1
|
Bhatia A, Upadhyay AK, Sharma S. Screening and analysis of single nucleotide polymorphism in the 3'-UTR microRNA target regions and its implications for lung tumorigenesis. Pharmacogenomics 2024; 25:299-314. [PMID: 38884942 PMCID: PMC11404702 DOI: 10.1080/14622416.2024.2355864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
Aim: The study aims to identify high-impact single nucleotide polymorphisms (SNPs) in miRNA target sites of genes associated with lung cancer.Materials & methods: Lung cancer genes were obtained from Uniprot KB. miRNA target site SNPs were mined from MirSNP, miRdSNP and TargetScan. SNPs were shortlisted based on binding impact, minor allele frequency and conservation. Gene expression was analyzed in genes with high-impact SNPs in healthy versus lung cancer tissue. Additionally, enrichment, pathway and network analyzes were performed.Results: 19 high-impact SNPs were identified in miRNA target sites of lung cancer-associated genes. These SNPs affect miRNA binding and gene expression. The genes are involved in key cancer related pathways.Conclusion: The identified high-impact miRNA target site SNPs and associated genes provide a starting point for case-control studies in lung cancer patients in different populations.
Collapse
Affiliation(s)
- Anmol Bhatia
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Bhadson Rd, Adarsh Nagar, Prem Nagar, Patiala, Punjab, India
| | - Atul Kumar Upadhyay
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Bhadson Rd, Adarsh Nagar, Prem Nagar, Patiala, Punjab, India
| | - Siddharth Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Bhadson Rd, Adarsh Nagar, Prem Nagar, Patiala, Punjab, India
| |
Collapse
|
2
|
Belliveau J, Papoutsakis ET. The microRNomes of Chinese hamster ovary (CHO) cells and their extracellular vesicles, and how they respond to osmotic and ammonia stress. Biotechnol Bioeng 2023; 120:2700-2716. [PMID: 36788116 DOI: 10.1002/bit.28356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/23/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
A new area of focus in Chinese hamster ovary (CHO) biotechnology is the role of small (exosomes) and large (microvesicles or microparticles) extracellular vesicles (EVs). CHO cells in culture exchange large quantities of proteins and RNA through these EVs, yet the content and role of these EVs remain elusive. MicroRNAs (miRs or miRNA) are central to adaptive responses to stress and more broadly to changes in culture conditions. Given that EVs are highly enriched in miRs, and that EVs release large quantities of miRs both in vivo and in vitro, EVs and their miR content likely play an important role in adaptive responses. Here we report the miRNA landscape of CHO cells and their EVs under normal culture conditions and under ammonia and osmotic stress. We show that both cells and EVs are highly enriched in five miRs (among over 600 miRs) that make up about half of their total miR content, and that these highly enriched miRs differ significantly between normal and stress culture conditions. Notable is the high enrichment in miR-92a and miR-23a under normal culture conditions, in contrast to the high enrichment in let-7 family miRs (let-7c, let-7b, and let-7a) under both stress conditions. The latter suggests a preserved stress-responsive function of the let-7 miR family, one of the most highly preserved miR families across species, where among other functions, let-7 miRs regulate core oncogenes, which, depending on the biological context, may tip the balance between cell cycle arrest and apoptosis. While the expected-based on their profound enrichment-important role of these highly enriched miRs remains to be dissected, our data and analysis constitute an important resource for exploring the role of miRs in cell adaptation as well as for synthetic applications.
Collapse
Affiliation(s)
- Jessica Belliveau
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Eleftherios T Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
3
|
Li Y, Ye J, Xu S, Wang J. Circulating noncoding RNAs: promising biomarkers in liquid biopsy for the diagnosis, prognosis, and therapy of NSCLC. Discov Oncol 2023; 14:142. [PMID: 37526759 PMCID: PMC10393935 DOI: 10.1007/s12672-023-00686-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/11/2023] [Indexed: 08/02/2023] Open
Abstract
As the second most common malignant tumor in the world, lung cancer is a great threat to human health. In the past several decades, the role and mechanism of ncRNAs in lung cancer as a class of regulatory RNAs have been studied intensively. In particular, ncRNAs in body fluids have attracted increasing attention as biomarkers for lung cancer diagnosis and prognosis and for the evaluation of lung cancer treatment due to their low invasiveness and accessibility. As emerging tumor biomarkers in lung cancer, circulating ncRNAs are easy to obtain, independent of tissue specimens, and can well reflect the occurrence and progression of tumors due to their correlation with some biological processes in tumors. Circulating ncRNAs have a very high potential to serve as biomarkers and hold promise for the development of ncRNA-based therapeutics. In the current study, there has been extensive evidence that circulating ncRNA has clinical significance and value as a biomarker. In this review, we summarize how ncRNAs are generated and enter the circulation, remaining stable for subsequent detection. The feasibility of circulating ncRNAs as biomarkers in the diagnosis and prognosis of non-small cell lung cancer is also summarized. In the current systematic treatment of non-small cell lung cancer, circulating ncRNAs can also predict drug resistance, adverse reactions, and other events in targeted therapy, chemotherapy, immunotherapy, and radiotherapy and have promising potential to guide the systematic treatment of non-small cell lung cancer.
Collapse
Affiliation(s)
- Yilin Li
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110002, China
| | - Jun Ye
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110002, China
| | - Shun Xu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110002, China.
| | - Jiajun Wang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110002, China.
| |
Collapse
|
4
|
Xu X, Yang M, Liu X, Gong A, Guo Q, Xu W, Qian H. Tripartite motif-containing 68-stabilized modulator of apoptosis-1 retards the proliferation and metastasis of lung cancer. Biochem Biophys Res Commun 2023; 648:11-20. [PMID: 36724555 DOI: 10.1016/j.bbrc.2023.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Non-small cell lung cancer (NSCLC) is a major global health threat with high incidence and mortality. Modulator of apoptosis-1 (MOAP1), also named MAP-1, belongs to the PNMA gene family and plays a key role in regulating apoptosis and tumor growth. However, its influences on NSCLC are largely unclear, and thus were explored in our present study, particularly the underlying mechanisms. Here, we initially find that MOAP1 expression is significantly decreased in NSCLC patients compared with the normal ones, and negatively correlated with the TNM and pathologic stages among patients. Additionally, MOAP1 low expression predicts a poorer prognosis than that of the NSCLC patients expressing higher MOAP1. Our in vitro studies confirm much lower MOAP1 expression in NSCLC cell lines. Of note, promoting MOAP1 expression strongly reduces the proliferation and induces apoptosis in NSCLC cells, accompanied with cell cycle arrest distributed in G0/G1 phase. Moreover, we find that MOAP1 has a negative correlation with Th2 cells' infiltration, but a positive correlation with the infiltration levels of eosinophils. Epithelial mesenchymal transition (EMT) process is also greatly restrained in NSCLC cells with MOAP1 over-expression, as proved by the reduced migration and invasion of cells. We further identify a positive correlation between MOAP1 and tripartite motif-containing 68 (TRIM68) in patients with NSCLC. Further analysis shows that TRIM68 directly interacts with MOAP1 and stabilizes MOAP1. Importantly, TRIM68 can activate MOAP1 by inducing the K63-linked polyubiquitination of MOAP1. Finally, animal studies verify that promoting MOAP1 efficiently suppresses tumor growth and lung metastasis in the nude mice. Collectively, our results reveal a novel mechanism through which MOAP1 stabilized by TRIM68 inhibits NSCLC development and targeting MOAP1 for its up-regulation may be a promising therapeutic strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China; Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Mengting Yang
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xueling Liu
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Aihua Gong
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Qi Guo
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Wenrong Xu
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| | - Hui Qian
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
5
|
Recent strategies for electrochemical sensing detection of miRNAs in lung cancer. Anal Biochem 2023; 661:114986. [PMID: 36384188 DOI: 10.1016/j.ab.2022.114986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022]
Abstract
MicroRNAs (miRNAs) associated with lung cancer are diversifying. MiR-21, Let-7, and miR-141 are common diagnostic targets. Some new lung cancer miRNAs, such as miR-25, miR-145, and miR-126, have received increasing attention. Although various techniques are available for the analysis of lung cancer miRNAs, electrochemistry has been recognized for its high sensitivity, low cost, and rapid response. However, how to realize the signal amplification is one of the most important contents in the design of electrochemical biosensors. Herein, we mainly introduce the amplification strategy based on enzyme-free amplification and signal conversion, including non-linear HCR, catalytic hairpin assembly (CHA), electrochemiluminescence (ECL), and Faraday cage. Furthermore, new progress has emerged in the fields of nanomaterials, low oxidation potential, and simultaneous detection of multiple targets. Finally, we summarize some new challenges that electrochemical techniques may encounter in the future, such as improving single-base discrimination ability, shortening electrochemical detection time, and providing real body fluid samples assay.
Collapse
|
6
|
Hu M, Chen Z, Liao Y, Wu J, Zheng D, Zhang H. Clinical value of the expression levels of protein tyrosine phosphatase non-receptor type 22.6 mRNA in peripheral blood mononuclear cells in Crohn's disease. Clin Exp Immunol 2022; 209:311-315. [PMID: 35751647 PMCID: PMC9521657 DOI: 10.1093/cei/uxac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE To explore the relationship between the expression levels of protein tyrosine phosphatase non-receptor type (PTPN) 22.6 mRNA in peripheral blood mononuclear cells (PBMCs) and the disease activity as well as clinical characteristics in Crohn's disease (CD) patients. METHODS A total of 480 subjects were enrolled. Data were collected including baseline information, expression levels of PTPN22.6 mRNA in PBMCs for all subjects, C-reactive protein (CRP) levels in serum, clinical characteristics, and disease activity for all patients. Expression levels of PTPN22.6 mRNA in PBMCs, CRP levels in serum, clinical characteristics according to Montreal Classification [8], and Crohn's disease activity index (CDAI) were the primary observation outcomes. RESULTS The expression levels of PTPN22.6 mRNA (P = 0.032) in PBMCs and serum CRP levels (P < 0.001) were significantly higher in active CD patients than in inactive CD patients (P = 0.032). Correlation analysis showed that there was a positive correlation between expression levels of PTPN22.6 mRNA and CDAI value (r = 0.512, P = 0.003), as well as expression levels of PTPN22.6 mRNA and CRP levels in the CD group (r = 0.456, P = 0.006). There were significantly higher expression levels of PTPN22.6 mRNA in PBMCs in patients with structuring behavior than that in patients with non-stricturing and non-penetrating (NSNP) behaviors (P = 0.018) and penetrating behaviors (P = 0.024). CONCLUSIONS The expression levels of PTPN22.6 mRNA can be used as an indicator to help predict CD diagnosis, disease activity, serum CRP level, and behavior type of CD disease.
Collapse
Affiliation(s)
| | | | - Yusheng Liao
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory for Molecular Diagnosis of Hubei Province, Wuhan, People’s Republic of China
| | - Jie Wu
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory for Molecular Diagnosis of Hubei Province, Wuhan, People’s Republic of China
| | - Dan Zheng
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory for Molecular Diagnosis of Hubei Province, Wuhan, People’s Republic of China
| | - Heng Zhang
- Correspondence: Heng Zhang, Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology Sheng Li Street 26, Wuhan 430014, Hubei Province, People’s Republic of China.
| |
Collapse
|
7
|
da Silva J, da Costa CC, de Farias Ramos I, Laus AC, Sussuchi L, Reis RM, Khayat AS, Cavalli LR, Pereira SR. Upregulated miRNAs on the TP53 and RB1 Binding Seedless Regions in High-Risk HPV-Associated Penile Cancer. Front Genet 2022; 13:875939. [PMID: 35812732 PMCID: PMC9263206 DOI: 10.3389/fgene.2022.875939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
Cancer development by the human papillomavirus (HPV) infection can occur through the canonical HPV/p53/RB1 pathway mediated by the E2/E6/E7 viral oncoproteins. During the transformation process, HPV inserts its genetic material into host Integration Sites (IS), affecting coding genes and miRNAs. In penile cancer (PeCa) there is limited data on the miRNAs that regulate mRNA targets associated with HPV, such as the TP53 and RB1 genes. Considering the high frequency of HPV infection in PeCa patients in Northeast Brazil, global miRNA expression profiling was performed in high-risk HPV-associated PeCa that presented with TP53 and RB1 mRNA downregulated expression. The miRNA expression profile of 22 PeCa tissue samples and five non-tumor penile tissues showed 507 differentially expressed miRNAs: 494 downregulated and 13 upregulated (let-7a-5p, miR-130a-3p, miR-142-3p, miR-15b-5p miR-16-5p, miR-200c-3p, miR-205-5p, miR-21-5p, miR-223-3p, miR-22-3p, miR-25-3p, miR-31-5p and miR-93-5p), of which 11 were identified to be in HPV16-IS and targeting TP53 and RB1 genes. One hundred and thirty-one and 490 miRNA binding sites were observed for TP53 and RB1, respectively, most of which were in seedless regions. These findings suggest that up-regulation of miRNA expression can directly repress TP53 and RB1 expression by their binding sites in the non-canonical seedless regions.
