1
|
Pham JH, Razonable RR. Management of resistant and refractory cytomegalovirus infections after transplantation. Expert Rev Anti Infect Ther 2024; 22:855-866. [PMID: 39225411 DOI: 10.1080/14787210.2024.2399647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Cytomegalovirus (CMV) is a classic opportunistic infection in transplant recipients. Treatment-refractory CMV infections are of concern, with growing identification of strains that have developed genetic mutations which confer resistance to standard antiviral therapy. Resistant and refractory CMV infections are associated with worse patient outcomes, prolonged hospitalization, and increased healthcare costs. AREAS COVERED This article provides a comprehensive practical overview of resistant and refractory CMV infections in transplant recipients. We review the updated definitions for these infections, antiviral pharmacology, mechanisms of drug resistance, diagnostic workup, management strategies, and host-related factors including immune optimization. EXPERT OPINION Resistant and refractory CMV infections are a significant contributor to post-transplant morbidity and mortality. This is likely the result of a combination of prolonged antiviral exposure and active viral replication in the setting of intensive pharmacologic immunosuppression. Successful control of resistant and refractory infections in transplant recipients requires a combination of immunomodulatory optimization and appropriate antiviral drug choice with sufficient treatment duration.
Collapse
Affiliation(s)
- Justin H Pham
- Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
| | - Raymund R Razonable
- Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
2
|
Marschall M, Schütz M, Wild M, Socher E, Wangen C, Dhotre K, Rawlinson WD, Sticht H. Understanding the Cytomegalovirus Cyclin-Dependent Kinase Ortholog pUL97 as a Multifaceted Regulator and an Antiviral Drug Target. Cells 2024; 13:1338. [PMID: 39195228 PMCID: PMC11352327 DOI: 10.3390/cells13161338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Herpesviral protein kinases, such as the therapy-relevant pUL97 of human cytomegalovirus (HCMV), are important for viral replication efficiency as well as pathogenesis, and represent key antiviral drug targets. HCMV pUL97 is a viral cyclin-dependent kinase (CDK) ortholog, as it shares functional and structural properties with human CDKs. Recently, the formation of vCDK/pUL97-cyclin complexes and the phosphorylation of a variety of viral and cellular substrate proteins has been demonstrated. Genetic mapping and structural modeling approaches helped to define two pUL97 interfaces, IF1 and IF2, responsible for cyclin binding. In particular, the regulatory importance of interactions between vCDK/pUL97 and host cyclins as well as CDKs has been highlighted, both as determinants of virus replication and as a novel drug-targeting option. This aspect was substantiated by the finding that virus replication was impaired upon cyclin type H knock-down, and that such host-directed interference also affected viruses resistant to existing therapies. Beyond the formation of binary interactive complexes, a ternary pUL97-cyclin H-CDK7 complex has also been described, and in light of this, an experimental trans-stimulation of CDK7 activity by pUL97 appeared crucial for virus-host coregulation. In accordance with this understanding, several novel antiviral targeting options have emerged. These include kinase inhibitors directed to pUL97, to host CDKs, and to the pUL97-cyclin H interactive complexes. Importantly, a statistically significant drug synergy has recently been reported for antiviral treatment schemes using combinations of pharmacologically relevant CDK7 and vCDK/pUL97 inhibitors, including maribavir. Combined, such findings provide increased options for anti-HCMV control. This review focuses on regulatory interactions of vCDK/pUL97 with the host cyclin-CDK apparatus, and it addresses the functional relevance of these key effector complexes for viral replication and pathogenesis. On this basis, novel strategies of antiviral drug targeting are defined.
Collapse
Affiliation(s)
- Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.S.); (M.W.); (C.W.); (K.D.)
| | - Martin Schütz
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.S.); (M.W.); (C.W.); (K.D.)
| | - Markus Wild
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.S.); (M.W.); (C.W.); (K.D.)
| | - Eileen Socher
- Institute of Anatomy, Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.S.); (M.W.); (C.W.); (K.D.)
| | - Kishore Dhotre
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.S.); (M.W.); (C.W.); (K.D.)
| | - William D. Rawlinson
- Serology and Virology Division, NSW Health Pathology Microbiology, Prince of Wales Hospital, and Schools of Biomedical Sciences, Women’s and Children’s Health, Medicine and Biotechnology and Biomolecular Sciences, University of New South Wales, High Street, Sydney 2050, Australia;
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, FAU, 91054 Erlangen, Germany;
| |
Collapse
|
3
|
Magda G. Opportunistic Infections Post-Lung Transplantation: Viral, Fungal, and Mycobacterial. Infect Dis Clin North Am 2024; 38:121-147. [PMID: 38280760 DOI: 10.1016/j.idc.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Opportunistic infections are a leading cause of lung transplant recipient morbidity and mortality. Risk factors for infection include continuous exposure of the lung allograft to the external environment, high levels of immunosuppression, impaired mucociliary clearance and decreased cough reflex, and impact of the native lung microbiome in single lung transplant recipients. Infection risk is mitigated through careful pretransplant screening of recipients and donors, implementation of antimicrobial prophylaxis strategies, and routine surveillance posttransplant. This review describes common viral, fungal, and mycobacterial infectious after lung transplant and provides recommendations on prevention and treatment.
Collapse
Affiliation(s)
- Gabriela Magda
- Columbia University Lung Transplant Program, Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Irving Medical Center, Columbia University Vagelos College of Physicians and Surgeons, 622 West 168th Street PH-14, New York, NY 10032, USA.
| |
Collapse
|
4
|
Wong DD, Ho SA, Domazetovska A, Yong MK, Rawlinson WD. Evidence supporting the use of therapeutic drug monitoring of ganciclovir in transplantation. Curr Opin Infect Dis 2023; 36:505-513. [PMID: 37729654 DOI: 10.1097/qco.0000000000000965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
PURPOSE OF REVIEW This review describes current knowledge of ganciclovir (GCV) and valganciclovir (ValGCV) pharmacokinetic/pharmacodynamic characteristics, highlighting the likely contribution from host genetic factors to interpatient variability. The evidence and challenges surrounding optimization of drug dosing through therapeutic drug monitoring (TDM) are examined, with recommendations made. RECENT FINDINGS Pharmacokinetic studies of current dosing guidelines have shown high interindividual and intraindividual variability of GCV concentrations. This is sometimes associated with a slow decline in cytomegalovirus (CMV) viral load in some transplant recipients. A high incidence of GCV-associated myelosuppression has limited the use of this drug in the transplant setting. Patient groups identified to benefit from GCV TDM include pediatric patients, cystic fibrosis with lung transplantation, obese with kidney transplantation, and patients with fluctuating renal function or on hemodialysis. The emergence of refractory resistant CMV, particularly in immune compromised patients, highlights the importance of appropriate dosing of these antivirals. Host genetic factors need to be considered where recently, two host genes were shown to account for interpatient variation during ganciclovir therapy. Therapeutic Drug Monitoring has been shown to improve target antiviral-level attainment. The use of TDM may guide concentration-based dose adjustment, potentially improving virological and clinical outcomes. However, evidence supporting the use of TDM in clinical practice remains limited and further study is needed in the transplant cohort. SUMMARY Further studies examining novel biomarkers are needed to guide target concentrations in prophylaxis and treatment. The use of TDM in transplant recipients is likely to improve the clinical efficacy of current antivirals and optimize outcomes in transplant recipients.
Collapse
Affiliation(s)
- Diana D Wong
- National Measurement Institute, Lindfield, Sydney, New South Wales
| | - Su Ann Ho
- Peter MacCallum Cancer Centre
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria
| | - Ana Domazetovska
- Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, New South Wales
| | - Michelle K Yong
- Peter MacCallum Cancer Centre
- Department Infectious Diseases, Royal Melbourne Hospital
- National Centre for Infections in Cancer, Parkville
| | - William D Rawlinson
- Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, New South Wales
- Schools of Biomedical Sciences, Biotechnology and Biomolecular Sciences, Clinical Sciences, University of NSW, Sydney New South Wales, Australia
| |
Collapse
|
5
|
Walti CS, Khanna N, Avery RK, Helanterä I. New Treatment Options for Refractory/Resistant CMV Infection. Transpl Int 2023; 36:11785. [PMID: 37901297 PMCID: PMC10600348 DOI: 10.3389/ti.2023.11785] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023]
Abstract
Despite advances in monitoring and treatment, cytomegalovirus (CMV) infections remain one of the most common complications after solid organ transplantation (SOT). CMV infection may fail to respond to standard first- and second-line antiviral therapies with or without the presence of antiviral resistance to these therapies. This failure to respond after 14 days of appropriate treatment is referred to as "resistant/refractory CMV." Limited data on refractory CMV without antiviral resistance are available. Reported rates of resistant CMV are up to 18% in SOT recipients treated for CMV. Therapeutic options for treating these infections are limited due to the toxicity of the agent used or transplant-related complications. This is often the challenge with conventional agents such as ganciclovir, foscarnet and cidofovir. Recent introduction of new CMV agents including maribavir and letermovir as well as the use of adoptive T cell therapy may improve the outcome of these difficult-to-treat infections in SOT recipients. In this expert review, we focus on new treatment options for resistant/refractory CMV infection and disease in SOT recipients, with an emphasis on maribavir, letermovir, and adoptive T cell therapy.
