1
|
Zhang J, Yin R, Xue Y, Qin R, Wang X, Wu S, Zhu J, Li YS, Zhang C, Wei Y. Advances in the study of epithelial mesenchymal transition in cancer progression: Role of miRNAs. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 196:69-90. [PMID: 40185337 DOI: 10.1016/j.pbiomolbio.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Epithelial-mesenchymal transition (EMT) has been extensively studied for its roles in tumor metastasis, the generation and maintenance of cancer stem cells and treatment resistance. Epithelial mesenchymal plasticity allows cells to switch between various states within the epithelial-mesenchymal spectrum, resulting in a mixed epithelial/mesenchymal phenotypic profile. This plasticity underlies the acquisition of multiple malignant features during cancer progression and poses challenges for EMT in tumors. MicroRNAs (miRNAs) in the microenvironment affect numerous signaling processes through diverse mechanisms, influencing physiological activities. This paper reviews recent advances in EMT, the role of different hybrid states in tumor progression, and the important role of miRNAs in EMT. Furthermore, it explores the relationship between miRNA-based EMT therapies and their implications for clinical practice, discussing how ongoing developments may enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Jia Zhang
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China
| | - Runting Yin
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China.
| | - Yongwang Xue
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China
| | - Rong Qin
- Department of Medical Oncology, Jiangsu University Affiliated People's Hospital, Zhenjiang Clinical Medical College of Nanjing Medical University, Zhenjiang, China
| | - Xuequan Wang
- Department of Radiation Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Shuming Wu
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China
| | - Jun Zhu
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China
| | - Yan-Shuang Li
- Department of Breast Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Cai Zhang
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China.
| |
Collapse
|
2
|
Zhao WW, Gao Y, Zhu YT, Zhong FL, Luo XG. SMYD3 plays a pivotal role in mediating the epithelial-mesenchymal transition process in breast cancer. Biochem Biophys Res Commun 2025; 749:151363. [PMID: 39864383 DOI: 10.1016/j.bbrc.2025.151363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 01/28/2025]
Abstract
In previous reports, we highlighted the significant involvement of SMYD3, a histone methyltransferase (HMT), in various aspects of cancer progression, including cell adhesion, migration, and invasion. In this study, we delved deeper into understanding the relationship between SMYD3 and epithelial-mesenchymal transition (EMT) both in cell lines and clinical samples. Our investigation uncovered a notable correlation between heightened SMYD3 expression and the presence of EMT markers in human breast cancer tissues. We found that the induction of SMYD3 expression is facilitated by transforming growth factor beta 1 (TGF-β1), which achieves this by suppressing miR-124, an inhibitor that targets SMYD3, through alterations in DNA methylation. Conversely, our experiments demonstrated that reducing SMYD3 levels through RNA interference impeded TGF-β1-induced EMT in breast cancer cells. Furthermore, our results revealed that SMYD3 alone has the capability to modulate the expression of markers associated with EMT. An intriguing aspect of our study is the revelation that SMYD3 influences the activation of vimentin by binding to its response elements within the core promoter region. Notably, this effect is independent of SMYD3's histone methyltransferase activity. These findings collectively underscore the pivotal role of SMYD3 in driving EMT, both in cell lines and primary cancer tissues, particularly emphasizing its significance in TGF-β1-induced EMT in breast cancer.
Collapse
Affiliation(s)
- Wen-Wen Zhao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China; Shijiazhuang Finance & Trade School, Hebei, 050800, China
| | - Yuan Gao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yu-Ting Zhu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Fei-Liang Zhong
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Xue-Gang Luo
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
3
|
Gottumukkala SB, Palanisamy A. Non-small cell lung cancer map and analysis: exploring interconnected oncogenic signal integrators. Mamm Genome 2025:10.1007/s00335-025-10110-6. [PMID: 39939487 DOI: 10.1007/s00335-025-10110-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/29/2025] [Indexed: 02/14/2025]
Abstract
Non-Small Cell lung cancer (NSCLC) is known for its fast progression, metastatic potency, and a leading cause of mortality globally. At diagnosis, approximately 30-40% of NSCLC patients already present with metastasis. Epithelial to mesenchymal transition (EMT) is a developmental program implicated in cancer progression and metastasis. Transforming Growth Factor-β (TGFβ) and its signalling plays a prominent role in orchestrating the process of EMT and cancer metastasis. In present study, a comprehensive molecular interaction map of TGFβ induced EMT in NSCLC was developed through an extensive literature survey. The map encompasses 394 species interconnected through 554 reactions, representing the relationship and complex interplay between TGFβ induced SMAD dependent and independent signalling pathways (PI3K/Akt, Wnt, EGFR, JAK/STAT, p38 MAPK, NOTCH, Hypoxia). The map, built using Cell Designer and compliant with SBGN and SBML standards, was subsequently translated into a logical modelling framework using CaSQ and dynamically analysed with Cell Collective. These analyses illustrated the complex regulatory dynamics, capturing the known experimental outcomes of TGFβ induced EMT in NSCLC including the co-existence of hybrid EM phenotype during transition. Hybrid EM phenotype is known to contribute for the phenotypic plasticity during metastasis. Network-based analysis identified the crucial network level properties and hub regulators, while the transcriptome-based analysis cross validated the prognostic significance and clinical relevance of key regulators. Overall, the map developed and the subsequent analyses offer deeper understanding of the complex regulatory network governing the process of EMT in NSCLC.
Collapse
Affiliation(s)
- Sai Bhavani Gottumukkala
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India
| | - Anbumathi Palanisamy
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India.
| |
Collapse
|
4
|
Hussen BM, Saleem SJ, Abdullah SR, Mohamadtahr S, Hidayat HJ, Rasul MF, Taheri M, Kiani A. Current landscape of miRNAs and TGF-β signaling in lung cancer progression and therapeutic targets. Mol Cell Probes 2023; 72:101929. [PMID: 37683829 DOI: 10.1016/j.mcp.2023.101929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
Lung cancer (LC) is the primary reason for cancer-associated fatalities globally. Due to both tumor-suppressing and tumor-promoting activities, the TGF-β family of growth factors is extremely essential to tumorigenesis. A non-coding single-stranded short RNA called microRNA (miRNA), which is made up of about 22 nt and is encoded by endogenous genes, can control normal and pathological pathways in various kinds of cancer, including LC. Recent research demonstrated that the TGF-β signaling directly can affect the synthesis of miRNAs through suppressor of mothers against decapentaplegic (SMAD)-dependent activity or other unidentified pathways, which could generate allostatic feedback as a result of TGF-β signaling stimulation and ultimately affect the destiny of cancer tissues. In this review, we emphasize the critical functions of miRNAs in lung cancer progression and, more critically, how they affect the TGF-β signaling pathway, and explore the role of both the TGF-β signaling pathway and miRNAs as potential therapeutic targets for improving the treatments of LC patients.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Department of Biomedical Sciences, Cihan University-Erbil, Erbil, Kurdistan Region, 44001, Iraq
| | - Safeen Jasim Saleem
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Sayran Mohamadtahr
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arda Kiani
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Lung Research and Developmental Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Chen Y, Tu MJ, Han F, Liu Z, Batra N, Lara PN, Chen HW, Bi H, Yu AM. Use of recombinant microRNAs as antimetabolites to inhibit human non-small cell lung cancer. Acta Pharm Sin B 2023; 13:4273-4290. [PMID: 37799388 PMCID: PMC10547963 DOI: 10.1016/j.apsb.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/13/2023] [Accepted: 05/18/2023] [Indexed: 10/07/2023] Open
Abstract
During the development of therapeutic microRNAs (miRNAs or miRs), it is essential to define their pharmacological actions. Rather, miRNA research and therapy mainly use miRNA mimics synthesized in vitro. After experimental screening of unique recombinant miRNAs produced in vivo, three lead antiproliferative miRNAs against human NSCLC cells, miR-22-3p, miR-9-5p, and miR-218-5p, were revealed to target folate metabolism by bioinformatic analyses. Recombinant miR-22-3p, miR-9-5p, and miR-218-5p were shown to regulate key folate metabolic enzymes to inhibit folate metabolism and subsequently alter amino acid metabolome in NSCLC A549 and H1975 cells. Isotope tracing studies further confirmed the disruption of one-carbon transfer from serine to folate metabolites by all three miRNAs, inhibition of glucose uptake by miR-22-3p, and reduction of serine biosynthesis from glucose by miR-9-5p and -218-5p in NSCLC cells. With greater activities to interrupt NSCLC cell respiration, glycolysis, and colony formation than miR-9-5p and -218-5p, recombinant miR-22-3p was effective to reduce tumor growth in two NSCLC patient-derived xenograft mouse models without causing any toxicity. These results establish a common antifolate mechanism and differential actions on glucose uptake and metabolism for three lead anticancer miRNAs as well as antitumor efficacy for miR-22-3p nanomedicine, which shall provide insight into developing antimetabolite RNA therapies.
Collapse
Affiliation(s)
- Yixin Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Mei-Juan Tu
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Fangwei Han
- School of Public Health, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - Zhenzhen Liu
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Neelu Batra
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Primo N. Lara
- Department of Internal Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| |
Collapse
|
6
|
Alavifard H, Mazhari S, Meyfour A, Tokhanbigli S, Ghavami S, Zali MR, Aghdaei HA, Hatami B, Baghaei K. Imatinib suppresses activation of hepatic stellate cells by targeting STAT3/IL-6 pathway through miR-124. Cell Biol Int 2023; 47:969-980. [PMID: 36655489 DOI: 10.1002/cbin.11992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/20/2023]
Abstract
The activation of hepatic stellate cells is the primary function of facilitating liver fibrosis. Interfering with the coordinators of different signaling pathways in activated hepatic stellate cells (aHSCs) could be a potential approach in ameliorating liver fibrosis. Regarding the illustrated anti-fibrotic effect of imatinib in liver fibrosis, we investigated the imatinib's potential role in inhibiting HSC activation through miR-124 and its interference with the STAT3/hepatic leukemia factor (HLF)/IL-6 circuit. The anti-fibrotic effect of imatinib was investigated in the LX-2 cell line and carbon tetrachloride (CCl4 )-induced Sprague-Dawley rat. The expression of IL-6, STAT3, HLF, miR-124, and α-smooth muscle actin (α-SMA) were quantified by quantitative real-time PCR (qRT-PCR) and the protein level of α-SMA and STAT3 was measured by western blot analysis both in vitro and in vivo. The LX-2 cells were subjected to immunocytochemistry (ICC) for α-SMA expression. After administering imatinib in the liver fibrosis model, histopathological examinations were done, and hepatic function serum markers were checked. Imatinib administration alleviated mentioned liver fibrosis markers. The expression of miR-124 was downregulated, while IL-6/HLF/STAT3 circuit agents were upregulated in vitro and in vivo. Notably, imatinib intervention decreased the expression of IL-6, STAT3, and HLF. Elevated expression of miR-124 suppressed the expression of STAT3 and further inhibited HSCs activation. Our results demonstrated that imatinib not only ameliorated hepatic fibrosis through tyrosine kinase inhibitor (TKI) activity but also interfered with the miR-124 and STAT3/HLF/IL-6 pathway. Considering the important role of miR-124 in regulating liver fibrosis and HSCs activation, imatinib may exert its anti-fibrotic activity through miR-124.
