1
|
Atak M, Yigit E, Huner Yigit M, Topal Suzan Z, Yilmaz Kutlu E, Karabulut S. Synthetic and non-synthetic inhibition of ADAM10 and ADAM17 reduces inflammation and oxidative stress in LPS-induced acute kidney injury in male and female mice. Eur J Pharmacol 2024; 983:176964. [PMID: 39218341 DOI: 10.1016/j.ejphar.2024.176964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/30/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Acute kidney injury (AKI) is a severe medical condition that can lead to illness and death. A disintegrin and metalloprotease (ADAM) protein family is a potential treatment target for AKI due to its involvement in inflammation, growth, and differentiation. While ADAM10 and ADAM17 have been identified as significant contributors to inflammation, it is unclear whether they play a critical role in AKI. In this study, we induced AKI in male and female mice using lipopolysaccharide, a bacterial endotoxin that causes inflammation and oxidative stress. The role of kaempferol, which is found in many natural products and known to have antioxidant and anti-inflammatory activity in many pre-clinical studies, was investigated through ADAM10/17 enzymes in AKI. We also investigated the efficacy of a selective synthetic inhibitor named GW280264X for ADAM10/17 inhibition in AKI. Blood urea nitrogen and creatinine levels were measured in serum, while tumor necrosis factor-α, vascular adhesion molecule, interleukin (IL)-1β, glucose regulatory protein-78, IL-10, nuclear factor κ-B, thiobarbituric acid reactive substances, total thiol, ADAM10, and ADAM17 levels were measured in kidney tissue. We also evaluated kidney tissue histologically using hematoxylin and eosin, periodic acid-schiff, and caspase-3 staining. This research demonstrates that GW280264X and kaempferol reduces inflammation and oxidative stress, as evidenced by biochemical and histopathological results in AKI through ADAM10/17 inhibition. These findings suggest that inhibiting ADAM10/17 may be a promising therapeutic approach for treating acute kidney injury.
Collapse
Affiliation(s)
- Mehtap Atak
- Recep Tayyip Erdogan University, Faculty of Medicine, Department of Medical Biochemistry, Rize, Turkey.
| | - Ertugrul Yigit
- Karadeniz Technical University, Faculty of Medicine, Department of Medical Biochemistry, Trabzon, Turkey
| | - Merve Huner Yigit
- Recep Tayyip Erdogan University, Faculty of Medicine, Department of Medical Biochemistry, Rize, Turkey
| | - Zehra Topal Suzan
- Recep Tayyip Erdogan University, Faculty of Medicine, Department of Histology and Embryology, Rize, Turkey
| | - Eda Yilmaz Kutlu
- Recep Tayyip Erdogan University, Faculty of Medicine, Department of Medical Biochemistry, Rize, Turkey
| | - Soner Karabulut
- Karadeniz Technical University, Faculty of Medicine, Department of Medical Biology, Trabzon, Turkey
| |
Collapse
|
2
|
Zhu L, Liu J, Zeng L, Moonindranath S, An P, Chen H, Xiang Q, Wang Z. Thoracic high resolution computed tomography evaluation of imaging abnormalities of 108 lung cancer patients with different pulmonary function. Cancer Imaging 2024; 24:78. [PMID: 38910260 PMCID: PMC11194896 DOI: 10.1186/s40644-024-00720-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 06/10/2024] [Indexed: 06/25/2024] Open
Abstract
PURPOSE Preserved ratio impaired spirometry (PRISm) and chronic obstructive pulmonary disease (COPD) belong to lung function injury. PRISm is a precursor to COPD. We compared and evaluated the different basic information, imaging findings and survival curves of 108 lung cancer patients with different pulmonary function based on high resolution computed tomography (HRCT). METHODS This retrospective study was performed on 108 lung cancer patients who did pulmonary function test (PFT) and thoracic HRCT. The basic information was evaluated: gender, age, body mass index (BMI), smoke, smoking index (SI). The following pulmonary function findings were evaluated: forced expiratory volume in 1s (FEV1), forced vital capacity (FVC), FEV1/FVC ratio. The following computed tomography (CT) findings were evaluated: appearance (bronchiectasis, pneumonectasis, atelectasis, ground-glass opacities [GGO], interstitial inflammation, thickened bronchial wall), diameter (aortic diameter, pulmonary artery diameter, MPAD/AD ratio, inferior vena cava diameter [IVCD]), tumor (volume, classification, distribution, staging [I, II, III, IV]). Mortality rates were calculated and survival curves were estimated using the Kaplan-Meier method. RESULTS Compared with normal pulmonary function group, PRISm group and COPD group were predominantly male, older, smoked more, poorer lung function and had shorter survival time after diagnosis. There were more abnormal images in PRISm group and COPD group than in normal lung function group (N-C group). In PRISm group and COPD group, lung cancer was found late, and the tumor volume was larger, mainly central squamous carcinoma. But the opposite was true for the N-C group. The PRISm group and COPD group had significant poor survival probability compared with the normal lung function group. CONCLUSIONS Considerable differences regarding basic information, pulmonary function, imaging findings and survival curves are found between normal lung function group and lung function injury group. Lung function injury (PRISm and COPD) should be taken into account in future lung cancer screening studies.
Collapse
Affiliation(s)
- Li Zhu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China
| | - Jiali Liu
- School of Public Health, Southeast University, No. 2 Sipai Lou, Nanjing, 210096, China
| | - Liang Zeng
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China
| | | | - Peng An
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China
| | - Hu Chen
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China
| | - Quanyong Xiang
- School of Public Health, Southeast University, No. 2 Sipai Lou, Nanjing, 210096, China.
- Department of Chronic Non-communicable Disease Control, Jiangsu Provincial Center for Disease Control and Prevention, 172 Jiangsu Road, Nanjing, 210009, China.
| | - Zhongqiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China.