Collapse
Affiliation(s)
- Carla Simone Walti
- Division of Infectious Diseases and Hospital Epidemiology, Departments of Biomedicine and Clinical Research, University and University Hospital of Basel, Basel, Switzerland
| | - Nina Khanna
- Division of Infectious Diseases and Hospital Epidemiology, Departments of Biomedicine and Clinical Research, University and University Hospital of Basel, Basel, Switzerland
| | - Robin K. Avery
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Ilkka Helanterä
- Department of Transplantation and Liver Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Tamzali Y, Pourcher V, Azoyan L, Ouali N, Barrou B, Conti F, Coutance G, Gay F, Tourret J, Boutolleau D. Factors Associated With Genotypic Resistance and Outcome Among Solid Organ Transplant Recipients With Refractory Cytomegalovirus Infection. Transpl Int 2023; 36:11295. [PMID: 37398559 PMCID: PMC10307959 DOI: 10.3389/ti.2023.11295] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023]
Abstract
Genotypically resistant cytomegalovirus (CMV) infection is associated with increased morbi-mortality. We herein aimed at understanding the factors that predict CMV genotypic resistance in refractory infections and disease in the SOTR (Solid Organ Transplant Recipients) population, and the factors associated with outcomes. We included all SOTRs who were tested for CMV genotypic resistance for CMV refractory infection/disease over ten years in two centers. Eighty-one refractory patients were included, 26 with genotypically resistant infections (32%). Twenty-four of these genotypic profiles conferred resistance to ganciclovir (GCV) and 2 to GCV and cidofovir. Twenty-three patients presented a high level of GCV resistance. We found no resistance mutation to letermovir. Age (OR = 0.94 per year, IC95 [0.089-0.99]), a history of valganciclovir (VGCV) underdosing or of low plasma concentration (OR= 5.6, IC95 [1.69-20.7]), being on VGCV at infection onset (OR = 3.11, IC95 [1.18-5.32]) and the recipients' CMV negative serostatus (OR = 3.40, IC95 [0.97-12.8]) were independently associated with CMV genotypic resistance. One year mortality was higher in the resistant CMV group (19.2 % versus 3.6 %, p = 0.02). Antiviral drugs severe adverse effects were also independently associated with CMV genotypic resistance. CMV genotypic resistance to antivirals was independently associated with a younger age, exposure to low levels of GCV, the recipients' negative serostatus, and presenting the infection on VGCV prophylaxis. This data is of importance, given that we also found a poorer outcome in the patients of the resistant group.
Collapse
Affiliation(s)
- Yanis Tamzali
- Sorbonne Université, Paris, France
- Department of Infectious and Tropical Diseases, Assistance Publique—Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
- Assistance Publique—Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Medicosurgical Unit of Kidney Transplantation, Paris, France
- INSERM UMR 1146, Paris, France
| | - V. Pourcher
- Sorbonne Université, Paris, France
- Department of Infectious and Tropical Diseases, Assistance Publique—Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
- Institut Pierre Louis d’Epidémiologie et de Santé Publique, INSERM UMR, Paris, France
| | - L. Azoyan
- Sorbonne Université, Paris, France
- Department of Infectious and Tropical Diseases, Assistance Publique—Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - N. Ouali
- Department of Nephrology Unité SINRA, Assistance Publique—Hôpitaux de Paris, Hôpital Tenon, Paris, France
| | - B. Barrou
- Sorbonne Université, Paris, France
- Department of Infectious and Tropical Diseases, Assistance Publique—Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
- Assistance Publique—Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Medicosurgical Unit of Kidney Transplantation, Paris, France
- INSERM UMR 1038, Paris, France
| | - F. Conti
- Sorbonne Université, Paris, France
- Department of Hepatogastroenterlogy, Assistance Publique—Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Liver Transplantation Unit, Paris, France
| | - G. Coutance
- Sorbonne Université, Paris, France
- Department of Cardiosurgery, Assistance Publique—Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Fédération de Cardiologie, Paris, France
| | - F. Gay
- Sorbonne Université, Paris, France
- Department of Parasitology and Mycology, Assistance Publique—Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - J. Tourret
- Sorbonne Université, Paris, France
- Department of Infectious and Tropical Diseases, Assistance Publique—Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
- Assistance Publique—Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Medicosurgical Unit of Kidney Transplantation, Paris, France
- INSERM UMR 1146, Paris, France
| | - D. Boutolleau
- Sorbonne Université, Paris, France
- Institut Pierre Louis d’Epidémiologie et de Santé Publique, INSERM UMR, Paris, France
- Department of Virology, Assistance Publique—Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Centre National de Référence Herpèsvirus (Laboratoire Associé), Paris, France
| |
Collapse
|
7
|
Opportunistic Infections Post-Lung Transplantation: Viral, Fungal, and Mycobacterial. Clin Chest Med 2023; 44:159-177. [PMID: 36774162 DOI: 10.1016/j.ccm.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Opportunistic infections are a leading cause of lung transplant recipient morbidity and mortality. Risk factors for infection include continuous exposure of the lung allograft to the external environment, high levels of immunosuppression, impaired mucociliary clearance and decreased cough reflex, and impact of the native lung microbiome in single lung transplant recipients. Infection risk is mitigated through careful pretransplant screening of recipients and donors, implementation of antimicrobial prophylaxis strategies, and routine surveillance posttransplant. This review describes common viral, fungal, and mycobacterial infectious after lung transplant and provides recommendations on prevention and treatment.
Collapse
|
8
|
Sant’ Anna CDC, Migone SRDC, da Rocha CAM, Mello Júnior FAR, Seabra AD, Pontes TB, Rodrigues JM, Soares SA, Rego VDP, Figueira JP, Rodrigues APM, Burbano RMR. Research for Cytomegalovirus Mutations Associated With Resistance to Antivirals in Kidney Transplant Receptors. Cell Transplant 2023; 32:9636897231195245. [PMID: 37724822 PMCID: PMC10510340 DOI: 10.1177/09636897231195245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/29/2023] [Accepted: 08/01/2023] [Indexed: 09/21/2023] Open
Abstract
Cytomegalovirus (CMV) mutations associated with antiviral resistance have become a major problem related to high mortality in kidney transplant patients. The aim of the study was to investigate mutations in the CMV genes UL97 and UL54 associated with antiviral resistance. A retrospective observational cohort study was carried out at Hospital Ophir Loyola (HOL), a reference in Kidney Transplantation. A total of 81 patients who underwent kidney transplantation were followed up between 2016 and 2018 were monitored for CMV viral load by performing qPCR. Sanger sequencing was performed on 66 patients. All CMV-positive kidney transplant recipients were included. Mutations were observed in 15 samples (22.72%) from patients. Most cases involved UL97 mutations. Mutation in UL54 without mutation in UL97 was detected in only 2 cases. Resistance mutations in UL97 were identified, such as M460V, L595S, H520Q, two co-mutations D465R + Del524 and A594P + D413A and a 3 codon deletion (del598-601). The search for mutations in the CMV genes identified mutations that confer resistance to conventional antivirals, such as ganciclovir and cidofovir, used in the treatment of these patients. Confirmation of the association with increased CMV viral load in transplanted patients, due to mutation in resistance genes, requires phenotypic analysis for confirmation purposes. These were the first findings in patients in northern Brazil that we know of.
Collapse
Affiliation(s)
- Carla de Castro Sant’ Anna
- Molecular Biology Laboratory, Ophir Loyola Hospital, Belém, Brazil
- Nucleus of Research in Oncology, Hospital Universitário João de Barros Barreto, Federal University of Pará, Belém, Brazil
| | | | | | | | | | | | | | | | | | | | | | - Rommel Mario Rodriguez Burbano
- Molecular Biology Laboratory, Ophir Loyola Hospital, Belém, Brazil
- Nucleus of Research in Oncology, Hospital Universitário João de Barros Barreto, Federal University of Pará, Belém, Brazil
| |
Collapse
|
9
|
Yong MK, Gottlieb D, Lindsay J, Kok J, Rawlinson W, Slavin M, Ritchie D, Bajel A, Grigg A. New advances in the management of cytomegalovirus in allogeneic haemopoietic stem cell transplantation. Intern Med J 2021; 50:277-284. [PMID: 31403736 DOI: 10.1111/imj.14462] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022]
Abstract
Cytomegalovirus (CMV) viraemia continues to be a frequent complication in the post-haemopoietic stem cell transplantation period despite a low incidence of CMV end-organ disease. Several significant advances in the understanding and management of CMV infection have occurred in the last few years including improved diagnostics, monitoring of CMV immunity, availability of novel anti-CMV drugs, and emerging use of immunotherapies including CMV-specific T-cell infusions. In addition to reviewing these advances we also explore some of the more practical prescribing issues of the older and newer CMV drugs including cost, toxicity and drug interactions to help clinicians navigate this new era of CMV management.
