1
|
Hahm ER, Kim SH, Pore SK, Mathan SV, Singh RP, Singh SV. Mechanism of synergistic inhibitory effect of benzyl isothiocyanate and zoledronic acid combination on breast cancer induction of osteoclast differentiation. Mol Carcinog 2024; 63:301-313. [PMID: 37921547 PMCID: PMC10872601 DOI: 10.1002/mc.23653] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
Bone is the most favored site for metastasis for each major subtype of breast cancer. Therapeutic modalities for alleviation of clinical symptoms associated with bone metastasis include surgical resection, radiation, and bone-targeted therapies, including bisphosphonates (e.g., zoledronic acid; ZA) and a humanized antibody against receptor activator of nuclear factor-κB ligand (denosumab). However, the bone-targeted therapies are expensive, and have poor pharmacokinetic attributes and/or serious adverse effects. Therefore, novel strategies are needed for treatment of bone metastasis or to increase effectiveness of existing bone-targeted therapies. We have shown previously that benzyl isothiocyanate (BITC) is a novel inhibitor of osteoclast differentiation in vitro and bone metastasis in vivo. The present study shows that BITC + ZA combination synergistically inhibits osteoclast differentiation induced by addition of conditioned media from breast cancer cells. These effects were associated with a significant increase in levels of several antiosteoclastogenic cytokines, including interferons, interleukin (IL)-3, IL-4, and IL-27. Kyoto Encyclopedia of Genes and Genomes pathway analysis of RNA-seq data from BITC and/or ZA-treated cells revealed downregulation of genes of many pathways (e.g., actin cytoskeleton, Hippo signaling, etc.) by treatment with BITC + ZA combination, but not by BITC alone or ZA alone. Confocal microscopy confirmed severe disruption of actin cytoskeleton upon treatment of MCF-7 and MDA-MB-231 cells with the BITC + ZA combination. This combination also decreased the nuclear level of yes-associated protein, a core component of Hippo signaling. In conclusion, the present study offers a novel combination for prevention or treatment of bone metastasis of breast cancer.
Collapse
Affiliation(s)
- Eun-Ryeong Hahm
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Su-Hyeong Kim
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Subrata K. Pore
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Noida 201313, India
| | - Sivapar V. Mathan
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Rana P. Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shivendra V. Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
2
|
Wang Y, Zhong Z, Ma M, Zhao Y, Zhang C, Qian Z, Wang B. The role played by ailanthone in inhibiting bone metastasis of breast cancer by regulating tumor-bone microenvironment through the RANKL-dependent pathway. Front Pharmacol 2023; 13:1081978. [PMID: 36686653 PMCID: PMC9849906 DOI: 10.3389/fphar.2022.1081978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction: Bone metastasis of breast cancer (BC) is a process in which the disruption of the bone homeostatic microenvironment leads to an increase in osteoclast differentiation. Ailanthus altissima shows an inhibitory effect on osteoclast differentiation. Ailanthone (AIL) refers to a natural compound isolated from Ailanthus altissima, a Chinese herbal medicine, and has effective anti-tumor activity in numerous cell lines. Its impact on bone metastases for BC is yet unclear. Methods: We measured the effect of AIL on MDA-MB-231 cells by wound healing experiments, Transwell and colony formation experiment. Using the Tartrate-resistant Acid Phosphatase (TRAP) staining tests, filamentous (F-actin) staining and bone resorption test to detect the effect of AIL on the osteoclast cell differentiation of the Bone Marrow-derived Macrophages (BMMs), activated by the MDA-MB-231 cell Conditioned Medium (MDA-MB-231 CM) and the Receptor Activator of Nuclear factor-κB Ligand (RANKL),and to explore its possibility Mechanisms. In vivo experiments verified the effect of AIL on bone destruction in breast cancer bone metastasis model mice. Results: In vitro, AIL significantly decrease the proliferation, migration and infiltration abilities of MDA-MB-231 cells at a safe concentration, and also reduced the expression of genes and proteins involved in osteoclast formation in MDA-MB-231 cells. Osteoclast cell differentiation of the BMMs, activated by MDA-MB-231 CM and RANKL, were suppressed by AIL in the concentration-dependent manner. Additionally, it inhibits osteoclast-specific gene and protein expression. It was noted that AIL inhibited the expression of the osteoclast differentiation-related cytokines RANKL and interleukin-1β (IL-1β) that were secreted by the MDA-MB-231 cells after upregulating the Forkhead box protein 3 (FOXP3) expression. Furthermore, AIL also inhibits the expression of the Mitogen-Activated Protein Kinase (MAPK), Phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), and Nuclear factor-κB Ligand (NF-κB) signaling pathways, which then suppresses the MDA-MB-231CM-induced development of Osteoclasts. Conclusion: Our study shows that AIL blocks osteoclast differentiation in the bone metastasis microenvironment by inhibiting cytokines secreted by BC cells, which may be a potential agent for the treatment of BC and its secondary bone metastasis.
