1
|
Unger K, Wylie J, Karbach J. Age-related changes in the effects of induced positive affect on executive control in younger and older adults-evidence from a task-switching paradigm. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2025; 32:169-192. [PMID: 38847126 DOI: 10.1080/13825585.2024.2361960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/23/2023] [Indexed: 02/25/2025]
Abstract
Positive affect has been shown to promote task-switching performance in healthy young adults. Given the well-documented age-related decline in executive functioning, we asked whether induced positive affect also helps to improve task-switching performance in older adults. Sixty-eight younger and older adults performed a switching task before and after they had watched cartoon clips (positive affect group) or documentaries (neutral affect group). Positive affect was associated with reduced error rates across all trial types in both age groups. In older adults, the increase in accuracy came at the expense of slower response times for task-switch trials, resulting in greater switch costs. This pattern of findings is inconsistent with the popular notion that positive affect supports greater cognitive flexibility. Instead, positive affect may trigger adjustments in response control settings - such as a shift in the speed-accuracy trade-off toward more cautious responding - depending on the experienced level of task difficulty.
Collapse
Affiliation(s)
- Kerstin Unger
- Department of Psychology, Queens College, City University of New York, Flushing, NY, USA
| | - Jordan Wylie
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, USA
| | - Julia Karbach
- Department of Psychology, University of Kaiserslautern-Landau, Germany
| |
Collapse
|
2
|
Ruge O, Hoppe JPM, Dalle Molle R, Silveira PP. Early environmental influences on the orbito-frontal cortex function and its effects on behavior. Neurosci Biobehav Rev 2025; 169:106013. [PMID: 39814119 DOI: 10.1016/j.neubiorev.2025.106013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
Early-life adversity during pre- and early post-natal phases can impact brain development and lead to maladaptive changes in executive function related behaviors. This increases the risk for a range of psychopathologies and physical diseases. Importantly, exposure to adversities during these periods is also linked to alterations in the orbito-frontal cortex (OFC) which is a key player in these executive functions. The OFC thus appears to be a central node in this association between early life stress and disease risk. Gaining a clear, and detailed understanding of the association between early life stress, OFC function, and executive function, as well as the underlying mechanisms mediating this association is relevant to inform potential therapeutic interventions. In this paper, we begin by reviewing evidence linking early life adversities to 1) alterations in behaviors regulated by the OFC and 2) changes in OFC anatomy and function. We then present insights into the underlying mechanisms for these changes, stemming from early life adversity models, and highlight important future directions for this line of research.
Collapse
Affiliation(s)
- Olivia Ruge
- Douglas Research Centre, McGill University, Montreal, QC, Canada
| | - João Paulo Maires Hoppe
- Douglas Research Centre, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | | | - Patricia Pelufo Silveira
- Douglas Research Centre, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, QC, Canada.
| |
Collapse
|
3
|
Luppi AI, Girn M, Rosas FE, Timmermann C, Roseman L, Erritzoe D, Nutt DJ, Stamatakis EA, Spreng RN, Xing L, Huttner WB, Carhart-Harris RL. A role for the serotonin 2A receptor in the expansion and functioning of human transmodal cortex. Brain 2024; 147:56-80. [PMID: 37703310 DOI: 10.1093/brain/awad311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023] Open
Abstract
Integrating independent but converging lines of research on brain function and neurodevelopment across scales, this article proposes that serotonin 2A receptor (5-HT2AR) signalling is an evolutionary and developmental driver and potent modulator of the macroscale functional organization of the human cerebral cortex. A wealth of evidence indicates that the anatomical and functional organization of the cortex follows a unimodal-to-transmodal gradient. Situated at the apex of this processing hierarchy-where it plays a central role in the integrative processes underpinning complex, human-defining cognition-the transmodal cortex has disproportionately expanded across human development and evolution. Notably, the adult human transmodal cortex is especially rich in 5-HT2AR expression and recent evidence suggests that, during early brain development, 5-HT2AR signalling on neural progenitor cells stimulates their proliferation-a critical process for evolutionarily-relevant cortical expansion. Drawing on multimodal neuroimaging and cross-species investigations, we argue that, by contributing to the expansion of the human cortex and being prevalent at the apex of its hierarchy in the adult brain, 5-HT2AR signalling plays a major role in both human cortical expansion and functioning. Owing to its unique excitatory and downstream cellular effects, neuronal 5-HT2AR agonism promotes neuroplasticity, learning and cognitive and psychological flexibility in a context-(hyper)sensitive manner with therapeutic potential. Overall, we delineate a dual role of 5-HT2ARs in enabling both the expansion and modulation of the human transmodal cortex.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, CB2 0QQ, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, CB2 1SB, UK
- The Alan Turing Institute, London, NW1 2DB, UK
| | - Manesh Girn
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
- Psychedelics Division-Neuroscape, Department of Neurology, University of California SanFrancisco, San Francisco, CA 94158, USA
| | - Fernando E Rosas
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
- Data Science Institute, Imperial College London, London, SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London, SW7 2AZ, UK
| | - Christopher Timmermann
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - David Erritzoe
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - David J Nutt
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Emmanuel A Stamatakis
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - R Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
| | - Lei Xing
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Robin L Carhart-Harris
- Psychedelics Division-Neuroscape, Department of Neurology, University of California SanFrancisco, San Francisco, CA 94158, USA
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
4
|
Kanen JW, Luo Q, Rostami Kandroodi M, Cardinal RN, Robbins TW, Nutt DJ, Carhart-Harris RL, den Ouden HEM. Effect of lysergic acid diethylamide (LSD) on reinforcement learning in humans. Psychol Med 2023; 53:6434-6445. [PMID: 36411719 PMCID: PMC10600934 DOI: 10.1017/s0033291722002963] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND The non-selective serotonin 2A (5-HT2A) receptor agonist lysergic acid diethylamide (LSD) holds promise as a treatment for some psychiatric disorders. Psychedelic drugs such as LSD have been suggested to have therapeutic actions through their effects on learning. The behavioural effects of LSD in humans, however, remain incompletely understood. Here we examined how LSD affects probabilistic reversal learning (PRL) in healthy humans. METHODS Healthy volunteers received intravenous LSD (75 μg in 10 mL saline) or placebo (10 mL saline) in a within-subjects design and completed a PRL task. Participants had to learn through trial and error which of three stimuli was rewarded most of the time, and these contingencies switched in a reversal phase. Computational models of reinforcement learning (RL) were fitted to the behavioural data to assess how LSD affected the updating ('learning rates') and deployment of value representations ('reinforcement sensitivity') during choice, as well as 'stimulus stickiness' (choice repetition irrespective of reinforcement history). RESULTS Raw data measures assessing sensitivity to immediate feedback ('win-stay' and 'lose-shift' probabilities) were unaffected, whereas LSD increased the impact of the strength of initial learning on perseveration. Computational modelling revealed that the most pronounced effect of LSD was the enhancement of the reward learning rate. The punishment learning rate was also elevated. Stimulus stickiness was decreased by LSD, reflecting heightened exploration. Reinforcement sensitivity differed by phase. CONCLUSIONS Increased RL rates suggest LSD induced a state of heightened plasticity. These results indicate a potential mechanism through which revision of maladaptive associations could occur in the clinical application of LSD.
Collapse
Affiliation(s)
- Jonathan W. Kanen
- Department of Psychology, University of Cambridge, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Qiang Luo
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
- Center for Computational Psychiatry, Ministry of Education-Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Human Phenome Institute, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200241, China
| | - Mojtaba Rostami Kandroodi
- Department of Cognitive Science and Artificial Intelligence, Tilburg University, Tilburg, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Rudolf N. Cardinal
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Trevor W. Robbins
- Department of Psychology, University of Cambridge, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - David J. Nutt
- Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, London, UK
| | - Robin L. Carhart-Harris
- Neuroscape Psychedelics Division, University of California San Francisco, San Francisco, California, USA
| | - Hanneke E. M. den Ouden
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Song AK, Hay KR, Trujillo P, Aumann M, Stark AJ, Yan Y, Kang H, Donahue MJ, Zald DH, Claassen DO. Amphetamine-induced dopamine release and impulsivity in Parkinson's disease. Brain 2022; 145:3488-3499. [PMID: 34951464 PMCID: PMC10233259 DOI: 10.1093/brain/awab487] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 11/12/2022] Open
Abstract
Impulsive-compulsive behaviours manifest in a substantial proportion of subjects with Parkinson's disease. Reduced ventral striatum dopamine receptor availability, and increased dopamine release is noted in patients with these symptoms. Prior studies of impulsivity suggest that midbrain D2 autoreceptors regulate striatal dopamine release in a feedback inhibitory manner, and in healthy populations, greater impulsivity is linked to poor proficiency of this inhibition. This has not been assessed in a Parkinson's disease population. Here, we applied 18F-fallypride PET studies to assess striatal and extrastriatal D2-like receptor uptake in a placebo-controlled oral dextroamphetamine sequence. We hypothesized that Parkinson's disease patients with impulsive-compulsive behaviours would have greater ventral striatal dopaminergic response to dextroamphetamine, and that an inability to attenuate ventral striatal dopamine release via midbrain D2 autoreceptors would underlie this response. Twenty patients with Parkinson's disease (mean age = 64.1 ± 5.8 years) both with (n = 10) and without (n = 10) impulsive-compulsive behaviours, participated in a single-blind dextroamphetamine challenge (oral; 0.43 mg/kg) in an OFF dopamine state. All completed PET imaging with 18F-fallypride, a high-affinity D2-like receptor ligand, in the placebo and dextroamphetamine state. Both voxelwise and region of interest analyses revealed dextroamphetamine-induced endogenous dopamine release localized to the ventral striatum, and the caudal-medial orbitofrontal cortex. The endogenous dopamine release observed in the ventral striatum correlated positively with patient-reported participation in reward-based behaviours, as quantified by the self-reported Questionnaire for Impulsivity in Parkinson's disease Rating Scale. In participants without impulsive-compulsive behaviours, baseline midbrain D2 receptor availability negatively correlated with ventral striatal dopamine release; however, this relationship was absent in those with impulsive-compulsive behaviours. These findings emphasize that reward-based behaviours in Parkinson's disease are regulated by ventral striatal dopamine release, and suggest that loss of inhibitory feedback from midbrain autoreceptors may underlie the manifestation of impulsive-compulsive behaviours.
