1
|
Belonio KC, Haile ES, Fyke Z, Vivona L, Konanur VR, Tulabandhula T, Zak JD. Amplification of olfactory transduction currents implements sparse stimulus encoding. J Neurosci 2025; 45:e2008242025. [PMID: 40097179 PMCID: PMC12044040 DOI: 10.1523/jneurosci.2008-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 03/19/2025] Open
Abstract
Sensory systems must perform the dual and opposing tasks of being sensitive to weak stimuli while also maintaining information content in dense and variable sensory landscapes. This occurs in the olfactory system, where OSNs are highly sensitive to low concentrations of odors and maintain discriminability in complex odor environments. How olfactory sensory neurons (OSNs) maintain both sensitivity and sparsity is poorly understood. Here, we investigated whether the calcium-activated chloride channel, TMEM16B, may support these dual roles in OSNs in both male and female mice. We used multiphoton microscopy to image the stimulus-response density of OSNs in the olfactory epithelium. In TMEM16B knockout mice, we found that sensory representations were denser, and the magnitude of OSN responses was increased. Behaviorally, these changes in sensory representations were associated with an increased aversion to the odorant trimethylamine, which switches perceptual valence as its concentration increases, and a decreased efficiency of olfactory-guided navigation. Our results indicate that the calcium-activated chloride channel TMEM16B sparsens sensory representations in the peripheral olfactory system and contributes to efficient integrative olfactory-guided behaviors.Significance Statement Sensory systems must build internal neural representations of stimuli found in the external environment. In the olfactory system, molecules that give rise to the perception of odors are detected by olfactory sensory neurons within the nose. Upon odorant binding to sensory neurons, a biochemical signaling cascade transduces neural signals that other areas of the brain can then read out. A key component of this cascade is the calcium-activated chloride channel TMEM16B. We found that despite its role in amplifying transduction currents in olfactory sensory neurons, TMEM16B paradoxically constrains their output, thereby limiting information transfer to the brain. Our findings also indicate that TMEM16B plays an important role in how animals detect and perceive odors.
Collapse
Affiliation(s)
- Kai Clane Belonio
- Department of Biological Sciences, University of Illinois Chicago, Chicago, Illinois 60607
| | - Eyerusalem S. Haile
- Graduate Program in Biological Sciences, University of Illinois Chicago, Chicago, Illinois 60607
| | - Zach Fyke
- Graduate Program in Neuroscience, University of Illinois Chicago, Chicago, Illinois 60607
| | - Lindsay Vivona
- Graduate Program in Biological Sciences, University of Illinois Chicago, Chicago, Illinois 60607
| | - Vaibhav R. Konanur
- Department of Biological Sciences, University of Illinois Chicago, Chicago, Illinois 60607
| | - Theja Tulabandhula
- Departments of Information and Decision Sciences, University of Illinois Chicago, Chicago, Illinois 60607
| | - Joseph D. Zak
- Department of Biological Sciences, University of Illinois Chicago, Chicago, Illinois 60607
- Psychology, University of Illinois Chicago, Chicago, Illinois 60607
| |
Collapse
|
2
|
Hagerty S, Pustovyy O, Globa L, Vodyanoy V, Singletary M. Mediation of mammalian olfactory response by presence of odor-evoked potassium current. FRONTIERS IN ALLERGY 2024; 5:1478529. [PMID: 39479387 PMCID: PMC11521970 DOI: 10.3389/falgy.2024.1478529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
It is well understood that odorants interact with specialized G-protein coupled receptors embedded in the ciliary membrane of olfactory sensory neurons (OSN) which initiates a voltage-generating intracellular cascade of signal transduction events that can be recorded at the epithelial level as an electroolfactogram (EOG). While the depolarizing excitatory pathway in vertebrates involving cyclic adenosine monophosphate (cAMP)-induced Na+/Ca2+ influx and calcium-induced Cl- efflux is well established, there is evidence of potassium-associated inhibitory currents that correspond with cellular activation. While several Ca2+-dependent feedback mechanisms contribute to cellular deactivation which have been commonly attributed to these inhibitory currents, the frequently observed positive ionic conductance prior to excitatory depolarization have led many to suggest an additional earlier inhibitory mechanism at the receptor level that may be independent of downstream calcium influx. Due to conflicting conclusions, the role and mechanism behind Ca2+-independent inhibitory currents in olfactory cells is not fully understood. We investigated the functional and temporal involvement of potassium channels in odor transduction by comparing electroolfactogram (EOG) recordings in rat olfactory epithelia following ion channel inhibition and targeted activation of downstream components with or without potassium-blocking. Several K+-channel blocking agents (4-Aminopyridine, charybdotoxin, & iberiotoxin) demonstrated a diminished pre-action potential positive current that corresponded with reduced excitatory response to odor stimulation that was recovered when blockers were removed. We further assessed EOG responses in the absence of odor or with odor response enhancing zinc nanoparticles. Chemically eliciting membrane excitation in the absence of odor stimulation with a phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX), in combination with K+-channel inhibition, further indicated potassium channel activation precedes excitatory events and is independent of cAMP-induced calcium influx. These results support previous findings of odor-activated inhibitory potassium currents that may play a functional role in subsequent G-protein activity.
Collapse
Affiliation(s)
- Samantha Hagerty
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, United States
| | - Oleg Pustovyy
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, United States
| | - Ludmila Globa
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, United States
| | - Vitaly Vodyanoy
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, United States
| | - Melissa Singletary
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, United States
- Canine Performance Sciences Program, Auburn University College of Veterinary Medicine, Auburn, AL, United States
| |
Collapse
|
3
|
Belonio KC, Haile ES, Fyke Z, Vivona L, Konanur V, Zak JD. Amplification of olfactory transduction currents implements sparse stimulus encoding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617893. [PMID: 39416025 PMCID: PMC11482904 DOI: 10.1101/2024.10.11.617893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Sensory systems must perform the dual and opposing tasks of being sensitive to weak stimuli while also maintaining information content in dense and variable sensory landscapes. This occurs in the olfactory system, where OSNs are highly sensitive to low concentrations of odors and maintain discriminability in complex odor environments. How olfactory sensory neurons (OSNs) maintain both sensitivity and sparsity is not well understood. Here, we investigated whether the calcium-activated chloride channel, TMEM16B, may support these dual roles in OSNs. We used multiphoton microscopy to image the stimulus-response density of OSNs in the olfactory epithelium. In TMEM16B knockout mice, we found that sensory representations were denser, and the magnitude of OSN responses was increased. Behaviorally, these changes in sensory representations were associated with an increased aversion to the odorant trimethylamine, which switches perceptual valence as its concentration increases, and a decreased efficiency of olfactory-guided navigation. Together, our results indicate that the calcium-activated chloride channel TMEM16B sparsens sensory representations in the peripheral olfactory system and contributes to efficient integrative olfactory-guided behaviors.
Collapse
Affiliation(s)
- Kai Clane Belonio
- Department of Biological Sciences, University of Illinois Chicago, 60607
| | - Eyerusalem S. Haile
- Graduate Program in Biological Sciences, University of Illinois Chicago, 60607
| | - Zach Fyke
- Graduate Program in Neuroscience, University of Illinois Chicago, 60607
| | - Lindsay Vivona
- Graduate Program in Biological Sciences, University of Illinois Chicago, 60607
| | - Vaibhav Konanur
- Department of Biological Sciences, University of Illinois Chicago, 60607
| | - Joseph D. Zak
- Department of Biological Sciences, University of Illinois Chicago, 60607
- Department of Psychology, University of Illinois Chicago, 60607
| |
Collapse
|
4
|
Reisert J, Pifferi S, Guarneri G, Ricci C, Menini A, Dibattista M. The Ca 2+-activated Cl - channel TMEM16B shapes the response time course of olfactory sensory neurons. J Physiol 2024; 602:4889-4905. [PMID: 39167717 PMCID: PMC11466690 DOI: 10.1113/jp286959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Mammalian olfactory sensory neurons (OSNs) generate an odorant-induced response by sequentially activating two ion channels, which are in their ciliary membranes. First, a cationic, Ca2+-permeable cyclic nucleotide-gated channel is opened following odorant stimulation via a G protein-coupled transduction cascade and an ensuing rise in cAMP. Second, the increase in ciliary Ca2+ opens the excitatory Ca2+-activated Cl- channel TMEM16B, which carries most of the odorant-induced receptor current. While the role of TMEM16B in amplifying the response has been well established, it is less understood how this secondary ion channel contributes to response kinetics and action potential generation during single as well as repeated stimulation and, on the other hand, which response properties the cyclic nucleotide-gated (CNG) channel determines. We first demonstrate that basic membrane properties such as input resistance, resting potential and voltage-gated currents remained unchanged in OSNs that lack TMEM16B. The CNG channel predominantly determines the response delay and adaptation during odorant exposure, while the absence of the Cl- channels shortens both the time the response requires to reach its maximum and the time to terminate after odorant stimulation. This faster response termination in Tmem16b knockout OSNs allows them, somewhat counterintuitively despite the large reduction in receptor current, to fire action potentials more reliably when stimulated repeatedly in rapid succession, a phenomenon that occurs both in isolated OSNs and in OSNs within epithelial slices. Thus, while the two olfactory ion channels act in concert to generate the overall response, each one controls specific aspects of the odorant-induced response. KEY POINTS: Mammalian olfactory sensory neurons (OSNs) generate odorant-induced responses by activating two ion channels sequentially in their ciliary membranes: a Na+, Ca2⁺-permeable cyclic nucleotide-gated (CNG) channel and the Ca2⁺-activated Cl⁻ channel TMEM16B. The CNG channel controls response delay and adaptation during odorant exposure, while TMEM16B amplifies the response and influences the time required for the response to reach its peak and terminate. OSNs lacking TMEM16B display faster response termination, allowing them to fire action potentials more reliably during rapid repeated stimulation. The CNG and TMEM16B channels have distinct and complementary roles in shaping the kinetics and reliability of odorant-induced responses in OSNs.
Collapse
Affiliation(s)
| | - Simone Pifferi
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Giorgia Guarneri
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Chiara Ricci
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Anna Menini
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Michele Dibattista
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
5
|
Takeuchi H. Olfactory cilia, regulation and control of olfaction. Physiol Rep 2024; 12:e70057. [PMID: 39358841 PMCID: PMC11446836 DOI: 10.14814/phy2.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/27/2024] [Accepted: 09/07/2024] [Indexed: 10/04/2024] Open
Abstract
The sense of smell is still considered a fuzzy sensation. Softly wafting aromas can stimulate the appetite and trigger memories; however, there are many unexplored aspects of its underlying mechanisms, and not all of these have been elucidated. Although the final sense of smell takes place in the brain, it is greatly affected during the preliminary stage, when odorants are converted into electrical signals. After signal conversion through ion channels in olfactory cilia, action potentials are generated through other types of ion channels located in the cell body. Spike trains through axons transmit this information as digital signals to the brain, however, before odorants are converted into digital electric signals, such as an action potential, modification of the transduction signal has already occurred. This review focuses on the early stages of olfactory signaling. Modification of signal transduction mechanisms and their effect on the human sense of smell through three characteristics (signal amplification, olfactory adaptation, and olfactory masking) produced by olfactory cilia, which is the site of signal transduction are being addressed in this review.