Collapse
Affiliation(s)
- Helia Alavifard
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Sogol Mazhari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Tokhanbigli
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Ghavami
- Research Institute in Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada.,Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Faculty of Medicine, Katowice School of Technology, Katowice, Poland
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Abstract
Pulmonary arterial hypertension forms the first and most severe of the 5 categories of pulmonary hypertension. Disease pathogenesis is driven by progressive remodeling of peripheral pulmonary arteries, caused by the excessive proliferation of vascular wall cells, including endothelial cells, smooth muscle cells and fibroblasts, and perivascular inflammation. Compelling evidence from animal models suggests endothelial cell dysfunction is a key initial trigger of pulmonary vascular remodeling, which is characterised by hyperproliferation and early apoptosis followed by enrichment of apoptosis-resistant populations. Dysfunctional pulmonary arterial endothelial cells lose their ability to produce vasodilatory mediators, together leading to augmented pulmonary arterial smooth muscle cell responses, increased pulmonary vascular pressures and right ventricular afterload, and progressive right ventricular hypertrophy and heart failure. It is recognized that a range of abnormal cellular molecular signatures underpin the pathophysiology of pulmonary arterial hypertension and are enhanced by loss-of-function mutations in the BMPR2 gene, the most common genetic cause of pulmonary arterial hypertension and associated with worse disease prognosis. Widespread metabolic abnormalities are observed in the heart, pulmonary vasculature, and systemic tissues, and may underpin heterogeneity in responsivity to treatment. Metabolic abnormalities include hyperglycolytic reprogramming, mitochondrial dysfunction, aberrant polyamine and sphingosine metabolism, reduced insulin sensitivity, and defective iron handling. This review critically discusses published mechanisms linking metabolic abnormalities with dysfunctional BMPR2 (bone morphogenetic protein receptor 2) signaling; hypothesized mechanistic links requiring further validation; and their relevance to pulmonary arterial hypertension pathogenesis and the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Iona Cuthbertson
- Department of Medicine, University of Cambridge School of Clinical Medicine, Heart and Lung Research Institute, United Kingdom
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge School of Clinical Medicine, Heart and Lung Research Institute, United Kingdom
| | - Paola Caruso
- Department of Medicine, University of Cambridge School of Clinical Medicine, Heart and Lung Research Institute, United Kingdom
| |
Collapse
|
8
|
Braga EA, Fridman MV, Burdennyy AM, Filippova EA, Loginov VI, Pronina IV, Dmitriev AA, Kushlinskii NE. Regulation of the Key Epithelial Cancer Suppressor miR-124 Function by Competing Endogenous RNAs. Int J Mol Sci 2022; 23:13620. [PMID: 36362406 PMCID: PMC9655303 DOI: 10.3390/ijms232113620] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 12/01/2023] Open
Abstract
A decrease in the miR-124 expression was observed in various epithelial cancers. Like a classical suppressor, miR-124 can inhibit the translation of multiple oncogenic proteins. Epigenetic mechanisms play a significant role in the regulation of miR-124 expression and involve hypermethylation of the MIR-124-1/-2/-3 genes and the effects of long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) according to the model of competing endogenous RNAs (ceRNAs). More than 40 interactomes (lncRNA/miR-124/mRNA) based on competition between lncRNAs and mRNAs for miR-124 binding have been identified in various epithelial cancers. LncRNAs MALAT1, NEAT1, HOXA11-AS, and XIST are the most represented in these axes. Fourteen axes (e.g., SND1-IT1/miR-124/COL4A1) are involved in EMT and/or metastasis. Moreover, eight axes (e.g., OIP5-AS1/miR-124-5p/IDH2) are involved in key pathways, such as Wnt/b-catenin, E2F1, TGF-β, SMAD, ERK/MAPK, HIF-1α, Notch, PI3K/Akt signaling, and cancer cell stemness. Additionally, 15 axes impaired patient survival and three axes reduced chemo- or radiosensitivity. To date, 14 cases of miR-124 regulation by circRNAs have been identified. Half of them involve circHIPK3, which belongs to the exonic ecircRNAs and stimulates cell proliferation, EMT, autophagy, angiogenesis, and multidrug resistance. Thus, miR-124 and its interacting partners may be considered promising targets for cancer therapy.
Collapse
Affiliation(s)
- Eleonora A. Braga
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Marina V. Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Elena A. Filippova
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| | - Vitaly I. Loginov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Irina V. Pronina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | |
Collapse
|
9
|
Roy D, Modi A, Ghosh R, Ghosh R, Benito-León J. Visceral Adipose Tissue Molecular Networks and Regulatory microRNA in Pediatric Obesity: An In Silico Approach. Int J Mol Sci 2022; 23:11036. [PMID: 36232337 PMCID: PMC9569899 DOI: 10.3390/ijms231911036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/05/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Childhood obesity carries an increased risk of metabolic complications, sleep disturbances, and cancer. Visceral adiposity is independently associated with inflammation and insulin resistance in obese children. However, the underlying pathogenic mechanisms are still unclear. We aimed to detect the gene expression pattern and its regulatory network in the visceral adipose tissue of obese pediatric individuals. Using differentially-expressed genes (DEGs) identified from two publicly available datasets, GSE9624 and GSE88837, we performed functional enrichment, protein-protein interaction, and network analyses to identify pathways, targeting transcription factors (TFs), microRNA (miRNA), and regulatory networks. There were 184 overlapping DEGs with six significant clusters and 19 candidate hub genes. Furthermore, 24 TFs targeted these hub genes. The genes were regulated by miR-16-5p, miR-124-3p, miR-103a-3p, and miR-107, the top miRNA, according to a maximum number of miRNA-mRNA interaction pairs. The miRNA were significantly enriched in several pathways, including lipid metabolism, immune response, vascular inflammation, and brain development, and were associated with prediabetes, diabetic nephropathy, depression, solid tumors, and multiple sclerosis. The genes and miRNA detected in this study involve pathways and diseases related to obesity and obesity-associated complications. The results emphasize the importance of the TGF-β signaling pathway and its regulatory molecules, the immune system, and the adipocytic apoptotic pathway in pediatric obesity. The networks associated with this condition and the molecular mechanisms through which the potential regulators contribute to pathogenesis are open to investigation.
Collapse
Affiliation(s)
- Dipayan Roy
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur 342005, Rajasthan, India
- Indian Institute of Technology (IIT), Madras 600036, Tamil Nadu, India
- School of Humanities, Indira Gandhi National Open University (IGNOU), New Delhi 110044, Delhi, India
| | - Anupama Modi
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur 342005, Rajasthan, India
| | - Ritwik Ghosh
- Department of General Medicine, Burdwan Medical College & Hospital, Burdwan 713104, West Bengal, India
| | - Raghumoy Ghosh
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur 342005, Rajasthan, India
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore 636921, Singapore
| | - Julián Benito-León
- Department of Neurology, University Hospital “12 de Octubre”, Av. De Córdoba, s/n, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Av. De Córdoba, s/n, 28041 Madrid, Spain
- Department of Medicine, Universidad Complutense, Pl. de Ramón y Cajal, s/n, 28040 Madrid, Spain
| |
Collapse
|
10
|
Sakowska J, Arcimowicz Ł, Jankowiak M, Papak I, Markiewicz A, Dziubek K, Kurkowiak M, Kote S, Kaźmierczak-Siedlecka K, Połom K, Marek-Trzonkowska N, Trzonkowski P. Autoimmunity and Cancer-Two Sides of the Same Coin. Front Immunol 2022; 13:793234. [PMID: 35634292 PMCID: PMC9140757 DOI: 10.3389/fimmu.2022.793234] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/12/2022] [Indexed: 02/06/2023] Open
Abstract
Autoimmune disease results from the immune response against self-antigens, while cancer develops when the immune system does not respond to malignant cells. Thus, for years, autoimmunity and cancer have been considered as two separate fields of research that do not have a lot in common. However, the discovery of immune checkpoints and the development of anti-cancer drugs targeting PD-1 (programmed cell death receptor 1) and CTLA-4 (cytotoxic T lymphocyte antigen 4) pathways proved that studying autoimmune diseases can be extremely helpful in the development of novel anti-cancer drugs. Therefore, autoimmunity and cancer seem to be just two sides of the same coin. In the current review, we broadly discuss how various regulatory cell populations, effector molecules, genetic predisposition, and environmental factors contribute to the loss of self-tolerance in autoimmunity or tolerance induction to cancer. With the current paper, we also aim to convince the readers that the pathways involved in cancer and autoimmune disease development consist of similar molecular players working in opposite directions. Therefore, a deep understanding of the two sides of immune tolerance is crucial for the proper designing of novel and selective immunotherapies.
Collapse
Affiliation(s)
- Justyna Sakowska
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Łukasz Arcimowicz
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Martyna Jankowiak
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Ines Papak
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Markiewicz
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Dziubek
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Małgorzata Kurkowiak
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Sachin Kote
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | | | - Karol Połom
- Department of Surgical Oncology, Medical University of Gdańsk, Gdańsk, Poland
| | - Natalia Marek-Trzonkowska
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
11
|
Hu YZ, Hu ZL, Liao TY, Li Y, Pan YL. LncRNA SND1-IT1 facilitates TGF-β1-induced epithelial-to-mesenchymal transition via miR-124/COL4A1 axis in gastric cancer. Cell Death Dis 2022; 8:73. [PMID: 35184134 PMCID: PMC8858320 DOI: 10.1038/s41420-021-00793-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/16/2021] [Accepted: 12/01/2021] [Indexed: 01/16/2023]
Abstract
AbstractThe transformation of tumor cells from an epithelial to a mesenchymal-like phenotype, designated as epithelial-to-mesenchymal transition (EMT), represents a key hallmark of human cancer metastasis, including gastric cancer (GC). However, a large set of non-coding RNAs have been studied for their functions that initiate or inhibit this phenotypic switch in GC cells by regulating oncogenes or tumor suppressors. In this paper, we aimed to identify lncRNA SND1-IT1, miR-124, and COL4A1 gene in the context of GC with a specific focus on their effects on transforming growth factor β1 (TGF-β1)-induced EMT. The study included 52 paired samples of lesion tissues and adjacent lesion-free tissues surgically resected from patients diagnosed with GC. HGC-27 cells were stimulated with exogenous TGF-β1 (2 ng/mL). Expression of lncRNA SND1-IT1, miR-124, and COL4A1 was determined by RT-qPCR. CCK-8 assays, Transwell assays, immunoblotting analysis of EMT-specific markers, and tumor invasion markers were performed to evaluate cell viability, migration, and invasion of cultured HGC-27 cells. Luciferase activity assay was employed to examine miR-124 binding with lncRNA SND1-IT1 and COL4A1, respectively. LncRNA SND1-IT1 was upregulated in GC tissues and cells. TGF-β1-stimulated EMT and regulated lncRNA SND1-IT1, miR-124, and COL4A1 expressions in HGC-27 cells. LncRNA SND1-IT1 knockdown tempered HGC-27 cell viability, migration and invasion. LncRNA SND1-IT1 participated in TGF-β1-stimulated EMT in GC by sponging miR-124. MiR-124 attenuated TGF-β1-stimulated EMT in GC by targeting COL4A1. These results primarily demonstrated TGF-β1 can regulate cancer cell migration, invasion and stimulate EMT through the SND1-IT1/miR-124/COL4A1 axis in GC.
Collapse
|
12
|
Xin Y, Peng J, Hong YY, Chao QC, Na S, Pan S, Zhao LF. Advances in research on the effects of platelet activation in acute lung injury (Review). Biomed Rep 2022; 16:17. [PMID: 35154701 PMCID: PMC8814673 DOI: 10.3892/br.2022.1500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
Acute lung injury (ALI) is an acute hypoxic respiratory insufficiency or failure caused by various factors inside and outside the lungs. ALI is associated with high morbidity and a poor prognosis in hospitalized patients. The lungs serve as a reservoir for platelet precursor megakaryocytes and are closely associated with platelets. Platelets not only play a central role in hemostasis, coagulation and wound healing, but can also act as inflammatory cells capable of stimulating non-hemostatic immune functions under inflammatory conditions, participating in the progression of various inflammatory diseases, and can result in tissue damage. Therefore, it was speculated that platelets may play an important role in the pathogenesis of ALI. In this review, the latest research progress on secretion of bioactive mediators from platelets, platelet activation-related signaling pathways, and the direct contact reactions between platelets and neutrophils with endothelial cells that result in ALI are described, providing evidence to support the importance of the consideration of platelets in the search for ALI interventional targets.