| |
Collapse
|
3
|
Alanazi M, Weng T, McLeod L, Gearing LJ, Smith JA, Kumar B, Saad MI, Jenkins BJ. Cytosolic DNA sensor AIM2 promotes KRAS-driven lung cancer independent of inflammasomes. Cancer Sci 2024; 115:1834-1850. [PMID: 38594840 PMCID: PMC11145135 DOI: 10.1111/cas.16171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/10/2024] [Accepted: 03/23/2024] [Indexed: 04/11/2024] Open
Abstract
Constitutively active KRAS mutations are among the major drivers of lung cancer, yet the identity of molecular co-operators of oncogenic KRAS in the lung remains ill-defined. The innate immune cytosolic DNA sensor and pattern recognition receptor (PRR) Absent-in-melanoma 2 (AIM2) is best known for its assembly of multiprotein inflammasome complexes and promoting an inflammatory response. Here, we define a role for AIM2, independent of inflammasomes, in KRAS-addicted lung adenocarcinoma (LAC). In genetically defined and experimentally induced (nicotine-derived nitrosamine ketone; NNK) LAC mouse models harboring the KrasG12D driver mutation, AIM2 was highly upregulated compared with other cytosolic DNA sensors and inflammasome-associated PRRs. Genetic ablation of AIM2 in KrasG12D and NNK-induced LAC mouse models significantly reduced tumor growth, coincident with reduced cellular proliferation in the lung. Bone marrow chimeras suggest a requirement for AIM2 in KrasG12D-driven LAC in both hematopoietic (immune) and non-hematopoietic (epithelial) cellular compartments, which is supported by upregulated AIM2 expression in immune and epithelial cells of mutant KRAS lung tissues. Notably, protection against LAC in AIM2-deficient mice is associated with unaltered protein levels of mature Caspase-1 and IL-1β inflammasome effectors. Moreover, genetic ablation of the key inflammasome adapter, ASC, did not suppress KrasG12D-driven LAC. In support of these in vivo findings, AIM2, but not mature Caspase-1, was upregulated in human LAC patient tumor biopsies. Collectively, our findings reveal that endogenous AIM2 plays a tumor-promoting role, independent of inflammasomes, in mutant KRAS-addicted LAC, and suggest innate immune DNA sensing may provide an avenue to explore new therapeutic strategies in lung cancer.
Collapse
Affiliation(s)
- Mohammad Alanazi
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Teresa Weng
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Louise McLeod
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Linden J. Gearing
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Julian A. Smith
- Department of Surgery, School of Clinical Sciences/Monash HealthMonash UniversityClaytonVictoriaAustralia
| | - Beena Kumar
- Department of Anatomical PathologyMonash HealthClaytonVictoriaAustralia
| | - Mohamed I. Saad
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Brendan J. Jenkins
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
- South Australian immunoGENomics Cancer Institute (SAiGENCI)The University of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
4
|
Saad MI, Jenkins BJ. The protease ADAM17 at the crossroads of disease: revisiting its significance in inflammation, cancer, and beyond. FEBS J 2024; 291:10-24. [PMID: 37540030 DOI: 10.1111/febs.16923] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/04/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
The protease A Disintegrin And Metalloproteinase 17 (ADAM17) plays a central role in the pathophysiology of several diseases. ADAM17 is involved in the cleavage and shedding of at least 80 known membrane-tethered proteins, which subsequently modulate several intracellular signaling pathways, and therefore alter cell behavior. Dysregulated expression and/or activation of ADAM17 has been linked to a wide range of autoimmune and inflammatory diseases, cancer, and cardiovascular disease. In this review, we provide an overview of the current state of knowledge from preclinical models and clinical data on the diverse pathophysiological roles of ADAM17, and discuss the mechanisms underlying ADAM17-mediated protein shedding and the potential therapeutic implications of targeting ADAM17 in these diseases.
Collapse
Affiliation(s)
- Mohamed I Saad
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Vic., Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Vic., Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Vic., Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Vic., Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, SA, Australia
| |
Collapse
|
5
|
Ding T, Yu Y, Gao L, Xiang L, Xu B, Gu B, Chen H. Predictive Roles of ADAM17 in Patient Survival and Immune Cell Infiltration in Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:17069. [PMID: 38069391 PMCID: PMC10707406 DOI: 10.3390/ijms242317069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the deadliest malignant tumour worldwide. The metalloproteinase ADAM17 is associated with tumour formation and development; however, its significance in HCC is unclear. This study aimed to investigate the role of ADAM17 in HCC and the correlation between its expression and immune cell infiltration. ADAM17 expression was analysed in pan-cancer and HCC tissues using The Cancer Genome Atlas and Genotype-Tissue Expression datasets. Kaplan-Meier survival analysis displayed a negative association between ADAM17 expression and the overall survival of patients with HCC. High ADAM17 expression was linked to poor tumour/node (T/N) stage and alpha fetoprotein (AFP) levels. Gene Set Enrichment Analysis, Gene Ontology, and Kyoto Encyclopaedia of Genes and Genomes analyses revealed the enrichment of several pathways, including epithelial-mesenchymal transition, inflammatory response, Hedgehog, and KRAS signalling, in patients with upregulated ADAM17. ADAM17 was shown to be positively correlated with immune cell infiltration and immune checkpoint expression via the Tumour Immune Estimation Resource (TIMER) database and immunohistochemistry analyses. Protein-protein interaction (PPI) network analysis revealed that ADAM17 plays a core role in cancer development and immune evasion. In vitro and in vivo experiments demonstrated that ADAM17 influences HCC growth and metastasis. In conclusion, ADAM17 is upregulated in most cancers, particularly HCC, and is critical in the development and immune evasion of HCC.
Collapse
Affiliation(s)
- Tianlong Ding
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China;
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China; (Y.Y.); (L.G.); (L.X.); (B.X.); (B.G.)
| | - Yang Yu
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China; (Y.Y.); (L.G.); (L.X.); (B.X.); (B.G.)
| | - Lei Gao
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China; (Y.Y.); (L.G.); (L.X.); (B.X.); (B.G.)
| | - Lin Xiang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China; (Y.Y.); (L.G.); (L.X.); (B.X.); (B.G.)
| | - Bo Xu
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China; (Y.Y.); (L.G.); (L.X.); (B.X.); (B.G.)
| | - Baohong Gu
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China; (Y.Y.); (L.G.); (L.X.); (B.X.); (B.G.)
| | - Hao Chen
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China;
| |
Collapse
|
6
|
Li MY, Wang M, Dong M, Wu Z, Zhang R, Wang B, Huang Y, Zhang X, Zhou J, Yi J, Chen GG, Liu LZ. Targeting CD36 determines nicotine derivative NNK-induced lung adenocarcinoma carcinogenesis. iScience 2023; 26:107477. [PMID: 37599821 PMCID: PMC10432206 DOI: 10.1016/j.isci.2023.107477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Smoking carcinogen nicotine-derived nitrosamine ketone (NNK) is the most potent contributor to lung adenocarcinoma (LUAD) development, but the mechanism has not been fully elucidated. Here, we reported that fatty acid translocase CD36 was significantly overexpressed in both human LUAD tissues and NNK-induced A/J mice LUAD tumors. The overexpressed CD36 was positively correlated with Src kinase activation, smoking status, metastasis, and worse overall survival of patients with smoking history. Upon NNK binding with α7 nicotinic acetylcholine receptor (α7nAChR), sarcolemmal CD36 was increased and it interacted with surface α7nAChR and cytosol Src simultaneously, which in turn activated Src and downstream pro-carcinogenic kinase ERK1/2 and Akt, and finally caused LUAD cells to form subcutaneous and pulmonary metastatic tumors. This process could be blocked by CD36 knockdown and CD36 irreversible inhibitor SSO. Furthermore, the effect of NNK was inhibited obviously in CD36-/- A/J mice. Thus, targeting CD36 may provide a breakthrough therapy of LUAD.