Collapse
Affiliation(s)
- Jenilson da Silva
- Postgraduate Program in Health Science, Federal University of Maranhão, São Luís, Brazil
| | - Carla Cutrim da Costa
- Degree in Biological Sciences, Department of Biology, Federal University of Maranhão, São Luís, Brazil
| | - Ingryd de Farias Ramos
- Postgraduate Program in Oncology and Medical Sciences, Federal University of Pará, Belém, Brazil
| | - Ana Carolina Laus
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Luciane Sussuchi
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - André Salim Khayat
- Oncology Research Center, Federal University of Pará, Belém, Brazil
- Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | - Silma Regina Pereira
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luís, Brazil
- *Correspondence: Silma Regina Pereira,
| |
Collapse
|
8
|
Fahmy HM, Abu Serea ES, Salah-Eldin RE, Al-Hafiry SA, Ali MK, Shalan AE, Lanceros-Méndez S. Recent Progress in Graphene- and Related Carbon-Nanomaterial-based Electrochemical Biosensors for Early Disease Detection. ACS Biomater Sci Eng 2022; 8:964-1000. [PMID: 35229605 DOI: 10.1021/acsbiomaterials.1c00710] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Graphene- and carbon-based nanomaterials are key materials to develop advanced biosensors for the sensitive detection of many biomarkers owing to their unique properties. Biosensors have attracted increasing interest because they allow efficacious, sensitive, selective, rapid, and low-cost diagnosis. Biosensors are analytical devices based on receptors for the process of detection and transducers for response measuring. Biosensors can be based on electrochemical, piezoelectric, thermal, and optical transduction mechanisms. Early virus identification provides critical information about potentially effective and selective therapies, extends the therapeutic window, and thereby reduces morbidity. The sensitivity and selectivity of graphene can be amended via functionalizing it or conjoining it with further materials. Amendment of the optical and electrical features of the hybrid structure by introducing appropriate functional groups or counterparts is especially appealing for quick and easy-to-use virus detection. Various techniques for the electrochemical detection of viruses depending on antigen-antibody interactions or DNA hybridization are discussed in this work, and the reasons behind using graphene and related carbon nanomaterials for the fabrication are presented and discussed. We review the existing state-of-the-art directions of graphene-based classifications for detecting DNA, protein, and hormone biomarkers and summarize the use of the different biosensors to detect several diseases, like cancer, Alzheimer's disease, and diabetes, to sense numerous viruses, including SARS-CoV-2, human immunodeficiency virus, rotavirus, Zika virus, and hepatitis B virus, and to detect the recent pandemic virus COVID-19. The general concepts, mechanisms of action, benefits, and disadvantages of advanced virus biosensors are discussed to afford beneficial evidence of the creation and manufacture of innovative virus biosensors. We emphasize that graphene-based nanomaterials are ideal candidates for electrochemical biosensor engineering due to their special and tunable physicochemical properties.
Collapse
Affiliation(s)
- Heba Mohamed Fahmy
- Biophysics Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Esraa Samy Abu Serea
- Chemistry and Biochemistry Department, Faculty of Science, Cairo University, 12613 Giza, Egypt.,BCMaterials-Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Reem Essam Salah-Eldin
- Chemistry and Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | | | - Miar Khaled Ali
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Ahmed Esmail Shalan
- BCMaterials-Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa 48940, Spain.,Central Metallurgical Research and Development Institute, P.O. Box 87, Helwan, 11422 Cairo, Egypt
| | - Senentxu Lanceros-Méndez
- BCMaterials-Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa 48940, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
9
|
Su Y, Wang W, Meng X. Revealing the Roles of MOAP1 in Diseases: A Review. Cells 2022; 11:cells11050889. [PMID: 35269511 PMCID: PMC8909730 DOI: 10.3390/cells11050889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Modulator of apoptosis protein1 (MOAP1), also known as MAP1 and PNMA4, belongs to the PNMA gene family consisting of at least 15 genes located on different chromosomes. MOAP1 interacts with the BAX protein, one of the most important apoptosis regulators. Due to its critical role in a few of disease-associated pathways, MOAP1 is associated with many diseases such as cancers and neurological diseases. In this study, we introduced MOAP1 and its biological functions and reviewed the associations between MOAP1 and a few diseases including cancers, neurological diseases, and other diseases such as inflammation and heart diseases. We also explained possible biological mechanisms underlying the associations between MOAP1 and these diseases, and discussed a few future directions regarding MOAP1, especially its potential roles in neurodegenerative disorders. In summary, MOAP1 plays a critical role in the development and progression of cancers and neurological diseases by regulating a few genes related to cellular apoptosis such as BAX and RASSF1A and interacting with disease-associated miRNAs, including miR-25 and miR1228.
Collapse
|
10
|
Bacolod MD, Fisher PB, Barany F. Multi-CpG linear regression models to accurately predict paclitaxel and docetaxel activity in cancer cell lines. Adv Cancer Res 2022; 158:233-292. [PMID: 36990534 DOI: 10.1016/bs.acr.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The microtubule-targeting paclitaxel (PTX) and docetaxel (DTX) are widely used chemotherapeutic agents. However, the dysregulation of apoptotic processes, microtubule-binding proteins, and multi-drug resistance efflux and influx proteins can alter the efficacy of taxane drugs. In this review, we have created multi-CpG linear regression models to predict the activities of PTX and DTX drugs through the integration of publicly available pharmacological and genome-wide molecular profiling datasets generated using hundreds of cancer cell lines of diverse tissue of origin. Our findings indicate that linear regression models based on CpG methylation levels can predict PTX and DTX activities (log-fold change in viability relative to DMSO) with high precision. For example, a 287-CpG model predicts PTX activity at R2 of 0.985 among 399 cell lines. Just as precise (R2=0.996) is a 342-CpG model for predicting DTX activity in 390 cell lines. However, our predictive models, which employ a combination of mRNA expression and mutation as input variables, are less accurate compared to the CpG-based models. While a 290 mRNA/mutation model was able to predict PTX activity with R2 of 0.830 (for 546 cell lines), a 236 mRNA/mutation model could calculate DTX activity at R2 of 0.751 (for 531 cell lines). The CpG-based models restricted to lung cancer cell lines were also highly predictive (R2≥0.980) for PTX (74 CpGs, 88 cell lines) and DTX (58 CpGs, 83 cell lines). The underlying molecular biology behind taxane activity/resistance is evident in these models. Indeed, many of the genes represented in PTX or DTX CpG-based models have functionalities related to apoptosis (e.g., ACIN1, TP73, TNFRSF10B, DNASE1, DFFB, CREB1, BNIP3), and mitosis/microtubules (e.g., MAD1L1, ANAPC2, EML4, PARP3, CCT6A, JAKMIP1). Also represented are genes involved in epigenetic regulation (HDAC4, DNMT3B, and histone demethylases KDM4B, KDM4C, KDM2B, and KDM7A), and those that have never been previously linked to taxane activity (DIP2C, PTPRN2, TTC23, SHANK2). In summary, it is possible to accurately predict taxane activity in cell lines based entirely on methylation at multiple CpG sites.
Collapse
|
11
|
Pandeya A, Khalko RK, Mishra A, Singh N, Singh S, Saha S, Yadav S, Saxena S, Gosipatala SB. Human Cytomegalovirus miR-UL70-3p Downregulates the H 2O 2-Induced Apoptosis by Targeting the Modulator of Apoptosis-1 (MOAP1). Int J Mol Sci 2021; 23:ijms23010018. [PMID: 35008453 PMCID: PMC8744590 DOI: 10.3390/ijms23010018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 01/01/2023] Open
Abstract
Human Cytomegalovirus (HCMV) is a prototypic beta herpesvirus, causing persistent infections in humans. There are medications that are used to treat the symptoms; however, there is no cure yet. Thus, understanding the molecular mechanisms of HCMV replication and its persistence may reveal new prevention strategies. HCMV evasive strategies on the antiviral responses of the human host largely rely on its significant portion of genome. Numerous studies have highlighted the importance of miRNA-mediated regulation of apoptosis, which is an innate immune mechanism that eradicates virus-infected cells. In this study, we explore the antiapoptotic role of hcmv-miR-UL70-3p in HEK293T cells. We establish that hcmv-miR-UL70-3p targets the proapoptotic gene Modulator of Apoptosis-1 (MOAP1) through interaction with its 3'UTR region of mRNA. The ectopic expression of hcmv-miR-UL70-3p mimic significantly downregulates the H2O2-induced apoptosis through the translational repression of MOAP1. Silencing of MOAP1 through siRNA also inhibits the H2O2-induced apoptosis, which further supports the hcmv-miR-UL70-3p mediated antiapoptotic effect by regulating MOAP1 expression. These results uncover a role for hcmv-miR-UL70-3p and its target MOAP1 in regulating apoptosis.
Collapse
Affiliation(s)
- Abhishek Pandeya
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India; (A.P.); (R.K.K.); (A.M.); (S.S.)
| | - Raj Kumar Khalko
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India; (A.P.); (R.K.K.); (A.M.); (S.S.)
| | - Anup Mishra
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India; (A.P.); (R.K.K.); (A.M.); (S.S.)
| | - Nishant Singh
- Developmental Toxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, India; (N.S.); (S.S.); (S.Y.)
| | - Sukhveer Singh
- Developmental Toxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, India; (N.S.); (S.S.); (S.Y.)
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India;
| | - Sanjay Yadav
- Developmental Toxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, India; (N.S.); (S.S.); (S.Y.)
- Department of Biochemistry, All India Institute of Medical Sciences, Rae Bareli 229405, India
| | - Sangeeta Saxena
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India; (A.P.); (R.K.K.); (A.M.); (S.S.)
| | - Sunil Babu Gosipatala
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India; (A.P.); (R.K.K.); (A.M.); (S.S.)
- Correspondence: or ; Tel.: +91-9455036926
| |
Collapse
|
12
|
Liu S, Chen W, Hu H, Zhang T, Wu T, Li X, Li Y, Kong Q, Lu H, Lu Z. Long noncoding RNA PVT1 promotes breast cancer proliferation and metastasis by binding miR-128-3p and UPF1. Breast Cancer Res 2021; 23:115. [PMID: 34922601 PMCID: PMC8684126 DOI: 10.1186/s13058-021-01491-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/29/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Mounting evidence supports that long noncoding RNAs (lncRNAs) have critical roles during cancer initiation and progression. In this study, we report that the plasmacytoma variant translocation 1 (PVT1) lncRNA is involved in breast cancer progression. METHODS qRT-PCR and western blot were performed to detect the gene and protein expression. Colony formation would healing and transwell assays were used to detect cell function. Dual-luciferase reporter assay and RNA pull-down experiments were used to examine the mechanisms interaction between molecules. Orthotopic mouse models were established to evaluate the influence of PVT1 on tumor growth and metastasis in vivo. RESULTS PVT1 is significant upregulated in breast cancer patients' plasma and cell lines. PVT1 promotes breast cancer cell proliferation and metastasis both in vitro and in vivo. Mechanistically, PVT1 upregulates FOXQ1 via miR-128-3p and promotes epithelial-mesenchymal transition. In addition, PVT1 binds to the UPF1 protein, thereby inducing epithelial-mesenchymal transition, proliferation and metastasis in breast cancer cells. CONCLUSION PVT1 may act as an oncogene in breast cancer through binding miR-128-3p and UPF1 and represents a potential target for BC therapeutic development.
Collapse
Affiliation(s)
- Shuiyi Liu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014, China
- Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Weiqun Chen
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014, China
- Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Hui Hu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014, China
| | - Tianzhu Zhang
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014, China
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Tangwei Wu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014, China
| | - Xiaoyi Li
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014, China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Qinzhi Kong
- Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Hongda Lu
- Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.
| | - Zhongxin Lu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014, China.
- Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
13
|
Hassanein SS, Ibrahim SA, Abdel-Mawgood AL. Cell Behavior of Non-Small Cell Lung Cancer Is at EGFR and MicroRNAs Hands. Int J Mol Sci 2021; 22:12496. [PMID: 34830377 PMCID: PMC8621388 DOI: 10.3390/ijms222212496] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
Lung cancer is a complex disease associated with gene mutations, particularly mutations of Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) and epidermal growth factor receptor (EGFR). Non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) are the two major types of lung cancer. The former includes most lung cancers (85%) and are commonly associated with EGFR mutations. Several EGFR-tyrosine kinase inhibitors (EGFR-TKIs), including erlotinib, gefitinib, and osimertinib, are effective therapeutic agents in EGFR-mutated NSCLC. However, their effectiveness is limited by the development (acquired) or presence of intrinsic drug resistance. MicroRNAs (miRNAs) are key gene regulators that play a profound role in the development and outcomes for NSCLC via their role as oncogenes or oncosuppressors. The regulatory role of miRNA-dependent EGFR crosstalk depends on EGFR signaling pathway, including Rat Sarcoma/Rapidly Accelerated Fibrosarcoma/Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase 1/2 (Ras/Raf/MEK/ERK1/2), Signal Transducer and Activator of Transcription (STAT), Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells (NF-kB), phosphoinositide 3-kinase/protein kinase B (PI3K/AKT), Janus kinase 1 (JAK1), and growth factor receptor-bound protein 2 (GRB2). Dysregulated expression of miRNAs affects sensitivity to treatment with EGFR-TKIs. Thus, abnormalities in miRNA-dependent EGFR crosstalk can be used as diagnostic and prognostic markers, as well as therapeutic targets in NSCLC. In this review, we present an overview of miRNA-dependent EGFR expression regulation, which modulates the behavior and progression of NSCLC.