Collapse
Affiliation(s)
- Hiroko Takeuchi
- Graduated School of Frontier BiosciencesOsaka UniversitySuitaOsakaJapan
| |
Collapse
|
6
|
Velez Z, Hubbard PC, Alves A, Costa RA, Guerreiro PM. Environmental salinity modulates olfactory sensitivity in the euryhaline European seabass, Dicentrarchus labrax, acclimated to seawater and brackish water. J Exp Biol 2024; 227:jeb246448. [PMID: 38197261 DOI: 10.1242/jeb.246448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024]
Abstract
The olfactory epithelium of fish is - of necessity - in intimate contact with the surrounding water. In euryhaline fish, movement from seawater to freshwater (and vice versa) exposes the epithelium to massive changes in salinity and ionic concentrations. How does the olfactory system function in the face of such changes? The current study compared olfactory sensitivity in seawater- (35‰) and brackish water-adapted seabass (5‰) using extracellular multi-unit recording from the olfactory nerve. Seawater-adapted bass had higher olfactory sensitivity to amino acid odorants when delivered in seawater than in freshwater. Conversely, brackish water-adapted bass had largely similar sensitivities to the same odorants when delivered in seawater or freshwater, although sensitivity was still slightly higher in seawater. The olfactory system of seawater-adapted bass was sensitive to decreases in external [Ca2+], whereas brackish water-adapted bass responded to increases in [Ca2+]; both seawater- and brackish water-adapted bass responded to increases in external [Na+] but the sensitivity was markedly higher in brackish water-adapted bass. In seawater-adapted bass, olfactory sensitivity to l-alanine depended on external Ca2+ ions, but not Na+; brackish water-adapted bass did respond to l-alanine in the absence of Ca2+, albeit with lower sensitivity, whereas sensitivity was unaffected by removal of Na+ ions. A possible adaptation of the olfactory epithelium was the higher number of mucous cells in brackish water-adapted bass. The olfactory system of seabass is able to adapt to low salinities, but this is not immediate; further studies are needed to identify the processes involved.
Collapse
Affiliation(s)
- Zélia Velez
- Comparative Endocrinology and Integrative Biology Group, Centre for Marine Sciences, University of Algarve, Campus of Gambelas, Building 7, 8005-139 Faro, Portugal
| | - Peter C Hubbard
- Comparative Endocrinology and Integrative Biology Group, Centre for Marine Sciences, University of Algarve, Campus of Gambelas, Building 7, 8005-139 Faro, Portugal
| | - Alexandra Alves
- Comparative Endocrinology and Integrative Biology Group, Centre for Marine Sciences, University of Algarve, Campus of Gambelas, Building 7, 8005-139 Faro, Portugal
| | - Rita A Costa
- Comparative Endocrinology and Integrative Biology Group, Centre for Marine Sciences, University of Algarve, Campus of Gambelas, Building 7, 8005-139 Faro, Portugal
| | - Pedro M Guerreiro
- Comparative Endocrinology and Integrative Biology Group, Centre for Marine Sciences, University of Algarve, Campus of Gambelas, Building 7, 8005-139 Faro, Portugal
| |
Collapse
|
7
|
Li P, Wang N, Kai L, Si J, Wang Z. Chronic intranasal corticosteroid treatment induces degeneration of olfactory sensory neurons in normal and allergic rhinitis mice. Int Forum Allergy Rhinol 2023; 13:1889-1905. [PMID: 36800514 DOI: 10.1002/alr.23142] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND Nasal eosinophilic inflammation is the therapeutic target for olfactory dysfunction in allergic rhinitis (AR). Intranasal corticosteroids are commonly considered to offer targetable benefit given their immunosuppressive property. However, experimental evidence suggests that continuous corticosteroid exposure may directly cause olfactory damage by disrupting the turnover of olfactory sensory neurons (OSNs). This potentially deleterious effect of corticosteroids calls into question their long-term topical use for treating olfactory loss related to AR. The aim of this study was to assess the impacts of chronic intranasal corticosteroid treatment on olfactory function and OSN population in mice under normal and pathological conditions. METHODS BALB/c mice were intranasally treated with fluticasone propionate (FP, 0.3 mg/kg) for up to 8 weeks. Additional mice were used to establish an ovalbumin-induced mouse model of AR, followed by nasal challenge with ovalbumin for 8 weeks in the presence or absence of intranasal FP treatment. The authors examined olfactory function, OSN existence, neuronal turnover, and nasal inflammation using behavioral test, histological analyses, Western blotting, and enzyme-linked immunosorbent assay. RESULTS Intranasal treatment with FP for 8 weeks (FP-wk8) reduced odor sensitivity in normal mice. This reduction was concomitant with loss of OSNs and the axons projecting to the olfactory bulb, primarily resulting from increased neuronal apoptosis. In FP-wk8 AR mice, intranasal FP treatment attenuated olfactory impairment and eosinophilic inflammation but failed to reconstitute OSN population and axonal projections. CONCLUSION These results suggest that chronic intranasal corticosteroid treatment contributes to OSN degeneration that may reduce the therapeutic effectiveness for AR-related olfactory loss.
Collapse
Affiliation(s)
- Pu Li
- Department of Otolaryngology-Head and Neck Surgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Na Wang
- Department of Otolaryngology-Head and Neck Surgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Luo Kai
- Department of Otolaryngology-Head and Neck Surgery, Peking University Shougang Hospital, Beijing, China
| | - Jinyuan Si
- Department of Otolaryngology-Head and Neck Surgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Zhenlin Wang
- Department of Otolaryngology-Head and Neck Surgery, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Hernandez-Clavijo A, Sánchez Triviño CA, Guarneri G, Ricci C, Mantilla-Esparza FA, Gonzalez-Velandia KY, Boscolo-Rizzo P, Tofanelli M, Bonini P, Dibattista M, Tirelli G, Menini A. Shedding light on human olfaction: Electrophysiological recordings from sensory neurons in acute slices of olfactory epithelium. iScience 2023; 26:107186. [PMID: 37456832 PMCID: PMC10345129 DOI: 10.1016/j.isci.2023.107186] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/19/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
The COVID-19 pandemic brought attention to our limited understanding of human olfactory physiology. While the cellular composition of the human olfactory epithelium is similar to that of other vertebrates, its functional properties are largely unknown. We prepared acute slices of human olfactory epithelium from nasal biopsies and used the whole-cell patch-clamp technique to record electrical properties of cells. We measured voltage-gated currents in human olfactory sensory neurons and supporting cells, and action potentials in neurons. Additionally, neuronal inward current and action potentials responses to a phosphodiesterase inhibitor suggested a transduction cascade involving cAMP as a second messenger. Furthermore, responses to odorant mixtures demonstrated that the transduction cascade was intact in this preparation. This study provides the first electrophysiological characterization of olfactory sensory neurons in acute slices of the human olfactory epithelium, paving the way for future research to expand our knowledge of human olfactory physiology.
Collapse
Affiliation(s)
- Andres Hernandez-Clavijo
- Neuroscience Area, SISSA, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| | | | - Giorgia Guarneri
- Neuroscience Area, SISSA, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| | - Chiara Ricci
- Neuroscience Area, SISSA, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| | | | | | - Paolo Boscolo-Rizzo
- Department of Medical, Surgical and Health Sciences, Section of Otolaryngology, University of Trieste, 34149 Trieste, Italy
| | - Margherita Tofanelli
- Department of Medical, Surgical and Health Sciences, Section of Otolaryngology, University of Trieste, 34149 Trieste, Italy
| | - Pierluigi Bonini
- Department of Medical, Surgical and Health Sciences, Section of Otolaryngology, University of Trieste, 34149 Trieste, Italy
| | - Michele Dibattista
- Department of Translational Biomedicine and Neuroscience, University of Bari A. Moro, 70121 Bari, Italy
| | - Giancarlo Tirelli
- Department of Medical, Surgical and Health Sciences, Section of Otolaryngology, University of Trieste, 34149 Trieste, Italy
| | - Anna Menini
- Neuroscience Area, SISSA, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| |
Collapse
|
9
|
Stasenko SV, Mikhaylov AN, Kazantsev VB. Model of Neuromorphic Odorant-Recognition Network. Biomimetics (Basel) 2023; 8:277. [PMID: 37504165 PMCID: PMC10377415 DOI: 10.3390/biomimetics8030277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/14/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
We propose a new model for a neuromorphic olfactory analyzer based on memristive synapses. The model comprises a layer of receptive neurons that perceive various odors and a layer of "decoder" neurons that recognize these odors. It is demonstrated that connecting these layers with memristive synapses enables the training of the "decoder" layer to recognize two types of odorants of varying concentrations. In the absence of such synapses, the layer of "decoder" neurons does not exhibit specificity in recognizing odorants. The recognition of the 'odorant' occurs through the neural activity of a group of decoder neurons that have acquired specificity for the odorant in the learning process. The proposed phenomenological model showcases the potential use of a memristive synapse in practical odorant recognition applications.
Collapse
Affiliation(s)
- Sergey V Stasenko
- Laboratory of Neurobiomorphic Technologies, Moscow Institute of Physics and Technology, 117303 Moscow, Russia
- Laboratory of Advanced Methods for High-Dimensional Data Analysis, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Alexey N Mikhaylov
- Laboratory of Memristor Nanoelectronics, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Victor B Kazantsev
- Laboratory of Neurobiomorphic Technologies, Moscow Institute of Physics and Technology, 117303 Moscow, Russia
- Laboratory of Advanced Methods for High-Dimensional Data Analysis, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| |
Collapse
|
10
|
Takeuchi H, Kurahashi T. Segregation of Ca2+ signaling in olfactory signal transduction. J Gen Physiol 2023; 155:213865. [PMID: 36787110 PMCID: PMC9960254 DOI: 10.1085/jgp.202213165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 11/04/2022] [Accepted: 01/13/2023] [Indexed: 02/15/2023] Open
Abstract
Olfactory signal transduction is conducted through a cAMP-mediated second messenger cascade. The cytoplasmic Ca2+ concentration increases through the opening of CNG channels, a phenomenon that underlies two major functions, namely, signal boosting and olfactory adaptation. Signal boosting is achieved by an additional opening of the Ca2+-activated Cl- channel whereas adaptation is regulated by Ca2+ feedback to the CNG channel. Thus, the influx of Ca2+ and the resultant increase in cytoplasmic Ca2+ levels play seemingly opposing effects: increasing the current while reducing the current through adaptation. The two functions could be interpreted as compensating for each other. However, in real cells, both functions should be segregated. Ca2+ dynamics in olfactory cilia need to be directly measured, but technical difficulties accompanying the thin structure of olfactory cilia have prevented systematic analyses. In this study, using a combination of electrophysiology, local photolysis of caged cAMP, and Ca2+ imaging, we found that free Ca2+ in the local ciliary cytoplasm decreased along with a reduction in the current containing Ca2+-activated Cl- components returning to the basal level, whereas Ca2+-dependent adaptation persisted for a longer period. The activity of Cl- channels is highly likely to be regulated by the free Ca2+ that is present only immediately after the influx through the CNG channel, and an exclusive interaction between Ca2+ and Ca2+-binding proteins that mediate the adaptation may modulate the adaptation lifetime.