Collapse
Affiliation(s)
- Ming-Yue Li
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
- GuangZhou National Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Menghuan Wang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Ming Dong
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
- GuangZhou National Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Zangshu Wu
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
- GuangZhou National Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Rui Zhang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
- GuangZhou National Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Bowen Wang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Yuxi Huang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Xiaoyang Zhang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Jiaying Zhou
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Junbo Yi
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - George Gong Chen
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Li-Zhong Liu
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
| |
Collapse
|
7
|
Chan YJ, Hsiao G, Wan WN, Yang TM, Tsai CH, Kang JJ, Lee YC, Fang TC, Cheng YW, Li CH. Blue light exposure collapses the inner blood-retinal barrier by accelerating endothelial CLDN5 degradation through the disturbance of GNAZ and the activation of ADAM17. Fluids Barriers CNS 2023; 20:31. [PMID: 37095509 PMCID: PMC10124034 DOI: 10.1186/s12987-023-00430-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/07/2023] [Indexed: 04/26/2023] Open
Abstract
Blue light is part of the natural light spectrum that emits high energy. Currently, people are frequently exposed to blue light from 3C devices, resulting in a growing incidence of retinopathy. The retinal vasculature is complex, and retinal vessels not only serve the metabolic needs of the retinal sublayers, but also maintain electrolyte homeostasis by forming the inner blood-retinal barrier (iBRB). The iBRB, which is primarily composed of endothelial cells, has well-developed tight junctions. However, with exposure to blue light, the risks of targeting retinal endothelial cells are currently unknown. We found that endothelial claudin-5 (CLDN5) was rapidly degraded under blue light, coinciding with the activation of a disintegrin and metalloprotease 17 (ADAM17), even at non-cytotoxic lighting. An apparently broken tight junction and a permeable paracellular cleft were observed. Mice exposed to blue light displayed iBRB leakage, conferring attenuation of the electroretinogram b-wave and oscillatory potentials. Both pharmacological and genetic inhibition of ADAM17 remarkably alleviated CLDN5 degradation induced by blue light. Under untreated condition, ADAM17 is sequestered by GNAZ (a circadian-responsive, retina-enriched inhibitory G protein), whereas ADAM17 escapes from GNAZ by blue light illuminance. GNAZ knockdown led to ADAM17 hyperactivation, CLDN5 downregulation, and paracellular permeability in vitro, and retinal damage mimicked blue light exposure in vivo. These data demonstrate that blue light exposure might impair the iBRB by accelerating CLDN5 degradation through the disturbance of the GNAZ-ADAM17 axis.
Collapse
Affiliation(s)
- Yen-Ju Chan
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan
- School of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan
| | - George Hsiao
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| | - Wang-Nok Wan
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan
| | - Tsung-Min Yang
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan
- School of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan
| | - Chi-Hao Tsai
- Department of Ophthalmology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jaw-Jou Kang
- Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yu-Cheng Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Te-Chao Fang
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Cheng
- School of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan.
- TMU Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan.
| | - Ching-Hao Li
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- TMU Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
8
|
Kelesidis T, Sharma M, Satta S, Tran E, Gupta R, Araujo JA, Middlekauff HR. Ectodomain shedding of proteins important for SARS-CoV-2 pathogenesis in plasma of tobacco cigarette smokers compared to electronic cigarette vapers: a cross-sectional study. J Mol Med (Berl) 2023; 101:327-335. [PMID: 36759357 PMCID: PMC9911331 DOI: 10.1007/s00109-023-02286-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 02/11/2023]
Abstract
The impact of tobacco cigarette (TCIG) smoking and electronic cigarette (ECIG) vaping on the risk of development of severe COVID-19 is controversial. The present study investigated levels of proteins important for SARS-CoV-2 pathogenesis present in plasma because of ectodomain shedding in smokers, ECIG vapers, and non-smokers (NSs). Protein levels of soluble angiotensin-converting enzyme 2 (ACE2), angiotensin (Ang) II (the ligand of ACE2), Ang 1-7 (the main peptide generated from Ang II by ACE2 activity), furin (a protease that increases the affinity of the SARS-CoV-2 spike protein for ACE2), and products of ADAM17 shedding activity that predict morbidity in COVID-19 (IL-6/IL-6R alpha (IL-6/IL-6Rα) complex, soluble CD163 (sCD163), L-selectin) were determined in plasma from 45 NSs, 30 ECIG vapers, and 29 TCIG smokers using ELISA. Baseline characteristics of study participants did not differ among groups. TCIG smokers had increased sCD163, L-selectin compared to NSs and ECIG vapers (p < 0.001 for all comparisons). ECIG vapers had higher plasma furin compared to both NSs (p < 0.001) and TCIG smokers (p < 0.05). ECIG vaping and TCIG smoking did not impact plasma ACE2, Ang 1-7, Ang II, and IL-6 levels compared to NSs (p > 0.1 for all comparisons). Further studies are needed to determine if increased furin activity and ADAM17 shedding activity that is associated with increased plasma levels of sCD163 and L-selectin in healthy young TCIG smokers may contribute to the future development of severe COVID-19 and cardiovascular complications of post-acute COVID-19 syndrome.