Collapse
Affiliation(s)
- Yajun Wang
- Department of Breast Cancer and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zeyuan Zhong
- Shanghai Medical College, Fudan University, Shanghai, China,Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Miao Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yannan Zhao
- Department of Breast Cancer and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chongjing Zhang
- Shanghai Medical College, Fudan University, Shanghai, China,Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China,*Correspondence: Biyun Wang, ; Zhi Qian, ; Chongjing Zhang,
| | - Zhi Qian
- Institution of Orthopedic Diseases, Zhangye People’s Hospital Affiliated to Hexi University, Zhangye, China,*Correspondence: Biyun Wang, ; Zhi Qian, ; Chongjing Zhang,
| | - Biyun Wang
- Department of Breast Cancer and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,*Correspondence: Biyun Wang, ; Zhi Qian, ; Chongjing Zhang,
| |
Collapse
|
3
|
Nakamura T, Tsutsui C, Okuda Y, Abe-Kanoh N, Okazawa S, Munemasa S, Murata Y, Kato Y, Nakamura Y. Benzyl isothiocyanate and its metabolites inhibit cell proliferation through protein modification in mouse preosteoclast RAW264.7 cells. J Biochem Mol Toxicol 2022; 36:e23184. [PMID: 35920443 DOI: 10.1002/jbt.23184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/31/2022] [Accepted: 07/25/2022] [Indexed: 11/06/2022]
Abstract
Benzyl isothiocyanate (BITC), derived from cruciferous vegetables, is an organosulfur compound exerting antiproliferative effects in several human cancer cells. In this study, we assessed BITC as a potential osteoclastogenesis inhibitor and investigated its underlying mechanism. BITC at 5 μM significantly decreased the viability of the osteoclast-like differentiating RAW264.7 cells, coinciding with the downregulation of the primary biomarkers for osteoclast differentiation, such as the tartrate-resistant acid phosphatase activity and nuclear factor of activated T-cells gene expression. Not only BITC but also its metabolites, inhibited cell proliferation in the normal RAW264.7 cells, suggesting that BITC shows an anti-osteoclastogenesis effect in vivo after its ingestion and metabolism, possibly through an antiproliferative action. Both BITC and its metabolites also enhanced the DNA fragmentation and the caspase-3 activity, whereas their higher concentrations tended to suppress these effects. BITC was intracellularly accumulated when the cells were treated with its metabolites via their degradation into the free form. A quantitative experiment using the proteolysis/high performance liquid chromatography technique showed that the amount of BITC-lysine thiourea in the cells was also increased in a time-dependent manner, suggesting that lysine modification of the cellular proteins actually took place in the cells treated by BITC. Among the cellular proteins, the cleaved caspase-3 was identified as a potential target for lysine modification by BITC. Taken together, BITC dissociated from its metabolites as well as its free form might modulate osteoclastogenesis, possibly through inhibition of cell proliferation by protein modification.
Collapse
Affiliation(s)
- Toshiyuki Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Chiharu Tsutsui
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yu Okuda
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Naomi Abe-Kanoh
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.,Department of Food Science, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Saori Okazawa
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yoji Kato
- Graduate School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, Japan.,Research Institute for Food and Nutritional Sciences, University of Hyogo, Himeji, Hyogo, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| |
Collapse
|
4
|
Nugroho ABD, Lee SW, Pervitasari AN, Moon H, Choi D, Kim J, Kim DH. Transcriptomic and metabolic analyses revealed the modulatory effect of vernalization on glucosinolate metabolism in radish (Raphanus sativus L.). Sci Rep 2021; 11:24023. [PMID: 34912010 PMCID: PMC8674254 DOI: 10.1038/s41598-021-03557-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022] Open
Abstract
Vernalization is the process by which long-term cold like winter triggers transition to flowering in plants. Many biennial and perennial plants including Brassicaceae family plants require vernalization for floral transition. Not only floral transition, but dynamic physiological and metabolic changes might also take place during vernalization. However, vernalization-mediated metabolic change is merely investigated so far. One of secondary metabolites found in Brassiceceae family plants is glucosinolates (GSLs). GSLs provides defense against pathogens and herbivores attack in plants and also exhibits inhibitory activity against human cancer cell. Profiles of GSLs are highly modulated by different environmental stresses in Brassciaceae family plants. To grasp the effect of vernalization on GSLs metabolic dynamics in radish (Raphanus sativus L.), we performed transcriptomic and metabolic analysis during vernalization in radish. Through transcriptome analysis, we found many GSLs metabolic genes were significantly down-regulated by vernalization in radish plants. Ultra-High Performance Liquid Chromatography analysis also revealed that GSLs compounds were substantially reduced in vernalized radish samples compared to non-vernalized radish samples. Furthermore, we found that repressive histone modification (i.e. H3K27me3) is involved in the modulation of GSLs metabolism via epigenetic suppression of Glucoraphasatin Synthase 1 (GRS1) during vernalization in radish. This study revealed that GSLs metabolism is modulated by vernalization, suggestive of a newly identified target of vernalization in radish.