Collapse
Affiliation(s)
- Yuan Xin
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Jiang Peng
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Yu Yun Hong
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Qiao Cong Chao
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Su Na
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Sun Pan
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Lin Fang Zhao
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| |
Collapse
|
13
|
Deng L, Petrek H, Tu MJ, Batra N, Yu AX, Yu AM. Bioengineered miR-124-3p prodrug selectively alters the proteome of human carcinoma cells to control multiple cellular components and lung metastasis in vivo. Acta Pharm Sin B 2021; 11:3950-3965. [PMID: 35024318 PMCID: PMC8727917 DOI: 10.1016/j.apsb.2021.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
With the understanding of microRNA (miRNA or miR) functions in tumor initiation, progression, and metastasis, efforts are underway to develop new miRNA-based therapies. Very recently, we demonstrated effectiveness of a novel humanized bioengineered miR-124-3p prodrug in controlling spontaneous lung metastasis in mouse models. This study was to investigate the molecular and cellular mechanisms by which miR-124-3p controls tumor metastasis. Proteomics study identified a set of proteins selectively and significantly downregulated by bioengineered miR-124-3p in A549 cells, which were assembled into multiple cellular components critical for metastatic potential. Among them, plectin (PLEC) was verified as a new direct target for miR-124-3p that links cytoskeleton components and junctions. In miR-124-3p-treated lung cancer and osteosarcoma cells, protein levels of vimentin, talin 1 (TLN1), integrin beta-1 (ITGB1), IQ motif containing GTPase activating protein 1 (IQGAP1), cadherin 2 or N-cadherin (CDH2), and junctional adhesion molecule A (F11R or JAMA or JAM1) decreased, causing remodeling of cytoskeletons and disruption of cell-cell junctions. Furthermore, miR-124-3p sharply suppressed the formation of focal adhesion plaques, leading to reduced cell adhesion capacity. Additionally, efficacy and safety of biologic miR-124-3p therapy was established in an aggressive experimental metastasis mouse model in vivo. These results connect miR-124-3p-PLEC signaling to other elements in the control of cytoskeleton, cell junctions, and adhesion essential for cancer cell invasion and extravasation towards metastasis, and support the promise of miR-124 therapy.
Collapse
Affiliation(s)
- Linglong Deng
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Hannah Petrek
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Mei-Juan Tu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Neelu Batra
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Ai-Xi Yu
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| |
Collapse
|
14
|
Xu B, Xu G, Yu Y, Lin J. The role of TGF-β or BMPR2 signaling pathway-related miRNA in pulmonary arterial hypertension and systemic sclerosis. Arthritis Res Ther 2021; 23:288. [PMID: 34819148 PMCID: PMC8613994 DOI: 10.1186/s13075-021-02678-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 11/07/2021] [Indexed: 11/17/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe complication of connective tissue disease (CTD), causing death in systemic sclerosis (SSc). The past decade has yielded many scientific insights into microRNA (miRNAs) in PAH and SSc. This growth of knowledge has well-illustrated the complexity of microRNA (miRNA)-based regulation of gene expression in PAH. However, few miRNA-related SSc-PAH were elucidated. This review firstly discusses the role of transforming growth factor-beta (TGF-β) signaling and bone morphogenetic protein receptor type II (BMPR2) in PAH and SSc. Secondly, the miRNAs relating to TGF-β and BMPR2 signaling pathways in PAH and SSc or merely PAH were subsequently summarized. Finally, future studies might develop early diagnostic biomarkers and target-oriented therapeutic strategies for SSc-PAH and PAH treatment.
Collapse
Affiliation(s)
- Bei Xu
- Department of Rheumatology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang Province, People's Republic of China, 310003
| | - Guanhua Xu
- Department of Rheumatology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang Province, People's Republic of China, 310003
| | - Ye Yu
- Department of Rheumatology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang Province, People's Republic of China, 310003
| | - Jin Lin
- Department of Rheumatology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang Province, People's Republic of China, 310003.
| |
Collapse
|
15
|
De Martino V, Rossi M, Battafarano G, Pepe J, Minisola S, Del Fattore A. Extracellular Vesicles in Osteosarcoma: Antagonists or Therapeutic Agents? Int J Mol Sci 2021; 22:12586. [PMID: 34830463 PMCID: PMC8619425 DOI: 10.3390/ijms222212586] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma (OS) is a skeletal tumor affecting mainly children and adolescents. The presence of distance metastasis is frequent and it is localized preferentially to the lung, representing the main reason for death among patients. The therapeutic approaches are based on surgery and chemotherapeutics. However, the drug resistance and the side effects associated with the chemotherapy require the identification of new therapeutic approaches. The understanding of the complex biological scenario of the osteosarcoma will open the way for the identification of new targets for its treatment. Recently, a great interest of scientific community is for extracellular vesicles (EVs), that are released in the tumor microenvironment and are important regulators of tumor proliferation and the metastatic process. At the same time, circulating extracellular vesicles can be exploited as diagnostic and prognostic biomarkers, and they can be loaded with drugs as a new therapeutic approach for osteosarcoma patients. Thus, the characterization of OS-related EVs could represent a way to convert these vesicles from antagonists for human health into therapeutic and/or diagnostic agents.
Collapse
Affiliation(s)
- Viviana De Martino
- Department of Clinical, Internal, Anaesthesiology and Cardiovascular Sciences, Sapienza University, 00185 Rome, Italy; (V.D.M.); (J.P.); (S.M.)
| | - Michela Rossi
- Bone Physiopathology Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.R.); (G.B.)
| | - Giulia Battafarano
- Bone Physiopathology Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.R.); (G.B.)
| | - Jessica Pepe
- Department of Clinical, Internal, Anaesthesiology and Cardiovascular Sciences, Sapienza University, 00185 Rome, Italy; (V.D.M.); (J.P.); (S.M.)
| | - Salvatore Minisola
- Department of Clinical, Internal, Anaesthesiology and Cardiovascular Sciences, Sapienza University, 00185 Rome, Italy; (V.D.M.); (J.P.); (S.M.)
| | - Andrea Del Fattore
- Bone Physiopathology Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.R.); (G.B.)
| |
Collapse
|
16
|
Yu DL, Yu ZG, Han GS, Li J, Anh V. Heterogeneous Types of miRNA-Disease Associations Stratified by Multi-Layer Network Embedding and Prediction. Biomedicines 2021; 9:biomedicines9091152. [PMID: 34572337 PMCID: PMC8465678 DOI: 10.3390/biomedicines9091152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/15/2021] [Accepted: 08/30/2021] [Indexed: 12/02/2022] Open
Abstract
Abnormal miRNA functions are widely involved in many diseases recorded in the database of experimentally supported human miRNA-disease associations (HMDD). Some of the associations are complicated: There can be up to five heterogeneous association types of miRNA with the same disease, including genetics type, epigenetics type, circulating miRNAs type, miRNA tissue expression type and miRNA-target interaction type. When one type of association is known for an miRNA-disease pair, it is important to predict any other types of the association for a better understanding of the disease mechanism. It is even more important to reveal associations for currently unassociated miRNAs and diseases. Methods have been recently proposed to make predictions on the association types of miRNA-disease pairs through restricted Boltzman machines, label propagation theories and tensor completion algorithms. None of them has exploited the non-linear characteristics in the miRNA-disease association network to improve the performance. We propose to use attributed multi-layer heterogeneous network embedding to learn the latent representations of miRNAs and diseases from each association type and then to predict the existence of the association type for all the miRNA-disease pairs. The performance of our method is compared with two newest methods via 10-fold cross-validation on the database HMDD v3.2 to demonstrate the superior prediction achieved by our method under different settings. Moreover, our real predictions made beyond the HMDD database can be all validated by NCBI literatures, confirming that our method is capable of accurately predicting new associations of miRNAs with diseases and their association types as well.
Collapse
Affiliation(s)
- Dong-Ling Yu
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Xiangtan 411105, China; (D.-L.Y.); (G.-S.H.)
- Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Zu-Guo Yu
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Xiangtan 411105, China; (D.-L.Y.); (G.-S.H.)
- Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Xiangtan 411105, China
- Correspondence: (Z.-G.Y.); (J.L.)
| | - Guo-Sheng Han
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Xiangtan 411105, China; (D.-L.Y.); (G.-S.H.)
- Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Jinyan Li
- Data Science Institute, University of Technology Sydney, Broadway, NSW 2007, Australia
- Correspondence: (Z.-G.Y.); (J.L.)
| | - Vo Anh
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia;
| |
Collapse
|
17
|
Yang Y, Ye WL, Zhang RN, He XS, Wang JR, Liu YX, Wang Y, Yang XM, Zhang YJ, Gan WJ. The Role of TGF- β Signaling Pathways in Cancer and Its Potential as a Therapeutic Target. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6675208. [PMID: 34335834 PMCID: PMC8321733 DOI: 10.1155/2021/6675208] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
The transforming growth factor-β (TGF-β) signaling pathway mediates various biological functions, and its dysregulation is closely related to the occurrence of malignant tumors. However, the role of TGF-β signaling in tumorigenesis and development is complex and contradictory. On the one hand, TGF-β signaling can exert antitumor effects by inhibiting proliferation or inducing apoptosis of cancer cells. On the other hand, TGF-β signaling may mediate oncogene effects by promoting metastasis, angiogenesis, and immune escape. This review summarizes the recent findings on molecular mechanisms of TGF-β signaling. Specifically, this review evaluates TGF-β's therapeutic potential as a target by the following perspectives: ligands, receptors, and downstream signaling. We hope this review can trigger new ideas to improve the current clinical strategies to treat tumors related to the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Yun Yang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Wen-Long Ye
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Ruo-Nan Zhang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Xiao-Shun He
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Jing-Ru Wang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Yu-Xuan Liu
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Yi Wang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Xue-Mei Yang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Yu-Juan Zhang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Wen-Juan Gan
- Department of Pathology, Dushu Lake Hospital Affiliated of Soochow University, Soochow University, Suzhou 215124, China
| |
Collapse
|
18
|
Yu Y, Wang JL, Meng LL, Hu CT, Yan ZW, He ZP, Shi XQ, Fu GH, Zu LD. DDX54 Plays a Cancerous Role Through Activating P65 and AKT Signaling Pathway in Colorectal Cancer. Front Oncol 2021; 11:650360. [PMID: 33968751 PMCID: PMC8097168 DOI: 10.3389/fonc.2021.650360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most malignant cancers, and its incidence is still steadily increasing. The DDX RNA helicase family members have been found to play a role in various cancers; however, the role of DDX54 in colorectal cancer is still unclear and needed to be defined. Here, we found DDX54 was overexpressed in CRC tissues by the label-free mass spectrum, which was also verified in tissue microarray of colon cancer, as well as the CRC cell lines and TCGA database. High DDX54 level was correlated with tumor stage and distant metastasis, which always indicated a poor prognosis to the CRC patients. DDX54 could promote the proliferation and mobility of CRC cells through increasing the phosphorylation level p65 and AKT leading to the tumorigenesis. Here, we have preliminarily studied the function of DDX54 in CRC, which would improve our understanding of the underlying biology of CRC and provide the new insight that could be translated into novel therapeutic approaches.
Collapse
Affiliation(s)
- Yi Yu
- Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jing-Long Wang
- Department of Pathology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Li Meng
- Department of Pathology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun-Ting Hu
- Department of Pathology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhao-Wen Yan
- Department of Pathology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Ping He
- Department of Pathology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Qin Shi
- Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Hui Fu
- Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Pathology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Dong Zu
- Department of Pathology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Zheng Y, Huang Z, Xu J, Hou K, Yu Y, Lv S, Chen L, Li Y, Quan C, Chi G. MiR-124 and Small Molecules Synergistically Regulate the Generation of Neuronal Cells from Rat Cortical Reactive Astrocytes. Mol Neurobiol 2021; 58:2447-2464. [PMID: 33725319 DOI: 10.1007/s12035-021-02345-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/25/2021] [Indexed: 01/04/2023]
Abstract
Irreversible neuron loss caused by central nervous system injuries usually leads to persistent neurological dysfunction. Reactive astrocytes, because of their high proliferative capacity, proximity to neuronal lineage, and significant involvement in glial scarring, are ideal starting cells for neuronal regeneration. Having previously identified several small molecules as important regulators of astrocyte-to-neuron reprogramming, we established herein that miR-124, ruxolitinib, SB203580, and forskolin could co-regulate rat cortical reactive astrocyte-to-neuron conversion. The induced cells had reduced astroglial properties, displayed typical neuronal morphologies, and expressed neuronal markers, reflecting 25.9% of cholinergic neurons and 22.3% of glutamatergic neurons. Gene analysis revealed that induced neuron gene expression patterns were more similar to that of primary neurons than of initial reactive astrocytes. On the molecular level, miR-124-driven neuronal differentiation of reactive astrocytes was via targeting of the SOX9-NFIA-HES1 axis to inhibit HES1 expression. In conclusion, we present a novel approach to inducing endogenous rat cortical reactive astrocytes into neurons through co-regulation involving miR-124 and three small molecules. Thus, our research has potential implications for inhibiting glial scar formation and promoting neuronal regeneration after central nervous system injury or disease.
