1
|
Falsetti I, Palmini G, Zonefrati R, Vasa K, Donati S, Aurilia C, Baroncelli A, Viglianisi C, Ranaldi F, Iantomasi T, Procacci P, Menichetti S, Brandi ML. Antiproliferative Role of Natural and Semi-Synthetic Tocopherols on Colorectal Cancer Cells Overexpressing the Estrogen Receptor β. Int J Mol Sci 2025; 26:2305. [PMID: 40076925 PMCID: PMC11900421 DOI: 10.3390/ijms26052305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Estrogen receptor β (ERβ) is the most highly expressed subtype in the colon epithelium and mediates the protective effect of estrogen against the development of colon cancer. Indeed, the expression of this receptor is inversely related to colorectal cancer progression. Structurally estrogen-like compounds, including vitamin E components, affect cell growth by binding to ERs. In the present study, cell proliferation was measured by cell counting in a Bürker hemocytometer, and ERβ expression was measured by Real-Time qPCR and immunoenzymatic methods. The results obtained show that natural δ-tocopherol (δ-Toc) and two of its semi-synthetic derivatives, bis-δ-tocopheryl sulfide (δ-Toc)2S and bis-δ-tocopheryl disulfide (δ-Toc)2S2, play an antiproliferative role and upregulate ERβ expression, similar to 17-β-estradiol (17β-E2), in human colon adenocarcinoma HCT8 cells engineered to overexpress ERβ protein (HCT8-β8). These events are not present in HCT8-pSV2neo and in HCT8-β8 pretreated with ICI 182,780, suggesting that they are mediated by the binding of compounds to ERβ, as also boosted by an in silico assay. The antiproliferative effect is independent of the intracellular redox state and (δ-Toc)2S and (δ-Toc)2S2 reduce cell proliferation at concentrations lower than that of δ-Toc and all tested compounds are also able to upregulate ERβ expression. Taken together, the data indicate that, through the involvement of ERβ activity and expression, δ-Toc, (δ-Toc)2S, and (δ-Toc)2S2 may provide potential therapeutic support against colorectal cancer.
Collapse
Affiliation(s)
- Irene Falsetti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy; (I.F.); (S.D.); (C.A.); (F.R.)
| | - Gaia Palmini
- Italian Foundation for Research on Bone Disease (F.I.R.M.O.), Via San Gallo 123, 50129 Firenze, Italy; (G.P.); (M.L.B.)
| | - Roberto Zonefrati
- Italian Foundation for Research on Bone Disease (F.I.R.M.O.), Via San Gallo 123, 50129 Firenze, Italy; (G.P.); (M.L.B.)
| | - Kristian Vasa
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia, 3–13, 50019 Sesto Fiorentino, Italy; (K.V.); (A.B.); (C.V.); (P.P.); (S.M.)
| | - Simone Donati
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy; (I.F.); (S.D.); (C.A.); (F.R.)
| | - Cinzia Aurilia
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy; (I.F.); (S.D.); (C.A.); (F.R.)
| | - Allegra Baroncelli
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia, 3–13, 50019 Sesto Fiorentino, Italy; (K.V.); (A.B.); (C.V.); (P.P.); (S.M.)
| | - Caterina Viglianisi
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia, 3–13, 50019 Sesto Fiorentino, Italy; (K.V.); (A.B.); (C.V.); (P.P.); (S.M.)
| | - Francesco Ranaldi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy; (I.F.); (S.D.); (C.A.); (F.R.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy; (I.F.); (S.D.); (C.A.); (F.R.)
| | - Piero Procacci
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia, 3–13, 50019 Sesto Fiorentino, Italy; (K.V.); (A.B.); (C.V.); (P.P.); (S.M.)
| | - Stefano Menichetti
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia, 3–13, 50019 Sesto Fiorentino, Italy; (K.V.); (A.B.); (C.V.); (P.P.); (S.M.)
| | - Maria Luisa Brandi
- Italian Foundation for Research on Bone Disease (F.I.R.M.O.), Via San Gallo 123, 50129 Firenze, Italy; (G.P.); (M.L.B.)
