cancer and liver metastasis from different primary origins, as much as 10–30% of the tumors are reported to use this alternative blood supply. In addition, vessel co-option is introduced as a potential explanation of antiangiogenic drug resistance, although the impact of vessel co-option in this clinical setting is still to be further explored. In this review we discuss tumor vessel co-option with specific examples of vessel co-option in primary and secondary tumors and a consideration of the clinical implications of this alternative tumor blood supply. Both primary and metastatic tumors use preexisting host tissue vessels as their blood supply. Tumors may grow to a clinically detectable size without angiogenesis and makes them less likely to respond to drugs designed to target the abnormal vasculature produced by angiogenesis, but further studies to explore the biological and clinical implication of these co-opted vessels is needed.
Collapse
Affiliation(s)
- Tom Donnem
- Department of Oncology, University Hospital of North Norway Tromso, Norway ; Institute of Clinical Medicine, University of Tromso Tromso, Norway
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Mimeault M, Batra SK. Emergence of zebrafish models in oncology for validating novel anticancer drug targets and nanomaterials. Drug Discov Today 2013; 18:128-40. [PMID: 22903142 PMCID: PMC3562372 DOI: 10.1016/j.drudis.2012.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/04/2012] [Accepted: 08/03/2012] [Indexed: 12/16/2022]
Abstract
The in vivo zebrafish models have recently attracted great attention in molecular oncology to investigate multiple genetic alterations associated with the development of human cancers and validate novel anticancer drug targets. Particularly, the transparent zebrafish models can be used as a xenotransplantation system to rapidly assess the tumorigenicity and metastatic behavior of cancer stem and/or progenitor cells and their progenies. Moreover, the zebrafish models have emerged as powerful tools for an in vivo testing of novel anticancer agents and nanomaterials for counteracting tumor formation and metastases and improving the efficacy of current radiation and chemotherapeutic treatments against aggressive, metastatic and lethal cancers.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, College of Medicine, Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | | |
Collapse
|
50
|
Improving antiangiogenesis and anti-tumor activity of curcumin by biodegradable polymeric micelles. Biomaterials 2013; 34:1413-32. [DOI: 10.1016/j.biomaterials.2012.10.068] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 10/30/2012] [Indexed: 01/18/2023]
|