Collapse
Affiliation(s)
- Adji Baskoro Dwi Nugroho
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Sang Woo Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | | | - Heewon Moon
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Dasom Choi
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Jongkee Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Dong-Hwan Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea. .,Research Center for Plant Plasticity, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
5
|
Liao CL, Ma YS, Hsia TC, Chou YC, Lien JC, Peng SF, Kuo CL, Hsu FT. Tetrandrine Suppresses Human Brain Glioblastoma GBM 8401/ luc2 Cell-Xenografted Subcutaneous Tumors in Nude Mice In Vivo. Molecules 2021; 26:molecules26237105. [PMID: 34885686 PMCID: PMC8659155 DOI: 10.3390/molecules26237105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 02/04/2023] Open
Abstract
Tetrandrine (TET), a bisbenzylisoquinoline (BBI) alkaloid, is isolated from the plant Stephania tetrandra S. Moore and has a wide range of biological activity, including anticancer properties in vitro and in vivo. At first, we established a luciferase-expressing stable clone that was named GBM 8401/luc2 cells. Herein, the primary results indicated that TET reduced the total cell viability and induced cell apoptosis in GBM 8401/luc2 human glioblastoma cells. However, there is no available information showing that TET suppresses glioblastoma cells in vivo. Thus, we investigated the effects and mechanisms of TET on a GBM 8401/luc2 cell-generated tumor in vivo. After the tumor volume reached 100-120 mm3 in subcutaneously xenografted nude mice, all of the mice were randomly divided into three groups: Group I was treated with phosphate-buffered solution (PBS) containing 0.1% dimethyl sulfoxide, Group II with 25 mg/kg of TET, and Group III with 50 mg/kg of TET. All mice were given the oral treatment of PBS or TET by gavage for 21 days, and the body weight and tumor volumes were recorded every 5 days. After treatment, individual tumors, kidneys, livers, and spleens were isolated from each group. The results showed that TET did not affect the body weights, but it significantly decreased the tumor volumes. The TET treatment at 50 mg/kg had a two-fold decrease in tumor volumes than that at 25 mg/kg when compared to the control. TET decreased the total photon flux, and treatment with TET at 50 mg/kg had a lower total photon flux than that at 25 mg/kg, as measured by a Xenogen IVIS imaging system. Moreover, the higher TET treatment had lower tumor volumes and weights than those of the lower dose. The apoptosis-associated protein expression in the tumor section was examined by immunohistochemical analysis, and the results showed that TET treatment reduced the levels of c-FLIP, MCL-1, and XIAP but increased the signals of cleaved-caspase-3, -8, and -9. Furthermore, the hematoxylin and eosin (H & E) staining of kidney, liver, and spleen tissues showed no significant difference between the TET-treated and control groups. Overall, these observations demonstrated that TET suppressed subcutaneous tumor growth in a nude-mice model via the induction of cell apoptosis.
Collapse
Affiliation(s)
- Ching-Lung Liao
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40604, Taiwan;
| | - Yi-Shih Ma
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 840, Taiwan;
- Department of Chinese Medicine, E-Da Hospital, Kaohsiung 824, Taiwan
| | - Te-Chun Hsia
- Department of Respiratory Therapy, China Medical University, Taichung 404, Taiwan;
- Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Yu-Cheng Chou
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407, Taiwan;
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Jin-Cherng Lien
- School of Pharmacy, China Medical University, Taichung 404, Taiwan;
| | - Shu-Fen Peng
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan;
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan
| | - Chao-Lin Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan
- Correspondence: (C.-L.K.); (F.-T.H.); Tel.: +886-4-2205-3366 (ext. 5202) (C.-L.K.); +886-4-2205-3366 (ext. 2531) (F.-T.H.); Fax: +886-4-2205-3764 (C.-L.K. & F.-T.H.)
| | - Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan
- Correspondence: (C.-L.K.); (F.-T.H.); Tel.: +886-4-2205-3366 (ext. 5202) (C.-L.K.); +886-4-2205-3366 (ext. 2531) (F.-T.H.); Fax: +886-4-2205-3764 (C.-L.K. & F.-T.H.)
| |
Collapse
|
6
|
Mou H, Wang Z, Zhang W, Li G, Zhou H, Yinwang E, Wang F, Sun H, Xue Y, Wang Z, Chen T, Chai X, Qu H, Lin P, Teng W, Li B, Ye Z. Clinical Features and Serological Markers Risk Model Predicts Overall Survival in Patients Undergoing Breast Cancer and Bone Metastasis Surgeries. Front Oncol 2021; 11:693689. [PMID: 34604031 PMCID: PMC8484887 DOI: 10.3389/fonc.2021.693689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/13/2021] [Indexed: 12/23/2022] Open
Abstract
Background Surgical therapy of breast cancer and bone metastasis can effectively improve the prognosis of breast cancer. However, after the first operation, the relationship between preoperative indicators and outcomes in patients who underwent metastatic bone surgery remained to be studied. Purpose 1. Recognize clinical and laboratory prognosis factors available to clinical doctors before the operation for bone metastatic breast cancer patients. 2. Develop a risk prediction model for 3-year postoperative survival in patients with breast cancer bone metastasis. Methods From 2014 to 2020, patients who suffered from breast cancer bone metastasis and received therapeutic procedures in our institution were included for analyses (n=145). For patients who underwent both breast cancer radical surgery and bone metastasis surgery, comprehensive datasets of the parameters of interest (clinical features, laboratory factors, and patient prognoses) were collected (n=69). We performed Multivariate Cox regression to identify factors that were associated with postoperative outcome. 3-year survival prediction model and nomograms were established by 100 bootstrapping. Its benefit was evaluated by calibration plot, C-index, and decision curve analysis. The Surveillance, Epidemiology, and End Results database was also used for external validation. Results Radiotherapy for primary cancer, pathological type of metastatic breast cancer, lymph node metastasis, elevated serum alkaline phosphatase, lactate dehydrogenase were associated with postoperative prognosis. Pathological types of metastatic breast cancer, multiple bone metastasis, organ metastases, and elevated serum lactate dehydrogenase were associated with 3-year survival. Then those significant variables and serum alkaline phosphatase counts were integrated to construct nomograms for 3-year survival. The C-statistic of the established predictive model was 0.83. The calibration plot presents a graphical representation of calibration. In the decision curve analysis, the benefits are higher than those of the extreme curve. The receiver operating characteristic of the external validation of the model was 0.82, indicating a favored fitting degree of the two models. Conclusion Our study suggests that several clinical features and serological markers can predict the overall survival among the patients who are about to receive bone metastasis surgery after breast cancer surgery. The model can guide the preoperative evaluation and clinical decision-making for patients. Level of evidence Level III, prognostic study.
