1
|
Ji W, Li G, Hu Y, Zhang W, Li J, Li Y, Gao X, Manza P, Volkow ND, Wang GJ, Zhang Y. Abnormal alterations in neurodevelopment in preterm children with very low birth weight during the adolescence. Eur Child Adolesc Psychiatry 2025:10.1007/s00787-025-02724-7. [PMID: 40332609 DOI: 10.1007/s00787-025-02724-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 04/20/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Preterm infants with very low birth weight are at high risk for long-term neurocognitive deficits. However, whether these neurocognitive deficits are improved or worsened in adolescence remains unclear. METHODS We took advantage of the large sample from the Adolescent Brain Cognitive Development dataset to investigate alterations in brain structure, behavior, including cognitive function and mental health symptoms, and in puberty among preterm children with very low/normal birth weight (Pre_VLBW/Pre_NBW) and full-term children with normal birth weight (Con_NBW) from baseline to 2-year follow-up. RESULTS Pre_VLBW children relative to the other two groups had higher cortical thickness, lower cortical area and cortical/subcortical volumes in large portions of frontal cortex, temporal and occipital gyrus, insula, thalamus, and cerebellum; and attenuated fiber tract volumes in the fornix and foreceps major at baseline. Pre_VLBW children for their baseline measures also had lower cognitive function, higher pubertal levels and psychopathological risk. Furthermore, there were significant interaction effects on increased adrenarche score and cortical and subcortical volumes in medial orbitofrontal cortex (mOFC) and thalamus from baseline to 2-year follow-up. Pre_VLBW individuals showed higher adrenarche scores and lower volumes in the mOFC and thalamus than the other two groups at 2-year follow-up, but not at baseline. These brain structural changes showed associations with pubertal development levels, psychopathological risk and cognitive deficits. CONCLUSION These findings support a view that preterm children with VLBW showed distinctive developmental alterations during adolescence, which potentially lead to long-lasting deviations in various brain regions and might be associated with behavioral problems and neurocognitive deficits.
Collapse
Affiliation(s)
- Weibin Ji
- Center for Brain Imaging, School of Life Science and Technology, Engineering Research Center of Molecular and Neuro Imaging, Xidian University, Ministry of Education, Xi'an, 710126, Shaanxi, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, 710126, Shaanxi, China
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Engineering Research Center of Molecular and Neuro Imaging, Xidian University, Ministry of Education, Xi'an, 710126, Shaanxi, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, 710126, Shaanxi, China
| | - Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Engineering Research Center of Molecular and Neuro Imaging, Xidian University, Ministry of Education, Xi'an, 710126, Shaanxi, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, 710126, Shaanxi, China
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Engineering Research Center of Molecular and Neuro Imaging, Xidian University, Ministry of Education, Xi'an, 710126, Shaanxi, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, 710126, Shaanxi, China
| | - Jingyuan Li
- Center for Brain Imaging, School of Life Science and Technology, Engineering Research Center of Molecular and Neuro Imaging, Xidian University, Ministry of Education, Xi'an, 710126, Shaanxi, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, 710126, Shaanxi, China
| | - Yuefeng Li
- Department of Neonatology, Shenzhen Luohu Maternity and Child Health Hospital, Shenzhen, 518103, China
| | - Xinbo Gao
- Chongqing Key Laboratory of Image Cognition, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
- Chongqing Institute for Brain: a journal of neurology and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, 10 Center Drive, MSC1013, Building 10, Room B2L104, Bethesda, MD, 20892-1013, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, 10 Center Drive, MSC1013, Building 10, Room B2L104, Bethesda, MD, 20892-1013, USA.
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, 10 Center Drive, MSC1013, Building 10, Room B2L104, Bethesda, MD, 20892-1013, USA.
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Engineering Research Center of Molecular and Neuro Imaging, Xidian University, Ministry of Education, Xi'an, 710126, Shaanxi, China.
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, 710126, Shaanxi, China.
| |
Collapse
|
2
|
Calixto C, Cortes‐Albornoz MC, Velasco‐Annis C, Karimi D, Afacan O, Warfield SK, Gholipour A, Jaimes C. Regional Changes in the Fetal Telencephalic Wall Diffusion Metrics Across Late Second and Third Trimesters. Hum Brain Mapp 2025; 46:e70159. [PMID: 39950579 PMCID: PMC11826438 DOI: 10.1002/hbm.70159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/17/2025] Open
Abstract
During the second and third trimesters of human gestation, the brain undergoes rapid neurodevelopment thanks to critical processes such as neuronal migration, radial glial scaffolding, and synaptic sprouting. Unfortunately, gathering high-quality MRI data on the healthy fetal brain is complex, making it challenging to understand this development. To address this issue, we conducted a study using motion-corrected diffusion tensor imaging (DTI) to analyze changes in the cortical gray matter (CP) and sub-cortical white matter (scWM) microstructure in 44 healthy fetuses between 23 and 36 weeks of gestational age. We automatically segmented these two tissues and parcellated them into eight regions based on anatomy, including the frontal, parietal, occipital, and temporal lobes, cingulate, sensory and motor cortices, and the insula. We were able to observe distinct patterns of diffusion MRI signals across these regions. Specifically, we found that in the CP, fractional anisotropy (FA) consistently decreased with age, while mean diffusivity (MD) followed a downward-open parabolic trend. Conversely, in the scWM, FA exhibited an upward-open parabolic trajectory, while MD followed a downward-open parabolic trend. Our study underscores the potential for diffusion as a biomarker for normal and abnormal neurodevelopment before birth, especially since most neurodiagnostic tools are not yet available at this stage.
Collapse
Affiliation(s)
- Camilo Calixto
- Harvard Medical SchoolBostonMassachusettsUSA
- Computational Radiology Laboratory. Department of RadiologyBoston Children's HospitalBostonMassachusettsUSA
- Icahn School of Medicine at Mount SinaiNew York CityNew YorkUSA
| | - Maria C. Cortes‐Albornoz
- Harvard Medical SchoolBostonMassachusettsUSA
- Computational Radiology Laboratory. Department of RadiologyBoston Children's HospitalBostonMassachusettsUSA
- Massachusetts General HospitalBostonMassachusettsUSA
| | - Clemente Velasco‐Annis
- Harvard Medical SchoolBostonMassachusettsUSA
- Computational Radiology Laboratory. Department of RadiologyBoston Children's HospitalBostonMassachusettsUSA
| | - Davood Karimi
- Harvard Medical SchoolBostonMassachusettsUSA
- Computational Radiology Laboratory. Department of RadiologyBoston Children's HospitalBostonMassachusettsUSA
| | - Onur Afacan
- Harvard Medical SchoolBostonMassachusettsUSA
- Computational Radiology Laboratory. Department of RadiologyBoston Children's HospitalBostonMassachusettsUSA
| | - Simon K. Warfield
- Harvard Medical SchoolBostonMassachusettsUSA
- Computational Radiology Laboratory. Department of RadiologyBoston Children's HospitalBostonMassachusettsUSA
| | - Ali Gholipour
- Harvard Medical SchoolBostonMassachusettsUSA
- Computational Radiology Laboratory. Department of RadiologyBoston Children's HospitalBostonMassachusettsUSA
- Department of Radiological SciencesUniversity of California IrvineIrvineCaliforniaUSA
| | - Camilo Jaimes
- Harvard Medical SchoolBostonMassachusettsUSA
- Massachusetts General HospitalBostonMassachusettsUSA
| |
Collapse
|
3
|
McDonald NM, Qian Q, Ferrario CA, Senturk D, Iyer S, Jeste SS. Developmental trajectories in high-risk NICU graduates during the first year of life. Early Hum Dev 2025; 201:106183. [PMID: 39705921 PMCID: PMC11830516 DOI: 10.1016/j.earlhumdev.2024.106183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/15/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
OBJECTIVE We examined whether early medical factors predicted variability in developmental level and trajectories in high-risk neonatal intensive care unit (NICU) graduates during the first year of life. METHOD Infants (n = 53) who met criteria for the High-Risk Infant Follow-up Program were enrolled. Simple linear models predicted 12-month developmental abilities and linear mixed models predicted 6- to 12-month trajectories based on length of NICU stay and birthweight. RESULTS Length of NICU stay was more clearly predictive of 12-month developmental level, while birthweight better explained variability in trajectories. Communication and daily living skills varied based on early medical factors, whereas social skills did not. Motor skills varied by length of stay but not birthweight. CONCLUSION Results support the need for close developmental monitoring of NICU graduates, particularly those with lengthier stays and lower birthweight. Developmental support needs should be based not just on current delays, but on the rate at which infants learn new skills.
Collapse
Affiliation(s)
- Nicole M McDonald
- UCLA Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, United States of America.
| | - Qi Qian
- UCLA Department of Biostatistics, School of Public Health, United States of America
| | - Camila A Ferrario
- UCLA Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, United States of America
| | - Damla Senturk
- UCLA Department of Biostatistics, School of Public Health, United States of America
| | - Sai Iyer
- Developmental Behavioral Pediatrics, Department of Pediatrics, UCLA David Geffen School of Medicine, United States of America
| | - Shafali S Jeste
- Children's Hospital Los Angeles, Department of Neurology, United States of America
| |
Collapse
|
4
|
Verschuur AS, King R, Tax CMW, Boomsma MF, van Wezel-Meijler G, Leemans A, Leijser LM. Methodological considerations on diffusion MRI tractography in infants aged 0-2 years: a scoping review. Pediatr Res 2025; 97:880-897. [PMID: 39143201 DOI: 10.1038/s41390-024-03463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
Diffusion MRI (dMRI) enables studying the complex architectural organization of the brain's white matter (WM) through virtual reconstruction of WM fiber tracts (tractography). Despite the anticipated clinical importance of applying tractography to study structural connectivity and tract development during the critical period of rapid infant brain maturation, detailed descriptions on how to approach tractography in young infants are limited. Over the past two decades, tractography from infant dMRI has mainly been applied in research settings and focused on diffusion tensor imaging (DTI). Only few studies used techniques superior to DTI in terms of disentangling information on the brain's organizational complexity, including crossing fibers. While more advanced techniques may enhance our understanding of the intricate processes of normal and abnormal brain development and extensive knowledge has been gained from application on adult scans, their applicability in infants has remained underexplored. This may partially be due to the higher technical requirements versus the need to limit scan time in young infants. We review various previously described methodological practices for tractography in the infant brain (0-2 years-of-age) and provide recommendations to optimize advanced tractography approaches to enable more accurate reconstructions of the brain WM's complexity. IMPACT: Diffusion tensor imaging is the technique most frequently used for fiber tracking in the developing infant brain but is limited in capability to disentangle the complex white matter organization. Advanced tractography techniques allow for reconstruction of crossing fiber bundles to better reflect the brain's complex organization. Yet, they pose practical and technical challenges in the fast developing young infant's brain. Methods on how to approach advanced tractography in the young infant's brain have hardly been described. Based on a literature review, recommendations are provided to optimize tractography for the developing infant brain, aiming to advance early diagnosis and neuroprotective strategies.
Collapse
Affiliation(s)
- Anouk S Verschuur
- Department of Radiology, Isala Hospital Zwolle, Zwolle, The Netherlands.
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, Canada.
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Regan King
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, Canada
| | - Chantal M W Tax
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
- CUBRIC, School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Martijn F Boomsma
- Department of Radiology, Isala Hospital Zwolle, Zwolle, The Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gerda van Wezel-Meijler
- Department of Neonatology, Isala Women and Children's Hospital Zwolle, Zwolle, The Netherlands
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lara M Leijser
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, Canada
| |
Collapse
|
5
|
Mousley A, Akarca D, Astle DE. Premature birth changes wiring constraints in neonatal structural brain networks. Nat Commun 2025; 16:490. [PMID: 39779695 PMCID: PMC11711473 DOI: 10.1038/s41467-024-55178-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Structural brain organization in infancy is associated with later cognitive, behavioral, and educational outcomes. Due to practical limitations, such as technological advancements and data availability of fetal MRI, there is still much we do not know about the early emergence of topological organization. We combine the developing Human Connectome Project's large infant dataset with generative network modeling to simulate the emergence of network organization over early development. Preterm infants had reduced connectivity, shorter connection lengths, and lower network efficiency compared to term-born infants. The models were able to recapitulate the organizational differences between term and preterm networks and revealed that preterm infant networks are better simulated under tighter wiring constraints than term infants. Tighter constraints for preterm models resulted in shorter connection lengths while preserving vital, long-range rich club connections. These simulations suggest that preterm birth is associated with a renegotiation of the cost-value wiring trade-off that may drive the emergence of different network organization.
Collapse
Affiliation(s)
- Alexa Mousley
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| | - Danyal Akarca
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
- Imperial-X, Imperial College London, London, UK
| | - Duncan E Astle
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Morin C, Faure F, Mollet J, Guenoun D, Heydari-Olya A, Sautet I, Diao S, Faivre V, Pansiot J, Tabet L, Hua J, Schwendimann L, Mokhtari A, Martin-Rosique R, Chadi S, Laforge M, Demené C, Delahaye-Duriez A, Diaz-Heijtz R, Fleiss B, Matrot B, Auger S, Tanter M, Van Steenwinckel J, Gressens P, Bokobza C. C-section and systemic inflammation synergize to disrupt the neonatal gut microbiota and brain development in a model of prematurity. Brain Behav Immun 2025; 123:824-837. [PMID: 39442636 DOI: 10.1016/j.bbi.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 10/07/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024] Open
Abstract
Infants born very preterm (below 28 weeks of gestation) are at high risk of developing neurodevelopmental disorders, such as intellectual deficiency, autism spectrum disorders, and attention deficit. Preterm birth often occurs in the context of perinatal systemic inflammation due to chorioamnionitis and postnatal sepsis. In addition, C-section is often performed for very preterm neonates to avoid hypoxia during a vaginal delivery. We have developed and characterized a mouse model based on intraperitoneal injections of IL-1β between postnatal days one and five to reproduce perinatal systemic inflammation. This model replicates several neuropathological, brain imaging, and behavioral deficits observed in preterm infants. We hypothesized that C-sections could synergize with systemic inflammation to induce more severe brain abnormalities. We observed that C-sections significantly exacerbated the deleterious effects of IL-1β on reduced gut microbial diversity, increased levels of circulating peptidoglycans, abnormal microglia/macrophage reactivity, impaired myelination, and reduced functional connectivity in the brain relative to vaginal delivery plus intraperitoneal saline. These data demonstrate the deleterious synergistic effects of C-section and neonatal systemic inflammation on brain maldevelopment and malfunction, two conditions frequently observed in very preterm infants, who are at high risk of developing neurodevelopmental disorders.