| |
Collapse
|
2
|
Nava-Tapia DA, Román-Justo NY, Cuenca-Rojo A, Guerrero-Rivera LG, Patrón-Guerrero A, Poblete-Cruz RI, Zacapala-Gómez AE, Sotelo-Leyva C, Navarro-Tito N, Mendoza-Catalán MA. Exploring the potential of tocopherols: mechanisms of action and perspectives in the prevention and treatment of breast cancer. Med Oncol 2024; 41:208. [PMID: 39060448 DOI: 10.1007/s12032-024-02454-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Currently, breast cancer is the most common cause of mortality caused by neoplasia in women worldwide. The unmet challenges of conventional cancer therapy are chemoresistance and lack of selectivity, which can lead to serious side effects in patients; therefore, new treatments based on natural compounds that serve as adjuvants in breast cancer therapy are urgently needed. Tocopherols are naturally occurring antioxidant compounds that have shown antitumor activity against several types of cancer, including breast cancer. This review summarizes the antitumoral activity of tocopherols, such as the antiproliferative, apoptotic, anti-invasive, and antioxidant effects of tocopherols, through different molecular mechanisms. According to the studies described, α-T, δ-T and γ-T are the most studied in breast tumor cells; however, α-T and γ-T show a more critical antitumor activity and significant potential as a complements to chemotherapeutic drugs against breast cancer, enhancing toxicity against tumor cells and preventing cytotoxicity in nontumor cells. However, the possible relationship between tocopherol intake, related to concentration, and the promotion of cancer in particular cases should not be ruled out, so additional studies are required to determine the correct dose to obtain the desired antitumor effect. Moreover, nanomicelles of D-α-tocopherol have promising potential as pharmaceutical excipients for drug delivery to improve the cytotoxicity and selectivity of first-line chemotherapeutics against breast cancer.
Collapse
Affiliation(s)
- Dania A Nava-Tapia
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico
| | - Norely Y Román-Justo
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico
| | - Antonio Cuenca-Rojo
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico
| | - Lizeth G Guerrero-Rivera
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico
| | - Annet Patrón-Guerrero
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico
| | - Ruth I Poblete-Cruz
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico
| | - Ana E Zacapala-Gómez
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico
| | - César Sotelo-Leyva
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico
| | - Napoleón Navarro-Tito
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico.
| | - Miguel A Mendoza-Catalán
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico.
| |
Collapse
|
3
|
Wu N, Chen J, Lin T, Zhong Z, Li M, Yu Y, Guo J, Yu W. Identification of AP002498.1 and LINC01871 as prognostic biomarkers and therapeutic targets for distant metastasis of colorectal adenocarcinoma. Cancer Med 2024; 13:e6823. [PMID: 38083905 PMCID: PMC10807603 DOI: 10.1002/cam4.6823] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Increasing evidence suggests that lncRNA (Long non-coding RNA, lncRNA)-mediated ceRNA (competing endogenous RNA, ceRNA) networks are involved in the occurrence and progression of colorectal cancer (CRC). However, the roles of the lncRNA-miRNA-mRNA ceRNA network in distant metastasis of CRC are still unclear. METHODS In this study, we constructed a specific ceRNA network to identify potential biomarkers and therapeutic targets for distant metastasis of CRC. Specifically, RNA-Seq data from The Cancer Genome Atlas (TCGA) were used to screen for differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) related to metastasis. After validation and selection by qRT-PCR and univariate and multivariate analysis of the metastasis- and prognosis-related lncRNAs, the regulated microRNAs (miRNAs) and coexpressed mRNAs were used to construct a ceRNA network for distant metastasis of CRC. RESULTS Two key distant metastasis-related DElncRNAs, AP002498.1 and LINC01871, were identified by univariate and multivariate analysis in combination with analyses of clinical data and expression levels. Furthermore, lncRNA-associated ceRNA subnetworks were constructed from the predicted miRNAs and 13 coexpressed DEmRNAs (SERPINA1, ITLN1, REG4, L1TD1, IGFALS, MUC5B, CIITA, CXCL9, CXCL10, GBP4, GNLY, IDO1, and NOS2). The AP002498.1- and LINC01871-associated ceRNA subnetworks regulated the expression of the target genes SERPINA1 and MUC5B and GNLY, respectively, through the associated miRNAs. CONCLUSION The DElncRNA AP002498.1 and the LINC01871/miR-4644 and miR-185-5p/GNLY axes were identified as being closely associated with distant metastasis and could represent independent prognostic biomarkers or therapeutic targets in colorectal adenocarcinoma.