Collapse
Affiliation(s)
- Michelle K Yong
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria, Australia.,National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - David Gottlieb
- Department of Haematology and Bone Marrow Transplantation, Westmead Hospital, Sydney, New South Wales, Australia.,Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia.,Sydney Cellular Therapies Laboratory, Westmead Hospital, Sydney, New South Wales, Australia
| | - Julian Lindsay
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Pharmacy Department, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Jen Kok
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Sydney, New South Wales, Australia
| | - William Rawlinson
- NSW Health Pathology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Monica Slavin
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria, Australia.,National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - David Ritchie
- Department of Clinical Haematology, Peter MacCallum Cancer Centre, Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Ashish Bajel
- Department of Clinical Haematology, Peter MacCallum Cancer Centre, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Andrew Grigg
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Clinical Haematology and Olivia Newton John Cancer Research Institute, Austin Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Prohn M, Viberg A, Zhang D, Dykstra K, Davis C, Macha S, Sabato P, de Alwis D, Iwamoto M, Fancourt C, Cho CR. Population pharmacokinetics of letermovir following oral and intravenous administration in healthy participants and allogeneic hematopoietic cell transplantation recipients. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2021; 10:255-267. [PMID: 33440077 PMCID: PMC7965833 DOI: 10.1002/psp4.12593] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/25/2023]
Abstract
Letermovir is indicated for prophylaxis of cytomegalovirus infection and disease in allogeneic hematopoietic stem cell transplant (HSCT) recipients. Two‐stage population pharmacokinetic (PK) modeling of letermovir was conducted to support dose rationale and evaluate the impact of intrinsic/extrinsic factors. Data from healthy phase I study participants over a wide dose range were modeled to evaluate the effects of selected intrinsic factors, including pharmacogenomics; next, phase III HSCT‐recipient data at steady‐state following clinical doses were modeled. The model in HSCT recipients adequately described letermovir PK following both oral or i.v. administration, and was consistent with the healthy participant model at steady‐state clinical doses. Intrinsic factor effects were not clinically meaningful. These staged analyses indicate that letermovir PK in HSCT recipients and healthy participants differ only with respect to bioavailability and absorption rate. The HSCT recipient model was suitable for predicting exposure for exposure–response analysis supporting final dose selection.
Collapse
Affiliation(s)
| | | | - Da Zhang
- Merck & Co., Inc., Kenilworth, New Jersey, USA
| | | | - Casey Davis
- Merck & Co., Inc., Kenilworth, New Jersey, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Piccirilli G, Chiereghin A, Maritati M, Turello G, Felici S, La Corte R, Gabrielli L, Contini C, Lazzarotto T. Multidrug-resistant cytomegalovirus infection in a patient with granulomatosis with polyangiitis during immunosuppressive treatment. Antivir Ther 2020; 25:111-114. [PMID: 32297594 DOI: 10.3851/imp3352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2020] [Indexed: 10/24/2022]
Abstract
Cytomegalovirus (CMV) infection is a major complication in immunocompromised patients, including those with autoimmune diseases. Here, we describe the first case of granulomatosis with polyangiitis treated with steroids and cyclophosphamide, complicated by a multidrug-resistant (MDR) CMV infection in presence of weak antiviral cellular immunity. Since reports regarding CMV infection in rheumatological patients are rarely described and no guidelines on its management exist, the described case contributes to identify potential strategies to predict the risk of CMV disease and developing of MDR-CMV in these patients, through virological and immunological surveillance.
Collapse
Affiliation(s)
- Giulia Piccirilli
- Department of Specialized, Experimental and Diagnostic Medicine, Microbiology Unit, Laboratory of Virology, St. Orsola Polyclinic, University of Bologna, Bologna, Italy
| | - Angela Chiereghin
- Department of Specialized, Experimental and Diagnostic Medicine, Microbiology Unit, Laboratory of Virology, St. Orsola Polyclinic, University of Bologna, Bologna, Italy
| | - Martina Maritati
- Department of Medical Sciences, Section of Infectious Diseases and Dermatology, University of Ferrara, Ferrara, Italy
| | - Gabriele Turello
- Department of Specialized, Experimental and Diagnostic Medicine, Microbiology Unit, Laboratory of Virology, St. Orsola Polyclinic, University of Bologna, Bologna, Italy
| | - Silvia Felici
- Department of Specialized, Experimental and Diagnostic Medicine, Microbiology Unit, Laboratory of Virology, St. Orsola Polyclinic, University of Bologna, Bologna, Italy
| | - Renato La Corte
- Department of Medical Sciences, Section of Hematology and Rheumatology, University of Ferrara, Ferrara, Italy
| | - Liliana Gabrielli
- Department of Specialized, Experimental and Diagnostic Medicine, Microbiology Unit, Laboratory of Virology, St. Orsola Polyclinic, University of Bologna, Bologna, Italy
| | - Carlo Contini
- Department of Medical Sciences, Section of Infectious Diseases and Dermatology, University of Ferrara, Ferrara, Italy
| | - Tiziana Lazzarotto
- Department of Specialized, Experimental and Diagnostic Medicine, Microbiology Unit, Laboratory of Virology, St. Orsola Polyclinic, University of Bologna, Bologna, Italy
| |
Collapse
|
12
|
Schaduangrat N, Nantasenamat C, Prachayasittikul V, Shoombuatong W. Meta-iAVP: A Sequence-Based Meta-Predictor for Improving the Prediction of Antiviral Peptides Using Effective Feature Representation. Int J Mol Sci 2019; 20:ijms20225743. [PMID: 31731751 PMCID: PMC6888698 DOI: 10.3390/ijms20225743] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022] Open
Abstract
In spite of the large-scale production and widespread distribution of vaccines and antiviral drugs, viruses remain a prominent human disease. Recently, the discovery of antiviral peptides (AVPs) has become an influential antiviral agent due to their extraordinary advantages. With the avalanche of newly-found peptide sequences in the post-genomic era, there is a great demand to develop a sequence-based predictor for timely identifying AVPs as this information is very useful for both basic research and drug development. In this study, we propose a novel sequence-based meta-predictor with an effective feature representation, called Meta-iAVP, for the accurate prediction of AVPs from given peptide sequences. Herein, the effective feature representation was extracted from a set of prediction scores derived from various machine learning algorithms and types of features. To the best of our knowledge, the model proposed herein represents the first meta-based approach for the prediction of AVPs. An overall accuracy and Matthews correlation coefficient of 95.20% and 0.90, respectively, was achieved from the independent test set on an objective benchmark dataset. Comparative analysis suggested that Meta-iAVP was superior to that of existing methods and therefore represents a useful tool for AVP prediction. Finally, in an effort to facilitate high-throughput prediction of AVPs, the model was deployed as the Meta-iAVP web server and is made freely available online at http://codes.bio/meta-iavp/ where users can submit query peptide sequences for determining the likelihood of whether or not these peptides are AVPs.
Collapse
Affiliation(s)
- Nalini Schaduangrat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand; (N.S.); (C.N.)
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand; (N.S.); (C.N.)
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand;
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand; (N.S.); (C.N.)
- Correspondence: ; Tel.: +66-2441-4371 (ext. 2715)
| |
Collapse
|
13
|
Abstract
Infections in immunosuppressed patients represent a particular challenge in the diagnostics and treatment. They often present with atypical and particularly severe courses, for which rapid diagnostics and treatment are decisive for treatment success. Opportunistic infections with human herpes viruses occur not only more frequently in immunocompromised patients compared to healthy people but also represent a special challenge. In the treatment of immunosuppressed patients, e.g. with human immunodeficiency virus infections and patients with solid organ transplantations, infections with herpes simplex virus, varicella zoster virus, Epstein-Barr virus and cytomegalovirus are particularly important. The symtoms are very variable, ranging from asymptomatic detection of viremia to vital life-threatening organ manifestations. This review article describes the most important clinical presentations of these opportunistic infections. Furthermore, the diagnostic, therapeutic and prophylactic strategies for human herpes viruses are summarized.
Collapse
Affiliation(s)
- N Floß
- Klinik für Infektiologie, Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Deutschland
| | - S Dolff
- Klinik für Infektiologie, Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Deutschland.
| |
Collapse
|
14
|
Heliövaara E, Husain S, Martinu T, Singer LG, Cypel M, Humar A, Keshavjee S, Tikkanen J. Drug-resistant cytomegalovirus infection after lung transplantation: Incidence, characteristics, and clinical outcomes. J Heart Lung Transplant 2019; 38:1268-1274. [PMID: 31570289 DOI: 10.1016/j.healun.2019.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/28/2019] [Accepted: 09/03/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cytomegalovirus (CMV) infection and development of CMV drug resistance can cause significant morbidity and mortality in patients with lung transplantation (LTX). We investigated the incidence of CMV drug resistance in adult patients with LTX and characterized this patient group and its outcomes. METHODS We analyzed a single-center retrospective cohort of 735 patients who received LTX between January 2012 and October 2017. We assessed the incidences of CMV UL97 and UL54 genotyping for clinically suspected drug resistance and confirmed drug resistance. Case-matched controls (3 control patients for each resistant patient) were identified by matching for CMV serological status, development of CMV disease or significant viremia (≥3,000 IU/ml), and transplantation date. RESULTS The incidence of drug-resistant CMV was 1.98% (11/556) in donor and/or recipient CMV-positive patients and 4.7% (7/150) in donor-positive/recipient-negative patients. Altogether, 27 patients were tested for drug resistance, and 11 strains were resistant, 8 sensitive, and 8 inconclusive. No differences in immunosuppression, acute rejection, or pre-transplant sensitization were seen between case-matched groups. The peak CMV viral load and mean duration of viremia were significantly higher in the resistant group (324,000 vs. 117,000 mean IU/ml, p = 0.048 and 140 vs. 55 days, p < 0.001, respectively). The resistant group had increased overall mortality after onset of viremia compared with controls (3-year mortality 70% vs. 30%; p = 0.01). CONCLUSIONS Drug-resistant CMV infection is rare, but patients who develop it have decreased overall survival. Peak CMV viral load and duration of CMV viremia were associated with development of resistant CMV infection.