Collapse
Affiliation(s)
- Sarah Sayed Hassanein
- Biotechnology Program, Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt;
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | | | - Ahmed Lotfy Abdel-Mawgood
- Biotechnology Program, Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt;
| |
Collapse
|
14
|
Yang L, Li L, Chang P, Wei M, Chen J, Zhu C, Jia J. miR-25 Regulates Gastric Cancer Cell Growth and Apoptosis by Targeting EGR2. Front Genet 2021; 12:690196. [PMID: 34764975 PMCID: PMC8577570 DOI: 10.3389/fgene.2021.690196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/01/2021] [Indexed: 01/07/2023] Open
Abstract
Gastric cancer is one of the most common malignancies harmful to human health. The search for effective drugs or gene therapy has aroused the attention of scientists. So far, microRNAs, as small non-coding RNAs, have the potential to be therapeutic targets for cancer. Herein, we found a highly expressed miR-25 in gastric cancer cell. However, the function of miR-25 for gastric cancer cell growth and apoptosis was unknown. Functionally, we used RT-qPCR, western blot, CCK-8, and flow cytometry to detect gastric cancer cell growth and apoptosis. The results indicated that miR-25 promoted gastric cancer cell growth and inhibited their apoptosis. Mechanistically, we found that a gene EGR2 was a potential target gene of miR-25. Further dual-luciferase results supported this prediction. Moreover, knockdown of EGR2 promoted gastric cancer cell growth and inhibited their apoptosis by flow cytometry detection. Altogether, these findings revealed miR-25 as a regulator of gastric cancer cell growth and apoptosis through targeting EGR2.
Collapse
Affiliation(s)
- Liuqing Yang
- Second Affiliated Hospital of Xi'an Medical University, Xi' an, China
| | - Lina Li
- First Department of Medical Oncology, Affiliated Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Pan Chang
- Second Affiliated Hospital of Xi'an Medical University, Xi' an, China
| | - Ming Wei
- Department of Pharmacology, Xi'an Medical University, Xi'an, China
| | - Jianting Chen
- Second Affiliated Hospital of Xi'an Medical University, Xi' an, China
| | - Chaofan Zhu
- Second Affiliated Hospital of Xi'an Medical University, Xi' an, China
| | - Jing Jia
- Second Affiliated Hospital of Xi'an Medical University, Xi' an, China
| |
Collapse
|
15
|
Mahmoudian M, Razmara E, Mahmud Hussen B, Simiyari M, Lotfizadeh N, Motaghed H, Khazraei Monfared A, Montazeri M, Babashah S. Identification of a six-microRNA signature as a potential diagnostic biomarker in breast cancer tissues. J Clin Lab Anal 2021; 35:e24010. [PMID: 34528314 PMCID: PMC8605139 DOI: 10.1002/jcla.24010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is by far the most common malignancy among women. Epigenetic modulators, microRNAs in particular, may set stages for BC development and its progression. Herein, we aimed to assess the diagnostic potentiality of a signature of six miRNAs (i.e., hsa-miR-25-3p, -29a-5p, -105-3p, -181b1-5p, -335-5p, and -339-5p) in BC and adjacent non-tumor tissues. METHODS A pair of 50 tumor and adjacent non-tumor samples were taken from BC patients. The expression of each candidate miRNA was measured using quantitative reverse transcription PCR. To investigate the possible roles of each miRNA and their impressions on BC prognosis, in silico tools were used. Receiver operating characteristic (ROC) curves were performed to determine the diagnostic accuracy of each miRNA and the possible association of their expression with clinicopathological characteristics was analyzed. RESULTS Our findings showed the upregulation of hsa-miR-25-3p, -29a-5p, -105-3p, and -181b1-5p, and the downregulation of hsa-miR-335-5p and -339-5p in BC tumor compared to corresponding adjacent tissues. Except for hsa-miR-339-5p, the up-/down-regulation of the candidate miRNAs was associated with TNM stages. Except for hsa-miR-105-3p, each candidate miRNA was correlated with HER-2 status. ROC curve analysis showed that the signature of six-miRNA is a potential biomarker distinguishing between tumor and non-tumor breast tissue samples. CONCLUSION We showed that the dysregulation of a novel signature of six-miRNA can be used as a potential biomarker for BC diagnosis.
Collapse
Affiliation(s)
- Mojdeh Mahmoudian
- Department of GeneticsFaculty of SciencesScience and Research BranchIslamic Azad UniversityTehranIran
| | - Ehsan Razmara
- Department of Medical GeneticsFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Bashdar Mahmud Hussen
- Department of PharmacognosyCollege of PharmacyHawler Medical UniversityKurdistan RegionIraq
| | - Mandana Simiyari
- Department of Veterinary MedicineFaculty of Veterinary MedicineTabriz BranchIslamic Azad UniversityTabrizIran
| | - Nazanin Lotfizadeh
- Department of BiologyFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Hoda Motaghed
- Department of BiologyFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Arefeh Khazraei Monfared
- Department of BiologyFaculty of Biological SciencesIslamic Azad University‐Tehran North BranchTehranIran
| | - Maryam Montazeri
- Department of Medical BiotechnologyFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Sadegh Babashah
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
16
|
Jiang HG, Dai CH, Xu YP, Jiang Q, Xia XB, Shu Y, Li J. Four plasma miRNAs act as biomarkers for diagnosis and prognosis of non-small cell lung cancer. Oncol Lett 2021; 22:792. [PMID: 34630703 DOI: 10.3892/ol.2021.13053] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022] Open
Abstract
Previous studies have reported that the aberrant expression of circulating microRNAs (miRNAs/miRs) can be used as diagnostic and prognostic markers in non-small cell lung cancer (NSCLC). The present study aimed to assess the diagnostic and prognostic predictive values of four plasma miRNAs for NSCLC. A total of 12 candidate miRNAs were selected that have previously been reported to be aberrantly expressed in NSCLC, and their plasma levels in the training set were detected via reverse transcription-quantitative PCR analysis. The screened out miRNAs were further validated in the testing set. The area under the curve (AUC) of the receiver operating characteristic curve was constructed to evaluate diagnostic performance. Kaplan-Meier survival analysis was performed to assess the association between the plasma miRNA levels and disease-free survival (DFS) time. The results demonstrated that 4/12 plasma miRNAs (miR-210, miR-1290, miR-150 and miR-21-5p) were highly expressed in patients with NSCLC compared with their expression levels in patients with benign lung disease (BLD) and healthy controls in the training and testing sets, respectively. The AUC values of the four-miRNA panel were 0.96 and 0.93 in the training and testing sets, respectively, for distinguishing patients with NSCLC from healthy controls, which were similar to the AUC values for distinguishing patients with NSCLC from patients with BLD (0.96 and 0.94). The AUC values of the four-miRNA panel in patients with stage I NSCLC were comparable to that of patients with stage II-III NSCLC (0.942 and 0.965). Patients with high plasma levels of miR-210 and miR-150 had worse DFS than those with low plasma levels of these miRNAs. In addition, patients whose plasma levels of the four miRNAs decreased by >50% after surgery exhibited a good DFS. Taken together, the results of the present study suggest that these four miRNAs (miR-210, miR-1290, miR-150 and miR-21-5p) act as useful biomarkers for early diagnosis and prognosis of NSCLC.
Collapse
Affiliation(s)
- He-Guo Jiang
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Chun-Hua Dai
- Department of Radiotherapy, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Ya-Ping Xu
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Qian Jiang
- Center of Medical Experiment, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Xian-Bin Xia
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yang Shu
- Center of Medical Experiment, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Jian Li
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
17
|
Wang W, He L, Ouyang C, Chen C, Xu X, Ye X. Key Common Genes in Obstructive Sleep Apnea and Lung Cancer are Associated with Prognosis of Lung Cancer Patients. Int J Gen Med 2021; 14:5381-5396. [PMID: 34526807 PMCID: PMC8435481 DOI: 10.2147/ijgm.s330681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/30/2021] [Indexed: 12/29/2022] Open
Abstract
Background Obstructive sleep apnea (OSA) is associated with an increased risk of lung cancer. This study aimed to identify key common genes in OSA and lung cancer and explore their prognostic value in lung cancer. Materials and Methods Transcriptome data of OSA and lung cancer were obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) database, respectively. Genes associated with OSA and lung cancer were screened by weighted gene co-expression network analysis (WGCNA). Univariate and multivariate Cox regression algorithms were applied to identify key genes and construct the risk score model. Receiver operating characteristic (ROC) curves and a nomogram were performed to evaluate the prognostic value of the risk score. The screened key genes and their roles in prognosis were validated by GEO (GSE30219) analysis. Results A total of 104 common genes were screened in OSA and lung cancer by WGCNA. Modulator of apoptosis 1 (MOAP1), chromobox 7 (CBX7), platelet-derived growth factor subunit B (PDGFB), and mitogen-activated protein kinase 3 (MAP2K3) were identified as key genes by univariate and then multivariate Cox regression analyses. The risk score model was constructed on the basis of four gene signatures. ROC curves and the nomogram showed that the risk score had a high accuracy in predicting the survival of patients with lung cancer. In addition, the result of multivariate Cox regression analysis indicated that the risk score was an independent prognostic factor in lung cancer. Conclusion This study constructed a unique model for predicting the prognosis of lung cancer patients on the basis of four genes common to OSA and lung cancer. These genes may also serve as candidate genes to improve our knowledge about the underlying mechanism of OSA that leads to an increased risk of lung cancer at the genetic level.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Lirong He
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Chao Ouyang
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Chong Chen
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Xiaofeng Xu
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Xiaoqun Ye
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| |
Collapse
|
18
|
Carrella S, Massa F, Indrieri A. The Role of MicroRNAs in Mitochondria-Mediated Eye Diseases. Front Cell Dev Biol 2021; 9:653522. [PMID: 34222230 PMCID: PMC8249810 DOI: 10.3389/fcell.2021.653522] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
The retina is among the most metabolically active tissues with high-energy demands. The peculiar distribution of mitochondria in cells of retinal layers is necessary to assure the appropriate energy supply for the transmission of the light signal. Photoreceptor cells (PRs), retinal pigment epithelium (RPE), and retinal ganglion cells (RGCs) present a great concentration of mitochondria, which makes them particularly sensitive to mitochondrial dysfunction. To date, visual loss has been extensively correlated to defective mitochondrial functions. Many mitochondrial diseases (MDs) show indeed neuro-ophthalmic manifestations, including retinal and optic nerve phenotypes. Moreover, abnormal mitochondrial functions are frequently found in the most common retinal pathologies, i.e., glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR), that share clinical similarities with the hereditary primary MDs. MicroRNAs (miRNAs) are established as key regulators of several developmental, physiological, and pathological processes. Dysregulated miRNA expression profiles in retinal degeneration models and in patients underline the potentiality of miRNA modulation as a possible gene/mutation-independent strategy in retinal diseases and highlight their promising role as disease predictive or prognostic biomarkers. In this review, we will summarize the current knowledge about the participation of miRNAs in both rare and common mitochondria-mediated eye diseases. Definitely, given the involvement of miRNAs in retina pathologies and therapy as well as their use as molecular biomarkers, they represent a determining target for clinical applications.
