1
|
Xu DM, Chen LX, Xue T, Zhuang XY, Wei LC, Han H, Mo M. Decoding the impact of MMP1+ malignant subsets on tumor-immune interactions: insights from single-cell and spatial transcriptomics. Cell Death Discov 2025; 11:244. [PMID: 40394037 DOI: 10.1038/s41420-025-02503-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/15/2025] [Accepted: 04/23/2025] [Indexed: 05/22/2025] Open
Abstract
Matrix metalloproteinase 1 plays a pivotal role in tumor biology and immune modulation through its enzymatic remodeling of the extracellular matrix, facilitating tumor progression. In this study, we utilized large-scale single-cell RNA sequencing and spatial transcriptomics to investigate MMP1 expression, its cellular localization, and its impact on tumor progression and immune modulation. Our findings reveal that MMP1 expression is elevated in various tumor types and is strongly correlated with metastatic potential. High MMP1 expression was associated with increased activity in epithelial-mesenchymal transition signaling and TNFα/NF-κB pathways, which are known to promote tumor progression. Furthermore, MMP1+ malignant cells exhibited significant interactions with immune cells, particularly macrophages and CD8+ T cells. MMP1 expression correlated with enhanced macrophage infiltration and impaired CD8+ T-cell function, contributing to an immunosuppressive tumor microenvironment. Notably, the CXCL16-CXCR6 and ANXA1-FPR3 signaling axes were identified as key mediators of these interactions. Inhibition of MMP1 in vitro demonstrated reduced cell invasion, stemness, and proliferation, while increasing reactive oxygen species levels and promoting apoptosis. Our findings position MMP1 as a key player in the "tumor-immune" vicious cycle and a promising therapeutic target to enhance anti-tumor responses and improve patient outcomes.
Collapse
Affiliation(s)
- Da-Ming Xu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Ling-Xiao Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Ting Xue
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Xiao-Yu Zhuang
- Department of Anesthesiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, P. R. China
| | - Li-Chao Wei
- Department of Organ Transplantation, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Hui Han
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.
| | - Miao Mo
- Department of Urology, Xiangya Hospital, Central South University, Changsha, P.R. China.
| |
Collapse
|
2
|
Łazarczyk M, Skiba D, Mickael ME, Jaskuła K, Nawrocka A, Religa P, Sacharczuk M. Opioid System and Epithelial-Mesenchymal Transition. Pharmaceuticals (Basel) 2025; 18:120. [PMID: 39861181 PMCID: PMC11768736 DOI: 10.3390/ph18010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/04/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Opioids are a challenging class of drugs due to their dual role. They alleviate pain, but also pose a risk of dependency, or trigger constipation, particularly in cancer patients, who require the more potent painkillers in more advanced stages of the disease, closely linked to pain resulting from general inflammation, bone metastases, and primary or secondary tumour outgrowth-related nerve damage. Clinicians' vigilance considering treatment with opioids is necessary, bearing in mind extensive data accumulated over decades that have reported the contribution of opioids to immunosuppression, tumour progression, or impaired tissue regeneration, either following opioid use during surgical tumour resection and post-surgical pain treatment, or as a result of other diseases like diabetes, where chronic wounds healing constitutes a challenge. During last few years, an increasing trend for seeking relationships between opioids and epithelial-mesenchymal transition (EMT) in cancer research can be observed. Transiently lasting EMT is desirable during wound healing, but in cancer, or vital organ fibrogenesis, EMT appears to be an obstacle to overcome, forcing to adjust treatment strategies that would reduce the risk for worsening of the disease outcome and patient prognosis. The same opioid may demonstrate promoting or inhibitory effect on EMT, dependently on various conditions in particular clinical cases. We have summarized current findings on this issue to uncover some rules that govern opioid-mediated EMT induction or repression; however, many aspects still remain to be elucidated.
Collapse
Affiliation(s)
- Marzena Łazarczyk
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postepu 36A, 05-552 Jastrzebiec, Poland
| | - Dominik Skiba
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postepu 36A, 05-552 Jastrzebiec, Poland
| | - Michel-Edwar Mickael
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postepu 36A, 05-552 Jastrzebiec, Poland
| | - Kinga Jaskuła
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postepu 36A, 05-552 Jastrzebiec, Poland
| | - Agata Nawrocka
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postepu 36A, 05-552 Jastrzebiec, Poland
| | - Piotr Religa
- Department of Medicine, Karolinska Institute, 171 77 Solna, Sweden
| | - Mariusz Sacharczuk
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postepu 36A, 05-552 Jastrzebiec, Poland
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-091 Warsaw, Poland
| |
Collapse
|
3
|
Hwang Y, Shimamura Y, Tanaka J, Miura A, Sawada A, Sarmah H, Shimizu D, Kondo Y, Lee H, Martini F, Ninish Z, Yan KS, Yamada K, Mori M. FGF2 promotes the expansion of parietal mesothelial progenitor pools and inhibits BMP4-mediated smooth muscle cell differentiation. Front Cell Dev Biol 2024; 12:1387237. [PMID: 39376629 PMCID: PMC11456698 DOI: 10.3389/fcell.2024.1387237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/11/2024] [Indexed: 10/09/2024] Open
Abstract
Mesothelial cells, in the outermost layer of internal organs, are essential for both organ development and homeostasis. Although the parietal mesothelial cell is the primary origin of mesothelioma that may highjack developmental signaling, the signaling pathways that orchestrate developing parietal mesothelial progenitor cell (MPC) behaviors, such as MPC pool expansion, maturation, and differentiation, are poorly understood. To address it, we established a robust protocol for culturing WT1+ MPCs isolated from developing pig and mouse parietal thorax. Quantitative qPCR and immunostaining analyses revealed that BMP4 facilitated MPC differentiation into smooth muscle cells (SMCs). In contrast, FGF2 significantly promoted MPC progenitor pool expansion but blocked the SMC differentiation. BMP4 and FGF2 counterbalanced these effects, but FGF2 had the dominant impact in the long-term culture. A Wnt activator, CHIR99021, was pivotal in MPC maturation to CALB2+ mesothelial cells, while BMP4 or FGF2 was limited. Our results demonstrated central pathways critical for mesothelial cell behaviors.
Collapse
Affiliation(s)
- Youngmin Hwang
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
| | - Yuko Shimamura
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
| | - Junichi Tanaka
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
| | - Akihiro Miura
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
| | - Anri Sawada
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
| | - Hemanta Sarmah
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
| | - Dai Shimizu
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
| | - Yuri Kondo
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
| | - Hyeonjeong Lee
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
| | - Francesca Martini
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
| | - Zurab Ninish
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
| | - Kelley S. Yan
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
- Department of Medicine, Division of Digestive and Liver Diseases, Columbia University Irving Medical Center, New York, NY, United States
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, United States
| | - Kazuhiko Yamada
- Department of Surgery, School of Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Munemasa Mori
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
4
|
Vairaktari G, Schramm A, Vairaktari E, Derka S, Sakkas A, Lefantzis N, Diamantopoulou S, Vylliotis A, Lazaris A, Ebeling M, Vassiliou S. FGFR2 and NOTCH1 Expression Inversely Correlated in Progressive Cutaneous Carcinogenesis in an Experimental Mouse Model. J Pers Med 2024; 14:729. [PMID: 39063983 PMCID: PMC11277703 DOI: 10.3390/jpm14070729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a common and increasingly prevalent form of skin cancer, posing significant health challenges. Understanding the molecular mechanisms involved in cSCC progression is crucial for developing effective treatments. The primary aim of this research was to evaluate the activation of NOTCH1 and FGFR2 oncogenes in inducing skin cancer in FVB/N mice through a stepwise chemical process. Forty female FVB/N mice, aged four weeks, were randomly divided into a control group (n = 8) and two experimental groups (group A: n = 16, group B: n = 16). This study involved subjecting the groups to a two-stage carcinogenesis procedure. This included an initial application of 97.4 nmol DMBA on shaved skin on their backs, followed by applications of 32.4 nmol TPA after thirteen weeks for group A and after twenty weeks for group B. The control group did not receive any treatment. Their skin conditions were monitored weekly to detect tumor development. After the experiment, the animals were euthanized for further tissue sampling. The examination of skin lesions in the experimental groups showed a correlation with tumor progression, ranging from dysplasia to carcinoma. Tumor samples were assessed both histologically and immunohistochemically. Notably, FGFR2 expression was higher in benign, precancerous, and malignant tumors compared to normal tissue. NOTCH1 expression was only elevated in benign tumors compared to normal tissue. This study demonstrates a clear correlation of FGFR2 expression and the progression of cutaneous neoplasms, while NOTCH 1 expression is inversely correlated in FVB/N mice. This suggests an early involvement of these oncogenes in the development of skin tumors.