Collapse
Affiliation(s)
- Hiroko Takeuchi
- Department of Biophysical Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Correspondence to Hiroko Takeuchi:
| | - Takashi Kurahashi
- Department of Biophysical Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
11
|
Abstract
Cilia sense and transduce sensory stimuli, homeostatic cues and developmental signals by orchestrating signaling reactions. Extracellular vesicles (EVs) that bud from the ciliary membrane have well-studied roles in the disposal of excess ciliary material, most dramatically exemplified by the shedding of micrometer-sized blocks by photoreceptors. Shedding of EVs by cilia also affords cells with a powerful means to shorten cilia. Finally, cilium-derived EVs may enable cell-cell communication in a variety of organisms, ranging from single-cell parasites and algae to nematodes and vertebrates. Mechanistic understanding of EV shedding by cilia is an active area of study, and future progress may open the door to testing the function of ciliary EV shedding in physiological contexts. In this Cell Science at a Glance and the accompanying poster, we discuss the molecular mechanisms that drive the shedding of ciliary material into the extracellular space, the consequences of shedding for the donor cell and the possible roles that ciliary EVs may have in cell non-autonomous contexts.
Collapse
Affiliation(s)
- Irene Ojeda Naharros
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143-3120, USA
| | - Maxence V. Nachury
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143-3120, USA
| |
Collapse
|
12
|
Li RC, Molday LL, Lin CC, Ren X, Fleischmann A, Molday RS, Yau KW. Low signaling efficiency from receptor to effector in olfactory transduction: A quantified ligand-triggered GPCR pathway. Proc Natl Acad Sci U S A 2022; 119:e2121225119. [PMID: 35914143 PMCID: PMC9371729 DOI: 10.1073/pnas.2121225119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/11/2022] [Indexed: 02/03/2023] Open
Abstract
G protein-coupled receptor (GPCR) signaling is ubiquitous. As an archetype of this signaling motif, rod phototransduction has provided many fundamental, quantitative details, including a dogma that one active GPCR molecule activates a substantial number of downstream G protein/enzyme effector complexes. However, rod phototransduction is light-activated, whereas GPCR pathways are predominantly ligand-activated. Here, we report a detailed study of the ligand-triggered GPCR pathway in mammalian olfactory transduction, finding that an odorant-receptor molecule when (one-time) complexed with its most effective odorants produces on average much less than one downstream effector. Further experiments gave a nominal success probability of tentatively ∼10-4 (more conservatively, ∼10-2 to ∼10-5). This picture is potentially more generally representative of GPCR signaling than is rod phototransduction, constituting a paradigm shift.
Collapse
Affiliation(s)
- Rong-Chang Li
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Laurie L. Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Chih-Chun Lin
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Neuroscience Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Xiaozhi Ren
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | - Robert S. Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - King-Wai Yau
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
13
|
Expression pattern of Stomatin-domain proteins in the peripheral olfactory system. Sci Rep 2022; 12:11447. [PMID: 35794236 PMCID: PMC9259621 DOI: 10.1038/s41598-022-15572-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Recent data show that Stomatin-like protein 3 (STOML3), a member of the stomatin-domain family, is expressed in the olfactory sensory neurons (OSNs) where it modulates both spontaneous and evoked action potential firing. The protein family is constituted by other 4 members (besides STOML3): STOM, STOML1, STOML2 and podocin. Interestingly, STOML3 with STOM and STOML1 are expressed in other peripheral sensory neurons: dorsal root ganglia. In here, they functionally interact and modulate the activity of the mechanosensitive Piezo channels and members of the ASIC family. Therefore, we investigated whether STOM and STOML1 are expressed together with STOML3 in the OSNs and whether they could interact. We found that all three are indeed expressed in ONSs, although STOML1 at very low level. STOM and STOML3 share a similar expression pattern and STOML3 is necessary for STOM to properly localize to OSN cilia. In addition, we extended our investigation to podocin and STOML2, and while the former is not expressed in the olfactory system, the latter showed a peculiar expression pattern in multiple cell types. In summary, we provided a first complete description of stomatin-domain protein family in the olfactory system, highlighting the precise compartmentalization, possible interactions and, finally, their functional implications.
Collapse
|
14
|
Soubeyre V, Merle L, Jarriault D, Grégoire S, Bretillon L, Acar N, Grosmaitre X, Le Bon AM. Dietary n-3 polyunsaturated fatty acid deficiency alters olfactory mucosa sensitivity in young mice but has no impact on olfactory behavior. Nutr Neurosci 2022:1-14. [PMID: 35694841 DOI: 10.1080/1028415x.2022.2082642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND AND OBJECTIVE We recently showed that perinatal exposure to diets with unbalanced n-6:n-3 polyunsaturated fatty acid (PUFA) ratios affects the olfactory mucosa (OM) fatty acid composition. To assess the repercussions of these modifications, we investigated the impact of diets unbalanced in n-3 PUFAs on the molecular composition and functionality of the OM in young mice. METHODS After mating, female mice were fed diets either deficient in α-linolenic acid (LOW diet) or supplemented with n-3 long-chain PUFAs (HIGH diet) during the perinatal period. Weaned male offspring were then fed ad libitum with the same experimental diets for 5 weeks. At 8 weeks of age, olfactory behavior tests were performed in young mice. The fatty acid composition of OM and olfactory cilia, as well as the expression of genes involved in different cellular pathways, were analyzed. The electroolfactograms induced by odorant stimuli were recorded to assess the impact of diets on OM functionality. RESULTS AND CONCLUSION Both diets significantly modified the fatty acid profiles of OM and olfactory cilia in young mice. They also induced changes in the expression of genes involved in olfactory signaling and in olfactory neuron maturation. The electroolfactogram amplitudes were reduced in mice fed the LOW diet. Nevertheless, the LOW diet and the HIGH diet did not affect mouse olfactory behavior. Our study demonstrated that consumption of diets deficient in or supplemented with n-3 PUFAs during the perinatal and postweaning periods caused significant changes in young mouse OM. However, these modifications did not impair their olfactory capacities.
Collapse
Affiliation(s)
- Vanessa Soubeyre
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS UMR-5203, INSERM U1091, Montpellier, France
| | - Laetitia Merle
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - David Jarriault
- NutriNeuro, UMR 1286 INRAE, Bordeaux INP, Université de Bordeaux, Bordeaux, France
| | - Stéphane Grégoire
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Lionel Bretillon
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Niyazi Acar
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Xavier Grosmaitre
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Anne Marie Le Bon
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
15
|
Narukawa M, Mori Y, Nishida R, Takahashi S, Saito T, Saido TC, Misaka T. Expression of Olfactory-Related Genes in the Olfactory Epithelium of an Alzheimer’s Disease Mouse Model. J Alzheimers Dis 2022; 88:29-35. [DOI: 10.3233/jad-220213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Using an amyloid precursor protein (App) gene knock-in (KI) mouse of Alzheimer’s disease (AD), we investigated the expression of olfactory-related genes in olfactory impairment caused by AD. We observed the change in olfactory behavior in the App-KI mice. There was no significant difference, however, in the mRNA expression levels of olfactory-related genes between the olfactory epithelia of wild-type (WT) and App-KI mice. Amyloid-β deposition was confirmed throughout the olfactory pathway in App-KI mice, but not in WT mice. These show that the change in olfactory behavior in the App-KI mice might cause by the impairment of the olfactory pathway.
Collapse
Affiliation(s)
- Masataka Narukawa
- Department of Food and Nutrition, Kyoto Women’s University, Kyoto, Japan
| | - Yuko Mori
- Department of Food and Nutrition, Kyoto Women’s University, Kyoto, Japan
| | - Riko Nishida
- Department of Food and Nutrition, Kyoto Women’s University, Kyoto, Japan
| | - Suzuka Takahashi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Science, Nagoya, Aichi, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Takumi Misaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Bigdai EV, Samoilov VO. Role of Neurotransmitters in the Functioning of Olfactory Sensory Neurons. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022030206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Genovese F, Reisert J, Kefalov VJ. Sensory Transduction in Photoreceptors and Olfactory Sensory Neurons: Common Features and Distinct Characteristics. Front Cell Neurosci 2021; 15:761416. [PMID: 34690705 PMCID: PMC8531253 DOI: 10.3389/fncel.2021.761416] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
The past decades have seen tremendous progress in our understanding of the function of photoreceptors and olfactory sensory neurons, uncovering the mechanisms that determine their properties and, ultimately, our ability to see and smell. This progress has been driven to a large degree by the powerful combination of physiological experimental tools and genetic manipulations, which has enabled us to identify the main molecular players in the transduction cascades of these sensory neurons, how their properties affect the detection and discrimination of stimuli, and how diseases affect our senses of vision and smell. This review summarizes some of the common and unique features of photoreceptors and olfactory sensory neurons that make these cells so exciting to study.
Collapse
Affiliation(s)
| | | | - Vladimir J Kefalov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States.,Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
18
|
Zhang S, Li L, Li H. Role of ectopic olfactory receptors in glucose and lipid metabolism. Br J Pharmacol 2021; 178:4792-4807. [PMID: 34411276 DOI: 10.1111/bph.15666] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 05/25/2021] [Accepted: 08/11/2021] [Indexed: 12/25/2022] Open
Abstract
The metabolic syndrome has become one of the major public health challenges in the world, and adjusting glucose and lipid levels to their normal values is crucial for treating the metabolic syndrome. Olfactory receptors (ORs) expressed in extra-nasal tissues participate in diverse biological processes, including the regulation of glucose and lipid metabolism. Ectopic ORs can regulate a variety of metabolic events including insulin secretion, glucagon secretion, fatty acid oxidation, lipogenesis and thermogenesis. Understanding the physiological function and deciphering the olfactory recognition code by suitable ligands make ectopic ORs potential targets for the treatment of the metabolic syndrome. In this review, we delineate the roles and mechanisms of ectopic ORs in the regulation of glucose and lipid metabolism, summarize the corresponding natural ligands, and discuss existing problems and the therapeutic potential of targeting ORs in the metabolic syndrome.
Collapse
Affiliation(s)
- Siyu Zhang
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Linghuan Li
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Hanbing Li
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Section of Endocrinology, School of Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
19
|
Martelli C, Storace DA. Stimulus Driven Functional Transformations in the Early Olfactory System. Front Cell Neurosci 2021; 15:684742. [PMID: 34413724 PMCID: PMC8369031 DOI: 10.3389/fncel.2021.684742] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022] Open
Abstract
Olfactory stimuli are encountered across a wide range of odor concentrations in natural environments. Defining the neural computations that support concentration invariant odor perception, odor discrimination, and odor-background segmentation across a wide range of stimulus intensities remains an open question in the field. In principle, adaptation could allow the olfactory system to adjust sensory representations to the current stimulus conditions, a well-known process in other sensory systems. However, surprisingly little is known about how adaptation changes olfactory representations and affects perception. Here we review the current understanding of how adaptation impacts processing in the first two stages of the vertebrate olfactory system, olfactory receptor neurons (ORNs), and mitral/tufted cells.