Collapse
Affiliation(s)
| | - Filomena Massa
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | - Alessia Indrieri
- Telethon Institute of Genetics and Medicine, Naples, Italy.,Institute for Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| |
Collapse
|
19
|
Prediction of novel miRNA biomarker candidates for diagnostic and prognostic analysis of STAD and LIHC: An integrated in silico approach. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
20
|
Yu Y, Tong Y, Zhong A, Wang Y, Lu R, Guo L. Identification of Serum microRNA-25 as a novel biomarker for pancreatic cancer. Medicine (Baltimore) 2020; 99:e23863. [PMID: 33350781 PMCID: PMC7769376 DOI: 10.1097/md.0000000000023863] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 11/23/2020] [Indexed: 12/24/2022] Open
Abstract
To identify serum microRNA-25 (miR-25) as a diagnostic biomarker for pancreatic cancer (PCa) and to evaluate its supplementary role with serum carbohydrate antigen 19-9 (CA19-9) in early identification of cancers.Eighty patients with pancreatic cancer and 91 non-cancer controls were enrolled in this study. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) was used to detect the expression level of miR-25. Levels of CA19-9, carcinoembryonic antigen (CEA) and carbohydrate antigen 125 (CA125) were measured by chemiluminescent immunoassay. The logistic model was established to evaluate the correlation of miR-25 with clinical characteristics. A risk model for PCa was conducted by R statistical software. Diagnostic utility for PCa and correlation with clinical characteristics were analyzed.The expression level of miR-25, in the PCa group was significantly higher (P < .05). Risk Model illustrated the relation between miR-25 and pancreatic cancer. With the combination of CA19-9, the performance of miR-25 in early stages (I+II) in the diagnosis of PCa was profoundly better than CA19-9 and miR-25 alone. This combination was more effective for discriminating PCa from non-cancer controls (AUC-ROC, 0.985; sensitivity, 97.50%; specificity, 90.11%) compared with CA19-9 alone or the combination of CA19-9 and CA125.The expression level of miR-25 among pancreatic cancer patients was significantly higher than that in the control group. miR-25 existed as one of the most relevant factors of PCa. miR-25 can serve as a novel noninvasive approach for PCa diagnosis, and with the supplementary of CA19-9, the combination was more effective, especially in early tumor screening.
Collapse
Affiliation(s)
- Yiwen Yu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center
| | - Ying Tong
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center
| | - Ailing Zhong
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center
| | - Yanchun Wang
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center
| | - Renquan Lu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lin Guo
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Huang WK, Yeh CN. The Emerging Role of MicroRNAs in Regulating the Drug Response of Cholangiocarcinoma. Biomolecules 2020; 10:biom10101396. [PMID: 33007962 PMCID: PMC7600158 DOI: 10.3390/biom10101396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinoma (CCA) is the most common biliary malignancy, and has a poor prognosis. The median overall survival with the standard-of-care chemotherapy (Gemcitabine and cisplatin) in patients with advanced-stage CCA is less than one year. The limited efficacy of chemotherapy or targeted therapy remains a major obstacle to improving survival. The mechanisms involved in drug resistance are complex. Research efforts focusing on the distinct molecular mechanisms underlying drug resistance should prompt the development of treatment strategies that overcome chemoresistance or targeted drug resistance. MicroRNAs (miRNAs) are a class of evolutionarily conserved, short noncoding RNAs regulating gene expression at the post-transcriptional level. Dysregulated miRNAs have been shown to participate in almost all CCA hallmarks, including cell proliferation, migration and invasion, apoptosis, and the epithelial-to-mesenchymal transition. Emerging evidence demonstrates that miRNAs play a role in regulating responses to chemotherapy and targeted therapy. Herein, we present an overview of the current knowledge on the miRNA-mediated regulatory mechanisms underlying drug resistance among CCA. We also discuss the application of miRNA-based therapeutics to CCA, providing the basis for innovative treatment approaches.
Collapse
Affiliation(s)
- Wen-Kuan Huang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan 333, Taiwan;
| | - Chun-Nan Yeh
- Department of Surgery and Liver Research Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-3281200
| |
Collapse
|
22
|
Lv J, An J, Zhang YD, Li ZX, Zhao GL, Gao J, Hu WW, Chen HM, Li AM, Jiang QS. A three serum miRNA panel as diagnostic biomarkers of radiotherapy-related metastasis in non-small cell lung cancer. Oncol Lett 2020; 20:236. [PMID: 32968458 PMCID: PMC7500041 DOI: 10.3892/ol.2020.12099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Serum microRNAs (miRNAs) have been implicated as noninvasive biomarkers for lung cancer diagnosis. However, there are no sensitive and specific biomarkers for the detection of radiotherapy-related non-small cell lung cancer (NSCLC) metastasis. The present study aimed to investigate the role of three serum miRNAs, namely miRNA (miR)-130a, miR-25 and miR-191*, in diagnosing NSCLC, and their biological functions in radiation-mediated development of metastatic properties in A549 cells. To determine this, serum samples were collected from 84 patients with NSCLC and 42 age- and sex-matched healthy controls. Differential expression of serum miRNAs was analyzed by quantitative PCR. Significant associations between miRNA expression and overall survival of patients with NSCLC were identified using the Cox proportional regression model. A receiver operating characteristic curve was generated to evaluate diagnostic accuracy. The functions of miR-130a, miR-25 and miR-191* in lung cancer cells were studied by transfecting A549 cells with miRNA mimics and inhibitors. The results of the present study demonstrated that the expression levels of miR-130a, miR-25 and miR-191* in the serum of patients with NSCLC were increased compared with those in healthy controls, and these increases were associated with advanced age (≥60 years), radiotherapy, histological type (squamous carcinoma), low survival rate and low median survival time. Additionally, irradiation induced the upregulation of miR-130a, miR-25 and miR-191* expression in A549 cells in vitro and in a xenograft mouse model. Irradiation also promoted the invasiveness of A549 cells in vitro and metastasis in vivo. In conclusion, miR-130a, miR-25 and miR-191* may be potential biomarkers for the diagnosis of patients with NSCLC and may serve oncogenic roles in radiation-mediated metastasis of NSCLC.
Collapse
Affiliation(s)
- Jin Lv
- Research Department, PLA Rocket Force Characteristic Medical Center, Beijing 100088, P.R. China
| | - Juan An
- Department of Oncology, PLA Rocket Force Characteristic Medical Center, Beijing 100088, P.R. China
| | - Yang-Dong Zhang
- Research Department, PLA Rocket Force Characteristic Medical Center, Beijing 100088, P.R. China
| | - Zhao-Xia Li
- Department of Oncology, PLA Rocket Force Characteristic Medical Center, Beijing 100088, P.R. China
| | - Guang-Li Zhao
- Health Management Division, PLA Rocket Force Characteristic Medical Center, Beijing 100088, P.R. China
| | - Jun Gao
- Research Department, PLA Rocket Force Characteristic Medical Center, Beijing 100088, P.R. China
| | - Wen-Wei Hu
- Department of Endoscopy, PLA Rocket Force Characteristic Medical Center, Beijing 100088, P.R. China
| | - Huo-Ming Chen
- Department of Oncology, PLA Rocket Force Characteristic Medical Center, Beijing 100088, P.R. China
| | - Ai-Min Li
- Research Department, PLA Rocket Force Characteristic Medical Center, Beijing 100088, P.R. China.,Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Qi-Sheng Jiang
- Research Department, PLA Rocket Force Characteristic Medical Center, Beijing 100088, P.R. China
| |
Collapse
|
23
|
Mehta M, Satija S, Paudel KR, Malyla V, Kannaujiya VK, Chellappan DK, Bebawy M, Hansbro PM, Wich PR, Dua K. Targeting respiratory diseases using miRNA inhibitor based nanotherapeutics: Current status and future perspectives. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 31:102303. [PMID: 32980549 DOI: 10.1016/j.nano.2020.102303] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) play a fundamental role in the developmental and physiological processes that occur in both animals and plants. AntagomiRs are synthetic antagonists of miRNA, which prevent the target mRNA from suppression. Therapeutic approaches that modulate miRNAs have immense potential in the treatment of chronic respiratory disorders. However, the successful delivery of miRNAs/antagomiRs to the lungs remains a major challenge in clinical applications. A range of materials, namely, polymer nanoparticles, lipid nanocapsules and inorganic nanoparticles, has shown promising results for intracellular delivery of miRNA in chronic respiratory disorders. This review discusses the current understanding of miRNA biology, the biological roles of antagomiRs in chronic respiratory disease and the recent advances in the therapeutic utilization of antagomiRs as disease biomarkers. Furthermore our review provides a common platform to debate on the nature of antagomiRs and also addresses the viewpoint on the new generation of delivery systems that target antagomiRs in respiratory diseases.
Collapse
Affiliation(s)
- Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Keshav R Paudel
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia; School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Vamshikrishna Malyla
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia
| | | | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Mary Bebawy
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia; School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Peter R Wich
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia; Centre for Nanomedicine, University of New South Wales, Sydney, NSW, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia; Priority Research Centre for Healthy Lungs, University of Newcastle & Hunter Medical Research Institute, New Lambton Heights, Newcastle, NSW, Australia; School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India.
| |
Collapse
|
24
|
Bian J, Li G, Zhang Z, Liu B. Downregulation of lncRNA PMS2L2 in patients with gastric adenocarcinoma predicts poor prognosis. Oncol Lett 2020; 20:495-500. [PMID: 32565974 PMCID: PMC7285845 DOI: 10.3892/ol.2020.11578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 01/08/2020] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNA PMS1 homolog 2 mismatch repair system component pseudogene 2 (PMS2L2) is a key player in lipopolysaccharide-induced inflammatory responses. Preliminary deep sequencing data revealed that PMS2L2 was downregulated in gastric adenocarcinoma (GA) tissues compared with healthy adjacent tissues and the aim of the present study was to investigate the role of PMS2L2 in GA. In the present study, reverse transcription-quantitative PCR assays were performed to analyze gene expression. Cell transfections were performed to analyze gene interactions and Transwell assays were performed to analyze cell invasion and migration. The results revealed that PMS2L2 expression was downregulated in cancer tissues obtained from patients with GA compared with healthy adjacent tissues and was not significantly affected by clinical stage. Furthermore, low levels of PMS2L2 in cancer tissues were closely associated with a low overall 5-year survival rate in patients. MicroRNA (miR)-25 was upregulated in GA tissues compared with healthy adjacent tissues and inversely associated with PMS2L2 levels. In GA cells in vitro, overexpression of PMS2L2 downregulated the expression of miR-25, while miR-25 overexpression did not significantly affect PMS2L2 expression. Furthermore, PMS2L2 overexpression inhibited the migration and invasion of GA cells. miR-25 overexpression partially rescued the decreased migration and invasion of GA cells caused by PMS2L2 overexpression. Therefore, PMS2L2 may downregulate miR-25 expression to inhibit GA.
Collapse
Affiliation(s)
- Junping Bian
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Guangchun Li
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zhen Zhang
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Bin Liu
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
25
|
Sánchez NC, Medrano-Jiménez E, Aguilar-León D, Pérez-Martínez L, Pedraza-Alva G. Tumor Necrosis Factor-Induced miR-146a Upregulation Promotes Human Lung Adenocarcinoma Metastasis by Targeting Merlin. DNA Cell Biol 2020; 39:484-497. [PMID: 31999471 DOI: 10.1089/dna.2019.4620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Inflammation plays a key role in carcinogenesis and metastasis. This process involves the inactivation of tumor suppressor molecules, yet the molecular mechanisms by which inflammation impairs tumor suppressors are not completely understood. In this study, we show that proinflammatory signals such as tumor necrosis factor (TNF) support lung cancer metastasis by reducing the levels of the tumor suppressor Merlin through regulation of miR-146a. Immunodeficient mice inoculated with A549 cells expressing high miR-146a levels and low Merlin protein levels exhibited reduced survival, which correlated with the number of metastatic nodes formed. Accordingly, restoring Merlin protein levels inhibited metastasis and increased survival of the mice. Consistent with these results, we found that elevated miR-146a expression levels correlated with low Merlin protein levels in human lung adenocarcinoma. Furthermore, human invasive and metastatic tumors showed higher TNF and miR-146a levels, but lower Merlin protein levels than noninvasive tumors. These findings indicate that upregulation of miR-146a by TNF in lung adenocarcinoma promotes Merlin protein inhibition and metastasis. Thus, we suggest that the ratio between miR-146a and Merlin protein levels could be a relevant molecular biomarker that can predict lung cancer progression and that the TNF/miR-146a/Merlin pathway is a promising new therapeutic target to inhibit lung adenocarcinoma progression.
Collapse
Affiliation(s)
- Nilda C Sánchez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México.,Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos
| | - Elisa Medrano-Jiménez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Diana Aguilar-León
- Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Gustavo Pedraza-Alva
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| |
Collapse
|
26
|
Abstract
Despite extensive research in the pathogenesis, early detection, and therapeutic approaches of pancreatic ductal adenocarcinoma (PDAC), it remains a devastating and incurable disease. As the global incidence and prevalence of PDAC continue to rise, there is a pressing need to place strong emphasis on its prevention. Although it is widely recognized that cigarette smoking, a potentially modifiable risk factor, has been linked to PDAC development, its contribution to prognosis is still uncertain. Moreover, the mechanistic pathways of PDAC progression secondary to smoking are various and lack a summative narration. Herein, we update and summarize the direct and indirect roles cigarette smoking plays on PDAC development, review literature to conclude the impact cigarette smoking has on prognosis, and postulate a comprehensive mechanism for cigarette smoking-induced PDAC.