Collapse
Affiliation(s)
- Theodoros Kelesidis
- Department of Medicine, Division of Infectious Disease, David Geffen School of Medicine at UCLA, 47-100 CHS, 10833 Le Conte Avenue, Los Angeles, CA, 90095, USA.
| | - Madhav Sharma
- Department of Medicine, Division of Infectious Disease, David Geffen School of Medicine at UCLA, 47-100 CHS, 10833 Le Conte Avenue, Los Angeles, CA, 90095, USA
| | - Sandro Satta
- Department of Medicine, Division of Infectious Disease, David Geffen School of Medicine at UCLA, 47-100 CHS, 10833 Le Conte Avenue, Los Angeles, CA, 90095, USA
| | - Elizabeth Tran
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Rajat Gupta
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jesus A Araujo
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Environmental Health Sciences, Fielding School of Public Health at UCLA, Los Angeles, CA, USA
| | - Holly R Middlekauff
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
9
|
Wang K, Xuan Z, Liu X, Zheng M, Yang C, Wang H. Immunomodulatory role of metalloproteinase ADAM17 in tumor development. Front Immunol 2022; 13:1059376. [PMID: 36466812 PMCID: PMC9715963 DOI: 10.3389/fimmu.2022.1059376] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/03/2022] [Indexed: 12/25/2023] Open
Abstract
ADAM17 is a member of the a disintegrin and metalloproteinase (ADAM) family of transmembrane proteases involved in the shedding of some cell membrane proteins and regulating various signaling pathways. More than 90 substrates are regulated by ADAM17, some of which are closely relevant to tumor formation and development. Besides, ADAM17 is also responsible for immune regulation and its substrate-mediated signal transduction. Recently, ADAM17 has been considered as a major target for the treatment of tumors and yet its immunomodulatory roles and mechanisms remain unclear. In this paper, we summarized the recent understanding of structure and several regulatory roles of ADAM17. Importantly, we highlighted the immunomodulatory roles of ADAM17 in tumor development, as well as small molecule inhibitors and monoclonal antibodies targeting ADAM17.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Zixue Xuan
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiaoyan Liu
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Meiling Zheng
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, China
| | - Haiyong Wang
- Department of Internal Medicine Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
10
|
Blockade of the protease ADAM17 ameliorates experimental pancreatitis. Proc Natl Acad Sci U S A 2022; 119:e2213744119. [PMID: 36215509 PMCID: PMC9586293 DOI: 10.1073/pnas.2213744119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acute and chronic pancreatitis, the latter associated with fibrosis, are multifactorial inflammatory disorders and leading causes of gastrointestinal disease-related hospitalization. Despite the global health burden of pancreatitis, currently, there are no effective therapeutic agents. In this regard, the protease A Disintegrin And Metalloproteinase 17 (ADAM17) mediates inflammatory responses through shedding of bioactive inflammatory cytokines and mediators, including tumor necrosis factor α (TNFα) and the soluble interleukin (IL)-6 receptor (sIL-6R), the latter of which drives proinflammatory IL-6 trans-signaling. However, the role of ADAM17 in pancreatitis is unclear. To address this, Adam17ex/ex mice-which are homozygous for the hypomorphic Adam17ex allele resulting in marked reduction in ADAM17 expression-and their wild-type (WT) littermates were exposed to the cerulein-induced acute pancreatitis model, and acute (1-wk) and chronic (20-wk) pancreatitis models induced by the cigarette smoke carcinogen nicotine-derived nitrosamine ketone (NNK). Our data reveal that ADAM17 expression was up-regulated in pancreatic tissues of animal models of pancreatitis. Moreover, the genetic (Adam17ex/ex mice) and therapeutic (ADAM17 prodomain inhibitor [A17pro]) targeting of ADAM17 ameliorated experimental pancreatitis, which was associated with a reduction in the IL-6 trans-signaling/STAT3 axis. This led to reduced inflammatory cell infiltration, including T cells and neutrophils, as well as necrosis and fibrosis in the pancreas. Furthermore, up-regulation of the ADAM17/IL-6 trans-signaling/STAT3 axis was a feature of pancreatitis patients. Collectively, our findings indicate that the ADAM17 protease plays a pivotal role in the pathogenesis of pancreatitis, which could pave the way for devising novel therapeutic options to be deployed against this disease.
Collapse
|
11
|
Hua Q, Liu Y, Li M, Li X, Chen W, Diao Q, Ling Y, Jiang Y. Upregulation of Circ_0035266 Contributes to the Malignant Progression of Inflammation-Associated Malignant Transformed Cells Induced by Tobacco-Specific Carcinogen NNK. Toxicol Sci 2022; 189:203-215. [PMID: 35866630 DOI: 10.1093/toxsci/kfac072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cigarette smoking-induced chronic inflammation has been considered a vital driver of lung tumorigenesis. The compounds 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a tobacco-specific carcinogen, and lipopolysaccharide (LPS), an inflammatory inducer, are important components of tobacco smoke which have been implicated in inflammation-driven carcinogenesis. However, the biological effects and underlying mechanisms of LPS-mediated inflammation on NNK-induced tumorigenesis are still unclear. In this study, BEAS-2B human bronchial epithelial cells were exposed to NNK, LPS or both, for short- or long-term periods. We found that acute LPS exposure promoted the secretion of granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin (IL)-6 in NNK-treated BEAS-2B cells. In addition, chronic LPS exposure facilitated the NNK-induced malignant transformation process by promoting cell proliferation, cell cycle alteration, migration, and clonal formation. Previously, we determined that circular RNA circ_0035266 enhanced cellular inflammation in response to NNK + LPS by sponging miR-181d-5p and regulating expression of its downstream target DEAD-Box Helicase 3 X-Linked (DDX3X). Here, we found that knockdown of circ_0035266 or DDX3X led to a remarkable inhibition of the proliferation, cell cycle progression, and migration of NNK + LPS-transformed BEAS-2B cells, whereas overexpression of these genes produced the opposite effects, indicating the oncogenic roles of circ_0035266 and DDX3X in the malignant progression of chronic inflammation-driven malignant transformed cells. Moreover, the regulatory relationships among circ_0035266, miR-181d-5p, and DDX3X were further confirmed using a group of lung cancer tissues. Conclusively, our findings provide novel insights into our understanding of inflammation-driven tumorigenesis using a cellular malignant transformation model, and indicate a novel tumor-promoting role for circ_0035266 in chemical carcinogenesis.