Collapse
Affiliation(s)
- Haochen Mou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Zhan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Wenkan Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Guoqi Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Hao Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Eloy Yinwang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Fangqian Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Hangxiang Sun
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Yucheng Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Zenan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Tao Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Xupeng Chai
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Hao Qu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Peng Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Wangsiyuan Teng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Binghao Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Zhaoming Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| |
Collapse
|
7
|
Cheng X, Wei J, Ge Q, Xing D, Zhou X, Qian Y, Jiang G. The optimized drug delivery systems of treating cancer bone metastatic osteolysis with nanomaterials. Drug Deliv 2021; 28:37-53. [PMID: 33336610 PMCID: PMC7751395 DOI: 10.1080/10717544.2020.1856225] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Some cancers such as human breast cancer, prostate cancer, and lung cancer easily metastasize to bone, leading to osteolysis and bone destruction accompanied by a complicated microenvironment. Systemic administration of bisphosphonates (BP) or denosumab is the routine therapy for osteolysis but with non-negligible side effects such as mandibular osteonecrosis and hypocalcemia. Thus, it is imperative to exploit optimized drug delivery systems, and some novel nanotechnology and nanomaterials have opened new horizons for scientists. Targeted and local drug delivery systems can optimize biodistribution depending on nanoparticles (NPs) or microspheres (MS) and implantable biomaterials with the controllable property. Drug delivery kinetics can be optimized by smart and sustained/local drug delivery systems for responsive delivery and sustained delivery. These delicately fabricated drug delivery systems with special matrix, structure, morphology, and modification can minimize unexpected toxicity caused by systemic delivery and achieve desired effects through integrating multiple drugs or multiple functions. This review summarized recent studies about optimized drug delivery systems for the treatment of cancer metastatic osteolysis, aimed at giving some inspiration in designing efficient multifunctional drug delivery systems.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jinrong Wei
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Qi Ge
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Danlei Xing
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xuefeng Zhou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Yunzhu Qian
- Center of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Guoqin Jiang
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
8
|
Huang YP, Ma YS, Kuo CL, Liao CL, Chen PY, Peng SF, Hsu FT, Lai KC. Demethoxycurcumin Suppresses Human Brain Glioblastoma Multiforme GBM 8401 Cell Xenograft Tumor in Nude Mice In Vivo. Int J Mol Sci 2021; 22:ijms22115503. [PMID: 34071132 PMCID: PMC8197162 DOI: 10.3390/ijms22115503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Demethoxycurcumin (DMC), a derivate of curcumin, has been shown to induce apoptotic cell death in human glioblastoma multiforme GBM 8401 cells via cell cycle arrest and induction of cell apoptosis. However, there is no report showing DMC suppresses glioblastoma multiforme cells in vivo. In the present study, we investigated the effects of DMC on GBM8401 cells in vivo. At first, we established a luciferase-expressing stable clone named GBM 8401/luc2. Second, mice were inoculated subcutaneously with GBM 8401/luc2 cells to generate a xenograft tumor mice model. After inoculation, tumor volume reached 100-120 mm3, and all mice were randomly divided into three groups: Group I was treated with 110 µL phosphate-buffered solution (PBS) containing 0.1% dimethyl sulfoxide, Group II with 30 mg/kg of DMC, and Group III with 60 mg/kg of DMC. Mice from each group were given the oral treatment of DMC by gavage for 21 days. The body weight and tumor volume were recorded every 3 days. DMC significantly decreased the tumor volumes, and 60 mg/kg treatment showed a higher decrease in tumor volumes than that of 30 mg/kg, However, DMC did not affect the body weights. The photons emitted from mice tumors were detected with Xenogen IVIS imaging system, DMC at both doses decreased the total photon flux and 60 mg/kg treatment of DMC has low total photon flux than that of 30 mg/kg. The tumor volumes and weights in 60 mg/kg treatment of DMC were lower than that of 30 mg/kg. Immunohistochemical analysis was used to measure protein expression of tumors and results showed that DMC treatment led to lightly staining with anti-Bcl-2 and -XIAP and 60 mg/kg treatment of DMC has lighter staining with anti-Bcl-2 and -XIAP than that of 30 mg/kg. The higher dose (60 mg/kg) of DMC has higher signals of cleaved-caspase-3 than that of the lower dose (30 mg/kg). Furthermore, the hematoxylin and eosin (H&E) staining of liver tissues showed no significant difference between DMC-treated and control-groups. Overall, these observations showed that DMC suppressed tumor properties in vivo and DMC may be used against human glioblastoma multiforme in the future.