Collapse
Affiliation(s)
- Elina Heliövaara
- Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Shahid Husain
- Division of Infectious Diseases, Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Tereza Martinu
- Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Lianne G Singer
- Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Marcelo Cypel
- Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Atul Humar
- Division of Infectious Diseases, Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Jussi Tikkanen
- Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
15
|
Vilas Boas LCP, Campos ML, Berlanda RLA, de Carvalho Neves N, Franco OL. Antiviral peptides as promising therapeutic drugs. Cell Mol Life Sci 2019; 76:3525-3542. [PMID: 31101936 PMCID: PMC7079787 DOI: 10.1007/s00018-019-03138-w] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 01/28/2023]
Abstract
While scientific advances have led to large-scale production and widespread distribution of vaccines and antiviral drugs, viruses still remain a major cause of human diseases today. The ever-increasing reports of viral resistance and the emergence and re-emergence of viral epidemics pressure the health and scientific community to constantly find novel molecules with antiviral potential. This search involves numerous different approaches, and the use of antimicrobial peptides has presented itself as an interesting alternative. Even though the number of antimicrobial peptides with antiviral activity is still low, they already show immense potential to become pharmaceutically available antiviral drugs. Such peptides can originate from natural sources, such as those isolated from mammals and from animal venoms, or from artificial sources, when bioinformatics tools are used. This review aims to shed some light on antimicrobial peptides with antiviral activities against human viruses and update the data about the already well-known peptides that are still undergoing studies, emphasizing the most promising ones that may become medicines for clinical use.
Collapse
Affiliation(s)
| | - Marcelo Lattarulo Campos
- Centro de Análises Bioquímicas e Proteômicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, 70790-160, Brazil
- Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, 78060-900, Brazil
| | - Rhayfa Lorrayne Araujo Berlanda
- Centro de Análises Bioquímicas e Proteômicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, 70790-160, Brazil
| | - Natan de Carvalho Neves
- Centro de Análises Bioquímicas e Proteômicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, 70790-160, Brazil
| | - Octávio Luiz Franco
- Universidade de Brasília, Pós-Graduação em Patologia Molecular, Campus Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.
- Centro de Análises Bioquímicas e Proteômicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, 70790-160, Brazil.
- S-Inova Biotech, Pós-graduação em Biotecnologia Universidade Católica Dom Bosco, Campo Grande, MS, 79117-900, Brazil.
| |
Collapse
|
16
|
Improvement in detecting cytomegalovirus drug resistance mutations in solid organ transplant recipients with suspected resistance using next generation sequencing. PLoS One 2019; 14:e0219701. [PMID: 31318908 PMCID: PMC6638921 DOI: 10.1371/journal.pone.0219701] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/07/2019] [Indexed: 12/20/2022] Open
Abstract
OBJETIVES The aim of this study was to identify CMV drug resistance mutations (DRM) in solid organ transplant (SOT) recipients with suspected resistance comparing next-generation sequencing (NGS) with Sanger sequencing and assessing risk factors and the clinical impact of resistance. METHODS Using Sanger sequencing as the reference method, we prospectively assessed the ability of NGS to detect CMV DRM in the UL97 and UL54 genes in a nationwide observational study from September 2013 to August 2016. RESULTS Among 44 patients recruited, 14 DRM were detected by Sanger in 12 patients (27%) and 20 DRM were detected by NGS, in 16 (36%). NGS confirmed all the DRM detected by Sanger. The additional six mutations detected by NGS were present in <20% of the sequenced population, being located in the UL97 gene and conferring high-level resistance to ganciclovir. The presence of DRM by NGS was associated with lung transplantation (p = 0.050), the administration of prophylaxis (p = 0.039), a higher mean time between transplantation and suspicion of resistance (p = 0.038) and longer antiviral treatment duration before suspicion (p = 0.024). However, the latter was the only factor independently associated with the presence of DRM by NGS in the multivariate analysis (OR 2.24, 95% CI 1.03 to 4.87). CONCLUSIONS NGS showed a higher yield than Sanger sequencing for detecting CMV resistance mutations in SOT recipients. The presence of DRM detected by NGS was independently associated with longer antiviral treatment.
Collapse
|
17
|
Hamel S, Kuo V, Sawinski D, Johnson D, Bloom RD, Bleicher M, Goral S, Lim MA, Trofe‐Clark J. Single‐center, real‐world experience with granulocyte colony‐stimulating factor for management of leukopenia following kidney transplantation. Clin Transplant 2019; 33:e13541. [DOI: 10.1111/ctr.13541] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/22/2019] [Accepted: 03/13/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Stephanie Hamel
- Department of Pharmacy Services Hospital of the University of Pennsylvania Philadelphia Pennsylvania
| | - Vicky Kuo
- Department of Pharmacy Services Hospital of the University of Pennsylvania Philadelphia Pennsylvania
| | - Deirdre Sawinski
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania
| | - David Johnson
- Department of Pharmacy Services Hospital of the University of Pennsylvania Philadelphia Pennsylvania
| | - Roy D. Bloom
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania
| | - Melissa Bleicher
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania
| | - Simin Goral
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania
| | - Mary Ann Lim
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania
| | - Jennifer Trofe‐Clark
- Department of Pharmacy Services Hospital of the University of Pennsylvania Philadelphia Pennsylvania
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania
| |
Collapse
|
18
|
Wieruszewski PM, Vijayvargiya P, Wilhelm MP, Razonable RR. Cytomegaloviraemia clearance with foscarnet during renal replacement therapy. J Antimicrob Chemother 2019; 73:548-549. [PMID: 29096019 DOI: 10.1093/jac/dkx398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | - Mark P Wilhelm
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN, USA.,William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA
| | - Raymund R Razonable
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN, USA.,William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
19
|
Koval CE. Prevention and Treatment of Cytomegalovirus Infections in Solid Organ Transplant Recipients. Infect Dis Clin North Am 2018; 32:581-597. [PMID: 30146024 DOI: 10.1016/j.idc.2018.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Despite advances in prevention and treatment, cytomegalovirus (CMV) infection and disease remain an expected problem in solid organ transplant recipients. Because of the effect of immunosuppressing medications, CMV primary, secondary, and reactivated infection requires antiviral medications to prevent serious direct and indirect effects of the virus. Side effects and drug resistance, however, often limit the capacity of traditional antiviral therapies. This article updates the clinician on current and promising approaches to the management and control of CMV in the solid organ transplant recipient.
Collapse
Affiliation(s)
- Christine E Koval
- Department of Infectious Diseases, Cleveland Clinic Foundation, 9500 Euclid Avenue, Box G21, Cleveland, OH 44195, USA.
| |
Collapse
|
20
|
Majeed A, Latif A, Kapoor V, Sohail A, Florita C, Georgescu A, Zangeneh T. Resistant Cytomegalovirus Infection in Solid-organ Transplantation: Single-center Experience, Literature Review of Risk Factors, and Proposed Preventive Strategies. Transplant Proc 2018; 50:3756-3762. [PMID: 30586840 DOI: 10.1016/j.transproceed.2018.02.091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 02/17/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Cytomegalovirus (CMV) infection causes morbidity and mortality in solid-organ transplant recipients. Drug-resistant CMV is an emerging problem with poor survival outcomes and limited therapeutic options. In this study we comprehensively address the issue of drug resistance in CMV when compared with standard therapies, such as ganciclovir (GCV) and foscarnet. METHODS We conducted a retrospective review of adult patients diagnosed with CMV after solid-organ transplant at our center between 2013 and 2017, and identified 7 resistant CMV cases. To study risk factors in the published literature, we performed an extensive database search. RESULTS All patients had documented UL97 mutations, and 3 patients harbored both UL97 and UL54 mutations. For cases with increasing viral load or failure to achieve clinical improvement despite optimal therapy, genetic resistance testing was carried out. Patients received GCV and foscarnet combination therapy. As an adjunct, CMV immunoglobulin, cidofovir, and leflunomide were added. Risk factors, including donor+/recipient- serostatus, persistent high viral replication, prolonged therapeutic GCV exposure (>2.5 months), and allograft rejection, were assessed. CONCLUSION Patients at risk, especially those with D+/R- serostatus, should be judiciously monitored for resistance. Prolonged intravenous GCV exposure increases the risk for development of drug resistance. Therefore, precise guidelines are required for prevention of long-term GCV/VGCV exposure. Investigation regarding interferon-gamma release assay and adoptive transfer of T cells in diagnosed CMV patients is warranted to improve future prophylactic and management strategies against CMV, with a potential to reduce the requirement for available toxic antiviral drugs.