Collapse
Affiliation(s)
- Qiuhan Hua
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, P.R. China
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Yufei Liu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, P.R. China
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Meizhen Li
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Xueqi Li
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Wei Chen
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Qinqin Diao
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Yihui Ling
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Yiguo Jiang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, P.R. China
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, P.R. China
| |
Collapse
|
12
|
Xie C, Zhu J, Huang C, Yang X, Wang X, Meng Y, Geng S, Wu J, Shen H, Hu Z, Meng Z, Li X, Zhong C. Interleukin-17A mediates tobacco smoke-induced lung cancer epithelial-mesenchymal transition through transcriptional regulation of ΔNp63α on miR-19. Cell Biol Toxicol 2022; 38:273-289. [PMID: 33811578 DOI: 10.1007/s10565-021-09594-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/21/2021] [Indexed: 10/21/2022]
Abstract
Interleukin-17A (IL-17A) is an essential inflammatory cytokine in the progress of carcinogenesis. Tobacco smoke (TS) is a major risk factor of lung cancer that influences epithelial-mesenchymal transition (EMT) process. However, the potential mechanism by which IL-17A mediates the progression of lung cancer in TS-induced EMT remains elusive. In the present study, it was revealed that the IL-17A level was elevated in lung cancer tissues, especially in tumor tissues of cases with experience of smoking, and a higher IL-17A level was correlated with induction of EMT in those specimens. Moreover, the expression of ΔNp63α was increased in IL-17A-stimulated lung cancer cells. ΔNp63α functioned as a key oncogene that bound to the miR-17-92 cluster promoter and transcriptionally increased the expression of miR-19 in lung cancer cells. Overexpression of miR-19 promoted EMT in lung cancer with downregulation of E-cadherin and upregulation of N-cadherin, while its inhibition suppressed EMT. Finally, the upregulated levels of IL-17A, ΔNp63α, and miR-19 along with the alteration of EMT-associated biomarkers were found in lung tissues of TS-exposed mice. Taken together, the abovementioned results suggest that IL-17A increases ΔNp63α expression, transcriptionally elevates miR-19 expression, and promotes TS-induced EMT in lung cancer. These findings may provide a new insight for the identification of therapeutic targets for lung cancer.
Collapse
Affiliation(s)
- Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Jianyun Zhu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215008, Jiangsu, China
| | - Cong Huang
- Guangde Center for Diseases Prevention and Control, Guangde, 242200, Anhui, China
| | - Xue Yang
- Department of Clinical Nutrition, Nanjing Drum Tower Hospital, Nanjing, 211166, Jiangsu, China
| | - Xiaoqian Wang
- Department of Clinical Nutrition, Nanjing Drum Tower Hospital, Nanjing, 211166, Jiangsu, China
| | - Yu Meng
- Wuxi Center for Disease Control and Prevention, The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Shanshan Geng
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Jieshu Wu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Hongbin Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211126, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention & Treatment, Cancer Center, Nanjing Medical University, Nanjing, 211126, China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211126, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention & Treatment, Cancer Center, Nanjing Medical University, Nanjing, 211126, China
| | - Zili Meng
- Department of Respiratory Medicine, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, 223300, Jiangsu, China.
| | - Xiaoting Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
13
|
Chen S, Li D, Yu D, Li M, Ye L, Jiang Y, Tang S, Zhang R, Xu C, Jiang S, Wang Z, Aschner M, Zheng Y, Chen L, Chen W. Determination of tipping point in course of PM 2.5 organic extracts-induced malignant transformation by dynamic network biomarkers. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128089. [PMID: 34933256 DOI: 10.1016/j.jhazmat.2021.128089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The dynamic network biomarkers (DNBs) are designed to identify the tipping point and specific molecules in initiation of PM2.5-induced lung cancers. To discover early-warning signals, we analyzed time-series gene expression datasets over a course of PM2.5 organic extraction-induced human bronchial epithelial (HBE) cell transformation (0th~16th week). A composition index of DNB (CIDNB) was calculated to determine correlations and fluctuations in molecule clusters at each timepoint. We identified a group of genes with the highest CIDNB at the 10th week, implicating a tipping point and corresponding DNBs. Functional experiments revealed that manipulating respective DNB genes at the tipping point led to remarkable changes in malignant phenotypes, including four promoters (GAB2, NCF1, MMP25, LAPTM5) and three suppressors (BATF2, DOK3, DAP3). Notably, co-altered expression of seven core DNB genes resulted in an enhanced activity of malignant transformation compared to effects of single-gene manipulation. Perturbation of pathways (EMT, HMGB1, STAT3, NF-κB, PTEN) appeared in HBE cells at the tipping point. The core DNB genes were involved in regulating lung cancer cell growth and associated with poor survival, indicating their synergistic effects in initiation and development of lung cancers. These findings provided novel insights into the mechanism of dynamic networks attributable to PM2.5-induced cell transformation.
Collapse
Affiliation(s)
- Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Dianke Yu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao 266021, China
| | - Miao Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Lizhu Ye
- Department of Toxicology, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Yue Jiang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Shijie Tang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Rui Zhang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Chi Xu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Shuyun Jiang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Ziwei Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao 266021, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China.
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China.
| |
Collapse
|
14
|
Rahn S, Becker-Pauly C. Meprin and ADAM proteases as triggers of systemic inflammation in sepsis. FEBS Lett 2022; 596:534-556. [PMID: 34762736 DOI: 10.1002/1873-3468.14225] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 12/24/2022]
Abstract
Systemic inflammatory disorders (SIDs) comprise a broad range of diseases characterized by dysregulated excessive innate immune responses. Severe forms of SIDs can lead to organ failure and death, and their increasing incidence represents a major issue for the healthcare system. Protease-mediated ectodomain shedding of cytokines and their receptors represents a central mechanism in the regulation of inflammatory responses. The metalloprotease A disintegrin and metalloproteinase (ADAM) 17 is the best-characterized ectodomain sheddase capable of releasing TNF-α and soluble IL-6 receptor, which are decisive factors of systemic inflammation. Recently, meprin metalloproteases were also identified as IL-6 receptor sheddases and activators of the pro-inflammatory cytokines IL-1β and IL-18. In different mouse models of SID, particularly those mimicking a sepsis-like phenotype, ADAM17 and meprins have been found to promote disease progression. In this review, we summarize the role of ADAM10, ADAM17, and meprins in the onset and progression of sepsis and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Sascha Rahn
- Biochemical Institute, Christian-Albrechts-University Kiel, Germany
| | | |
Collapse
|
15
|
MiR-186 Suppressed Growth, Migration, and Invasion of Lung Adenocarcinoma Cells via Targeting Dicer1. JOURNAL OF ONCOLOGY 2021; 2021:6217469. [PMID: 34804161 PMCID: PMC8601821 DOI: 10.1155/2021/6217469] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 02/08/2023]
Abstract
Objective Globally, the fatal form of lung cancer is non-small-cell lung cancer (NSCLC), and its most common subtype is lung adenocarcinoma (LUAD). In cancer development and progression, miRNAs play key roles primarily in interacting with cancer-related genes. The main focus of this research was to examine the biological roles of miR-186 in LUAD. Methods We examined tissues of LUAD and lung cancer cell lines. The expressions of miR-186, Dicer1, Ki-67, and PCNA were determined by immunohistochemistry (IHC), real-time quantitative PCR (RT-PCR), and western blot assays. The CCK-8 and transwell assays were used to determine cell proliferation, migration, and invasion. To determine the association between miR-186 and Dicer1, a luciferase assay was used. Results MiR-186 expression was found to be lower in LUAD tissues, and this was correlated to TNM stage and lymph node metastasis in LUAD patients. miR-186 upregulation significantly reduced the proliferation rate and the level of Ki67 and PCNA of LUAD cell lines HCC827 and A549. Transwell assay exhibited that miR-186 upregulation considerably reduced HCC827 and A549 cells' migration and invasion abilities. Furthermore, we also confirmed that Dicer1 was a direct target of miR-186. Importantly, Dicer1 overexpression abolished the suppression of miR-186 mimics on cell proliferation, migration, and invasion of HCC827 and A549 cells. Conclusion These results indicated that the miR-186/Dicer1 pathway is critical for regulating LUAD cell proliferation, migration, and invasion.