Collapse
Affiliation(s)
- Na Wu
- Department of Central Laboratory and Institute of Clinical Molecular BiologyPeking University People's HospitalBeijingChina
| | - Jingyi Chen
- Department of Central Laboratory and Institute of Clinical Molecular BiologyPeking University People's HospitalBeijingChina
- Department of GastroenterologyPeking University People's HospitalBeijingChina
| | - Tingru Lin
- Department of Central Laboratory and Institute of Clinical Molecular BiologyPeking University People's HospitalBeijingChina
- Department of GastroenterologyPeking University People's HospitalBeijingChina
| | - Zhaohui Zhong
- Department of General SurgeryPeking University People's HospitalBeijingChina
| | - Mei Li
- Department of Central Laboratory and Institute of Clinical Molecular BiologyPeking University People's HospitalBeijingChina
| | - Yimeng Yu
- Department of Central Laboratory and Institute of Clinical Molecular BiologyPeking University People's HospitalBeijingChina
| | - Jingzhu Guo
- Department of PediatricPeking University People's HospitalBeijingChina
| | - Weidong Yu
- Department of Central Laboratory and Institute of Clinical Molecular BiologyPeking University People's HospitalBeijingChina
| |
Collapse
|
4
|
Advances in Biomarkers and Endogenous Regulation of Breast Cancer Stem Cells. Cells 2022; 11:cells11192941. [PMID: 36230903 PMCID: PMC9562239 DOI: 10.3390/cells11192941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is one of the most common cancers. Even if breast cancer patients initially respond to treatment, developed resistance can lead to a poor prognosis. Cancer stem cells (CSCs) are a group of undifferentiated cells with self-renewal and multipotent differentiation characteristics. Existing evidence has shown that CSCs are one of the determinants that contribute to the heterogeneity of primary tumors. The emergence of CSCs causes tumor recurrence, metastasis, and therapeutic resistance. Previous studies indicated that different stemness-associated surface markers can identify other breast cancer stem cell (BCSC) subpopulations. Deciphering the critical signaling networks that are involved in the induction and maintenance of stemness is essential to develop novel BCSC-targeting strategies. In this review, we reviewed the biomarkers of BCSCs, critical regulators of BCSCs, and the signaling networks that regulate the stemness of BCSCs.
Collapse
|
5
|
Xu J, Yang R, Li J, Wang L, Cohen M, Simeone DM, Costa M, Wu XR. DNMT3A/ miR-129-2-5p/Rac1 Is an Effector Pathway for SNHG1 to Drive Stem-Cell-like and Invasive Behaviors of Advanced Bladder Cancer Cells. Cancers (Basel) 2022; 14:4159. [PMID: 36077697 PMCID: PMC9454896 DOI: 10.3390/cancers14174159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The stem-cell-like behavior of cancer cells plays a central role in tumor heterogeneity and invasion and correlates closely with drug resistance and unfavorable clinical outcomes. However, the molecular underpinnings of cancer cell stemness remain incompletely defined. Here, we show that SNHG1, a long non-coding RNA that is over-expressed in ~95% of human muscle-invasive bladder cancers (MIBCs), induces stem-cell-like sphere formation and the invasion of cultured bladder cancer cells by upregulating Rho GTPase, Rac1. We further show that SNHG1 binds to DNA methylation transferase 3A protein (DNMT3A), and tethers DNMT3A to the promoter of miR-129-2, thus hyper-methylating and repressing miR-129-2-5p transcription. The reduced binding of miR-129-2 to the 3'-UTR of Rac1 mRNA leads to the stabilization of Rac1 mRNA and increased levels of Rac1 protein, which then stimulates MIBC cell sphere formation and invasion. Analysis of the Human Protein Atlas shows that a high expression of Rac1 is strongly associated with poor survival in patients with MIBC. Our data strongly suggest that the SNHG1/DNMT3A/miR-129-2-5p/Rac1 effector pathway drives stem-cell-like and invasive behaviors in MIBC, a deadly form of bladder cancer. Targeting this pathway, alone or in combination with platinum-based therapy, may reduce chemoresistance and improve longer-term outcomes in MIBC patients.