Collapse
Affiliation(s)
- A Majeed
- Division of Infectious Diseases, Department of Medicine, University of Arizona, Tucson, Arizona.
| | - A Latif
- Department of Medicine, University of Arizona, Tucson, Arizona
| | - V Kapoor
- Department of Medicine, University of Arizona, Tucson, Arizona
| | - A Sohail
- Department of Medicine, University of Arizona, Tucson, Arizona
| | - C Florita
- Division of Infectious Diseases, Department of Medicine, University of Arizona, Tucson, Arizona
| | - A Georgescu
- Division of Infectious Diseases, Department of Medicine, University of Arizona, Tucson, Arizona
| | - T Zangeneh
- Division of Infectious Diseases, Department of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
21
|
Czarnecka P, Czarnecka K, Tronina O, Durlik M. Cytomegalovirus Disease After Liver Transplant-A Description of a Treatment-Resistant Case: A Case Report and Literature Review. Transplant Proc 2018; 50:4015-4022. [PMID: 30577306 DOI: 10.1016/j.transproceed.2018.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/23/2018] [Indexed: 12/18/2022]
Abstract
Cytomegalovirus (CMV) infection is a common complication in solid organ transplant recipients. In patients receiving immunosuppressive treatment, CMV may lead to life-threatening organ complications or graft loss. We describe a case of 31-year-old CMV-seronegative patient who underwent liver transplant from a CMV-seropositive donor with an early acute resistant rejection of the transplanted organ followed by primary CMV infection, despite prophylaxis, and its severe organ complications. Routine treatment of acute allograft rejection through increasing the base immunosuppression and then administering methylprednisolone infusions did not yield significant therapeutic effect. This resulted in anti-thymocyte globulin and ultimately proteasome inhibitor introduction. The cholestasis remitted and liver parameters improved. But 4 weeks later the patient was admitted again due to incorrect liver function tests. Blood tests revealed high CMV viral load, and primary CMV infection was diagnosed. On diagnosis the patient was treated with ganciclovir (GCV) intravenously. As GCV resistance was suspected based on clinical premises, foscarnet (FOS) and leflunomide (LFM) were implemented with concomitant cautious immunosuppression reduction due to the history of recent graft rejection. Despite aggressive treatment introduction, viral clearance was not obtained. Ultimately the patient died due to respiratory distress resulting from lung fibrosis, most probably owing to CMV diseases with Pneumocystis jiroveci coinfection. The presented case proves the importance of strictly following the rules of prophylaxis, especially in patients with a high risk factor of CMV infection development. A quick diagnosis, implementation of appropriate treatment, and fast reaction to the lack of satisfying therapeutic effect can be the key to a successful treatment.
Collapse
Affiliation(s)
- P Czarnecka
- Department of Transplantation Medicine, Nephrology, and Internal Medicine, Medical University of Warsaw, Warsaw, Poland.
| | - K Czarnecka
- Department of Transplantation Medicine, Nephrology, and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - O Tronina
- Department of Transplantation Medicine, Nephrology, and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - M Durlik
- Department of Transplantation Medicine, Nephrology, and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
22
|
Respiratory Viruses and Other Relevant Viral Infections in the Lung Transplant Recipient. LUNG TRANSPLANTATION 2018. [PMCID: PMC7123387 DOI: 10.1007/978-3-319-91184-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
As advances occur in surgical technique, postoperative care, and immunosuppressive therapy, the rate of mortality in the early postoperative period following lung transplantation continues to decline. With the improvements in immediate and early posttransplant mortality, infections and their sequel as well as rejection and chronic allograft dysfunction are increasingly a major cause of posttransplant mortality. This chapter will focus on infections by respiratory viruses and other viral infections relevant to lung transplantation, including data regarding the link between viral infections and allograft dysfunction.
Collapse
|
23
|
Marshall WL, McCrea JB, Macha S, Menzel K, Liu F, van Schanke A, de Haes JIU, Hussaini A, Jordan HR, Drexel M, Kantesaria BS, Tsai C, Cho CR, Hulskotte EGJ, Butterton JR, Iwamoto M. Pharmacokinetics and Tolerability of Letermovir Coadministered With Azole Antifungals (Posaconazole or Voriconazole) in Healthy Subjects. J Clin Pharmacol 2018; 58:897-904. [DOI: 10.1002/jcph.1094] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/15/2018] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | | | - Fang Liu
- Merck & Co, Inc; Kenilworth NJ USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Navarro D, San-Juan R, Manuel O, Giménez E, Fernández-Ruiz M, Hirsch HH, Grossi PA, Aguado JM. Cytomegalovirus infection management in solid organ transplant recipients across European centers in the time of molecular diagnostics: An ESGICH survey. Transpl Infect Dis 2017; 19. [PMID: 28859257 DOI: 10.1111/tid.12773] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/17/2017] [Accepted: 06/11/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Scant information is available about how transplant centers are managing their use of quantitative molecular testing (QNAT) assays for active cytomegalovirus (CMV) infection monitoring in solid organ transplant (SOT) recipients. The current study was aimed at gathering information on current practices in the management of CMV infection across European centers in the era of molecular testing assays. METHODS A questionnaire-based cross-sectional survey study was conducted by the European Study Group of Infections in Immunocompromised Hosts (ESGICH) of the Society of Clinical Microbiology and Infectious Diseases (ESCMID). The invitation and a weekly reminder with a personal link to an Internet service provider (https://es.surveymonkey.com/) was sent to transplant physicians, transplant infectious diseases specialists, and clinical virologists working at 340 European transplant centers. RESULTS Of the 1181 specialists surveyed, a total of 173 responded (14.8%): 73 transplant physicians, 57 transplant infectious diseases specialists, and 43 virologists from 173 institutions located at 23 different countries. The majority of centers used QNAT assays for active CMV infection monitoring. Most centers preferred commercially available real-time polymerase chain reaction (RT-PCR) assays over laboratory-developed procedures for quantifying CMV DNA load in whole blood or plasma. Use of a wide variety of DNA extraction platforms and RT-PCR assays was reported. All programs used antiviral prophylaxis, preemptive therapy, or both, according to current guidelines. However, the centers used different criteria for starting preemptive antiviral treatment, for monitoring systemic CMV DNA load, and for requesting genotypic assays to detect emerging CMV-resistant variants. CONCLUSIONS Significant variation in CMV infection management in SOT recipients still remains across European centers in the era of molecular testing. International multicenter studies are required to achieve commutability of CMV testing and antiviral management procedures.
Collapse
Affiliation(s)
- David Navarro
- Microbiology Service, Hospital Clínico Universitario, Institute for Research INCLIVA, Valencia, Spain
- Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Rafael San-Juan
- Unit of Infectious Diseases, Instituto de Investigación Hospital 12 de Octubre (i+12), University Hospital 12 de Octubre, Universidad Complutense, Madrid, Spain
| | - Oriol Manuel
- Transplantation Center and Service of Infectious Diseases, University Hospital of Lausanne, CHUV, Lausanne, Switzerland
| | - Estela Giménez
- Microbiology Service, Hospital Clínico Universitario, Institute for Research INCLIVA, Valencia, Spain
| | - Mario Fernández-Ruiz
- Unit of Infectious Diseases, Instituto de Investigación Hospital 12 de Octubre (i+12), University Hospital 12 de Octubre, Universidad Complutense, Madrid, Spain
| | - Hans H Hirsch
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland
- Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Paolo Antonio Grossi
- National Centre for Transplantation, Department of Medicine and Surgery, Infectious and Tropical Diseases Unit, University of Insubria, Varese, Italy
| | - José María Aguado
- Unit of Infectious Diseases, Instituto de Investigación Hospital 12 de Octubre (i+12), University Hospital 12 de Octubre, Universidad Complutense, Madrid, Spain
| |
Collapse
|
25
|
Almaghrabi RS, Omrani AS, Memish ZA. Cytomegalovirus infection in lung transplant recipients. Expert Rev Respir Med 2017; 11:377-383. [PMID: 28388307 DOI: 10.1080/17476348.2017.1317596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Cytomegalovirus (CMV) infection is a major cause of morbidity and mortality in solid organ transplant (SOT) patients. Lung transplant recipients are particularly at risk given the intense immunosuppression required. Areas covered: The Detailed review of the literature related to CMV infection, its direct and indirect effect on lung allograft function, as well as diagnosis, immune monitoring, treatment options and prevention strategies. Expert commentary: In lung transplant recipients, CMV infection is associated with pro-inflammatory and immune inhibitory effects that increase the risk of graft dysfunction and loss. Diagnosis of CMV infection remains challenging. Treatment options remain relatively limited.