Collapse
|
16
|
ADAM17 orchestrates Interleukin-6, TNFα and EGF-R signaling in inflammation and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119141. [PMID: 34610348 DOI: 10.1016/j.bbamcr.2021.119141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
It was realized in the 1990s that some membrane proteins such as TNFα, both TNF receptors, ligands of the EGF-R and the Interleukin-6 receptor are proteolytically cleaved and are shed from the cell membrane as soluble proteins. The major responsible protease is a metalloprotease named ADAM17. So far, close to 100 substrates, including cytokines, cytokine receptors, chemokines and adhesion molecules of ADAM17 are known. Therefore, ADAM17 orchestrates many different signaling pathways and is a central signaling hub in inflammation and carcinogenesis. ADAM17 plays an important role in the biology of Interleukin-6 (IL-6) since the generation of the soluble Interleukin-6 receptor (sIL-6R) is needed for trans-signaling, which has been identified as the pro-inflammatory activity of this cytokine. In contrast, Interleukin-6 signaling via the membrane-bound Interleukin-6 receptor is mostly regenerative and protective. Probably due to its broad substrate spectrum, ADAM17 is essential for life and most of the few human individuals identified with ADAM17 gene defects died at young age. Although the potential of ADAM17 as a therapeutic target has been recognized, specific blockade of ADAM17 is not trivial since the metalloprotease domain of ADAM17 shares high structural homology with other proteases, in particular matrix metalloproteases. Here, the critical functions of ADAM17 in IL-6, TNFα and EGF-R pathways and strategies of therapeutic interventions are discussed.
Collapse
|
17
|
Dräger O, Metz K, Busch M, Dünker N. Role of L1CAM in retinoblastoma tumorigenesis: identification of novel therapeutic targets. Mol Oncol 2021; 16:957-981. [PMID: 34228897 PMCID: PMC8847994 DOI: 10.1002/1878-0261.13054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/11/2021] [Accepted: 07/05/2021] [Indexed: 11/08/2022] Open
Abstract
The study presented focuses on the role of the neuronal cell adhesion molecule L1 cell adhesion molecule (L1CAM) in retinoblastoma (RB), the most common malignant intraocular childhood tumor. L1CAM is differentially expressed in a variety of human cancers and has been suggested as a promising therapeutic target. We likewise observed differential expression patterns for L1CAM in RB cell lines and patient samples. The two proteases involved in ectodomain shedding of L1CAM (L1CAM sheddases: ADAM10 and ADAM17) were likewise differentially expressed in the RB cell lines investigated, and an involvement in L1CAM processing in RB cells could be verified. We also identified ezrin, galectin-3, and fibroblast growth factor basic as L1CAM signaling target genes in RB cells. Lentiviral L1CAM knockdown induced apoptosis and reduced cell viability, proliferation, growth, and colony formation capacity of RB cells, whereas L1CAM-overexpressing RB cells displayed the opposite effects. Chicken chorioallantoic membrane assays revealed that L1CAM depletion decreases the tumorigenic and migration potential of RB cells in vivo. Moreover, L1CAM depletion decreased viability and tumor growth of etoposide-resistant RB cell lines upon etoposide treatment in vitro and in vivo. Thus, L1CAM and its processing sheddases are potential novel targets for future therapeutic RB approaches.
Collapse
Affiliation(s)
- Oliver Dräger
- Institute of Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, Medical Faculty, Germany
| | - Klaus Metz
- Institute of Pathology, University of Duisburg-Essen, Medical Faculty, Germany
| | - Maike Busch
- Institute of Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, Medical Faculty, Germany
| | - Nicole Dünker
- Institute of Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, Medical Faculty, Germany
| |
Collapse
|
18
|
Yang G, Cui M, Jiang W, Sheng J, Yang Y, Zhang X. Molecular switch in human diseases-disintegrin and metalloproteinases, ADAM17. Aging (Albany NY) 2021; 13:16859-16872. [PMID: 34182543 PMCID: PMC8266367 DOI: 10.18632/aging.203200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/18/2021] [Indexed: 01/01/2023]
Abstract
The ADAMs (a disintegrin and metalloproteinase) are a family of cell surface proteins with crucial roles in the regulation of cell adhesion, cell proliferation to migration, proteolysis and cell signaling transduction pathways. Among these enzymes, the ADAM17 shows significant effects in the “ectodomain shedding” of its substrates such as cytokines (e.g., tumor necrosis factor α, TNFα), growth factors (e.g., epidermal growth factor, EGF), adhesion proteins (e.g., L-selectin), and their receptors (e.g., IL-6R and TNFα). Several studies focus on the underlying molecular mechanisms of ADAM17 in diseased conditions. Here, we took several different approaches to elucidate the function of ADAM17, the participation of ADAM17 in several human diseases, and the potential as targeted therapy reagents. As more and more studies verify the miRNA-mediated expression variation of ADAM17, the specific regulation network of miRNAs and ADAM17 was exploited in this review as well.
Collapse
Affiliation(s)
- Guang Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Mengying Cui
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Weibo Jiang
- Department of Orthopaedic, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Yongsheng Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| |
Collapse
|
19
|
Dawson RE, Jenkins BJ, Saad MI. IL-6 family cytokines in respiratory health and disease. Cytokine 2021; 143:155520. [PMID: 33875334 DOI: 10.1016/j.cyto.2021.155520] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023]
Abstract
Chronic lung diseases including asthma, chronic obstructive pulmonary disease (COPD) and lung fibrosis represent a major burden on healthcare systems with limited effective therapeutic options. Developing effective treatments for these debilitating diseases requires an understanding of how alterations at the molecular level affect lung macroscopic architecture. A common theme among these lung disorders is the presence of an underlying dysregulated immune system which can lead to sustained chronic inflammation. In this respect, several inflammatory cytokines have been implicated in the pathogenesis of lung diseases, thus leading to the notion that cytokines are attractive therapeutic targets for these disorders. In this review, we discuss and highlight the recent breakthroughs that have enhanced our understanding of the role of the interleukin (IL)-6 family of cytokines in lung homeostasis and chronic diseases including asthma, COPD, lung fibrosis and lung cancer.