Collapse
Affiliation(s)
- Cécile Morin
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France; Department of Obstetrics and Gynecology, AP-HP, Robert Debré Hospital, 75019 Paris, France
| | - Flora Faure
- Physics for Medicine Paris, Inserm, ESPCI Paris-PSL, CNRS, 75015 Paris, France
| | - Julie Mollet
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | - David Guenoun
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France; Department of Pharmacy, AP-HP, Robert Debré Hospital, 75019 Paris, France
| | | | - Irvin Sautet
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | - Sihao Diao
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France; Fudan University, Department of Neonatology, Children's Hospital of Fudan University, 201102 Shanghai, China
| | - Valérie Faivre
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | - Julien Pansiot
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | - Lara Tabet
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | - Jennifer Hua
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | | | - Amazigh Mokhtari
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | - Rebeca Martin-Rosique
- INRAE, Université Paris-Saclay, AgroParisTech, UMR1319 Micalis Institute, 78352 Jouy-en-Josas, France
| | - Sead Chadi
- INRAE, Université Paris-Saclay, AgroParisTech, UMR1319 Micalis Institute, 78352 Jouy-en-Josas, France
| | - Mireille Laforge
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | - Charlie Demené
- Physics for Medicine Paris, Inserm, ESPCI Paris-PSL, CNRS, 75015 Paris, France
| | - Andrée Delahaye-Duriez
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France; UFR Santé Médecine et Biologie Humaine, Université Sorbonne Paris Nord, 93000 Bobigny, France; Unité Fonctionnelle de Médecine Génomique et Génétique Clinique, Hôpital Jean Verdier, Hôpitaux Universitaires Paris Seine Saint-Denis, Assistance Publique des Hôpitaux de Paris, 93140 Bondy, France
| | | | - Bobbi Fleiss
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia
| | - Boris Matrot
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | - Sandrine Auger
- INRAE, Université Paris-Saclay, AgroParisTech, UMR1319 Micalis Institute, 78352 Jouy-en-Josas, France
| | - Mickael Tanter
- Physics for Medicine Paris, Inserm, ESPCI Paris-PSL, CNRS, 75015 Paris, France
| | | | - Pierre Gressens
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | - Cindy Bokobza
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France.
| |
Collapse
|
7
|
Ek CJ, Alkmark M, Baburamani AA, Supramaniam VG, Sood S, Melchiotti R, de Rinaldis E, Hagberg H, Mallard C. Novel biomarkers of preterm brain injury from blood transcriptome in sheep model of intrauterine asphyxia. Pediatr Res 2024; 96:1707-1717. [PMID: 38822135 PMCID: PMC11772238 DOI: 10.1038/s41390-024-03224-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/06/2024] [Accepted: 04/02/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Infants born preterm have a higher incidence of neurological deficits. A key step in finding effective treatments is to identify biomarkers that reliably predict outcome. METHODS Following umbilical cord occlusion (UCO) in pregnant sheep, whole fetal blood RNA was sequenced pre- and post-UCO, brain injury outcome was determined by battery of neuropathology scoring and the transcriptome signature correlated to the degree of brain injury. Additionally, we developed a novel analytical procedure to deduce cell blood composition over time. RESULTS Sixty-one genes were identified with significant altered expression after UCO. In pre-UCO blood, the level of three mRNAs (Trex2, Znf280b, novel miRNA) and in post-UCO, four mRNAs (Fam184a, Angptl2, novel lincRNA and an unknown protein-coding gene) were associated to brain injury (FDR < 0.01). Several of these mRNAs are related to inflammation and angiogenesis. Pathway analysis highlighted genes playing a role in perinatal death and growth failure. Results also indicate that several leukocyte populations undergo significant changes after UCO. CONCLUSION We have used a whole transcriptomic approach to uncover novel biomarkers in fetal blood that correlate to neuropathology in the preterm sheep brain. The current data forms a basis for future studies to investigate mechanisms of these mRNAs in the injury progression. IMPACT Trend analysis of genes following asphyxia reveal a group of genes associated with perinatal death and growth failure. Several pre-asphyxia transcripts were associated to brain injury severity suggesting genomic susceptibility to injury. Several post-asphyxia transcripts were correlated to brain injury severity, thus, serve as potential novel biomarkers of injury outcome. Successfully adaptation of cell profiling algorithms suggests significant changes in blood cell composition following asphyxia.
Collapse
Affiliation(s)
- C Joakim Ek
- Centre for Perinatal Medicine and Health, Institutes of Neuroscience and Physiology & Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden.
| | - Mårten Alkmark
- Centre for Perinatal Medicine and Health, Institutes of Neuroscience and Physiology & Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Ana A Baburamani
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's Health Partners, St Thomas' Hospital, London, SE1 7EH, UK
| | - Veena G Supramaniam
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's Health Partners, St Thomas' Hospital, London, SE1 7EH, UK
| | - Sanjana Sood
- Department of Cancer Epidemiology and Population Health, King's College London, London, UK
| | - Rossella Melchiotti
- Department of Cancer Epidemiology and Population Health, King's College London, London, UK
| | - Emanuele de Rinaldis
- Department of Cancer Epidemiology and Population Health, King's College London, London, UK
| | - Henrik Hagberg
- Centre for Perinatal Medicine and Health, Institutes of Neuroscience and Physiology & Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's Health Partners, St Thomas' Hospital, London, SE1 7EH, UK
| | - Carina Mallard
- Centre for Perinatal Medicine and Health, Institutes of Neuroscience and Physiology & Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
8
|
Argyropoulou MI, Xydis VG, Astrakas LG. Functional connectivity of the pediatric brain. Neuroradiology 2024; 66:2071-2082. [PMID: 39230715 DOI: 10.1007/s00234-024-03453-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024]
Abstract
PURPOSE This review highlights the importance of functional connectivity in pediatric neuroscience, focusing on its role in understanding neurodevelopment and potential applications in clinical practice. It discusses various techniques for analyzing brain connectivity and their implications for clinical interventions in neurodevelopmental disorders. METHODS The principles and applications of independent component analysis and seed-based connectivity analysis in pediatric brain studies are outlined. Additionally, the use of graph analysis to enhance understanding of network organization and topology is reviewed, providing a comprehensive overview of connectivity methods across developmental stages, from fetuses to adolescents. RESULTS Findings from the reviewed studies reveal that functional connectivity research has uncovered significant insights into the early formation of brain circuits in fetuses and neonates, particularly the prenatal origins of cognitive and sensory systems. Longitudinal research across childhood and adolescence demonstrates dynamic changes in brain connectivity, identifying critical periods of development and maturation that are essential for understanding neurodevelopmental trajectories and disorders. CONCLUSION Functional connectivity methods are crucial for advancing pediatric neuroscience. Techniques such as independent component analysis, seed-based connectivity analysis, and graph analysis offer valuable perspectives on brain development, creating new opportunities for early diagnosis and targeted interventions in neurodevelopmental disorders, thereby paving the way for personalized therapeutic strategies.
Collapse
Affiliation(s)
- Maria I Argyropoulou
- Department of Radiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, P.O. Box 1186, Ioannina, 45110, Greece.
| | - Vasileios G Xydis
- Department of Radiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, P.O. Box 1186, Ioannina, 45110, Greece
| | - Loukas G Astrakas
- Medical Physics Laboratory, Faculty of Medicine, School of Health Sciences, University of Ioannina, P.O. Box 1186, Ioannina, 45110, Greece
| |
Collapse
|
9
|
Geiger M, Hurewitz SR, Pawlowski K, Baumer NT, Wilkinson CL. Alterations in aperiodic and periodic EEG activity in young children with Down syndrome. Neurobiol Dis 2024; 200:106643. [PMID: 39173846 PMCID: PMC11452906 DOI: 10.1016/j.nbd.2024.106643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/18/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024] Open
Abstract
Down syndrome (DS) is the most common cause of intellectual disability, yet little is known about the neurobiological pathways leading to cognitive impairments. Electroencephalographic (EEG) measures are commonly used to study neurodevelopmental disorders, but few studies have focused on young children with DS. Here we assess resting state EEG data collected from toddlers/preschoolers with DS (n = 29, age 13-48 months old) and compare their aperiodic and periodic EEG features with both age-matched (n = 29) and developmental-matched (n = 58) comparison groups. DS participants exhibited significantly reduced aperiodic slope, increased periodic theta power, and decreased alpha peak amplitude. A majority of DS participants displayed a prominent peak in the theta range, whereas a theta peak was not present in age-matched participants. Overall, similar findings were also observed when comparing DS and developmental-matched groups, suggesting that EEG differences are not explained by delayed cognitive ability.
Collapse
Affiliation(s)
- McKena Geiger
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Sophie R Hurewitz
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Katherine Pawlowski
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Nicole T Baumer
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Carol L Wilkinson
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Wilkinson CL, Yankowitz LD, Chao JY, Gutiérrez R, Rhoades JL, Shinnar S, Purdon PL, Nelson CA. Developmental trajectories of EEG aperiodic and periodic components in children 2-44 months of age. Nat Commun 2024; 15:5788. [PMID: 38987558 PMCID: PMC11237135 DOI: 10.1038/s41467-024-50204-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
The development of neural circuits has long-lasting effects on brain function, yet our understanding of early circuit development in humans remains limited. Here, periodic EEG power features and aperiodic components were examined from longitudinal EEGs collected from 592 healthy 2-44 month-old infants, revealing age-dependent nonlinear changes suggestive of distinct milestones in early brain maturation. Developmental changes in periodic peaks include (1) the presence and then absence of a 9-10 Hz alpha peak between 2-6 months, (2) nonlinear changes in high beta peaks (20-30 Hz) between 4-18 months, and (3) the emergence of a low beta peak (12-20 Hz) in some infants after six months of age. We hypothesized that the emergence of the low beta peak may reflect maturation of thalamocortical network development. Infant anesthesia studies observe that GABA-modulating anesthetics do not induce thalamocortical mediated frontal alpha coherence until 10-12 months of age. Using a small cohort of infants (n = 23) with EEG before and during GABA-modulating anesthesia, we provide preliminary evidence that infants with a low beta peak have higher anesthesia-induced alpha coherence compared to those without a low beta peak.
Collapse
Affiliation(s)
- Carol L Wilkinson
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Lisa D Yankowitz
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jerry Y Chao
- Department of Anesthesiology, Montefiore Medical Center, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rodrigo Gutiérrez
- Departamento de Anestesia y Medicina Perioperatoria, Hospital Clínico de la Universidad de Chile, Santiago, Chile
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jeff L Rhoades
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Program in Neuroscience, Division of Medical Sciences, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Shlomo Shinnar
- The Saul R. Korey Department of Neurology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Patrick L Purdon
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Charles A Nelson
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard Graduate School of Education, Cambridge, MA, USA
| |
Collapse
|
11
|
Calixto C, Machado-Rivas F, Karimi D, Velasco C, Cortes-Albornoz MC, Afacan O, Warfield SK, Gholipour A, Jaimes C. Population Atlas Analysis of Emerging Brain Structural Connections in the Human Fetus. J Magn Reson Imaging 2024; 60:152-160. [PMID: 37842932 PMCID: PMC11018715 DOI: 10.1002/jmri.29057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND A lack of in utero imaging data hampers our understanding of the connections in the human fetal brain. Generalizing observations from postmortem subjects and premature newborns is inaccurate due to technical and biological differences. PURPOSE To evaluate changes in fetal brain structural connectivity between 23 and 35 weeks postconceptional age using a spatiotemporal atlas of diffusion tensor imaging (DTI). STUDY TYPE Retrospective. POPULATION Publicly available diffusion atlases, based on 60 healthy women (age 18-45 years) with normal prenatal care, from 23 and 35 weeks of gestation. FIELD STRENGTH/SEQUENCE 3.0 Tesla/DTI acquired with diffusion-weighted echo planar imaging (EPI). ASSESSMENT We performed whole-brain fiber tractography from DTI images. The cortical plate of each diffusion atlas was segmented and parcellated into 78 regions derived from the Edinburgh Neonatal Atlas (ENA33). Connectivity matrices were computed, representing normalized fiber connections between nodes. We examined the relationship between global efficiency (GE), local efficiency (LE), small-worldness (SW), nodal efficiency (NE), and betweenness centrality (BC) with gestational age (GA) and with laterality. STATISTICAL TESTS Linear regression was used to analyze changes in GE, LE, NE, and BC throughout gestation, and to assess changes in laterality. The t-tests were used to assess SW. P-values were corrected using Holm-Bonferroni method. A corrected P-value <0.05 was considered statistically significant. RESULTS Network analysis revealed a significant weekly increase in GE (5.83%/week, 95% CI 4.32-7.37), LE (5.43%/week, 95% CI 3.63-7.25), and presence of SW across GA. No significant hemisphere differences were found in GE (P = 0.971) or LE (P = 0.458). Increasing GA was significantly associated with increasing NE in 41 nodes, increasing BC in 3 nodes, and decreasing BC in 2 nodes. DATA CONCLUSION Extensive network development and refinement occur in the second and third trimesters, marked by a rapid increase in global integration and local segregation. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Camilo Calixto
- Computational Radiology Laboratory. Department of Radiology. Boston Children’s Hospital. Boston, MA
- Harvard Medical School. Boston, MA
| | - Fedel Machado-Rivas
- Harvard Medical School. Boston, MA
- Massachusetts General Hospital. Boston, MA
| | - Davood Karimi
- Computational Radiology Laboratory. Department of Radiology. Boston Children’s Hospital. Boston, MA
- Harvard Medical School. Boston, MA
| | - Clemente Velasco
- Computational Radiology Laboratory. Department of Radiology. Boston Children’s Hospital. Boston, MA
- Harvard Medical School. Boston, MA
| | | | - Onur Afacan
- Computational Radiology Laboratory. Department of Radiology. Boston Children’s Hospital. Boston, MA
- Harvard Medical School. Boston, MA
| | - Simon K. Warfield
- Computational Radiology Laboratory. Department of Radiology. Boston Children’s Hospital. Boston, MA
- Harvard Medical School. Boston, MA
| | - Ali Gholipour
- Computational Radiology Laboratory. Department of Radiology. Boston Children’s Hospital. Boston, MA
- Harvard Medical School. Boston, MA
| | - Camilo Jaimes
- Harvard Medical School. Boston, MA
- Massachusetts General Hospital. Boston, MA
| |
Collapse
|
12
|
Damera SR, De Asis-Cruz J, Cook KM, Kapse K, Spoehr E, Murnick J, Basu S, Andescavage N, Limperopoulos C. Regional homogeneity as a marker of sensory cortex dysmaturity in preterm infants. iScience 2024; 27:109662. [PMID: 38665205 PMCID: PMC11043889 DOI: 10.1016/j.isci.2024.109662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/23/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Atypical perinatal sensory experience in preterm infants is thought to increase their risk of neurodevelopmental disabilities by altering the development of the sensory cortices. Here, we used resting-state fMRI data from preterm and term-born infants scanned between 32 and 48 weeks post-menstrual age to assess the effect of early ex-utero exposure on sensory cortex development. Specifically, we utilized a measure of local correlated-ness called regional homogeneity (ReHo). First, we demonstrated that the brain-wide distribution of ReHo mirrors the known gradient of cortical maturation. Next, we showed that preterm birth differentially reduces ReHo across the primary sensory cortices. Finally, exploratory analyses showed that the reduction of ReHo in the primary auditory cortex of preterm infants is related to increased risk of autism at 18 months. In sum, we show that local connectivity within sensory cortices has different developmental trajectories, is differentially affected by preterm birth, and may be associated with later neurodevelopment.