Collapse
Affiliation(s)
- Reem S Almaghrabi
- a Section of Infectious Diseases, Department of Medicine , King Faisal Specialist Hospital and Research Centre , Riyadh , Saudi Arabia
| | - Ali S Omrani
- a Section of Infectious Diseases, Department of Medicine , King Faisal Specialist Hospital and Research Centre , Riyadh , Saudi Arabia
| | - Ziad A Memish
- b Director Research Department , Prince Mohammed Bin Abdulaziz Hospital, Ministry of Health , Riyadh , Saudi Arabia.,c College of Medicine, Alfaisal University , Riyadh , Saudi Arabia.,d Hubert Department of Global Health, Rollins School of Public Health , Emory University , Atlanta , USA
| |
Collapse
|
26
|
López-Aladid R, Guiu A, Sanclemente G, López-Medrano F, Cofán F, Mosquera MM, Torre-Cisneros J, Vidal E, Moreno A, Aguado JM, Cordero E, Martin-Gandul C, Pérez-Romero P, Carratalá J, Sabé N, Niubó J, Cervera C, Cervilla A, Bodro M, Muñoz P, Fariñas C, Codina MG, Aranzamendi M, Montejo M, Len O, Marcos MA. Detection of cytomegalovirus drug resistance mutations in solid organ transplant recipients with suspected resistance. J Clin Virol 2017; 90:57-63. [PMID: 28359845 DOI: 10.1016/j.jcv.2017.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/02/2017] [Accepted: 03/16/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Current guidelines recommend that treatment of resistant cytomegalovirus (CMV) in solid organ transplant (SOT) recipients must be based on genotypic analysis. However, this recommendation is not systematically followed. OBJECTIVES To assess the presence of mutations associated with CMV resistance in SOT recipients with suspected resistance, their associated risk factors and the clinical impact of resistance. STUDY DESIGN Using Sanger sequencing we prospectively assessed the presence of resistance mutations in a nation-wide prospective study between September 2013-August 2015. RESULTS Of 39 patients studied, 9 (23%) showed resistance mutations. All had one mutation in the UL 97 gene and two also had one mutation in the UL54 gene. Resistance mutations were more frequent in lung transplant recipients (44% p=0.0068) and in patients receiving prophylaxis ≥6 months (57% vs. 17%, p=0.0180). The mean time between transplantation and suspicion of resistance was longer in patients with mutations (239 vs. 100days, respectively, p=0.0046) as was the median treatment duration before suspicion (45 vs. 16days, p=0.0081). There were no significant differences according to the treatment strategies or the mean CMV load at the time of suspicion. Of note, resistance-associated mutations appeared in one patient during CMV prophylaxis and also in a seropositive organ recipient. Incomplete suppression of CMV was more frequent in patients with confirmed resistance. CONCLUSIONS Our study confirms the need to assess CMV resistance mutations in any patient with criteria of suspected clinical resistance. Early confirmation of the presence of resistance mutations is essential to optimize the management of these patients.
Collapse
Affiliation(s)
- Rubén López-Aladid
- Department of Clinical Microbiology, Hospital Clinic, Universidad de Barcelona, Barcelona Institute for Global Health, Barcelona, (ISGlobal), Spain
| | - Alba Guiu
- Department of Clinical Microbiology, Hospital Clinic, Universidad de Barcelona, Barcelona Institute for Global Health, Barcelona, (ISGlobal), Spain
| | - Gemma Sanclemente
- Department of Infectious Diseases, Hospital Clinic, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Universidad de Barcelona, Barcelona, Spain
| | - Francisco López-Medrano
- Unit of Infectious Diseases, Instituto de Investigación Hospital 12 Octubre (i + 12) University Hospital 12 de Octubre, Universidad Complutense, Madrid, Spain
| | - Frederic Cofán
- Nephrology and Renal Transplant Department, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - M Mar Mosquera
- Department of Clinical Microbiology, Hospital Clinic, Universidad de Barcelona, Barcelona Institute for Global Health, Barcelona, (ISGlobal), Spain
| | - Julián Torre-Cisneros
- Clinical Unit of Infectious Diseases, Hospital Universitario Reina Sofia-IMIBIC-UCO, Córdoba, Spain
| | - Elisa Vidal
- Clinical Unit of Infectious Diseases, Hospital Universitario Reina Sofia-IMIBIC-UCO, Córdoba, Spain
| | - Asunción Moreno
- Department of Infectious Diseases, Hospital Clinic, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Universidad de Barcelona, Barcelona, Spain
| | - Jose Maria Aguado
- Unit of Infectious Diseases, Instituto de Investigación Hospital 12 Octubre (i + 12) University Hospital 12 de Octubre, Universidad Complutense, Madrid, Spain
| | - Elisa Cordero
- Infectious Diseases Department, Hospital Universitario Virgen del Rocío, Sevilla, Instituto de Biomedicina de Sevilla (IBIS), Unit of Infectious Diseases, Microbiology and Preventive Medicine, University Hospital Virgen del Rocío, Spain
| | - Cecilia Martin-Gandul
- Infectious Diseases Department, Hospital Universitario Virgen del Rocío, Sevilla, Instituto de Biomedicina de Sevilla (IBIS), Unit of Infectious Diseases, Microbiology and Preventive Medicine, University Hospital Virgen del Rocío, Spain
| | - Pilar Pérez-Romero
- Infectious Diseases Department, Hospital Universitario Virgen del Rocío, Sevilla, Instituto de Biomedicina de Sevilla (IBIS), Unit of Infectious Diseases, Microbiology and Preventive Medicine, University Hospital Virgen del Rocío, Spain
| | - Jordi Carratalá
- Department of Infectious Diseases, Bellvitge University Hospital, IDIBELL, Barcelona, Spain
| | - Nuria Sabé
- Department of Infectious Diseases, Bellvitge University Hospital, IDIBELL, Barcelona, Spain
| | - Jordi Niubó
- Department of Clinical Microbiology, Bellvitge University Hospital, IDIBELL, Barcelona, Spain
| | - Carlos Cervera
- Department of Medicine, Division of Infectious Diseases, University of Alberto, Edmonton, Canada
| | - Anna Cervilla
- Department of Clinical Microbiology, Hospital Clinic, Universidad de Barcelona, Barcelona Institute for Global Health, Barcelona, (ISGlobal), Spain
| | - Marta Bodro
- Department of Infectious Diseases, Hospital Clinic, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Universidad de Barcelona, Barcelona, Spain
| | - Patricia Muñoz
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitario Gregorio Marañón, Madrid, Spain
| | - Carmen Fariñas
- Unidad de Enfermedades Infecciosas, Hospital Universitario Marqués de Valdecilla, Universidad de Cantabria, Santander, Spain
| | - M Gemma Codina
- Microbiology Service, Hospital Vall d'Hebron, Barcelona, Spain
| | | | - Miguel Montejo
- Unidad de Enfermedades Infecciosas, Hospital Universitario de Cruces, Bilbao, Spain
| | - Oscar Len
- Department of Infectious Diseases, Hospital Universitari Vall d'Hebrón, Uniiversitat Autónoma de Barcelona, Barcelona, Spain
| | - M Angeles Marcos
- Department of Clinical Microbiology, Hospital Clinic, Universidad de Barcelona, Barcelona Institute for Global Health, Barcelona, (ISGlobal), Spain.
| | | |
Collapse
|
27
|
Brincidofovir Use after Foscarnet Crystal Nephropathy in a Kidney Transplant Recipient with Multiresistant Cytomegalovirus Infection. Case Rep Transplant 2017; 2017:3624146. [PMID: 28348914 PMCID: PMC5350387 DOI: 10.1155/2017/3624146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 02/12/2017] [Indexed: 11/17/2022] Open
Abstract
Background. Cytomegalovirus (CMV) antiviral drug resistance constitutes an increasing challenge in transplantation. Foscarnet is usually proposed when resistance for ganciclovir is suspected, but its use is limited by its nephrotoxicity. Case Presentation. We report a case of multiresistant CMV disease in a kidney transplant recipient. Foscarnet was prescribed after ganciclovir treatment failure in a patient with two mutations in the UL97 viral gene. Foscarnet induced biopsy-proven kidney crystal precipitation that resulted in severe acute transplant failure and nephrotic syndrome. Despite a large decrease in immunosuppression, CMV disease was not controlled and a salvage therapy with Brincidofovir (BCV), which is an oral lipid conjugate of cidofovir with limited nephrotoxicity, was attempted. Clinical and virological remission was observed after a 21-day course of BCV, despite mild and reversible liver toxicity. However, a new relapse could not be effectively cured by BCV due to a new mutation in the UL54 gene, which is known to confer resistance to cidofovir. A new course of foscarnet finally resulted in prolonged CMV remission. Herein, we present a review of foscarnet nephropathy cases in solid-organ transplanted patients. Conclusions. This unique case highlights the potential benefit of BCV use during resistant CMV infection, although mutations in the UL54 gene may limit its therapeutic efficacy. These findings need to be confirmed in clinical trials.
Collapse
|
28
|
Park JE, Kim JY, Yun SA, Lee MK, Huh HJ, Kim JW, Ki CS. Performance Evaluation of the Real-Q Cytomegalovirus (CMV) Quantification Kit Using Two Real-Time PCR Systems for Quantifying CMV DNA in Whole Blood. Ann Lab Med 2017; 36:603-6. [PMID: 27578516 PMCID: PMC5011116 DOI: 10.3343/alm.2016.36.6.603] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/25/2016] [Accepted: 07/01/2016] [Indexed: 11/23/2022] Open
Abstract
Standardized cytomegalovirus (CMV) DNA quantification is important for managing CMV disease. We evaluated the performance of the Real-Q CMV Quantification Kit (Real-Q assay; BioSewoom, Korea) using whole blood (WB), with nucleic acid extraction using MagNA Pure 96 (Roche Diagnostics, Germany). Real-time PCR was performed on two platforms: the 7500 Fast real-time PCR (7500 Fast; Applied Biosystems, USA) and CFX96 real-time PCR detection (CFX96; Bio-Rad, USA) systems. The WHO international standard, diluted with CMV-negative WB, was used to validate the analytical performance. We used 90 WB clinical samples for comparison with the artus CMV RG PCR kit (artus assay; Qiagen, Germany). Limits of detections (LODs) in 7500 Fast and CFX96 were 367 and 479 IU/mL, respectively. The assay was linear from the LOD to 106 IU/mL (R2 ≥0.9886). The conversion factors from copies to IU in 7500 Fast and CFX96 were 0.95 and 1.06, respectively. Compared with the artus assay, for values <1,000 copies/mL, 100% of the samples had a variation <0.7 log10 copies/mL; >1,000 copies/mL, 73.3% and 80.6% of samples in 7500 Fast and CFX96, respectively, had <0.5 log10 copies/mL. The Real-Q assay is useful for quantifying CMV in WB with the two real-time PCR platforms.