Collapse
Affiliation(s)
- Jiheng Xu
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Rui Yang
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Jingxia Li
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Lidong Wang
- Department of Surgery, New York University School of Medicine, New York, NY 10016, USA
| | - Mitchell Cohen
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Diane M. Simeone
- Department of Surgery, New York University School of Medicine, New York, NY 10016, USA
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Max Costa
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Xue-Ru Wu
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
- Department of Urology, New York University School of Medicine, New York, NY 10016, USA
- Veterans Affairs New York Harbor Healthcare System, Manhattan Campus, New York, NY 10010, USA
| |
Collapse
|
6
|
OCT4-mediated transcription confers oncogenic advantage for a subset of gastric tumors with poor clinical outcome. Funct Integr Genomics 2022; 22:1345-1360. [DOI: 10.1007/s10142-022-00894-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022]
|
7
|
Lee J, Troike K, Fodor R, Lathia JD. Unexplored Functions of Sex Hormones in Glioblastoma Cancer Stem Cells. Endocrinology 2022; 163:bqac002. [PMID: 35023543 PMCID: PMC8807164 DOI: 10.1210/endocr/bqac002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Indexed: 01/14/2023]
Abstract
Biological sex impacts a wide array of molecular and cellular functions that impact organismal development and can influence disease trajectory in a variety of pathophysiological states. In nonreproductive cancers, epidemiological sex differences have been observed in a series of tumors, and recent work has identified previously unappreciated sex differences in molecular genetics and immune response. However, the extent of these sex differences in terms of drivers of tumor growth and therapeutic response is less clear. In glioblastoma (GBM), the most common primary malignant brain tumor, there is a male bias in incidence and outcome, and key genetic and epigenetic differences, as well as differences in immune response driven by immune-suppressive myeloid populations, have recently been revealed. GBM is a prototypic tumor in which cellular heterogeneity is driven by populations of therapeutically resistant cancer stem cells (CSCs) that underlie tumor growth and recurrence. There is emerging evidence that GBM CSCs may show a sex difference, with male tumor cells showing enhanced self-renewal, but how sex differences impact CSC function is not clear. In this mini-review, we focus on how sex hormones may impact CSCs in GBM and implications for other cancers with a pronounced CSC population. We also explore opportunities to leverage new models to better understand the contribution of sex hormones vs sex chromosomes to CSC function. With the rising interest in sex differences in cancer, there is an immediate need to understand the extent to which sex differences impact tumor growth, including effects on CSC function.
Collapse
Affiliation(s)
- Juyeun Lee
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic
| | - Katie Troike
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University
| | - R’ay Fodor
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University
| | - Justin D Lathia
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic
- Case Comprehensive Cancer Center
| |
Collapse
|
8
|
Brandão DC, Lima PMAP, Martins IC, Cordeiro CS, Cordeiro AO, Vecchi L, Guerra JFC, Orsolin PC, Gazolla MC, Costa DS, da Silva Filho AA, Araújo TG. Arrabidaea chica chloroform extract modulates estrogen and androgen receptors on luminal breast cancer cells. BMC Complement Med Ther 2022; 22:18. [PMID: 35057779 PMCID: PMC8773405 DOI: 10.1186/s12906-022-03506-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Breast Cancer (BC) is the most common cancer in women worldwide and, although 70% of patients are responsive to selective Estrogen Receptor (ER) modulators such as Tamoxifen (Tam), patients' survival is comprised by resistance to endocrine therapy. Brazilian flora, especially the Amazon biome, is one of the richest global sources of native species with potentially bioactive compounds. Arrabidaea chica is a plant native to the Amazon that has been used in the treatment of different diseases. However, its action on BC remains unclear. METHODS Herein the biological effects of the chloroform extract of A. chica (CEAC) were evaluated on BC cells and in in vivo model. After confirmation of CEAC antioxidant capacity, cells were treated with CEAC and Tam, alone and with CEAC+Tam. The cell viability was evaluated by MTT and hormone receptor transcripts levels were assessed (ESR1, ESR2 and AR). Finally, anticarcinogenicity of CEAC was recorded in Drosophila melanogaster through Epithelial Tumor Test (ETT). RESULTS The study confirmed the antioxidant activity of CEAC. CEAC was selective for MCF-7, downregulating ESR2 and AR transcripts and upregulating ESR2 expression. The modulatory effects of CEAC on ERs did not differ between cells treated with Tam and with CEAC+Tam. Interestingly, previous treatment with CEAC, followed by treatment with Tam promoted a significant decrease in cell viability. The extract also presented anticarcinogenic effect in in vivo assay. CONCLUSION The bioassays on breast tumor cells demonstrated the antiproliferative activity of the extract, which modulated the expression of hormone receptors and sensitized luminal tumor cells to Tam. These results suggest that CEAC could be a complementary treatment for BC.