Collapse
Affiliation(s)
- Georgia Vairaktari
- Department of Oral and Maxillofacial Surgery, University General Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Alexander Schramm
- Department of Oral and Maxillofacial Surgery, University Hospital Ulm, Albert-Einstein-Allee 10, 89081 Ulm, Germany
- Department of Oral and Plastic Maxillofacial Surgery, Military Hospital Ulm, Academic Hospital of the University of Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany
| | - Efstathia Vairaktari
- Department of Oral and Maxillofacial Surgery, University General Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Spyridoula Derka
- Department of Oral and Maxillofacial Surgery, University General Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Andreas Sakkas
- Department of Oral and Maxillofacial Surgery, University Hospital Ulm, Albert-Einstein-Allee 10, 89081 Ulm, Germany
- Department of Oral and Plastic Maxillofacial Surgery, Military Hospital Ulm, Academic Hospital of the University of Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany
| | - Nikolaos Lefantzis
- Department of Oral and Maxillofacial Surgery, University General Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Stavroula Diamantopoulou
- Department of Oral and Maxillofacial Surgery, Evaggelismos General Hospital of Athens, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Antonis Vylliotis
- Department of Oral and Maxillofacial Surgery, University General Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Diagnostic and Research Laboratory of Molecular Biology, BiocLab, 11527 Athens, Greece
| | - Andreas Lazaris
- Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Marcel Ebeling
- Department of Oral and Maxillofacial Surgery, University Hospital Ulm, Albert-Einstein-Allee 10, 89081 Ulm, Germany
- Department of Oral and Plastic Maxillofacial Surgery, Military Hospital Ulm, Academic Hospital of the University of Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany
| | - Stavros Vassiliou
- Department of Oral and Maxillofacial Surgery, University General Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
5
|
Schelch K, Eder S, Zitta B, Phimmachanh M, Johnson TG, Emminger D, Wenninger‐Weinzierl A, Sturtzel C, Poplimont H, Ries A, Hoetzenecker K, Hoda MA, Berger W, Distel M, Dome B, Reid G, Grusch M. YB-1 regulates mesothelioma cell migration via snail but not EGFR, MMP1, EPHA5 or PARK2. Mol Oncol 2024; 18:815-831. [PMID: 36550787 PMCID: PMC10994239 DOI: 10.1002/1878-0261.13367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 11/11/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Pleural mesothelioma (PM) is characterized by rapid growth, local invasion, and limited therapeutic options. The multifunctional oncoprotein Y-box-binding protein-1 (YB-1) is frequently overexpressed in cancer and its inhibition reduces aggressive behavior in multiple tumor types. Here, we investigated the effects of YB-1 on target gene regulation and PM cell behavior. Whereas siRNA-mediated YB-1 knockdown reduced cell motility, YB-1 overexpression resulted in scattering, increased migration, and intravasation in vitro. Furthermore, YB-1 stimulated PM cell spreading in zebrafish. Combined knockdown and inducible overexpression of YB-1 allowed bidirectional control and rescue of cell migration, the pattern of which was closely followed by the mRNA and protein levels of EGFR and the protein level of snail, whereas the mRNA levels of MMP1, EPHA5, and PARK2 showed partial regulation by YB-1. Finally, we identified snail as a critical regulator of YB-1-mediated cell motility in PM. This study provides insights into the mechanism underlying the aggressive nature of PM and highlights the important role of YB-1 in this cancer. In this context, we found that YB-1 closely regulates EGFR and snail, and, moreover, that YB-1-induced cell migration depends on snail.
Collapse
Affiliation(s)
- Karin Schelch
- Center for Cancer Research and Comprehensive Cancer CenterMedical University of ViennaAustria
- Department of Thoracic SurgeryMedical University of ViennaAustria
| | - Sebastian Eder
- Center for Cancer Research and Comprehensive Cancer CenterMedical University of ViennaAustria
| | - Benjamin Zitta
- Center for Cancer Research and Comprehensive Cancer CenterMedical University of ViennaAustria
| | - Monica Phimmachanh
- Center for Cancer Research and Comprehensive Cancer CenterMedical University of ViennaAustria
- University of Technology SydneyNSWAustralia
| | - Thomas G. Johnson
- Center for Cancer Research and Comprehensive Cancer CenterMedical University of ViennaAustria
- The University of SydneyNSWAustralia
| | - Dominik Emminger
- Center for Cancer Research and Comprehensive Cancer CenterMedical University of ViennaAustria
| | | | - Caterina Sturtzel
- St. Anna Children's Cancer Research Institute, Innovative Cancer ModelsViennaAustria
| | - Hugo Poplimont
- St. Anna Children's Cancer Research Institute, Innovative Cancer ModelsViennaAustria
| | - Alexander Ries
- Center for Cancer Research and Comprehensive Cancer CenterMedical University of ViennaAustria
| | | | - Mir A. Hoda
- Department of Thoracic SurgeryMedical University of ViennaAustria
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer CenterMedical University of ViennaAustria
| | - Martin Distel
- St. Anna Children's Cancer Research Institute, Innovative Cancer ModelsViennaAustria
| | - Balazs Dome
- Department of Thoracic SurgeryMedical University of ViennaAustria
- National Koranyi Institute of PulmonologyBudapestHungary
- Department of Thoracic SurgerySemmelweis University and National Institute of OncologyBudapestHungary
| | - Glen Reid
- Department of PathologyDunedin School of MedicineNew Zealand
- The Maurice Wilkins CentreUniversity of OtagoDunedinNew Zealand
| | - Michael Grusch
- Center for Cancer Research and Comprehensive Cancer CenterMedical University of ViennaAustria
| |
Collapse
|
6
|
Fang Y, Zhang Q, Chen Z, Guo C, Wu J. Clinical significance and immune characteristics analysis of miR-221-3p and its key target genes related to epithelial-mesenchymal transition in breast cancer. Aging (Albany NY) 2024; 16:322-347. [PMID: 38189813 PMCID: PMC10817385 DOI: 10.18632/aging.205370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/20/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND MicroRNA-221-3p (miR-221-3p) facilitates the advancement of breast cancer (BC) through the induction of epithelial-mesenchymal transition (EMT). Our research aimed to utilize bioinformatics to discover possible EMT-related target genes (ETGs) of miR-221-3p and examine their roles in breast cancer. METHODS We employed bioinformatics techniques to identify ten key ETGs of miR-221-3p. Subsequently, we conducted an extensive analysis of both miR-221-3p and the ten ETGs, including clinical significance and immune characteristics. RESULTS The expression of miR-221-3p was notably higher in Basal-like BC compared to other subtypes and adjacent normal tissue. Our pathway analysis suggested that miR-221-3p might regulate EMT through the MAPK signaling pathway by targeting its ETGs. Among the ETGs, seven core genes (EGFR, IGF1, KDR, FGF2, KIT, FGFR1, and FGF1) exhibited downregulation in BC. Conversely, ERBB2, SDC1, and MMP14 showed upregulation in BC and displayed potential diagnostic value. The analysis of prognostication indicated that increased levels of SDC1 and MMP14 were correlated with an unfavorable prognosis, whereas elevated expression of KIT was associated with a more favorable prognosis. The infiltration of various immune cells and the expression of immune checkpoint genes (ICGs) exhibited positive correlations with most ETGs and miR-221-3p. SDC1 exhibited a greater tumor mutational burden (TMB) score, while ERBB2, KDR, FGF2, KIT, FGFR1, and FGF1 showed lower TMB scores. Furthermore, decreased ERBB2 and KDR expression levels were correlated with elevated microsatellite instability (MSI) scores. Elevated expression of ETGs was linked to decreased mRNA stemness indices (mRNAsi), whereas miR-221-3p displayed the opposite pattern. Most ETGs and miR-221-3p expression exhibited a negative correlation with IC50 values for drugs. Among the ETGs, amplification was the most significant genetic alteration, except for IGF1. CONCLUSION In conclusion, miR-221-3p acts as a unique indicator for Basal-like BC. The examination revealed ten essential ETGs of miR-221-3p, some of which show potential as diagnostic and prognostic markers. The in-depth examination of these ten ETGs and miR-221-3p indicates their participation in the development of BC, emphasizing their promise as innovative targets for therapy in BC patients.