Collapse
Affiliation(s)
- Alexander K Song
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kaitlyn R Hay
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Megan Aumann
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Department of Psychology, Vanderbilt University, Nashville, TN 37232, USA
| | - Adam J. Stark
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yan Yan
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Manus J Donahue
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - David H Zald
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Psychiatry, Rutgers University, Piscataway, NJ 08854, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
6
|
Philipson J, Naesstrom M, Johansson JD, Hariz M, Blomstedt P, Jahanshahi M. Deep brain stimulation in the ALIC-BNST region targeting the bed nucleus of stria terminalis in patients with obsessive-compulsive disorder: effects on cognition after 12 months. Acta Neurochir (Wien) 2022; 165:1201-1214. [PMID: 36056244 PMCID: PMC10140080 DOI: 10.1007/s00701-022-05351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/19/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE The aim of this study was to evaluate cognitive effects 12 months after Deep Brain Stimulation (DBS) of the Bed Nucleus of Stria Terminalis (BNST) in patients with refractory Obsessive-Compulsive Disorder (OCD). METHODS Eight patients (5 female; mean ± SD age 36 ± 15) with OCD were included. A neuropsychological test battery covering verbal and spatial episodic memory, executive function, and attention was administered preoperatively and 12 months after surgery. Medical records were used as a source for descriptive data to probe for any changes not covered by standardized checklists and the Yale-Brown Obsessive Compulsive Scale (Y-BOCS), the primary outcome measure. RESULTS At 12 months, seven patients showed response to DBS: three were full responders (i.e., Y-BOCS ≥ 35% improvement), and four were partial responders (Y-BOCS 25-34% improvement). Relative to baseline, there was a slight decline on visuo-spatial learning (p = 0.027), and improved performance on the Color-Word Interference inhibition/switching subtest (p = 0.041), suggesting improvement in cognitive flexibility. CONCLUSIONS DBS in the BNST for treatment refractory OCD generates very few adverse cognitive effects and improves cognitive flexibility after 12 months of stimulation. The improvement in Y-BOCS and the absence of major cognitive side effects support the BNST as a potential target for DBS in severe OCD.
Collapse
Affiliation(s)
- Johanna Philipson
- Department of Clinical Sciences, Neuroscience, Umeå University, 901 85, Umeå, Sweden.
| | - Matilda Naesstrom
- Department of Clinical Sciences, Division of Psychiatry, Umeå University, Umeå, Sweden
| | | | - Marwan Hariz
- Department of Clinical Sciences, Neuroscience, Umeå University, 901 85, Umeå, Sweden.,Unit of Functional Neurosurgery, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, 33 Queen Square, London, UK
| | - Patric Blomstedt
- Department of Clinical Sciences, Neuroscience, Umeå University, 901 85, Umeå, Sweden
| | - Marjan Jahanshahi
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, 33 Queen Square, London, UK
| |
Collapse
|
7
|
Trofimova I, Araki ME. Psychometrics vs neurochemistry: A controversy around mobility-like scales of temperament. PERSONALITY AND INDIVIDUAL DIFFERENCES 2022. [DOI: 10.1016/j.paid.2021.111446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Cools R, Arnsten AFT. Neuromodulation of prefrontal cortex cognitive function in primates: the powerful roles of monoamines and acetylcholine. Neuropsychopharmacology 2022; 47:309-328. [PMID: 34312496 PMCID: PMC8617291 DOI: 10.1038/s41386-021-01100-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
The primate prefrontal cortex (PFC) subserves our highest order cognitive operations, and yet is tremendously dependent on a precise neurochemical environment for proper functioning. Depletion of noradrenaline and dopamine, or of acetylcholine from the dorsolateral PFC (dlPFC), is as devastating as removing the cortex itself, and serotonergic influences are also critical to proper functioning of the orbital and medial PFC. Most neuromodulators have a narrow inverted U dose response, which coordinates arousal state with cognitive state, and contributes to cognitive deficits with fatigue or uncontrollable stress. Studies in monkeys have revealed the molecular signaling mechanisms that govern the generation and modulation of mental representations by the dlPFC, allowing dynamic regulation of network strength, a process that requires tight regulation to prevent toxic actions, e.g., as occurs with advanced age. Brain imaging studies in humans have observed drug and genotype influences on a range of cognitive tasks and on PFC circuit functional connectivity, e.g., showing that catecholamines stabilize representations in a baseline-dependent manner. Research in monkeys has already led to new treatments for cognitive disorders in humans, encouraging future research in this important field.
Collapse
Affiliation(s)
- Roshan Cools
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
9
|
Zubair M, Murris SR, Isa K, Onoe H, Koshimizu Y, Kobayashi K, Vanduffel W, Isa T. Divergent Whole Brain Projections from the Ventral Midbrain in Macaques. Cereb Cortex 2021; 31:2913-2931. [PMID: 33558867 PMCID: PMC8107798 DOI: 10.1093/cercor/bhaa399] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/09/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022] Open
Abstract
To understand the connectome of the axonal arborizations of dopaminergic midbrain neurons, we investigated the anterograde spread of highly sensitive viral tracers injected into the ventral tegmental area (VTA) and adjacent areas in 3 macaques. In 2 monkeys, injections were centered on the lateral VTA with some spread into the substantia nigra, while in one animal the injection targeted the medial VTA with partial spread into the ventro-medial thalamus. Double-labeling with antibodies against transduced fluorescent proteins (FPs) and tyrosine hydroxylase indicated that substantial portions of transduced midbrain neurons were dopaminergic. Interestingly, cortical terminals were found either homogeneously in molecular layer I, or more heterogeneously, sometimes forming patches, in the deeper laminae II-VI. In the animals with injections in lateral VTA, terminals were most dense in somatomotor cortex and the striatum. In contrast, when the medial VTA was transduced, dense terminals were found in dorsal prefrontal and temporal cortices, while projections to striatum were sparse. In all monkeys, orbitofrontal and occipito-parietal cortex received strong and weak innervation, respectively. Thus, the dopaminergic ventral midbrain sends heterogeneous projections throughout the brain. Furthermore, our results suggest the existence of subgroups in meso-dopaminergic neurons depending on their location in the primate ventral midbrain.
Collapse
Affiliation(s)
- Muhammad Zubair
- Laboratory of Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, Leuven 3000, Belgium
- Leuven Brain Institute, Leuven 3000, Belgium
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Sjoerd R Murris
- Laboratory of Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, Leuven 3000, Belgium
- Leuven Brain Institute, Leuven 3000, Belgium
| | - Kaoru Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Hirotaka Onoe
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yoshinori Koshimizu
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Wim Vanduffel
- Laboratory of Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, Leuven 3000, Belgium
- Leuven Brain Institute, Leuven 3000, Belgium
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02144, USA
| | - Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
10
|
Yalcinbas EA, Cazares C, Gremel CM. Call for a more balanced approach to understanding orbital frontal cortex function. Behav Neurosci 2021; 135:255-266. [PMID: 34060878 DOI: 10.1037/bne0000450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Orbital frontal cortex (OFC) research has historically emphasized the function of this associative cortical area within top-down theoretical frameworks. This approach has largely focused on mapping OFC activity onto human-defined psychological or cognitive constructs and has often led to OFC circuitry bearing the weight of entire theoretical frameworks. New techniques and tools developed in the last decade have made it possible to revisit long-standing basic science questions in neuroscience and answer them with increasing sophistication. We can now study and specify the genetic, molecular, cellular, and circuit architecture of a brain region in much greater detail, which allows us to piece together how they contribute to emergent circuit functions. For instance, adopting such systematic and unbiased bottom-up approaches to elucidating the function of the visual system has paved the way to building a greater understanding of the spectrum of its computational capabilities. In the same vein, we argue that OFC research would benefit from a more balanced approach that also places focus on novel bottom-up investigations into OFC's computational capabilities. Furthermore, we believe that the knowledge gained by employing a more bottom-up approach to investigating OFC function will ultimately allow us to look at OFC's dysfunction in disease through a more nuanced biological lens. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
- Ege A Yalcinbas
- The Neurosciences Graduate Program, University of California, San Diego
| | - Christian Cazares
- The Neurosciences Graduate Program, University of California, San Diego
| | | |
Collapse
|
11
|
Ambrase A, Lewis CA, Barth C, Derntl B. Influence of ovarian hormones on value-based decision-making systems: Contribution to sexual dimorphisms in mental disorders. Front Neuroendocrinol 2021; 60:100873. [PMID: 32987043 DOI: 10.1016/j.yfrne.2020.100873] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/28/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022]
Abstract
Women and men exhibit differences in behavior when making value-based decisions. Various hypotheses have been proposed to explain these findings, stressing differences in functional lateralization of the brain, functional activation, neurotransmitter involvement and more recently, sex hormones. While a significant interaction of neurotransmitter systems and sex hormones has been shown for both sexes, decision-making in women might be particularly affected by variations of ovarian hormones. In this review we have gathered information from animal and human studies on how ovarian hormones affect decision-making processes in females by interacting with neurotransmitter systems at functionally relevant brain locations and thus modify the computation of decision aspects. We also review previous findings on impaired decision-making in animals and clinical populations with substance use disorder and depression, emphasizing how little we know about the role of ovarian hormones in aberrant decision-making.
Collapse
Affiliation(s)
- Aiste Ambrase
- Department of Psychiatry and Psychotherapy, University of Tuebingen, Tübingen, Germany; International Max Planck Research School for Cognitive and Systems Neuroscience, University of Tübingen, Tuebingen, Germany
| | - Carolin A Lewis
- Department of Psychiatry and Psychotherapy, University of Tuebingen, Tübingen, Germany; Emotion Neuroimaging Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany
| | - Claudia Barth
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Birgit Derntl
- Department of Psychiatry and Psychotherapy, University of Tuebingen, Tübingen, Germany; International Max Planck Research School for Cognitive and Systems Neuroscience, University of Tübingen, Tuebingen, Germany; TübingenNeuroCampus, University of Tübingen, Tübingen, Germany; LEAD Research School and Graduate Network, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
12
|
Serotonin depletion impairs both Pavlovian and instrumental reversal learning in healthy humans. Mol Psychiatry 2021; 26:7200-7210. [PMID: 34429517 PMCID: PMC8873011 DOI: 10.1038/s41380-021-01240-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
Serotonin is involved in updating responses to changing environmental circumstances. Optimising behaviour to maximise reward and minimise punishment may require shifting strategies upon encountering new situations. Likewise, autonomic responses to threats are critical for survival yet must be modified as danger shifts from one source to another. Whilst numerous psychiatric disorders are characterised by behavioural and autonomic inflexibility, few studies have examined the contribution of serotonin in humans. We modelled both processes, respectively, in two independent experiments (N = 97). Experiment 1 assessed instrumental (stimulus-response-outcome) reversal learning whereby individuals learned through trial and error which action was most optimal for obtaining reward or avoiding punishment initially, and the contingencies subsequently reversed serially. Experiment 2 examined Pavlovian (stimulus-outcome) reversal learning assessed by the skin conductance response: one innately threatening stimulus predicted receipt of an uncomfortable electric shock and another did not; these contingencies swapped in a reversal phase. Upon depleting the serotonin precursor tryptophan-in a double-blind randomised placebo-controlled design-healthy volunteers showed impairments in updating both actions and autonomic responses to reflect changing contingencies. Reversal deficits in each domain, furthermore, were correlated with the extent of tryptophan depletion. Initial Pavlovian conditioning, moreover, which involved innately threatening stimuli, was potentiated by depletion. These results translate findings in experimental animals to humans and have implications for the neurochemical basis of cognitive inflexibility.