Collapse
Affiliation(s)
- Carlotta Martelli
- Institute of Developmental Biology and Neurobiology, University of Mainz, Mainz, Germany
| | - Douglas Anthony Storace
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
20
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
21
|
Reisert J, Golden GJ, Dibattista M, Gelperin A. Odor sampling strategies in mice with genetically altered olfactory responses. PLoS One 2021; 16:e0249798. [PMID: 33939692 PMCID: PMC8092659 DOI: 10.1371/journal.pone.0249798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/25/2021] [Indexed: 12/04/2022] Open
Abstract
Peripheral sensory cells and the central neuronal circuits that monitor environmental changes to drive behaviors should be adapted to match the behaviorally relevant kinetics of incoming stimuli, be it the detection of sound frequencies, the speed of moving objects or local temperature changes. Detection of odorants begins with the activation of olfactory receptor neurons in the nasal cavity following inhalation of air and airborne odorants carried therein. Thus, olfactory receptor neurons are stimulated in a rhythmic and repeated fashion that is determined by the breathing or sniffing frequency that can be controlled and altered by the animal. This raises the question of how the response kinetics of olfactory receptor neurons are matched to the imposed stimulation frequency and if, vice versa, the kinetics of olfactory receptor neuron responses determine the sniffing frequency. We addressed this question by using a mouse model that lacks the K+-dependent Na+/Ca2+ exchanger 4 (NCKX4), which results in markedly slowed response termination of olfactory receptor neuron responses and hence changes the temporal response kinetics of these neurons. We monitored sniffing behaviors of freely moving wildtype and NCKX4 knockout mice while they performed olfactory Go/NoGo discrimination tasks. Knockout mice performed with similar or, surprisingly, better accuracy compared to wildtype mice, but chose, depending on the task, different odorant sampling durations depending on the behavioral demands of the odorant identification task. Similarly, depending on the demands of the behavioral task, knockout mice displayed a lower basal breathing frequency prior to odorant sampling, a possible mechanism to increase the dynamic range for changes in sniffing frequency during odorant sampling. Overall, changes in sniffing behavior between wildtype and NCKX4 knockout mice were subtle, suggesting that, at least for the particular odorant-driven task we used, slowed response termination of the odorant-induced receptor neuron response either has a limited detrimental effect on odorant-driven behavior or mice are able to compensate via an as yet unknown mechanism.
Collapse
Affiliation(s)
- Johannes Reisert
- Monell Chemical Senses Center, Philadelphia, PA, United States of America
- * E-mail: (JR); (AG)
| | - Glen J. Golden
- Monell Chemical Senses Center, Philadelphia, PA, United States of America
| | - Michele Dibattista
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari “A. Moro”, Bari, Italy
| | - Alan Gelperin
- Princeton Neuroscience Program, Princeton University, Princeton, NJ, United States of America
- * E-mail: (JR); (AG)
| |
Collapse
|
22
|
A Role for STOML3 in Olfactory Sensory Transduction. eNeuro 2021; 8:ENEURO.0565-20.2021. [PMID: 33637538 PMCID: PMC7986538 DOI: 10.1523/eneuro.0565-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/25/2021] [Accepted: 02/08/2021] [Indexed: 11/24/2022] Open
Abstract
Stomatin-like protein-3 (STOML3) is an integral membrane protein expressed in the cilia of olfactory sensory neurons (OSNs), but its functional role in this cell type has never been addressed. STOML3 is also expressed in dorsal root ganglia neurons, where it has been shown to be required for normal touch sensation. Here, we extended previous results indicating that STOML3 is mainly expressed in the knob and proximal cilia of OSNs. We additionally showed that mice lacking STOML3 have a morphologically normal olfactory epithelium. Because of its presence in the cilia, together with known olfactory transduction components, we hypothesized that STOML3 could be involved in modulating odorant responses in OSNs. To investigate the functional role of STOML3, we performed loose patch recordings from wild-type (WT) and Stoml3 knock-out (KO) OSNs. We found that spontaneous mean firing activity was lower with additional shift in interspike intervals (ISIs) distributions in Stoml3 KOs compared with WT neurons. Moreover, the firing activity in response to stimuli was reduced both in spike number and duration in neurons lacking STOML3 compared with WT neurons. Control experiments suggested that the primary deficit in neurons lacking STOML3 was at the level of transduction and not at the level of action potential generation. We conclude that STOML3 has a physiological role in olfaction, being required for normal sensory encoding by OSNs.
Collapse
|
23
|
Grigoriev VV. [Calcium-activated chloride channels: structure, properties, role in physiological and pathological processes]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2021; 67:17-33. [PMID: 33645519 DOI: 10.18097/pbmc20216701017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ca2+-activated chloride channels (CaCC) are a class of intracellular calcium activated chloride channels that mediate numerous physiological functions. In 2008, the molecular structure of CaCC was determined. CaCC are formed by the protein known as anoctamine 1 (ANO1 or TMEM16A). CaCC mediates the secretion of Cl- in secretory epithelia, such as the airways, salivary glands, intestines, renal tubules, and sweat glands. The presence of CaCC has also been recognized in the vascular muscles, smooth muscles of the respiratory tract, which control vascular tone and hypersensitivity of the respiratory tract. TMEM16A is activated in many cancers; it is believed that TMEM16A is involved in carcinogenesis. TMEM16A is also involved in cancer cells proliferation. The role of TMEM16A in the mechanisms of hypertension, asthma, cystic fibrosis, nociception, and dysfunction of the gastrointestinal tract has been determined. In addition to TMEM16A, its isoforms are involved in other physiological and pathophysiological processes. TMEM16B (or ANO2) is involved in the sense of smell, while ANO6 works like scramblase, and its mutation causes a rare bleeding disorder, known as Scott syndrome. ANO5 is associated with muscle and bone diseases. TMEM16A interacts with various cellular signaling pathways including: epidermal growth factor receptor (EGFR), mitogen-activated protein kinases (MAPK), calmodulin (CaM) kinases, transforming growth factor TGF-β. The review summarizes existing information on known natural and synthetic compounds that can block/modulate CaCC currents and their effect on some pathologies in which CaCC is involved.
Collapse
Affiliation(s)
- V V Grigoriev
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
24
|
Boccaccio A, Menini A, Pifferi S. The cyclic AMP signaling pathway in the rodent main olfactory system. Cell Tissue Res 2021; 383:429-443. [PMID: 33447881 DOI: 10.1007/s00441-020-03391-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/10/2020] [Indexed: 01/15/2023]
Abstract
Odor perception begins with the detection of odorant molecules by the main olfactory epithelium located in the nasal cavity. Odorant molecules bind to and activate a large family of G-protein-coupled odorant receptors and trigger a cAMP-mediated transduction cascade that converts the chemical stimulus into an electrical signal transmitted to the brain. Morever, odorant receptors and cAMP signaling plays a relevant role in olfactory sensory neuron development and axonal targeting to the olfactory bulb. This review will first explore the physiological response of olfactory sensory neurons to odorants and then analyze the different components of cAMP signaling and their different roles in odorant detection and olfactory sensory neuron development.
Collapse
Affiliation(s)
- Anna Boccaccio
- Institute of Biophysics, National Research Council (CNR), Genova, Italy.
| | - Anna Menini
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Simone Pifferi
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy.,Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
25
|
Dewan A. Olfactory signaling via trace amine-associated receptors. Cell Tissue Res 2020; 383:395-407. [PMID: 33237477 DOI: 10.1007/s00441-020-03331-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/28/2020] [Indexed: 01/30/2023]
Abstract
Trace amine-associated receptors (TAARs) are a family of G protein-coupled receptors that function as odorant receptors in the main olfactory system of vertebrates. TAARs are monoallelically expressed in primary sensory neurons where they couple to the same transduction cascade as canonical olfactory receptors and are mapped onto glomeruli within a specific region of the olfactory bulb. TAARs have a high affinity for volatile amines, a class of chemicals that are generated during the decomposition of proteins and are ubiquitous physiological metabolites that are found in body fluids. Thus, amines are proposed to play an important role in intra- and interspecific communication such as signaling the sex of the conspecific, the quality of the food source, or even the proximity of a predator. TAARs have a crucial role in the perception of these behaviorally relevant compounds as the genetic deletion of all or even individual olfactory TAARs can alter the behavioral response and reduce the sensitivity to amines. The small size of this receptor family combined with the ethological relevance of their ligands makes the TAARs an attractive model system for probing olfactory perception. This review will summarize the current knowledge on the olfactory TAARs and discuss whether they represent a unique subsystem within the main olfactory system.
Collapse
Affiliation(s)
- Adam Dewan
- Department of Psychology, Florida State University, 1107 W. Call St, Tallahassee, FL, 32306, USA.
| |
Collapse
|
26
|
Schwartz AB, Kapur A, Huang Z, Anangi R, Spear JM, Stagg S, Fardone E, Dekan Z, Rosenberg JT, Grant SC, King GF, Mattoussi H, Fadool DA. Olfactory bulb-targeted quantum dot (QD) bioconjugate and Kv1.3 blocking peptide improve metabolic health in obese male mice. J Neurochem 2020; 157:1876-1896. [PMID: 32978815 DOI: 10.1111/jnc.15200] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 01/10/2023]
Abstract
The olfactory system is a driver of feeding behavior, whereby olfactory acuity is modulated by the metabolic state of the individual. The excitability of the major output neurons of the olfactory bulb (OB) can be modulated through targeting a voltage-dependent potassium channel, Kv1.3, which responds to changes in metabolic factors such as insulin, glucose, and glucagon-like peptide-1. Because gene-targeted deletion or inhibition of Kv1.3 in the periphery has been found to increase energy metabolism and decrease body weight, we hypothesized that inhibition of Kv1.3 selectively in the OB could enhance excitability of the output neurons to evoke changes in energy homeostasis. We thereby employed metal-histidine coordination to self-assemble the Kv1.3 inhibitor margatoxin (MgTx) to fluorescent quantum dots (QDMgTx) as a means to label cells in vivo and test changes in neuronal excitability and metabolism when delivered to the OB. Using patch-clamp electrophysiology to measure Kv1.3 properties in heterologously expressed cells and native mitral cells in OB slices, we found that QDMgTx had a fast rate of inhibition, but with a reduced IC50, and increased action potential firing frequency. QDMgTx was capable of labeling cloned Kv1.3 channels but was not visible when delivered to native Kv1.3 in the OB. Diet-induced obese mice were observed to reduce body weight and clear glucose more quickly following osmotic mini-pump delivery of QDMgTx/MgTx to the OB, and following MgTx delivery, they increased the use of fats as fuels (reduced respiratory exchange ratio). These results suggest that enhanced excitability of bulbar output neurons can drive metabolic responses.