Collapse
|
27
|
Abstract
MicroRNA-25 (miR-25) has been reported to be overexpressed in numerous human tumors and plays a key role in tumor promotor. However, there are few reports about miR-25 expression and function in non-small cell lung cancer (NSCLC). In this study, we investigated the biological role of miR-25 in NSCLC and its underlying molecular mechanisms. We found that the upregulation of miR-25 was correlated with lymph node metastasis and TNM stage in 113 NSCLC patients. Moreover, the up-regulation of miR-25 was associated with poor survival of NSCLC patients and might be used as an independent prognostic factor. Moreover, forced expression of miR-25 enhanced H358 and Calu-1 cell migration and invasion, but not apoptosis and proliferation in vitro. Elevation of invasion and metastasis by miR-25 directly and significantly correlated with inactivation of CDH1 expression. Therefore, patients with up-regulated miR-25 are prone to lymph node metastasis and thus have a poor prognosis.
Collapse
Affiliation(s)
- Bing Liu
- a Department of Thoracic surgery , the central hospital of Linyi , Yishui , Shandong , China
| | - Xuerong Sun
- b Department of Clinical Lab , Qingdao Women and Children's Hospital , Qingdao , Shandong , China
| |
Collapse
|
28
|
Wang J, Liu S, Shi J, Li J, Wang S, Liu H, Zhao S, Duan K, Pan X, Yi Z. The Role of miRNA in the Diagnosis, Prognosis, and Treatment of Osteosarcoma. Cancer Biother Radiopharm 2019; 34:605-613. [PMID: 31674804 DOI: 10.1089/cbr.2019.2939] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Osteosarcoma (OS) is one of the most common malignant tumors derived from mesenchymal tissue and is highly invasive, mainly in children and adolescents. Treatment of OS is mostly based on standard treatment options, including aggressive surgical resection, systemic chemotherapy, and targeted radiation therapy, but the 5-year survival rate is still low. MicroRNA (miRNA) is a highly conserved type of endogenous nonprotein-encoding RNA, about 19-25 nucleotides in length, whose transcription process is independent of other genes. Generally, miRNAs play a role in regulating cell proliferation, differentiation, apoptosis, and development by binding to the 3' untranslated region of target mRNAs, whereby they can degrade or induce translational silencing. Although miRNAs play a regulatory role in various metabolic processes, they are not translated into proteins. Several studies have shown that miRNAs play an important role in the diagnosis, treatment, and prognosis of OS. Herein, the authors describe new advances in the diagnosis, prognosis, and treatment of miRNAs in OS.
Collapse
Affiliation(s)
- Jicheng Wang
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, China.,Department of Orthopedics, Xi'an Medical University, Xi'an, China
| | - Shizhang Liu
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jiyuan Shi
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jingyuan Li
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Songbo Wang
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, China.,Department of Orthopedics, Xi'an Medical University, Xi'an, China
| | - Huitong Liu
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Song Zhao
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, China.,Department of Orthopedics, Xi'an Medical University, Xi'an, China
| | - Keke Duan
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, China.,Department of Orthopedics, Xi'an Medical University, Xi'an, China
| | - Xuezhen Pan
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, China.,Department of Orthopedics, Xi'an Medical University, Xi'an, China
| | - Zhi Yi
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
29
|
Murdaca G, Tonacci A, Negrini S, Greco M, Borro M, Puppo F, Gangemi S. Effects of AntagomiRs on Different Lung Diseases in Human, Cellular, and Animal Models. Int J Mol Sci 2019; 20:3938. [PMID: 31412612 PMCID: PMC6719072 DOI: 10.3390/ijms20163938] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/14/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION MiRNAs have been shown to play a crucial role among lung cancer, pulmonary fibrosis, tuberculosis (TBC) infection, and bronchial hypersensitivity, thus including chronic obstructive pulmonary disease (COPD) and asthma. The oncogenic effect of several miRNAs has been recently ruled out. In order to act on miRNAs turnover, antagomiRs have been developed. MATERIALS AND METHODS The systematic review was conducted under the PRISMA guidelines (registration number is: CRD42019134173). The PubMed database was searched between 1 January 2000 and 30 April 2019 under the following search strategy: (((antagomiR) OR (mirna antagonists) OR (mirna antagonist)) AND ((lung[MeSH Terms]) OR ("lung diseases"[MeSH Terms]))). We included original articles, published in English, whereas exclusion criteria included reviews, meta-analyses, single case reports, and studies published in a language other than English. RESULTS AND CONCLUSIONS A total of 68 articles matching the inclusion criteria were retrieved. Overall, the use of antagomiR was seen to be efficient in downregulating the specific miRNA they are conceived for. The usefulness of antagomiRs was demonstrated in humans, animal models, and cell lines. To our best knowledge, this is the first article to encompass evidence regarding miRNAs and their respective antagomiRs in the lung, in order to provide readers a comprehensive review upon major lung disorders.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy
| | - Simone Negrini
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Monica Greco
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Matteo Borro
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Francesco Puppo
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
30
|
Wang H, Tan Z, Hu H, Liu H, Wu T, Zheng C, Wang X, Luo Z, Wang J, Liu S, Lu Z, Tu J. microRNA-21 promotes breast cancer proliferation and metastasis by targeting LZTFL1. BMC Cancer 2019; 19:738. [PMID: 31351450 PMCID: PMC6661096 DOI: 10.1186/s12885-019-5951-3] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 07/18/2019] [Indexed: 12/11/2022] Open
Abstract
Background Breast cancer is the most common cancer type in female. As microRNAs play vital role in breast cancer, this study aimed to explore the molecular mechanism and clinical value of miR-21 in breast cancer. Methods qRT-PCR was performed to detect miR-21 levels in plasma of 127 healthy controls, 82 benign breast tumor, 252 breast cancer patients, as well as in breast cancer cell lines. Transwell and wound healing assay were used to analyze breast cancer metastasis in response to miR-21 inhibitor. Colony formation and eFluor™ 670 based flow cytometric analysis were used to test breast cancer proliferation following miR-21 inhibitor treatment. Leucine zipper transcription factor-like 1 (LZTFL1), the target gene of miR-21 was predicted by MIRDB, TargetScan 5.1, PicTar and miRanda. Survival analysis of LZTFL1 levels in breast cancer prognosis was estimated with the Kaplan–Meier method by log-rank test according to data from the Cancer Genome Atlas. Luciferase activity assay was performed to confirm the regulation of miR-21 on LZTFL1. LZTFL1 siRNA and miR-21 inhibitor were co-transfected to breast cancer cells, then cell proliferation, migration and epithelial–mesenchymal transition (EMT) makers were tested. BALB/c nude mice were injected in situ with Hs578T cells stably overexpressing miR-21. Breast tumor growth, metastasis and the expression of EMT markers or LZTFL1 were detected in vivo. Results Plasma miR-21 levels were elevated in breast cancer patients compared with healthy controls and benign breast tumor patients, and the miR-21 levels were significantly decreased after surgery comparing with pre operation in 44 patients. Inhibition of miR-21 suppressed cell proliferation and metastasis in breast cancer cells. LZTFL1 was identified as a novel target gene of miR-21. Knockdown of LZTFL1 overcame the suppression of miR-21 inhibitor on cell proliferation, metastasis and the expression of EMT markers in breast cancer cells. miR-21 overexpression promoted breast cancer cell proliferation and metastasis in vivo. Conclusions These results indicate that plasma miR-21 level is a crucial biomarker for breast cancer diagnosis and targeting miR-21–LZTFL1–EMT axis might be a promising strategy in breast cancer therapy. Trial registration Retrospectively registered. Electronic supplementary material The online version of this article (10.1186/s12885-019-5951-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Wang
- Department and Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, 169 Donghu road, Wuhan, 430071, People's Republic of China.,Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Zheqiong Tan
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Hui Hu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Hongzhou Liu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Tangwei Wu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Chao Zheng
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Xiuling Wang
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Zhenzhao Luo
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Jing Wang
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Shuiyi Liu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.,Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Zhongxin Lu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.,Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Jiancheng Tu
- Department and Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, 169 Donghu road, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
31
|
Wan W, Wan W, Long Y, Li Q, Jin X, Wan G, Zhang F, Lv Y, Zheng G, Li Z, Zhu Y. MiR-25-3p promotes malignant phenotypes of retinoblastoma by regulating PTEN/Akt pathway. Biomed Pharmacother 2019; 118:109111. [PMID: 31336343 DOI: 10.1016/j.biopha.2019.109111] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/29/2019] [Accepted: 06/10/2019] [Indexed: 12/19/2022] Open
Abstract
Aberrant expression of microRNAs plays an important role in the pathogenesis and progression of retinoblastoma. MiR-25, a member of the miR-106b˜25 cluster, has been reported to be abnormally expressed in retinoblastoma, but the exact role of it remains unclear. In our study, we found that miR-25-3p was upregulated in retinoblastoma tissues and cell lines. Enforced expression of miR-25-3p in retinoblastoma cell line WERI-RB-1 increased cell growth, colony formation, anchorage-independent growth, cell migration and invasion in vitro and tumor xenograft growth in vivo. In contrast, inhibited miR-25-3p expression in retinoblastoma cell line Y79 suppressed cell growth, colony formation, anchorage-independent growth, cell migration and invasion. Through luciferase reporter assay, we found that phosphatase and tensin homolog (PTEN) was a direct target of miR-25-3p. This was verified by western blot that miR-25-3p overexpression suppressed PTEN and activated Akt signaling. In addition, miR-25-3p was found to promote epithelial-mesenchymal transition (EMT) of WERI-RB-1 cells through PTEN/Akt pathway. Western blot analysis revealed that miR-25-3p overexpression increased Vimentin and Snail expression, and suppressed E-cadherin expression, but this could be reversed by restoring PTEN. Moreover, LY294002 treatment or restoring PTEN expression abolished the effects of miR-25-3p on cell invasion, colony formation and anchorage-independent growth in vitro and tumor xenograft growth in vivo. Taken together, our results suggested that miR-25-3p promotes malignant transformation of retinoblastoma cells by suppressing PTEN.
Collapse
Affiliation(s)
- Wencui Wan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou 450052, China
| | - Weiwei Wan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou 450052, China
| | - Yang Long
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou 450052, China
| | - Qiuming Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou 450052, China.
| | - Xuemin Jin
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou 450052, China
| | - Guangming Wan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou 450052, China
| | - Fengyan Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou 450052, China
| | - Yong Lv
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou 450052, China
| | - Guangying Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou 450052, China
| | - Zhigang Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou 450052, China
| | - Yu Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou 450052, China.
| |
Collapse
|
32
|
miR-25 Promotes Cell Proliferation, Migration, and Invasion of Non-Small-Cell Lung Cancer by Targeting the LATS2/YAP Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9719723. [PMID: 31316723 PMCID: PMC6604298 DOI: 10.1155/2019/9719723] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/20/2019] [Indexed: 12/18/2022]
Abstract
Metastasis is the leading cause of high mortality in lung cancer patients, and metastatic lung cancer is difficult to treat. miRNAs are involved in various biological processes of cancer, including metastasis. Our previous studies revealed that miR-25 promoted non-small-cell lung cancer (NSCLC) cell proliferation and suppressed cell apoptosis by directly targeting TP53 and MOAP1. In this work, we further explored the miR-25 expression in NSCLC patients in the Cancer Genome Atlas (TCGA) database and measured the miR-25 expression levels in the tissues of NSCLC patients and cell lines. miR-25 was overexpressed in both NSCLC tissues and cell lines. NSCLC patients who expressed a higher level of miR-25 exhibited worse overall survival than those with a lower level of miR-25. Overexpression of miR-25 enhanced NSCLC cell migration and invasion, while the inhibition of miR-25 exhibited the opposite effects. We identified the large tumor suppressor homology 2 (LATS2) as a new target gene of miR-25 in lung cancer. The effects of miR-25 on promoting NSCLC cell migration and invasion were at least partially due to activation of the Hippo signaling pathway. Additionally, miR-25 antagomir inhibited xenograft tumor growth and metastasis by the upregulation of LATS2. Taken together, our findings demonstrate that miR-25 contribute to lung cancer cell proliferation and metastasis by targeting the LATS2/YAP signaling pathway, which implicate miR-25 as a promising therapeutic target for lung cancer metastasis. Given that oxidative stress induces the overexpression of miR-25 and plays a critical role in cancer progression, this study establishes miR-25 as an intermediate between oxidative stress and lung cancer metastasis.