Collapse
|
13
|
Chamberlain SR, Solly JE, Hook RW, Vaghi MM, Robbins TW. Cognitive Inflexibility in OCD and Related Disorders. Curr Top Behav Neurosci 2021; 49:125-145. [PMID: 33547598 DOI: 10.1007/7854_2020_198] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cognitive inflexibility is suggested by the hallmark symptoms of obsessive-compulsive disorder (OCD), namely the occurrence of repetitive thoughts and/or behaviours that persist despite being functionally impairing and egodystonic to the individual. As well as being implied by the top-level symptoms, cognitive inflexibility in OCD, and some related conditions, has also been objectively quantified in case-control studies using computerised cognitive tasks. This chapter begins by considering the objective measurement of different aspects of cognitive flexibility using neuropsychological paradigms, with a focus on neural and neurochemical substrates. It moves on to conduct a systematic review and meta-analysis of findings from a widely deployed flexibility task: the Intra-Dimensional/Extra-Dimensional Set-Shift Task (IDED). By pooling data from 11 studies (335 OCD patients and 311 controls), we show that Extra-Dimensional (ED) shift deficits are a robust and reproducible finding (effect size medium-large) in OCD across the literature, and that this deficit is not attributable to group differences in age or IQ. The OCD ED deficit is then discussed in terms of dysfunction of fronto-striatal pathways (as exemplified, for example, by functional connectivity data), and the putative role of different neurotransmitters. We consider evidence that impaired ED shifting constitutes a candidate vulnerability marker (or 'endophenotype') for OCD. The available literature is then surveyed as to ED findings in other obsessive-compulsive (OC) related disorders (e.g. hoarding, body-dysmorphic disorder, and trichotillomania), as well as in non-OC disorders (schizophrenia and anxiety symptoms in general). Lastly, we consider more recent, emerging developments in the quantification of compulsivity using cognitive tasks and questionnaires, as well as key directions for future research, including the need to refine compulsivity and its composite cognitive processes.
Collapse
Affiliation(s)
- Samuel R Chamberlain
- Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK. .,Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK.
| | - Jeremy E Solly
- Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Roxanne W Hook
- Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Matilde M Vaghi
- Max Planck University College London (UCL) Centre for Computational Psychiatry and Ageing Research, London, UK
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
Psychological mechanisms and functions of 5-HT and SSRIs in potential therapeutic change: Lessons from the serotonergic modulation of action selection, learning, affect, and social cognition. Neurosci Biobehav Rev 2020; 119:138-167. [PMID: 32931805 DOI: 10.1016/j.neubiorev.2020.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022]
Abstract
Uncertainty regarding which psychological mechanisms are fundamental in mediating SSRI treatment outcomes and wide-ranging variability in their efficacy has raised more questions than it has solved. Since subjective mood states are an abstract scientific construct, only available through self-report in humans, and likely involving input from multiple top-down and bottom-up signals, it has been difficult to model at what level SSRIs interact with this process. Converging translational evidence indicates a role for serotonin in modulating context-dependent parameters of action selection, affect, and social cognition; and concurrently supporting learning mechanisms, which promote adaptability and behavioural flexibility. We examine the theoretical basis, ecological validity, and interaction of these constructs and how they may or may not exert a clinical benefit. Specifically, we bridge crucial gaps between disparate lines of research, particularly findings from animal models and human clinical trials, which often seem to present irreconcilable differences. In determining how SSRIs exert their effects, our approach examines the endogenous functions of 5-HT neurons, how 5-HT manipulations affect behaviour in different contexts, and how their therapeutic effects may be exerted in humans - which may illuminate issues of translational models, hierarchical mechanisms, idiographic variables, and social cognition.
Collapse
|
15
|
Trial-by-trial dynamics of reward prediction error-associated signals during extinction learning and renewal. Prog Neurobiol 2020; 197:101901. [PMID: 32846162 DOI: 10.1016/j.pneurobio.2020.101901] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/06/2020] [Accepted: 08/18/2020] [Indexed: 11/24/2022]
Abstract
Reward prediction errors (RPEs) have been suggested to drive associative learning processes, but their precise temporal dynamics at the single-neuron level remain elusive. Here, we studied the neural correlates of RPEs, focusing on their trial-by-trial dynamics during an operant extinction learning paradigm. Within a single behavioral session, pigeons went through acquisition, extinction and renewal - the context-dependent response recovery after extinction. We recorded single units from the avian prefrontal cortex analogue, the nidopallium caudolaterale (NCL) and found that the omission of reward during extinction led to a peak of population activity that moved backwards in time as trials progressed. The chronological order of these signal changes during the progress of learning was indicative of temporal shifts of RPE signals that started during reward omission and then moved backwards to the presentation of the conditioned stimulus. Switches from operant choices to avoidance behavior (and vice versa) coincided with changes in population activity during the animals' decision-making. On the single unit level, we found more diverse patterns where some neurons' activity correlated with RPE signals whereas others correlated with the absolute value during the outcome period. Finally, we demonstrated that mere sensory contextual changes during the renewal test were sufficient to elicit signals likely associated with RPEs. Thus, RPEs are truly expectancy-driven since they can be elicited by changes in reward expectation, without an actual change in the quality or quantity of reward.
Collapse
|
16
|
Tona KD, Revers H, Verkuil B, Nieuwenhuis S. Noradrenergic Regulation of Cognitive Flexibility: No Effects of Stress, Transcutaneous Vagus Nerve Stimulation, and Atomoxetine on Task-switching in Humans. J Cogn Neurosci 2020; 32:1881-1895. [PMID: 32644883 DOI: 10.1162/jocn_a_01603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Cognitive flexibility allows us to adaptively switch between different responsibilities in important domains of our daily life. Previous work has elucidated the neurochemical basis underlying the ability to switch responses to a previously nonreinforced exemplar and to switch between attentional sets. However, the role of neuromodulators in task switching, the ability to rapidly switch between two or more cognitive tasks afforded by the same stimuli, is still poorly understood. We attempted to fill this gap by manipulating norepinephrine levels using stress manipulation (Study 1a, n = 48; between-group design), transcutaneous vagus nerve stimulation at two different intensities (Study 1b, n = 48; sham-controlled between-group design), and pharmacological manipulation (Study 2, n = 24; double-blind crossover design), all of which increased salivary cortisol measures. Participants repeatedly switched between two cognitive tasks (classifying a digit as high/low [Task 1] or as odd/even [Task 2]), depending on the preceding cue. On each trial, a cue indicated the task to be performed. The cue-stimulus interval was varied to manipulate the time to prepare for the switch. Participants showed typical switch costs, which decreased with the time available for preparation. None of the manipulations modulated the size of the switch costs or the preparation effect, as supported by frequentist and Bayesian model comparisons. Task-switching performance reflects a complex mix of cognitive control and bottom-up dynamics of task-set representations. Our findings suggest that norepinephrine does not affect either of these aspects of cognitive flexibility.
Collapse
Affiliation(s)
| | | | - Bart Verkuil
- Leiden University.,Leiden Institute for Brain and Cognition
| | | |
Collapse
|
17
|
Boddington R, Gómez Dunlop CA, Garnham LC, Ryding S, Abbey-Lee RN, Kreshchenko A, Løvlie H. The relationship between monoaminergic gene expression, learning, and optimism in red junglefowl chicks. Anim Cogn 2020; 23:901-911. [PMID: 32440792 PMCID: PMC7415762 DOI: 10.1007/s10071-020-01394-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022]
Abstract
Intra-species cognitive variation is commonly observed, but explanations for why individuals within a species differ in cognition are still understudied and not yet clear. Cognitive processes are likely influenced by genetic differences, with genes in the monoaminergic systems predicted to be important. To explore the potential role of these genes in association with individual variation in cognition, we exposed red junglefowl (Gallus gallus) chicks to behavioural assays measuring variation in learning (discriminative learning, reversal learning, and cognitive flexibility) and optimism (measured in a cognitive judgement bias test). Following this, we analysed prefrontal cortex gene expression of several dopaminergic and serotonergic genes in these chicks. Of our explored genes, serotonin receptor genes 5HT2A and 5HT2B, and dopaminergic receptor gene DRD1 were associated with measured behaviour. Chicks that had higher 5HT2A were less flexible in the reversal learning task, and chicks with higher 5HT2B also tended to be less cognitively flexible. Additionally, chicks with higher DRD1 were more optimistic, whilst chicks with higher 5HT2A tended to be less optimistic. These results suggest that the serotonergic and dopaminergic systems are linked to observed cognitive variation, and, thus, individual differences in cognition can be partially explained by variation in brain gene expression.
Collapse
Affiliation(s)
- Robert Boddington
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden.,School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Clara A Gómez Dunlop
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden.,School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Laura C Garnham
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden
| | - Sara Ryding
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden.,School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Robin N Abbey-Lee
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden
| | - Anastasia Kreshchenko
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden.,School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Hanne Løvlie
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden.
| |
Collapse
|
18
|
Kanen JW, Ersche KD, Fineberg NA, Robbins TW, Cardinal RN. Computational modelling reveals contrasting effects on reinforcement learning and cognitive flexibility in stimulant use disorder and obsessive-compulsive disorder: remediating effects of dopaminergic D2/3 receptor agents. Psychopharmacology (Berl) 2019; 236:2337-2358. [PMID: 31324936 PMCID: PMC6820481 DOI: 10.1007/s00213-019-05325-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/02/2019] [Indexed: 02/02/2023]
Abstract
RATIONALE Disorders of compulsivity such as stimulant use disorder (SUD) and obsessive-compulsive disorder (OCD) are characterised by deficits in behavioural flexibility, some of which have been captured using probabilistic reversal learning (PRL) paradigms. OBJECTIVES This study used computational modelling to characterise the reinforcement learning processes underlying patterns of PRL behaviour observed in SUD and OCD and to show how the dopamine D2/3 receptor agonist pramipexole and the D2/3 antagonist amisulpride affected these responses. METHODS We applied a hierarchical Bayesian method to PRL data across three groups: individuals with SUD, OCD, and healthy controls. Participants completed three sessions where they received placebo, pramipexole, and amisulpride, in a double-blind placebo-controlled, randomised design. We compared seven models using a bridge sampling estimate of the marginal likelihood. RESULTS Stimulus-bound perseveration, a measure of the degree to which participants responded to the same stimulus as before irrespective of outcome, was significantly increased in SUD, but decreased in OCD, compared to controls (on placebo). Individuals with SUD also exhibited reduced reward-driven learning, whilst both the SUD and OCD groups showed increased learning from punishment (nonreward). Pramipexole and amisulpride had similar effects on the control and OCD groups; both increased punishment-driven learning. These D2/3-modulating drugs affected the SUD group differently, remediating reward-driven learning and reducing aspects of perseverative behaviour, amongst other effects. CONCLUSIONS We provide a parsimonious computational account of how perseverative tendencies and reward- and punishment-driven learning differentially contribute to PRL in SUD and OCD. D2/3 agents modulated these processes and remediated deficits in SUD in particular, which may inform therapeutic effects.