Collapse
Affiliation(s)
- Austin B Schwartz
- Institute of Molecular Biophysics, The Florida State University, Tallahassee, FL, USA
| | - Anshika Kapur
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, FL, USA
| | - Zhenbo Huang
- Program in Neuroscience, The Florida State University, Tallahassee, FL, USA.,Department of Biological Science, The Florida State University, Tallahassee, FL, USA
| | - Raveendra Anangi
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - John M Spear
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, FL, USA.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Scott Stagg
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, FL, USA.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Erminia Fardone
- Program in Neuroscience, The Florida State University, Tallahassee, FL, USA
| | - Zolan Dekan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Jens T Rosenberg
- National High Field Magnetic Laboratory, The Florida State University, Tallahassee, FL, USA
| | - Samuel C Grant
- National High Field Magnetic Laboratory, The Florida State University, Tallahassee, FL, USA.,Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Hedi Mattoussi
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, FL, USA
| | - Debra Ann Fadool
- Institute of Molecular Biophysics, The Florida State University, Tallahassee, FL, USA.,Program in Neuroscience, The Florida State University, Tallahassee, FL, USA.,Department of Biological Science, The Florida State University, Tallahassee, FL, USA
| |
Collapse
|
27
|
Nakamura T, Noumi Y, Yamakawa H, Nakamura A, Wen D, Li X, Geng X, Sawada K, Iwasa T. Enhancement of the Olfactory Response by Lipocalin Cp-Lip1 in Newt Olfactory Receptor Cells: An Electrophysiological Study. Chem Senses 2020; 44:523-533. [PMID: 31346612 DOI: 10.1093/chemse/bjz048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previously, we have detected the expression of 2 lipocalin genes (lp1 and lp2) in the olfactory epithelium of the Japanese newt Cynops pyrrhogaster. Recombinant proteins of these genes (Cp-Lip1 and Cp-Lip2, respectively) exhibited high affinities to various odorants, suggesting that they work like the odorant-binding proteins (OBPs). However, the physiological functions of OBP generally remain inconclusive. Here, we examined the effect of Cp-Lip1 on the electrophysiological responses of newt olfactory receptor cells. We observed that the electro-olfactogram induced by the vapor of an odorant with high affinity to Cp-Lip1 appeared to increase in amplitude when a tiny drop of Cp-Lip1 solution was dispersed over the olfactory epithelium. However, the analysis was difficult because of possible interference by intrinsic components in the nasal mucus. We subsequently adopted a mucus-free condition by using suction electrode recordings from isolated olfactory cells, in which impulses were generated by puffs of odorant solution. When various concentration (0-5 µM) of Cp-Lip1 was mixed with the stimulus solution of odorants highly affinitive to Cp-Lip1, the impulse frequency increased in a concentration-dependent manner. The increase by Cp-Lip1 was seen more evidently at lower concentration ranges of stimulus odorants. These results strongly suggest that Cp-Lip1 broadens the sensitivity of the olfactory cells toward the lower concentration of odorants, by which animals can detect very low concentration of odorants.
Collapse
Affiliation(s)
- Tadashi Nakamura
- Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo, Japan.,Department of Applied Physics and Chemistry, The University of Electro-Communications, Tokyo, Japan.,Department of Engineering Sciences, The University of Electro-Communications, Tokyo, Japan
| | - Yoshihiro Noumi
- Department of Applied Physics and Chemistry, The University of Electro-Communications, Tokyo, Japan
| | - Hiroyuki Yamakawa
- Department of Engineering Sciences, The University of Electro-Communications, Tokyo, Japan
| | - Atsushi Nakamura
- Department of Engineering Sciences, The University of Electro-Communications, Tokyo, Japan
| | - Durige Wen
- Division of Engineering, Muroran Institute of Technology, Muroran, Japan
| | - Xing Li
- Division of Engineering, Muroran Institute of Technology, Muroran, Japan
| | - Xiong Geng
- Division of Engineering, Muroran Institute of Technology, Muroran, Japan
| | - Ken Sawada
- Division of Engineering, Muroran Institute of Technology, Muroran, Japan
| | - Tatsuo Iwasa
- Division of Engineering, Muroran Institute of Technology, Muroran, Japan
| |
Collapse
|
28
|
Klimenkov IV, Sudakov NP, Pastukhov MV, Kositsyn NS. The Phenomenon of Compensatory Cell Proliferation in Olfactory Epithelium in Fish Caused by Prolonged Exposure to Natural Odorants. Sci Rep 2020; 10:8908. [PMID: 32483178 PMCID: PMC7264137 DOI: 10.1038/s41598-020-65854-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
It was previously shown that activation of the processes of neurogenesis in the olfactory epithelium (OE) can be caused after intranasal administration of toxic or neurotrophic factors, after axon transection, or as a result of bulbectomy. Our study showed for the first time that a significant increase in olfactory cell renewal can also occur in animals due to periodic chemostimulation with natural odorants (amino acids and peptides) for 15 days. Using electron and laser confocal microscopy in fish (Paracottus knerii (Cottidae), Dybowski, 1874) from Lake Baikal, we showed that periodic stimulation of aquatic organisms with a water-soluble mixture of amino acids and peptides causes stress in OE, which leads to programmed death cells and compensatory intensification of their renewal. We estimated the level of reactive oxygen species, number of functionally active mitochondria, intensity of apoptosis processes, and mitosis activity of cells in the OE of fish in the control group and after periodic natural odorants exposure. This study showed that new stem cells are activated during enhanced odor stimulation and subsequent degenerative changes in the cells of the sensory apparatus. Those new activated stem cells are located in previously proliferatively inactive regions of OE that become involved in compensatory processes for the formation of new cells.
Collapse
Affiliation(s)
- Igor V Klimenkov
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033, Russia. .,Irkutsk State University, 1 Karl Marx St., Irkutsk, 664003, Russia.
| | - Nikolay P Sudakov
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033, Russia
| | - Mikhail V Pastukhov
- Vinogradov Institute of Geochemistry, Siberian Branch, Russian Academy of Sciences, 1a Favorsky St., Irkutsk, 664033, Russia
| | - Nikolay S Kositsyn
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerova St., Moscow, 117485, Russia
| |
Collapse
|
29
|
Acid-Sensing Ion Channels Contribute to Type III Adenylyl Cyclase-Independent Acid Sensing of Mouse Olfactory Sensory Neurons. Mol Neurobiol 2020; 57:3042-3056. [PMID: 32458389 DOI: 10.1007/s12035-020-01943-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/13/2020] [Indexed: 10/24/2022]
Abstract
Acids can disturb the ecosystem of wild animals through altering their olfaction and olfaction-related survival behaviors. It is known that the main olfactory epithelia (MOE) of mammals rely on odorant receptors and type III adenylyl cyclase (AC3) to detect general odorants. However, it is unknown how the olfactory system sense protons or acidic odorants. Here, we show that while the MOE of AC3 knockout (KO) mice failed to respond to an odor mix in electro-olfactogram (EOG) recordings, it retained a small fraction of acid-evoked EOG responses. The acetic acid-induced EOG responses in wild-type (WT) MOE can be dissected into two components: the big component dependent on the AC3-mediated cAMP pathway and the much smaller component not. The small acid-evoked EOG response of the AC3 KOs was blocked by diminazene, an inhibitor of acid-sensing ion channels (ASICs), but not by forskolin/IBMX that desensitize the cAMP pathway. AC3 KO mice lost their sensitivity to detect pungent odorants but maintained sniffing behavior to acetic acid. Immunofluorescence staining demonstrated that ASIC1 proteins were highly expressed in olfactory sensory neurons (OSNs), mostly enriched in the knobs, dendrites, and somata, but not in olfactory cilia. Real-time polymerase chain reaction further detected the mRNA expression of ASIC1a, ASIC2b, and ASIC3 in the MOE. Additionally, mice exhibited reduced preference to attractive objects when placed in an environment with acidic volatiles. Together, we conclude that the mouse olfactory system has a non-conventional, likely ASIC-mediated ionotropic mechanism for acid sensing.
Collapse
|
30
|
Dibattista M, Pifferi S, Menini A, Reisert J. Alzheimer's Disease: What Can We Learn From the Peripheral Olfactory System? Front Neurosci 2020; 14:440. [PMID: 32508565 PMCID: PMC7248389 DOI: 10.3389/fnins.2020.00440] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/09/2020] [Indexed: 01/01/2023] Open
Abstract
The sense of smell has been shown to deteriorate in patients with some neurodegenerative disorders. In Parkinson's disease (PD) and Alzheimer's disease (AD), decreased ability to smell is associated with early disease stages. Thus, olfactory neurons in the nose and olfactory bulb (OB) may provide a window into brain physiology and pathophysiology to address the pathogenesis of neurodegenerative diseases. Because nasal olfactory receptor neurons regenerate throughout life, the olfactory system offers a broad variety of cellular mechanisms that could be altered in AD, including odorant receptor expression, neurogenesis and neurodegeneration in the olfactory epithelium, axonal targeting to the OB, and synaptogenesis and neurogenesis in the OB. This review focuses on pathophysiological changes in the periphery of the olfactory system during the progression of AD in mice, highlighting how the olfactory epithelium and the OB are particularly sensitive to changes in proteins and enzymes involved in AD pathogenesis. Evidence reviewed here in the context of the emergence of other typical pathological changes in AD suggests that olfactory impairments could be used to understand the molecular mechanisms involved in the early phases of the pathology.
Collapse
Affiliation(s)
- Michele Dibattista
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari A. Moro, Bari, Italy
| | - Simone Pifferi
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Anna Menini
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | | |
Collapse
|
31
|
de March CA, Titlow WB, Sengoku T, Breheny P, Matsunami H, McClintock TS. Modulation of the combinatorial code of odorant receptor response patterns in odorant mixtures. Mol Cell Neurosci 2020; 104:103469. [PMID: 32061665 DOI: 10.1016/j.mcn.2020.103469] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 02/01/2023] Open
Abstract
The perception of odors relies on combinatorial codes consisting of odorant receptor (OR) response patterns to encode odor identity. Modulation of these patterns by odorant interactions at ORs potentially explains several olfactory phenomena: mixture suppression, unpredictable sensory outcomes, and the perception of odorant mixtures as unique objects. We determined OR response patterns to 4 odorants and 3 binary mixtures in vivo in mice, identifying 30 responsive ORs. These patterns typically had a few strongly responsive ORs and a greater number of weakly responsive ORs. ORs responsive to an odorant were often unrelated sequences distributed across several OR subfamilies. Mixture responses predicted pharmacological interactions between odorants, which were tested in vitro by heterologous expression of ORs in cultured cells, providing independent evidence confirming odorant agonists for 13 ORs and identifying both suppressive and additive effects. This included 11 instances of antagonism of ORs by an odorant, 1 instance of additive responses to a binary mixture, 1 instance of suppression of a strong agonist by a weak agonist, and the discovery of an inverse agonist for an OR. Interactions between odorants at ORs are common even when the odorants are not known to interact perceptually in humans, and in some cases interactions at mouse ORs correlate with the ability of humans to perceive an odorant in a mixture.