Collapse
Affiliation(s)
- Yi-Ping Huang
- Department of Physiology, School of Medicine, China Medical University, Taichung 406, Taiwan;
| | - Yi-Shih Ma
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 840, Taiwan;
- Department of Chinese Medicine, E-Da Hospital, Kaohsiung 824, Taiwan
| | - Chao-Lin Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 406, Taiwan;
| | - Ching-Lung Liao
- College of Chinese Medicine, School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung 406, Taiwan;
| | - Po-Yuan Chen
- Department of Biological Science and Technology, China Medical University, Taichung 406, Taiwan; (P.-Y.C.); (S.-F.P.)
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung 406, Taiwan; (P.-Y.C.); (S.-F.P.)
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
| | - Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung 406, Taiwan; (P.-Y.C.); (S.-F.P.)
- Correspondence: (F.-T.H.); (K.-C.L.); Tel.: +886-4-22053366 (ext. 2532) (F.-T.H.); +886-5-7837901 (ext. 1161) (K.-C.L.); Fax: +886-4-22053764 (F.-T.H.); +886-5-7831121 (K.-C.L.)
| | - Kuang-Chi Lai
- Department of Medical Laboratory Science and Biotechnology, College of Medical Technology, Chung Hwa University of Medical Technology, Tainan 717, Taiwan
- Department of Surgery, China Medical University Beigang Hospital, Beigang, Yunlin 651, Taiwan
- Correspondence: (F.-T.H.); (K.-C.L.); Tel.: +886-4-22053366 (ext. 2532) (F.-T.H.); +886-5-7837901 (ext. 1161) (K.-C.L.); Fax: +886-4-22053764 (F.-T.H.); +886-5-7831121 (K.-C.L.)
| |
Collapse
|
9
|
Anticancer activities of dietary benzyl isothiocyanate: A comprehensive review. Pharmacol Res 2021; 169:105666. [PMID: 33989764 DOI: 10.1016/j.phrs.2021.105666] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/22/2021] [Accepted: 05/05/2021] [Indexed: 12/28/2022]
Abstract
Benzyl isothiocyanate (BITC) is one of the common isothiocyanates found in cruciferous vegetables such as broccoli, cabbage or watercress. Preclinical studies report of its effectiveness in the prevention and treatment against several cancers. This review aims to report and discuss findings on anticancer activities of BITC and its modes of action against 14 types of cancer. A literature search was conducted using the keywords "BITC" and "anticancer" from PubMed, Google Scholar and CINAHL Plus to obtain relevant research articles. This review highlights the anticancer efficacy of BITC through modulation of various signaling pathways involved in apoptosis, cell proliferation, cell cycle arrest, metastasis, angiogenesis, autophagy and the effects of BITC in combination with other drugs. With the available pharmacology evidence, we conclude that further studies are needed to validate its effectiveness in humans for further development and translation into prophylaxis or therapy by promoting optimal therapeutic effects and minimizing toxicity in cancer treatment.
Collapse
|
10
|
Ju L, Hu P, Chen P, Wu J, Li Z, Qiu Z, Cheng J, Huang F. Corydalis Saxicola Bunting Total Alkaloids Attenuate Walker 256-Induced Bone Pain and Osteoclastogenesis by Suppressing RANKL-Induced NF-κB and c-Fos/NFATc1 Pathways in Rats. Front Pharmacol 2021; 11:609119. [PMID: 33574755 PMCID: PMC7870471 DOI: 10.3389/fphar.2020.609119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Metastatic bone pain is characterized by insufferable bone pain and abnormal bone structure. A major goal of bone cancer treatment is to ameliorate osteolytic lesion induced by tumor cells. Corydalis saxicola Bunting total alkaloids (CSBTA), the alkaloid compounds extracted from the root of C. saxicola Bunting, have been shown to possess anticancer and analgesic properties. In this study, we aimed to verify whether CSBTA could relieve cancer induced bone pain and inhibit osteoclastogenesis. The in vivo results showed that CSBTA ameliorated Walker 256 induced bone pain and osteoporosis in rats. Histopathological changes also supported that CSBTA inhibited Walker 256 cell-mediated osteolysis. Further in vitro analysis confirmed that CSBTA reduced the expression of RANKL and downregulate the level of RANKL/OPG ratio in breast cancer cells. Moreover, CSBTA could inhibit osteoclastogenesis by suppressing RANKL-induced NF-κB and c-Fos/NFATc1 pathways. Collectively, this study demonstrated that CSBTA could attenuate cancer induced bone pain via a novel mechanism. Therefore, CSBTA might be a promising candidate drug for metastatic bone pain patients.