Collapse
|
33
|
Hu JL, Wang W, Lan XL, Zeng ZC, Liang YS, Yan YR, Song FY, Wang FF, Zhu XH, Liao WJ, Liao WT, Ding YQ, Liang L. CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol Cancer 2019; 18:91. [PMID: 31064356 PMCID: PMC6503554 DOI: 10.1186/s12943-019-1019-x] [Citation(s) in RCA: 548] [Impact Index Per Article: 91.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cancer associated fibroblasts (CAFs) are key stroma cells that play dominant roles in tumor progression. However, the CAFs-derived molecular determinants that regulate colorectal cancer (CRC) metastasis and chemoresistance have not been fully characterized. METHODS CAFs and NFs were obtained from fresh CRC and adjacent normal tissues. Exosomes were isolated from conditioned medium and serum of CRC patients using ultracentrifugation method and ExoQuick Exosome Precipitation Solution kit, and characterized by transmission electronic microscopy, nanosight and western blot. MicroRNA microarray was employed to identify differentially expressed miRNAs in exosomes secreted by CAFs or NFs. The internalization of exosomes, transfer of miR-92a-3p was observed by immunofluorescence. Boyden chamber migration and invasion, cell counting kit-8, flow cytometry, plate colony formation, sphere formation assays, tail vein injection and primary colon cancer liver metastasis assays were employed to explore the effect of NFs, CAFs and exosomes secreted by them on epithelial-mesenchymal transition, stemness, metastasis and chemotherapy resistance of CRC. Luciferase report assay, real-time qPCR, western blot, immunofluorescence, and immunohistochemistry staining were employed to explore the regulation of CRC metastasis and chemotherapy resistance by miR-92a-3p, FBXW7 and MOAP1. RESULTS CAFs promote the stemness, epithelial-mesenchymal transition (EMT), metastasis and chemotherapy resistance of CRC cells. Importantly, CAFs exert their roles by directly transferring exosomes to CRC cells, leading to a significant increase of miR-92a-3p level in CRC cells. Mechanically, increased expression of miR-92a-3p activates Wnt/β-catenin pathway and inhibits mitochondrial apoptosis by directly inhibiting FBXW7 and MOAP1, contributing to cell stemness, EMT, metastasis and 5-FU/L-OHP resistance in CRC. Clinically, miR-92a-3p expression is significantly increased in CRC tissues and negatively correlated with the levels of FBXW7 and MOAP1 in CRC specimens, and high expression of exosomal miR-92a-3p in serum was highly linked with metastasis and chemotherapy resistance in CRC patients. CONCLUSIONS CAFs secreted exosomes promote metastasis and chemotherapy resistance of CRC. Inhibiting exosomal miR-92a-3p provides an alternative modality for the prediction and treatment of metastasis and chemotherapy resistance in CRC.
Collapse
Affiliation(s)
- J L Hu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Department of Pathology, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong province, People's Republic of China
| | - W Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Department of Pathology, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong province, People's Republic of China
| | - X L Lan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong province, People's Republic of China
| | - Z C Zeng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Department of Pathology, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong province, People's Republic of China
| | - Y S Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Department of Pathology, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong province, People's Republic of China
| | - Y R Yan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Department of Pathology, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong province, People's Republic of China
| | - F Y Song
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Department of Pathology, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong province, People's Republic of China
| | - F F Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Department of Pathology, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong province, People's Republic of China
| | - X H Zhu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Department of Pathology, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong province, People's Republic of China
| | - W J Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong province, People's Republic of China
| | - W T Liao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Department of Pathology, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong province, People's Republic of China
| | - Y Q Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Department of Pathology, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong province, People's Republic of China
| | - L Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China. .,Department of Pathology, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China. .,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong province, People's Republic of China.
| |
Collapse
|
34
|
Zhang J, Bai R, Li M, Ye H, Wu C, Wang C, Li S, Tan L, Mai D, Li G, Pan L, Zheng Y, Su J, Ye Y, Fu Z, Zheng S, Zuo Z, Liu Z, Zhao Q, Che X, Xie D, Jia W, Zeng MS, Tan W, Chen R, Xu RH, Zheng J, Lin D. Excessive miR-25-3p maturation via N 6-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression. Nat Commun 2019; 10:1858. [PMID: 31015415 PMCID: PMC6478927 DOI: 10.1038/s41467-019-09712-x] [Citation(s) in RCA: 280] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/26/2019] [Indexed: 12/15/2022] Open
Abstract
N6-methyladenosine (m6A) modification is an important mechanism in miRNA processing and maturation, but the role of its aberrant regulation in human diseases remained unclear. Here, we demonstrate that oncogenic primary microRNA-25 (miR-25) in pancreatic duct epithelial cells can be excessively maturated by cigarette smoke condensate (CSC) via enhanced m6A modification that is mediated by NF-κB associated protein (NKAP). This modification is catalyzed by overexpressed methyltransferase-like 3 (METTL3) due to hypomethylation of the METTL3 promoter also caused by CSC. Mature miR-25, miR-25-3p, suppresses PH domain leucine-rich repeat protein phosphatase 2 (PHLPP2), resulting in the activation of oncogenic AKT-p70S6K signaling, which provokes malignant phenotypes of pancreatic cancer cells. High levels of miR-25-3p are detected in smokers and in pancreatic cancers tissues that are correlated with poor prognosis of pancreatic cancer patients. These results collectively indicate that cigarette smoke-induced miR-25-3p excessive maturation via m6A modification promotes the development and progression of pancreatic cancer.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Adult
- Aged
- Aged, 80 and over
- Carcinoma, Pancreatic Ductal/blood
- Carcinoma, Pancreatic Ductal/etiology
- Carcinoma, Pancreatic Ductal/mortality
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Co-Repressor Proteins/metabolism
- DNA Methylation
- Disease Progression
- Epithelial Cells/pathology
- Female
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Humans
- Male
- Methyltransferases/genetics
- Methyltransferases/metabolism
- MicroRNAs/blood
- MicroRNAs/metabolism
- Middle Aged
- Nuclear Proteins/metabolism
- Pancreatic Ducts/cytology
- Pancreatic Ducts/pathology
- Pancreatic Neoplasms/blood
- Pancreatic Neoplasms/etiology
- Pancreatic Neoplasms/mortality
- Pancreatic Neoplasms/pathology
- Phosphoprotein Phosphatases/genetics
- Phosphoprotein Phosphatases/metabolism
- Prognosis
- Promoter Regions, Genetic/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- RNA-Binding Proteins/metabolism
- Repressor Proteins
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- Smoke/adverse effects
- Smoking/adverse effects
- Smoking/blood
- Nicotiana/toxicity
- Up-Regulation
Collapse
Affiliation(s)
- Jialiang Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ruihong Bai
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Mei Li
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huilin Ye
- Department of Pancreaticobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- CAMS Key Laboratory of Genetics and Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chengfeng Wang
- Department of Abdominal Surgery, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengping Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Liping Tan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Dongmei Mai
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Guolin Li
- Department of Pancreaticobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ling Pan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yanfen Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jiachun Su
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ying Ye
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhiqiang Fu
- Department of Pancreaticobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shangyou Zheng
- Department of Pancreaticobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhixiang Zuo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zexian Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qi Zhao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xu Che
- Department of Abdominal Surgery, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Weihua Jia
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Mu-Sheng Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wen Tan
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- CAMS Key Laboratory of Genetics and Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rufu Chen
- Department of Pancreaticobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Rui-Hua Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Jian Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Dongxin Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- CAMS Key Laboratory of Genetics and Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
35
|
Zhang B, Zhang G, Wei T, Yang Z, Tan W, Mo Z, Liu J, Li D, Wei Y, Zhang L, Webster KA, Wei J. MicroRNA-25 Protects Smooth Muscle Cells against Corticosterone-Induced Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2691514. [PMID: 30992737 PMCID: PMC6434288 DOI: 10.1155/2019/2691514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/17/2018] [Accepted: 01/01/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Vascular smooth muscle cells (VSMCs) are central components of atherosclerotic plaque. Loss of VSMCs through apoptotic cell death can cause fibrous cap thinning, necrotic core formation, and calcification that may destabilize plaque. Elevated glucocorticoid levels caused by psychological stress promote VSMC apoptosis and can exacerbate atherosclerosis in mice and humans. Changes in the levels of antiapoptosis microRNA-25 (miR-25) have been linked with heart disease, inflammation, VSMC phenotype, oxidative stress, and apoptosis. Here, we investigated the pathways and mechanisms of glucocorticoid-induced apoptosis of mouse VSMCs and the protective role of miR-25. METHODS Primary mouse VSMCs were cultured +/- corticosterone for 48 h. Apoptosis, ROS, apoptotic protein activities, miR-25, MOAP1, a miR-25 target, and p70S6 kinase were quantified at intervals. The roles of miR-25 were assessed by treating cells with lenti-pre-miR-25 and anti-miR-25. RESULTS VSMC apoptosis, caspase-3 activity, and Bax were increased by corticosterone, and cell death was paralleled by marked loss of miR-25. Protection was conferred by pre-miR-25 and exacerbated by anti-miR-25. Pre-miR-25 conferred reduced expression of the proapoptotic protein MOAP1, and the protective effects of pre-miR-25 were abrogated by overexpressing MOAP1. The antiapoptotic effects of miR-25 were paralleled by inhibition of the p70S6K pathway, a convergence target for the survival signaling pathways, and protection by pre-miR-25 was abrogated by the p70S6k inhibitor rapamycin. CONCLUSIONS MicroRNA-25 blocks corticosterone-induced VSMC apoptosis by targeting MOAP1 and the p70S6k pathway. Therapeutic manipulation of miR-25 may reduce atherosclerosis and unstable plaque formation associated with chronic stress.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Cardiovascular Disease, The Jiangmen Central Hospital, Jiangmen 529030, China
- Clinical Experimental Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen 529030, China
| | - Gaoxing Zhang
- Department of Cardiovascular Disease, The Jiangmen Central Hospital, Jiangmen 529030, China
- Clinical Experimental Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen 529030, China
| | - Tianlu Wei
- Department of Medicine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, China
| | - Zhen Yang
- Clinical Experimental Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen 529030, China
- Department of Cardiovascular, Sun Yat-Sen University, Guangzhou 510080, China
| | - Wenfeng Tan
- Department of Cardiovascular Disease, The Jiangmen Central Hospital, Jiangmen 529030, China
- Clinical Experimental Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen 529030, China
| | - Ziqing Mo
- Department of Cardiovascular Disease, The Jiangmen Central Hospital, Jiangmen 529030, China
- Clinical Experimental Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen 529030, China
| | - Jinxue Liu
- Department of Cardiovascular Disease, The Jiangmen Central Hospital, Jiangmen 529030, China
- Clinical Experimental Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen 529030, China
| | - Dong Li
- Clinical Experimental Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen 529030, China
- Department of Intensive Care Unit, The Jiangmen Central Hospital, Jiangmen 529030, China
| | - Yidong Wei
- Youjiang Medical University for Nationalities, Chengxiang Rd, Baise, Guangxi 533000, China
| | - Lukun Zhang
- Department of Infection, Third People's Hospital of Shenzhen, 29 Bulan Road, Shenzhen 518112, China
| | - Keith A. Webster
- Department of Molecular and Cellular Pharmacology and the Vascular Biology Institute, Miller School of Medicine, University of Miami, FL 33136, USA
| | - Jianqin Wei
- Department of Medicine, Division of Cardiology, Miller School of Medicine, University of Miami, FL 33136, USA
| |
Collapse
|
36
|
Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat Commun 2018; 9:5395. [PMID: 30568162 PMCID: PMC6300604 DOI: 10.1038/s41467-018-07810-w] [Citation(s) in RCA: 695] [Impact Index Per Article: 99.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/22/2018] [Indexed: 12/11/2022] Open
Abstract
Cancer-derived exosomes are considered a major driver of cancer-induced pre-metastatic niche formation at foreign sites, but the mechanisms remain unclear. Here, we show that miR-25-3p, a metastasis-promoting miRNA of colorectal cancer (CRC), can be transferred from CRC cells to endothelial cells via exosomes. Exosomal miR-25-3p regulates the expression of VEGFR2, ZO-1, occludin and Claudin5 in endothelial cells by targeting KLF2 and KLF4, consequently promotes vascular permeability and angiogenesis. In addition, exosomal miR-25-3p from CRC cells dramatically induces vascular leakiness and enhances CRC metastasis in liver and lung of mice. Moreover, the expression level of miR-25-3p from circulating exosomes is significantly higher in CRC patients with metastasis than those without metastasis. Our work suggests that exosomal miR-25-3p is involved in pre-metastatic niche formation and may be used as a blood-based biomarker for CRC metastasis.