Collapse
Affiliation(s)
- Claire A de March
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - William B Titlow
- Department of Physiology, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Tomoko Sengoku
- Department of Physiology, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Patrick Breheny
- Department of Biostatistics, University of Iowa, Iowa City, IA 52242, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan; Duke Institute for Brain Sciences, Duke University, Durham, NC 27710, USA.
| | - Timothy S McClintock
- Department of Physiology, University of Kentucky, Lexington, KY 40536-0298, USA.
| |
Collapse
|
32
|
Feng X, Zhang M, Meng J, Wang Y, Liu Y, Liang C, Fan S. Correlating Transcriptional Networks to Papillary Renal Cell Carcinoma Survival: A Large-Scale Coexpression Analysis and Clinical Validation. Oncol Res 2020; 28:285-297. [PMID: 31948514 PMCID: PMC7851515 DOI: 10.3727/096504020x15791676105394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We aimed to investigate the potential mechanisms of progression and identify novel prognosis-related biomarkers for papillary renal cell carcinoma (PRCC) patients. The related data were derived from The Cancer Genome Atlas (TCGA) and then analyzed by weighted gene coexpression network analysis (WGCNA). The correlation between each module and the clinical traits were analyzed by Pearson's correlation analysis. Pathway analysis was conducted to reveal potential mechanisms. Hub genes within each module were screened by intramodule analysis, and visualized by Cytoscape software. Furthermore, important hub genes were validated in an external dataset and clinical samples. A total of 5,839 differentially expressed genes were identified. By using WGCNA, we identified 21 coregulatory gene clusters based on 289 PRCC samples. We found many modules were significantly associated with clinicopathological characteristics. The gray, pink, light yellow, and salmon modules served as prognosis indicators for PRCC patients. Pathway enrichment analyses found that the hub genes were significantly enriched in the cancer-related pathways. With the external Gene Expression Omnibus (GEO) validation dataset, we found that PCDH12, GPR4, and KIF18A in the pink and yellow modules were continually associated with the survival status of PRCC, and their expressions were positively correlated with pathological grade. Notably, we randomly chose PCDH12 for validation, and the results suggested that the PRCC patients with higher pathological grades (II + III) mostly had higher PCDH12 protein expression levels compared with those patients in grade I. These validated hub genes play critical roles in the prognosis prediction of PRCC and serve as potential biomarkers for future personalized treatment.
Collapse
Affiliation(s)
- Xingliang Feng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical UniversityHefeiChina
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical UniversityHefeiChina
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical UniversityHefeiChina
| | - Yongqiang Wang
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen UniversityShenzhenChina
| | - Yi Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical UniversityHefeiChina
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical UniversityHefeiChina
| | - Song Fan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical UniversityHefeiChina
| |
Collapse
|
33
|
Abstract
Olfactory and taste receptors are expressed primarily in the nasal olfactory epithelium and gustatory taste bud cells, where they transmit real-time sensory signals to the brain. However, they are also expressed in multiple extra-nasal and extra-oral tissues, being implicated in diverse biological processes including sperm chemotaxis, muscle regeneration, bronchoconstriction and bronchodilatation, inflammation, appetite regulation and energy metabolism. Elucidation of the physiological roles of these ectopic receptors is revealing potential therapeutic and diagnostic applications in conditions including wounds, hair loss, asthma, obesity and cancers. This Review outlines current understanding of the diverse functions of ectopic olfactory and taste receptors and assesses their potential to be therapeutically exploited.
Collapse
|
34
|
Methods in Rodent Chemosensory Cognition. Methods Mol Biol 2019. [PMID: 29884949 DOI: 10.1007/978-1-4939-8609-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Olfactory information processing and learning are highly developed computational abilities of rodents. These attributes can be exploited to ask questions at several levels of complexity, from aspects of odorant binding by olfactory receptors to higher order learning about the predictive consequences of odorant stimulus presentation. Quantitative understanding of rodent odorant sampling patterns, both baseline nasal breathing and odorant-stimulated sniffing, is critical to elucidating mechanisms of olfactory information processing, from primary olfactory receptors to cortical centers that synthesize olfactory percepts from preprocessed multimodal inputs. This chapter outlines an innovative new method for measuring breathing and sniffing rates in unrestrained mice while the mice are performing odor-guided tasks in a computer controlled olfactometer.The method described here involves implantation of a wireless pressure sensor in the mouse that reports on thoracic pressure transients caused by breathing and sniffing. Recordings of pressure sensor outputs are made simultaneously with optically-sensed nose pokes by the mouse into an odor delivery port or a water delivery port. Odorant delivery timing and water reward delivery are also recorded simultaneously. This method allows for breathing and sniffing dependent thoracic pressure transients to be recorded with high temporal precision before, during, and after the mouse approaches an odor delivery port, samples the delivered odor, and obtains a water reward contingent on the identity of the odor that was presented and sampled.
Collapse
|
35
|
Suction Pipette Technique: An Electrophysiological Tool to Study Olfactory Receptor-Dependent Signal Transduction. Methods Mol Biol 2019. [PMID: 29884943 DOI: 10.1007/978-1-4939-8609-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The first step to perceive molecules in the air as odors is their detection by the olfactory receptors (ORs) present in the cilia of the olfactory sensory neurons (OSNs) in the nasal cavity. The binding of the odorant molecule to the OR triggers a series of biochemical events that lead to the opening of ion channels, creating at first a generator potential that, if the latter reaches threshold, leads to action potential firing. New insights into olfactory transduction introduced new key players and highlighted the necessity to study OSN physiology in an OR-dependent fashion.The necessity of revisiting transduction mechanisms with consideration of the OR that an OSN expresses requires recording methods of odorant responses at single cell levels. A very effective method to do so is the Suction Pipette Technique, which allows the simultaneous recording of the slow receptor current that originates at the cilia and fast action potentials fired by the cell body. This method can be used in combination with gene targeting and editing techniques to fully address important aspects of the olfactory physiology.
Collapse
|
36
|
Ca 2+-activated Cl - current ensures robust and reliable signal amplification in vertebrate olfactory receptor neurons. Proc Natl Acad Sci U S A 2018; 116:1053-1058. [PMID: 30598447 DOI: 10.1073/pnas.1816371116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Activation of most primary sensory neurons results in transduction currents that are carried by cations. One notable exception is the vertebrate olfactory receptor neuron (ORN), where the transduction current is carried largely by the anion [Formula: see text] However, it remains unclear why ORNs use an anionic current for signal amplification. We have sought to provide clarification on this topic by studying the so far neglected dynamics of [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] in the small space of olfactory cilia during an odorant response. Using computational modeling and simulations we compared the outcomes of signal amplification based on either [Formula: see text] or [Formula: see text] currents. We found that amplification produced by [Formula: see text] influx instead of a [Formula: see text] efflux is problematic for several reasons: First, the [Formula: see text] current amplitude varies greatly, depending on mucosal ion concentration changes. Second, a [Formula: see text] current leads to a large increase in the ciliary [Formula: see text] concentration during an odorant response. This increase inhibits and even reverses [Formula: see text] clearance by [Formula: see text] exchange, which is essential for response termination. Finally, a [Formula: see text] current increases the ciliary osmotic pressure, which could cause swelling to damage the cilia. By contrast, a transduction pathway based on [Formula: see text] efflux circumvents these problems and renders the odorant response robust and reliable.
Collapse
|
37
|
Bigday EV, Samojlov VO. Chemosensory and Mechanosensory Functions of Olfactory Cilia. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918060027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
38
|
Takeuchi H, Kurahashi T. Second messenger molecules have a limited spread in olfactory cilia. J Gen Physiol 2018; 150:1647-1659. [PMID: 30352795 PMCID: PMC6279364 DOI: 10.1085/jgp.201812126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/12/2018] [Accepted: 10/03/2018] [Indexed: 01/12/2023] Open
Abstract
Olfactory responses in the cilia of olfactory receptor cells last for longer than 10 s, which cannot be explained by free diffusion of second messengers. Takeuchi and Kurahashi show that these signaling molecules have a limited spread and remain at the site of generation for a long time. Odorants are detected by olfactory receptors on the sensory cilia of olfactory receptor cells (ORCs). These cylindrical cilia have a diameters of 100–200 nm, within which the components required for signal transduction by the adenylyl cyclase–cAMP system are located. The kinetics of odorant responses are determined by the lifetimes of active proteins as well as the production, diffusion, and extrusion/degradation of second messenger molecules (cAMP and Ca2+). However, there is limited information about the molecular kinetics of ORC responses, mostly because of the technical limitations involved in studying such narrow spaces and fine structures. In this study, using a combination of electrophysiology, photolysis of caged substances, and spot UV laser stimulation, we show that second messenger molecules work only in the vicinity of their site of generation in the olfactory cilia. Such limited spreading clearly explains a unique feature of ORCs, namely, the integer multiple of unitary events that they display in low Ca2+ conditions. Although the small ORC uses cAMP and Ca2+ for various functions in different regions of the cell, these substances seem to operate only in the compartment that has been activated by the appropriate stimulus. We also show that these substances remain in the same vicinity for a long time. This enables the ORC to amplify the odorant signal and extend the lifetime of Ca2+-dependent adaptation. Cytoplasmic buffers and extrusion/degradation systems seem to play a crucial role in limiting molecular spreading. In addition, binding sites on the cytoplasmic surface of the plasma membrane may limit molecular diffusion in such a narrow space because of the high surface/volume ratio. Such efficient energy conversion may also be broadly used in other biological systems that have not yet been subjected to systematic experiments.
Collapse
Affiliation(s)
- Hiroko Takeuchi
- Department of Biophysical Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Takashi Kurahashi
- Department of Biophysical Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
39
|
Ca 2+-activated Cl current predominates in threshold response of mouse olfactory receptor neurons. Proc Natl Acad Sci U S A 2018; 115:5570-5575. [PMID: 29735665 DOI: 10.1073/pnas.1803443115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In mammalian olfactory transduction, odorants activate a cAMP-mediated signaling pathway that leads to the opening of cyclic nucleotide-gated (CNG), nonselective cation channels and depolarization. The Ca2+ influx through open CNG channels triggers an inward current through Ca2+-activated Cl channels (ANO2), which is expected to produce signal amplification. However, a study on an Ano2-/- mouse line reported no elevation in the behavioral threshold of odorant detection compared with wild type (WT). Subsequent studies by others on the same Ano2-/- line, nonetheless, found subtle defects in olfactory behavior and some abnormal axonal projections from the olfactory receptor neurons (ORNs) to the olfactory bulb. As such, the question regarding signal amplification by the Cl current in WT mouse remains unsettled. Recently, with suction-pipette recording, we have successfully separated in frog ORNs the CNG and Cl currents during olfactory transduction and found the Cl current to predominate in the response down to the threshold of action-potential signaling to the brain. For better comparison with the mouse data by others, we have now carried out similar current-separation experiments on mouse ORNs. We found that the Cl current clearly also predominated in the mouse olfactory response at signaling threshold, accounting for ∼80% of the response. In the absence of the Cl current, we expect the threshold stimulus to increase by approximately sevenfold.