Collapse
Affiliation(s)
- Yutong Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
- Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qunchen Zhang
- Department of Breast, Jiangmen Central Hospital, Jiangmen 529000, Guangdong, China
| | - Zexiao Chen
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
- Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Cuiping Guo
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
- Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jundong Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
- Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| |
Collapse
|
7
|
Mottais A, Riberi L, Falco A, Soccal S, Gohy S, De Rose V. Epithelial-Mesenchymal Transition Mechanisms in Chronic Airway Diseases: A Common Process to Target? Int J Mol Sci 2023; 24:12412. [PMID: 37569787 PMCID: PMC10418908 DOI: 10.3390/ijms241512412] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a reversible process, in which epithelial cells lose their epithelial traits and acquire a mesenchymal phenotype. This transformation has been described in different lung diseases, such as lung cancer, interstitial lung diseases, asthma, chronic obstructive pulmonary disease and other muco-obstructive lung diseases, such as cystic fibrosis and non-cystic fibrosis bronchiectasis. The exaggerated chronic inflammation typical of these pulmonary diseases can induce molecular reprogramming with subsequent self-sustaining aberrant and excessive profibrotic tissue repair. Over time this process leads to structural changes with progressive organ dysfunction and lung function impairment. Although having common signalling pathways, specific triggers and regulation mechanisms might be present in each disease. This review aims to describe the various mechanisms associated with fibrotic changes and airway remodelling involved in chronic airway diseases. Having better knowledge of the mechanisms underlying the EMT process may help us to identify specific targets and thus lead to the development of novel therapeutic strategies to prevent or limit the onset of irreversible structural changes.
Collapse
Affiliation(s)
- Angélique Mottais
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (A.M.); (S.G.)
| | - Luca Riberi
- Postgraduate School in Respiratory Medicine, University of Torino, 10124 Torino, Italy; (L.R.); (A.F.); (S.S.)
| | - Andrea Falco
- Postgraduate School in Respiratory Medicine, University of Torino, 10124 Torino, Italy; (L.R.); (A.F.); (S.S.)
| | - Simone Soccal
- Postgraduate School in Respiratory Medicine, University of Torino, 10124 Torino, Italy; (L.R.); (A.F.); (S.S.)
| | - Sophie Gohy
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (A.M.); (S.G.)
- Department of Pneumology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
- Cystic Fibrosis Reference Centre, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Virginia De Rose
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| |
Collapse
|
8
|
Mosleh B, Schelch K, Mohr T, Klikovits T, Wagner C, Ratzinger L, Dong Y, Sinn K, Ries A, Berger W, Grasl‐Kraupp B, Hoetzenecker K, Laszlo V, Dome B, Hegedus B, Jakopovic M, Hoda MA, Grusch M. Circulating FGF18 is decreased in pleural mesothelioma but not correlated with disease prognosis. Thorac Cancer 2023; 14:2177-2186. [PMID: 37340889 PMCID: PMC10396789 DOI: 10.1111/1759-7714.15004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Pleural mesothelioma (PM) is a relatively rare malignancy with limited treatment options and dismal prognosis. We have previously found elevated FGF18 expression in PM tissue specimens compared with normal mesothelium. The objective of the current study was to further explore the role of FGF18 in PM and evaluate its suitability as a circulating biomarker. METHODS FGF18 mRNA expression was analyzed by real-time PCR in cell lines and in silico in datasets from the Cancer Genome Atlas (TCGA). Cell lines overexpressing FGF18 were generated by retroviral transduction and cell behavior was investigated by clonogenic growth and transwell assays. Plasma was collected from 40 PM patients, six patients with pleural fibrosis, and 40 healthy controls. Circulating FGF18 was measured by ELISA and correlated to clinicopathological parameters. RESULTS FGF18 showed high mRNA expression in PM and PM-derived cell lines. PM patients with high FGF18 mRNA expression showed a trend toward longer overall survival (OS) in the TCGA dataset. In PM cells with low endogenous FGF18 expression, forced overexpression of FGF18 resulted in reduced growth but increased migration. Surprisingly, despite the high FGF18 mRNA levels observed in PM, circulating FGF18 protein was significantly lower in PM patients and patients with pleural fibrosis than in healthy controls. No significant association of circulating FGF18 with OS or other disease parameters of PM patients was observed. CONCLUSIONS FGF18 is not a prognostic biomarker in PM. Its role in PM tumor biology and the clinical significance of decreased plasma FGF18 in PM patients warrant further investigation.
Collapse
Affiliation(s)
- Berta Mosleh
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
| | - Karin Schelch
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
- Center for Cancer ResearchMedical University of ViennaViennaAustria
| | - Thomas Mohr
- Center for Cancer ResearchMedical University of ViennaViennaAustria
| | - Thomas Klikovits
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
| | - Christina Wagner
- Center for Cancer ResearchMedical University of ViennaViennaAustria
| | - Lukas Ratzinger
- Center for Cancer ResearchMedical University of ViennaViennaAustria
| | - Yawen Dong
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
| | - Katharina Sinn
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
| | - Alexander Ries
- Center for Cancer ResearchMedical University of ViennaViennaAustria
| | - Walter Berger
- Center for Cancer ResearchMedical University of ViennaViennaAustria
| | | | | | - Viktoria Laszlo
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
| | - Balazs Dome
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
- National Koranyi Institute of PulmonologyBudapestHungary
- Department of Thoracic SurgeryNational Institute of Oncology‐Semmelweis UniversityBudapestHungary
| | - Balazs Hegedus
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
| | - Marko Jakopovic
- Department for Respiratory Diseases JordanovacUniversity of Zagreb School of Medicine, University Hospital Centre ZagrebZagrebCroatia
| | - Mir Alireza Hoda
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
| | - Michael Grusch
- Center for Cancer ResearchMedical University of ViennaViennaAustria
| |
Collapse
|
9
|
Bhadresha K, Mirza S, Penny C, Mughal MJ. Targeting AXL in Mesothelioma: from functional characterization to clinical implication. Crit Rev Oncol Hematol 2023:104043. [PMID: 37268175 DOI: 10.1016/j.critrevonc.2023.104043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023] Open
Abstract
Malignant pleural mesothelioma (MM) is a highly aggressive and lethal cancer with a poor survival rate. Current treatment approaches primarily rely on chemotherapy and radiation, but their effectiveness is limited. Consequently, there is an urgent need for alternative treatment strategies, a comprehensive understanding of the molecular mechanisms underlying MM, and the identification of potential therapeutic targets. Extensive studies over the past decade have emphasized the role of Axl in driving tumor development and metastasis, while high levels of Axl expression have been associated with immune evasion, drug resistance, and reduced patient survival in various cancer types. Ongoing clinical trials are investigating the efficacy of Axl inhibitors for different cancers. However, the precise role of Axl in MM progression, development, and metastasis, as well as its regulatory mechanisms within MM, remain inadequately understood. This review aims to comprehensively investigate the involvement of Axl in MM. We discuss Axl role in MM progression, development, and metastasis, along with its specific regulatory mechanisms. Additionally, we examined the Axl associated signaling pathways, the relationship between Axl and immune evasion, and the clinical implications of Axl for MM treatment. Furthermore, we discussed the potential utility of liquid biopsy as a non-invasive diagnostic technique for early detection of Axl in MM. Lastly, we evaluated the potential of a microRNA signature that targets Axl. By consolidating existing knowledge and identifying research gaps, this review contributes to a better understanding of Axl's role in MM and sets the stage for future investigations and the development of effective therapeutic interventions.
Collapse
Affiliation(s)
- Kinjal Bhadresha
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sheefa Mirza
- Department of Internal Medicine, Common Epithelial Cancer Research Center, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Clement Penny
- Department of Internal Medicine, Common Epithelial Cancer Research Center, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Muhammed Jameel Mughal
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Science, The George Washington University, Washington DC, United States of America.
| |
Collapse
|
10
|
Borea F, Franczak MA, Garcia M, Perrino M, Cordua N, Smolenski RT, Peters GJ, Dziadziuszko R, Santoro A, Zucali PA, Giovannetti E. Target Therapy in Malignant Pleural Mesothelioma: Hope or Mirage? Int J Mol Sci 2023; 24:9165. [PMID: 37298116 PMCID: PMC10253134 DOI: 10.3390/ijms24119165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Malignant Pleural Mesothelioma (MPM) is a rare neoplasm that is typically diagnosed in a locally advanced stage, making it not eligible for radical surgery and requiring systemic treatment. Chemotherapy with platinum compounds and pemetrexed has been the only approved standard of care for approximately 20 years, without any relevant therapeutic advance until the introduction of immune checkpoint inhibitors. Nevertheless, the prognosis remains poor, with an average survival of only 18 months. Thanks to a better understanding of the molecular mechanisms underlying tumor biology, targeted therapy has become an essential therapeutic option in several solid malignancies. Unfortunately, most of the clinical trials evaluating potentially targeted drugs for MPM have failed. This review aims to present the main findings of the most promising targeted therapies in MPM, and to explore possible reasons leading to treatments failures. The ultimate goal is to determine whether there is still a place for continued preclinical/clinical research in this area.