Collapse
Affiliation(s)
- Yangyang Zheng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China
| | - Zhehao Huang
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130031, Jilin, China
| | - Jinying Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China
| | - Kun Hou
- The First Hospital of Jilin University, No. 1 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Yifei Yu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China
| | - Shuang Lv
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China
| | - Lin Chen
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130031, Jilin, China
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China.
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China.
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
20
|
Gómez-Gil V. Therapeutic Implications of TGFβ in Cancer Treatment: A Systematic Review. Cancers (Basel) 2021; 13:379. [PMID: 33498521 PMCID: PMC7864190 DOI: 10.3390/cancers13030379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/24/2022] Open
Abstract
Transforming growth factor β (TGFβ) is a pleiotropic cytokine that participates in a wide range of biological functions. The alterations in the expression levels of this factor, or the deregulation of its signaling cascade, can lead to different pathologies, including cancer. A great variety of therapeutic strategies targeting TGFβ, or the members included in its signaling pathway, are currently being researched in cancer treatment. However, the dual role of TGFβ, as a tumor suppressor or a tumor-promoter, together with its crosstalk with other signaling pathways, has hampered the development of safe and effective treatments aimed at halting the cancer progression. This systematic literature review aims to provide insight into the different approaches available to regulate TGFβ and/or the molecules involved in its synthesis, activation, or signaling, as a cancer treatment. The therapeutic strategies most commonly investigated include antisense oligonucleotides, which prevent TGFβ synthesis, to molecules that block the interaction between TGFβ and its signaling receptors, together with inhibitors of the TGFβ signaling cascade-effectors. The effectiveness and possible complications of the different potential therapies available are also discussed.
Collapse
Affiliation(s)
- Verónica Gómez-Gil
- Department of Biomedical Sciences (Area of Pharmacology), School of Medicine and Health Sciences, University of Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
21
|
Ungefroren H. Autocrine TGF-β in Cancer: Review of the Literature and Caveats in Experimental Analysis. Int J Mol Sci 2021; 22:977. [PMID: 33478130 PMCID: PMC7835898 DOI: 10.3390/ijms22020977] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
Autocrine signaling is defined as the production and secretion of an extracellular mediator by a cell followed by the binding of that mediator to receptors on the same cell to initiate signaling. Autocrine stimulation often operates in autocrine loops, a type of interaction, in which a cell produces a mediator, for which it has receptors, that upon activation promotes expression of the same mediator, allowing the cell to repeatedly autostimulate itself (positive feedback) or balance its expression via regulation of a second factor that provides negative feedback. Autocrine signaling loops with positive or negative feedback are an important feature in cancer, where they enable context-dependent cell signaling in the regulation of growth, survival, and cell motility. A growth factor that is intimately involved in tumor development and progression and often produced by the cancer cells in an autocrine manner is transforming growth factor-β (TGF-β). This review surveys the many observations of autocrine TGF-β signaling in tumor biology, including data from cell culture and animal models as well as from patients. We also provide the reader with a critical discussion on the various experimental approaches employed to identify and prove the involvement of autocrine TGF-β in a given cellular response.
Collapse
Affiliation(s)
- Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany;
- Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany
| |
Collapse
|
22
|
MicroRNAs: Emerging oncogenic and tumor-suppressive regulators, biomarkers and therapeutic targets in lung cancer. Cancer Lett 2021; 502:71-83. [PMID: 33453304 DOI: 10.1016/j.canlet.2020.12.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/24/2020] [Accepted: 12/26/2020] [Indexed: 02/05/2023]
Abstract
Lung cancer is one of the most common solid tumors worldwide and the leading cause of cancer-related deaths, causing a devastating impact on human health. The clinical prognosis of lung cancer is usually restricted by delayed diagnosis and resistance to anticancer therapies. MicroRNAs, a range of small endogenous noncoding RNAs 22 nucleotides in length, have emerged as one of the most important players in cancer initiation and progression in recent decades. Current evidence reveals pivotal roles of microRNAs in regulating cell proliferation, migration, invasion and metastasis in lung cancer. An increasing number of preclinical and clinical studies have also explored the potential of microRNAs as promising biomarkers and new therapeutic targets for lung cancer. The current review summarizes the most recent progress on the functional mechanisms of microRNAs involved in lung cancer development and progression and further discusses the clinical application of miRNAs as putative therapeutic targets for molecular diagnosis and prognostic prediction in lung cancer.
Collapse
|
23
|
A Novel Long Non-Coding RNA-01488 Suppressed Metastasis and Tumorigenesis by Inducing miRNAs That Reduce Vimentin Expression and Ubiquitination of Cyclin E. Cells 2020; 9:cells9061504. [PMID: 32575745 PMCID: PMC7348830 DOI: 10.3390/cells9061504] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
Long intergenic non-coding RNAs (lincRNAs) play important roles in human cancer development, including cell differentiation, apoptosis, and tumor progression. However, their underlying mechanisms of action are largely unknown at present. In this study, we focused on a novel suppressor lincRNA that has the potential to inhibit progression of human hepatocellular carcinoma (HCC). Our experiments disclosed long intergenic non-protein coding RNA 1488 (LINC01488) as a key negative regulator of HCC. Clinically, patients with high LINC01488 expression displayed greater survival rates and better prognosis. In vitro and in vivo functional assays showed that LINC01488 overexpression leads to significant suppression of cell proliferation and metastasis in HCC. Furthermore, LINC01488 bound to cyclin E to induce its ubiquitination and reduced expression of vimentin mediated by both miR-124-3p/miR-138-5p. Our results collectively indicate that LINC01488 acts as a tumor suppressor that inhibits metastasis and tumorigenesis in HCC via the miR-124-3p/miR-138-5p/vimentin axis. Furthermore, LINC01488 interacts with and degrades cyclin E, which contributes to its anti-tumorigenic activity. In view of these findings, we propose that enhancement of LINC01488 expression could be effective as a potential therapeutic strategy for HCC.
Collapse
|
24
|
Wu J, Li L, Zhang Y, Zhu J. Decreased miR-124 contributes to the epithelial-mesenchymal transition phenotype formation of lung adenocarcinoma cells via targeting enhancer of zeste homolog 2. Pathol Res Pract 2020; 216:152976. [PMID: 32370988 DOI: 10.1016/j.prp.2020.152976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/18/2020] [Accepted: 04/13/2020] [Indexed: 01/09/2023]
Abstract
INTRODUCTION MiR-124, a tumor suppressor, is involved in regulating various cellular processes. The purpose of this study was to investigate the possible function of miR-124 in LA (lung adenocarcinoma) cells. AIMS MiR-124 expression levels in the 54 pairs of LA tissues (and corresponding non-tumor tissues) obtained at the Sixth People's Hospital of Yancheng City and in LA cells were assessed by qRT-PCR. Colony formation assay, wound healing assay, transwell assays, attachment/detachment, western blotting and immunofluorescence assays were performed to assess the function of miR-124 on proliferation, migration and epithelial-to-mesenchymal (EMT) phenotypes in LA cells in vitro. Enhancer of zeste homolog 2 (EZH2) is identified as a target of miR-124 by bioinformatics analysis and luciferase reporter assays. Rescue assays were applied to verify the relationship between miR-124 and EZH2. RESULTS MiR-124 was down-regulated in LA tissues (compared to adjacent non-tumor tissues), and was down-regulated in 3 out of 4 lung cancer cell lines compared to immortalized, non-tumorigenic bronchial epithelial cells. Forced expression of miR-124 significantly suppressed tumor cell proliferation, migration and inhibited the EMT process. On the contrary, deletion of miR-124 could obviously promote cell proliferation, migration and facilitate the formation of EMT phenotype. Bioinformatics analysis and luciferase reporter assays confirmed that EZH2 was a target gene of miR-124 and was negatively correlated with the level of miR-124 in cancer tissues. CONCLUSION Our current study suggested that miR-124 was a tumor suppressor in LA, and miR-124 was associated with LA cell EMT phenotype formation via targeting EZH2.
Collapse
Affiliation(s)
- Jian Wu
- Department of Medical Oncology, The Sixth People's Hospital of Yancheng City, No. 66 Tingzhong Road, Yancheng, Jiangsu, 224000, China
| | - Lingling Li
- Department of Medical Oncology, The Sixth People's Hospital of Yancheng City, No. 66 Tingzhong Road, Yancheng, Jiangsu, 224000, China
| | - Yi Zhang
- Department of Oncology, Jimin Hospital, Shanghai, 200052, China
| | - Jianjun Zhu
- Department of Medical Oncology, The Sixth People's Hospital of Yancheng City, No. 66 Tingzhong Road, Yancheng, Jiangsu, 224000, China.
| |
Collapse
|
25
|
Altered chromatin landscape and enhancer engagement underlie transcriptional dysregulation in MED12 mutant uterine leiomyomas. Nat Commun 2020; 11:1019. [PMID: 32094355 PMCID: PMC7040020 DOI: 10.1038/s41467-020-14701-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/23/2020] [Indexed: 02/07/2023] Open
Abstract
Uterine leiomyomas (fibroids) are a major source of gynecologic morbidity in reproductive age women and are characterized by the excessive deposition of a disorganized extracellular matrix, resulting in rigid benign tumors. Although down regulation of the transcription factor AP-1 is highly prevalent in leiomyomas, the functional consequence of AP-1 loss on gene transcription in uterine fibroids remains poorly understood. Using high-resolution ChIP-sequencing, promoter capture Hi-C, and RNA-sequencing of matched normal and leiomyoma tissues, here we show that modified enhancer architecture is a major driver of transcriptional dysregulation in MED12 mutant uterine leiomyomas. Furthermore, modifications in enhancer architecture are driven by the depletion of AP-1 occupancy on chromatin. Silencing of AP-1 subunits in primary myometrium cells leads to transcriptional dysregulation of extracellular matrix associated genes and partly recapitulates transcriptional and epigenetic changes observed in leiomyomas. These findings establish AP-1 driven aberrant enhancer regulation as an important mechanism of leiomyoma disease pathogenesis.
Collapse
|
26
|
MiRNAs and LncRNAs: Dual Roles in TGF-β Signaling-Regulated Metastasis in Lung Cancer. Int J Mol Sci 2020; 21:ijms21041193. [PMID: 32054031 PMCID: PMC7072809 DOI: 10.3390/ijms21041193] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/26/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the most malignant cancers around the world, with high morbidity and mortality. Metastasis is the leading cause of lung cancer deaths and treatment failure. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs), two groups of small non-coding RNAs (nc-RNAs), are confirmed to be lung cancer oncogenes or suppressors. Transforming growth factor-β (TGF-β) critically regulates lung cancer metastasis. In this review, we summarize the dual roles of miRNAs and lncRNAs in TGF-β signaling-regulated lung cancer epithelial-mesenchymal transition (EMT), invasion, migration, stemness, and metastasis. In addition, lncRNAs, competing endogenous RNAs (ceRNAs), and circular RNAs (circRNAs) can act as miRNA sponges to suppress miRNAs, thereby mediating TGF-β signaling-regulated lung cancer invasion, migration, and metastasis. Through this review, we hope to cast light on the regulatory mechanisms of miRNAs and lncRNAs in TGF-β signaling-regulated lung cancer metastasis and provide new insights for lung cancer treatment.