Collapse
Affiliation(s)
- Ruby E Dawson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Mohamed I Saad
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
20
|
Saad MI, McLeod L, Hodges C, Vlahos R, Rose-John S, Ruwanpura S, Jenkins BJ. ADAM17 Deficiency Protects against Pulmonary Emphysema. Am J Respir Cell Mol Biol 2021; 64:183-195. [PMID: 33181031 DOI: 10.1165/rcmb.2020-0214oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/01/2020] [Indexed: 12/22/2022] Open
Abstract
Pulmonary emphysema is the major debilitating component of chronic obstructive pulmonary disease (COPD), which is a leading cause of morbidity and mortality worldwide. The ADAM17 (A disintegrin and metalloproteinase 17) protease mediates inflammation via ectodomain shedding of numerous proinflammatory cytokines, cytokine receptors, and adhesion molecules; however, its role in the pathogenesis of emphysema and COPD is poorly understood. This study aims to define the role of the protease ADAM17 in the pathogenesis of pulmonary emphysema. ADAM17 protein expression and activation was investigated in lung biopsies from patients with emphysema, as well as lungs of the emphysematous gp130F/F mouse model and an acute (4 d) cigarette smoke (CS)-induced lung pathology model. The Adam17ex/ex mice, which display significantly reduced global ADAM17 expression, were coupled with emphysema-prone gp130F/F mice to produce gp130F/F:Adam17ex/ex. Both Adam17ex/ex and wild-type mice were subjected to acute CS exposure. Histological, immunohistochemical, immunofluorescence, and molecular analyses as well as lung function tests were performed to assess pulmonary emphysema, inflammation, and alveolar cell apoptosis. ADAM17 was hyperphosphorylated in the lungs of patients with emphysema and also in emphysematous gp130F/F and CS-exposed mice. ADAM17 deficiency ameliorated the development of pulmonary emphysema in gp130F/F mice by suppressing elevated alveolar cell apoptosis. In addition, genetic blockade of ADAM17 protected mice from CS-induced pulmonary inflammation and alveolar cell apoptosis. Our study places the protease ADAM17 as a central molecular switch implicated in the development of pulmonary emphysema, which paves the way for using ADAM17 inhibitors as potential therapeutic agents to treat COPD and emphysema.
Collapse
Affiliation(s)
- Mohamed I Saad
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Louise McLeod
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Christopher Hodges
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia; and
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University, Kiel, Germany
| | - Saleela Ruwanpura
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
21
|
The role of microRNA-338-3p in cancer: growth, invasion, chemoresistance, and mediators. Life Sci 2021; 268:119005. [PMID: 33421526 DOI: 10.1016/j.lfs.2020.119005] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022]
Abstract
Cancer still remains as one of the leading causes of death worldwide. Metastasis and proliferation are abnormally increased in cancer cells that subsequently, mediate resistance of cancer cells to different therapies such as radio-, chemo- and immune-therapy. MicroRNAs (miRNAs) are endogenous short non-coding RNAs that can regulate expression of target genes at post-transcriptional level and capable of interaction with mRNA-coding genes. Vital biological mechanisms including apoptosis, migration and differentiation are modulated by these small molecules. MiRNAs are key players in regulating cancer proliferation and metastasis as well as cancer therapy response. MiRNAs can function as both tumor-suppressing and tumor-promoting factors. In the present review, regulatory impact of miRNA-338-3p on cancer growth and migration is discussed. This new emerging miRNA can regulate response of cancer cells to chemotherapy and radiotherapy. It seems that miRNA-338-3p has dual role in cancer chemotherapy, acting as tumor-promoting or tumor-suppressor factor. Experiments reveal anti-tumor activity of miRNA-338-3p in cancer. Hence, increasing miRNA-338-3p expression is of importance in effective cancer therapy. Long non-coding RNAs, circular RNAs and hypoxia are potential upstream mediators of miRNA-338-3p in cancer. Anti-tumor agents including baicalin and arbutin can promote expression of miRNA-338-3p in suppressing cancer progression. These topics are discussed to shed some light on function of miRNA-338-3p in cancer cells.
Collapse
|
22
|
Schumacher N, Rose-John S, Schmidt-Arras D. ADAM-Mediated Signalling Pathways in Gastrointestinal Cancer Formation. Int J Mol Sci 2020; 21:ijms21145133. [PMID: 32698506 PMCID: PMC7404302 DOI: 10.3390/ijms21145133] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Tumour growth is not solely driven by tumour cell-intrinsic mechanisms, but also depends on paracrine signals provided by the tumour micro-environment. These signals comprise cytokines and growth factors that are synthesized as trans-membrane proteins and need to be liberated by limited proteolysis also termed ectodomain shedding. Members of the family of A disintegrin and metalloproteases (ADAM) are major mediators of ectodomain shedding and therefore initiators of paracrine signal transduction. In this review, we summarize the current knowledge on how ADAM proteases on tumour cells but also on cells of the tumour micro-environment contribute to the formation of gastrointestinal tumours, and discuss how these processes can be exploited pharmacologically.
Collapse
|
23
|
Ni P, Yu M, Zhang R, He M, Wang H, Chen S, Duan G. Prognostic Significance of ADAM17 for Gastric Cancer Survival: A Meta-Analysis. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:322. [PMID: 32610677 PMCID: PMC7404708 DOI: 10.3390/medicina56070322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/14/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022]
Abstract
Background and objectives: The prognostic role of a disintegrin and metalloproteinase (ADAM) 17 has been widely assessed in gastric cancer. However, the results are inconsistent. We performed a meta-analysis to evaluate the prognostic significance of ADAM17 and its association with clinicopathological parameters. Methods: The databases of PubMed, Web of Science, and Embase were searched for relevant articles published up to April 2020. The reported hazard ratios (HRs) and odds ratios (ORs) and their corresponding 95% confidence intervals (CIs) were pooled to evaluate the strength of the association. Stata 12.1 was used to perform statistical analyses. Results: Seven studies, including 1757 patients, were screened for the meta-analysis. Compared with the high ADAM17 expression group, the pooled HR was higher in the low ADAM17 expression group (HR = 2.04, 95% CI 1.66-2.50; I2 = 18.1%; p = 0.299). High ADAM17 expression was also related to the tumor node metastasis (TNM) stages (OR = 4.09, 95% CI 1.85-9.04; I2 = 84.1%; p = 0.000), lymph node metastasis (OR = 3.08, 95% CI 1.13-8.36; I2 = 79.7%; p = 0.007), and ages (OR = 1.65, 95% CI 1.24-2.21; I2 = 0%; p = 0.692) of the gastric patients. Conclusions: This meta-analysis revealed that ADAM17 is a significant biomarker for poor prognosis in gastric cancer.