Collapse
Affiliation(s)
- Jong Eun Park
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji Youn Kim
- Center for Clinical Medicine, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Sun Ae Yun
- Center for Clinical Medicine, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Myoung Keun Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Jong Won Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chang Seok Ki
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
29
|
Ambrose T, Sharkey LM, Louis-Auguste J, Rutter CS, Duncan S, English S, Gkrania-Klotsas E, Carmichael A, Woodward JM, Russell N, Massey D, Butler A, Middleton S. Cytomegalovirus Infection and Rates of Antiviral Resistance Following Intestinal and Multivisceral Transplantation. Transplant Proc 2017; 48:492-6. [PMID: 27109985 DOI: 10.1016/j.transproceed.2015.09.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/03/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cytomegalovirus (CMV) disease is a common and clinically significant complication following intestinal or multivisceral transplantation. CMV disease is more common in cases of serologic mismatch between donor and recipient. Though in some cases it may be asymptomatic, in the immunosuppressed population it often manifests with evidence of systemic infection or end-organ disease. METHODS We conducted a retrospective review of all patients undergoing intestinal or multivisceral transplantation over 8 years at our institution. RESULTS Forty-eight transplantations were performed, with 40% of the patients (19/48) having ≥1 episode of CMV viremia, which rose to 90% in the "donor-positive, recipient-negative" (DPRN) serologic mismatch group. The median time to 1st episode following transplantation was 22.3 weeks (range, 1-78) and median duration of each episode was 4.9 weeks (range, 1.6-37.4). Six of the 19 viremic patients (31.6%) developed virologic resistance with 4 of these occurring in the DPRN group. Four of the 6 patients with drug-resistant CMV died with CMV viremia. All patients with drug resistance acquired ganciclovir resistance; these patients were more challenging to manage with second-line toxicity-limited treatments, including foscarnet, cidofovir, and leflunomide. CMV immunoglobulin has been used and we briefly discuss the use of CMV-specific adoptive T-lymphocyte transfer in the management of 1 case. CONCLUSIONS Post-transplantation CMV disease continues to be challenging to manage, and there is little consensus on optimal management strategies in this patient group, with a significant requirement for novel therapies; these may be pharmacologic or cell based. Extensive multidisciplinary discussion is important for most cases, but particularly for those patients who acquire virologic resistance.
Collapse
Affiliation(s)
- T Ambrose
- Department of Gastroenterology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - L M Sharkey
- Department of Gastroenterology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - J Louis-Auguste
- Department of Gastroenterology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - C S Rutter
- Department of Gastroenterology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - S Duncan
- Department of Gastroenterology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - S English
- Department of Clinical Virology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - E Gkrania-Klotsas
- Department of Infectious Diseases, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - A Carmichael
- Department of Infectious Diseases, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - J M Woodward
- Department of Gastroenterology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - N Russell
- Department of Transplant Surgery, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - D Massey
- Department of Gastroenterology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - A Butler
- Department of Transplant Surgery, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - S Middleton
- Department of Gastroenterology, Addenbrooke's Hospital, Cambridge, United Kingdom.
| |
Collapse
|
30
|
Kwon H, Lee HH, Paik CR, Lim YJ, Park JA. Toxic megacolon and interstitial pneumonia caused by cytomegalovirus infection in a pediatric patient with acute lymphoblastic leukemia receiving chemotherapy. Blood Res 2016; 51:281-285. [PMID: 28090493 PMCID: PMC5234237 DOI: 10.5045/br.2016.51.4.281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/28/2016] [Accepted: 03/16/2016] [Indexed: 01/31/2023] Open
Affiliation(s)
- Hyunseop Kwon
- Department of Pediatrics, Inje University Haeundae Paik Hospital, Busan, Korea
| | - Hyun Hee Lee
- Department of Pediatrics, Inje University Haeundae Paik Hospital, Busan, Korea
| | - Chung Ryul Paik
- Department of Pediatrics, Inje University Haeundae Paik Hospital, Busan, Korea
| | - Yun-Jeong Lim
- Department of Radiology, Inje University Haeundae Paik Hospital, Busan, Korea
| | - Jeong A. Park
- Department of Pediatrics, Inje University Haeundae Paik Hospital, Busan, Korea
| |
Collapse
|
31
|
Vadde R, Pastores SM. Management of Acute Respiratory Failure in Patients With Hematological Malignancy. J Intensive Care Med 2016; 31:627-641. [PMID: 26283185 DOI: 10.1177/0885066615601046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Acute respiratory failure (ARF) is the leading cause of intensive care unit admission in patients with hematologic malignancies and is associated with a high mortality. The main causes of ARF are bacterial and opportunistic pulmonary infections and noninfectious lung disorders. Management consists of a systematic clinical evaluation aimed at identifying the most likely cause, which in turn determines the best first-line empirical treatments. The need for mechanical ventilation is a major determinant of prognosis. Beneficial outcomes have been demonstrated with early use of noninvasive ventilation (NIV) in selected patients with hematologic malignancies. However, most of these studies did not control the time between onset of ARF to NIV implementation nor accounted for the etiology of ARF or the presence of associated organ dysfunction at the time of NIV initiation. Moreover, the benefits demonstrated with NIV in these patients were derived from studies with high mortality rates of intubated patients. Additional studies are therefore warranted to determine the appropriate patients with hematologic malignancy and ARF who may benefit from prophylactic or curative NIV.
Collapse
Affiliation(s)
- Rakesh Vadde
- 1 Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephen M Pastores
- 2 Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW The purpose of this study is to provide updated information on diagnosis of cytomegalovirus (CMV) drug resistance, treatments for drug-resistant infection and potential uses of experimental antiviral compounds. RECENT FINDINGS For established CMV antivirals, uncommon viral UL97 kinase and UL54 DNA polymerase drug resistance mutations are sporadically described that expand an extensive existing database. Some novel mutations reported from treated patients have no drug-resistant phenotype and may be genotyping artefacts. Next-generation sequencing technology may enable earlier detection of emerging resistance mutations in treated patients. Management options for drug-resistant infection include optimization of host defenses, antiviral dose escalation, substitutions or combinations of standard or experimental antivirals. Maribavir and letermovir have antiviral targets distinct from the classic DNA polymerase. UL97 mutations elicited by ganciclovir and maribavir are different, although a single p-loop mutation can confer significant cross-resistance. High-grade resistance mutations in the UL56 terminase gene are readily selected in vitro under letermovir and await clinical correlation. SUMMARY Technical advancements can enhance the accurate and timely genotypic detection of drug resistance. Antivirals undergoing clinical trial offer the prospect of new viral targets and drug combinations, but unresolved issues exist with regard to their therapeutic potential for drug-resistant CMV and their genetic barriers to resistance.
Collapse
|
33
|
Javad Hosseini SM, Nemati E, Behzadian F, Einollahi B, Rahimi Petrudy A, Sohraby M, Taghipour M, Motalebi M. Evaluation of ganciclovir resistance in cytomegalovirus infection of renal transplant recipients in Tehran. Transplant Proc 2016; 47:1140-2. [PMID: 26036539 DOI: 10.1016/j.transproceed.2014.10.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/28/2014] [Indexed: 10/23/2022]
Abstract
BACKGROUND Human cytomegalovirus (CMV) infection is a major issue in solid organ transplant recipients. Although development of prophylaxis and preemptive procedures have presented significantly improved consequences in CMV infection, increasing incidence of antiviral resistance has raised virologists' concern. METHODS The present study focused on kidney transplant recipients with high quantities of CMV load after antiviral therapy. We collected 5 mL blood from each of 58 patients. DNA extraction was performed with the use of the QIAamp DNA Mini kit (Qiagen), in accordance with the manufacturer's instructions. RESULTS Our population study was 38% female and 62% male. CMV DNA was observed in 50 specimens (86%) with the range of 1.9 × 10(3) to 11 × 10(7) copies/mL serum. All of these patients had received ganciclovir for >3 months. Sequencing showed 18 mutations in 10 patients. Among these, 16 mutations were associated with Ul97 and the rest with Ul54 gene. Forty CMV-positive patients did not show any mutations. CONCLUSIONS The consequences of long-term ganciclovir resistance could not be determined.