Collapse
|
37
|
Akbarnia A, Zare HR. A voltammetric assay for microRNA-25 based on the use of amino-functionalized graphene quantum dots and ss- and ds-DNAs as gene probes. Mikrochim Acta 2018; 185:503. [DOI: 10.1007/s00604-018-3037-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/01/2018] [Indexed: 11/29/2022]
|
38
|
Mehlich D, Garbicz F, Włodarski PK. The emerging roles of the polycistronic miR-106b∼25 cluster in cancer - A comprehensive review. Biomed Pharmacother 2018; 107:1183-1195. [PMID: 30257332 DOI: 10.1016/j.biopha.2018.08.097] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short, non-coding RNA molecules that regulate gene expression at the post-transcriptional level by inhibiting translation and decreasing the stability of the targeted transcripts. Over the last two decades, miRNAs have been recognized as important regulators of cancer cell biology, acting either as oncogenes or tumor suppressors. The polycistronic miR-106b∼25 cluster, located within an intron of MCM7 gene, consists of three highly conserved miRNAs: miR-25, miR-93 and miR-106b. A constantly growing body of evidence indicates that these miRNAs are overexpressed in numerous human malignancies and regulate multiple cellular processes associated with cancer development and progression, including: cell proliferation and survival, invasion, metastasis, angiogenesis and immune evasion. Furthermore, recent studies revealed that miR-106b∼25 cluster miRNAs modulate cancer stem cells characteristics and might promote resistance to anticancer therapies. In light of these novel discoveries, miRNAs belonging to the miR-106b∼25 cluster have emerged as key oncogenic drivers as well as potential biomarkers and plausible therapeutic targets in different tumor types. Herein, we comprehensively review novel findings on the roles of miR-106b∼25 cluster in human cancer, and provide a broad insight into the molecular mechanisms underlying its oncogenic properties.
Collapse
Affiliation(s)
- Dawid Mehlich
- Laboratory of Centre for Preclinical Research, Department of Methodology, Medical University of Warsaw, 1B Banacha Str., 02-091 Warsaw, Poland; Laboratory of Experimental Medicine, Centre of New Technologies, University of Warsaw, 2C Banacha Str., 02-097, Warsaw, Poland
| | - Filip Garbicz
- Laboratory of Centre for Preclinical Research, Department of Methodology, Medical University of Warsaw, 1B Banacha Str., 02-091 Warsaw, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, 61 Żwirki i Wigury Str., 02-091 Warsaw, Poland; Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, 14 Indiry Gandhi Str., 02-776 Warsaw, Poland
| | - Paweł K Włodarski
- Laboratory of Centre for Preclinical Research, Department of Methodology, Medical University of Warsaw, 1B Banacha Str., 02-091 Warsaw, Poland.
| |
Collapse
|
39
|
Ma L, Qiu H, Chen Z, Li L, Zeng Y, Luo J, Gou D. miR-25 modulates triacylglycerol and lipid accumulation in goat mammary epithelial cells by repressing PGC-1beta. J Anim Sci Biotechnol 2018; 9:48. [PMID: 29946461 PMCID: PMC6004671 DOI: 10.1186/s40104-018-0262-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/25/2018] [Indexed: 12/31/2022] Open
Abstract
Background The goat (Caprahircus) is one of the most important livestock animals. Goat milk fat is an important component in the nutritional quality of goat milk. Growing evidence points to the critical roles of microRNAs (miRNAs) in lipid metabolism. Results Using a highly sensitive method of S-poly(T) plus for miRNAs detection, we analyze the expression patterns of 715 miRNAs in goat mammary gland tissues at different stages of lactation. We observed that miR-25 expression had an inverse relationship with milk production. Overexpression of miR-25 significantly repressed triacylglycerol synthesis and lipid droplet accumulation. To explore the regulatory mechanism of miR-25 in milk lipid metabolism, we analyzed its putative target genes with bioinformatics analysis followed by 3′-UTR assays. Peroxisome proliferative activated receptor gamma coactivator 1 beta (PGC-1beta), a key regulator of lipogenics was identified as a direct target of miR-25 with three specific sites within its 3′-UTR. In addition, miR-25 mimics in goat mammary epithelial cells reduced the expressions of genes involved in lipid metabolism. Conclusions Taken together, our results show miR-25 is potentially involved in lipid metabolism and we reveal the function of the miR-25/PGC-1beta regulatory axis during lactation. Electronic supplementary material The online version of this article (10.1186/s40104-018-0262-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liuan Ma
- 1Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 Guangdong China
| | - Huiling Qiu
- 1Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 Guangdong China.,Biomedical Engineering, Health and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518000 Guangdong China
| | - Zhi Chen
- 3Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Li Li
- 1Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 Guangdong China
| | - Yan Zeng
- 1Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 Guangdong China
| | - Jun Luo
- 3Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Deming Gou
- 4Present Address: Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 Guangdong China
| |
Collapse
|
40
|
Wang N, He X, Zhou R, Jia G, Qiao Q. STAT3 induces colorectal carcinoma progression through a novel miR-572-MOAP-1 pathway. Onco Targets Ther 2018; 11:3475-3484. [PMID: 29942139 PMCID: PMC6007208 DOI: 10.2147/ott.s158764] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose Colorectal carcinoma (CRC) is among the most common causes of death. Recent studies have shown that both STAT3 and miR-572 contribute to CRC progression. STAT3 plays an important role in miRNA expression. Moreover, MOAP-1, which is a pro-apoptotic protein that induces cell death or apoptosis, has a direct correlation with miRNA. Therefore, the current study is designed to explore whether miR-572 and STAT3 are involved in a common pathway and the role of MOAP-1 in this process. Patients and methods The expressions of STAT3, miR-572, and MOAP-1 in human CRC tissues and multiple cell lines were estimated by qRT-PCR or Western blot. MTT, transwell migration, and invasion assays were used to assess cell growth, migration, and invasion, respectively. Dual-luciferase reporter assay was applied to examine the association between miR-572 and MOAP-1. Results Elevated STAT3 levels were accompanied by increased miR-572 and decreased MOAP-1 levels in primary CRC specimens and cell lines. STAT3 promoted CRC cell growth, migration, and invasion via the upregulated expression of miR-572. Subsequently, miR-572 inhibited MOAP-1 protein expression through an interaction with its 3′UTR. Conclusion Our study proposes a novel STAT3-miR-572-MOAP-1 pathway involved in the process of CRC progression, which might be a potential target for the development of new preventive and therapeutic approaches against human colorectal cancer.
Collapse
Affiliation(s)
- Nan Wang
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shanxi, 710038, China
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shanxi, 710038, China
| | - Ru Zhou
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi, 710032, China
| | - Guozhan Jia
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shanxi, 710038, China
| | - Qing Qiao
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shanxi, 710038, China
| |
Collapse
|
41
|
Chen H, Liu S, Zhao C, Zong Z, Ma C, Qi G. Cardiac contractility modulation improves left ventricular systolic function partially via miR-25 mediated SERCA2A expression in rabbit trans aortic constriction heart failure model. J Thorac Dis 2018; 10:3899-3908. [PMID: 30069393 DOI: 10.21037/jtd.2018.06.22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The purpose of this study was to investigate the underlying mechanism of cardiac contractility modulation (CCM) in improving trans aortic constriction (TAC)-induced heart failure (HF) left ventricular (LV) systolic function. A total of 25 New Zealand white rabbits were randomly divided into 5 groups: sham operation group (SHM), TAC-induced HF group (HF), TAC-induced HF followed by CCM stimulation group (HF + CCM), TAC-induced HF followed by injection of anti-miR-25 group (HF + anti-miR-25), TAC-induced HF followed by CCM stimulation and AAV9-miR-25 injection group (HF + CCM + miR-25). CCM current was performed 6 hours a day for 4 weeks. The left ventricle ejection fraction (LVEF) was measured by ultrasound. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot were used for measuring RNA and protein levels. The sarcoplasmic reticulum calcium ATPase (SERCA2A) and LVEF were reduced, while the miR-25 expression was improved in HF group compared to SHM group. Conversely, the SERCA2A and LVEF were improved, and the miR-25 reduced in the HF + CCM and the HF + anti-miR-25 groups compared to the HF group. Moreover, the SERCA2A and LVEF were reduced, while the miR-25 was improved in the HF + CCM + miR-25 group compared to the HF + CCM group. CCM is a potentially effective procedure for improving LV systolic function, which might partially by inhibiting miR-25 expression, further improved SERCA2A expression in TAC HF models.
Collapse
Affiliation(s)
- Hongyun Chen
- Department of Geriatric Cardiology, First Hospital of China Medical University, Shenyang 110001, China
| | - Shuang Liu
- Department of Cardiovascular Ultrasound, First Hospital of China Medical University, Shenyang 110001, China
| | - Cuiting Zhao
- Department of Cardiovascular Ultrasound, First Hospital of China Medical University, Shenyang 110001, China
| | - Zhihong Zong
- Department of Biochemistry, China Medical University, Shenyang 110001, China
| | - Chunyan Ma
- Department of Cardiovascular Ultrasound, First Hospital of China Medical University, Shenyang 110001, China
| | - Guoxian Qi
- Department of Geriatric Cardiology, First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
42
|
Ding X, Zhong T, Jiang L, Huang J, Xia Y, Hu R. miR-25 enhances cell migration and invasion in non-small-cell lung cancer cells via ERK signaling pathway by inhibiting KLF4. Mol Med Rep 2018; 17:7005-7016. [PMID: 29568911 PMCID: PMC5928655 DOI: 10.3892/mmr.2018.8772] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 12/08/2017] [Indexed: 01/10/2023] Open
Abstract
In recent years, microRNAs (miRNAs/miRs) have gained increasing interest in cancer research. Increasing evidences demonstrated that miRNAs are important for tumor early detection and prognosis. The present study aimed to explore the function of miR-25 in non-small-cell lung cancer (NSCLC) and its underlying mechanisms. The expression levels of miR-25 and Krüppel-like factor 4 (KLF4) were assessed in 31 pairs of tissue from patients with NSCLC. In addition, the biological roles of miR-25 in NSCLC were analyzed via a cell wound healing assay, Transwell invasion and migration assays. Target genes of miR-25 were predicted using TargetScan and verified via a dual luciferase activity assay, western blotting and reverse transcription-quantitative polymerase chain reaction. The downstream signaling pathway was confirmed by western blot analysis. In the present study, miR-25 was overexpressed in 31 NSCLC samples compared with in corresponding normal tissues. Overexpression of miR-25 using miR-25 mimics markedly promoted NSCLC cell migration and invasion, while inhibition of miR-25 exerted the opposite effect. KLF4 was suggested to be a novel target gene of miR-25 in NSCLC cells. Knockdown of KLF4 promoted the migration and invasion of NSCLC cells, whereas rescue of KLF4 expression reduced cell motion ability in miR-25-overexpressing NSCLC cells. Furthermore, it was demonstrated that miR-25 activated the extracellular signal-regulated kinase (ERK) signaling pathway, which eventually led to increased vimentin, matrix metalloproteinase 11 and N-cadherin levels, and the downregulation of E-cadherin expression by inhibiting the expression of KLF4. In conclusion, miR-25 was demonstrated to activate the ERK signaling pathway by directly targeting KLF4, promoting cell migration and invasion. The findings of the present study indicated that miR-25 or KLF4 may serve as a therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Xiaoli Ding
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Tianyu Zhong
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Lixia Jiang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Junyun Huang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Yu Xia
- Graduate Student Major of Laboratory Medicine of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Rong Hu
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
43
|
Fujiwara T, Uotani K, Yoshida A, Morita T, Nezu Y, Kobayashi E, Yoshida A, Uehara T, Omori T, Sugiu K, Komatsubara T, Takeda K, Kunisada T, Kawamura M, Kawai A, Ochiya T, Ozaki T. Clinical significance of circulating miR-25-3p as a novel diagnostic and prognostic biomarker in osteosarcoma. Oncotarget 2018; 8:33375-33392. [PMID: 28380419 PMCID: PMC5464875 DOI: 10.18632/oncotarget.16498] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 02/27/2017] [Indexed: 02/06/2023] Open
Abstract
Background Emerging evidence has suggested that circulating microRNAs (miRNAs) in body fluids have novel diagnostic and prognostic significance for patients with malignant diseases. The lack of useful biomarkers is a crucial problem of bone and soft tissue sarcomas; therefore, we investigated the circulating miRNA signature and its clinical relevance in osteosarcoma. Methods Global miRNA profiling was performed using patient serum collected from a discovery cohort of osteosarcoma patients and controls and cell culture media. The secretion of the detected miRNAs from osteosarcoma cells and clinical relevance of serum miRNA levels were evaluated using in vitro and in vivo models and a validation patient cohort. Results Discovery screening identified 236 serum miRNAs that were highly expressed in osteosarcoma patients compared with controls, and eight among these were also identified in the cell culture media. Upregulated expression levels of miR-17-5p and miR-25-3p were identified in osteosarcoma cells, and these were abundantly secreted into the culture media in tumor-derived exosomes. Serum miR-25-3p levels were significantly higher in osteosarcoma patients than in control individuals in the validation cohort, with favorable sensitivity and specificity compared with serum alkaline phosphatase. Furthermore, serum miR-25-3p levels at diagnosis were correlated with patient prognosis and reflected tumor burden in both in vivo models and patients; these associations were more sensitive than those of serum alkaline phosphatase. Conclusions Serum-based circulating miR-25-3p may serve as a non-invasive blood-based biomarker for tumor monitoring and prognostic prediction in osteosarcoma patients.