Collapse
Affiliation(s)
- Linjie Ju
- Department of Chinese Pharmacology and Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Peipei Hu
- Department of Chinese Pharmacology and Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Ping Chen
- Department of Chinese Pharmacology and Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Jiejie Wu
- Department of Chinese Pharmacology and Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Zhuoqun Li
- Department of Chinese Pharmacology and Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China.,Nanjing Zhongshan Pharmaceutical Co, Ltd., Nanjing Economic and Technological Development Zone, Nanjing, China
| | - Zhixia Qiu
- Department of Chinese Pharmacology and Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Jun Cheng
- Nanjing Zhongshan Pharmaceutical Co, Ltd., Nanjing Economic and Technological Development Zone, Nanjing, China
| | - Fang Huang
- Department of Chinese Pharmacology and Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
11
|
Mandal CC. Osteolytic metastasis in breast cancer: effective prevention strategies. Expert Rev Anticancer Ther 2020; 20:797-811. [PMID: 32772585 DOI: 10.1080/14737140.2020.1807950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Breast cancer is the most common cancer in women throughout the world. Patients who are diagnosed early generally have better prognosis and survivability. Indeed, advanced stage breast cancer often develops osteolytic metastases, leading to bone destruction. Although there are select drugs available to treat bone metastatic disease, these drugs have shown limited success. AREA COVERED This paper emphasizes updated mechanisms of bone remodeling and osteolytic bone metastases of breast cancer. This article also aims to explore the potential of novel natural and synthetic therapeutics in the effective prevention of breast cancer-induced osteolysis and osteolytic metastases of breast cancer. EXPERT OPINION Targeting TGFβ and BMP signaling pathways, along with osteoclast activity, appears to be a promising therapeutic strategy in the prevention of breast cancer-induced osteolytic bone destruction and metastatic growth at bone metastatic niches. Pilot studies in animal models suggest various natural and synthetic compounds and monoclonal antibodies as putative therapeutics in the prevention of breast cancer stimulated osteolytic activity. However, comprehensive pre-clinical studies demonstrating the PK/PD and in-depth understanding of molecular mechanism(s) by which these potential molecules exhibit anti-tumor growth and anti-osteolytic activity are still required to develop effective therapies against breast cancer-induced osteolytic bone disease.
Collapse
Affiliation(s)
- Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan , Ajmer, India
| |
Collapse
|
12
|
Ma L, Chen Y, Han R, Wang S. Benzyl isothiocyanate inhibits invasion and induces apoptosis via reducing S100A4 expression and increases PUMA expression in oral squamous cell carcinoma cells. ACTA ACUST UNITED AC 2019; 52:e8409. [PMID: 30970087 PMCID: PMC6459467 DOI: 10.1590/1414-431x20198409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/01/2019] [Indexed: 01/17/2023]
Abstract
Benzyl isothiocyanate (BITC) has been shown to inhibit invasion and induce apoptosis of various types of cancer. However, its role on human oral squamous cell carcinoma (OSCC) cells is still not well elucidated. In the present study, we investigated the effect of BITC on apoptosis and invasion of SCC9 cells, and its underlying mechanisms in vitro and in vivo. SCC9 cells were exposed to BITC (5 and 25 μM) for 24 and 48 h. Cell growth, apoptosis, invasion, and migration were detected in vitro by MTT, FITC-conjugated annexin V/propidium iodide staining followed by flow cytometry, Matrigel-coated semi-permeable modified Boyden, and wound-healing assay. S100A4, PUMA, and MMP-9 expressions were detected to investigate its mechanisms. Xenotransplantation experiments were used to investigate the role of BITC on tumor growth and lung metastasis. BITC inhibited cell viability and induced cell apoptosis in a dose- and time-dependent manner through upregulation of PUMA signals. BITC inhibited cell invasion and migration by downregulation of S100A4 dependent MMP-9 signals. The ip administration of BITC reduced tumor growth but not lung metastasis of SCC9 cells subcutaneously implanted in nude mice. BITC treatment activated pro-apoptotic PUMA and inhibited S100A4-dependent MMP-9 signals, resulting in the inhibition of cell growth and invasion in cultured and xenografted SCC9 cells. Thereby, BITC is a potential therapeutic approach for OSCC.
Collapse
Affiliation(s)
- Lei Ma
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yongjun Chen
- Department of Traditional Chinese medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Rui Han
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shuangyi Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
13
|
Roy R, Hahm ER, White AG, Anderson CJ, Singh SV. AKT-dependent sugar addiction by benzyl isothiocyanate in breast cancer cells. Mol Carcinog 2019; 58:996-1007. [PMID: 30720225 DOI: 10.1002/mc.22988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 01/31/2023]
Abstract
The overall promise of breast cancer chemoprevention is exemplified by clinical success of selective estrogen receptor modulators and aromatase inhibitors. Despite clinical efficacy, these interventions have limitations, including rare but serious side effects and lack of activity against estrogen receptor-negative breast cancers. We have shown previously that dietary administration of benzyl isothiocyanate (BITC), which occurs naturally as a thioglucoside conjugate in edible cruciferous vegetables, inhibits development of estrogen receptor-negative breast cancer in mouse mammary tumor virus-neu (MMTV-neu) transgenic mice. This study demonstrates AKT-mediated sugar addiction in breast cancer chemoprevention by BITC. BITC-treated MMTV-neu mice exhibited increased 2-deoxy-2-(18 F)-fluoro-D-glucose (18 F-FDG) uptake in mammary tumors in vivo in comparison with mice fed basal diet. Cellular studies using MDA-MB-231 and SUM159 human breast cancer cell lines revealed BITC-mediated induction and punctate localization of glucose transporter GLUT-1, which was accompanied by an increase in intracellular pyruvate levels. BITC treatment resulted in increased S473 phosphorylation (activation) of AKT in cells in vitro as well as in mammary tumors of MMTV-neu mice in vivo. Increased glucose uptake, punctate pattern of GLUT-1 localization, and intracellular pyruvate levels resulting from BITC exposure were significantly attenuated in the presence of a pharmacological inhibitor of AKT (MK-2206). Inhibition of AKT augmented BITC-mediated inhibition of cell migration and colony formation. BITC-induced apoptotic cell death was also increased by pharmacological inhibition of AKT. These results indicate increased glucose uptake/metabolism by BITC treatment in breast cancer cells suggesting that breast cancer chemoprevention by BITC may be augmented by pharmacological inhibition of AKT.