Collapse
Affiliation(s)
- Federica Borea
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Marika A. Franczak
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Maria Garcia
- Faculty of Experimental Science, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Matteo Perrino
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Nadia Cordua
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | | | - Godefridus J. Peters
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Rafal Dziadziuszko
- Department of Oncology and Radiotherapy and Early Phase Clinical Trials Centre, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Armando Santoro
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Paolo A. Zucali
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Fondazione Pisana per la Scienza, 56017 Pisa, Italy
| |
Collapse
|
11
|
Marra AA, Di Giorgio A, Ratto C. Rare recurrence of malignant mesothelioma spreading to the perineum. BMJ Case Rep 2023; 16:e252441. [PMID: 36787929 PMCID: PMC9930540 DOI: 10.1136/bcr-2022-252441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
Malignant mesothelioma is a rare aggressive tumour of the mesothelium with a propensity to spread locally and, rarely, to distant organs. The latest advances in its diagnosis and treatment have led to an increase in unusual disease presentations. Although a direct invasion of the perineum has been previously described in a men, a malignant mesothelioma spreading to the perianal region was never reported in a women. We presented a rare case of malignant mesothelioma recurrence spreading from the peritoneal cavity to the perineum through the rectovaginal space.
Collapse
Affiliation(s)
| | - Andrea Di Giorgio
- Surgical Unit of Peritoneum and Retroperitoneum, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Carlo Ratto
- Proctology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
12
|
Fibroblast growth factor-2 bound to specific dermal fibroblast-derived extracellular vesicles is protected from degradation. Sci Rep 2022; 12:22131. [PMID: 36550142 PMCID: PMC9780220 DOI: 10.1038/s41598-022-26217-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Fibroblast growth factor-2 (FGF2) has multiple roles in cutaneous wound healing but its natural low stability prevents the development of its use in skin repair therapies. Here we show that FGF2 binds the outer surface of dermal fibroblast (DF)-derived extracellular vesicles (EVs) and this association protects FGF2 from fast degradation. EVs isolated from DF cultured in the presence of FGF2 harbor FGF2 on their surface and FGF2 can bind purified EVs in absence of cells. Remarkably, FGF2 binding to EVs is restricted to a specific subpopulation of EVs, which do not express CD63 and CD81 markers. Treatment of DF with FGF2-EVs activated ERK and STAT signaling pathways and increased cell proliferation and migration. Local injection of FGF2-EVs improved wound healing in mice. We further demonstrated that binding to EVs protects FGF2 from both thermal and proteolytic degradation, thus maintaining FGF2 function. This suggests that EVs protect soluble factors from degradation and increase their stability and half-life. These results reveal a novel aspect of EV function and suggest EVs as a potential tool for delivering FGF2 in skin healing therapies.
Collapse
|
13
|
Pouliquen DL, Boissard A, Henry C, Coqueret O, Guette C. Curcuminoids as Modulators of EMT in Invasive Cancers: A Review of Molecular Targets With the Contribution of Malignant Mesothelioma Studies. Front Pharmacol 2022; 13:934534. [PMID: 35873564 PMCID: PMC9304619 DOI: 10.3389/fphar.2022.934534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
Curcuminoids, which include natural acyclic diarylheptanoids and the synthetic analogs of curcumin, have considerable potential for fighting against all the characteristics of invasive cancers. The epithelial-to-mesenchymal transition (EMT) is a fundamental process for embryonic morphogenesis, however, the last decade has confirmed it orchestrates many features of cancer invasiveness, such as tumor cell stemness, metabolic rewiring, and drug resistance. A wealth of studies has revealed EMT in cancer is in fact driven by an increasing number of parameters, and thus understanding its complexity has now become a cornerstone for defining future therapeutic strategies dealing with cancer progression and metastasis. A specificity of curcuminoids is their ability to target multiple molecular targets, modulate several signaling pathways, modify tumor microenvironments and enhance the host’s immune response. Although the effects of curcumin on these various parameters have been the subject of many reviews, the role of curcuminoids against EMT in the context of cancer have never been reviewed so far. This review first provides an updated overview of all EMT drivers, including signaling pathways, transcription factors, non-coding RNAs (ncRNAs) and tumor microenvironment components, with a special focus on the most recent findings. Secondly, for each of these drivers the effects of curcumin/curcuminoids on specific molecular targets are analyzed. Finally, we address some common findings observed between data reported in the literature and the results of investigations we conducted on experimental malignant mesothelioma, a model of invasive cancer representing a useful tool for studies on EMT and cancer.
Collapse
Affiliation(s)
- Daniel L. Pouliquen
- Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
- *Correspondence: Daniel L. Pouliquen,
| | - Alice Boissard
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Cécile Henry
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Olivier Coqueret
- Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Catherine Guette
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| |
Collapse
|
14
|
Li C, Kuang K, Du J, Eymin B, Jia T. Far beyond anti-angiogenesis: Benefits for anti-basicFGF therapy in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119253. [PMID: 35259425 DOI: 10.1016/j.bbamcr.2022.119253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/28/2022]
Abstract
Basic FGF (bFGF) was discovered as a typical inducer of angiogenesis and has already been studied for 3 decades. Recent evidence indicates that bFGF plays different roles and controls signaling pathways that participate in the hallmarks of cancer, underscoring bFGF an appealing target for anti-cancer therapy. However, the early clinical trials designed to block bFGF signaling showed safety without satisfiable benefits for cancer patients. In this review, we firstly discuss bFGF's canonical signaling pathways and later review newly identified bFGF's functions that contribute to the cancer hallmarks besides its typical role in angiogenesis. After, we summarize the role of bFGF as a therapeutic target in response to different cancer therapies including radiotherapy, chemotherapy, targeted therapy, immunotherapy, and highlight the difficulties we must solve regarding the design of drugs targeting specifically bFGF. We also emphasize the need, especially for natural bFGF traps, to deepen their molecular mechanisms of action considering the specific context of cancer with different FGFR status, as well as the urgence of stratifying patients for both anti-bFGF first line and second line anti-cancer therapy. Finally, a perspective on potential feed-forward oncogenic signaling pathways mediated by bFGF is made. We discuss the importance of developing additional robust biomarkers to select patients who will benefit from bFGF-targeted therapy, as well as the rationale of developing combinatory therapies targeting either bFGF and/or its intracellular (co)effectors. This would ultimately provide novel therapeutic strategies to fight cancer.
Collapse
Affiliation(s)
- ChunYan Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - KeLi Kuang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - JunRong Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Beatrice Eymin
- INSERM U1209, CNRS UMR5309, Institute For Advanced Biosciences, 38700 La Tronche, France; University Grenoble Alpes, 38000 Grenoble, France
| | - Tao Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
15
|
Phase 2 Study of Neoadjuvant FGFR Inhibition and Androgen Deprivation Therapy Prior to Prostatectomy. Clin Genitourin Cancer 2022; 20:452-458. [DOI: 10.1016/j.clgc.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/09/2022] [Accepted: 05/15/2022] [Indexed: 11/23/2022]
|
16
|
Giannos P, Kechagias KS, Gal A. Identification of Prognostic Gene Biomarkers in Non-Small Cell Lung Cancer Progression by Integrated Bioinformatics Analysis. BIOLOGY 2021; 10:1200. [PMID: 34827193 PMCID: PMC8615219 DOI: 10.3390/biology10111200] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 01/06/2023]
Abstract
The progression of non-small cell lung cancer (NSCLC) is linked to epithelial-mesenchymal transition (EMT), a biologic process that enables tumor cells to acquire a migratory phenotype and resistance to chemo- and immunotherapies. Discovery of novel biomarkers in NSCLC progression is essential for improved prognosis and pharmacological interventions. In the current study, we performed an integrated bioinformatics analysis on gene expression datasets of TGF-β-induced EMT in NSCLC cells to identify novel gene biomarkers and elucidate their regulation in NSCLC progression. The gene expression datasets were extracted from the NCBI Gene Expression Omnibus repository, and differentially expressed genes (DEGs) between TGF-β-treated and untreated NSCLC cells were retrieved. A protein-protein interaction network was constructed and hub genes were identified. Functional and pathway enrichment analyses were conducted on module DEGs, and a correlation between the expression levels of module genes and survival of NSCLC patients was evaluated. Prediction of interactions of the biomarker genes with transcription factors and miRNAs was also carried out. We described four protein clusters in which DEGs were associated with ubiquitination (Module 1), regulation of cell death and cell adhesions (Module 2), oxidation-reduction reactions of aerobic respiration (Module 3) and mitochondrial translation (Module 4). From the module genes, we identified ten prognostic gene biomarkers in NSCLC. Low expression levels of KCTD6, KBTBD7, LMO7, SPSB2, RNF19A, FOXA2, DHTKD1, CDH1 and PDHB and high expression level of KLHL25 were associated with reduced overall survival of NSCLC patients. Most of these biomarker genes were involved in protein ubiquitination. The regulatory network of the gene biomarkers revealed their interaction with tumor suppressor miRNAs and transcription factors involved in the mechanisms of cancer progression. This ten-gene prognostic signature can be useful to improve risk prediction and therapeutic strategies in NSCLC. Our analysis also highlights the importance of deregulation of ubiquitination in EMT-associated NSCLC progression.