Collapse
Affiliation(s)
- Srikanth R. Damera
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Josepheen De Asis-Cruz
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Kevin M. Cook
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Kushal Kapse
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Emma Spoehr
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Jon Murnick
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Sudeepta Basu
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Nickie Andescavage
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Catherine Limperopoulos
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| |
Collapse
|
13
|
Aylward GP. Alterations in Preterm Brain Development: Relation to Developmental Assessment and Prediction. Am J Perinatol 2024; 41:826-830. [PMID: 37168010 DOI: 10.1055/s-0043-1768703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Infants born extremely preterm are at risk for compromised cognitive and motor outcome. There are various possibilities as to why this occurs. The "two-hit" hypothesis consists of interrelated developmental disruptions and insults. Both specifically affect the transient subplate neuronal layer (SNL) and the early development of brain circuitry. The SNL, analogous to a switchboard, is critical in connecting cortical and lower brain centers and is highly susceptible to disruptions and insults, producing dysfunctional neural networks. Damage to the SNL provides the putative link between atypical early brain development and later cognitive and academic function that require complex neural circuitry. This, in turn, has major ramifications for developmental assessment and prediction. KEY POINTS: · Preterm brains are highly susceptible to disruptions and insults, this being the two-hit hypothesis.. · There is a variation in which low-grade stressors "sensitize" the infant increasing susceptibility to a second stressor-causing brain damage.. · Subplate neuronal layer damage compromises outcome by interfering with thalamocortical connections.. · Combining neuroimaging and developmental testing is the best way to gain insight into these processes.. · Atypical early brain development may not be evident until the network is mature and challenged..
Collapse
Affiliation(s)
- Glen P Aylward
- Department of Pediatrics, Southern Illinois University School of Medicine, Springfield, Illinois
| |
Collapse
|
14
|
Jang YH, Ham J, Kasani PH, Kim H, Lee JY, Lee GY, Han TH, Kim BN, Lee HJ. Predicting 2-year neurodevelopmental outcomes in preterm infants using multimodal structural brain magnetic resonance imaging with local connectivity. Sci Rep 2024; 14:9331. [PMID: 38653988 DOI: 10.1038/s41598-024-58682-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
The neurodevelopmental outcomes of preterm infants can be stratified based on the level of prematurity. We explored brain structural networks in extremely preterm (EP; < 28 weeks of gestation) and very-to-late (V-LP; ≥ 28 and < 37 weeks of gestation) preterm infants at term-equivalent age to predict 2-year neurodevelopmental outcomes. Using MRI and diffusion MRI on 62 EP and 131 V-LP infants, we built a multimodal feature set for volumetric and structural network analysis. We employed linear and nonlinear machine learning models to predict the Bayley Scales of Infant and Toddler Development, Third Edition (BSID-III) scores, assessing predictive accuracy and feature importance. Our findings revealed that models incorporating local connectivity features demonstrated high predictive performance for BSID-III subsets in preterm infants. Specifically, for cognitive scores in preterm (variance explained, 17%) and V-LP infants (variance explained, 17%), and for motor scores in EP infants (variance explained, 15%), models with local connectivity features outperformed others. Additionally, a model using only local connectivity features effectively predicted language scores in preterm infants (variance explained, 15%). This study underscores the value of multimodal feature sets, particularly local connectivity, in predicting neurodevelopmental outcomes, highlighting the utility of machine learning in understanding microstructural changes and their implications for early intervention.
Collapse
Affiliation(s)
- Yong Hun Jang
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Jusung Ham
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, 52242, USA
| | - Payam Hosseinzadeh Kasani
- Department of Pediatrics, Hanyang University Hospital, Hanyang University College of Medicine, 222-1, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Hyuna Kim
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Joo Young Lee
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Gang Yi Lee
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Tae Hwan Han
- Division of Neurology, Department of Pediatrics, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Bung-Nyun Kim
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyun Ju Lee
- Department of Pediatrics, Hanyang University Hospital, Hanyang University College of Medicine, 222-1, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Wilkinson CL, Yankowitz L, Chao JY, Gutiérrez R, Rhoades JL, Shinnar S, Purdon PL, Nelson CA. Developmental trajectories of EEG aperiodic and periodic components: Implications for understanding thalamocortical development during infancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.21.550114. [PMID: 37546863 PMCID: PMC10401947 DOI: 10.1101/2023.07.21.550114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The development of neural circuits has long-lasting effects on brain function, yet our understanding of early circuit development in humans remains limited. Here, periodic EEG power features and aperiodic components were examined from longitudinal EEGs collected from 592 healthy 2-44 month-old infants, revealing age-dependent nonlinear changes suggestive of distinct milestones in early brain maturation. Consistent with the transient developmental progression of thalamocortical circuitry, we observe the presence and then absence of periodic alpha and high beta peaks across the three-year period, as well as the emergence of a low beta peak (12-20Hz) after six months of age. We present preliminary evidence that the emergence of the low beta peak is associated with higher thalamocortical-dependent, anesthesia-induced alpha coherence. Together, these findings suggest that early age-dependent changes in alpha and beta periodic peaks may reflect the state of thalamocortical network development.
Collapse
Affiliation(s)
- Carol L Wilkinson
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, USA
| | - Lisa Yankowitz
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Jerry Y Chao
- Department of Anesthesiology, Montefiore Medical Center, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rodrigo Gutiérrez
- Departamento de Anestesia y Medicina Perioperatoria, Hospital Clínico de la Universidad de Chile, Santiago, Chile
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Jeff L Rhoades
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Program in Neuroscience, Division of Medical Sciences, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Shlomo Shinnar
- The Saul R. Korey Department of Neurology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Patrick L Purdon
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Charles A Nelson
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, USA
- Harvard Graduate School of Education, Cambridge, MA, United States
| |
Collapse
|
16
|
Selvanathan T, Ufkes S, Guo T, Chau V, Branson HM, Ibrahim GM, Ly LG, Kelly EN, Grunau RE, Miller SP. Pain Exposure and Brain Connectivity in Preterm Infants. JAMA Netw Open 2024; 7:e242551. [PMID: 38488791 PMCID: PMC10943417 DOI: 10.1001/jamanetworkopen.2024.2551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/24/2024] [Indexed: 03/18/2024] Open
Abstract
Importance Early-life exposure to painful procedures has been associated with altered brain maturation and neurodevelopmental outcomes in preterm infants, although sex-specific differences are largely unknown. Objective To examine sex-specific associations among early-life pain exposure, alterations in neonatal structural connectivity, and 18-month neurodevelopment in preterm infants. Design, Setting, and Participants This prospective cohort study recruited 193 very preterm infants from April 1, 2015, to April 1, 2019, across 2 tertiary neonatal intensive care units in Toronto, Canada. Structural connectivity data were available for 150 infants; neurodevelopmental outcomes were available for 123 infants. Data were analyzed from January 1, 2022, to December 31, 2023. Exposure Pain was quantified in the initial weeks after birth as the total number of invasive procedures. Main Outcome and Measure Infants underwent early-life and/or term-equivalent-age magnetic resonance imaging with diffusion tensor imaging to quantify structural connectivity using graph theory measures and regional connection strength. Eighteen-month neurodevelopmental outcomes were assessed with the Bayley Scales of Infant and Toddler Development, Third Edition. Stratifying by sex, generalized estimating equations were used to assess whether pain exposure modified the maturation of structural connectivity using an interaction term (early-life pain exposure × postmenstrual age [PMA] at scan). Generalized estimating equations were used to assess associations between structural connectivity and neurodevelopmental outcomes, adjusting for extreme prematurity and maternal education. Results A total of 150 infants (80 [53%] male; median [IQR] gestational age at birth, 27.1 [25.4-29.0] weeks) with structural connectivity data were analyzed. Sex-specific associations were found between early-life pain and neonatal brain connectivity in female infants only, with greater early-life pain exposure associated with slower maturation in global efficiency (pain × PMA at scan interaction P = .002) and local efficiency (pain × PMA at scan interaction P = .005). In the full cohort, greater pain exposure was associated with lower global efficiency (coefficient, -0.46; 95% CI, -0.78, to -0.15; P = .004) and local efficiency (coefficient, -0.57; 95% CI, -1.04 to -0.10; P = .02) and regional connection strength. Local efficiency (coefficient, 0.003; 95% CI, 0.001-0.004; P = .005) and regional connection strength in the striatum were associated with cognitive outcomes. Conclusions and Relevance In this cohort study of very preterm infants, greater exposure to early-life pain was associated with altered maturation of neonatal structural connectivity, particularly in female infants. Alterations in structural connectivity were associated with neurodevelopmental outcomes, with potential regional specificities.
Collapse
Affiliation(s)
- Thiviya Selvanathan
- Department of Pediatrics, BC Children’s Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Steven Ufkes
- Department of Pediatrics, BC Children’s Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Computational Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Ting Guo
- Department of Pediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Vann Chau
- Department of Pediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Helen M. Branson
- Department of Diagnostic Imaging, The Hospital for Sick Children and Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - George M. Ibrahim
- Department of Surgery, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Linh G. Ly
- Department of Pediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Edmond N. Kelly
- Department of Pediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ruth E. Grunau
- Department of Pediatrics, BC Children’s Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven P. Miller
- Department of Pediatrics, BC Children’s Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Im SA, Tomita E, Oh MY, Kim SY, Kang HM, Youn YA. Volumetric changes in brain MRI of infants with hypoxic-ischemic encephalopathy and abnormal neurodevelopment who underwent therapeutic hypothermia. Brain Res 2024; 1825:148703. [PMID: 38101694 DOI: 10.1016/j.brainres.2023.148703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/13/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) is a severe neonatal complication that can result in 40-60 % of long-term morbidity. Magnetic Resonance Imaging (MRI) is a noninvasive method which is usually performed before discharge to visually assess acquired cerebral lesions associated with HIE and severity of lesions possibly providing a guide for detecting adverse outcomes. This study aims to evaluate the impact of HIE on brain volume changes observed in MRI scans performed at a mean 10 days of life, which can serve as a prognostic indicator for abnormal neurodevelopmental (ND) outcomes at 18-24 months among HIE infants. METHODS We retrospectively identified a cohort of HIE patients between June 2013 and March 2017. The inclusion criteria for therapeutic hypothermia (TH) were a gestational age ≥35 weeks, a birth weight ≥1800 g, and the presence of ≥ moderate HIE. Brain MRI was performed at a mean 10 days of life and brain volumes (total brain volume, cerebral volume, cerebellar volume, brain stem volume, and ventricle volume) were measured for quantitative assessment. At 18-24 months, the infants returned for follow-up evaluations, during which their cognitive, language, and motor skills were assessed using the Bayley Scales of Infant and Toddler Development III. RESULTS The study recruited a total of 240 infants between 2013 and 2017 for volumetric brain MRI evaluation. Among these, 83 were normal control infants, 107 were TH-treated HIE infants and 37 were HIE infants who did not receive TH due to contraindications. Clinical evaluation was further proceeded. We compared the brain volumes between the normal control infants (n = 83) with normal ND but TH-treated HIE infants (n = 76), abnormal ND TH-treated HIE infants (n = 31), and the severe HIE MRI group with no TH (n = 37). The abnormal ND TH-treated HIE infants demonstrated a significant decrease in brainstem volume and an increase in ventricle size (p < 0.001) (Table 4). Lastly, the severe brain MRI group who did not receive TH showed significantly smaller brain stem (p = 0.006), cerebellar (p = 0.006) and cerebrum volumes (p = 0.027), accompanied by larger ventricular size (p = 0.013) compared to the normal control group (Table 5). CONCLUSION In addition to assessing the location of brain injuries in MRI scans, the reduction in brain stem volume coupled with an increase in ventricular volume in HIE infants may serve as a biomarker indicating severe HIE and adverse long-term ND outcomes among HIE infants who either received therapeutic hypothermia (TH) treatment or not.
Collapse
Affiliation(s)
- Soo-Ah Im
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Emi Tomita
- Artificial Intelligence Research Center, JLK Inc, Republic of Korea
| | - Moon Yeon Oh
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sae Yun Kim
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Mi Kang
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young-Ah Youn
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Irzan H, Hütel M, O'Reilly H, Ourselin S, Marlow N, Melbourne A. Multi-source multi-modal markers for Bayesian Networks: Application to the extremely preterm born brain. Med Image Anal 2024; 92:103037. [PMID: 38056163 PMCID: PMC7616207 DOI: 10.1016/j.media.2023.103037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 12/08/2023]
Abstract
The preterm phenotype results from the interplay of multiple disorders affecting the brain and cognitive outcomes. Accurately characterising these interactions can reveal prematurity markers. Bayesian Networks (BNs) are powerful tools to disentangle these relationships, as they inherently measure associations between variables while mitigating confounding factors. We present Modified PC-HC (MPC-HC), a Bayesian Network (BN) structural learning algorithm. MPC-HC employs statistical testing and search-and-score techniques to explore equivalent classes. We employ MPC-HC to estimate BNs for extremely preterm (EP) young adults and full-term controls. Using MRI measurements and cognitive performance markers, we investigate predictive relationships and mutual influences through predictions and sensitivity analysis. We assess the confidence in the estimated BN structures using bootstrapping. Furthermore, MPC-HC's validation involves assessing its ability to recover benchmark BN structures. MPC-HC achieves an average prediction accuracy of 72.5% compared to 62.5% of PC, 64.5% of MMHC, and 71.5% of HC, while it outperforms PC, MMHC, and HC algorithms in reconstructing the true structure of benchmark BNs. The sensitivity analysis shows that MRI measurements mainly affect EP cognitive scores. Our work has two key contributions: first, the introduction and validation of a new BN structure learning method. Second, demonstrating the potential of BNs in modelling variable relationships, predicting variables of interest, modelling uncertainty, and evaluating how variables impact each other. Finally, we demonstrate this by characterising complex phenotypes, such as preterm birth, and discovering results consistent with literature findings.