Collapse
Affiliation(s)
- Douglas C. Brandão
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Rua Major Jerônimo, 566, Sala 601, Patos de Minas, MG 38700-002 Brazil
| | - Paula M. A. P. Lima
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Rua Major Jerônimo, 566, Sala 601, Patos de Minas, MG 38700-002 Brazil
- Laboratory of Cytogenetic and Mutagenesis, University Center of Patos de Minas, Patos de Minas, MG Brazil
| | - Isabella C. Martins
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Rua Major Jerônimo, 566, Sala 601, Patos de Minas, MG 38700-002 Brazil
| | - Carina S. Cordeiro
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Rua Major Jerônimo, 566, Sala 601, Patos de Minas, MG 38700-002 Brazil
| | - Antonielle O. Cordeiro
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Rua Major Jerônimo, 566, Sala 601, Patos de Minas, MG 38700-002 Brazil
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG Brazil
| | - Lara Vecchi
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG Brazil
| | - Joyce F. C. Guerra
- Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas, MG Brazil
| | - Priscila C. Orsolin
- Laboratory of Cytogenetic and Mutagenesis, University Center of Patos de Minas, Patos de Minas, MG Brazil
| | - Matheus C. Gazolla
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG Brazil
| | - Danilo S. Costa
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG Brazil
| | - Ademar A. da Silva Filho
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG Brazil
| | - Thaise G. Araújo
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Rua Major Jerônimo, 566, Sala 601, Patos de Minas, MG 38700-002 Brazil
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG Brazil
| |
Collapse
|
9
|
McHann MC, Blanton HL, Guindon J. Role of sex hormones in modulating breast and ovarian cancer associated pain. Mol Cell Endocrinol 2021; 533:111320. [PMID: 34033890 PMCID: PMC8263503 DOI: 10.1016/j.mce.2021.111320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/16/2021] [Accepted: 05/09/2021] [Indexed: 01/18/2023]
Abstract
According to the National Cancer Institute in 2020 there will be an estimated 21,750 new ovarian cancer cases and 276,480 new breast cancer cases. Both breast and ovarian cancer are hormone dependent cancers, meaning they cannot grow without the presence of hormones. The two most studied hormones in these two cancers are estrogen and progesterone, which are also involved in the modulation of pain. The incidence of pain in breast and ovarian cancer is very high. Research about mechanisms involved in modulation of pain by hormones are still being debated, as some studies find estrogen to be anti-nociceptive and others pro-nociceptive in pain studies. Moreover, analgesic treatments for breast and ovarian cancer-associated pain are limited and often ineffective. In this review, we will focus on estrogen and progesterone mechanisms of action in modulation of pain and cancer. We will also discuss new treatment options for these types of cancer and associated-pain.
Collapse
Affiliation(s)
- Melissa C McHann
- Department of Pharmacology and Neuroscience at Texas Tech University Health Sciences Center, USA
| | - Henry L Blanton
- Department of Pharmacology and Neuroscience at Texas Tech University Health Sciences Center, USA
| | - Josée Guindon
- Department of Pharmacology and Neuroscience at Texas Tech University Health Sciences Center, USA.
| |
Collapse
|
10
|
Markowska A, Antoszczak M, Markowska J, Huczyński A. Role of Vitamin E in Selected Malignant Neoplasms in Women. Nutr Cancer 2021; 74:1163-1170. [PMID: 34278890 DOI: 10.1080/01635581.2021.1952626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Vitamin E, which is actually a mixture of eight isoforms (four tocopherols and four tocotrienols), is a powerful antioxidant that protects polyunsaturated fatty acids against oxidation and has the ability to break the chain lipid peroxidation, which is used in the treatment of heart disease, atherosclerosis, muscle disorders or infertility among men. Studies in-vitro show that one of the effects of tocopherol is the reduction of cancer stem cell activity which is connected to poor clinical course. In the scientific literature, reports on the participation of vitamin E not only in protection against the mutagenic effects of reactive oxygen species, but also in its anti-angiogenic activity and the ability to inhibit the invasion and metastasis of neoplastic cells are increasingly common. In this context, the role of vitamin E in preventing the neoplastic process and selected malignant neoplasms among women seems to be of particular interest. In this article, we present the results of research on the potential anticancer effects of vitamin E in the fight against breast, cervical, endometrial and ovarian cancer.
Collapse
Affiliation(s)
- Anna Markowska
- Department of Perinatology and Women's Health, Poznań University of Medical Sciences, Poznań, Poland
| | - Michał Antoszczak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Janina Markowska
- Department of Oncology, Gynecological Oncology, Poznań University of Medical Sciences, Poznań, Poland
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
11
|
Guo W, Wang H, Chen P, Shen X, Zhang B, Liu J, Peng H, Xiao X. Identification and Characterization of Multiple Myeloma Stem Cell-Like Cells. Cancers (Basel) 2021; 13:3523. [PMID: 34298738 PMCID: PMC8306148 DOI: 10.3390/cancers13143523] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) is a B-cell tumor of the blood system with high incidence and poor prognosis. With a further understanding of the pathogenesis of MM and the bone marrow microenvironment, a variety of adjuvant cell therapies and new drugs have been developed. However, the drug resistance and high relapse rate of MM have not been fundamentally resolved. Studies have shown that, in patients with MM, there is a type of poorly differentiated progenitor cell (MM stem cell-like cells, MMSCs). Although there is no recognized standard for identification and classification, it is confirmed that they are closely related to the drug resistance and relapse of MM. This article therefore systematically summarizes the latest developments in MMSCs with possible markers of MMSCs, introduces the mechanism of how MMSCs work in MM resistance and recurrence, and discusses the active pathways that related to stemness of MM.