Collapse
Affiliation(s)
- Panagiotis Giannos
- School of Applied Sciences, University of Brighton, Lewes Road, Brighton BN2 4GJ, UK
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Konstantinos S. Kechagias
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London W12 0NN, UK;
| | - Annamaria Gal
- School of Applied Sciences, University of Brighton, Lewes Road, Brighton BN2 4GJ, UK
| |
Collapse
|
17
|
Ramundo V, Zanirato G, Aldieri E. The Epithelial-to-Mesenchymal Transition (EMT) in the Development and Metastasis of Malignant Pleural Mesothelioma. Int J Mol Sci 2021; 22:ijms222212216. [PMID: 34830097 PMCID: PMC8621591 DOI: 10.3390/ijms222212216] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/19/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive tumor mainly associated with asbestos exposure and is characterized by a very difficult pharmacological approach. One of the molecular mechanisms associated with cancer onset and invasiveness is the epithelial-to-mesenchymal transition (EMT), an event induced by different types of inducers, such as transforming growth factor β (TGFβ), the main inducer of EMT, and oxidative stress. MPM development and metastasis have been correlated to EMT; On one hand, EMT mediates the effects exerted by asbestos fibers in the mesothelium, particularly via increased oxidative stress and TGFβ levels evoked by asbestos exposure, thus promoting a malignant phenotype, and on the other hand, MPM acquires invasiveness via the EMT event, as shown by an upregulation of mesenchymal markers or, although indirectly, some miRNAs or non-coding RNAs, all demonstrated to be involved in cancer onset and metastasis. This review aims to better describe how EMT is involved in driving the development and invasiveness of MPM, in an attempt to open new scenarios that are useful in the identification of predictive markers and to improve the pharmacological approach against this aggressive cancer.
Collapse
Affiliation(s)
- Valeria Ramundo
- Department of Oncology, University of Torino, 10126 Torino, Italy; (V.R.); (G.Z.)
| | - Giada Zanirato
- Department of Oncology, University of Torino, 10126 Torino, Italy; (V.R.); (G.Z.)
| | - Elisabetta Aldieri
- Department of Oncology, University of Torino, 10126 Torino, Italy; (V.R.); (G.Z.)
- Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates “G. Scansetti”, University of Torino, 10126 Torino, Italy
- Correspondence:
| |
Collapse
|
18
|
López-Cortés R, Gómez BB, Vázquez-Estévez S, Pérez-Fentes D, Núñez C. Blood-based protein biomarkers in bladder urothelial tumors. J Proteomics 2021; 247:104329. [PMID: 34298186 DOI: 10.1016/j.jprot.2021.104329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/15/2021] [Indexed: 12/16/2022]
Abstract
Bladder cancer (BC) is the fifth most common cancer with a high prevalence rate. It is classically classified in two groups, namely non-muscle invasive (NMIBC) and muscle invasive (MIBC). NMIBC accounts for 75% of cases and has a better prognosis than MIBC. However, 30-50% of the NMIBC patients will show recurrences throughout their lives, and about 10-20% of them will progress to MIBC, with frequent metastasis and a reduced survival rate. The diagnosis of bladder cancer is confirmed by direct visualization of the tumour and other mucosal abnormalities with endoscopic excision using cystoscopy and transurethral resection of the bladder (TURBT). An adequate TURBT requires complete resection of all visible tumour with appropriate sampling of the bladder to assess the depth of invasion. However, for many years, researchers have attempted to identify and utilise urinary markers for bladder cancer detection. Voided urine cytology has been the mainstay of urine-based diagnosis of bladder cancer since originally described by Papanicolau and Marshall. Nonetheless, urine cytology has several drawbacks, including a poor sensitivity for low-grade/stage tumours, a lack of interobserver consistency and a variable range of readings (e.g., atypical, atypical-suspicious, non-diagnostic). These shortcomings have inspired the search for more sensitive bladder cancer biomarkers. To bring precision medicine to genitourinary oncology, the analysis of the plasma/serum wide genome and proteome offers promising possibilities.
Collapse
Affiliation(s)
- Rubén López-Cortés
- Research Unit, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), ES27002 Lugo, Spain
| | - Benito Blanco Gómez
- Urology Division, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), ES27002, Lugo, Spain
| | - Sergio Vázquez-Estévez
- Oncology Division, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), ES27002 Lugo, Spain
| | - Daniel Pérez-Fentes
- Urology Division, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), ES15706 Santiago de Compostela, Spain
| | - Cristina Núñez
- Research Unit, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), ES27002 Lugo, Spain.
| |
Collapse
|
19
|
Wang H, Sui ZL, Wu XX, Tang P, Zhang HD, Yu ZT. Reversal of Chemotherapy Resistance to Cisplatin in NSCLC by miRNA-195-5p via Targeting the FGF2 Gene. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:497-508. [PMID: 33953601 PMCID: PMC8092352 DOI: 10.2147/pgpm.s302755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/26/2021] [Indexed: 12/20/2022]
Abstract
Objective To explore the mechanism of miR-195-5p in the pathogenesis non-small cell lung cancer (NSCLC) and cisplatin resistance. Methods The function of miR-195-5p in NSCLC and cisplatin resistance were determined by MTT, scratch assay, transwell assay, and nude mice xenograft experiments. miR-195-5p target gene was identified by dual-luciferase reporter assays and real-time PCR analysis. Results miR-195-5p content was lower in A549/DDP than that in A549 cells, with reduced chemotherapy sensitivity and increased cell invasion and migration ability. The loss-of-function and gain-of-function assays illustrated that miR-195-5p might have increased the chemosensitivity to cisplatin in the A549/DDP cells and decreased cell migration and invasion. FGF2 is a negatively correlated action target of miR-195-5p. miR-195-5p might affect EMT by inhibiting FGF2. Overexpression of FGF2 resulted in enhanced cisplatin resistance in the cells, while miR-195-5p might have reversed this resistance. Conclusion Overall, miR-195-5p might target FGF2 to reduce cisplatin resistance in A549/DDP cells and enhance chemosensitivity.
Collapse
Affiliation(s)
- Hao Wang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin City, Tianjin, 300060, People's Republic of China.,Department of Surgical Oncology, Baotou Cancer Hospital, Baotou, People's Republic of China
| | - Zhi-Lin Sui
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin City, Tianjin, 300060, People's Republic of China
| | - Xian-Xian Wu
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin City, Tianjin, 300060, People's Republic of China
| | - Peng Tang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin City, Tianjin, 300060, People's Republic of China
| | - Hong-Dian Zhang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin City, Tianjin, 300060, People's Republic of China
| | - Zhen-Tao Yu
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin City, Tianjin, 300060, People's Republic of China.,Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, People's Republic of China
| |
Collapse
|
20
|
Schelch K, Vogel L, Schneller A, Brankovic J, Mohr T, Mayer RL, Slany A, Gerner C, Grusch M. EGF Induces Migration Independent of EMT or Invasion in A549 Lung Adenocarcinoma Cells. Front Cell Dev Biol 2021; 9:634371. [PMID: 33777943 PMCID: PMC7994520 DOI: 10.3389/fcell.2021.634371] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/16/2021] [Indexed: 11/21/2022] Open
Abstract
Tumors and the tumor microenvironment produce multiple growth factors that influence cancer cell behavior via various signal transduction pathways. Growth factors, like transforming growth factor β (TGFβ) and epidermal growth factor (EGF), have been shown to induce proliferation, migration, and invasion in different cell models. Both factors are frequently overexpressed in cancer and will often act in combination. Although both factors are being used as rational targets in clinical oncology, the similarities and differences of their contributions to cancer cell migration and invasion are not fully understood. Here we compared the impact of treating A549 lung adenocarcinoma cells with TGFβ, EGF, and both in combination by applying videomicroscopy, functional assays, immunoblotting, real-time PCR, and proteomics. Treatment with both factors stimulated A549 migration to a similar extent, but with different kinetics. The combination had an additive effect. EGF-induced migration depended on activation of the mitogen-activated protein kinase (MAPK) pathway. However, this pathway was dispensable for TGFβ-induced migration, despite a strong activation of this pathway by TGFβ. Proteome analysis (data are available via ProteomeXchange with identifier PXD023024) revealed an overlap in expression patterns of migration-related proteins and associated gene ontology (GO) terms by TGFβ and EGF. Further, only TGFβ induced the expression of epithelial to mesenchymal transition (EMT)-related proteins like matrix metalloproteinase 2 (MMP2). EGF, in contrast, made no major contribution to EMT marker expression on either the protein or the transcript level. In line with these expression patterns, TGFβ treatment significantly increased the invasive capacity of A549 cells, while EGF treatment did not. Moreover, the addition of EGF failed to enhance TGFβ-induced invasion. Overall, these data suggest that TGFβ and EGF can partly compensate for each other for stimulation of cell migration, but abrogation of TGFβ signaling may be more suitable to suppress cell invasion.