Collapse
Affiliation(s)
- Hassna Irzan
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE17EU, UK; Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E6BT, UK.
| | - Michael Hütel
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE17EU, UK
| | - Helen O'Reilly
- Institute for Women's Health, University College London, London, WC1E6HU, UK; Department of Psychology, University College Dublin, Dublin, D04C1P1, Ireland
| | - Sebastien Ourselin
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE17EU, UK
| | - Neil Marlow
- Institute for Women's Health, University College London, London, WC1E6HU, UK
| | - Andrew Melbourne
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE17EU, UK
| |
Collapse
|
19
|
Ji W, Li G, Jiang F, Zhang Y, Wu F, Zhang W, Hu Y, Wang J, Wei X, Li Y, Manza P, Tomasi D, Gao X, Wang GJ, Zhang Y, Volkow ND. Preterm birth associated alterations in brain structure, cognitive functioning and behavior in children from the ABCD dataset. Psychol Med 2024; 54:409-418. [PMID: 37365781 DOI: 10.1017/s0033291723001757] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
BACKGROUND Preterm birth is a global health problem and associated with increased risk of long-term developmental impairments, but findings on the adverse outcomes of prematurity have been inconsistent. METHODS Data were obtained from the baseline session of the ongoing longitudinal Adolescent Brain and Cognitive Development (ABCD) Study. We identified 1706 preterm children and 1865 matched individuals as Control group and compared brain structure (MRI data), cognitive function and mental health symptoms. RESULTS Results showed that preterm children had higher psychopathological risk and lower cognitive function scores compared to controls. Structural MRI analysis indicated that preterm children had higher cortical thickness in the medial orbitofrontal cortex, parahippocampal gyrus, temporal and occipital gyrus; smaller volumes in the temporal and parietal gyrus, cerebellum, insula and thalamus; and smaller fiber tract volumes in the fornix and parahippocampal-cingulum bundle. Partial correlation analyses showed that gestational age and birth weight were associated with ADHD symptoms, picvocab, flanker, reading, fluid cognition composite, crystallized cognition composite and total cognition composite scores, and measures of brain structure in regions involved with emotional regulation, attention and cognition. CONCLUSIONS These findings suggest a complex interplay between psychopathological risk and cognitive deficits in preterm children that is associated with changes in regional brain volumes, cortical thickness, and structural connectivity among cortical and limbic brain regions critical for cognition and emotional well-being.
Collapse
Affiliation(s)
- Weibin Ji
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Fukun Jiang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yaqi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Feifei Wu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Jia Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Xiaorong Wei
- Kindergarten affiliated to Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Yuefeng Li
- Department of Neonatology, Shenzhen Luohu Maternity and Child Health Hospital, Shenzhen 518103, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Dardo Tomasi
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Xinbo Gao
- Chongqing Key Laboratory of Image Cognition, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
- Chongqing Institute for Brain: a journal of neurology and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Schinz D, Schmitz‐Koep B, Zimmermann J, Brandes E, Tahedl M, Menegaux A, Dukart J, Zimmer C, Wolke D, Daamen M, Boecker H, Bartmann P, Sorg C, Hedderich DM. Indirect evidence for altered dopaminergic neurotransmission in very premature-born adults. Hum Brain Mapp 2023; 44:5125-5138. [PMID: 37608591 PMCID: PMC10502650 DOI: 10.1002/hbm.26451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/23/2023] [Accepted: 07/28/2023] [Indexed: 08/24/2023] Open
Abstract
While animal models indicate altered brain dopaminergic neurotransmission after premature birth, corresponding evidence in humans is scarce due to missing molecular imaging studies. To overcome this limitation, we studied dopaminergic neurotransmission changes in human prematurity indirectly by evaluating the spatial co-localization of regional alterations in blood oxygenation fluctuations with the distribution of adult dopaminergic neurotransmission. The study cohort comprised 99 very premature-born (<32 weeks of gestation and/or birth weight below 1500 g) and 107 full-term born young adults, being assessed by resting-state functional MRI (rs-fMRI) and IQ testing. Normative molecular imaging dopamine neurotransmission maps were derived from independent healthy control groups. We computed the co-localization of local (rs-fMRI) activity alterations in premature-born adults with respect to term-born individuals to different measures of dopaminergic neurotransmission. We performed selectivity analyses regarding other neuromodulatory systems and MRI measures. In addition, we tested if the strength of the co-localization is related to perinatal measures and IQ. We found selectively altered co-localization of rs-fMRI activity in the premature-born cohort with dopamine-2/3-receptor availability in premature-born adults. Alterations were specific for the dopaminergic system but not for the used MRI measure. The strength of the co-localization was negatively correlated with IQ. In line with animal studies, our findings support the notion of altered dopaminergic neurotransmission in prematurity which is associated with cognitive performance.
Collapse
Affiliation(s)
- David Schinz
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| | - Benita Schmitz‐Koep
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| | - Juliana Zimmermann
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| | - Elin Brandes
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| | - Marlene Tahedl
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| | - Aurore Menegaux
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| | - Juergen Dukart
- Institute of Neuroscience and MedicineBrain & Behaviour (INM‐7), Research Centre JülichJülichGermany
- Institute of Systems Neuroscience, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Claus Zimmer
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| | - Dieter Wolke
- Department of PsychologyUniversity of WarwickCoventryUK
- Warwick Medical SchoolUniversity of WarwickCoventryUK
| | - Marcel Daamen
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional RadiologyUniversity Hospital BonnBonnGermany
- Department of NeonatologyUniversity Hospital BonnBonnGermany
| | - Henning Boecker
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional RadiologyUniversity Hospital BonnBonnGermany
| | - Peter Bartmann
- Department of NeonatologyUniversity Hospital BonnBonnGermany
| | - Christian Sorg
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
- Department of Psychiatry, School of MedicineTechnical University of MunichMunichGermany
| | - Dennis M. Hedderich
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| |
Collapse
|
21
|
van 't Westende C, Twilhaar ES, Stam CJ, de Kieviet JF, van Elburg RM, Oosterlaan J, van de Pol LA. The influence of very preterm birth on adolescent EEG connectivity, network organization and long-term outcome. Clin Neurophysiol 2023; 154:49-59. [PMID: 37549613 DOI: 10.1016/j.clinph.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/01/2023] [Accepted: 07/13/2023] [Indexed: 08/09/2023]
Abstract
OBJECTIVE The aim of this study was to explore differences in functional connectivity and network organization between very preterm born adolescents and term born controls and to investigate if these differences might explain the relation between preterm birth and adverse long-term outcome. METHODS Forty-seven very preterm born adolescents (53% males) and 54 controls (54% males) with matching age, sex and parental educational levels underwent high-density electroencephalography (EEG) at 13 years of age. Long-term outcome was assessed by Intelligence Quotient (IQ), motor, attentional functioning and academic performance. Two minutes of EEG data were analysed within delta, theta, lower alpha, upper alpha and beta frequency bands. Within each frequency band, connectivity was assessed using the Phase Lag Index (PLI) and Amplitude Envelope Correlation, corrected for volume conduction (AEC-c). Brain networks were constructed using the minimum spanning tree method. RESULTS Very preterm born adolescents had stronger beta PLI connectivity and less differentiated network organization. Beta AEC-c and differentiation of AEC-c based networks were negatively associated with long-term outcomes. EEG measures did not mediate the relation between preterm birth and outcomes. CONCLUSIONS This study shows that very preterm born adolescents may have altered functional connectivity and brain network organization in the beta frequency band. Alterations in measures of functional connectivity and network topologies, especially its differentiating characteristics, were associated with neurodevelopmental functioning. SIGNIFICANCE The findings indicate that EEG connectivity and network analysis is a promising tool for investigating underlying mechanisms of impaired functioning.
Collapse
Affiliation(s)
- C van 't Westende
- Amsterdam UMC, Department of Child Neurology, Amsterdam, the Netherlands
| | - E S Twilhaar
- Université de Paris, CRESS, Obstetrical Perinatal and Pediatric Epidemiology Research Team, EPOPé, INSERM, INRAE, F-75004 Paris, France
| | - C J Stam
- Amsterdam UMC, Department of Clinical Neurophysiology, Amsterdam, the Netherlands
| | - J F de Kieviet
- Amsterdam Rehabilitation Research Center, Reade, Amsterdam, the Netherlands
| | - R M van Elburg
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Department of Pediatrics, Emma Children's Hospital Amsterdam UMC Follow-Me Program & Emma Neuroscience Group, Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands; Amsterdam UMC, Department of Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands
| | - J Oosterlaan
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Department of Pediatrics, Emma Children's Hospital Amsterdam UMC Follow-Me Program & Emma Neuroscience Group, Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands; Amsterdam Rehabilitation Research Center, Reade, Amsterdam, the Netherlands
| | - L A van de Pol
- Amsterdam UMC, Department of Child Neurology, Amsterdam, the Netherlands.
| |
Collapse
|
22
|
Wilkinson CL, Yankowitz L, Chao JY, Gutiérrez R, Rhoades JL, Shinnar S, Purdon PL, Nelson CA. Developmental trajectories of EEG aperiodic and periodic power: Implications for understanding the timing of thalamocortical development during infancy. RESEARCH SQUARE 2023:rs.3.rs-3215728. [PMID: 37790544 PMCID: PMC10543027 DOI: 10.21203/rs.3.rs-3215728/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The development of neural circuits over the first years of life has long-lasting effects on brain function, yet our understanding of early circuit development in humans remains limited. Here, aperiodic and periodic EEG power features were examined from longitudinal EEGs collected from 592 healthy 2-44 month-old infants, revealing age-dependent nonlinear changes suggestive of distinct milestones in early brain maturation. Consistent with the transient developmental progression of thalamocortical circuitry, we observe the presence and then absence of periodic alpha and high beta peaks across the three-year period, as well as the emergence of a low beta peak (12-20Hz) after six months of age. We present preliminary evidence that the emergence of the low beta peak is associated with thalamocortical connectivity sufficient for anesthesia-induced alpha coherence. Together, these findings suggest that early age-dependent changes in alpha and beta periodic peaks may reflect the state of thalamocortical network development.
Collapse
Affiliation(s)
- Carol L Wilkinson
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, USA
| | - Lisa Yankowitz
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Jerry Y Chao
- Department of Anesthesiology, Montefiore Medical Center, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rodrigo Gutiérrez
- Centro de Investigación Clínica Avanzada, Hospital Clínico de la Universidad de Chile, Santiago, Chile
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Jeff L Rhoades
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Program in Neuroscience, Division of Medical Sciences, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Shlomo Shinnar
- The Saul R. Korey Department of Neurology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Patrick L Purdon
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Charles A Nelson
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, USA
- Harvard Graduate School of Education, Cambridge, MA, United States
| |
Collapse
|
23
|
Horowitz-Kraus T, Randell K, Morag I. Neurobiological perspective on the development of executive functions. Acta Paediatr 2023; 112:1860-1864. [PMID: 37338188 DOI: 10.1111/apa.16883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
Executive functions are a set of top-down cognitive processes necessary for emotional self-regulation and goal-directed behaviour supporting, among others, academic abilities. Premature infants are at high risk for subsequent cognitive, psychosocial, or behavioural problems even in the absence of medical complications and in spite of normal brain imaging. Given that this is a sensitive period of brain growth and maturation, these factors may place preterm infants at high risk for executive function dysfunction, disrupted long-term development, and lower academic achievements. Therefore, careful attention to interventions at this age is essential for intact executive functions and academic development.
Collapse
Affiliation(s)
- Tzipi Horowitz-Kraus
- Educational Neuroimaging Group, Faculty of Education in Science and Technology and Faculty of Biomedical Engineering, The Technion, Haifa, Israel
- Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Iris Morag
- Department of Pediatrics, Shamir Medical Center affiliated to Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
24
|
Molloy MF, Yu EJ, Mattson WI, Hoskinson KR, Taylor HG, Osher DE, Nelson EE, Saygin ZM. Effect of Extremely Preterm Birth on Adolescent Brain Network Organization. Brain Connect 2023; 13:394-409. [PMID: 37312515 DOI: 10.1089/brain.2022.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023] Open
Abstract
Introduction: Extremely preterm (EPT) birth, defined as birth at a gestational age (GA) <28 weeks, can have a lasting impact on cognition throughout the life span. Previous investigations reveal differences in brain structure and connectivity between infants born preterm and full-term (FT), but how does preterm birth impact the adolescent connectome? Methods: In this study, we investigate how EPT birth can alter broadscale network organization later in life by comparing resting-state functional magnetic resonance imaging connectome-based parcellations of the entire cortex in adolescents born EPT (N = 22) to age-matched adolescents born FT (GA ≥37 weeks, N = 28). We compare these parcellations to adult parcellations from previous studies and explore the relationship between an individual's network organization and behavior. Results: Primary (occipital and sensorimotor) and frontoparietal networks were observed in both groups. However, there existed notable differences in the limbic and insular networks. Surprisingly, the connectivity profile of the limbic network of EPT adolescents was more adultlike than the same network in FT adolescents. Finally, we found a relationship between adolescents' overall cognition score and their limbic network maturity. Discussion: Overall, preterm birth may contribute to the atypical development of broadscale network organization in adolescence and may partially explain the observed cognitive deficits.
Collapse
Affiliation(s)
- M Fiona Molloy
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Emily J Yu
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Whitney I Mattson
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kristen R Hoskinson
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - H Gerry Taylor
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - David E Osher
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Eric E Nelson
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Zeynep M Saygin
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
25
|
Correa S, Nichols ES, Mueller ME, de Vrijer B, Eagleson R, McKenzie CA, de Ribaupierre S, Duerden EG. Default mode network functional connectivity strength in utero and the association with fetal subcortical development. Cereb Cortex 2023; 33:9144-9153. [PMID: 37259175 PMCID: PMC10350815 DOI: 10.1093/cercor/bhad190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023] Open
Abstract
The default mode network is essential for higher-order cognitive processes and is composed of an extensive network of functional and structural connections. Early in fetal life, the default mode network shows strong connectivity with other functional networks; however, the association with structural development is not well understood. In this study, resting-state functional magnetic resonance imaging and anatomical images were acquired in 30 pregnant women with singleton pregnancies. Participants completed 1 or 2 MR imaging sessions, on average 3 weeks apart (43 data sets), between 28- and 39-weeks postconceptional ages. Subcortical volumes were automatically segmented. Activation time courses from resting-state functional magnetic resonance imaging were extracted from the default mode network, medial temporal lobe network, and thalamocortical network. Generalized estimating equations were used to examine the association between functional connectivity strength between default mode network-medial temporal lobe, default mode network-thalamocortical network, and subcortical volumes, respectively. Increased functional connectivity strength in the default mode network-medial temporal lobe network was associated with smaller right hippocampal, left thalamic, and right caudate nucleus volumes, but larger volumes of the left caudate. Increased functional connectivity strength in the default mode network-thalamocortical network was associated with smaller left thalamic volumes. The strong associations seen among the default mode network functional connectivity networks and regionally specific subcortical volume development indicate the emergence of short-range connectivity in the third trimester.