Collapse
Affiliation(s)
- Wancheng Guo
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (W.G.); (H.W.); (J.L.)
- Xiangya Medical School, Central South University, Changsha 410013, China; (P.C.); (X.S.); (B.Z.)
| | - Haiqin Wang
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (W.G.); (H.W.); (J.L.)
| | - Peng Chen
- Xiangya Medical School, Central South University, Changsha 410013, China; (P.C.); (X.S.); (B.Z.)
| | - Xiaokai Shen
- Xiangya Medical School, Central South University, Changsha 410013, China; (P.C.); (X.S.); (B.Z.)
| | - Boxin Zhang
- Xiangya Medical School, Central South University, Changsha 410013, China; (P.C.); (X.S.); (B.Z.)
| | - Jing Liu
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (W.G.); (H.W.); (J.L.)
| | - Hongling Peng
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (W.G.); (H.W.); (J.L.)
| | - Xiaojuan Xiao
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (W.G.); (H.W.); (J.L.)
| |
Collapse
|
12
|
Lv L, Shi Y, Wu J, Li G. Nanosized Drug Delivery Systems for Breast Cancer Stem Cell Targeting. Int J Nanomedicine 2021; 16:1487-1508. [PMID: 33654398 PMCID: PMC7914063 DOI: 10.2147/ijn.s282110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/10/2021] [Indexed: 01/15/2023] Open
Abstract
Breast cancer stem cells (BCSCs), also known as breast cancer initiating cells, are reported to be responsible for the initiation, progression, therapeutic resistance, and relapse of breast cancer. Conventional therapeutic agents mainly kill the bulk of breast tumor cells and fail to eliminate BCSCs, even enhancing the fraction of BCSCs in breast tumors sometimes. Therefore, it is essential to develop specific and effective methods of eliminating BCSCs that will enhance the efficacy of killing breast tumor cells and thereby, increase the survival rates and quality of life of breast cancer patients. Despite the availability of an increasing number of anti-BCSC agents, their clinical translations are hindered by many issues, such as instability, low bioavailability, and off-target effects. Nanosized drug delivery systems (NDDSs) have the potential to overcome the drawbacks of anti-BCSC agents by providing site-specific delivery and enhancing of the stability and bioavailability of the delivered agents. In this review, we first briefly introduce the strategies and agents used against BCSCs and then highlight the mechanism of action and therapeutic efficacy of several state-of-the-art NDDSs that can be used to treat breast cancer by eliminating BCSCs.
Collapse
Affiliation(s)
- Li Lv
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Yonghui Shi
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China.,Department of Pharmacy, Zengcheng District People's Hospital of Guangzhou, Guangzhou, 511300, Guangdong, People's Republic of China
| | - Junyan Wu
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Guocheng Li
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| |
Collapse
|
13
|
6-Methoxymellein Isolated from Carrot ( Daucus carota L.) Targets Breast Cancer Stem Cells by Regulating NF-κB Signaling. Molecules 2020; 25:molecules25194374. [PMID: 32977636 PMCID: PMC7583823 DOI: 10.3390/molecules25194374] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022] Open
Abstract
The presence of breast cancer stem cells (BCSCs) induces the aggressive progression and recurrence of breast cancer. These cells are drug resistant, have the capacity to self-renew and differentiate and are involved in recurrence and metastasis, suggesting that targeting BCSCs may improve treatment efficacy. In this report, methanol extracts of carrot root were purified by means of silica gel, Sephadex LH-20, and preparative high-performance liquid chromatography to isolate a compound targeting mammosphere formation. We isolated the compound 6-methoxymellein, which inhibits the proliferation and migration of breast cancer cells, reduces mammosphere growth, decreases the proportion of CD44+/CD24− cells in breast cancer cells and decreases the expression of stemness-associated proteins c-Myc, Sox-2 and Oct4. 6-Methoxymellein reduces the nuclear localization of nuclear factor-κB (NF-κB) subunit p65 and p50. Subsequently, 6-methoxymellein decreases the mRNA transcription and secretion of IL-6 and IL-8. Our data suggest that 6-methoxymellein may be an anticancer agent that inhibits BCSCs via NF-κB/IL-6 and IL-8 regulation.