Collapse
|
40
|
Reddy G, Zak JD, Vergassola M, Murthy VN. Antagonism in olfactory receptor neurons and its implications for the perception of odor mixtures. eLife 2018; 7:34958. [PMID: 29687778 PMCID: PMC5915184 DOI: 10.7554/elife.34958] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/30/2018] [Indexed: 11/16/2022] Open
Abstract
Natural environments feature mixtures of odorants of diverse quantities, qualities and complexities. Olfactory receptor neurons (ORNs) are the first layer in the sensory pathway and transmit the olfactory signal to higher regions of the brain. Yet, the response of ORNs to mixtures is strongly non-additive, and exhibits antagonistic interactions among odorants. Here, we model the processing of mixtures by mammalian ORNs, focusing on the role of inhibitory mechanisms. We show how antagonism leads to an effective ‘normalization’ of the ensemble ORN response, that is, the distribution of responses of the ORN population induced by any mixture is largely independent of the number of components in the mixture. This property arises from a novel mechanism involving the distinct statistical properties of receptor binding and activation, without any recurrent neuronal circuitry. Normalization allows our encoding model to outperform non-interacting models in odor discrimination tasks, leads to experimentally testable predictions and explains several psychophysical experiments in humans. When ordering in a coffee shop, you probably recognize and enjoy the aroma of freshly roasted coffee beans. But as well as coffee, you can also smell the croissants behind the counter and maybe even the perfume or cologne of the person next to you. Each of these scents consists of a collection of chemicals, or odorants. To distinguish between the aroma of coffee and that of croissants, your brain must group the odorants appropriately and then keep the groups separate from each other. This is not a trivial task. Odorants bind to proteins called odorant receptors found on the surface of cells in the nose called olfactory receptor neurons. But each odorant does not have its own dedicated receptor. Instead, a single odorant will bind to multiple types of odorant receptors, and thus, each olfactory receptor neuron may respond to multiple odorants. So how does the brain encode mixtures of odorants in a way that allows us to distinguish one aroma from another? Reddy, Zak et al. have developed a computational model to explain how this process works. The model assumes that an odorant triggers a response in an olfactory receptor neuron via two steps. First, the odorant binds to an odorant receptor. Second, the bound odorant activates the receptor. But the odorant that binds most strongly to a receptor will not necessarily be the odorant that is best at activating that receptor. This allows a phenomenon called competitive antagonism to occur. This is when one odorant in a mixture binds more strongly to a receptor than the other odorants, but only weakly activates that receptor. In so doing, the strongly bound odorant prevents the other odorants from binding to and activating the receptor. This helps tame the dominating influence of background odors, which might otherwise saturate the responses of individual olfactory receptor neurons. Reddy, Zak et al. show that processes such as competitive antagonism enable olfactory receptor neurons to encode all of the odors within a mixture. The model can explain various phenomena observed in experiments and it adds to our understanding of how the brain generates our sense of smell. The model may also be relevant to other biological systems that must filter weak signals from a dominant background. These include the immune system, which must distinguish a small set of foreign proteins from the much larger number of proteins that make up our bodies.
Collapse
Affiliation(s)
- Gautam Reddy
- Department of Physics, University of California, San Diego, La Jolla, United States
| | - Joseph D Zak
- Department of Molecular Cellular Biology, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | - Massimo Vergassola
- Department of Physics, University of California, San Diego, La Jolla, United States
| | - Venkatesh N Murthy
- Department of Molecular Cellular Biology, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| |
Collapse
|
41
|
Le Bon AM, Deprêtre N, Sibille E, Cabaret S, Grégoire S, Soubeyre V, Masson E, Acar N, Bretillon L, Grosmaitre X, Berdeaux O. Comprehensive study of rodent olfactory tissue lipid composition. Prostaglandins Leukot Essent Fatty Acids 2018; 131:32-43. [PMID: 29628048 DOI: 10.1016/j.plefa.2018.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/20/2018] [Accepted: 03/21/2018] [Indexed: 11/20/2022]
Abstract
The peripheral olfactory tissue (OT) plays a primordial role in the detection and transduction of olfactory information. Recent proteomic and transcriptomic studies have provided valuable insight into proteins and RNAs expressed in this tissue. Paradoxically, there is little information regarding the lipid composition of mammalian OT. To delve further into this issue, using a set of complementary state-of-the-art techniques, we carried out a comprehensive analysis of OT lipid composition in rats and mice fed with standard diets. The results showed that phospholipids are largely predominant, the major classes being phosphatidylcholine and phosphatidylethanolamine. Two types of plasmalogens, plasmenyl-choline and plasmenyl-ethanolamine, as well as gangliosides were also detected. With the exception of sphingomyelin, substantial levels of n-3 polyunsaturated fatty acids, mainly docosahexaenoic acid (22:6n-3; DHA), were found in the different phospholipid classes. These findings demonstrate that the rodent OT shares several features in common with other neural tissues, such as the brain and retina.
Collapse
Affiliation(s)
- Anne Marie Le Bon
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France.
| | - Nicolas Deprêtre
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Estelle Sibille
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Stéphanie Cabaret
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Stéphane Grégoire
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Vanessa Soubeyre
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Elodie Masson
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Niyazi Acar
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Lionel Bretillon
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Xavier Grosmaitre
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Olivier Berdeaux
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| |
Collapse
|
42
|
Ben Khemis I, Mechi N, Ben Lamine A. Stereochemical study of mouse muscone receptor MOR215-1 and vibrational theory based on statistical physics formalism. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 136:54-60. [PMID: 29438653 DOI: 10.1016/j.pbiomolbio.2018.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/02/2018] [Accepted: 02/09/2018] [Indexed: 11/29/2022]
Abstract
In the biosensor system, olfactory receptor sites could be activated by odorant molecules and then the biological interactions are converted into electrical signals by a signal transduction cascade that leads the toopening of ion channels, generating a current that leads into the cilia and depolarizes the membrane. The aim of this paper is to present a new investigation that allows determining the olfactory band using a monolayer adsorption with identical sites modeling which may also describe the static and the dynamic sensitivities through the expression of the olfactory response. Moreover, knowing the size of receptor site in olfactory sensory neurons provides valuable information about the relationship between molecular structure and biological activity. The determination of microreceptors and mesoreceptors is mostly carried out via physical adsorption and the radius is calculated using the Kelvin equation. The mean values of radius obtained from the maximum of the receptor size distributions peaks are 4 nm for ℓ-muscone and 6 nm for d-muscone.
Collapse
Affiliation(s)
- Ismahene Ben Khemis
- Laboratory of Quantum Physics UR 11 ES 54, Faculty of Sciences of Monastir, Environnement Street, 5019, Monastir, Tunisia.
| | - Nesrine Mechi
- Laboratory of Quantum Physics UR 11 ES 54, Faculty of Sciences of Monastir, Environnement Street, 5019, Monastir, Tunisia
| | - Abdelmottaleb Ben Lamine
- Laboratory of Quantum Physics UR 11 ES 54, Faculty of Sciences of Monastir, Environnement Street, 5019, Monastir, Tunisia.
| |
Collapse
|
43
|
Abstract
Olfactory sensory neurons are bipolar cells with a single thin dendrite that ends in a protuberance, the knob, from which several thin cilia emerge. The cilia are the site of olfactory transduction since they contain the molecular machinery necessary to initiate the olfactory response.The patch clamp technique is a powerful tool to investigate ion channels and receptor mediated currents in neurons. In this chapter, we describe the preparation of dissociated olfactory neurons and their use in patch clamp experiments for the functional characterization of their ionic conductances.
Collapse
Affiliation(s)
- Anna Boccaccio
- Institute of Biophysics, National Research Council, Genoa, Italy.
| |
Collapse
|
44
|
History-Dependent Odor Processing in the Mouse Olfactory Bulb. J Neurosci 2017; 37:12018-12030. [PMID: 29109236 PMCID: PMC5719977 DOI: 10.1523/jneurosci.0755-17.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 09/15/2017] [Accepted: 10/22/2017] [Indexed: 12/02/2022] Open
Abstract
In nature, animals normally perceive sensory information on top of backgrounds. Thus, the neural substrate to perceive under background conditions is inherent in all sensory systems. Where and how sensory systems process backgrounds is not fully understood. In olfaction, just a few studies have addressed the issue of odor coding on top of continuous odorous backgrounds. Here, we tested how background odors are encoded by mitral cells (MCs) in the olfactory bulb (OB) of male mice. Using in vivo two-photon calcium imaging, we studied how MCs responded to odors in isolation versus their responses to the same odors on top of continuous backgrounds. We show that MCs adapt to continuous odor presentation and that mixture responses are different when preceded by background. In a subset of odor combinations, this history-dependent processing was useful in helping to identify target odors over background. Other odorous backgrounds were highly dominant such that target odors were completely masked by their presence. Our data are consistent in both low and high odor concentrations and in anesthetized and awake mice. Thus, odor processing in the OB is strongly influenced by the recent history of activity, which could have a powerful impact on how odors are perceived. SIGNIFICANCE STATEMENT We examined a basic feature of sensory processing in the olfactory bulb. Specifically, we measured how mitral cells adapt to continuous background odors and how target odors are encoded on top of such background. Our results show clear differences in odor coding based on the immediate history of the stimulus. Our results support the argument that odor coding in the olfactory bulb depends on the recent history of the sensory environment.
Collapse
|
45
|
Zhang J, Hao C, Jiang J, Feng Y, Chen X, Zheng Y, Liu J, Zhang Z, Long C, Yang L. The mechanisms underlying olfactory deficits in apolipoprotein E-deficient mice: focus on olfactory epithelium and olfactory bulb. Neurobiol Aging 2017; 62:20-33. [PMID: 29107844 DOI: 10.1016/j.neurobiolaging.2017.09.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 09/20/2017] [Accepted: 09/30/2017] [Indexed: 01/09/2023]
Abstract
Apolipoprotein E (ApoE) is highly expressed in the central nervous system including the olfactory epithelium (OE) and olfactory bulb (OB). ApoE induction is beneficial for Alzheimer's disease (AD) treatment, whereas ApoE deficiency results in impaired olfaction, but the timing and underlying molecular and cellular mechanisms of these effects remain unclear. Uncovering the mechanisms underlying olfactory dysfunction in ApoE-deficient mice might provide a potential avenue for the early diagnosis of AD. We used an ApoE knockout (ApoE-/-) mouse model and a cookie-finding test to reveal an olfactory deficit in 3- to 5-month-old, but not 1- to 2-month-old, ApoE-/- mice. Electrophysiological experiments indicated a significant decline in the electroolfactogram (EOG) amplitude, which was associated with an increase in rise time in ApoE-/- mice. Knockout mice also exhibited compromised olfactory adaptation, as well as a reduced number of mature olfactory sensory neurons in the OE. Local field potential recording in the OB showed that gamma oscillation power was enhanced, which might be attributed to an increase in GABAergic inhibition mediated by parvalbumin-expressing (PV) interneurons. This study demonstrates the critical involvement of ApoE in olfactory information processing in the OE and OB. ApoE deficiency results in olfaction deficits in mice as young as 3 months old, which has implications for AD pathogenesis.