Collapse
Affiliation(s)
- Susana Correa
- Neuroscience Program, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
- Western Institute for Neuroscience, Western University, London, ON N6A 3K7, Canada
| | - Emily S Nichols
- Western Institute for Neuroscience, Western University, London, ON N6A 3K7, Canada
- Applied Psychology, Faculty of Education, Western University, London, ON N6A 3K7, Canada
| | - Megan E Mueller
- Applied Psychology, Faculty of Education, Western University, London, ON N6A 3K7, Canada
| | - Barbra de Vrijer
- Obstetrics & Gynaecology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Roy Eagleson
- Western Institute for Neuroscience, Western University, London, ON N6A 3K7, Canada
- Biomedical Engineering, Western University, London, ON N6A 3K7, Canada
- Electrical and Computer Engineering, Western University, London, ON N6A 3K7, Canada
| | - Charles A McKenzie
- Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Sandrine de Ribaupierre
- Western Institute for Neuroscience, Western University, London, ON N6A 3K7, Canada
- Biomedical Engineering, Western University, London, ON N6A 3K7, Canada
- Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
- Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
- Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Emma G Duerden
- Western Institute for Neuroscience, Western University, London, ON N6A 3K7, Canada
- Applied Psychology, Faculty of Education, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
26
|
Vanes L, Fenn-Moltu S, Hadaya L, Fitzgibbon S, Cordero-Grande L, Price A, Chew A, Falconer S, Arichi T, Counsell SJ, Hajnal JV, Batalle D, Edwards AD, Nosarti C. Longitudinal neonatal brain development and socio-demographic correlates of infant outcomes following preterm birth. Dev Cogn Neurosci 2023; 61:101250. [PMID: 37150083 PMCID: PMC10195853 DOI: 10.1016/j.dcn.2023.101250] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/31/2023] [Accepted: 04/24/2023] [Indexed: 05/09/2023] Open
Abstract
Preterm birth results in premature exposure of the brain to the extrauterine environment during a critical period of neurodevelopment. Consequently, infants born preterm are at a heightened risk of adverse behavioural outcomes in later life. We characterise longitudinal development of neonatal regional brain volume and functional connectivity in the first weeks following preterm birth, sociodemographic factors, and their respective relationships to psychomotor outcomes and psychopathology in toddlerhood. We study 121 infants born preterm who underwent magnetic resonance imaging shortly after birth, at term-equivalent age, or both. Longitudinal regional brain volume and functional connectivity were modelled as a function of psychopathology and psychomotor outcomes at 18 months. Better psychomotor functioning in toddlerhood was associated with greater relative right cerebellar volume and a more rapid decrease over time of sensorimotor degree centrality in the neonatal period. In contrast, increased 18-month psychopathology was associated with a more rapid decrease in relative regional subcortical volume. Furthermore, while socio-economic deprivation was related to both psychopathology and psychomotor outcomes, cognitively stimulating parenting predicted psychopathology only. Our study highlights the importance of longitudinal imaging to better predict toddler outcomes following preterm birth, as well as disparate environmental influences on separable facets of behavioural development in this population.
Collapse
Affiliation(s)
- Lucy Vanes
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom; Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom.
| | - Sunniva Fenn-Moltu
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom; Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Laila Hadaya
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom; Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Sean Fitzgibbon
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Lucilio Cordero-Grande
- Biomedical Image Technologies, TelecomunicacionETSI Telecomunicación, Universidad Politécnica de Madrid & CIBER-BBN, ISCIII, Spain
| | - Anthony Price
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| | - Andrew Chew
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| | - Shona Falconer
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, United Kingdom; Paediatric Neurosciences, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom; Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, United Kingdom
| | - Chiara Nosarti
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom; Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| |
Collapse
|
27
|
Smith E, Xiao Y, Xie H, Manwaring SS, Farmer C, Thompson L, D'Souza P, Thurm A, Redcay E. Posterior superior temporal cortex connectivity is related to social communication in toddlers. Infant Behav Dev 2023; 71:101831. [PMID: 37012188 PMCID: PMC10330088 DOI: 10.1016/j.infbeh.2023.101831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 04/04/2023]
Abstract
The second year of life is a time when social communication skills typically develop, but this growth may be slower in toddlers with language delay. In the current study, we examined how brain functional connectivity is related to social communication abilities in a sample of 12-24 month-old toddlers including those with typical development (TD) and those with language delays (LD). We used an a-priori, seed-based approach to identify regions forming a functional network with the left posterior superior temporal cortex (LpSTC), a region associated with language and social communication in older children and adults. Social communication and language abilities were assessed using the Communication and Symbolic Behavior Scales (CSBS) and Mullen Scales of Early Learning. We found a significant association between concurrent CSBS scores and functional connectivity between the LpSTC and the right posterior superior temporal cortex (RpSTC), with greater connectivity between these regions associated with better social communication abilities. However, functional connectivity was not related to rate of change or language outcomes at 36 months of age. These data suggest an early marker of low communication abilities may be decreased connectivity between the left and right pSTC. Future longitudinal studies should test whether this neurobiological feature is predictive of later social or communication impairments.
Collapse
Affiliation(s)
- Elizabeth Smith
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, USA
| | - Yaqiong Xiao
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China; Department of Psychology, University of Maryland, USA
| | - Hua Xie
- Department of Psychology, University of Maryland, USA
| | - Stacy S Manwaring
- Department of Communication Sciences and Disorders, University of Utah, USA
| | - Cristan Farmer
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, USA
| | - Lauren Thompson
- Department of Speech and Hearing Sciences, Washington State University, USA
| | - Precilla D'Souza
- Office of the Clinical Director, National Human Genome Research Institute, USA
| | - Audrey Thurm
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, USA
| | | |
Collapse
|
28
|
Taymourtash A, Schwartz E, Nenning KH, Sobotka D, Licandro R, Glatter S, Diogo MC, Golland P, Grant E, Prayer D, Kasprian G, Langs G. Fetal development of functional thalamocortical and cortico-cortical connectivity. Cereb Cortex 2023; 33:5613-5624. [PMID: 36520481 PMCID: PMC10152101 DOI: 10.1093/cercor/bhac446] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/23/2022] Open
Abstract
Measuring and understanding functional fetal brain development in utero is critical for the study of the developmental foundations of our cognitive abilities, possible early detection of disorders, and their prevention. Thalamocortical connections are an intricate component of shaping the cortical layout, but so far, only ex-vivo studies provide evidence of how axons enter the sub-plate and cortex during this highly dynamic phase. Evidence for normal in-utero development of the functional thalamocortical connectome in humans is missing. Here, we modeled fetal functional thalamocortical connectome development using in-utero functional magnetic resonance imaging in fetuses observed from 19th to 40th weeks of gestation (GW). We observed a peak increase of thalamocortical functional connectivity strength between 29th and 31st GW, right before axons establish synapses in the cortex. The cortico-cortical connectivity increases in a similar time window, and exhibits significant functional laterality in temporal-superior, -medial, and -inferior areas. Homologous regions exhibit overall similar mirrored connectivity profiles, but this similarity decreases during gestation giving way to a more diverse cortical interconnectedness. Our results complement the understanding of structural development of the human connectome and may serve as the basis for the investigation of disease and deviations from a normal developmental trajectory of connectivity development.
Collapse
Affiliation(s)
- Athena Taymourtash
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Ernst Schwartz
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Karl-Heinz Nenning
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, 140, Old Orangeburg Road, Orangeburg, NY 10962, United States
| | - Daniel Sobotka
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Roxane Licandro
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
- Laboratory for Computational Neuroimaging, A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Bldg. 149, 13th Street, Charlestown, MA 02129, United States
| | - Sarah Glatter
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Mariana Cardoso Diogo
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
- Radiology Department, Hospital CUF Tejo, Av. 24 de Julho 171A, 1350-352 Lisboa, Portugal
| | - Polina Golland
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 77, Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Ellen Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300, Longwood Avenue, Boston, MA 02115, United States
| | - Daniela Prayer
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Gregor Kasprian
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Georg Langs
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 77, Massachusetts Avenue, Cambridge, MA 02139, United States
| |
Collapse
|
29
|
Wilson S, Pietsch M, Cordero-Grande L, Christiaens D, Uus A, Karolis VR, Kyriakopoulou V, Colford K, Price AN, Hutter J, Rutherford MA, Hughes EJ, Counsell SJ, Tournier JD, Hajnal JV, Edwards AD, O’Muircheartaigh J, Arichi T. Spatiotemporal tissue maturation of thalamocortical pathways in the human fetal brain. eLife 2023; 12:e83727. [PMID: 37010273 PMCID: PMC10125021 DOI: 10.7554/elife.83727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/31/2023] [Indexed: 04/04/2023] Open
Abstract
The development of connectivity between the thalamus and maturing cortex is a fundamental process in the second half of human gestation, establishing the neural circuits that are the basis for several important brain functions. In this study, we acquired high-resolution in utero diffusion magnetic resonance imaging (MRI) from 140 fetuses as part of the Developing Human Connectome Project, to examine the emergence of thalamocortical white matter over the second to third trimester. We delineate developing thalamocortical pathways and parcellate the fetal thalamus according to its cortical connectivity using diffusion tractography. We then quantify microstructural tissue components along the tracts in fetal compartments that are critical substrates for white matter maturation, such as the subplate and intermediate zone. We identify patterns of change in the diffusion metrics that reflect critical neurobiological transitions occurring in the second to third trimester, such as the disassembly of radial glial scaffolding and the lamination of the cortical plate. These maturational trajectories of MR signal in transient fetal compartments provide a normative reference to complement histological knowledge, facilitating future studies to establish how developmental disruptions in these regions contribute to pathophysiology.
Collapse
Affiliation(s)
- Siân Wilson
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
- Centre for Neurodevelopmental Disorders, King’s College LondonLondonUnited Kingdom
| | - Maximilian Pietsch
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de MadridMadridSpain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN)MadridSpain
| | - Daan Christiaens
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
- Department of Electrical Engineering (ESAT/PSI), Katholieke Universiteit LeuvenLeuvenBelgium
| | - Alena Uus
- Department of Biomedical Engineering, School Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas' HospitalLondonUnited Kingdom
| | - Vyacheslav R Karolis
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Vanessa Kyriakopoulou
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Kathleen Colford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Anthony N Price
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Emer J Hughes
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Jacques-Donald Tournier
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
- Centre for Neurodevelopmental Disorders, King’s College LondonLondonUnited Kingdom
| | - Jonathan O’Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
- Centre for Neurodevelopmental Disorders, King’s College LondonLondonUnited Kingdom
- Department of Forensic and Neurodevelopmental Sciences, King’s College LondonLondonUnited Kingdom
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
- Centre for Neurodevelopmental Disorders, King’s College LondonLondonUnited Kingdom
- Children’s Neurosciences, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation TrustLondonUnited Kingdom
- Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
30
|
Romantsik O, Moreira A, Thébaud B, Ådén U, Ley D, Bruschettini M. Stem cell-based interventions for the prevention and treatment of intraventricular haemorrhage and encephalopathy of prematurity in preterm infants. Cochrane Database Syst Rev 2023; 2:CD013201. [PMID: 36790019 PMCID: PMC9932000 DOI: 10.1002/14651858.cd013201.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
BACKGROUND Germinal matrix-intraventricular haemorrhage (GMH-IVH) and encephalopathy of prematurity (EoP) remain substantial issues in neonatal intensive care units worldwide. Current therapies to prevent or treat these conditions are limited. Stem cell-based therapies offer a potential therapeutic approach to repair, restore, or regenerate injured brain tissue. These preclinical findings have now culminated in ongoing human neonatal studies. This is an update of the 2019 review, which did not include EoP. OBJECTIVES To evaluate the benefits and harms of stem cell-based interventions for prevention or treatment of GM-IVH and EoP in preterm infants. SEARCH METHODS We used standard, extensive Cochrane search methods. The latest search was April 2022. SELECTION CRITERIA We attempted to include randomised controlled trials, quasi-randomised controlled trials, and cluster trials comparing 1. stem cell-based interventions versus control; 2. mesenchymal stromal cells (MSCs) of type or source versus MSCs of other type or source; 3. stem cell-based interventions other than MSCs of type or source versus stem cell-based interventions other than MSCs of other type or source; or 4. MSCs versus stem cell-based interventions other than MSCs. For prevention studies, we included extremely preterm infants (less than 28 weeks' gestation), 24 hours of age or less, without ultrasound diagnosis of GM-IVH or EoP; for treatment studies, we included preterm infants (less than 37 weeks' gestation), of any postnatal age, with ultrasound diagnosis of GM-IVH or with EoP. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our primary outcomes were 1. all-cause neonatal mortality, 2. major neurodevelopmental disability, 3. GM-IVH, 4. EoP, and 5. extension of pre-existing non-severe GM-IVH or EoP. We planned to use GRADE to assess certainty of evidence for each outcome. MAIN RESULTS We identified no studies that met our inclusion criteria. Three studies are currently registered and ongoing. Phase 1 trials are described in the 'Excluded studies' section. AUTHORS' CONCLUSIONS No evidence is currently available to evaluate the benefits and harms of stem cell-based interventions for treatment or prevention of GM-IVH or EoP in preterm infants. We identified three ongoing studies, with a sample size range from 20 to 200. In two studies, autologous cord blood mononuclear cells will be administered to extremely preterm infants via the intravenous route; in one, intracerebroventricular injection of MSCs will be administered to preterm infants up to 34 weeks' gestational age.
Collapse
Affiliation(s)
- Olga Romantsik
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Alvaro Moreira
- Pediatrics, Division of Neonatology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Bernard Thébaud
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Canada
- Ottawa Hospital Research Institute, Sprott Centre for Stem Cell Research, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Ulrika Ådén
- Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - David Ley
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Matteo Bruschettini
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
- Cochrane Sweden, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
31
|
Rimol LM, Rise HH, Evensen KAI, Yendiki A, Løhaugen GC, Indredavik MS, Brubakk AM, Bjuland KJ, Eikenes L, Weider S, Håberg A, Skranes J. Atypical brain structure mediates reduced IQ in young adults born preterm with very low birth weight. Neuroimage 2023; 266:119816. [PMID: 36528311 DOI: 10.1016/j.neuroimage.2022.119816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
Preterm birth with very low birth weight (VLBW) confers heightened risk for perinatal brain injury and long-term cognitive deficits, including a reduction in IQ of up to one standard deviation. Persisting gray and white matter aberrations have been documented well into adolescence and adulthood in preterm born individuals. What has not been documented so far is a plausible causal link between reductions in cortical surface area or subcortical brain structure volumes, and the observed reduction in IQ. The NTNU Low Birth Weight in a Lifetime Perspective study is a prospective longitudinal cohort study, including a preterm born VLBW group (birthweight ≤1500 g) and a term born control group. Structural magnetic resonance imaging data were obtained from 38 participants aged 19, born preterm with VLBW, and 59 term-born peers. The FreeSurfer software suite was used to obtain measures of cortical thickness, cortical surface area, and subcortical brain structure volumes. Cognitive ability was estimated using the Wechsler Adult Intelligence Scale, 3rd Edition, including four IQ-indices: Verbal comprehension, Working memory, Perceptual organization, and Processing speed. Statistical mediation analyses were employed to test for indirect effects of preterm birth with VLBW on IQ, mediated by atypical brain structure. The mediation analyses revealed negative effects of preterm birth with VLBW on IQ that were partially mediated by reduced surface area in multiple regions of frontal, temporal, parietal and insular cortex, and by reductions in several subcortical brain structure volumes. The analyses did not yield sufficient evidence of mediation effects of cortical thickness on IQ. This is, to our knowledge, the first time a plausible causal relationship has been established between regional cortical area reductions, as well as reductions in specific subcortical and cerebellar structures, and general cognitive ability in preterm born survivors with VLBW.