Collapse
Affiliation(s)
- Jonathan W Kanen
- Department of Psychology, University of Cambridge, Cambridge, UK.
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.
| | - Karen D Ersche
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Naomi A Fineberg
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Hertfordshire Partnership University NHS Foundation Trust, Welwyn Garden City, Hertfordshire, UK
- Department of Postgraduate Medicine, College Lane Hatfield, University of Hertfordshire, Hertfordshire, UK
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Rudolf N Cardinal
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
19
|
|
20
|
Girotti M, Adler SM, Bulin SE, Fucich EA, Paredes D, Morilak DA. Prefrontal cortex executive processes affected by stress in health and disease. Prog Neuropsychopharmacol Biol Psychiatry 2018; 85:161-179. [PMID: 28690203 PMCID: PMC5756532 DOI: 10.1016/j.pnpbp.2017.07.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/01/2017] [Accepted: 07/05/2017] [Indexed: 11/23/2022]
Abstract
Prefrontal cortical executive functions comprise a number of cognitive capabilities necessary for goal directed behavior and adaptation to a changing environment. Executive dysfunction that leads to maladaptive behavior and is a symptom of psychiatric pathology can be instigated or exacerbated by stress. In this review we survey research addressing the impact of stress on executive function, with specific focus on working memory, attention, response inhibition, and cognitive flexibility. We then consider the neurochemical pathways underlying these cognitive capabilities and, where known, how stress alters them. Finally, we review work exploring potential pharmacological and non-pharmacological approaches that can ameliorate deficits in executive function. Both preclinical and clinical literature indicates that chronic stress negatively affects executive function. Although some of the circuitry and neurochemical processes underlying executive function have been characterized, a great deal is still unknown regarding how stress affects these processes. Additional work focusing on this question is needed in order to make progress on developing interventions that ameliorate executive dysfunction.
Collapse
Affiliation(s)
- Milena Girotti
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA.
| | - Samantha M Adler
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Sarah E Bulin
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Elizabeth A Fucich
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Denisse Paredes
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - David A Morilak
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| |
Collapse
|
21
|
Iigaya K, Fonseca MS, Murakami M, Mainen ZF, Dayan P. An effect of serotonergic stimulation on learning rates for rewards apparent after long intertrial intervals. Nat Commun 2018; 9:2477. [PMID: 29946069 PMCID: PMC6018802 DOI: 10.1038/s41467-018-04840-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/22/2018] [Indexed: 12/02/2022] Open
Abstract
Serotonin has widespread, but computationally obscure, modulatory effects on learning and cognition. Here, we studied the impact of optogenetic stimulation of dorsal raphe serotonin neurons in mice performing a non-stationary, reward-driven decision-making task. Animals showed two distinct choice strategies. Choices after short inter-trial-intervals (ITIs) depended only on the last trial outcome and followed a win-stay-lose-switch pattern. In contrast, choices after long ITIs reflected outcome history over multiple trials, as described by reinforcement learning models. We found that optogenetic stimulation during a trial significantly boosted the rate of learning that occurred due to the outcome of that trial, but these effects were only exhibited on choices after long ITIs. This suggests that serotonin neurons modulate reinforcement learning rates, and that this influence is masked by alternate, unaffected, decision mechanisms. These results provide insight into the role of serotonin in treating psychiatric disorders, particularly its modulation of neural plasticity and learning. Serotonin (5-HT) plays many important roles in reward, punishment, patience and beyond, and optogenetic stimulation of 5-HT neurons has not crisply parsed them. The authors report a novel analysis of a reward-based decision-making experiment, and show that 5-HT stimulation increases the learning rate, but only on a select subset of choices.
Collapse
Affiliation(s)
- Kiyohito Iigaya
- Gatsby Computational Neuroscience Unit, University College London, 25 Howland Street, London, W1T 4JG, UK. .,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Russell Square House, 10-12 Russell Square, London, WC1B 5EH, UK. .,Division of Humanities and Social Sciences, California Institute of Technology, 1200 E California Blvd, Pasadena, CA, 91125, USA.
| | - Madalena S Fonseca
- Champalimaud Research, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038, Lisbon, Portugal
| | - Masayoshi Murakami
- Champalimaud Research, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038, Lisbon, Portugal
| | - Zachary F Mainen
- Champalimaud Research, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038, Lisbon, Portugal
| | - Peter Dayan
- Gatsby Computational Neuroscience Unit, University College London, 25 Howland Street, London, W1T 4JG, UK.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Russell Square House, 10-12 Russell Square, London, WC1B 5EH, UK
| |
Collapse
|
22
|
Coccaro EF, Cremers H, Fanning J, Nosal E, Lee R, Keedy S, Jacobson KC. Reduced frontal grey matter, life history of aggression, and underlying genetic influence. Psychiatry Res Neuroimaging 2018; 271:126-134. [PMID: 29174436 DOI: 10.1016/j.pscychresns.2017.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 11/06/2017] [Accepted: 11/11/2017] [Indexed: 11/28/2022]
Abstract
Physically healthy, adult, same-sexed twins (n = 287) from a population-based twin cohort underwent high-resolution magnetic resonance imaging (MRI) to identify fronto-limbic brain regions significantly associated with lifetime history of aggression. MRI scans used a 3D magnetization-prepared rapid acquisition gradient-echo (MP-RAGE) sequence, for voxel-based morphometry (VBM) and history of aggressive behavior was assessed using the Life History of Aggression measure. Aggression had modest, inverse associations with grey matter volume (GMV) in medial prefrontal cortex (mPFC, b = -0.20, se = 0.05, p < 0.001) and lateral prefrontal cortex (lPFC, b = -0.23, se = 0.06, p < 0.001). These associations were not confounded by other demographic, psychiatric, or personality factors. Biometrical twin analyses revealed significant heritabilities of 0.57 for GMV in the mPFC cluster and 0.36 for GMV in the lPFC cluster. Genetic factors accounted for the majority of the phenotypic correlations between aggression and mPFC GMV (85.3%) and between aggression and lPFC GMV (63.7%). Reduced GMV of prefrontal brain regions may be a neuronal characteristic of individuals with substantial histories of aggressive behavior regardless of psychiatric diagnosis. As such, these data suggest an anatomical correlate, with a possible genetic etiology, associated with functional deficits in social-emotional information processing.
Collapse
Affiliation(s)
- Emil F Coccaro
- Clinical Neuroscience Research Unit, Department of Psychiatry and Behavioral Neuroscience, Pritzker School of Medicine, The University of Chicago, Chicago 60637, IL, USA
| | - Henk Cremers
- Clinical Neuroscience Research Unit, Department of Psychiatry and Behavioral Neuroscience, Pritzker School of Medicine, The University of Chicago, Chicago 60637, IL, USA
| | - Jennifer Fanning
- Clinical Neuroscience Research Unit, Department of Psychiatry and Behavioral Neuroscience, Pritzker School of Medicine, The University of Chicago, Chicago 60637, IL, USA
| | - Eryka Nosal
- Clinical Neuroscience Research Unit, Department of Psychiatry and Behavioral Neuroscience, Pritzker School of Medicine, The University of Chicago, Chicago 60637, IL, USA
| | - Royce Lee
- Clinical Neuroscience Research Unit, Department of Psychiatry and Behavioral Neuroscience, Pritzker School of Medicine, The University of Chicago, Chicago 60637, IL, USA
| | - Sarah Keedy
- Clinical Neuroscience Research Unit, Department of Psychiatry and Behavioral Neuroscience, Pritzker School of Medicine, The University of Chicago, Chicago 60637, IL, USA
| | - Kristen C Jacobson
- Clinical Neuroscience Research Unit, Department of Psychiatry and Behavioral Neuroscience, Pritzker School of Medicine, The University of Chicago, Chicago 60637, IL, USA
| |
Collapse
|
23
|
Fischer AG, Ullsperger M. An Update on the Role of Serotonin and its Interplay with Dopamine for Reward. Front Hum Neurosci 2017; 11:484. [PMID: 29075184 PMCID: PMC5641585 DOI: 10.3389/fnhum.2017.00484] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/19/2017] [Indexed: 01/02/2023] Open
Abstract
The specific role of serotonin and its interplay with dopamine (DA) in adaptive, reward guided behavior as well as drug dependance, still remains elusive. Recently, novel methods allowed cell type specific anatomical, functional and interventional analyses of serotonergic and dopaminergic circuits, promising significant advancement in understanding their functional roles. Furthermore, it is increasingly recognized that co-release of neurotransmitters is functionally relevant, understanding of which is required in order to interpret results of pharmacological studies and their relationship to neural recordings. Here, we review recent animal studies employing such techniques with the aim to connect their results to effects observed in human pharmacological studies and subjective effects of drugs. It appears that the additive effect of serotonin and DA conveys significant reward related information and is subjectively highly euphorizing. Neither DA nor serotonin alone have such an effect. This coincides with optogenetically targeted recordings in mice, where the dopaminergic system codes reward prediction errors (PE), and the serotonergic system mainly unsigned PE. Overall, this pattern of results indicates that joint activity between both systems carries essential reward information and invites parallel investigation of both neurotransmitter systems.
Collapse
Affiliation(s)
- Adrian G Fischer
- Department of Neuropsychology, Institute of Psychology, Otto-von-Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Markus Ullsperger
- Department of Neuropsychology, Institute of Psychology, Otto-von-Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
24
|
Beyond negative valence: 2-week administration of a serotonergic antidepressant enhances both reward and effort learning signals. PLoS Biol 2017; 15:e2000756. [PMID: 28207733 PMCID: PMC5331946 DOI: 10.1371/journal.pbio.2000756] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/19/2017] [Indexed: 12/21/2022] Open
Abstract
To make good decisions, humans need to learn about and integrate different sources of appetitive and aversive information. While serotonin has been linked to value-based decision-making, its role in learning is less clear, with acute manipulations often producing inconsistent results. Here, we show that when the effects of a selective serotonin reuptake inhibitor (SSRI, citalopram) are studied over longer timescales, learning is robustly improved. We measured brain activity with functional magnetic resonance imaging (fMRI) in volunteers as they performed a concurrent appetitive (money) and aversive (effort) learning task. We found that 2 weeks of citalopram enhanced reward and effort learning signals in a widespread network of brain regions, including ventromedial prefrontal and anterior cingulate cortex. At a behavioral level, this was accompanied by more robust reward learning. This suggests that serotonin can modulate the ability to learn via a mechanism that is independent of stimulus valence. Such effects may partly underlie SSRIs’ impact in treating psychological illnesses. Our results highlight both a specific function in learning for serotonin and the importance of studying its role across longer timescales. Drugs acting on the neurotransmitter serotonin in the brain are commonly prescribed to treat depression, but we still lack a complete understanding of their effects on the brain and behavior. We do, however, know that patients who suffer from depression learn about the links between their choices and pleasant and unpleasant outcomes in a different manner than healthy controls. Neural markers of learning are also weakened in depressed people. Here, we looked at the effects of a short-term course (2 weeks) of a serotonergic antidepressant on brain and behavior in healthy volunteers while they learnt to predict what consequences their choices had in a simple computer task. We found that the antidepressant increased how strongly brain areas concerned with predictions of pleasant and unpleasant consequences became active during learning of the task. At the same time, participants who had taken the antidepressant also performed better on the task. Our results suggest that serotonergic drugs might exert their beneficial clinical effects by changing how the brain learns.