Collapse
Affiliation(s)
- Ruchi Roy
- Department of Pharmacology & Chemical Biology, Pittsburgh, Pennsylvania
| | - Eun-Ryeong Hahm
- Department of Pharmacology & Chemical Biology, Pittsburgh, Pennsylvania
| | - Alexander G White
- Department of Microbiology and Molecular Genetics, Pittsburgh, Pennsylvania
| | - Carolyn J Anderson
- Department of Pharmacology & Chemical Biology, Pittsburgh, Pennsylvania.,Department of Medicine, Pittsburgh, Pennsylvania.,Department of Radiology, Pittsburgh, Pennsylvania.,Department of Bioengineering, Pittsburgh, Pennsylvania.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shivendra V Singh
- Department of Pharmacology & Chemical Biology, Pittsburgh, Pennsylvania.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Kim SH, Singh SV. Role of Krüppel-like Factor 4-p21 CIP1 Axis in Breast Cancer Stem-like Cell Inhibition by Benzyl Isothiocyanate. Cancer Prev Res (Phila) 2019; 12:125-134. [PMID: 30723175 DOI: 10.1158/1940-6207.capr-18-0393] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/11/2018] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
Abstract
Cancer chemoprevention by benzyl isothiocyanate (BITC), which is derived from cruciferous vegetables like garden cress, in a transgenic mouse model of breast cancer is associated with inhibition of breast cancer stem-like cells (bCSC), but the molecular regulators of this effect remain elusive. This study demonstrates a protective effect of Krüppel-like factor 4 (KLF4)-p21CIP1 axis in bCSC inhibition by BITC. Exposure of human breast cancer cells (MCF-7, MDA-MB-231, and SUM159) to plasma-achievable concentrations of BITC resulted in a robust induction of KLF4 mRNA and its protein expression as determined by qRT-PCR and Western blotting or confocal microscopy. BITC-mediated suppression of bCSC markers, including aldehyde dehydrogenase 1 activity and mammosphere frequency, was significantly augmented by transient or stable knockdown of KLF4. Western blotting and IHC revealed relatively higher levels of KLF4 protein in mammary tumor sections from BITC-treated mice in comparison with controls, but the difference was insignificant. Analysis of the breast cancer RNA-Seq data from The Cancer Genome Atlas indicated significant positive correlation between expression of KLF4 and that of p21CIP1 (CDKN1A) but not β-Catenin (CTNNB1). Knockdown of p21CIP1 protein also amplified BITC-mediated suppression of bCSC. Finally, KLF4 was recruited to the promoter of p21CIP1 as indicated by chromatin immunoprecipitation assay. These results indicate that induction of KLF4-p21CIP1 axis attenuates inhibitory effect of BITC on bCSC self-renewal. Translational implication of these findings is that breast cancer chemoprevention by BITC may be augmented with a combination regimen involving BITC and an inhibitor of KLF4.
Collapse
Affiliation(s)
- Su-Hyeong Kim
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shivendra V Singh
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. .,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
15
|
Soundararajan P, Kim JS. Anti-Carcinogenic Glucosinolates in Cruciferous Vegetables and Their Antagonistic Effects on Prevention of Cancers. Molecules 2018; 23:E2983. [PMID: 30445746 PMCID: PMC6278308 DOI: 10.3390/molecules23112983] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 12/16/2022] Open
Abstract
Glucosinolates (GSL) are naturally occurring β-d-thioglucosides found across the cruciferous vegetables. Core structure formation and side-chain modifications lead to the synthesis of more than 200 types of GSLs in Brassicaceae. Isothiocyanates (ITCs) are chemoprotectives produced as the hydrolyzed product of GSLs by enzyme myrosinase. Benzyl isothiocyanate (BITC), phenethyl isothiocyanate (PEITC) and sulforaphane ([1-isothioyanato-4-(methyl-sulfinyl) butane], SFN) are potential ITCs with efficient therapeutic properties. Beneficial role of BITC, PEITC and SFN was widely studied against various cancers such as breast, brain, blood, bone, colon, gastric, liver, lung, oral, pancreatic, prostate and so forth. Nuclear factor-erythroid 2-related factor-2 (Nrf2) is a key transcription factor limits the tumor progression. Induction of ARE (antioxidant responsive element) and ROS (reactive oxygen species) mediated pathway by Nrf2 controls the activity of nuclear factor-kappaB (NF-κB). NF-κB has a double edged role in the immune system. NF-κB induced during inflammatory is essential for an acute immune process. Meanwhile, hyper activation of NF-κB transcription factors was witnessed in the tumor cells. Antagonistic activity of BITC, PEITC and SFN against cancer was related with the direct/indirect interaction with Nrf2 and NF-κB protein. All three ITCs able to disrupts Nrf2-Keap1 complex and translocate Nrf2 into the nucleus. BITC have the affinity to inhibit the NF-κB than SFN due to the presence of additional benzyl structure. This review will give the overview on chemo preventive of ITCs against several types of cancer cell lines. We have also discussed the molecular interaction(s) of the antagonistic effect of BITC, PEITC and SFN with Nrf2 and NF-κB to prevent cancer.