Collapse
Affiliation(s)
- Karin Schelch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Lisa Vogel
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Anja Schneller
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Jelena Brankovic
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Thomas Mohr
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Rupert L. Mayer
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Astrid Slany
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Michael Grusch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Biomarkers for Malignant Pleural Mesothelioma-A Novel View on Inflammation. Cancers (Basel) 2021; 13:cancers13040658. [PMID: 33562138 PMCID: PMC7916017 DOI: 10.3390/cancers13040658] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive disease with limited treatment response and devastating prognosis. Exposure to asbestos and chronic inflammation are acknowledged as main risk factors. Since immune therapy evolved as a promising novel treatment modality, we want to reevaluate and summarize the role of the inflammatory system in MPM. This review focuses on local tumor associated inflammation on the one hand and systemic inflammatory markers, and their impact on MPM outcome, on the other hand. Identification of new biomarkers helps to select optimal patient tailored therapy, avoid ineffective treatment with its related side effects and consequently improves patient's outcome in this rare disease. Additionally, a better understanding of the tumor promoting and tumor suppressing inflammatory processes, influencing MPM pathogenesis and progression, might also reveal possible new targets for MPM treatment. After reviewing the currently available literature and according to our own research, it is concluded that the suppression of the specific immune system and the activation of its innate counterpart are crucial drivers of MPM aggressiveness translating to poor patient outcome.
Collapse
|
22
|
Gandhi M, Nair S. New vistas in malignant mesothelioma: MicroRNA architecture and NRF2/MAPK signal transduction. Life Sci 2020; 257:118123. [PMID: 32710945 DOI: 10.1016/j.lfs.2020.118123] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022]
Abstract
Malignant mesothelioma (MM) is a cancer of the mesothelial lining of the pleura, peritoneum, pericardium and testes. The most common form is asbestos-linked MM that is etiologically linked to repeated asbestos exposure with a long latency period, although non-asbestos MM has also been reported. Late diagnosis, poor survival rates, lack of diagnostic and prognostic markers act as major impediments in the clinical management of MM. Despite advances in immune checkpoint inhibition and CAR T-cell-based therapies, MM which is of different histologic subtypes remains challenging to treat. We review microRNAs (miRNAs) and the miRNA interactome implicated in MM which can be useful as circulating miRNA biomarkers for early diagnosis of MM and as biomarkers for prognostication in MM. Further, we underscore the relevance of the NRF2/MAPK signal transduction pathway that has been implicated in MM which may be useful as druggable targets or as biomarkers of predictive response. In addition, since MM is driven partly by inflammation, we elucidate chemopreventive phytochemicals that are beneficial in MM, either via crosstalk with the NRF2/MAPK pathway or via concerted anticancer mechanisms, and may be of benefit as adjuvants in chemotherapy. Taken together, a multifactorial approach comprising identification of miRNA target hubs and NRF2/MAPK biomarkers along with appropriately designed clinical trials may enable early detection and faster intervention in MM translating into better patient outcomes for this aggressive cancer.
Collapse
Affiliation(s)
- Manav Gandhi
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, VL Mehta Road, Vile Parle (West), Mumbai 400 056, India
| | - Sujit Nair
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, VL Mehta Road, Vile Parle (West), Mumbai 400 056, India.
| |
Collapse
|
23
|
Chirshev E, Hojo N, Bertucci A, Sanderman L, Nguyen A, Wang H, Suzuki T, Brito E, Martinez SR, Castañón C, Mirshahidi S, Vazquez ME, Wat P, Oberg KC, Ioffe YJ, Unternaehrer JJ. Epithelial/mesenchymal heterogeneity of high-grade serous ovarian carcinoma samples correlates with miRNA let-7 levels and predicts tumor growth and metastasis. Mol Oncol 2020; 14:2796-2813. [PMID: 32652647 PMCID: PMC7607177 DOI: 10.1002/1878-0261.12762] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/16/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
Patient‐derived samples present an advantage over current cell line models of high‐grade serous ovarian cancer (HGSOC) that are not always reliable and phenotypically faithful models of in vivo HGSOC. To improve upon cell line models of HGSOC, we set out to characterize a panel of patient‐derived cells and determine their epithelial and mesenchymal characteristics. We analyzed RNA and protein expression levels in patient‐derived xenograft (PDX) models of HGSOC, and functionally characterized these models using flow cytometry, wound healing assays, invasion assays, and spheroid cultures. Besides in vitro work, we also evaluated the growth characteristics of PDX in vivo (orthotopic PDX). We found that all samples had hybrid characteristics, covering a spectrum from an epithelial‐to‐mesenchymal state. Samples with a stronger epithelial phenotype were more active in self‐renewal assays and more tumorigenic in orthotopic xenograft models as compared to samples with a stronger mesenchymal phenotype, which were more migratory and invasive. Additionally, we observed an inverse association between microRNA let‐7 (lethal‐7) expression and stemness, consistent with the loss of let‐7 being an important component of the cancer stem cell phenotype. We observed that lower let‐7 levels were associated with the epithelial state and a lower epithelial mesenchymal transition (EMT) score, more efficient spheroid and tumor formation, and increased sensitivity to platinum‐based chemotherapy. Surprisingly, in these HGSOC cells, stemness could be dissociated from invasiveness: Cells with lower let‐7 levels were more tumorigenic, but less migratory, and with a lower EMT score, than those with higher let‐7 levels. We conclude that let‐7 expression and epithelial/mesenchymal state are valuable predictors of HGSOC proliferation, in vitro self‐renewal, and tumor burden in vivo.
Collapse
Affiliation(s)
- Evgeny Chirshev
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA.,Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Nozomi Hojo
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Antonella Bertucci
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Linda Sanderman
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA.,Biology Department, California State University San Bernardino, San Bernardino, CA, USA
| | - Anthony Nguyen
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Hanmin Wang
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Tise Suzuki
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Emmanuel Brito
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA.,Biology Department, California State University San Bernardino, San Bernardino, CA, USA
| | - Shannalee R Martinez
- Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Christine Castañón
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA.,Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Saied Mirshahidi
- Biospecimen Laboratory, Division of Microbiology & Molecular Genetics, Department of Basic Sciences, Loma Linda University Cancer Center, Loma Linda University, Loma Linda, CA, USA
| | - Marcelo E Vazquez
- Department of Radiation Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Pamela Wat
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Kerby C Oberg
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Yevgeniya J Ioffe
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Juli J Unternaehrer
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA.,Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Gynecology and Obstetrics, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
24
|
Abbott DM, Bortolotto C, Benvenuti S, Lancia A, Filippi AR, Stella GM. Malignant Pleural Mesothelioma: Genetic and Microenviromental Heterogeneity as an Unexpected Reading Frame and Therapeutic Challenge. Cancers (Basel) 2020; 12:cancers12051186. [PMID: 32392897 PMCID: PMC7281319 DOI: 10.3390/cancers12051186] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022] Open
Abstract
Mesothelioma is a malignancy of serosal membranes including the peritoneum, pleura, pericardium and the tunica vaginalis of the testes. Malignant mesothelioma (MM) is a rare disease with a global incidence in countries like Italy of about 1.15 per 100,000 inhabitants. Malignant Pleural Mesothelioma (MPM) is the most common form of mesothelioma, accounting for approximately 80% of disease. Although rare in the global population, mesothelioma is linked to industrial pollutants and mineral fiber exposure, with approximately 80% of cases linked to asbestos. Due to the persistent asbestos exposure in many countries, a worldwide progressive increase in MPM incidence is expected for the current and coming years. The tumor grows in a loco-regional pattern, spreading from the parietal to the visceral pleura and invading the surrounding structures that induce the clinical picture of pleural effusion, pain and dyspnea. Distant spreading and metastasis are rarely observed, and most patients die from the burden of the primary tumor. Currently, there are no effective treatments for MPM, and the prognosis is invariably poor. Some studies average the prognosis to be roughly one-year after diagnosis. The uniquely poor mutational landscape which characterizes MPM appears to derive from a selective pressure operated by the environment; thus, inflammation and immune response emerge as key players in driving MPM progression and represent promising therapeutic targets. Here we recapitulate current knowledge on MPM with focus on the emerging network between genetic asset and inflammatory microenvironment which characterize the disease as amenable target for novel therapeutic approaches.