Collapse
|
25
|
Dopamine Modulates the Functional Organization of the Orbitofrontal Cortex. J Neurosci 2017; 37:1493-1504. [PMID: 28069917 DOI: 10.1523/jneurosci.2827-16.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/18/2016] [Accepted: 12/28/2016] [Indexed: 12/29/2022] Open
Abstract
Neuromodulators such as dopamine can alter the intrinsic firing properties of neurons and may thereby change the configuration of larger functional circuits. The primate orbitofrontal cortex (OFC) receives dopaminergic input from midbrain nuclei, but the role of dopamine in the OFC is still unclear. Here we tested the idea that dopaminergic activity changes the pattern of connectivity between the OFC and the rest of the brain and thereby reconfigures functional networks in the OFC. To this end, we combined double-blind, placebo-controlled pharmacology [D2 receptor (D2R) antagonist amisulpride] in humans with resting-state functional magnetic resonance imaging and clustering methods. In the placebo group, we replicated previously observed parcellations of the OFC into two and six subregions based on connectivity patterns with the rest of the brain. Most importantly, while the twofold clustering did not differ significantly between groups, blocking D2Rs significantly changed the composition of the sixfold parcellation, suggesting a dopamine-dependent reconfiguration of functional OFC subregions. Moreover, multivariate decoding analyses revealed that amisulpride changed the whole-brain connectivity patterns of individual OFC subregions. In particular, D2R blockade shifted the balance of OFC connectivity from associative areas in the temporal and parietal lobe toward functional connectivity with the frontal cortex. In summary, our results suggest that dopamine alters the composition of functional OFC circuits, possibly indicating a broader role for neuromodulators in the dynamic reconfiguration of functional brain networks.SIGNIFICANCE STATEMENT A key role of any neuromodulator may be the reconfiguration of functional brain circuits. Here we test this idea with regard to dopamine and the organization of functional networks in the orbitofrontal cortex (OFC). We show that blockade of dopamine D2 receptors has profound effects on the functional connectivity patterns of the OFC, yielding altered connectivity-based subdivisions of this region. Our results suggest that dopamine changes the connectional configuration of the OFC, possibly leading to transitions between different operating modes that favor either sensory input or recurrent processing in the prefrontal cortex. More generally, our findings support a broader role for neuromodulators in the dynamic reconfiguration of functional brain networks and may have clinical implications for understanding the actions of antipsychotic agents.
Collapse
|
26
|
Linley SB, Gallo MM, Vertes RP. Lesions of the ventral midline thalamus produce deficits in reversal learning and attention on an odor texture set shifting task. Brain Res 2016; 1649:110-122. [PMID: 27544424 PMCID: PMC5796786 DOI: 10.1016/j.brainres.2016.08.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 12/13/2022]
Abstract
The nucleus reuniens (RE) of the ventral midline thalamus is strongly reciprocally connected with the hippocampus (HF) and the medial prefrontal cortex (mPFC) and has been shown to mediate the transfer of information between these structures. It has become increasingly well established that RE serves a critical role in mnemonic tasks requiring the interaction of the HF and mPFC, but essentially not tasks relying solely on the HF. Very few studies have addressed the independent actions of RE on prefrontal executive functioning. The present report examined the effects of lesions of the ventral midline thalamus, including RE and the dorsally adjacent rhomboid nucleus (RH) in rats on attention and behavioral flexibility using the attentional set shifting task (AST). The task uses odor and tactile stimuli to test for attentional set formation, attentional set shifting, behavioral flexibility and reversal learning. By comparison with sham controls, lesioned rats were significantly impaired on reversal learning and intradimensional (ID) set shifting. Specifically, RE/RH lesioned rats were impaired on the first reversal stage of the task which required a change in response strategy to select a previously non-rewarded stimulus for reward. RE/RH lesioned rats also exhibited deficits in the ability to transfer or generalize rules of the task which requires making the same modality-based choices (e.g., odor vs. tactile) to different sets of stimuli in the ID stage of the task. These results demonstrate that in addition to its role in tasks dependent on HF-mPFC interactions, nucleus reuniens is also critically involved cognitive/executive functions associated with the medial prefrontal cortex. As such, the deficits in the AST task produced by RE/RH lesions suggest the ventral midline thalamus directly contributes to flexible goal directed behavior.
Collapse
Affiliation(s)
- Stephanie B Linley
- Department of Psychology, Florida Atlantic University, Boca Raton, FL 33431, United States; Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Michelle M Gallo
- Department of Psychology, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Robert P Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, United States.
| |
Collapse
|
27
|
Wang M, Arnsten AFT. Physiological approaches to understanding molecular actions on dorsolateral prefrontal cortical neurons underlying higher cognitive processing. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2016; 36:314-8. [PMID: 26646567 DOI: 10.13918/j.issn.2095-8137.2015.6.314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Revealing how molecular mechanisms influence higher brain circuits in primates will be essential for understanding how genetic insults lead to increased risk of cognitive disorders. Traditionally, modulatory influences on higher cortical circuits have been examined using lesion techniques, where a brain region is depleted of a particular transmitter to determine how its loss impacts cognitive function. For example, depletion of catecholamines or acetylcholine from the dorsolateral prefrontal cortex produces striking deficits in working memory abilities. More directed techniques have utilized direct infusions of drug into a specific cortical site to try to circumvent compensatory changes that are common following transmitter depletion. The effects of drug on neuronal firing patterns are often studied using iontophoresis, where a minute amount of drug is moved into the brain using a tiny electrical current, thus minimizing the fluid flow that generally disrupts neuronal recordings. All of these approaches can be compared to systemic drug administration, which remains a key arena for the development of effective therapeutics for human cognitive disorders. Most recently, viral techniques are being developed to be able to manipulate proteins for which there is no developed pharmacology, and to allow optogenetic manipulations in primate cortex. As the association cortices greatly expand in brain evolution, research in nonhuman primates is particularly important for understanding the modulatory regulation of our highest order cognitive operations.
Collapse
Affiliation(s)
- Min Wang
- Department of Neurobiology, School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - Amy F T Arnsten
- Department of Neurobiology, School of Medicine, Yale University, New Haven, CT, 06510,
| |
Collapse
|
28
|
Arnsten AFT, Wang M. Targeting Prefrontal Cortical Systems for Drug Development: Potential Therapies for Cognitive Disorders. Annu Rev Pharmacol Toxicol 2016; 56:339-60. [PMID: 26738476 DOI: 10.1146/annurev-pharmtox-010715-103617] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Medications to treat cognitive disorders are increasingly needed, yet researchers have had few successes in this challenging arena. Cognitive abilities in primates arise from highly evolved N-methyl-d-aspartate (NMDA) receptor circuits in layer III of the dorsolateral prefrontal cortex. These circuits have unique modulatory needs that can differ from the layer V neurons that predominate in rodents, but they offer multiple therapeutic targets. Cognitive improvement often requires low doses that enhance the pattern of information held in working memory, whereas higher doses can produce nonspecific changes that obscure information. Identifying appropriate doses for clinical trials may be helped by assessments in monkeys and by flexible, individualized dose designs. The use of guanfacine (Intuniv) for prefrontal cortical disorders was based on research in monkeys, supporting this approach. Coupling our knowledge of higher primate circuits with the powerful methods now available in drug design will help create effective treatments for cognitive disorders.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510; ,
| | - Min Wang
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510; ,
| |
Collapse
|
29
|
Izquierdo A, Brigman JL, Radke AK, Rudebeck PH, Holmes A. The neural basis of reversal learning: An updated perspective. Neuroscience 2016; 345:12-26. [PMID: 26979052 DOI: 10.1016/j.neuroscience.2016.03.021] [Citation(s) in RCA: 392] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/24/2016] [Accepted: 03/07/2016] [Indexed: 01/21/2023]
Abstract
Reversal learning paradigms are among the most widely used tests of cognitive flexibility and have been used as assays, across species, for altered cognitive processes in a host of neuropsychiatric conditions. Based on recent studies in humans, non-human primates, and rodents, the notion that reversal learning tasks primarily measure response inhibition, has been revised. In this review, we describe how cognitive flexibility is measured by reversal learning and discuss new definitions of the construct validity of the task that are serving as a heuristic to guide future research in this field. We also provide an update on the available evidence implicating certain cortical and subcortical brain regions in the mediation of reversal learning, and an overview of the principal neurotransmitter systems involved.
Collapse
Affiliation(s)
- A Izquierdo
- Department of Psychology, The Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| | - J L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - A K Radke
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - P H Rudebeck
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10014, USA
| | - A Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| |
Collapse
|
30
|
Trofimova I, Robbins TW. Temperament and arousal systems: A new synthesis of differential psychology and functional neurochemistry. Neurosci Biobehav Rev 2016; 64:382-402. [PMID: 26969100 DOI: 10.1016/j.neubiorev.2016.03.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 11/15/2015] [Accepted: 03/05/2016] [Indexed: 10/22/2022]
Abstract
This paper critically reviews the unidimensional construct of General Arousal as utilised by models of temperament in differential psychology for example, to underlie 'Extraversion'. Evidence suggests that specialization within monoamine neurotransmitter systems contrasts with the attribution of a "general arousal" of the Ascending Reticular Activating System. Experimental findings show specialized roles of noradrenaline, dopamine, and serotonin systems in hypothetically mediating three complementary forms of arousal that are similar to three functional blocks described in classical models of behaviour within kinesiology, clinical neuropsychology, psychophysiology and temperament research. In spite of functional diversity of monoamine receptors, we suggest that their functionality can be classified using three universal aspects of actions related to expansion, to selection-integration and to maintenance of chosen behavioural alternatives. Monoamine systems also differentially regulate analytic vs. routine aspects of activities at cortical and striatal neural levels. A convergence between main temperament models in terms of traits related to described functional aspects of behavioural arousal also supports the idea of differentiation between these aspects analysed here in a functional perspective.