Collapse
Affiliation(s)
- Lars M Rimol
- Department of Psychology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Radiology and Nuclear Medicine, St. Olav University Hospital, Trondheim, Norway.
| | - Henning Hoel Rise
- Department of Radiology and Nuclear Medicine, St. Olav University Hospital, Trondheim, Norway
| | - Kari Anne I Evensen
- Department of Clinical and Molecular Medicine, NTNU, Trondheim, Norway; Department of Public Health and Nursing, NTNU, Trondheim, Norway
| | - Anastasia Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, United States
| | - Gro C Løhaugen
- Department of Pediatrics, Sørlandet Hospital, Arendal, Norway
| | | | - Ann-Mari Brubakk
- Department of Clinical and Molecular Medicine, NTNU, Trondheim, Norway
| | | | - Live Eikenes
- Department of Neuromedicine and Movement Science, NTNU, Trondheim, Norway
| | - Siri Weider
- Department of Psychology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Asta Håberg
- Department of Radiology and Nuclear Medicine, St. Olav University Hospital, Trondheim, Norway; Department of Circulation and Medical Imaging, NTNU, Trondheim, Norway
| | - Jon Skranes
- Department of Radiology and Nuclear Medicine, St. Olav University Hospital, Trondheim, Norway; Department of Pediatrics, Sørlandet Hospital, Arendal, Norway
| |
Collapse
|
32
|
Spatiotemporal Developmental Gradient of Thalamic Morphology, Microstructure, and Connectivity fromthe Third Trimester to Early Infancy. J Neurosci 2023; 43:559-570. [PMID: 36639904 PMCID: PMC9888512 DOI: 10.1523/jneurosci.0874-22.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/19/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Thalamus is a critical component of the limbic system that is extensively involved in both basic and high-order brain functions. However, how the thalamic structure and function develops at macroscopic and microscopic scales during the perinatal period development is not yet well characterized. Here, we used multishell high-angular resolution diffusion MRI of 144 preterm-born and full-term infants in both sexes scanned at 32-44 postmenstrual weeks (PMWs) from the Developing Human Connectome Project database to investigate the thalamic development in morphology, microstructure, associated connectivity, and subnucleus division. We found evident anatomic expansion and linear increases of fiber integrity in the lateral side of thalamus compared with the medial part. The tractography results indicated that thalamic connection to the frontal cortex developed later than the other thalamocortical connections (parieto-occipital, motor, somatosensory, and temporal). Using a connectivity-based segmentation strategy, we revealed that functional partitions of thalamic subdivisions were formed at 32 PMWs or earlier, and the partition developed toward the adult pattern in a lateral-to-medial pattern. Collectively, these findings revealed faster development of the lateral thalamus than the central part as well as a posterior-to-anterior developmental gradient of thalamocortical connectivity from the third trimester to early infancy.SIGNIFICANCE STATEMENT This is the first study that characterizes the spatiotemporal developmental pattern of thalamus during the third trimester to early infancy. We found that thalamus develops in a lateral-to-medial pattern for both thalamic microstructures and subdivisions; and thalamocortical connectivity develops in a posterior-to-anterior gradient that thalamofrontal connectivity appears later than the other thalamocortical connections. These findings may enrich our understanding of the developmental principles of thalamus and provide references for the atypical brain growth in neurodevelopmental disorders.
Collapse
|
33
|
Wang W, Yu Q, Liang W, Xu F, Li Z, Tang Y, Liu S. Altered cortical microstructure in preterm infants at term-equivalent age relative to term-born neonates. Cereb Cortex 2023; 33:651-662. [PMID: 35259759 DOI: 10.1093/cercor/bhac091] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 02/03/2023] Open
Abstract
Preterm (PT) birth is a potential factor for abnormal brain development. Although various alterations of cortical structure and functional connectivity in preterm infants have been reported, the underlying microstructural foundation is still undetected thoroughly in PT infants relative to full-term (FT) neonates. To detect the very early cortical microstructural alteration noninvasively with advanced neurite orientation dispersion and density imaging (NODDI) on a whole-brain basis, we used multi-shell diffusion MRI of healthy newborns selected from the Developing Human Connectome Project. 73 PT infants and 69 FT neonates scanned at term-equivalent age were included in this study. By extracting the core voxels of gray matter (GM) using GM-based spatial statistics (GBSS), we found that comparing to FT neonates, infants born preterm showed extensive lower neurite density in both primary and higher-order association cortices (FWE corrected, P < 0.025). Higher orientation dispersion was only found in very preterm subgroup in the orbitofrontal cortex, fronto-insular cortex, entorhinal cortex, a portion of posterior cingular gyrus, and medial parieto-occipital cortex. This study provided new insights into exploring structural MR for functional and behavioral variations in preterm population, and these findings may have marked clinical importance, particularly in the guidance of ameliorating the development of premature brain.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, 250012, China
| | - Qiaowen Yu
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Wenjia Liang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, 250012, China
| | - Feifei Xu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, 250012, China
| | - Zhuoran Li
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yuchun Tang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, 250012, China
| | - Shuwei Liu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
34
|
Vaher K, Bogaert D, Richardson H, Boardman JP. Microbiome-gut-brain axis in brain development, cognition and behavior during infancy and early childhood. DEVELOPMENTAL REVIEW 2022. [DOI: 10.1016/j.dr.2022.101038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
35
|
Brain Development and Maternal Behavior in Relation to Cognitive and Language Outcomes in Preterm-Born Children. Biol Psychiatry 2022; 92:663-673. [PMID: 35599181 DOI: 10.1016/j.biopsych.2022.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Children born very preterm (≤32 weeks gestational age) show poorer cognitive and language development compared with their term-born peers. The importance of supportive maternal responses to the child's cues for promoting neurodevelopment is well established. However, little is known about whether supportive maternal behavior can buffer the association of early brain dysmaturation with cognitive and language performance. METHODS Infants born very preterm (N = 226) were recruited from the neonatal intensive care unit for a prospective, observational cohort study. Chart review (e.g., size at birth, postnatal infection) was conducted from birth to discharge. Magnetic resonance imaging, including diffusion tensor imaging, was acquired at approximately 32 weeks postmenstrual age and again at term-equivalent age. Fractional anisotropy, a quantitative measure of brain maturation, was obtained from 11 bilateral regions of interest in the cortical gray matter. At 3 years (n = 187), neurodevelopmental testing (Bayley Scales of Infant and Toddler Development-III) was administered, and parent-child interaction was filmed. Maternal behavior was scored using the Emotional Availability Scale-IV. A total of 146 infants with neonatal brain imaging and follow-up data were included for analysis. Generalized estimating equations were used to examine whether maternal support interacted with mean fractional anisotropy values to predict Cognitive and Language scores at 3 years, accounting for confounding neonatal and maternal factors. RESULTS Higher maternal support significantly moderated cortical fractional anisotropy values at term-equivalent age to predict higher Cognitive (interaction term β = 2.01, p = .05) and Language (interaction term β = 1.85, p = .04) scores. CONCLUSIONS Findings suggest that supportive maternal behavior following early brain dysmaturation may provide an opportunity to promote optimal neurodevelopment in children born very preterm.
Collapse
|
36
|
Vanes LD, Murray RM, Nosarti C. Adult outcome of preterm birth: Implications for neurodevelopmental theories of psychosis. Schizophr Res 2022; 247:41-54. [PMID: 34006427 DOI: 10.1016/j.schres.2021.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/22/2022]
Abstract
Preterm birth is associated with an elevated risk of developmental and adult psychiatric disorders, including psychosis. In this review, we evaluate the implications of neurodevelopmental, cognitive, motor, and social sequelae of preterm birth for developing psychosis, with an emphasis on outcomes observed in adulthood. Abnormal brain development precipitated by early exposure to the extra-uterine environment, and exacerbated by neuroinflammation, neonatal brain injury, and genetic vulnerability, can result in alterations of brain structure and function persisting into adulthood. These alterations, including abnormal regional brain volumes and white matter macro- and micro-structure, can critically impair functional (e.g. frontoparietal and thalamocortical) network connectivity in a manner characteristic of psychotic illness. The resulting executive, social, and motor dysfunctions may constitute the basis for behavioural vulnerability ultimately giving rise to psychotic symptomatology. There are many pathways to psychosis, but elucidating more precisely the mechanisms whereby preterm birth increases risk may shed light on that route consequent upon early neurodevelopmental insult.
Collapse
Affiliation(s)
- Lucy D Vanes
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, King's College London, UK; Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Chiara Nosarti
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, King's College London, UK; Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| |
Collapse
|
37
|
Tröndle M, Popov T, Dziemian S, Langer N. Decomposing the role of alpha oscillations during brain maturation. eLife 2022; 11:e77571. [PMID: 36006005 PMCID: PMC9410707 DOI: 10.7554/elife.77571] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/26/2022] [Indexed: 12/21/2022] Open
Abstract
Childhood and adolescence are critical stages of the human lifespan, in which fundamental neural reorganizational processes take place. A substantial body of literature investigated accompanying neurophysiological changes, focusing on the most dominant feature of the human EEG signal: the alpha oscillation. Recent developments in EEG signal-processing show that conventional measures of alpha power are confounded by various factors and need to be decomposed into periodic and aperiodic components, which represent distinct underlying brain mechanisms. It is therefore unclear how each part of the signal changes during brain maturation. Using multivariate Bayesian generalized linear models, we examined aperiodic and periodic parameters of alpha activity in the largest openly available pediatric dataset (N=2529, age 5-22 years) and replicated these findings in a preregistered analysis of an independent validation sample (N=369, age 6-22 years). First, the welldocumented age-related decrease in total alpha power was replicated. However, when controlling for the aperiodic signal component, our findings provided strong evidence for an age-related increase in the aperiodic-adjusted alpha power. As reported in previous studies, also relative alpha power revealed a maturational increase, yet indicating an underestimation of the underlying relationship between periodic alpha power and brain maturation. The aperiodic intercept and slope decreased with increasing age and were highly correlated with total alpha power. Consequently, earlier interpretations on age-related changes of total alpha power need to be reconsidered, as elimination of active synapses rather links to decreases in the aperiodic intercept. Instead, analyses of diffusion tensor imaging data indicate that the maturational increase in aperiodic-adjusted alpha power is related to increased thalamocortical connectivity. Functionally, our results suggest that increased thalamic control of cortical alpha power is linked to improved attentional performance during brain maturation.
Collapse
Affiliation(s)
- Marius Tröndle
- Department of Psychology, University of Zurich, Methods of Plasticity ResearchZurichSwitzerland
- University Research Priority Program (URPP) Dynamic of Healthy AgingZurichSwitzerland
| | - Tzvetan Popov
- Department of Psychology, University of Zurich, Methods of Plasticity ResearchZurichSwitzerland
- University Research Priority Program (URPP) Dynamic of Healthy AgingZurichSwitzerland
| | - Sabine Dziemian
- Department of Psychology, University of Zurich, Methods of Plasticity ResearchZurichSwitzerland
- University Research Priority Program (URPP) Dynamic of Healthy AgingZurichSwitzerland
| | - Nicolas Langer
- Department of Psychology, University of Zurich, Methods of Plasticity ResearchZurichSwitzerland
- University Research Priority Program (URPP) Dynamic of Healthy AgingZurichSwitzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich & ETH ZurichZurichSwitzerland
| |
Collapse
|
38
|
Duerden EG, Mclean MA, Chau C, Guo T, Mackay M, Chau V, Synnes A, Miller SP, Grunau RE. Neonatal pain, thalamic development and sensory processing behaviour in children born very preterm. Early Hum Dev 2022; 170:105617. [PMID: 35760006 DOI: 10.1016/j.earlhumdev.2022.105617] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Altered sensory processing is commonly reported in children born very preterm (≤32 weeks' gestational age [GA]). The immature nervous system, particularly the development of connections from the thalamus to the cortex, may show enhanced vulnerability to excessive sensory stimulation, and may contribute to altered sensory processing. Our objective was to determine whether sensory processing assessed at preschool-aged in children born very preterm was predicted by neonatal procedural pain and thalamic development. METHODS In a prospective longitudinal cohort study, N = 140 very preterm infants (median GA at birth 28 weeks) underwent MRI early-in-life and again at term-equivalent age. Children returned for assessment at 4.5 years. Parents reported on child sensory processing behaviors on the Short Sensory Profile. General linear models were used to assess factors associated with sensory processing behaviors, adjusting for clinical and demographic factors. RESULTS Among extremely preterm neonates (born 24-28 weeks' GA), but not very-preterm neonates (29-32 weeks' GA), more invasive procedures were associated with poorer sensory processing (B = -0.09, 95%CI [-0.17, -0.01] p = 0.03). In the overall cohort, fewer sensory processing problems were associated with greater thalamic growth between birth and term-equivalent age (B = 0.3, 95%CI [0.11, 0.42], p < 0.001). Extremely preterm neonates exposed to a high number of skin-breaking procedures who exhibited slower neonatal thalamic growth displayed the highest sensory processing problems (B = -26.2, 95%CI [-45.96, -6.38], p = 0.01). CONCLUSION Early exposure to pain and related alterations in the developing thalamus may be a key factor underlying later sensory problems in children born extremely preterm.
Collapse
Affiliation(s)
- Emma G Duerden
- Applied Psychology, Faculty of Education, Western University, London, Canada
| | - Mia A Mclean
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Cecil Chau
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Ting Guo
- Department of Paediatrics, the Hospital for Sick Children and the University of Toronto, Toronto, Canada
| | | | - Vann Chau
- Department of Paediatrics, the Hospital for Sick Children and the University of Toronto, Toronto, Canada
| | - Anne Synnes
- Department of Pediatrics, University of British Columbia, Vancouver, Canada; BC Women's Hospital, Vancouver, Canada; BC Children's Hospital Research Institute, Vancouver, Canada
| | - Steven P Miller
- Department of Paediatrics, the Hospital for Sick Children and the University of Toronto, Toronto, Canada
| | - Ruth E Grunau
- Department of Pediatrics, University of British Columbia, Vancouver, Canada; BC Women's Hospital, Vancouver, Canada; BC Children's Hospital Research Institute, Vancouver, Canada.
| |
Collapse
|
39
|
Cheng J, Zhang X, Ni H, Li C, Xu X, Wu Z, Wang L, Lin W, Li G. Path Signature Neural Network of Cortical Features for Prediction of Infant Cognitive Scores. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1665-1676. [PMID: 35089858 PMCID: PMC9246848 DOI: 10.1109/tmi.2022.3147690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Studies have shown that there is a tight connection between cognition skills and brain morphology during infancy. Nonetheless, it is still a great challenge to predict individual cognitive scores using their brain morphological features, considering issues like the excessive feature dimension, small sample size and missing data. Due to the limited data, a compact but expressive feature set is desirable as it can reduce the dimension and avoid the potential overfitting issue. Therefore, we pioneer the path signature method to further explore the essential hidden dynamic patterns of longitudinal cortical features. To form a hierarchical and more informative temporal representation, in this work, a novel cortical feature based path signature neural network (CF-PSNet) is proposed with stacked differentiable temporal path signature layers for prediction of individual cognitive scores. By introducing the existence embedding in path generation, we can improve the robustness against the missing data. Benefiting from the global temporal receptive field of CF-PSNet, characteristics consisted in the existing data can be fully leveraged. Further, as there is no need for the whole brain to work for a certain cognitive ability, a top K selection module is used to select the most influential brain regions, decreasing the model size and the risk of overfitting. Extensive experiments are conducted on an in-house longitudinal infant dataset within 9 time points. By comparing with several recent algorithms, we illustrate the state-of-the-art performance of our CF-PSNet (i.e., root mean square error of 0.027 with the time latency of 518 milliseconds for each sample).