Collapse
|
14
|
Chen B, Ye P, Chen Y, Liu T, Cha JH, Yan X, Yang WH. Involvement of the Estrogen and Progesterone Axis in Cancer Stemness: Elucidating Molecular Mechanisms and Clinical Significance. Front Oncol 2020; 10:1657. [PMID: 33014829 PMCID: PMC7498570 DOI: 10.3389/fonc.2020.01657] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022] Open
Abstract
Estrogen and progesterone regulate the growth and development of human tissues, including the reproductive system and breasts, through estrogen and progesterone receptors, respectively. These receptors are also important indicators for the clinical prognosis of breast cancer and various reproductive cancers. Many studies have reported that cancer stem cells (CSCs) play a key role in tumor initiation, progression, metastasis, and recurrence. Although the role of estrogen and progesterone in human organs and various cancers has been studied, the molecular mechanisms underlying the action of these hormones on CSCs remain unclear. Therefore, further elucidation of the effects of estrogen and progesterone on CSCs should provide a new direction for developing pertinent therapies. In this review, we summarize the current knowledge on the estrogen and progesterone axis involved in cancer stemness and discuss potential therapeutic strategies to inhibit CSCs by targeting relevant pathways.
Collapse
Affiliation(s)
- Bi Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Peng Ye
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yeh Chen
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Tong Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China.,The Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin, China
| | - Jong-Ho Cha
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, South Korea
| | - Xiuwen Yan
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Wen-Hao Yang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
15
|
Yang CS, Luo P, Zeng Z, Wang H, Malafa M, Suh N. Vitamin E and cancer prevention: Studies with different forms of tocopherols and tocotrienols. Mol Carcinog 2020; 59:365-389. [PMID: 32017273 DOI: 10.1002/mc.23160] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/09/2020] [Accepted: 01/17/2020] [Indexed: 12/13/2022]
Abstract
α-Tocopherol (α-T) is the major form of vitamin E (VE) in animals and has the highest activity in carrying out the essential antioxidant functions of VE. Because of the involvement of oxidative stress in carcinogenesis, the cancer prevention activity of α-T has been studied extensively. Lower VE intake or nutritional status has been shown to be associated with increased cancer risk, and supplementation of α-T to populations with VE insufficiency has shown beneficial effects in lowering the cancer risk in some intervention studies. However, several large intervention studies with α-T conducted in North America have not demonstrated a cancer prevention effect. More recent studies have centered on the γ- and δ-forms of tocopherols and tocotrienols (T3). In comparison with α-T, these forms have much lower systemic bioavailability but have shown stronger cancer-preventive activities in many studies in animal models and cell lines. γ-T3 and δ-T3 generally have even higher activities than γ-T and δ-T. In this article, we review recent results from human and laboratory studies on the cancer-preventive activities of different forms of tocopherols and tocotrienols, at nutritional and pharmacological levels. We aim to elucidate the possible mechanisms of the preventive actions and discuss the possible application of the available information for human cancer prevention by different VE forms.
Collapse
Affiliation(s)
- Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Philip Luo
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Zishuo Zeng
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Hong Wang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Mokenge Malafa
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
16
|
Zheng L, Jin J, Shi L, Huang J, Chang M, Wang X, Zhang H, Jin Q. Gamma tocopherol, its dimmers, and quinones: Past and future trends. Crit Rev Food Sci Nutr 2020; 60:3916-3930. [DOI: 10.1080/10408398.2020.1711704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Liyou Zheng
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Jiangsu, P. R. China
| | - Jun Jin
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Jiangsu, P. R. China
| | - Longkai Shi
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Jiangsu, P. R. China
| | - Jianhua Huang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Jiangsu, P. R. China
| | - Ming Chang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Jiangsu, P. R. China
| | - Xingguo Wang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Jiangsu, P. R. China
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Jiangsu, P. R. China
| | - Qingzhe Jin
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Jiangsu, P. R. China
| |
Collapse
|
17
|
Hao N, Shen W, Du R, Jiang S, Zhu J, Chen Y, Huang C, Shi Y, Xiang R, Luo Y. Phosphodiesterase 3A Represents a Therapeutic Target that Drives Stem Cell–like Property and Metastasis in Breast Cancer. Mol Cancer Ther 2019; 19:868-881. [PMID: 31871268 DOI: 10.1158/1535-7163.mct-18-1233] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/19/2019] [Accepted: 12/03/2019] [Indexed: 11/16/2022]