Collapse
Affiliation(s)
- Irina Trofimova
- CILab, Department of Psychiatry and Behavioral Neurosciences, McMaster University, 92 Bowman St., Hamilton L8S2T6, Canada.
| | - Trevor W Robbins
- Department of Psychology and the Behavioural and Clinical Neuroscience Institute, Downing St., Cambridge CB23EB, UK.
| |
Collapse
|
31
|
Grados M, Prazak M, Saif A, Halls A. A review of animal models of obsessive-compulsive disorder: a focus on developmental, immune, endocrine and behavioral models. Expert Opin Drug Discov 2015; 11:27-43. [PMID: 26558411 DOI: 10.1517/17460441.2016.1103225] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Obsessive-compulsive disorder (OCD) is a neuropsychiatric condition characterized by intrusive thoughts (obsessions) and/or repetitive behaviors (compulsions). Several models of OCD exist, many which employ behaviors such as over-grooming or hoarding as correlates for compulsive behaviors - often using a response to serotonergic agents as evidence for their validity. Recent discoveries in the genetics of OCD and the identification of aberrancies of glutamatergic, hormonal, and immune pathways in the OCD phenotype highlight a need to review existing of animal models of OCD. The focus of attention to these pathways may lead to possible new targets for drug discovery. AREAS COVERED In this review, the authors describe frameworks for animal models in OCD conceptualized as either biological (e.g., developmental, genetic, and endocrine pathways), or behavioral (e.g., repetitive grooming, and stereotypies). In addition, the authors give special attention to the emerging role of glutamate in OCD. EXPERT OPINION While many animal models for OCD demonstrate pathologic repetitive behavior phenotypes, which are relieved by serotoninergic agents, animal models based on reversal learning, perseverative responding, and neurodevelopmental mechanisms represent robust new paradigms. Glutamatergic influences in these new animal models suggest that drug discovery using neuroprotective approaches may represent a new stage for pharmacologic developments in OCD.
Collapse
Affiliation(s)
- Marco Grados
- a Department of Psychiatry , Johns Hopkins University , 1800 Orleans St. - 12th floor, Baltimore , MD 21287 , USA
| | - Michael Prazak
- b Department of Medicine , Dow University of Health Sciences , Karachi , Pakistan
| | - Aneeqa Saif
- c Department of Psychology Grand Forks , University of North Dakota , ND , USA
| | - Andrew Halls
- a Department of Psychiatry , Johns Hopkins University , 1800 Orleans St. - 12th floor, Baltimore , MD 21287 , USA
| |
Collapse
|
32
|
Arnsten AFT, Wang M, Paspalas CD. Dopamine's Actions in Primate Prefrontal Cortex: Challenges for Treating Cognitive Disorders. Pharmacol Rev 2015; 67:681-96. [PMID: 26106146 PMCID: PMC4485014 DOI: 10.1124/pr.115.010512] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The prefrontal cortex (PFC) elaborates and differentiates in primates, and there is a corresponding elaboration in cortical dopamine (DA). DA cells that fire to both aversive and rewarding stimuli likely project to the dorsolateral PFC (dlPFC), signaling a salient event. Since 1979, we have known that DA has an essential influence on dlPFC working memory functions. DA has differing effects via D1 (D1R) versus D2 receptor (D2R) families. D1R are concentrated on dendritic spines, and D1/5R stimulation produces an inverted U-shaped dose response on visuospatial working memory performance and Delay cell firing, the neurons that generate representations of visual space. Optimal levels of D1R stimulation gate out "noise," whereas higher levels, e.g., during stress, suppress Delay cell firing. These effects likely involve hyperpolarization-activated cyclic nucleotide-gated channel opening, activation of GABA interneurons, and reduced glutamate release. Dysregulation of D1R has been related to cognitive deficits in schizophrenia, and there is a need for new, lower-affinity D1R agonists that may better mimic endogenous DA to enhance mental representations and improve cognition. In contrast to D1R, D2R are primarily localized on layer V pyramidal cell dendrites, and D2/3R stimulation speeds and magnifies the firing of Response cells, including Response Feedback cells. Altered firing of Feedback neurons may relate to positive symptoms in schizophrenia. Emerging research suggests that DA may have similar effects in the ventrolateral PFC and frontal eye fields. Research on the orbital PFC in monkeys is just beginning and could be a key area for future discoveries.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut
| | - Min Wang
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut
| | | |
Collapse
|
33
|
Biskup CS, Gaber T, Helmbold K, Bubenzer-Busch S, Zepf FD. Amino acid challenge and depletion techniques in human functional neuroimaging studies: an overview. Amino Acids 2015; 47:651-83. [DOI: 10.1007/s00726-015-1919-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/09/2015] [Indexed: 01/16/2023]
|
34
|
Homan P, Neumeister A, Nugent AC, Charney DS, Drevets WC, Hasler G. Serotonin versus catecholamine deficiency: behavioral and neural effects of experimental depletion in remitted depression. Transl Psychiatry 2015; 5:e532. [PMID: 25781231 PMCID: PMC4354355 DOI: 10.1038/tp.2015.25] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/12/2015] [Accepted: 01/20/2015] [Indexed: 12/22/2022] Open
Abstract
Despite immense efforts into development of new antidepressant drugs, the increases of serotoninergic and catecholaminergic neurotransmission have remained the two major pharmacodynamic principles of current drug treatments for depression. Consequently, psychopathological or biological markers that predict response to drugs that selectively increase serotonin and/or catecholamine neurotransmission hold the potential to optimize the prescriber's selection among currently available treatment options. The aim of this study was to elucidate the differential symptomatology and neurophysiology in response to reductions in serotonergic versus catecholaminergic neurotransmission in subjects at high risk of depression recurrence. Using identical neuroimaging procedures with [(18)F] fluorodeoxyglucose positron emission tomography after tryptophan depletion (TD) and catecholamine depletion (CD), subjects with remitted depression were compared with healthy controls in a double-blind, randomized, crossover design. Although TD induced significantly more depressed mood, sadness and hopelessness than CD, CD induced more inactivity, concentration difficulties, lassitude and somatic anxiety than TD. CD specifically increased glucose metabolism in the bilateral ventral striatum and decreased glucose metabolism in the bilateral orbitofrontal cortex, whereas TD specifically increased metabolism in the right prefrontal cortex and the posterior cingulate cortex. Although we found direct associations between changes in brain metabolism and induced depressive symptoms following CD, the relationship between neural activity and symptoms was less clear after TD. In conclusion, this study showed that serotonin and catecholamines have common and differential roles in the pathophysiology of depression.
Collapse
Affiliation(s)
- P Homan
- Division of Molecular Psychiatry, Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - A Neumeister
- Molecular Imaging Program, Department of Psychiatry and Radiology, New York University School of Medicine, New York, NY, USA
| | - A C Nugent
- Experimental Therapeutics & Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, and Department of Health and Human Services, Bethesda, MD, USA
| | - D S Charney
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - W C Drevets
- Laureate Institute for Brain Research, Tulsa, OK, USA,Janssen Pharmaceuticals Research & Development, Titusville, NJ, USA
| | - G Hasler
- Division of Molecular Psychiatry, Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland,Division of Molecular Psychiatry, Translational Research Center, University Hospital of Psychiatry, University of Bern, Bolligenstrasse 111, Bern 3000, Switzerland. E-mail:
| |
Collapse
|
35
|
Dual role of serotonin in the acquisition and extinction of reward-driven learning: Involvement of 5-HT1A, 5-HT2A and 5-HT3 receptors. Behav Brain Res 2015; 277:193-203. [DOI: 10.1016/j.bbr.2014.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 12/27/2022]
|
36
|
Puig MV, Antzoulatos EG, Miller EK. Prefrontal dopamine in associative learning and memory. Neuroscience 2014; 282:217-29. [PMID: 25241063 DOI: 10.1016/j.neuroscience.2014.09.026] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 09/06/2014] [Accepted: 09/10/2014] [Indexed: 01/14/2023]
Abstract
Learning to associate specific objects or actions with rewards and remembering the associations are everyday tasks crucial for our flexible adaptation to the environment. These higher-order cognitive processes depend on the prefrontal cortex (PFC) and frontostriatal circuits that connect areas in the frontal lobe with the striatum in the basal ganglia. Both structures are densely innervated by dopamine (DA) afferents that originate in the midbrain. Although the activity of DA neurons is thought to be important for learning, the exact role of DA transmission in frontostriatal circuits during learning-related tasks is still unresolved. Moreover, the neural substrates of this modulation are poorly understood. Here, we review our recent work in monkeys utilizing local pharmacology of DA agents in the PFC to investigate the cellular mechanisms of DA modulation of associative learning and memory. We show that blocking both D1 and D2 receptors in the lateral PFC impairs learning of new stimulus-response associations and cognitive flexibility, but not the memory of highly familiar associations. In addition, D2 receptors may also contribute to motivation. The learning deficits correlated with reductions of neural information about the associations in PFC neurons, alterations in global excitability and spike synchronization, and exaggerated alpha and beta neural oscillations. Our findings provide new insights into how DA transmission modulates associative learning and memory processes in frontostriatal systems.
Collapse
Affiliation(s)
- M V Puig
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - E G Antzoulatos
- Center for Neuroscience, Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95618, USA
| | - E K Miller
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
37
|
Orbitofrontal dopamine depletion upregulates caudate dopamine and alters behavior via changes in reinforcement sensitivity. J Neurosci 2014; 34:7663-76. [PMID: 24872570 DOI: 10.1523/jneurosci.0718-14.2014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schizophrenia is associated with upregulation of dopamine (DA) release in the caudate nucleus. The caudate has dense connections with the orbitofrontal cortex (OFC) via the frontostriatal loops, and both areas exhibit pathophysiological change in schizophrenia. Despite evidence that abnormalities in dopaminergic neurotransmission and prefrontal cortex function co-occur in schizophrenia, the influence of OFC DA on caudate DA and reinforcement processing is poorly understood. To test the hypothesis that OFC dopaminergic dysfunction disrupts caudate dopamine function, we selectively depleted dopamine from the OFC of marmoset monkeys and measured striatal extracellular dopamine levels (using microdialysis) and dopamine D2/D3 receptor binding (using positron emission tomography), while modeling reinforcement-related behavior in a discrimination learning paradigm. OFC dopamine depletion caused an increase in tonic dopamine levels in the caudate nucleus and a corresponding reduction in D2/D3 receptor binding. Computational modeling of behavior showed that the lesion increased response exploration, reducing the tendency to persist with a recently chosen response side. This effect is akin to increased response switching previously seen in schizophrenia and was correlated with striatal but not OFC D2/D3 receptor binding. These results demonstrate that OFC dopamine depletion is sufficient to induce striatal hyperdopaminergia and changes in reinforcement learning relevant to schizophrenia.