Collapse
Affiliation(s)
- Peng Ni
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.N.); (M.Y.); (M.H.); (H.W.); (S.C.); (G.D.)
| | - Mingyang Yu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.N.); (M.Y.); (M.H.); (H.W.); (S.C.); (G.D.)
| | - Rongguang Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.N.); (M.Y.); (M.H.); (H.W.); (S.C.); (G.D.)
- College of Public Health, Hainan Medical University, Haikou 571199, China
| | - Mengya He
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.N.); (M.Y.); (M.H.); (H.W.); (S.C.); (G.D.)
| | - Haiyan Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.N.); (M.Y.); (M.H.); (H.W.); (S.C.); (G.D.)
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.N.); (M.Y.); (M.H.); (H.W.); (S.C.); (G.D.)
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.N.); (M.Y.); (M.H.); (H.W.); (S.C.); (G.D.)
| |
Collapse
|
24
|
Abstract
Proteolysis has emerged as a key post-translational regulator of the function of molecules on the cell surface and in the extracellular milieu. In principle, proteolysis can activate or inactivate a substrate, or can change its functional properties. ADAMs (a disintegrin and metalloprotease) and ADAMTS (a disintegrin-like and metalloprotease domain with thrombospondin type 1 repeats) proteases are related members of a superfamily of metallo-endopeptidases that also includes MMPs and astacins. ADAMs are integral membrane proteins that typically cleave other membrane anchored proteins, whereas ADAMTS proteases lack a membrane anchor, and process both cell-surface and secreted molecules, the latter mostly extracellular matrix (ECM) components. ADAMs are implicated in fertilization, neurogenesis, in regulating the function of ligands for the EGF-receptor, and in the release of proteins such as the pro-inflammatory cytokine TNFα from the plasma membrane. ADAMTS proteases have key roles in embryonic development, including lung development, the molecular maturation of von Willebrand factor and procollagen as well as organization of fibrillin microfibrils in ECM, and are implicated in the pathogenesis of diverse lung and airway disorders. Here, we provide a general overview of the biochemical properties and physiological functions of ADAMs and ADAMTS proteases and describe their relevance to lung and airway disorders.
Collapse
|
25
|
ADAM17 Activity and IL-6 Trans-Signaling in Inflammation and Cancer. Cancers (Basel) 2019; 11:cancers11111736. [PMID: 31694340 PMCID: PMC6895846 DOI: 10.3390/cancers11111736] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 11/02/2019] [Indexed: 02/08/2023] Open
Abstract
All ligands of the epidermal growth factor receptor (EGF-R) are transmembrane proteins, which need to be proteolytically cleaved in order to be systemically active. The major protease responsible for this cleavage is the membrane metalloprotease ADAM17, which also has been implicated in cleavage of TNFα and interleukin-6 (IL-6) receptor. It has been recently shown that in the absence of ADAM17, the main protease for EGF-R ligand processing, colon cancer formation is largely abrogated. Intriguingly, colon cancer formation depends on EGF-R activity on myeloid cells rather than on intestinal epithelial cells. A major activity of EGF-R on myeloid cells is the stimulation of IL-6 synthesis. Subsequently, IL-6 together with the ADAM17 shed soluble IL-6 receptor acts on intestinal epithelial cells via IL-6 trans-signaling to induce colon cancer formation, which can be blocked by the inhibitor of IL-6 trans-signaling, sgp130Fc. Blockade of IL-6 trans-signaling therefore offers a new therapeutic window downstream of the EGF-R for the treatment of colon cancer and possibly of other EGF-R related neoplastic diseases.
Collapse
|
26
|
Regulation of Fibrotic Processes in the Liver by ADAM Proteases. Cells 2019; 8:cells8101226. [PMID: 31601007 PMCID: PMC6830092 DOI: 10.3390/cells8101226] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 12/18/2022] Open
Abstract
Fibrosis in the liver is mainly associated with the activation of hepatic stellate cells (HSCs). Both activation and clearance of HSCs can be mediated by ligand–receptor interactions. Members of the a disintegrin and metalloprotease (ADAM) family are involved in the proteolytic release of membrane-bound ligands and receptor ectodomains and the remodelling of the extracellular matrix. ADAM proteases are therefore major regulators of intercellular signalling pathways. In the present review we discuss how ADAM proteases modulate pro- and anti-fibrotic processes and how ADAM proteases might be harnessed therapeutically in the future.
Collapse
|
27
|
Saad MI, Rose-John S, Jenkins BJ. ADAM17: An Emerging Therapeutic Target for Lung Cancer. Cancers (Basel) 2019; 11:E1218. [PMID: 31438559 PMCID: PMC6769596 DOI: 10.3390/cancers11091218] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/07/2019] [Accepted: 08/17/2019] [Indexed: 12/23/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality, which histologically is classified into small-cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). NSCLC accounts for approximately 85% of all lung cancer diagnoses, with the majority of patients presenting with lung adenocarcinoma (LAC). KRAS mutations are a major driver of LAC, and are closely related to cigarette smoking, unlike mutations in the epidermal growth factor receptor (EGFR) which arise in never-smokers. Although the past two decades have seen fundamental progress in the treatment and diagnosis of NSCLC, NSCLC still is predominantly diagnosed at an advanced stage when therapeutic interventions are mostly palliative. A disintegrin and metalloproteinase 17 (ADAM17), also known as tumour necrosis factor-α (TNFα)-converting enzyme (TACE), is responsible for the protease-driven shedding of more than 70 membrane-tethered cytokines, growth factors and cell surface receptors. Among these, the soluble interleukin-6 receptor (sIL-6R), which drives pro-inflammatory and pro-tumourigenic IL-6 trans-signaling, along with several EGFR family ligands, are the best characterised. This large repertoire of substrates processed by ADAM17 places it as a pivotal orchestrator of a myriad of physiological and pathological processes associated with the initiation and/or progression of cancer, such as cell proliferation, survival, regeneration, differentiation and inflammation. In this review, we discuss recent research implicating ADAM17 as a key player in the development of LAC, and highlight the potential of ADAM17 inhibition as a promising therapeutic strategy to tackle this deadly malignancy.
Collapse
Affiliation(s)
- Mohamed I Saad
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University, D-24098 Kiel, Germany
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3168, Australia.
| |
Collapse
|