Collapse
|
40
|
Jang YH, Kim J, Kim S, Lee K, Na JY, Ahn JH, Kim H, Kim BN, Lee HJ. Abnormal thalamocortical connectivity of preterm infants with elevated thyroid stimulating hormone identified with diffusion tensor imaging. Sci Rep 2022; 12:9257. [PMID: 35661740 PMCID: PMC9166724 DOI: 10.1038/s41598-022-12864-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/16/2022] [Indexed: 11/08/2022] Open
Abstract
While thyroid disturbances during perinatal and postnatal periods in preterm infants with congenital hypothyroidism reportedly disrupt neuronal development, no study has considered the effect of thyroid disturbances in premature infants with subclinical hypothyroidism with elevations of thyroid stimulating hormone. We aimed to identify altered fiber integrity from the thalamus to cortices in preterm infants with subclinical hypothyroidism. All preterm infants born were categorized according to thyroid stimulating hormone levels through serial thyroid function tests (36 preterm controls and 29 preterm infants with subclinical hypothyroidism). Diffusion tensor images were acquired to determine differences in thalamocortical fiber lengths between the groups, and cerebral asymmetries were investigated to observe neurodevelopmental changes. Thalamocortical fiber lengths in the subclinical hypothyroidism group were significantly reduced in the bilateral superior temporal gyrus, heschl's gyrus, lingual gyrus, and calcarine cortex (all p < 0.05). According to the asymmetric value in the orbitofrontal regions, there is a left dominance in the subclinical hypothyroidism group contrary to the controls (p = 0.012), and that of the cuneus areas showed significant decreases in the subclinical hypothyroidism group (p = 0.035). These findings could reflect altered neurodevelopment, which could help treatment plans using biomarkers for subclinical hypothyroidism.
Collapse
Affiliation(s)
- Yong Hun Jang
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Jinsup Kim
- Department of Pediatrics, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Sangwoo Kim
- Department of Radiological Science, Daewon University College, Jecheon, Republic of Korea
| | - Kyungmi Lee
- Department of Pediatrics, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Jae Yoon Na
- Department of Pediatrics, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Ja-Hye Ahn
- Department of Pediatrics, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
- Clinical Research Institute of Developmental Medicine, Seoul Hanyang University Hospital, Seoul, Republic of Korea
| | - Hyuna Kim
- Department of Child Psychotherapy, Hanyang University Graduate School of Medicine, Seoul, Republic of Korea
| | - Bung-Nyun Kim
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Institute of Human Behavioral Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Ju Lee
- Department of Pediatrics, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea.
- Clinical Research Institute of Developmental Medicine, Seoul Hanyang University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
41
|
Taoudi-Benchekroun Y, Christiaens D, Grigorescu I, Gale-Grant O, Schuh A, Pietsch M, Chew A, Harper N, Falconer S, Poppe T, Hughes E, Hutter J, Price AN, Tournier JD, Cordero-Grande L, Counsell SJ, Rueckert D, Arichi T, Hajnal JV, Edwards AD, Deprez M, Batalle D. Predicting age and clinical risk from the neonatal connectome. Neuroimage 2022; 257:119319. [PMID: 35589001 DOI: 10.1016/j.neuroimage.2022.119319] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/28/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
The development of perinatal brain connectivity underpins motor, cognitive and behavioural abilities in later life. Diffusion MRI allows the characterisation of subtle inter-individual differences in structural brain connectivity. Individual brain connectivity maps (connectomes) are by nature high in dimensionality and complex to interpret. Machine learning methods are a powerful tool to uncover properties of the connectome which are not readily visible and can give us clues as to how and why individual developmental trajectories differ. In this manuscript we used Deep Neural Networks and Random Forests to predict demographic and neurodevelopmental characteristics from neonatal structural connectomes in a large sample of babies (n = 524) from the developing Human Connectome Project. We achieved an accurate prediction of post menstrual age (PMA) at scan in term-born infants (mean absolute error (MAE) = 0.72 weeks, r = 0.83 and p<0.001). We also achieved good accuracy when predicting gestational age at birth in a cohort of term and preterm babies scanned at term equivalent age (MAE = 2.21 weeks, r = 0.82, p<0.001). We subsequently used sensitivity analysis to obtain feature relevance from our prediction models, with the most important connections for prediction of PMA and GA found to predominantly involve frontal and temporal regions, thalami, and basal ganglia. From our models of PMA at scan for infants born at term, we computed a brain maturation index (predicted age minus actual age) of individual preterm neonates and found a significant correlation between this index and motor outcome at 18 months corrected age. Our results demonstrate the applicability of machine learning techniques in analyses of the neonatal connectome and suggest that a neural substrate of brain maturation with implications for future neurodevelopment is detectable at term equivalent age from the neonatal connectome.
Collapse
Affiliation(s)
- Yassine Taoudi-Benchekroun
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - Daan Christiaens
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom; Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Irina Grigorescu
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - Oliver Gale-Grant
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Andreas Schuh
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Maximilian Pietsch
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - Andrew Chew
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - Nicholas Harper
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - Shona Falconer
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - Tanya Poppe
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - Emer Hughes
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - Jana Hutter
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - Anthony N Price
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - J-Donald Tournier
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom; Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid & CIBER-BBN, Madrid, Spain
| | - Serena J Counsell
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom; Institute for Artificial Intelligence and Informatics in Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom; Department of Bioengineering, Imperial College London, London, United Kingdom; Children's Neurosciences, Evelina London Children's Hospital, Guy's and St Thomas' NHS Trust, London, United Kingdom
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - A David Edwards
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Maria Deprez
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
42
|
Altered functional connectivity in children born very preterm at school age. Sci Rep 2022; 12:7308. [PMID: 35508563 PMCID: PMC9068715 DOI: 10.1038/s41598-022-11184-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/12/2022] [Indexed: 12/15/2022] Open
Abstract
Children born very preterm are at significant risk of neurodevelopmental impairment. This study sought to identify differences in cognitive function in children born very preterm compared to term-born controls and investigate alteration in white matter microstructure and functional connectivity (FC) based on tract-based spatial statistics (TBSS) and resting-state functional MRI, respectively. At 6 years of age, 36 children born very preterm (< 32 weeks' gestation) without major neurological disabilities and 26 term-born controls were tested using the Wechsler Intelligence Scale for Children, 4th edition, and Child Behavior Checklist. Whole-brain deterministic tractography and FC measurements were performed in both groups. The very preterm group had significantly lower intelligence scores than the term-born controls. The TBSS revealed no significant differences between the two groups, whereas FC was significantly increased between the frontoparietal network and the language network and was significantly decreased between the right salience network nodes in the very preterm group. The altered FC patterns between specific regions of the higher-order networks may reflect underlying deficits in the functional network architecture associated with cognitive function. Further studies are needed to demonstrate a direct connection between FC in these regions and cognitive function.
Collapse
|
43
|
Soni R, Tscherning Wel-Wel C, Robertson NJ. Neuroscience meets nurture: challenges of prematurity and the critical role of family-centred and developmental care as a key part of the neuroprotection care bundle. Arch Dis Child Fetal Neonatal Ed 2022; 107:242-249. [PMID: 33972264 DOI: 10.1136/archdischild-2020-319450] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
Advances in neonatal-perinatal medicine have resulted in increased survival at lower gestations. Although the incidence of germinal matrix haemorrhage-intraventricular haemorrhage and cystic periventricular leucomalacia is reducing, a new phenotype of preterm brain injury has emerged consisting of a combination of destructive and dysmaturational effects. Consequently, severe neurological disability is reported at a lower rate than previously, but the overall morbidity associated with premature birth continues to present a large global burden and contributes significantly to increased financial costs to health systems and families. In this review, we examine the developmental milestones of fetal brain development and how preterm birth can disrupt this trajectory. We review common morbidities associated with premature birth today. Although drug-based and cell-based neuroprotective therapies for the preterm brain are under intense study, we outline basic, sustainable and effective non-medical, family-centred and developmental care strategies which have the potential to improve neurodevelopmental outcomes for this population and need to be considered part of the future neuroprotection care bundle.
Collapse
Affiliation(s)
- Roopali Soni
- Neonatology, Sidra Medical and Research Center, Doha, Ad Dawhah, Qatar .,Department of Neonatology, Mediclinic Parkview Hospital, Dubai, UAE
| | - Charlotte Tscherning Wel-Wel
- Neonatology, Sidra Medical and Research Center, Doha, Ad Dawhah, Qatar.,Center of Physiopathology Toulouse-Purpan(CPTP), University of Toulouse, Toulouse, France
| | - Nicola J Robertson
- Institute for Women's Health, University College London, London, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
44
|
Fenchel D, Dimitrova R, Robinson EC, Batalle D, Chew A, Falconer S, Kyriakopoulou V, Nosarti C, Hutter J, Christiaens D, Pietsch M, Brandon J, Hughes EJ, Allsop J, O'Keeffe C, Price AN, Cordero-Grande L, Schuh A, Makropoulos A, Passerat-Palmbach J, Bozek J, Rueckert D, Hajnal JV, McAlonan G, Edwards AD, O'Muircheartaigh J. Neonatal multi-modal cortical profiles predict 18-month developmental outcomes. Dev Cogn Neurosci 2022; 54:101103. [PMID: 35364447 PMCID: PMC8971851 DOI: 10.1016/j.dcn.2022.101103] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/08/2022] [Accepted: 03/23/2022] [Indexed: 12/16/2022] Open
Abstract
Developmental delays in infanthood often persist, turning into life-long difficulties, and coming at great cost for the individual and community. By examining the developing brain and its relation to developmental outcomes we can start to elucidate how the emergence of brain circuits is manifested in variability of infant motor, cognitive and behavioural capacities. In this study, we examined if cortical structural covariance at birth, indexing coordinated development, is related to later infant behaviour. We included 193 healthy term-born infants from the Developing Human Connectome Project (dHCP). An individual cortical connectivity matrix derived from morphological and microstructural features was computed for each subject (morphometric similarity networks, MSNs) and was used as input for the prediction of behavioural scores at 18 months using Connectome-Based Predictive Modeling (CPM). Neonatal MSNs successfully predicted social-emotional performance. Predictive edges were distributed between and within known functional cortical divisions with a specific important role for primary and posterior cortical regions. These results reveal that multi-modal neonatal cortical profiles showing coordinated maturation are related to developmental outcomes and that network organization at birth provides an early infrastructure for future functional skills.
Collapse
Affiliation(s)
- Daphna Fenchel
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK; Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Ralica Dimitrova
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH UK
| | - Emma C Robinson
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EU, UK
| | - Dafnis Batalle
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK; Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH UK
| | - Andrew Chew
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH UK
| | - Shona Falconer
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH UK
| | - Vanessa Kyriakopoulou
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH UK
| | - Chiara Nosarti
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH UK; Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Jana Hutter
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH UK
| | - Daan Christiaens
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH UK; Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Maximilian Pietsch
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH UK
| | - Jakki Brandon
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH UK
| | - Emer J Hughes
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH UK
| | - Joanna Allsop
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH UK
| | - Camilla O'Keeffe
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH UK
| | - Anthony N Price
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH UK
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH UK; Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid & CIBER-BBN, Madrid, Spain
| | - Andreas Schuh
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London SW7 2AZ, UK
| | - Antonios Makropoulos
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London SW7 2AZ, UK
| | | | - Jelena Bozek
- Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London SW7 2AZ, UK; Institute für Artificial Intelligence and Informatics in Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Joseph V Hajnal
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH UK
| | - Grainne McAlonan
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK; Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK; South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
| | - A David Edwards
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK; Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH UK
| | - Jonathan O'Muircheartaigh
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK; Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK; Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH UK.
| |
Collapse
|
45
|
Wheater ENW, Galdi P, McCartney DL, Blesa M, Sullivan G, Stoye DQ, Lamb G, Sparrow S, Murphy L, Wrobel N, Quigley AJ, Semple S, Thrippleton MJ, Wardlaw JM, Bastin ME, Marioni RE, Cox SR, Boardman JP. DNA methylation in relation to gestational age and brain dysmaturation in preterm infants. Brain Commun 2022; 4:fcac056. [PMID: 35402911 PMCID: PMC8984700 DOI: 10.1093/braincomms/fcac056] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 12/10/2021] [Accepted: 03/04/2022] [Indexed: 11/14/2022] Open
Abstract
Preterm birth is associated with dysconnectivity of structural brain networks and is a leading cause of neurocognitive impairment in childhood. Variation in DNA methylation is associated with early exposure to extrauterine life but there has been little research exploring its relationship with brain development. Using genome-wide DNA methylation data from the saliva of 258 neonates, we investigated the impact of gestational age on the methylome and performed functional analysis to identify enriched gene sets from probes that contributed to differentially methylated probes or regions. We tested the hypothesis that variation in DNA methylation could underpin the association between low gestational age at birth and atypical brain development by linking differentially methylated probes with measures of white matter connectivity derived from diffusion MRI metrics: peak width skeletonized mean diffusivity, peak width skeletonized fractional anisotropy and peak width skeletonized neurite density index. Gestational age at birth was associated with widespread differential methylation at term equivalent age, with genome-wide significant associations observed for 8870 CpG probes (P < 3.6 × 10-8) and 1767 differentially methylated regions. Functional analysis identified 14 enriched gene ontology terms pertaining to cell-cell contacts and cell-extracellular matrix contacts. Principal component analysis of probes with genome-wide significance revealed a first principal component that explained 23.5% of the variance in DNA methylation, and this was negatively associated with gestational age at birth. The first principal component was associated with peak width of skeletonized mean diffusivity (β = 0.349, P = 8.37 × 10-10) and peak width skeletonized neurite density index (β = 0.364, P = 4.15 × 10-5), but not with peak width skeletonized fraction anisotropy (β = -0.035, P = 0.510); these relationships mirrored the imaging metrics' associations with gestational age at birth. Low gestational age at birth has a profound and widely distributed effect on the neonatal saliva methylome that is apparent at term equivalent age. Enriched gene ontology terms related to cell-cell contacts reveal pathways that could mediate the effect of early life environmental exposures on development. Finally, associations between differential DNA methylation and image markers of white matter tract microstructure suggest that variation in DNA methylation may provide a link between preterm birth and the dysconnectivity of developing brain networks that characterizes atypical brain development in preterm infants.