Collapse
|
38
|
Puig MV, Rose J, Schmidt R, Freund N. Dopamine modulation of learning and memory in the prefrontal cortex: insights from studies in primates, rodents, and birds. Front Neural Circuits 2014; 8:93. [PMID: 25140130 PMCID: PMC4122189 DOI: 10.3389/fncir.2014.00093] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/18/2014] [Indexed: 02/02/2023] Open
Abstract
In this review, we provide a brief overview over the current knowledge about the role of dopamine transmission in the prefrontal cortex during learning and memory. We discuss work in humans, monkeys, rats, and birds in order to provide a basis for comparison across species that might help identify crucial features and constraints of the dopaminergic system in executive function. Computational models of dopamine function are introduced to provide a framework for such a comparison. We also provide a brief evolutionary perspective showing that the dopaminergic system is highly preserved across mammals. Even birds, following a largely independent evolution of higher cognitive abilities, have evolved a comparable dopaminergic system. Finally, we discuss the unique advantages and challenges of using different animal models for advancing our understanding of dopamine function in the healthy and diseased brain.
Collapse
Affiliation(s)
- M. Victoria Puig
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Jonas Rose
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridge, MA, USA
- Animal Physiology, Institute of Neurobiology, University of TübingenTübingen, Germany
| | - Robert Schmidt
- BrainLinks-BrainTools, Department of Biology, Bernstein Center Freiburg, University of FreiburgFreiburg, Germany
| | - Nadja Freund
- Department of Psychiatry and Psychotherapy, University of TübingenTübingen, Germany
| |
Collapse
|
39
|
Rygula R, Clarke HF, Cardinal RN, Cockcroft GJ, Xia J, Dalley JW, Robbins TW, Roberts AC. Role of Central Serotonin in Anticipation of Rewarding and Punishing Outcomes: Effects of Selective Amygdala or Orbitofrontal 5-HT Depletion. Cereb Cortex 2014; 25:3064-76. [PMID: 24879752 PMCID: PMC4537445 DOI: 10.1093/cercor/bhu102] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Understanding the role of serotonin (or 5-hydroxytryptamine, 5-HT) in aversive processing has been hampered by the contradictory findings, across studies, of increased sensitivity to punishment in terms of subsequent response choice but decreased sensitivity to punishment-induced response suppression following gross depletion of central 5-HT. To address this apparent discrepancy, the present study determined whether both effects could be found in the same animals by performing localized 5-HT depletions in the amygdala or orbitofrontal cortex (OFC) of a New World monkey, the common marmoset. 5-HT depletion in the amygdala impaired response choice on a probabilistic visual discrimination task by increasing the effectiveness of misleading, or false, punishment and reward, and decreased response suppression in a variable interval test of punishment sensitivity that employed the same reward and punisher. 5-HT depletion in the OFC also disrupted probabilistic discrimination learning and decreased response suppression. Computational modeling of behavior on the discrimination task showed that the lesions reduced reinforcement sensitivity. A novel, unitary account of the findings in terms of the causal role of 5-HT in the anticipation of both negative and positive motivational outcomes is proposed and discussed in relation to current theories of 5-HT function and our understanding of mood and anxiety disorders.
Collapse
Affiliation(s)
- Rafal Rygula
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK Current Address: Affective Cognitive Neuroscience Laboratory, Department of Behavioral Neurobiology and Drug Development, Institute of Pharmacology Polish Academy of Sciences, ul Smetna 12, 31-343 Krakow, Poland
| | - Hannah F Clarke
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Rudolf N Cardinal
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK Department of Psychiatry, University of Cambridge, School of Clinical Medicine, Cambridge CB2 0QQ, UK Liaison Psychiatry Service, Cambridgeshire and Peterborough NHS Foundation Trust, Box 190, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Gemma J Cockcroft
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Jing Xia
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Jeff W Dalley
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Angela C Roberts
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| |
Collapse
|
40
|
Hatalova H, Radostova D, Pistikova A, Vales K, Stuchlik A. Spatial reversal learning in chronically sensitized rats and in undrugged sensitized rats with dopamine d2-like receptor agonist quinpirole. Front Behav Neurosci 2014; 8:122. [PMID: 24782730 PMCID: PMC3990106 DOI: 10.3389/fnbeh.2014.00122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/23/2014] [Indexed: 11/28/2022] Open
Abstract
Dopamine plays a role in generating flexible adaptive responses in changing environments. Chronic administration of D2-like agonist quinpirole (QNP) induces behavioral sensitization and stereotypical behaviors reminiscent of obsessive–compulsive disorder (OCD). Some of these symptoms persist even after QNP discontinuation. In QNP-sensitization, perseverative behavior has often been implicated. To test the effect of QNP-sensitization on reversal learning and its association with perseveration we selected an aversively motivated hippocampus-dependent task, active place avoidance on a Carousel. Performance was measured as the number of entrances into a to-be-avoided sector (errors). We tested separately QNP-sensitized rats in QNP-drugged and QNP-undrugged state in acquisition and reversal tasks on the Carousel. In acquisition learning there were no significant differences between groups and their respective controls. In reversal, QNP-sensitized drugged rats showed a robust but transient increase in number of errors compared to controls. QNP-sensitized rats in an undrugged state were not overtly different from the control animals but displayed an altered learning manifested by more errors at the beginning compensated by quicker learning in the second session compared to control animals. Importantly, performance was not associated with perseveration in neither QNP-sensitized drugged nor QNP-sensitized undrugged animals. The present results show that chronic QNP treatment induces robust reversal learning deficit only when the substance is continuously administered, and suggest that QNP animal model of OCD is also feasible model of cognitive alterations in this disorder.
Collapse
Affiliation(s)
- Hana Hatalova
- Institute of Physiology, Academy of Sciences of the Czech Republic , Prague , Czech Republic
| | - Dominika Radostova
- Institute of Physiology, Academy of Sciences of the Czech Republic , Prague , Czech Republic
| | - Adela Pistikova
- Institute of Physiology, Academy of Sciences of the Czech Republic , Prague , Czech Republic
| | - Karel Vales
- Institute of Physiology, Academy of Sciences of the Czech Republic , Prague , Czech Republic
| | - Ales Stuchlik
- Institute of Physiology, Academy of Sciences of the Czech Republic , Prague , Czech Republic
| |
Collapse
|
41
|
Ye Z, Altena E, Nombela C, Housden CR, Maxwell H, Rittman T, Huddleston C, Rae CL, Regenthal R, Sahakian BJ, Barker RA, Robbins TW, Rowe JB. Selective serotonin reuptake inhibition modulates response inhibition in Parkinson's disease. Brain 2014; 137:1145-55. [PMID: 24578545 PMCID: PMC3959561 DOI: 10.1093/brain/awu032] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Impulsivity is common in Parkinson's disease even in the absence of impulse control disorders. It is likely to be multifactorial, including a dopaminergic 'overdose' and structural changes in the frontostriatal circuits for motor control. In addition, we proposed that changes in serotonergic projections to the forebrain also contribute to response inhibition in Parkinson's disease, based on preclinical animal and human studies. We therefore examined whether the selective serotonin reuptake inhibitor citalopram improves response inhibition, in terms of both behaviour and the efficiency of underlying neural mechanisms. This multimodal magnetic resonance imaging study used a double-blind randomized placebo-controlled crossover design with an integrated Stop-Signal and NoGo paradigm. Twenty-one patients with idiopathic Parkinson's disease (46-76 years old, 11 male, Hoehn and Yahr stage 1.5-3) received 30 mg citalopram or placebo in addition to their usual dopaminergic medication in two separate sessions. Twenty matched healthy control subjects (54-74 years old, 12 male) were tested without medication. The effects of disease and drug on behavioural performance and regional brain activity were analysed using general linear models. In addition, anatomical connectivity was examined using diffusion tensor imaging and tract-based spatial statistics. We confirmed that Parkinson's disease caused impairment in response inhibition, with longer Stop-Signal Reaction Time and more NoGo errors under placebo compared with controls, without affecting Go reaction times. This was associated with less stop-specific activation in the right inferior frontal cortex, but no significant difference in NoGo-related activation. Although there was no beneficial main effect of citalopram, it reduced Stop-Signal Reaction Time and NoGo errors, and enhanced inferior frontal activation, in patients with relatively more severe disease (higher Unified Parkinson's Disease Rating Scale motor score). The behavioural effect correlated with the citalopram-induced enhancement of prefrontal activation and the strength of preserved structural connectivity between the frontal and striatal regions. In conclusion, the behavioural effect of citalopram on response inhibition depends on individual differences in prefrontal cortical activation and frontostriatal connectivity. The correlation between disease severity and the effect of citalopram on response inhibition may be due to the progressive loss of forebrain serotonergic projections. These results contribute to a broader understanding of the critical roles of serotonin in regulating cognitive and behavioural control, as well as new strategies for patient stratification in clinical trials of serotonergic treatments in Parkinson's disease.
Collapse
Affiliation(s)
- Zheng Ye
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ellemarije Altena
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Cristina Nombela
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Helen Maxwell
- 2 Department of Experimental Psychology, University of Cambridge, Cambridge, UK
| | - Timothy Rittman
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Chelan Huddleston
- 2 Department of Experimental Psychology, University of Cambridge, Cambridge, UK
| | - Charlotte L. Rae
- 3 Medical Research Council Cognition and Brain Sciences Unit, Cambridge, UK
| | - Ralf Regenthal
- 4 Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | | | - Roger A. Barker
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Trevor W. Robbins
- 2 Department of Experimental Psychology, University of Cambridge, Cambridge, UK,5 Behavioural and Clinical Neuroscience Institute, Cambridge, UK
| | - James B. Rowe
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK,3 Medical Research Council Cognition and Brain Sciences Unit, Cambridge, UK,5 Behavioural and Clinical Neuroscience Institute, Cambridge, UK
| |
Collapse
|
42
|
Ullsperger M, Danielmeier C, Jocham G. Neurophysiology of performance monitoring and adaptive behavior. Physiol Rev 2014; 94:35-79. [PMID: 24382883 DOI: 10.1152/physrev.00041.2012] [Citation(s) in RCA: 425] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Successful goal-directed behavior requires not only correct action selection, planning, and execution but also the ability to flexibly adapt behavior when performance problems occur or the environment changes. A prerequisite for determining the necessity, type, and magnitude of adjustments is to continuously monitor the course and outcome of one's actions. Feedback-control loops correcting deviations from intended states constitute a basic functional principle of adaptation at all levels of the nervous system. Here, we review the neurophysiology of evaluating action course and outcome with respect to their valence, i.e., reward and punishment, and initiating short- and long-term adaptations, learning, and decisions. Based on studies in humans and other mammals, we outline the physiological principles of performance monitoring and subsequent cognitive, motivational, autonomic, and behavioral adaptation and link them to the underlying neuroanatomy, neurochemistry, psychological theories, and computational models. We provide an overview of invasive and noninvasive systemic measures, such as electrophysiological, neuroimaging, and lesion data. We describe how a wide network of brain areas encompassing frontal cortices, basal ganglia, thalamus, and monoaminergic brain stem nuclei detects and evaluates deviations of actual from predicted states indicating changed action costs or outcomes. This information is used to learn and update stimulus and action values, guide action selection, and recruit adaptive mechanisms that compensate errors and optimize goal achievement.