Collapse
|
27
|
Jin J, Jia ZH, Luo XH, Zhai HF. Long non-coding RNA HOXA11-AS accelerates the progression of keloid formation via miR-124-3p/TGFβR1 axis. Cell Cycle 2020; 19:218-232. [PMID: 31878829 PMCID: PMC6961662 DOI: 10.1080/15384101.2019.1706921] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Emerging evidence reveals the importance of long non-coding RNAs (lncRNAs) in the development and progression of keloid formation, whereas the underlying mechanisms are not well understood. In the present study, we investigated the biological effects and molecular mechanisms of lncRNA HOXA11-AS in keloid formation. First, the expression levels of HOXA11-AS, miR-124-3p, and transforming growth factor β receptor type I (TGFβR1) were measured in both keloid tissues and human keloid fibroblasts (HKFs) using qRT-PCR and western blot analysis, respectively. Next, we adopted both gain- and loss-of-function strategies to explore the significance of HOXA11-AS. TUNEL, flow cytometry, DNA ladder, and tube formation assays were performed to measure cell apoptosis and angiogenesis, respectively. Besides, the potential binding relationship between HOXA11-AS and miR-124-3p, as well as miR-124-3p and TGFβR1 was identified using bioinformatic screening and verified by luciferase reporter assay. Furthermore, we explored the importance of miR-124-3p in HOXA11-AS-induced phenotypes and regulations on TGFβ signaling or PI3K/Akt signaling. We found that HOXA11-AS and TGFβR1 were significantly up-regulated, while miR-124-3p was down-regulated both in keloid tissues or fibroblasts than in normal skin tissues or fibroblasts. Functionally, high expression of HOXA11-AS essentially inhibited cell apoptosis and promoted fibroblast-induced angiogenesis. Mechanistically, miR-124-3p was identified as a downstream effector to be involved in HOXA11-AS-mediated phenotypes through directly targeting TGFβR1, thus modulating PI3K/Akt signaling pathway. Taken together, our findings revealed that HOXA11-AS inhibits cell apoptosis and promotes angiogenesis through miR-124-3p/TGFβR1 axis, contributing to the progression of keloid formation, which might provide a novel target for keloid therapy.
Collapse
Affiliation(s)
- Jun Jin
- Department of Plastic Surgery, People's Hospital of Zhengzhou University, Henan People's Hospital, Zhengzhou, P.R. China
| | - Zhen-Hua Jia
- Department of Plastic Surgery, People's Hospital of Zhengzhou University, Henan People's Hospital, Zhengzhou, P.R. China
| | - Xiao-Hua Luo
- Department of Plastic Surgery, People's Hospital of Zhengzhou University, Henan People's Hospital, Zhengzhou, P.R. China
| | - Hong-Feng Zhai
- Department of Plastic Surgery, People's Hospital of Zhengzhou University, Henan People's Hospital, Zhengzhou, P.R. China
| |
Collapse
|
28
|
Petrek H, Yu A. MicroRNAs in non-small cell lung cancer: Gene regulation, impact on cancer cellular processes, and therapeutic potential. Pharmacol Res Perspect 2019; 7:e00528. [PMID: 31859460 PMCID: PMC6923806 DOI: 10.1002/prp2.528] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/29/2022] Open
Abstract
Lung cancer remains the most lethal cancer among men and women in the United States and worldwide. The majority of lung cancer cases are classified as non-small cell lung cancer (NSCLC). Developing new therapeutics on the basis of better understanding of NSCLC biology is critical to improve the treatment of NSCLC. MicroRNAs (miRNAs or miRs) are a superfamily of genome-derived, small noncoding RNAs that govern posttranscriptional gene expression in cells. Functional miRNAs are commonly dysregulated in NSCLC, caused by genomic deletion, methylation, or altered processing, which may lead to the changes of many cancer-related pathways and processes, such as growth and death signaling, metabolism, angiogenesis, cell cycle, and epithelial to mesenchymal transition, as well as sensitivity to current therapies. With the understanding of miRNA biology in NSCLC, there are growing interests in developing new therapeutic strategies, namely restoration of tumor suppressive miRNAs and inhibition of tumor promotive miRNAs, to combat against NSCLC. In this article, we provide an overview on the molecular features of NSCLC and current treatment options with a focus on pharmacotherapy and personalized medicine. By illustrating the roles of miRNAs in the control of NSCLC tumorigenesis and progression, we highlight the latest efforts in assessing miRNA-based therapies in animal models and discuss some critical challenges in developing RNA therapeutics.
Collapse
Affiliation(s)
- Hannah Petrek
- Department of Biochemistry & Molecular MedicineUC Davis School of MedicineSacramentoCAUSA
| | - Ai‐Ming Yu
- Department of Biochemistry & Molecular MedicineUC Davis School of MedicineSacramentoCAUSA
| |
Collapse
|
29
|
Pan W, Wei N, Xu W, Wang G, Gong F, Li N. MicroRNA-124 alleviates the lung injury in mice with septic shock through inhibiting the activation of the MAPK signaling pathway by downregulating MAPK14. Int Immunopharmacol 2019; 76:105835. [PMID: 31476692 DOI: 10.1016/j.intimp.2019.105835] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/08/2019] [Accepted: 08/17/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Acute lung injury (ALI) is a severe lung disease with high mortality rate. Research has highlighted that the immune response to ALI is associated with significant changes in the expression of several microRNAs (miRNAs) in the lungs. In our research, we speculated that miR-124 moderated the severity of ALI through comprehensive suppression of the mitogen-activated protein kinase (MAPK) signaling pathway activation by targeting MAPK14. METHODS A mouse model of ALI was established by array of experiments. The expression of MAPK14 and miR-124 was assessed in the tissues of ALI mice and the expression of inflammatory cytokines in ALI mice was determined. The expression of the related kinases in the MAPK signaling pathway and key cytokines in the pro-inflammatory response were assessed by a series of experiments. Immunohistochemistry and TUNEL staining were adopted to detect lung tissue cell proliferation and apoptosis in mice with ALI. RESULTS MiR-124 was poorly expressed and MAPK14 was highly expressed in tissues of ALI mice. Overexpression of miR-124 or silence of MAPK14 alleviated the symptoms of ALI by down-regulating inflammatory cytokines expression, which could intrinsically suppress the expression of associated proteins in the MAPK signaling pathway and the downstream pro-inflammatory response factors, promote proliferation and inhibit apoptosis of lung tissue cells. Overexpression of MAPK14 inverted the phenotypic changes induced by overexpressing miR-124. CONCLUSION These results indicated that miR-124 could alleviate the symptoms of ALI by inhibiting the activation of MAPK signaling pathway via subsequent targeting of MAPK14. Additionally, miR-124 may serve as a useful biomarker to alleviate the severity of septic shock-induced lung injury.
Collapse
Affiliation(s)
- Weiyun Pan
- Department of ICU, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Na Wei
- Department of the First Operating Room, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Weiling Xu
- Department of Radiology, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Gang Wang
- Department of the Second Operating Room, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Fangchao Gong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun 130021, PR China.
| | - Na Li
- Department of Neonatology, The First Hospital of Jilin University, Changchun 130021, PR China.
| |
Collapse
|
30
|
Regulatory Network of Two Tumor-Suppressive Noncoding RNAs Interferes with the Growth and Metastasis of Renal Cell Carcinoma. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 16:554-565. [PMID: 31071531 PMCID: PMC6506628 DOI: 10.1016/j.omtn.2019.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 04/04/2019] [Indexed: 12/01/2022]
Abstract
Noncoding RNAs (ncRNAs) such as microRNAs (miRNAs) and long ncRNAs (lncRNAs) have been shown to function as pivotal regulators in the carcinogenesis of renal cell carcinoma (RCC). However, the functions and underlying mechanisms of most ncRNAs in RCC are still elusive, and the crosstalks of different layers of ncRNAs are seldom reported. Here we showed that miR-124 and maternally expressed gene 3 (MEG3) were both significantly reduced in RCC, and combined expression of miR-124 and MEG3 emerged as an independent prognostic factor in our RCC cohort. Overexpression of miR-124 or MEG3 inhibited cell proliferation, migration, and invasion in vitro, and restrained tumor growth in vivo. EZH2 knockdown induced the epigenetic silencing of miR-124 and MEG3 expression by H3K27me3. Besides, miR-124 directly targeted the TET1 transcript, and then the interaction resulted in the upregulation of MEG3. Furthermore, we demonstrated that MEG3 induced p53 protein accumulation, whereas p53 was a positive transcriptional regulator of the miR-124. In addition, tumor-suppressive PTPN11 was identified as a direct target of miR-124, as well as the MEG3- and p53-regulated gene. Our study identifies three crosstalks between miR-124 and MEG3, which provide a plausible link for these two ncRNAs in RCC. Both ncRNAs exert important antitumor effects in RCC pathogenesis and might serve as prognostic biomarkers and molecular therapeutic targets.
Collapse
|
31
|
Down-regulation of microRNA-34a-5p promotes trophoblast cell migration and invasion via targetting Smad4. Biosci Rep 2019; 39:BSR20181631. [PMID: 30617054 PMCID: PMC6900429 DOI: 10.1042/bsr20181631] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/02/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023] Open
Abstract
Trophoblastic dysfunction, such as insufficient migration and invasion, is well-known to be correlated with preeclampsia (PE). Recently, microRNAs (miRNAs) have been implicated in diverse biological processes and human diseases, including PE. However, the expression and functions of miRNAs in the progression of PE, especially in the regulation of trophoblast cell migration and invasion remain largely unclear. Here, we compared the miRNAs expression profiles of PE patients with healthy controls using microarray assay and chose a significant increased miRNA-miR-34a-5p for further investigation. Overexpression of miR-34a-5p dramatically reduced migration and invasion in trophoblast HTR-8/SVneo cells, whereas enhanced by its inhibitor. Luciferase activity assay showed that miR-34a-5p directly target Smad family member 4 (Smad4), which is associated with cancer cell invasiveness and metastasis. We also found that Smad4 was down-regulated in PE patients, and an inverse relationship between Smad4 and miR-34a-5p expression levels was observed in placental tissues from PE patients. Further study showed that knockdown of Smad4 effectively attenuated the promoting effects of miR-34a-5p inhibition on the migration and invasion of HTR-8/SVneo cells. Taken together, these findings suggest that inhibition of miR-34a-5p improves invasion and migration of trophoblast cells by directly targetting Smad4, which indicated the potential of miR-34a-5p as a therapeutic target against PE.
Collapse
|
32
|
Tian X, Fei Q, Du M, Zhu H, Ye J, Qian L, Lu Z, Zhang W, Wang Y, Peng F, Chen J, Liu B, Li Q, He X, Yin L. miR-130a-3p regulated TGF-β1-induced epithelial-mesenchymal transition depends on SMAD4 in EC-1 cells. Cancer Med 2019; 8:1197-1208. [PMID: 30741461 PMCID: PMC6434193 DOI: 10.1002/cam4.1981] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/21/2018] [Accepted: 12/23/2018] [Indexed: 02/06/2023] Open
Abstract
Metastasis and invasion are the primary causes of malignant progression in esophageal squamous cell carcinoma (ESCC). Epithelial‐mesenchymal transition (EMT) is crucial step of acquisition of "stemness" properties in tumor cells. However, the mechanism of esophageal cancer metastasis remains unclear. This research was designed to explore the role and mechanism of SMAD4 and miR‐130a‐3p in the progression of transforming growth factor‐β (TGF‐β)‐induced EMT in vivo and in vitro. The expression of miR‐130a‐3p in ESCC cell line and normal esophageal epithelial cell was determined by RT‐qPCR. The protein expression levels of TGF‐β‐induced changes in EMT were analyzed by western blotting and immunofluorescence. Dual‐luciferase report assays were used to validate the regulation of miR‐130a‐3p‐SMAD4 axis. The effect of miR‐130a‐3p and SMAD4 in TGF‐β‐induced migration, invasion in the ESCC cell line EC‐1 was investigated by wound healing assays and Transwell assays. Here we found that knocked down SMAD4 could partially reverse TGF‐β‐induced migration, invasion, and EMT progression in the ESCC cell line EC‐1. miR‐130a‐3p, which directly targets SMAD4, is down‐regulated in ESCC. miR‐130a‐3p inhibits the migration and invasion of EC‐1 cells both in vitro and in vivo. Finally, miR‐130a‐3p inhibits TGF‐β‐induced EC‐1 cell migration, invasion, and EMT progression in a SMAD4‐dependent way. In conclusion, this study provides new insights into the mechanism underlying ESCC metastasis. The TGF‐β/miR‐130a‐3p/SMAD4 pathway could be potential targets for clinical treatment of ESCC.