Collapse
Affiliation(s)
- Emily N. W. Wheater
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen’s Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Paola Galdi
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen’s Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Daniel L. McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Manuel Blesa
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen’s Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Gemma Sullivan
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen’s Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - David Q. Stoye
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen’s Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Gillian Lamb
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen’s Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Sarah Sparrow
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen’s Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Lee Murphy
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Nicola Wrobel
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Alan J. Quigley
- Department of Paediatric Radiology, Royal Hospital for Sick Children, NHS Lothian, Edinburgh, UK
| | - Scott Semple
- Edinburgh Imaging, University of Edinburgh, EH16 4SB Edinburgh, UK
- Centre for Cardiovascular Science, The University of Edinburgh, Queen’s Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Michael J. Thrippleton
- Edinburgh Imaging, University of Edinburgh, EH16 4SB Edinburgh, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Joanna M. Wardlaw
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Mark E. Bastin
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Riccardo E. Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Simon R. Cox
- Department of Psychology, The University of Edinburgh, Edinburgh, UK
| | - James P. Boardman
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen’s Medical Research Institute, Edinburgh EH16 4TJ, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
46
|
Vo Van P, Alison M, Morel B, Beck J, Bednarek N, Hertz-Pannier L, Loron G. Advanced Brain Imaging in Preterm Infants: A Narrative Review of Microstructural and Connectomic Disruption. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9030356. [PMID: 35327728 PMCID: PMC8947160 DOI: 10.3390/children9030356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 11/16/2022]
Abstract
Preterm birth disrupts the in utero environment, preventing the brain from fully developing, thereby causing later cognitive and behavioral disorders. Such cerebral alteration occurs beneath an anatomical scale, and is therefore undetectable by conventional imagery. Prematurity impairs the microstructure and thus the histological process responsible for the maturation, including the myelination. Cerebral MRI diffusion tensor imaging sequences, based on water’s motion into the brain, allows a representation of this maturation process. Similarly, the brain’s connections become disorganized. The connectome gathers structural and anatomical white matter fibers, as well as functional networks referring to remote brain regions connected one over another. Structural and functional connectivity is illustrated by tractography and functional MRI, respectively. Their organizations consist of core nodes connected by edges. This basic distribution is already established in the fetal brain. It evolves greatly over time but is compromised by prematurity. Finally, cerebral plasticity is nurtured by a lifetime experience at microstructural and macrostructural scales. A preterm birth causes a negative and early disruption, though it can be partly mitigated by positive stimuli based on developmental neonatal care.
Collapse
Affiliation(s)
- Philippe Vo Van
- Department of Neonatology, Hospices Civils de Lyon, Femme Mère Enfant Hospital, 59 Boulevard Pinel, 69500 Bron, France
- Correspondence:
| | - Marianne Alison
- Service d’Imagerie Pédiatrique, Hôpital Robert Debré, APHP, 75019 Paris, France;
- U1141 Neurodiderot, Équipe 5 inDev, Inserm, CEA, Université de Paris, 75019 Paris, France;
| | - Baptiste Morel
- Pediatric Radiology Department, Clocheville Hospital, CHRU of Tours, 37000 Tours, France;
- UMR 1253, iB-Rain, Université de Tours, Inserm, 37000 Tours, France
| | - Jonathan Beck
- Department of Neonatology, Reims University Hospital Alix de Champagne, 51100 Reims, France; (J.B.); (N.B.); (G.L.)
- CReSTIC EA 3804, Université de Reims Champagne Ardenne, 51100 Reims, France
| | - Nathalie Bednarek
- Department of Neonatology, Reims University Hospital Alix de Champagne, 51100 Reims, France; (J.B.); (N.B.); (G.L.)
- CReSTIC EA 3804, Université de Reims Champagne Ardenne, 51100 Reims, France
| | - Lucie Hertz-Pannier
- U1141 Neurodiderot, Équipe 5 inDev, Inserm, CEA, Université de Paris, 75019 Paris, France;
- NeuroSpin, CEA-Saclay, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Gauthier Loron
- Department of Neonatology, Reims University Hospital Alix de Champagne, 51100 Reims, France; (J.B.); (N.B.); (G.L.)
- CReSTIC EA 3804, Université de Reims Champagne Ardenne, 51100 Reims, France
| |
Collapse
|
47
|
Gire C, Berbis J, Dequin M, Marret S, Muller JB, Saliba E, Tosello B. A correlation between Magnetic Resonance Spectroscopy (1-H MRS) and the neurodevelopment of two-year-olds born preterm in an EPIRMEX cohort study. Front Pediatr 2022; 10:936130. [PMID: 36061395 PMCID: PMC9437452 DOI: 10.3389/fped.2022.936130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Preterm infants are at risk of neurodevelopmental impairments. At present, proton magnetic resonance spectroscopy (1H-MRS) is currently used to evaluate brain metabolites in asphyxiated term infants. The purpose of this study was to identify in the preterm EPIRMEX cohort any correlations between (1H-MRS) metabolites ratio at term equivalent age (TEA) and neurodevelopmental outcomes at 2 years. METHODS Our study included EPIRMEX eligible patients who were very preterm infants (gestational age at birth ≤32 weeks) and who underwent a brain MRI at TEA and 1H-MRS using a monovoxel technique. The volumes of interest (VOI) were periventricular white matter posterior area and basal ganglia. The ratio of N Acetyl Aspartate (NAA) to Cho (Choline), NAA to Cr (creatine), Cho to Cr, and Lac (Lactate) to Cr were measured. Neurodevelopment was assessed at 24 months TEA with ASQ (Ages and Stages Questionnaire). RESULTS A total of 69 very preterm infants had a 1H-MRS at TEA. In white matter there was a significant correlation between a reduction in the NAA/Cho ratio and a total ASQ and/or abnormal communication score, and an increase in the Lac/Cr ratio and an abnormality of fine motor skills. In the gray nuclei there was a trend correlation between the reduction in the NAA/Cho ratio and sociability disorders; and the increase in the Lac/Cr ratio and an anomaly in problem-solving. CONCLUSIONS Using NAA as a biomarker, the vulnerability of immature oligodendrocytes in preterm children at TEA was correlated to neurodevelopment at 2 years. Similarly, the presence of lactate at TEA was associated with abnormal neurodevelopment at 2 years in the preterm brain.
Collapse
Affiliation(s)
- Catherine Gire
- Department of Neonatal Medicine, Assistance Publique Hopitaux de Marseille, Marseille, France.,EA3279, Faculty of Medicine, Self-Perceived Health Assessment Research Unit, Marseille, France
| | - Julie Berbis
- EA3279, Faculty of Medicine, Self-Perceived Health Assessment Research Unit, Marseille, France
| | - Marion Dequin
- Department of Neonatal Pediatrics, Intensive Care, and Neuropediatrics, Rouen University Hospital and Institut National de la Santé et de la Recherche Médicale INSERM U 1245 Team 4 Neovasc, School of Medicine, Normandy University, Rouen, France
| | - Stéphane Marret
- Department of Neonatal Pediatrics, Intensive Care, and Neuropediatrics, Rouen University Hospital and Institut National de la Santé et de la Recherche Médicale INSERM U 1245 Team 4 Neovasc, School of Medicine, Normandy University, Rouen, France
| | | | - Elie Saliba
- UMR 1253, iBrain, Tours University, Institut National de la Santé et de la Recherche Médicale (INSERM), Tours, France
| | - Barthélémy Tosello
- Department of Neonatal Medicine, Assistance Publique Hopitaux de Marseille, Marseille, France.,Aix-Marseille University, CNRS, EFS, ADES, Marseille, France
| |
Collapse
|
48
|
Differential age-dependent development of inter-area brain connectivity in term and preterm neonates. Pediatr Res 2022; 92:1017-1025. [PMID: 35094022 PMCID: PMC9586860 DOI: 10.1038/s41390-022-01939-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Among preterm infants, higher morbidities of neurological disturbances and developmental delays are critical issues. Resting-state networks (RSNs) in the brain are suitable measures for assessing higher-level neurocognition. Since investigating task-related brain activity is difficult in neonates, assessment of RSNs provides invaluable insight into their neurocognitive development. METHODS The participants, 32 term and 71 preterm neonates, were divided into three groups based on gestational age (GA) at birth. Cerebral hemodynamic activity of RSNs was measured using functional near-infrared spectroscopy in the temporal, frontal, and parietal regions. RESULTS High-GA preterm infants (GA ≥ 30 weeks) had a significantly stronger RSN than low-GA preterm infants and term infants. Regression analyses of RSNs as a function of postnatal age (PNA) revealed a steeper regression line in the high-GA preterm and term infants than in the low-GA infants, particularly for inter-area brain connectivity between the frontal and left temporal areas. CONCLUSIONS Slower PNA-dependent development of the frontal-temporal network found only in the low-GA group suggests that significant brain growth optimal in the intrauterine environment takes place before 30 weeks of gestation. The present study suggests a likely reason for the high incidence of neurodevelopmental impairment in early preterm infants. IMPACT Resting-state fNIRS measurements in three neonate groups differing in gestational age (GA) showed stronger networks in the high-GA preterm infants than in the term and low-GA infants, which was partly explained by postnatal age (PNA). Regression analyses revealed a similar PNA-dependence in the development of the inter-area networks in the frontal and temporal lobes in the high-GA and term infants, and significantly slower development in the low-GA infants. These results suggest that optimal intrauterine brain growth takes place before 30 weeks of gestation. This explains one of the reasons for the high incidence of neurodevelopmental impairment in early preterm infants.
Collapse
|
49
|
Romantsik O, Ross-Munro E, Grönlund S, Holmqvist B, Brinte A, Gerdtsson E, Vallius S, Bruschettini M, Wang X, Fleiss B, Ley D. Severe intraventricular hemorrhage causes long-lasting structural damage in a preterm rabbit pup model. Pediatr Res 2022; 92:403-414. [PMID: 35505079 PMCID: PMC9522590 DOI: 10.1038/s41390-022-02075-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND Intraventricular hemorrhage causes significant lifelong mortality and morbidity, especially in preterm born infants. Progress in finding an effective therapy is stymied by a lack of preterm animal models with long-term follow-up. This study addresses this unmet need, using an established model of preterm rabbit IVH and analyzing outcomes out to 1 month of age. METHODS Rabbit pups were delivered preterm and administered intraperitoneal injection of glycerol at 3 h of life and approximately 58% developed IVH. Neurobehavioral assessment was performed at 1 month of age followed by immunohistochemical labeling of epitopes for neurons, synapses, myelination, and interneurons, analyzed by means of digital quantitation and assessed via two-way ANOVA or Student's t test. RESULTS IVH pups had globally reduced myelin content, an aberrant cortical myelination microstructure, and thinner upper cortical layers (I-III). We also observed a lower number of parvalbumin (PV)-positive interneurons in deeper cortical layers (IV-VI) in IVH animals and reduced numbers of neurons, synapses, and microglia. However, there were no discernable changes in behaviors. CONCLUSIONS We have established in this preterm pup model that long-term changes after IVH include significant wide-ranging alterations to cortical organization and microstructure. Further work to improve the sensitivity of neurocognitive testing in this species at this age may be required. IMPACT This study uses an established animal model of preterm birth, in which the rabbit pups are truly born preterm, with reduced organ maturation and deprivation of maternally supplied trophic factors. This is the first study in preterm rabbits that explores the impacts of severe intraventricular hemorrhage beyond 14 days, out to 1 month of age. Our finding of persisting but subtle global changes including brain white and gray matter will have impact on our understanding of the best path for therapy design and interventions.
Collapse
Affiliation(s)
- Olga Romantsik
- Department of Clinical Sciences Lund, Division of Pediatrics, Lund University, Skåne University Hospital, 21185, Lund, Sweden.
| | - Emily Ross-Munro
- grid.1017.70000 0001 2163 3550School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, 3083 VIC Australia
| | - Susanne Grönlund
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences Lund, Division of Pediatrics, Lund University, Skåne University Hospital, 21185 Lund, Sweden
| | | | | | | | - Suvi Vallius
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences Lund, Division of Pediatrics, Lund University, Skåne University Hospital, 21185 Lund, Sweden
| | - Matteo Bruschettini
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences Lund, Division of Pediatrics, Lund University, Skåne University Hospital, 21185 Lund, Sweden
| | - Xiaoyang Wang
- grid.8761.80000 0000 9919 9582Centre of Perinatal Medicine & Health, Institute of Clinical Sciences, Department of Obstetrics and Gynecology, Sahlgrenska Academy, Gothenburg University, 40530 Gothenburg, Sweden ,grid.412719.8Henan Key Laboratory of Child Brain Injury and Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bobbi Fleiss
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, 3083, VIC, Australia. .,Université de Paris, NeuroDiderot, Inserm, 75019, Paris, France.
| | - David Ley
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences Lund, Division of Pediatrics, Lund University, Skåne University Hospital, 21185 Lund, Sweden
| |
Collapse
|
50
|
Dawes W. Secondary Brain Injury Following Neonatal Intraventricular Hemorrhage: The Role of the Ciliated Ependyma. Front Pediatr 2022; 10:887606. [PMID: 35844746 PMCID: PMC9280684 DOI: 10.3389/fped.2022.887606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/07/2022] [Indexed: 11/15/2022] Open
Abstract
Intraventricular hemorrhage is recognized as a leading cause of hydrocephalus in the developed world and a key determinant of neurodevelopmental outcome following premature birth. Even in the absence of haemorrhagic infarction or posthaemorrhagic hydrocephalus, there is increasing evidence of neuropsychiatric and neurodevelopmental sequelae. The pathophysiology underlying this injury is thought to be due to a primary destructive and secondary developmental insult, but the exact mechanisms remain elusive and this has resulted in a paucity of therapeutic interventions. The presence of blood within the cerebrospinal fluid results in the loss of the delicate neurohumoral gradient within the developing brain, adversely impacting on the tightly regulated temporal and spatial control of cell proliferation and migration of the neural stem progenitor cells within the subventricular zone. In addition, haemolysis of the erythrocytes, associated with the release of clotting factors and leucocytes into the cerebrospinal (CSF), results in a toxic and inflammatory CSF microenvironment which is harmful to the periventricular tissues, resulting in damage and denudation of the multiciliated ependymal cells which line the choroid plexus and ventricular system. The ependyma plays a critical role in the developing brain and beyond, acting as both a protector and gatekeeper to the underlying parenchyma, controlling influx and efflux across the CSF to brain interstitial fluid interface. In this review I explore the hypothesis that damage and denudation of the ependymal layer at this critical juncture in the developing brain, seen following IVH, may adversely impact on the brain microenvironment, exposing the underlying periventricular tissues to toxic and inflammatory CSF, further exacerbating disordered activity within the subventricular zone (SVZ). By understanding the impact that intraventricular hemorrhage has on the microenvironment within the CSF, and the consequences that this has on the multiciliated ependymal cells which line the neuraxis, we can begin to develop and test novel therapeutic interventions to mitigate damage and reduce the associated morbidity.
Collapse
Affiliation(s)
- William Dawes
- Alder Hey Children's Hospital, Liverpool, United Kingdom.,NIHR Great Ormond Street Hospital BRC, London, United Kingdom
| |
Collapse
|