Collapse
|
43
|
Klanker M, Feenstra M, Denys D. Dopaminergic control of cognitive flexibility in humans and animals. Front Neurosci 2013; 7:201. [PMID: 24204329 PMCID: PMC3817373 DOI: 10.3389/fnins.2013.00201] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 10/11/2013] [Indexed: 12/21/2022] Open
Abstract
Striatal dopamine (DA) is thought to code for learned associations between cues and reinforcers and to mediate approach behavior toward a reward. Less is known about the contribution of DA to cognitive flexibility—the ability to adapt behavior in response to changes in the environment. Altered reward processing and impairments in cognitive flexibility are observed in psychiatric disorders such as obsessive compulsive disorder (OCD). Patients with this disorder show a disruption of functioning in the frontostriatal circuit and alterations in DA signaling. In this review we summarize findings from animal and human studies that have investigated the involvement of striatal DA in cognitive flexibility. These findings may provide a better understanding of the role of dopaminergic dysfunction in cognitive inflexibility in psychiatric disorders, such as OCD.
Collapse
Affiliation(s)
- Marianne Klanker
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences Amsterdam, Netherlands ; Department of Psychiatry, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | | | | |
Collapse
|
44
|
den Ouden H, Daw N, Fernandez G, Elshout J, Rijpkema M, Hoogman M, Franke B, Cools R. Dissociable Effects of Dopamine and Serotonin on Reversal Learning. Neuron 2013; 80:1090-100. [DOI: 10.1016/j.neuron.2013.08.030] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2013] [Indexed: 12/16/2022]
|
45
|
Yildirim BO, Derksen JJ. Systematic review, structural analysis, and new theoretical perspectives on the role of serotonin and associated genes in the etiology of psychopathy and sociopathy. Neurosci Biobehav Rev 2013; 37:1254-96. [DOI: 10.1016/j.neubiorev.2013.04.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/09/2013] [Accepted: 04/17/2013] [Indexed: 12/18/2022]
|
46
|
Kangas BD, Bergman J. Repeated acquisition and discrimination reversal in the squirrel monkey (Saimiri sciureus). Anim Cogn 2013; 17:221-8. [PMID: 23794073 DOI: 10.1007/s10071-013-0654-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/04/2013] [Accepted: 06/12/2013] [Indexed: 12/28/2022]
Abstract
Repeated acquisition and discrimination reversal tasks are often used to examine behavioral relations of, respectively, learning and cognitive flexibility. Surprisingly, despite their frequent use in cognitive neuroscience and behavioral pharmacology, variables that control performance under these two tasks have not been widely studied. The present studies were conducted to directly investigate the controlling variables in nonhuman primates. Squirrel monkeys were trained with a touchscreen variant of the repeated acquisition task in which a novel pair of S(+)/S(-) stimuli was presented daily. Subjects learned to discriminate the two stimuli (acquisition) and, subsequently, with the contingencies switched (reversal). Results indicate that rates of both acquisition and reversal learning increased across successive sessions, but that rate of reversal learning remained slower than acquisition learning, i.e., more trials were needed for mastery. Subsequent experiments showed this difference between the rate of learning novel discriminations and reversal was reliable for at least 5 days between acquisition and reversal and notwithstanding the interpolation of additional discriminations. Experimental analysis of the S(+)/S(-) elements of the tasks revealed that the difference in the rate of learning could not be attributed to a relatively aversive quality of the S(-) or to a relatively appetitive quality of the S(+), but, rather, to contextual control by the S(+)/S(-) stimulus complex. Thus, if either element (S(+) or S(-)) of the stimulus complex was replaced by a novel stimulus, the rate of acquisition approximated that expected with a novel stimulus pair. These results improve our understanding of fundamental features of discrimination acquisition and reversal.
Collapse
Affiliation(s)
- Brian D Kangas
- Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA, 02478, USA,
| | | |
Collapse
|
47
|
Differential effects of serotonin-specific and excitotoxic lesions of OFC on conditioned reinforcer devaluation and extinction in rats. Behav Brain Res 2013; 246:10-4. [PMID: 23458741 DOI: 10.1016/j.bbr.2013.02.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/07/2013] [Accepted: 02/14/2013] [Indexed: 12/28/2022]
Abstract
The orbitofrontal cortex (OFC) is critical for behavioral adaptation in response to changes in reward value. Here we investigated, in rats, the role of OFC and, specifically, serotonergic neurotransmission within OFC in a reinforcer devaluation task (which measures behavioral flexibility). This task used two visual cues, each predicting one of two foods, with the spatial position (left-right) of the cues above two levers pseudorandomized across trials. An instrumental action (lever press) was required for reinforcer delivery. After training, rats received either excitotoxic OFC lesions made by NMDA (N-methyl-d-aspartic acid), serotonin-specific OFC lesions made by 5,7-DHT (5,7-dihydroxytryptamine), or sham lesions. In sham-lesioned rats, devaluation of one food (by feeding to satiety) significantly decreased responding to the cue associated with that food, when both cues were presented simultaneously during extinction. Both types of OFC lesions disrupted the devaluation effect. In contrast, extinction learning was not affected by serotonin-specific lesions and was only mildly retarded in rats with excitotoxic lesions. Thus, serotonin within OFC is necessary for appropriately adjusting behavior toward cues that predict reward but not for reducing responses in the absence of reward. Our results are the first to demonstrate that serotonin in OFC is necessary for reinforcer devaluation, but not extinction.
Collapse
|
48
|
Linley SB, Hoover WB, Vertes RP. Pattern of distribution of serotonergic fibers to the orbitomedial and insular cortex in the rat. J Chem Neuroanat 2013; 48-49:29-45. [PMID: 23337940 DOI: 10.1016/j.jchemneu.2012.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 01/23/2023]
Abstract
As is well recognized, serotonergic (5-HT) fibers distribute widely throughout the brain, including the cerebral cortex. Although some early reports described the 5-HT innervation of the prefrontal cortex (PFC) in rats, the focus was on sensorimotor regions and not on the 'limbic' PFC - or on the medial, orbital and insular cortices. In addition, no reports have described the distribution of 5-HT fibers to PFC in rats using antisera to the serotonin transporter (SERT). Using immunostaining for SERT, we examined the pattern of distribution of 5-HT fibers to the medial, orbital and insular cortices in the rat. We show that 5-HT fibers distribute massively throughout all divisions of the PFC, with distinct laminar variations. Specifically, 5-HT fibers were densely concentrated in superficial (layer 1) and deep (layers 5/6) of the PFC but less heavily so in intermediate layers (layers 2/3). This pattern was most pronounced in the orbital cortex, particularly in the ventral and ventrolateral orbital cortices. With the emergence of granular divisions of the insular cortex, the granular cell layer (layer 4) was readily identifiable by a dense band of labeling confined to it, separating layer 4 from less heavily labeled superficial and deep layers. The pattern of 5-HT innervation of medial, orbital and insular cortices significantly differed from that of sensorimotor regions of the PFC. Serotonergic labeling was much denser overall in limbic compared to non-limbic regions of the PFC, as was striking demonstrated by the generally weaker labeling in layers 1-3 of the primary sensory and motor cortices. The massive serotonergic innervation of the medial, orbital and insular divisions of the PFC likely contributes substantially to well established serotonergic effects on affective and cognitive functions, including a key role in many neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Stephanie B Linley
- Department of Psychology, Florida Atlantic University, Boca Raton, FL 33431, United States
| | | | | |
Collapse
|
49
|
Pascucci T, Giacovazzo G, Andolina D, Conversi D, Cruciani F, Cabib S, Puglisi-Allegra S. In vivo catecholaminergic metabolism in the medial prefrontal cortex of ENU2 mice: an investigation of the cortical dopamine deficit in phenylketonuria. J Inherit Metab Dis 2012; 35:1001-9. [PMID: 22447154 PMCID: PMC3470696 DOI: 10.1007/s10545-012-9473-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 02/27/2012] [Accepted: 02/29/2012] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Phenylketonuria (PKU) is an inherited metabolic disease characterized by plasma hyperphenylalaninemia and several neurological symptoms that can be controlled by rigorous dietetic treatment. The cellular mechanisms underlying impaired brain functions are still unclear. It has been proposed, however, that phenylalanine interference in cognitive functions depends on impaired dopamine (DA) transmission in the prefrontal cortical area due to reduced availability of the precursor tyrosine. Here, using Pah(enu2) (ENU2) mice, the genetic murine model of PKU, we investigated all metabolic steps of catecholamine neurotransmission within the medial preFrontal Cortex (mpFC), availability of the precursor tyrosine, synthesis and release, to find an easy way to reinstate normal cortical DA neurotransmission. METHODS AND RESULTS Analysis of blood and brain levels of tyrosine showed reduced plasma and cerebral levels of tyrosine in ENU2 mice. Western blot analysis demonstrated deficient tyrosine hydroxylase (TH) protein levels in mpFC of ENU2 mice. Cortical TH activity, determined in vivo by measuring the accumulation of l-3,4-dihydroxyphenylalanine (L-DOPA) in mpFC after inhibition of L-aromatic acid decarboxylase with NSD-1015, was reduced in ENU2 mice. Finally, a very low dose of L-DOPA, which bypasses the phenylalanine-inhibited metabolic steps, restored DA prefrontal transmission to levels found in healthy mice. CONCLUSION The data suggests that a strategy of using tyrosine supplementation to treat PKU is unlikely to be effective, whereas small dose L-DOPA administration is likely to have a positive therapeutic effect.
Collapse
Affiliation(s)
- Tiziana Pascucci
- Department of Psychology and Centre Daniel Bovet, Sapienza University, via dei Marsi 78, 00185, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
50
|
Hindi Attar C, Finckh B, Büchel C. The influence of serotonin on fear learning. PLoS One 2012; 7:e42397. [PMID: 22879964 PMCID: PMC3411733 DOI: 10.1371/journal.pone.0042397] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/04/2012] [Indexed: 11/18/2022] Open
Abstract
Learning of associations between aversive stimuli and predictive cues is the basis of Pavlovian fear conditioning and is driven by a mismatch between expectation and outcome. To investigate whether serotonin modulates the formation of such aversive cue-outcome associations, we used functional magnetic resonance imaging (fMRI) and dietary tryptophan depletion to reduce brain serotonin (5-HT) levels in healthy human subjects. In a Pavlovian fear conditioning paradigm, 5-HT depleted subjects compared to a non-depleted control group exhibited attenuated autonomic responses to cues indicating the upcoming of an aversive event. These results were closely paralleled by reduced aversive learning signals in the amygdala and the orbitofrontal cortex, two prominent structures of the neural fear circuit. In agreement with current theories of serotonin as a motivational opponent system to dopamine in fear learning, our data provide first empirical evidence for a role of serotonin in representing formally derived learning signals for aversive events.
Collapse
Affiliation(s)
- Catherine Hindi Attar
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | | | |
Collapse
|