Collapse
Affiliation(s)
- Tomohiro Fujiwara
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.,Center of Innovative Medicine, Okayama University Hospital, Okayama, Japan.,Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Koji Uotani
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Aki Yoshida
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takuya Morita
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yutaka Nezu
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Eisuke Kobayashi
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Akihiko Yoshida
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Takenori Uehara
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Toshinori Omori
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhisa Sugiu
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Tadashi Komatsubara
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ken Takeda
- Department of Intelligent Orthopaedic System, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiyuki Kunisada
- Department of Medical Materials for Musculoskeletal Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | | | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Toshifumi Ozaki
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
44
|
Dong L, Pu Y, Zhang L, Qi Q, Xu L, Li W, Wei C, Wang X, Zhou S, Zhu J, Wang X, Liu F, Chen X, Su C. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles promote lung adenocarcinoma growth by transferring miR-410. Cell Death Dis 2018; 9:218. [PMID: 29440630 PMCID: PMC5833395 DOI: 10.1038/s41419-018-0323-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/31/2017] [Accepted: 01/15/2018] [Indexed: 12/13/2022]
Abstract
Although accumulating evidence has linked mesenchymal stem cells (MSCs) with tumor growth, the underlying mechanisms are poorly understood. Here, we demonstrated for the first time that human umbilical cord MSCs (hUCMSCs) dramatically increased the growth of lung adenocarcinoma (LUAD) cancer cells in a xenograft tumor model. Then, we observed that hUCMSC-derived extracellular vesicles (hUCMSC-EVs) contribute to the hUCMSC-promoted LUAD cell growth through a direct effect on LUAD cells. Furthermore, we showed that hUCMSC-EV-mediated LUAD growth is associated with increased proliferation and decreased apoptosis in LUAD cells, concomitant with reduced PTEN expression mediated by the hUCMSC-EV-transmitted miR-410. Our findings provide novel insights into the intercellular communications between cancer cells and MSCs through MSC-EV-miRNA and suggest that modification of hUCMSC-EVs might be an attractive therapeutic option for the clinical application of hUCMSC-EVs that would reduce unwanted side effects.
Collapse
Affiliation(s)
- Liyang Dong
- Department of Pathogen Biology & Immunology, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Jiangsu, 211166, Nanjing, P. R. China
| | - Yanan Pu
- Department of Pathogen Biology & Immunology, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Jiangsu, 211166, Nanjing, P. R. China
| | - Lina Zhang
- Department of Pathogen Biology & Immunology, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Jiangsu, 211166, Nanjing, P. R. China
| | - Qianqian Qi
- Department of Pathogen Biology & Immunology, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Jiangsu, 211166, Nanjing, P. R. China
| | - Lei Xu
- Department of Pathogen Biology & Immunology, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Jiangsu, 211166, Nanjing, P. R. China
| | - Wei Li
- Department of Pathogen Biology & Immunology, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Jiangsu, 211166, Nanjing, P. R. China
| | - Chuan Wei
- Department of Pathogen Biology & Immunology, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Jiangsu, 211166, Nanjing, P. R. China
| | - Xiaofan Wang
- Department of Pathogen Biology & Immunology, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Jiangsu, 211166, Nanjing, P. R. China
| | - Sha Zhou
- Department of Pathogen Biology & Immunology, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Jiangsu, 211166, Nanjing, P. R. China
| | - Jifeng Zhu
- Department of Pathogen Biology & Immunology, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Jiangsu, 211166, Nanjing, P. R. China
| | - Xuefeng Wang
- Central Laboratory, The Affiliated Hospital of Jiangsu University, Jiangsu, 212002, Zhenjiang, P. R. China
| | - Feng Liu
- Department of Pathogen Biology & Immunology, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Jiangsu, 211166, Nanjing, P. R. China
| | - Xiaojun Chen
- Department of Pathogen Biology & Immunology, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Jiangsu, 211166, Nanjing, P. R. China.
| | - Chuan Su
- Department of Pathogen Biology & Immunology, State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Jiangsu, 211166, Nanjing, P. R. China.
| |
Collapse
|
45
|
Pang SW, Lahiri C, Poh CL, Tan KO. PNMA family: Protein interaction network and cell signalling pathways implicated in cancer and apoptosis. Cell Signal 2018; 45:54-62. [PMID: 29378289 DOI: 10.1016/j.cellsig.2018.01.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/23/2018] [Accepted: 01/23/2018] [Indexed: 12/22/2022]
Abstract
Paraneoplastic Ma Family (PNMA) comprises a growing number of family members which share relatively conserved protein sequences encoded by the human genome and is localized to several human chromosomes, including the X-chromosome. Based on sequence analysis, PNMA family members share sequence homology to the Gag protein of LTR retrotransposon, and several family members with aberrant protein expressions have been reported to be closely associated with the human Paraneoplastic Disorder (PND). In addition, gene mutations of specific members of PNMA family are known to be associated with human mental retardation or 3-M syndrome consisting of restrictive post-natal growth or dwarfism, and development of skeletal abnormalities. Other than sequence homology, the physiological function of many members in this family remains unclear. However, several members of this family have been characterized, including cell signalling events mediated by these proteins that are associated with apoptosis, and cancer in different cell types. Furthermore, while certain PNMA family members show restricted gene expression in the human brain and testis, other PNMA family members exhibit broader gene expression or preferential and selective protein interaction profiles, suggesting functional divergence within the family. Functional analysis of some members of this family have identified protein domains that are required for subcellular localization, protein-protein interactions, and cell signalling events which are the focus of this review paper.
Collapse
Affiliation(s)
- Siew Wai Pang
- Department of Biological Sciences, Sunway University, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| | - Chandrajit Lahiri
- Department of Biological Sciences, Sunway University, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| | - Chit Laa Poh
- Research Centre for Biomedical Sciences, Sunway University, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| | - Kuan Onn Tan
- Department of Biological Sciences, Sunway University, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
46
|
Yang W, Zhou C, Luo M, Shi X, Li Y, Sun Z, Zhou F, Chen Z, He J. MiR-652-3p is upregulated in non-small cell lung cancer and promotes proliferation and metastasis by directly targeting Lgl1. Oncotarget 2017; 7:16703-15. [PMID: 26934648 PMCID: PMC4941345 DOI: 10.18632/oncotarget.7697] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 02/06/2016] [Indexed: 12/17/2022] Open
Abstract
Our previous study found that miR-652-3p is markedly upregulated in the serum of patients with NSCLC and suggesting that miR-652-3p is a potential biomarker for the early diagnosis of NSCLC. In this study, we detected the expression of miR-652-3p in NSCLC tumor tissues and cell lines and investigated the effect of miR-652-3p on the proliferation and metastasis of NSCLC cells. Our results showed that the expression of miR-652-3p was significantly upregulated in tumor tissues of 50 patients with NSCLC, and it was significantly higher in patients with positive lymph node metastasis, advanced TNM stage and poor prognosis. Using functional analyses by overexpressing or suppressing miR-652-3p in NSCLC cells, we demonstrated that miR-652-3p promoted cell proliferation, migration, invasion and inhibited cell apoptosis. Moreover, the lethal(2) giant larvae 1 (Lgl1) was identified as a direct and functional target of miR-652-3p. Overexpression or knockdown of miR-652-3p led to decreased or increased expression of Lgl1 protein, and the binding site mutation of LLGL1 3'UTR abrogated the responsiveness of the luciferase reporters to miR-652-3p. Overexpression of Lgl1 partially attenuated the function of miR-652-3p. Collectively, these results revealed that miR-652-3p execute a tumor-promoter function in NSCLC through direct binding and regulating the expression of Lgl1.
Collapse
Affiliation(s)
- Wenhui Yang
- Department of Thoracic Surgery, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Chengcheng Zhou
- Department of Thoracic Surgery, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Mei Luo
- Department of Thoracic Surgery, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Xuejiao Shi
- Department of Thoracic Surgery, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Yuan Li
- Department of Thoracic Surgery, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Zengmiao Sun
- Department of Thoracic Surgery, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Fang Zhou
- Department of Thoracic Surgery, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Zhaoli Chen
- Department of Thoracic Surgery, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Jie He
- Department of Thoracic Surgery, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| |
Collapse
|
47
|
Hua Y, Zhao K, Tao G, Dai C, Su Y. miR-25 promotes metastasis via targeting FBXW7 in esophageal squamous cell carcinoma. Oncol Rep 2017; 38:3030-3038. [PMID: 29048664 DOI: 10.3892/or.2017.5995] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/21/2017] [Indexed: 11/05/2022] Open
Abstract
Increasing evidence suggests that miR-25 can function as an oncogene in different types of human malignancies, whereas little is known concerning the role of miR-25 in esophageal squamous cell carcinoma (ESCC). The aim of the present study was to investigate the role of miR-25 in ESCC and to determine the molecular mechanisms underlying its function. The expression level of miR-25 was detected in primary ESCC tissues and cell lines by real-time quantitative PCR. We also assessed whether knockdown of miR-25 influences in vitro cell invasion and migration. Western blot analysis was used to detect the influence of miR-25 on a target gene, and Pearson analysis was used to calculate the correlation between the expression of a target gene and miR-25 in ESCC tissues. The results revealed that the relative level of miR-25 expression was significantly upregulated in ESCC tissues and cell lines. Expression of miR-25 in ESCC tissues was positively associated with depth of tumor invasion and tumor stage. Moreover, high miR-25 expression conferred poorer overall survival (OS), and a multivariate analysis revealed that miR-25 was an independent risk factor for OS. In addition, knockdown of miR-25 in ESCC cells significantly suppressed cell migration and invasion. Furthermore, we identified F-box and WD repeat domain-containing 7 (FBXW7) protein as a direct functional target of miR-25 in ESCC. In conclusion, the present study supports the potential of miR-25 as a prognostic predictor with its high expression in cancer tissues and its association with tumor progression by targeting FBXW7 in ESCC.
Collapse
Affiliation(s)
- Ye Hua
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Kai Zhao
- Department of Gastroenterology, Changzhou Jintan People's Hospital, Changzhou, Jiangsu 213200, P.R. China
| | - Gang Tao
- Department of Gastroenterology, Zhenjiang Hospital of Traditional Chinese and Western Medicine, Zhenjiang, Jiangsu 212001, P.R. China
| | - Chunhua Dai
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yuting Su
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
48
|
Othman N, Nagoor NH. miR-608 regulates apoptosis in human lung adenocarcinoma via regulation of AKT2. Int J Oncol 2017; 51:1757-1764. [PMID: 29075783 DOI: 10.3892/ijo.2017.4174] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/05/2017] [Indexed: 11/06/2022] Open
Abstract
Lung cancer remains a major health problem with a low 5-year survival rate of patients. Recent studies have shown that dysregulation of microRNAs (miRNAs) are prevalent in lung cancer and these aberrations play a significant role in the progression of tumour progression. In the present study, bioinformatics analyses was employed to predict potential miR-608 targets, which are associated with signaling pathways involved in cancer. Luciferase reporter assay identified AKT2 as a novel target of miR-608, and suppression of its protein levels was validated through western blot analysis. Zebrafish embryos were microinjected with cells transfected with miR-608 to elucidate the role of miR-608 in vivo, and immunostained with antibodies to detect activated caspase-3. We present the first evidence that miR-608 behaves as a tumour suppressor in A549 and SK-LU-1 cells through the regulation of AKT2, suggesting that selective targeting of AKT2 via miR-608 may be developed as a potential therapeutic strategy for miRNA-based non-small cell lung cancer (NSCLC) therapy.
Collapse
Affiliation(s)
- Norahayu Othman
- Institute of Biological Sciences (Genetics and Molecular Biology), Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Noor Hasima Nagoor
- Institute of Biological Sciences (Genetics and Molecular Biology), Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
49
|
Upregulation of microRNA-25-3p inhibits proliferation, migration and invasion of osteosarcoma cells in vitro by directly targeting SOX4. Mol Med Rep 2017; 16:4293-4300. [DOI: 10.3892/mmr.2017.7103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 05/18/2017] [Indexed: 11/05/2022] Open
|
50
|
Demethylation of the MIR145 promoter suppresses migration and invasion in breast cancer. Oncotarget 2017; 8:61731-61741. [PMID: 28977900 PMCID: PMC5617460 DOI: 10.18632/oncotarget.18686] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 05/12/2017] [Indexed: 12/16/2022] Open
Abstract
miR-145 has been implicated in the progression of breast cancer. Here, we report that its expression is decreased in breast cancer specimens and cell lines and that this low level of expression is associated with DNA methylation of its gene, MIR145. Methylation of MIR145 has previously been correlated with cell migration and invasion, both in vivo and in vitro. We found that demethylation of MIR145 reactivates miR-145 and contributes to the anti-cancer properties of 5-aza-2'-deoxyazacytidine (5-AzaC). Therefore, miR-145 is a potentially valuable biomarker for breast cancer.
Collapse
|