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/drug therapy
- Breast Neoplasms/enzymology
- Breast Neoplasms/pathology
- Breast Neoplasms/secondary
- Cell Proliferation
- Cilostazol/pharmacology
- Cyclic Nucleotide Phosphodiesterases, Type 3/chemistry
- Cyclic Nucleotide Phosphodiesterases, Type 3/genetics
- Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism
- Female
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Microfilament Proteins/metabolism
- Middle Aged
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/enzymology
- Neoplastic Stem Cells/metabolism
- Phosphodiesterase 3 Inhibitors/pharmacology
- Prognosis
- Protein Transport
- Signal Transduction
- Tumor Cells, Cultured
- Vesicular Transport Proteins/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Na Hao
- Department of Breast Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
- Department of Immunology, Institute of Basic Medical Science, Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College, Beijing, China
- International Joint Center for Biomedical Research of the Ministry of Education, Tianjin, China
| | - Wenzhi Shen
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
- Department of Immunology, Institute of Basic Medical Science, Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College, Beijing, China
- Department of Pathology and Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Renle Du
- Department of Breast Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shan Jiang
- Department of Breast Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Junyong Zhu
- Department of Galactophore, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yanan Chen
- Department of Breast Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Immunology, Institute of Basic Medical Science, Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Chongbiao Huang
- Senior Ward, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research, Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yi Shi
- Department of Breast Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Immunology, Institute of Basic Medical Science, Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Rong Xiang
- Department of Breast Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Immunology, Institute of Basic Medical Science, Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yunping Luo
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
18
|
Pan M, Li M, You C, Zhao F, Guo M, Xu H, Li L, Wang L, Dou J. [Relaxing of unity and membership democracy in the Danish Nursing Council]. J Cell Physiol 1980; 235:1405-1416. [PMID: 31347176 PMCID: PMC6899543 DOI: 10.1002/jcp.29059] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/10/2019] [Indexed: 12/11/2022]
Abstract
Breast cancer patients with high expression of aldehyde dehydrogenases (ALDHs) cell population have higher tolerability to chemotherapy since the cells posses a characteristic of breast cancer stem cells (BCSCs) that are resistant to conventional chemotherapy. In this study, we found that the ALDH‐positive cells were higher in CD44+CD24− and CD44+CD24−ESA+BCSCs than that in both BT549 and MDA‐MB‐231 cell lines but microRNA‐7 (miR‐7) level was lower in CD44+CD24− and CD44+CD24−ESA+BCSCs than that in MDA‐MB‐231 cells. Moreover, miR‐7 overexpression in MDA‐MB‐231 cells decreased ALDH1A3 activity by miR‐7 directly binding to the 3′‐untranslated region of ALDH1A3; while the ALDH1A3 expression was downregulated in MDA‐MB‐231 cells, the expressions of CD44 and Epithelium Specific Antigen (ESA) were reduced along with decreasing the BCSC subpopulation. Significantly, enforced expression of miR‐7 in CD44+CD24−ESA+BCSC markedly inhibited the BCSC‐driven xenograft growth in mice by decreasing an expression of ALDH1A3. Collectively, the findings demonstrate the miR‐7 inhibits breast cancer growth via suppressing ALDH1A3 activity concomitant with decreasing BCSC subpopulation. This approach may be considered for an investigation on clinical treatment of breast cancers.
Collapse
Affiliation(s)
- Meng Pan
- Department of Pathogenic Biology and Immunology, School of MedicineSoutheast UniversityNanjingChina
- Department of Judicial Identification, Jiangsu Province HospitalThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Miao Li
- Department of Pathogenic Biology and Immunology, School of MedicineSoutheast UniversityNanjingChina
| | - Chengzhong You
- Department of General Surgery, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Fengshu Zhao
- Department of Pathogenic Biology and Immunology, School of MedicineSoutheast UniversityNanjingChina
| | - Mei Guo
- Department of Pathogenic Biology and Immunology, School of MedicineSoutheast UniversityNanjingChina
| | - Hui Xu
- Department of Pathogenic Biology and Immunology, School of MedicineSoutheast UniversityNanjingChina
- Department of Gynecology & Obstetrics, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Luoyang Li
- Department of Pathogenic Biology and Immunology, School of MedicineSoutheast UniversityNanjingChina
| | - Ling Wang
- Department of Pathogenic Biology and Immunology, School of MedicineSoutheast UniversityNanjingChina
| | - Jun Dou
- Department of Pathogenic Biology and Immunology, School of MedicineSoutheast UniversityNanjingChina
| |
Collapse
|