Collapse
Affiliation(s)
- Xiaokang Tian
- Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Cancer Hospital, Jiangsu Institue of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China
| | - Qian Fei
- Jiangsu Cancer Hospital, Jiangsu Institue of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China.,The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mingyu Du
- Jiangsu Cancer Hospital, Jiangsu Institue of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China
| | - Hongming Zhu
- Jiangsu Cancer Hospital, Jiangsu Institue of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China
| | - Jinjun Ye
- Jiangsu Cancer Hospital, Jiangsu Institue of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China
| | - Luxi Qian
- Jiangsu Cancer Hospital, Jiangsu Institue of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China.,The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhiwei Lu
- Jiangsu Cancer Hospital, Jiangsu Institue of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China.,The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenjun Zhang
- Jiangsu Cancer Hospital, Jiangsu Institue of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China.,The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Wang
- Jiangsu Cancer Hospital, Jiangsu Institue of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China.,The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fanyu Peng
- Jiangsu Cancer Hospital, Jiangsu Institue of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China.,The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Chen
- Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Cancer Hospital, Jiangsu Institue of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China
| | - Baoling Liu
- Jiangsu Cancer Hospital, Jiangsu Institue of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China.,The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qian Li
- Jiangsu Cancer Hospital, Jiangsu Institue of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China.,The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xia He
- Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Cancer Hospital, Jiangsu Institue of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China.,The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Li Yin
- Jiangsu Cancer Hospital, Jiangsu Institue of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China.,The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
33
|
Aghamaliyev U, Gaitantzi H, Thomas M, Simon-Keller K, Gaiser T, Marx A, Yagublu V, Araos J, Cai C, Valous NA, Halama N, Kiesslich T, Ebert M, Grützmann R, Rückert F, Breitkopf-Heinlein K. Downregulation of SPARC Is Associated with Epithelial-Mesenchymal Transition and Low Differentiation State of Biliary Tract Cancer Cells. Eur Surg Res 2019; 60:1-12. [PMID: 30650425 DOI: 10.1159/000494734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 10/19/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Biliary tract cancers (BTCs) have a poor prognosis. BTCs are characterized by a prominent desmoplastic reaction which possibly contributes to the aggressive phenotype of this tumor. The desmoplastic reaction includes excessive production and deposition of extracellular matrix proteins such as periostin, secreted protein acidic and rich in cysteine (SPARC), thrombospondin-1, as well as accumulation of α-smooth muscle actin-positive cancer-associated fibroblasts and immune cells, secreting growth factors and cytokines including transforming growth factor (TGF)-β. In the present study, we investigated the expression of SPARC in BTC as well as its possible regulation by TGF-β. METHODS Expression levels of Sparc, TGF-β1 and its receptor ALK5 were evaluated by quantitative real-time PCR in 6 biliary tract cell lines as well as 1 immortalized cholangiocyte cell line (MMNK-1). RNAs from tumor samples of 7 biliary tract cancer patients were analyzed for expression of Sparc, TGF-β type II receptor (TbRII) as well as Twist and ZO-1. MMNK-1 cells were stimulated with TGF-β for 24 h, and Sparc, ZO-1 and E-Cadherin expressions were determined. The presence of SPARC protein was analyzed by immunohistochemistry in tumor specimens from 10 patients. RESULTS When comparing basal Sparc transcript levels in diverse BTC cell lines to MMNK-1 cells, we found that it was strongly downregulated in all cancer cell lines. The remaining expression levels were higher in highly differentiated cell lines (CCSW1, MZChA1, MZChA2 and TFK-1) than in less differentiated and undifferentiated ones (BDC, SKChA1). Expression of Sparc in BTC patient samples showed a significant positive correlation with expression of the epithelial marker ZO-1. In contrast, the mesenchymal marker Twist and the TbRII showed a trend of negative correlation with expression of Sparc in these samples. TGF-β exposure significantly downregulated Sparc expression in MMNK-1 cholangiocytes in vitro in parallel to downregulation of epithelial markers (E-Cadherin and ZO-1). Finally, SPARC immunostaining was performed in 10 patient samples, and the correlation between absence of SPARC and survival times was analyzed. CONCLUSIONS These data imply that a decrease in SPARC expression is correlated with dedifferentiation of BTC cells resulting in enhanced EMT being possibly mediated by TGF-β. Thereby SPARC levels might be a marker for individual prognosis of a patient, and strategies aiming at inhibition of SPARC downregulation might have potential for new future therapies.
Collapse
Affiliation(s)
- Ughur Aghamaliyev
- Department of Surgery, University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Haristi Gaitantzi
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Maria Thomas
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany
| | - Katja Simon-Keller
- Institute of Pathology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Timo Gaiser
- Institute of Pathology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Alexander Marx
- Institute of Pathology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Vugar Yagublu
- Department of Surgery, Klinikum Frankfurt Höchst, Frankfurt am Main, Germany
| | - Joaquin Araos
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Chen Cai
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Nektarios A Valous
- Applied Tumor Immunity Clinical Cooperation Unit, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany
| | - Niels Halama
- Applied Tumor Immunity Clinical Cooperation Unit, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany
| | - Tobias Kiesslich
- Department of Medicine I, University Hospital Salzburg, Salzburg, Austria
| | - Matthias Ebert
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Robert Grützmann
- Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Felix Rückert
- Department of Surgery, University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Katja Breitkopf-Heinlein
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany,
| |
Collapse
|
34
|
Hedrick E, Mohankumar K, Safe S. TGFβ-Induced Lung Cancer Cell Migration Is NR4A1-Dependent. Mol Cancer Res 2018; 16:1991-2002. [PMID: 30072581 PMCID: PMC6343492 DOI: 10.1158/1541-7786.mcr-18-0366] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/08/2018] [Accepted: 07/16/2018] [Indexed: 02/07/2023]
Abstract
TGFβ induces migration of lung cancer cells (A549, H460, and H1299), dependent on activation of c-Jun N-terminal kinase (JNK1), and is inhibited by the JNK1 inhibitor SP600125. Moreover, TGFβ-induced migration of the cells is also blocked by the nuclear export inhibitor leptomycin B (LMB) and the orphan nuclear receptor 4A1 (NR4A1) ligand 1,1-bis(3'-indolyl)-1-(p-hydroxyphenyl)methane (CDIM8), which retains NR4A1 in the nucleus. Subsequent analysis showed that the TGFβ/TGFβ receptor/PKA/MKK4 and -7/JNK pathway cascade phosphorylates and induces nuclear export of NR4A1, which in turn forms an active complex with Axin2, Arkadia (RNF111), and RNF12 (RLIM) to induce proteasome-dependent degradation of SMAD7 and enhance lung cancer cell migration. Thus, NR4A1 also plays an integral role in mediating TGFβ-induced lung cancer invasion, and the NR4A1 ligand CDIM8, which binds nuclear NR4A1, represents a novel therapeutic approach for TGFβ-induced blocking of lung cancer migration/invasion. IMPLICATIONS: Effective treatment of TGFβ-induced lung cancer progression could involve a number of agents including the CDIM/NR4A1 antagonists that block not only TGFβ-induced migration, but several other NR4A1-regulated prooncogenic genes/pathways in lung cancer cell lines.
Collapse
Affiliation(s)
- Erik Hedrick
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Kumaravel Mohankumar
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas.
| |
Collapse
|
35
|
Li L, Lv Y, Yan D. Inhibition of Ep3 attenuates migration and promotes apoptosis of non-small cell lung cancer cells via suppression of TGF-β/Smad signaling. Oncol Lett 2018; 16:5645-5654. [PMID: 30344720 PMCID: PMC6176252 DOI: 10.3892/ol.2018.9391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/19/2018] [Indexed: 01/05/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common cause of cancer-associated mortality worldwide. Prostaglandin E2 (PGE2) regulates various biological processes, including invasion, proliferation and apoptosis. E-prostanoid 3 (Ep3) is a PGE2 receptor, and the functional role of Ep3 in the progression of NSCLC remains unresolved. The present study investigated the effects of Ep3 in A549 cells and explored the underlying molecular mechanisms. The results revealed that the mRNA and protein expression levels of Ep3 were significantly upregulated in NSCLC tissues and A549 cells. Pharmacological inhibition of Ep3 or RNA interference against Ep3 attenuated the cell viability, migration and invasion, and promoted apoptosis in A549 cells. Ep3 deficiency also decreased the expression of transforming growth factor (TGF)-β, phosphorylated (p)-Smad2 and p-Smad3. The transfection of TGF-β overexpression plasmids reversed the effects of Ep3 deficiency on the cell viability and apoptosis in A549 cells. Finally, an in vivo experiment revealed that Ep3-siRNA transfection strongly reduced the tumor growth and tumor volume. The Ep3-siRNA transfection also inhibited tumor metastasis via suppression of the expression of metastasis-associated proteins. Taken together, these findings indicate that inhibition of Ep3 attenuates the viability and migration, and promotes the apoptosis of NSCLC through suppression of the TGF-β/Smad signaling pathway. Targeting of the Ep3/TGF-β/Smad signaling pathway may be a novel therapeutic strategy for the prevention and treatment of NSCLC.
Collapse
Affiliation(s)
- Lei Li
- Department of Respiration, Zhoukou Central Hospital, Zhoukou, Henan 466000, P.R. China
| | - Yanping Lv
- Department of Respiration, Zhoukou Central Hospital, Zhoukou, Henan 466000, P.R. China
| | - Dengfeng Yan
- Department of Respiration, Zhoukou Central Hospital, Zhoukou, Henan 466000, P.R. China
| |
Collapse
|
36
|
MiRNA-34a reversed TGF-β-induced epithelial-mesenchymal transition via suppression of SMAD4 in NPC cells. Biomed Pharmacother 2018; 106:217-224. [PMID: 29960168 DOI: 10.1016/j.biopha.2018.06.115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/18/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is considered a prerequisite for tumor invasion and metastasis in many cancers. However, the mechanisms underlying EMT in nasopharyngeal carcinoma (NPC) is largely unknown. In this study, we found that transforming growth factor-β (TGF-β), which reportedly promotes EMT in multiple cancers, can trigger EMT and increase the invasive and migratory capacities of NPC cells. Conversely, the downregulation of SMAD4, a vital member of the canonical TGF-β pathway, reversed the TGF-β-induced EMT, invasion, and migration. Further experiments revealed that SMAD4 was the target of miRNA-34a, which was downregulated in NPC tissues and suppressed NPC cell metastasis in vivo. miRNA-34a overexpression also antagonized the TGF-β-induced EMT progression, invasion, and migration through SMAD4 inhibition. However, the restoration of SMAD4 expression rescued the inhibitory effects of miRNA-34a on tumorigenesis. All these results confirmed that miRNA-34a suppressed the TGF-β-induced EMT, invasion, and migration of NPC cells by directly targeting SMAD4, which indicated the potential of miR-34a as a therapeutic target against NPC.
Collapse
|
37
|
DNA methyltransferase 3A isoform b contributes to repressing E-cadherin through cooperation of DNA methylation and H3K27/H3K9 methylation in EMT-related metastasis of gastric cancer. Oncogene 2018; 37:4358-4371. [PMID: 29717263 PMCID: PMC6085280 DOI: 10.1038/s41388-018-0285-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 12/20/2022]
Abstract
DNA methyltransferase 3A (DNMT3A) has been recognised as a key element of epigenetic regulation in normal development, and the aberrant regulation of DNMT3A is implicated in multiple types of cancers, especially haematological malignancies. However, its clinical significance and detailed functional role in solid tumours remain unknown, although abnormal expression has gained widespread attention in these cancers. Here, we show that DNMT3A isoform b (DNMT3Ab), a member of the DNMT3A isoform family, is critical for directing epithelial-mesenchymal transition (EMT)-associated metastasis in gastric cancer (GC). DNMT3Ab is positively linked to tumour-node-metastasis (TNM) stage, lymph node metastasis and poor prognosis in GC patients. Overexpression of DNMT3Ab promotes GC cell migration and invasion as well as EMT through repression of E-cadherin. Meanwhile, DNMT3Ab promotes lung metastasis of GC in vivo. Mechanistic studies indicate that DNMT3Ab mediates the epigenetic inaction of the E-cadherin gene via DNA hypermethylation and histone modifications of H3K9me2 and H3K27me3. Depletion of DNMT3Ab effectively restores the expression of E-cadherin and reverses TGF-β-induced EMT by reducing DNA methylation, H3K9me2 and H3K27me3 levels at the E-cadherin promoter. Importantly, DNMT3Ab cooperated with H3K9me2 and H3K27me3 contributes to the transcriptional regulation of E-cadherin in a Snail-dependent manner. Further, gene expression profiling analysis indicates that multiple metastasis-associated genes and oncogenic signalling pathways are regulated in response to DNMT3Ab overexpression. These results identify DNMT3Ab as a crucial regulator of metastasis-related genes in GC. Targeting the DNMT3Ab/Snail/E-cadherin axis may provide a promising therapeutic strategy in the treatment of metastatic GC with high DNMT3Ab expression.