Collapse
Affiliation(s)
- Prabhakaran Soundararajan
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea.
| | - Jung Sun Kim
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea.
| |
Collapse
|
16
|
Fairman CM, Kendall KL, Hart NH, Taaffe DR, Galvão DA, Newton RU. The potential therapeutic effects of creatine supplementation on body composition and muscle function in cancer. Crit Rev Oncol Hematol 2018; 133:46-57. [PMID: 30661658 DOI: 10.1016/j.critrevonc.2018.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 12/16/2022] Open
Abstract
Low muscle mass in individuals with cancer has a profound impact on quality of life and independence and is associated with greater treatment toxicity and poorer prognosis. Exercise interventions are regularly being investigated as a means to ameliorate treatment-related adverse effects, and nutritional/supplementation strategies to augment adaptations to exercise are highly valuable. Creatine (Cr) is a naturally-occurring substance in the human body that plays a critical role in energy provision during muscle contraction. Given the beneficial effects of Cr supplementation on lean body mass, strength, and physical function in a variety of clinical populations, there is therapeutic potential in individuals with cancer at heightened risk for muscle loss. Here, we provide an overview of Cr physiology, summarize the evidence on the use of Cr supplementation in various aging/clinical populations, explore mechanisms of action, and provide perspectives on the potential therapeutic role of Cr in the exercise oncology setting.
Collapse
Affiliation(s)
- C M Fairman
- Exercise Medicine Research Institute, Edith Cowan University, Perth, Western Australia, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia.
| | - K L Kendall
- School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - N H Hart
- Exercise Medicine Research Institute, Edith Cowan University, Perth, Western Australia, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia; Institute for Health Research, University of Notre Dame Australia, Perth, Western Australia, Australia
| | - D R Taaffe
- Exercise Medicine Research Institute, Edith Cowan University, Perth, Western Australia, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia; School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - D A Galvão
- Exercise Medicine Research Institute, Edith Cowan University, Perth, Western Australia, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - R U Newton
- Exercise Medicine Research Institute, Edith Cowan University, Perth, Western Australia, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia; School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
17
|
Ma YS, Lin JJ, Lin CC, Lien JC, Peng SF, Fan MJ, Hsu FT, Chung JG. Benzyl isothiocyanate inhibits human brain glioblastoma multiforme GBM 8401 cell xenograft tumor in nude mice in vivo. ENVIRONMENTAL TOXICOLOGY 2018; 33:1097-1104. [PMID: 29972272 DOI: 10.1002/tox.22581] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
Benzyl isothiocyanate (BITC), a member of isothiocyanates (ITCs), has been shown to induce cell death in many human cancer cells, but there is no further report to show BITC suppresses glioblastoma multiforme cells in vivo. In the present study, we investigate the effects of BITC on the inhibition of GBM 8401/luc2 cell generated tumor on athymic nude mice. We established a luciferase expressing stable clone named as GBM 8401/luc2. Thirty male mice were inoculated subcutaneously with GBM 8401/luc2 cells to generate xenograft tumor mice model. Group I was treated with 110 μL phosphate-buffered solution plus 10 μL dimethyl sulfoxide, Group II-III with BITC (5 or 10 μmol/100 μL/day, relatively). Mice were given oral treatment of BITC by gavage for 21 days. Results showed that BITC did not affect the body weights. After anesthetized, the photons emitted from mice tumor were detected with Xenogen IVIS imaging system 200 and higher dose of BITC have low total photon flux than that of lower dose of BITC. Results also showed that higher dose of BITC have low total tumor volumes and weights than that of low dose of BITC. Isolated tumors were investigated by immunohistochemical analysis and results showed that BITC at both dose of treatment weakly stained with anti-MCL1 and -XIAP. However, both dose of BITC treatments have strong signals of caspase-3 and Bax. Overall, these data demonstrated that BITC suppressed tumor properties in vivo. Overall, based on these observations, BITC can be used against human glioblastoma multiforme in the future.
Collapse
Affiliation(s)
- Yi-Shih Ma
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Department of Chinese Medicine, E-Da Hospital, Kaohsiung, Taiwan
| | - Jen-Jyh Lin
- Division of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | - Chin-Chung Lin
- Department of Chinese Medicine, Feng-Yuan Hospital, Ministry of Health and Welfare, Executive Yuan, Taichung, Taiwan
- General Education Center, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Jin-Cherng Lien
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Shu-Fen Peng
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Ming-Jen Fan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Fei-Ting Hsu
- Department of Medical Imaging, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Radiology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jing-Gung Chung
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| |
Collapse
|