Collapse
Affiliation(s)
- David Michael Abbott
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy;
| | - Chandra Bortolotto
- Unit of Radiology, Department of Intensive Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy;
| | - Silvia Benvenuti
- Candiolo Cancer Institute, FPO—IRCCS—Str. Prov.le 142, km. 3,95—10060 Candiolo (TO), Italy;
| | - Andrea Lancia
- Unit of Radiation Therapy, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (A.L.); (A.R.F.)
| | - Andrea Riccardo Filippi
- Unit of Radiation Therapy, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (A.L.); (A.R.F.)
| | - Giulia Maria Stella
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy;
- Correspondence:
| |
Collapse
|
25
|
Tang W, Hong L, Dai W, Li J, Zhu H, Lin J, Yang Q, Wang Y, Lin Z, Liu M, Xiao Y, Zhang Y, Wu X, Wang J, Chen Y, Hu H, Liu S, Wang J, Xiang L. MicroRNA‑500a‑5p inhibits colorectal cancer cell invasion and epithelial‑mesenchymal transition. Int J Oncol 2020; 56:1499-1508. [PMID: 32236592 DOI: 10.3892/ijo.2020.5015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/30/2020] [Indexed: 11/06/2022] Open
Abstract
The development of malignant tumors is a series of complex processes, the majority of which have not been elucidated. The aim of the present study was to investigate the microRNAs (miRNAs/miR) that affect the migration and invasion abilities of CRC cells. Our previous reports have revealed that miR‑500a‑5p suppressed CRC cell growth and malignant transformation. The present study demonstrated that overexpression of miR‑500a‑5p reduced the expression of vimentin, while increasing the expression of E‑cadherin. Inhibition of miR‑500a‑5p resulted in spindle‑like morphological changes and reorganization of F‑actin in CRC cells. Furthermore, miR‑500a‑5p attenuated the transforming growth factor‑β signaling pathway in EMT. Additionally, emodin inhibited the miR‑500a‑5p inhibitor and suppressed the EMT process. In animal models of metastasis using nude mice, EMT and LoVo cell metastasis was modulated by miR‑500a‑5p. Therefore, the findings of the present study demonstrated that miR‑500a‑5p is associated with a positive therapeutic outcome in terms of invasion/migration of CRC cells and mesenchymal‑like cell changes.
Collapse
Affiliation(s)
- Weimei Tang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Linjie Hong
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Weiyu Dai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jiaying Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Huiqiong Zhu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jianjiao Lin
- Department of Gastroenterology, Longgang District People's Hospital, Shenzhen, Guangdong 518172, P.R. China
| | - Qiong Yang
- Department of Gastroenterology, The Second Affiliated Hospital University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yusi Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhizhao Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Mengwei Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yizhi Xiao
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yi Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiaosheng Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jing Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yaying Chen
- Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Hongsong Hu
- Department of Gastroenterology, Longgang District People's Hospital, Shenzhen, Guangdong 518172, P.R. China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jide Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Li Xiang
- Department of Gastroenterology, Longgang District People's Hospital, Shenzhen, Guangdong 518172, P.R. China
| |
Collapse
|
26
|
Zou Y, Zheng S, Xiao W, Xie X, Yang A, Gao G, Xiong Z, Xue Z, Tang H, Xie X. circRAD18 sponges miR-208a/3164 to promote triple-negative breast cancer progression through regulating IGF1 and FGF2 expression. Carcinogenesis 2019; 40:1469-1479. [PMID: 31001629 DOI: 10.1093/carcin/bgz071] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/13/2019] [Accepted: 04/15/2019] [Indexed: 01/16/2023] Open
Abstract
As a new rising star of non-coding RNA, circular RNAs (circRNAs) emerged as vital regulators with biological functions in diverse of cancers. However, the function and precise mechanism of the vast majority of circRNAs in triple-negative breast cancer (TNBC) occurrence and progression have not been clearly elucidated. In the current study, we identified and further investigated hsa_circ_0002453 (circRAD18) by analyzing our previous microarray profiling. Expression of circRAD18 was found significantly upregulated in TNBC compared with normal mammary tissues and cell lines. circRAD18 was positively correlated with T stage, clinical stage and pathological grade and was an independent risk factor for TNBC patients. We performed proliferation, colony formation, cell migration, apoptosis and mouse xenograft assays to verify the functions of circRAD18. Knockdown of circRAD18 significantly suppressed cell proliferation and migration, promoted cell apoptosis and inhibited tumor growth in functional and xenograft experiments. Through luciferase reporter assays, we confirmed that circRAD18 acts as a sponge of miR-208a and miR-3164 and promotes TNBC progression through upregulating IGF1 and FGF2 expression. Altogether, our research revealed the pivotal role of circRAD18-miR-208a/3164-IGF1/FGF2 axis in TNBC tumorigenesis and metastasis though the mechanism of competing endogenous RNAs. Thus, circRAD18 may serve as a novel prognostic biomarker and potential target for TNBC treatment in the future.
Collapse
Affiliation(s)
- Yutian Zou
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Shaoquan Zheng
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Weikai Xiao
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Xinhua Xie
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Anli Yang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Guanfeng Gao
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Zhenchong Xiong
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Zhicheng Xue
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Hailin Tang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Xiaoming Xie
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| |
Collapse
|
27
|
Chen Y, Jiang S, Lu Z, Xue D, Xia L, Lu J, Wang H, Xu L, Li L, Li G. Development and verification of a nomogram for prediction of recurrence-free survival in clear cell renal cell carcinoma. J Cell Mol Med 2019; 24:1245-1255. [PMID: 31782902 PMCID: PMC6991630 DOI: 10.1111/jcmm.14748] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/20/2019] [Accepted: 07/02/2019] [Indexed: 12/25/2022] Open
Abstract
Nowadays, gene expression profiling has been widely used in screening out prognostic biomarkers in numerous kinds of carcinoma. Our studies attempt to construct a clinical nomogram which combines risk gene signature and clinical features for individual recurrent risk assessment and offer personalized managements for clear cell renal cell carcinoma. A total of 580 differentially expressed genes (DEGs) were identified via microarray. Functional analysis revealed that DEGs are of fundamental importance in ccRCC progression and metastasis. In our study, 338 ccRCC patients were retrospectively analysed and a risk gene signature which composed of 5 genes was obtained from a LASSO Cox regression model. Further analysis revealed that identified risk gene signature could usefully distinguish the patients with poor prognosis in training cohort (hazard ratio [HR] = 3.554, 95% confidence interval [CI] 2.261‐7.472, P < .0001, n = 107). Moreover, the prognostic value of this gene‐signature was independent of clinical features (P = .002). The efficacy of risk gene signature was verified in both internal and external cohorts. The area under receiver operating characteristic curve of this signature was 0.770, 0.765 and 0.774 in the training, testing and external validation cohorts, respectively. Finally, a nomogram was developed for clinicians and did well in the calibration plots. This nomogram based on risk gene signature and clinical features might provide a practical way for recurrence prediction and facilitating personalized managements of ccRCC patients after surgery.
Collapse
Affiliation(s)
- Yuanlei Chen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shangjun Jiang
- Department of Urology, The First People's Hospital of Fuyang, Hangzhou, China
| | - Zeyi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dingwei Xue
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jieyang Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huan Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liwei Xu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liyang Li
- Department of Mathematics and Statistics Science, University College of London, London, UK
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
28
|
Stockhammer P, Ploenes T, Theegarten D, Schuler M, Maier S, Aigner C, Hegedus B. Detection of TGF-β in pleural effusions for diagnosis and prognostic stratification of malignant pleural mesothelioma. Lung Cancer 2019; 139:124-132. [PMID: 31778960 DOI: 10.1016/j.lungcan.2019.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/13/2019] [Accepted: 11/17/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Malignant pleural mesothelioma (MPM) is an aggressive malignancy with dismal prognosis but variable course of disease. To support diagnosis and to risk stratify patients, more reliable biomarkers are warranted. Emerging evidence underlines a functional role of transforming growth factor-beta (TGF-β) in MPM tumorigenesis though its utility as a clinical biomarker remains unexplored. MATERIALS AND METHODS Corresponding pleural effusions and serum samples taken at primary diagnosis were analyzed for TGF-β by ELISA, and for mesothelin (SMRP) by chemiluminescence enzyme immunoassay. Tumor load was quantified in MPM patients by volumetric analysis of chest CT scans. All findings were correlated with clinicopathological characteristics. RESULTS In total 48 MPM patients, 24 patients with non-malignant pleural disease (NMPD) and 30 patients with stage IV lung cancer were enrolled in this study. Pleural effusions from MPM patients had significantly higher TGF-β levels than from NMPD or lung cancer patients (p < 0.0001; AUC for MPM vs NMPD: 0.78, p = 0.0001). Both epithelioid and non-epithelioid MPM were associated with higher TGF-β levels (epithelioid: p < 0.05; non-epithelioid: p < 0.0001) and levels of TGF-β correlated with disease stage (p = 0.003) and with tumor volume (p = 0.002). Interestingly, high TGF-β levels in pleural effusion, but not in serum, was significantly associated with inferior overall survival (TGF-beta ≥14.36 ng/mL: HR 3.45, p = 0.0001). This correlation was confirmed by multivariate analysis. In contrast, effusion SMRP levels were exclusively high in epithelioid MPM, negatively correlated with effusion TGF-β levels and did not provide prognostic information. CONCLUSION TGF-β levels determined in pleural effusion may be a promising biomarker for diagnosis and prognostic stratification of MPM.