Collapse
Affiliation(s)
- Jiajia Zhang
- School of Life Sciences, Guangzhou University, Guangzhou, China; School of Life Sciences and Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Caiyuan Hao
- School of Life Sciences and Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Jinxiang Jiang
- School of Psychology, South China Normal University, Guangzhou, China
| | - Yangjian Feng
- School of Life Sciences and Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Xi Chen
- School of Life Sciences and Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Ying Zheng
- School of Life Sciences and Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Jiawei Liu
- School of Life Sciences and Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Zhilin Zhang
- School of Life Sciences and Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Cheng Long
- School of Life Sciences and Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Li Yang
- School of Life Sciences, Guangzhou University, Guangzhou, China.
| |
Collapse
|
46
|
Lodh S, Yano J, Valentine MS, Van Houten JL. Voltage-gated calcium channels of Paramecium cilia. ACTA ACUST UNITED AC 2017; 219:3028-3038. [PMID: 27707864 DOI: 10.1242/jeb.141234] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/19/2016] [Indexed: 01/08/2023]
Abstract
Paramecium cells swim by beating their cilia, and make turns by transiently reversing their power stroke. Reversal is caused by Ca2+ entering the cilium through voltage-gated Ca2+ (CaV) channels that are found exclusively in the cilia. As ciliary Ca2+ levels return to normal, the cell pivots and swims forward in a new direction. Thus, the activation of the CaV channels causes cells to make a turn in their swimming paths. For 45 years, the physiological characteristics of the Paramecium ciliary CaV channels have been known, but the proteins were not identified until recently, when the P. tetraurelia ciliary membrane proteome was determined. Three CaVα1 subunits that were identified among the proteins were cloned and confirmed to be expressed in the cilia. We demonstrate using RNA interference that these channels function as the ciliary CaV channels that are responsible for the reversal of ciliary beating. Furthermore, we show that Pawn (pw) mutants of Paramecium that cannot swim backward for lack of CaV channel activity do not express any of the three CaV1 channels in their ciliary membrane, until they are rescued from the mutant phenotype by expression of the wild-type PW gene. These results reinforce the correlation of the three CaV channels with backward swimming through ciliary reversal. The PwB protein, found in endoplasmic reticulum fractions, co-immunoprecipitates with the CaV1c channel and perhaps functions in trafficking. The PwA protein does not appear to have an interaction with the channel proteins but affects their appearance in the cilia.
Collapse
Affiliation(s)
- Sukanya Lodh
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | - Junji Yano
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | - Megan S Valentine
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | | |
Collapse
|
47
|
Simultaneous Loss of NCKX4 and CNG Channel Desensitization Impairs Olfactory Sensitivity. J Neurosci 2017; 37:110-119. [PMID: 28053034 DOI: 10.1523/jneurosci.2527-16.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/24/2016] [Accepted: 11/04/2016] [Indexed: 11/21/2022] Open
Abstract
In vertebrate olfactory sensory neurons (OSNs), Ca2+ plays key roles in both mediating and regulating the olfactory response. Ca2+ enters OSN cilia during the response through the olfactory cyclic nucleotide-gated (CNG) channel and stimulates a depolarizing chloride current by opening the olfactory Ca2+-activated chloride channel to amplify the response. Ca2+ also exerts negative regulation on the olfactory transduction cascade, through mechanisms that include reducing the CNG current by desensitizing the CNG channel via Ca2+/calmodulin (CaM), to reduce the response. Ca2+ is removed from the cilia primarily by the K+-dependent Na+/Ca2+ exchanger 4 (NCKX4), and the removal of Ca2+ leads to closure of the chloride channel and response termination. In this study, we investigate how two mechanisms conventionally considered negative regulatory mechanisms of olfactory transduction, Ca2+ removal by NCKX4, and desensitization of the CNG channel by Ca2+/CaM, interact to regulate the olfactory response. We performed electro-olfactogram (EOG) recordings on the double-mutant mice, NCKX4-/-;CNGB1ΔCaM, which are simultaneously lacking NCKX4 (NCKX4-/-) and Ca2+/CaM-mediated CNG channel desensitization (CNGB1ΔCaM). Despite exhibiting alterations in various response attributes, including termination kinetics and adaption properties, OSNs in either NCKX4-/- mice or CNGB1ΔCaM mice show normal resting sensitivity, as determined by their unchanged EOG response amplitude. We found that OSNs in NCKX4-/-;CNGB1ΔCaM mice displayed markedly reduced EOG amplitude accompanied by alterations in other response attributes. This study suggests that what are conventionally considered negative regulatory mechanisms of olfactory transduction also play a role in setting the resting sensitivity in OSNs. SIGNIFICANCE STATEMENT Sensory receptor cells maintain high sensitivity at rest. Although the mechanisms responsible for setting the resting sensitivity of sensory receptor cells are not well understood, it has generally been assumed that the sensitivity is set primarily by how effectively the components in the activation cascade of sensory transduction can be stimulated. Our findings in mouse olfactory sensory neurons suggest that mechanisms that are primarily responsible for terminating the olfactory response are also critical for proper resting sensitivity.
Collapse
|
48
|
Monjaraz-Fuentes F, Millán-Adalco D, Palomero-Rivero M, Hudson R, Drucker-Colín R. Recovery of glomerular morphology in the olfactory bulb of young mice after disruption caused by continuous odorant exposure. Brain Res 2017; 1670:6-13. [PMID: 28583862 DOI: 10.1016/j.brainres.2017.05.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/17/2017] [Accepted: 05/27/2017] [Indexed: 01/14/2023]
Abstract
Olfactory glomeruli are the first synaptic site of the olfactory system and are formed by the convergence of axons of the same type of sensory neurons onto the olfactory bulbs of the brain. Although the anatomical organization of glomeruli is conserved across species, their particular role in olfactory processing remains uncertain. We studied the composition and maintenance of glomeruli by means of a genetic model, mI7-IRES-tauGFP knock-in young mice, where the cytoskeleton of sensory neurons expressing the mI7 olfactory receptor is tagged with green fluorescent protein. Animals were continuously exposed to heptaldehyde, a cognate ligand of the mI7 receptor, from postnatal days 5-10. We hypothesized that continuous odorant exposure will induce changes in glomerular morphology, and that this can be recovered if the normal odorant environment is reestablished within the early postnatal period. We assessed changes in the distribution of mI7 axons in glomerular morphology, as well as possible changes in the number of the mI7 olfactory sensory neurons. Following odorant exposure the well-defined convergence of mI7 fibers into a single glomerulus was disrupted, producing numerous neighboring glomeruli partially innervated by mI7 fibers. After the normal odor environment was reestablished the number of glomeruli partially innervated by mI7 fibers decreased significantly. Moreover, we found that multiple supernumerary mI7 glomeruli were formed. Our results confirm the significant role of sensory input in glomerular formation and maintenance. Additionally, we show that the developing olfactory system actively maintains glomerular morphology, suggesting the importance of this for olfactory processing.
Collapse
Affiliation(s)
- Fernanda Monjaraz-Fuentes
- División de Neurociencias, Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, CP 04510 Ciudad de México, Mexico.
| | - Diana Millán-Adalco
- División de Neurociencias, Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, CP 04510 Ciudad de México, Mexico.
| | - Marcela Palomero-Rivero
- División de Neurociencias, Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, CP 04510 Ciudad de México, Mexico.
| | - Robyn Hudson
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, CP 04510 Ciudad de México, Mexico.
| | - René Drucker-Colín
- División de Neurociencias, Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, CP 04510 Ciudad de México, Mexico.
| |
Collapse
|
49
|
Francois A, Bombail V, Jarriault D, Acquistapace A, Grebert D, Grosmaitre X, Meunier N. Daily oscillation of odorant detection in rat olfactory epithelium. Eur J Neurosci 2017; 45:1613-1622. [PMID: 28452078 DOI: 10.1111/ejn.13600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 11/28/2022]
Abstract
Most of biological variables follow a daily rhythm. It holds true as well for sensory capacities as two decades of research have demonstrated that the odorant induced activity in the olfactory bulbs oscillates during the day. Olfactory bulbs are the first central nervous system structures, which receive inputs from the olfactory neurons located in the nose olfactory epithelium in vertebrates. So far, data on variation in odorant detection in the olfactory epithelium throughout the day are missing. Using electroolfactogram recordings in rats housed under daily light and dark cycles, we found that the olfactory epithelium responsiveness varies during the day with a maximum in the beginning of the light phase. This fluctuation was consistent with cycling of transduction pathway gene expression in the olfactory epithelium examined by qPCR. It was also consistent with the levels of two transduction pathway proteins (olfactory-type G protein and adenylyl cyclase III) examined by western blot. Daily variations were also observed at the level of olfactory sensory neurons responses recorded by patch-clamp. To rule out a potential effect of the feeding status of the animal, we examined the variation in odorant response in starved animals during the day. We observed a similar pattern to ad libidum fed animals. Taken together, our results reveal that the olfactory epithelium sensitivity varies during the day in part due to modulation of the very first step of odorant detection.
Collapse
Affiliation(s)
- Adrien Francois
- INRA, UR1197 NeuroBiologie de l'Olfaction, F-78350, Jouy-en-Josas, France.,NBO, UVSQ, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Vincent Bombail
- INRA, UR1197 NeuroBiologie de l'Olfaction, F-78350, Jouy-en-Josas, France
| | - David Jarriault
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, Univ. Bourgogne Franche-Comté, Dijon, France
| | | | - Denise Grebert
- INRA, UR1197 NeuroBiologie de l'Olfaction, F-78350, Jouy-en-Josas, France
| | - Xavier Grosmaitre
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Nicolas Meunier
- INRA, UR1197 NeuroBiologie de l'Olfaction, F-78350, Jouy-en-Josas, France.,NBO, UVSQ, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
50
|
Kamaleddin MA. Molecular, biophysical, and pharmacological properties of calcium-activated chloride channels. J Cell Physiol 2017; 233:787-798. [PMID: 28121009 DOI: 10.1002/jcp.25823] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/15/2022]
Abstract
Calcium-activated chloride channels (CaCCs) are a family of anionic transmembrane ion channels. They are mainly responsible for the movement of Cl- and other anions across the biological membranes, and they are widely expressed in different tissues. Since the Cl- flow into or out of the cell plays a crucial role in hyperpolarizing or depolarizing the cells, respectively, the impact of intracellular Ca2+ concentration on these channels is attracting a lot of attentions. After summarizing the molecular, biophysical, and pharmacological properties of CaCCs, the role of CaCCs in normal cellular functions will be discussed, and I will emphasize how dysregulation of CaCCs in pathological conditions can account for different diseases. A better understanding of CaCCs and a pivotal regulatory role of Ca2+ can shed more light on the therapeutic strategies for different neurological disorders that arise from chloride dysregulation, such as asthma, cystic fibrosis, and neuropathic pain.
Collapse
Affiliation(s)
- Mohammad Amin Kamaleddin
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|