Collapse
|
38
|
Pan Y, Wu A, Xu F, Chen C, Jiang L, Jin R. Lentivirus-mediated overexpression of miR-124 suppresses growth and invasion by targeting JAG1 and EZH2 in gastric cancer. Oncol Lett 2018; 15:7450-7458. [PMID: 29731896 PMCID: PMC5921033 DOI: 10.3892/ol.2018.8194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 01/26/2018] [Indexed: 12/21/2022] Open
Abstract
MicroRNA-124 (miR-124) expression is downregulated and has a tumor suppressor role in various types of cancer. The present study revealed that genes encoding miR-124 were frequently methylated and the expression of miR-124 was downregulated in gastric cancer tissues. Stable expression of miR-124 using a lentiviral vector inhibited gastric cancer cell growth, migration and invasion in vitro. In addition, overexpression of miR-124 suppressed gastric cancer cell xenograft growth in nude mice. The expression of the Notch ligand Jagged1 (JAG1) and enhancer of zeste homolog 2 (EZH2) was downregulated upon miR-124 overexpression, and silencing of JAG1 or EZH2 by RNA interference also suppressed gastric cancer cell growth, migration and invasion. Furthermore, expression of fibronectin and vimentin, not able elements of the epithelial-mesenchymal transition, were suppressed by overexpression of miR-124 or inhibition of JAG1 or EZH2 expressions in GC. Together, these results indicated that miR-124 suppressed gastric cancer progression, partly through inhibiting JAG1 and EZH2. Thus, lentivirus-mediated overexpression of miR-124 may be a potential therapeutic strategy against gastric cancer.
Collapse
Affiliation(s)
- Yangyang Pan
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Aihua Wu
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Fanfan Xu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Chao Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lei Jiang
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Rong Jin
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
- Department of Epidemiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
39
|
Du M, Chen W, Zhang W, Tian XK, Wang T, Wu J, Gu J, Zhang N, Lu ZW, Qian LX, Fei Q, Wang Y, Peng F, He X, Yin L. TGF-? regulates the ERK/MAPK pathway independent of the SMAD pathway by repressing miRNA-124 to increase MALAT1 expression in nasopharyngeal carcinoma. Biomed Pharmacother 2018; 99:688-696. [PMID: 29710466 DOI: 10.1016/j.biopha.2018.01.120] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/13/2018] [Accepted: 01/24/2018] [Indexed: 12/12/2022] Open
Abstract
Transforming growth factor beta (TGF-?), a pleiotropic cytokine, promotes cell proliferation and migration in multiple cancers, including nasopharyngeal carcinoma (NPC). microRNA-124 (miR-124) becomes downregulated in NPC and inhibits the tumorigenesis of this disease. However, the role of miR-124 in TGF-?-induced NPC development remains unknown. In this study, constant TGF-? stimulation repressed miR-124 expression, whereas miR-124 overexpression antagonized TGF-?-promoted NPC cell growth and migration. miR-124 overexpression decreased p-SMAD2/3, SMAD4, and p-ERK levels, indicating that ectopic miR-124 overexpression inhibited SMAD and non-SMAD pathways. Pro-oncogenic lncRNA MALAT1 was targeted by miR-124 that regulated ERK/MAPK by targeting MALAT1 independent of the SMAD signaling pathway. In conclusion, our work clarified the significant role of miR-124 in TGF-? signaling pathways independent of the SMAD signaling pathway and showed the potential of miR-124 as a new therapeutic target against NPC.
Collapse
Affiliation(s)
- Mingyu Du
- Jiangsu Cancer Hospital & Jiangsu Institue of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, Jiangsu 210000, China; Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu, China
| | - Wei Chen
- Jiangsu Cancer Hospital & Jiangsu Institue of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, Jiangsu 210000, China
| | - Wenjun Zhang
- Jiangsu Cancer Hospital & Jiangsu Institue of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, Jiangsu 210000, China
| | - Xiao-Kang Tian
- Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu, China
| | - Tingting Wang
- Jiangsu Cancer Hospital & Jiangsu Institue of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, Jiangsu 210000, China
| | - Jing Wu
- Jiangsu Cancer Hospital & Jiangsu Institue of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, Jiangsu 210000, China
| | - Jiajia Gu
- Jiangsu Cancer Hospital & Jiangsu Institue of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, Jiangsu 210000, China
| | - Nan Zhang
- Jiangsu Cancer Hospital & Jiangsu Institue of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, Jiangsu 210000, China
| | - Zhi-Wei Lu
- The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lu-Xi Qian
- The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qian Fei
- The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Wang
- The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fanyu Peng
- The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xia He
- Jiangsu Cancer Hospital & Jiangsu Institue of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, Jiangsu 210000, China; Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu, China.
| | - Li Yin
- Jiangsu Cancer Hospital & Jiangsu Institue of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, Jiangsu 210000, China.
| |
Collapse
|
40
|
Lei Z, Shi H, Li W, Yu D, Shen F, Yu X, Lu D, Sun C, Liao K. miR‑185 inhibits non‑small cell lung cancer cell proliferation and invasion through targeting of SOX9 and regulation of Wnt signaling. Mol Med Rep 2018; 17:1742-1752. [PMID: 29138830 PMCID: PMC5780119 DOI: 10.3892/mmr.2017.8050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 10/10/2017] [Indexed: 12/15/2022] Open
Abstract
SRY-box 9 (SOX9) is an important transcription factor required for development, which has additionally been reported to be an independent prognostic indicator for the survival of patients with non‑small cell lung cancer (NSCLC). Accumulating evidence has indicated that dysregulation of microRNAs (miRNAs/miRs) may contribute to the initiation and progression of cancer. SOX9 may be regulated by a number of miRNAs in different types of cancer, including in NSCLC. The present study sought to identify novel candidate miRNAs associated with SOX9 in NSCLC using online tools, and investigated the detailed functions of miR‑185, which suppressed SOX9 mRNA expression most strongly out of the candidate miRNAs. It was observed that ectopic miR‑185 expression significantly suppressed NSCLC cell proliferation, invasion and migration. Using luciferase reporter gene and RNA immunoprecipitation assays, SOX9 was confirmed to be a direct target of miR‑185. In addition, the downstream Wnt signaling‑associated factors β‑catenin and c‑Myc proto‑oncogene protein (Myc) were demonstrated to be inhibited by miR‑185 overexpression. SOX9, β‑catenin and c‑Myc mRNA expression was significantly upregulated in NSCLC tissues, and was inversely correlated with miR‑185 expression. The results of the present study demonstrated that rescuing miR‑185 expression in NSCLC, thereby inhibiting SOX9 expression and the downstream Wnt signaling, and leading to the suppression of NSCLC cell proliferation, invasion and migration, may be a promising strategy for the treatment of NSCLC.
Collapse
Affiliation(s)
- Zhengwen Lei
- Department of Cardiac-Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
- Center of Translational Medicine, Medical School of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
- Department of Cardiac-Thoracic Surgery, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225000, P.R. China
| | - Hongcan Shi
- Center of Translational Medicine, Medical School of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
- Department of Cardiac-Thoracic Surgery, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225000, P.R. China
- Correspondence to: Professor Hongcan Shi, Center of Translational Medicine, Medical School of Yangzhou University, 11 Huaihai Road, Yangzhou, Jiangsu 225000, P.R. China, E-mail:
| | - Wei Li
- Center of Translational Medicine, Medical School of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Duonan Yu
- Center of Translational Medicine, Medical School of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Feiyang Shen
- Center of Translational Medicine, Medical School of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Xi Yu
- Center of Translational Medicine, Medical School of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Dan Lu
- Department of Obstetrical, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225000, P.R. China
| | - Chao Sun
- Department of Cardiac-Thoracic Surgery, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225000, P.R. China
| | - Kai Liao
- Center of Translational Medicine, Medical School of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| |
Collapse
|
41
|
Jin H, Li Q, Cao F, Wang SN, Wang RT, Wang Y, Tan QY, Li CR, Zou H, Wang D, Xu CX. miR-124 Inhibits Lung Tumorigenesis Induced by K-ras Mutation and NNK. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 9:145-154. [PMID: 29246293 PMCID: PMC5633347 DOI: 10.1016/j.omtn.2017.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 01/22/2023]
Abstract
Dysregulated miRNAs play important role in K-ras mutation or smoking caused lung tumorigenesis. Here, we investigate the role and mechanism of miR-124 in K-ras mutation or smoking-caused lung tumorigenesis and evaluate the therapeutic potential of miR-124 agomiR in K-ras mutation or smoking-caused lung cancer treatment. Our data show that smoking suppresses miR-124 expression, and decreased miR-124 expression is inversely correlated with the p-Akt level and predicts poor overall survival in non-small-cell lung cancer (NSCLC) patients. The overexpression of miR-124 suppressed NSCLC growth by inhibiting the Akt pathway by targeting Akt1 and Akt2. In addition, the systemic delivery of miR-124 agomiR dramatically suppressed tumorigenesis in both NNK-induced lung cancer model and K-rasLA1 transgenic mice by increasing apoptosis and inhibiting cell proliferation. Our findings suggest that smoking inhibits the expression of miR-124, and decreased miR-124 contributes to Akt activation, thereby promoting NSCLC progression. Our findings also represent a novel potential therapeutic strategy for lung cancer.
Collapse
Affiliation(s)
- Hua Jin
- Department of Thoracic Surgery, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China; Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Qing Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Fenghao Cao
- Helong City Hospital of Traditional Chinese Medicine, Helong 133500, China
| | - Shu-Nan Wang
- Department of Radiology, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Ren-Tao Wang
- Department of Respiratory, The General Hospital of Chinese People's Liberation Army, Beijing 100853, China
| | - Yun Wang
- Department of Pathology, The General Hospital of Chinese People's Liberation Army, Beijing 100853, China
| | - Qun-You Tan
- Department of Thoracic Surgery, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Cheng-Run Li
- Department of Thoracic Surgery, The General Hospital of Chinese People's Liberation Army, Beijing 100853, China
| | - Hua Zou
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Dong Wang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Cheng-Xiong Xu
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China.
| |
Collapse
|
42
|
Zhang Z, Gong Q, Li M, Xu J, Zheng Y, Ge P, Chi G. MicroRNA-124 inhibits the proliferation of C6 glioma cells by targeting Smad4. Int J Mol Med 2017; 40:1226-1234. [PMID: 28791348 DOI: 10.3892/ijmm.2017.3088] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 07/20/2017] [Indexed: 11/06/2022] Open
Abstract
MicroRNA-124 (miR-124) has been shown to be downregulated in glioma; however, its biological functions in glioma are not yet fully understood. The aim of this study was to examine the Smad4‑dependent effects of miR‑124 on C6 glioma cell proliferation. In this study, the level of miR‑124 was found to be enhanced in C6 cells upon transfection with miR‑124 mimics, and the mechanisms of action of miR‑124 in C6 cells were investigated by reverse transcriptase-quantitative polymerase chain reaction, MTT assay, western blot analysis and luciferase reporter assays in vitro. The results revealed that miR‑124 expression was significantly lower in the C6 cells than in either normal rat brain tissue or astrocytes. Upon the overexpression of miR‑124, the proliferation of the C6 cells decreased and Smad4 expression was significantly suppressed. Smad4 was identified as a direct target of miR‑124 through luciferase reporter assays. Furthermore, miR‑124 was found to modulate signal transducer and activator of transcription 3 (Stat3) by downregulating Smad4 expression. Using small interfering RNA targeting Smad4 mRNA, we also confirmed that miR‑124 downregulated c‑Myc by modulating Smad4 expression. In addition, caspase‑3 expression was induced by miR‑124 overexpression, but not via Smad4 downregulation. On the whole, our results demonstrate that miR‑124 upregulation inhibits the growth of C6 glioma cells by targeting Smad4 directly. These findings may be clinically useful for the development of therapeutic strategies directed toward miR‑124 function in patients with glioma.