Collapse
Affiliation(s)
- Paul Stockhammer
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Tueschener Weg 40, 45239, Essen, Germany; Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Till Ploenes
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Tueschener Weg 40, 45239, Essen, Germany
| | - Dirk Theegarten
- Institute of Pathology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Martin Schuler
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45122, Essen, Germany
| | - Sandra Maier
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Clemens Aigner
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Tueschener Weg 40, 45239, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45122, Essen, Germany
| | - Balazs Hegedus
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Tueschener Weg 40, 45239, Essen, Germany.
| |
Collapse
|
29
|
Vlacic G, Hoda MA, Klikovits T, Sinn K, Gschwandtner E, Mohorcic K, Schelch K, Pirker C, Peter-Vörösmarty B, Brankovic J, Dome B, Laszlo V, Cufer T, Rozman A, Klepetko W, Grasl-Kraupp B, Hegedus B, Berger W, Kern I, Grusch M. Expression of FGFR1-4 in Malignant Pleural Mesothelioma Tissue and Corresponding Cell Lines and its Relationship to Patient Survival and FGFR Inhibitor Sensitivity. Cells 2019; 8:E1091. [PMID: 31527449 PMCID: PMC6769772 DOI: 10.3390/cells8091091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a devastating malignancy with limited therapeutic options. Fibroblast growth factor receptors (FGFR) and their ligands were shown to contribute to MPM aggressiveness and it was suggested that subgroups of MPM patients could benefit from FGFR-targeted inhibitors. In the current investigation, we determined the expression of all four FGFRs (FGFR1-FGFR4) by immunohistochemistry in tissue samples from 94 MPM patients. From 13 of these patients, we were able to establish stable cell lines, which were subjected to FGFR1-4 staining, transcript analysis by quantitative RT-PCR, and treatment with the FGFR inhibitor infigratinib. While FGFR1 and FGFR2 were widely expressed in MPM tissue and cell lines, FGFR3 and FGFR4 showed more restricted expression. FGFR1 and FGFR2 showed no correlation with clinicopathologic data or patient survival, but presence of FGFR3 in 42% and of FGFR4 in 7% of patients correlated with shorter overall survival. Immunostaining in cell lines was more homogenous than in the corresponding tissue samples. Neither transcript nor protein expression of FGFR1-4 correlated with response to infigratinib treatment in MPM cell lines. We conclude that FGFR3 and FGFR4, but not FGFR1 or FGFR2, have prognostic significance in MPM and that FGFR expression is not sufficient to predict FGFR inhibitor response in MPM cell lines.
Collapse
MESH Headings
- Acrylamides/pharmacology
- Antineoplastic Agents/pharmacology
- Cell Line, Tumor
- Dose-Response Relationship, Drug
- Female
- Gene Expression Profiling
- Humans
- Lung Neoplasms/diagnosis
- Lung Neoplasms/drug therapy
- Lung Neoplasms/pathology
- Male
- Mesothelioma/diagnosis
- Mesothelioma/drug therapy
- Mesothelioma/pathology
- Mesothelioma, Malignant
- Middle Aged
- Phenylurea Compounds/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Pyrimidines/pharmacology
- Quinazolines/pharmacology
- Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Receptor, Fibroblast Growth Factor, Type 4/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
- Survival Analysis
Collapse
Affiliation(s)
- Gregor Vlacic
- University Clinic for Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia.
| | - Mir A Hoda
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria.
| | - Thomas Klikovits
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria.
| | - Katharina Sinn
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria.
| | - Elisabeth Gschwandtner
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria.
| | - Katja Mohorcic
- University Clinic for Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia.
| | - Karin Schelch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria.
| | - Christine Pirker
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria.
| | - Barbara Peter-Vörösmarty
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria.
| | - Jelena Brankovic
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria.
| | - Balazs Dome
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria.
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, 1085 Budapest, Hungary.
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1085 Budapest, Hungary.
| | - Viktoria Laszlo
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria.
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, 1085 Budapest, Hungary.
| | - Tanja Cufer
- University Clinic for Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia.
| | - Ales Rozman
- University Clinic for Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia.
| | - Walter Klepetko
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria.
| | - Bettina Grasl-Kraupp
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria.
| | - Balazs Hegedus
- Department of Thoracic Surgery, University Medicine Essen-Ruhrlandklinik, 45239 Essen, Germany.
| | - Walter Berger
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria.
| | - Izidor Kern
- University Clinic for Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia.
| | - Michael Grusch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
30
|
Fibroblast Growth Factor Receptor Signaling in Skin Cancers. Cells 2019; 8:cells8060540. [PMID: 31167513 PMCID: PMC6628025 DOI: 10.3390/cells8060540] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022] Open
Abstract
Fibroblast growth factor (FGF)/Fibroblast growth factor receptor (FGFR) signaling regulates various cellular processes during the embryonic development and in the adult organism. In the skin, fibroblasts and keratinocytes control proliferation and survival of melanocytes in a paracrine manner via several signaling molecules, including FGFs. FGF/FGFR signaling contributes to the skin surface expansion in childhood or during wound healing, and skin protection from UV light damage. Aberrant FGF/FGFR signaling has been implicated in many disorders, including cancer. In melanoma cells, the FGFR expression is low, probably because of the strong endogenous mutation-driven constitutive activation of the downstream mitogen-activated protein kinase-extracellular signal-regulated kinase (MAPK-ERK) signaling pathway. FGFR1 is exceptional as it is expressed in the majority of melanomas at a high level. Melanoma cells that acquired the capacity to synthesize FGFs can influence the neighboring cells in the tumor niche, such as endothelial cells, fibroblasts, or other melanoma cells. In this way, FGF/FGFR signaling contributes to intratumoral angiogenesis, melanoma cell survival, and development of resistance to therapeutics. Therefore, inhibitors of aberrant FGF/FGFR signaling are considered as drugs in combination treatment. The ongoing LOGIC-2 phase II clinical trial aims to find out whether targeting the FGF/FGFR signaling pathway with BGJ398 may be a good therapeutic strategy in melanoma patients who develop resistance to v-Raf murine sarcoma viral oncogene homolog B (BRAF)/MEK inhibitors.
Collapse
|
31
|
Teng Y, Guo B, Mu X, Liu S. KIF26B promotes cell proliferation and migration through the FGF2/ERK signaling pathway in breast cancer. Biomed Pharmacother 2018; 108:766-773. [PMID: 30248545 DOI: 10.1016/j.biopha.2018.09.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Many studies have suggested that high KIF26B expression is directly linked to poor prognostic outcomes in breast cancer. However, the exact role of KIF26B in breast cancer progression is not fully understood. In this study, we aimed to explore the function and mechanism of KIF26B in breast cancer progression. METHODS Quantitative real-time PCR and immunohistochemistry analysis were used to detect KIF26B expression in breast cancer cell lines and patient samples. Cell proliferation was assessed by CCK-8 assay, and cell migration and invasion were evaluated by wound healing assay and transwell assay. Western blot analysis was carried out to assess the underlying molecular mechanisms. Tumor formation and metastasis were determined by in vivo mouse experiments. RESULTS KIF26B levels were significantly increased in breast cancer cells and patient samples. KIF26B level correlated with tumor size, TNM grade, and differentiation in patients with breast cancer. Overexpressing KIF26B in vitro promoted breast cancer cell proliferation and migration by activating FGF2/ERK signaling, while silencing KIF26B had the opposite effects. Similarly, KIF26B knockdown repressed tumor formation and metastasis in nude mice. CONCLUSION KIF26B promoted the development and progression of breast cancer and might act as a potential therapeutic target for treating breast cancer.
Collapse
Affiliation(s)
- Yan Teng
- Department of Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030, China
| | - Bingling Guo
- Department of Hematology and Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030, China
| | - Xiaosong Mu
- Integrated Department, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030, China
| | - Shihong Liu
- Department of Palliative Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No 181 Hanyu Road, Chongqing 400030, China.
| |
Collapse
|