Collapse
Affiliation(s)
- Zechuan Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Qiaoyun Gong
- Eye Center, The Second Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jinying Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yangyang Zheng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Pengfei Ge
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
43
|
Dichotomous roles of TGF-β in human cancer. Biochem Soc Trans 2017; 44:1441-1454. [PMID: 27911726 DOI: 10.1042/bst20160065] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/27/2016] [Accepted: 06/09/2016] [Indexed: 12/11/2022]
Abstract
Transforming growth factor-β (TGF-β) mediates numerous biological processes, including embryonic development and the maintenance of cellular homeostasis in a context-dependent manner. Consistent with its central role in maintaining cellular homeostasis, inhibition of TGF-β signaling results in disruption of normal homeostatic processes and subsequent carcinogenesis, defining the TGF-β signaling pathway as a tumor suppressor. However, once carcinogenesis is initiated, the TGF-β signaling pathway promotes cancer progression. This dichotomous function of the TGF-β signaling pathway is mediated through altering effects on both the cancer cells, by inducing apoptosis and inhibiting proliferation, and the tumor microenvironment, by promoting angiogenesis and inhibiting immunosurveillance. Current studies support inhibition of TGF-β signaling either alone, or in conjunction with anti-angiogenic therapy or immunotherapy as a promising strategy for the treatment of human cancers.
Collapse
|
44
|
Sha HH, Wang DD, Chen D, Liu SW, Wang Z, Yan DL, Dong SC, Feng JF. MiR-138: A promising therapeutic target for cancer. Tumour Biol 2017; 39:1010428317697575. [PMID: 28378633 DOI: 10.1177/1010428317697575] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are small noncoding RNAs which regulate gene expressions at post-transcriptional level by binding to the 3'-untranslated region of target messenger RNAs. Growing evidences highlight their pivotal roles in various biological processes of human cancers. Among them, miR-138, generating from two primary transcripts, pri-miR-138-1 and pri-miR-138-2, expresses aberrantly in different cancers and is extensively studied in cancer network. Importantly, studies have shown that miR-138 acts as a tumor suppressor by targeting many target genes, which are related to proliferation, apoptosis, invasion, and migration. Additionally, some researches also discover that miR-138 can sensitize tumors to chemotherapies. In this review, we summarize the expression of miR-138 on regulatory mechanisms and tumor biological processes, which will establish molecular basis on the usage of miR-138 in clinical applications in the future.
Collapse
Affiliation(s)
- Huan-Huan Sha
- 1 Department of Chemotherapy, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Dan-Dan Wang
- 2 The First Clinical School of Nanjing Medical University, Nanjing, China
| | - Dan Chen
- 3 Research Center of Clinical Oncology, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Si-Wen Liu
- 1 Department of Chemotherapy, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Zhen Wang
- 2 The First Clinical School of Nanjing Medical University, Nanjing, China
| | - Da-Li Yan
- 1 Department of Chemotherapy, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Shu-Chen Dong
- 1 Department of Chemotherapy, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Ji-Feng Feng
- 1 Department of Chemotherapy, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
| |
Collapse
|
45
|
Wang X, Li M, Hu M, Wei P, Zhu W. BAMBI overexpression together with β-sitosterol ameliorates NSCLC via inhibiting autophagy and inactivating TGF-β/Smad2/3 pathway. Oncol Rep 2017; 37:3046-3054. [DOI: 10.3892/or.2017.5508] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/20/2017] [Indexed: 11/06/2022] Open
|
46
|
Targeting miRNAs by polyphenols: Novel therapeutic strategy for cancer. Semin Cancer Biol 2017; 46:146-157. [PMID: 28185862 DOI: 10.1016/j.semcancer.2017.02.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 12/18/2022]
Abstract
In the recent years, polyphenols have gained significant attention in scientific community owing to their potential anticancer effects against a wide range of human malignancies. Epidemiological, clinical and preclinical studies have supported that daily intake of polyphenol-rich dietary fruits have a strong co-relationship in the prevention of different types of cancer. In addition to direct antioxidant mechanisms, they also regulate several therapeutically important oncogenic signaling and transcription factors. However, after the discovery of microRNA (miRNA), numerous studies have identified that polyphenols, including epigallocatechin-3-gallate, genistein, resveratrol and curcumin exert their anticancer effects by regulating different miRNAs which are implicated in all the stages of cancer. MiRNAs are short, non-coding endogenous RNA, which silence the gene functions by targeting messenger RNA (mRNA) through degradation or translation repression. However, cancer associated miRNAs has emerged only in recent years to support its applications in cancer therapy. Preclinical experiments have suggested that deregulation of single miRNA is sufficient for neoplastic transformation of cells. Indeed, the widespread deregulation of several miRNA profiles of tumor and healthy tissue samples revealed the involvement of many types of miRNA in the development of numerous cancers. Hence, targeting the miRNAs using polyphenols will be a novel and promising strategy in anticancer chemotherapy. Herein, we have critically reviewed the potential applications of polyphenols on various human miRNAs, especially which are involved in oncogenic and tumor suppressor pathways.
Collapse
|
47
|
Jin L, Miao J, Liu Y, Li X, Jie Y, Niu Q, Han X. Icaritin induces mitochondrial apoptosis by up-regulating miR-124 in human oral squamous cell carcinoma cells. Biomed Pharmacother 2017; 85:287-295. [PMID: 27889233 DOI: 10.1016/j.biopha.2016.11.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022] Open
Abstract
AIM OF THE STUDY The present study is aimed to investigate the apoptosis-inducing effect of icaritin in human oral squamous cell carcinoma (OSCC) cells and the associated mechanisms. MATERIALS AND METHODS KB and SCC9 cell lines were used as model cell lines. Effect of icaritin on apoptosis was analyzed by flow cytometry. The effect of icaritin on mitochondrial apoptotic pathway was demonstrated by loss of mitochondrial membrane potential and release of cytocrome C from mitochondria. MiR-124 mimic and miR-124 inhibitor were used to manipulate the expression of miR-124 in OSCC cells. SiRNA targeting Sp1 and DNMT1 as well as Sp1 and DNMT1 overexpressing vector were utilized to confirm their roles in the apoptosis-inducing effect of icaritin in OSCC cells. Activation of relevant signaling pathway by icaritin and effect of icaritin on expression of targeting molecules were determined by western blots or qRT-PCR. RESULTS Our results showed that icaritin inhibited tumor cell viability in a dose- and time-dependent manner, and induced cell apoptosis via intrinsic mitochondrial pathway by upregulating miR-124. Moreover, our results showed that the icaritin exerted regulatory effect on miR-124 through suppressing Sp1/DNMT1 signaling. CONCLUSION Our data provide the first experimental evidence that icaritin induces mitochondrial apoptosis in OSCC cells by upregulating miR-124 and suggest a new mechanism to explain its anti-tumor effects.
Collapse
Affiliation(s)
- Limin Jin
- Department of Oral & Maxillofacial Surgery, The First Affiliated Hospital, Zhengzhou University, China
| | - Jinhong Miao
- Department of Nursing Management,The First Affiliated Hospital, Zhengzhou University, China
| | - Yanjin Liu
- Department of Nursing Management,The First Affiliated Hospital, Zhengzhou University, China
| | - Xingdan Li
- Department of Oral & Maxillofacial Surgery, The First Affiliated Hospital, Zhengzhou University, China
| | - Yaqiong Jie
- Department of Oral & Maxillofacial Surgery, The First Affiliated Hospital, Zhengzhou University, China
| | - Qianyun Niu
- Department of Oral & Maxillofacial Surgery, Stomatological Hospital of Nanyang, China
| | - Xinguang Han
- Department of Oral & Maxillofacial Surgery, The First Affiliated Hospital, Zhengzhou University, China.
| |
Collapse
|
48
|
miR-124 modulates gefitinib resistance through SNAI2 and STAT3 in non-small cell lung cancer. ACTA ACUST UNITED AC 2016; 36:839-845. [DOI: 10.1007/s11596-016-1672-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/07/2016] [Indexed: 12/26/2022]
|
49
|
Wang L, Kang FB, Sun N, Wang J, Chen W, Li D, Shan BE. The tumor suppressor miR-124 inhibits cell proliferation and invasion by targeting B7-H3 in osteosarcoma. Tumour Biol 2016; 37:14939-14947. [PMID: 27644254 DOI: 10.1007/s13277-016-5386-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/09/2016] [Indexed: 12/11/2022] Open
Abstract
Our previous studies have shown that the expression level of B7 homolog 3 (B7-H3) was correlated with clinical staging and prognosis of osteosarcoma (OS) patients, and its silencing inhibited the proliferation and invasion of OS cells in vitro. However, its overexpression mechanism behind was far from elucidated. On the basis of bioinformatics and the preliminary screening data, we hypothesized that miR-124 might play an important role in OS development and as a lead candidate for modulating B7-H3 expression. In this study, we found that miR-124 was downregulated significantly in OS tumor tissue, compared to normal adjacent tissues (NATs). Lower miR-124 expression levels were associated with advanced Ennecking stage, lower tumor differentiation, and common pulmonary metastasis. The 5-year overall survival rate in the miR-124 upregulated group was 61.5 %, while with low miR-124 expression, only 11.8 % survived. Further studies in vitro showed that B7-H3 was a direct target of miR-124. Overexpression of miR-124 decreased B7-H3 mRNA and protein level and inhibited B7-H3 3'-UTR reporter activity. Treatment of OS cells with miR-124 mimics induced the inhibition of cell growth and invasion in vitro, which could be abrogated by transfected by B7-H3 expression vector. Our findings highlight the potential application of miR-124 as a novel onco-miRNA in OS, and its oncogenic effects are mediated chiefly through downregulation of B7-H3, thus suggesting a model for identifying miR-124 that can be exploited to improve the therapeutic potential efficacy of mAb targeting to B7-H3.
Collapse
Affiliation(s)
- Ling Wang
- Cancer Research Institute, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.,Department of Orthopedics, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Fu-Biao Kang
- Department of Liver Diseases, Bethune International Peace Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Nan Sun
- Blood transfusion division, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Juan Wang
- Department of Orthopedics, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Wei Chen
- Department of Orthopedics, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Dong Li
- Department of Liver Diseases, Bethune International Peace Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Bao-En Shan
- Cancer Research Institute, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
50
|
Wang B, Guo J, Feng L, Suen CW, Fu WM, Zhang JF, Li G. MiR124 suppresses collagen formation of human tendon derived stem cells through targeting egr1. Exp Cell Res 2016; 347:360-6. [PMID: 27569005 DOI: 10.1016/j.yexcr.2016.08.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/20/2016] [Accepted: 08/24/2016] [Indexed: 11/25/2022]
Abstract
Collagen formation is used as a crucial indicator of tenogenic differentiation of human tendon derived stem cell (hTDSC). Early growth response-1(egr1), a transcriptional factor, has been demonstrated to regulate tendon differentiation and promote tendon repair. Considering that the therapeutic options for tendon injuries remain limited, investigating the regulation of egr1 could facilitate the understanding of tendon development at molecular level so as to find a promising therapeutic target. MicroRNAs (miRNA) have been considered as epigenetic regulators to mediate multiple biological activities including stem cell differentiation. In the present study, biological experiments confirmed the prediction that miR124-3p (miR124) could have direct binding with egr1. We also found that miR124 suppressed collagen formation during the tendon differentiation of hTDSC while anti-miR124 promoted it. Furthermore, egr1 knockdown abolished the promotive effect of anti-miR124, suggesting that miR124 prevents tendon differentiation via suppressing egr1 expression. Therefore, miR124 may be a promising therapeutic target for tendon injury.
Collapse
Affiliation(s)
- Bin Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China; The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China
| | - Jia Guo
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Lu Feng
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Chun-Wai Suen
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Wei-Ming Fu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China.
| | - Jin-Fang Zhang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China; The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China; The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China.
| |
Collapse
|