Collapse
Affiliation(s)
- S M Javad Hosseini
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - E Nemati
- Nephrology Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - F Behzadian
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - B Einollahi
- Nephrology Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - A Rahimi Petrudy
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - M Sohraby
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - M Taghipour
- Nephrology Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - M Motalebi
- Nephrology Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Hanson KE, Swaminathan S. Cytomegalovirus antiviral drug resistance: future prospects for prevention, detection and management. Future Microbiol 2015; 10:1545-8. [PMID: 26437628 PMCID: PMC11616969 DOI: 10.2217/fmb.15.82] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Kimberly E Hanson
- Department of Medicine, Division of Infectious Diseases, University of Utah, UT, USA
- Department of Pathology, ARUP Laboratories, University of Utah, UT, USA
| | - Sankar Swaminathan
- Department of Medicine, Division of Infectious Diseases, University of Utah, UT, USA
| |
Collapse
|
35
|
Melendez DP, Razonable RR. Letermovir and inhibitors of the terminase complex: a promising new class of investigational antiviral drugs against human cytomegalovirus. Infect Drug Resist 2015; 8:269-77. [PMID: 26345608 PMCID: PMC4531042 DOI: 10.2147/idr.s79131] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Infection with cytomegalovirus is prevalent in immunosuppressed patients. In solid organ transplant and hematopoietic stem cell transplant recipients, cytomegalovirus infection is associated with high morbidity and preventable mortality. Prevention and treatment of cytomegalovirus with currently approved antiviral drugs is often associated with side effects that sometimes preclude their use. Moreover, cytomegalovirus has developed mutations that confer resistance to standard antiviral drugs. During the last decade, there have been calls to develop novel antiviral drugs that could provide better options for prevention and treatment of cytomegalovirus. Letermovir (AIC246) is a highly specific antiviral drug that is currently undergoing clinical development for the management of cytomegalovirus infection. It acts by inhibiting the viral terminase complex. Letermovir is highly potent in vitro and in vivo against cytomegalovirus. Because of a distinct mechanism of action, it does not exhibit cross-resistance with other antiviral drugs. It is predicted to be active against strains that are resistant to ganciclovir, foscarnet, and cidofovir. To date, early-phase clinical trials suggest a very low incidence of adverse effects. Herein, we present a comprehensive review on letermovir, from its postulated novel mechanism of action to the results of most recent clinical studies.
Collapse
Affiliation(s)
- Dante P Melendez
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN, USA ; William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA
| | - Raymund R Razonable
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN, USA ; William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
36
|
[Immunomonitoring for cytomegalovirus infection in kidney transplantation: Development and prospects]. Nephrol Ther 2015. [PMID: 26206770 DOI: 10.1016/j.nephro.2015.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cytomegalovirus infection in kidney transplantation is associated with increased morbidity and mortality through direct and indirect effects. International guidelines had been recently updated, focusing on diagnostic, prevention strategies and curative treatment. Cytomegalovirus-specific immune response plays also an important function in controlling the virus. Here, we propose to present the different components of this specific immune response and the advantages of immune monitoring for patient's management: identification of patients who require a treatment, adaptation of curative treatment length, guidance for resistance genotypic testing.
Collapse
|
37
|
Kaminski H, Garrigue I, Couzi L, Taton B, Bachelet T, Moreau JF, Déchanet-Merville J, Thiébaut R, Merville P. Surveillance of γδ T Cells Predicts Cytomegalovirus Infection Resolution in Kidney Transplants. J Am Soc Nephrol 2015; 27:637-45. [PMID: 26054538 DOI: 10.1681/asn.2014100985] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 04/26/2015] [Indexed: 11/03/2022] Open
Abstract
Cytomegalovirus (CMV) infection in solid-organ transplantation is associated with increased morbidity and mortality, particularly if a CMV mutant strain with antiviral resistance emerges. Monitoring CMV-specific T cell response could provide relevant information for patient care. We and others have shown the involvement of Vδ2(neg) γδ T cells in controlling CMV infection. Here, we assessed if Vδ2(neg) γδ T cell kinetics in peripheral blood predict CMV infection resolution and emergence of a mutant strain in high-risk recipients of kidney transplants, including 168 seronegative recipients receiving organs from seropositive donors (D+R-) and 104 seropositive recipients receiving antithymocyte globulins (R+/ATG). Vδ2(neg) γδ T cell percentages were serially determined in patients grafted between 2003 and 2011. The growing phase of Vδ2(neg) γδ T cells was monitored in each infected patient, and the expansion rate during this phase was estimated individually by a linear mixed model. A Vδ2(neg) γδ T cell expansion rate of ˃0.06% per day predicted the growing phase. The time after infection at which an expansion rate of 0.06% per day occurred was correlated with the resolution of CMV DNAemia (r=0.91; P<0.001). At 49 days of antiviral treatment, Vδ2(neg) γδ T cell expansion onset was associated with recovery, whereas absence of expansion was associated with recurrent disease and DNAemia. The appearance of antiviral-resistant mutant CMV strains was associated with delayed Vδ2(neg) γδ T cell expansion (P<0.001). In conclusion, longitudinal surveillance of Vδ2(neg) γδ T cells in recipients of kidney transplants may predict CMV infection resolution and antiviral drug resistance.
Collapse
Affiliation(s)
| | - Isabelle Garrigue
- Virology and National Center of Scientific Research(CNRS), Research Unit 5234, Bordeaux, France
| | - Lionel Couzi
- Department of Nephrology, Transplantation, and Dialysis and National Center of Scientific Research, Mix Unit of Research 5164, Bordeaux, France
| | - Benjamin Taton
- Department of Nephrology, Transplantation, and Dialysis and
| | - Thomas Bachelet
- Department of Nephrology, Transplantation, and Dialysis and National Center of Scientific Research, Mix Unit of Research 5164, Bordeaux, France
| | - Jean-François Moreau
- National Center of Scientific Research, Mix Unit of Research 5164, Bordeaux, France; Immunology laboratories, Bordeaux University Hospital, Bordeaux, France
| | | | - Rodolphe Thiébaut
- French Institute of Health and Medical Research (INSERM), Institute of Public Health and Epidemiology and Development (ISPED), Center U897-Epidemiology-Biostatistics, Bordeaux, France; and National Institute for Research in Computer Science and Control (INRIA), Statistics In Systems biology and Translational Medicine (SISTM) Team, Bordeaux, France
| | - Pierre Merville
- Department of Nephrology, Transplantation, and Dialysis and National Center of Scientific Research, Mix Unit of Research 5164, Bordeaux, France;
| |
Collapse
|
38
|
Dogra P, Martin EB, Williams A, Richardson RL, Foster JS, Hackenback N, Kennel SJ, Sparer TE, Wall JS. Novel heparan sulfate-binding peptides for blocking herpesvirus entry. PLoS One 2015; 10:e0126239. [PMID: 25992785 PMCID: PMC4436313 DOI: 10.1371/journal.pone.0126239] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/31/2015] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection can lead to congenital hearing loss and mental retardation. Upon immune suppression, reactivation of latent HCMV or primary infection increases morbidity in cancer, transplantation, and late stage AIDS patients. Current treatments include nucleoside analogues, which have significant toxicities limiting their usefulness. In this study we screened a panel of synthetic heparin-binding peptides for their ability to prevent CMV infection in vitro. A peptide designated, p5+14 exhibited ~ 90% reduction in murine CMV (MCMV) infection. Because negatively charged, cell-surface heparan sulfate proteoglycans (HSPGs), serve as the attachment receptor during the adsorption phase of the CMV infection cycle, we hypothesized that p5+14 effectively competes for CMV adsorption to the cell surface resulting in the reduction in infection. Positively charged Lys residues were required for peptide binding to cell-surface HSPGs and reducing viral infection. We show that this inhibition was not due to a direct neutralizing effect on the virus itself and that the peptide blocked adsorption of the virus. The peptide also inhibited infection of other herpesviruses: HCMV and herpes simplex virus 1 and 2 in vitro, demonstrating it has broad-spectrum antiviral activity. Therefore, this peptide may offer an adjunct therapy for the treatment of herpes viral infections and other viruses that use HSPGs for entry.
Collapse
Affiliation(s)
- Pranay Dogra
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Emily B. Martin
- Department of Medicine, The University of Tennessee Graduate School of Medicine, Knoxville, Tennessee, United States of America
| | - Angela Williams
- Department of Medicine, The University of Tennessee Graduate School of Medicine, Knoxville, Tennessee, United States of America
| | - Raphael L. Richardson
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - James S. Foster
- Department of Medicine, The University of Tennessee Graduate School of Medicine, Knoxville, Tennessee, United States of America
| | - Nicole Hackenback
- Department of Medicine, The University of Tennessee Graduate School of Medicine, Knoxville, Tennessee, United States of America
| | - Stephen J. Kennel
- Department of Medicine, The University of Tennessee Graduate School of Medicine, Knoxville, Tennessee, United States of America
- Department of Radiology, The University of Tennessee Graduate School of Medicine, Knoxville, Tennessee, United States of America
| | - Tim E. Sparer
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Jonathan S. Wall
- Department of Medicine, The University of Tennessee Graduate School of Medicine, Knoxville, Tennessee, United States of America
- Department of Radiology, The University of Tennessee Graduate School of Medicine, Knoxville, Tennessee, United States of America
| |
Collapse
|
39
|
Chon WJ, Kadambi PV, Xu C, Becker YT, Witkowski P, Pursell K, Kane B, Josephson MA. Use of leflunomide in renal transplant recipients with ganciclovir-resistant/refractory cytomegalovirus infection: a case series from the University of Chicago. Case Rep Nephrol Dial 2015; 5:96-105. [PMID: 26000278 PMCID: PMC4427155 DOI: 10.1159/000381470] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Introduction Although antiviral prophylaxis for cytomegalovirus (CMV) is widely used, CMV infection remains common in renal transplant recipients with adverse consequences. Methods We report 5 cases of renal transplant recipients with resistant CMV infection who were successfully managed with leflunomide at the University of Chicago Medical Center. Results Five renal transplant recipients (2 simultaneous pancreas/kidney transplants, 3 deceased donor kidney transplants) were diagnosed with GCV-resistant CMV infection from 2003 to 2011. Of the 4 patients who had resistance genotype testing, 3 showed a UL97 mutation and 1 patient had a clinically resistant CMV infection. All patients received CMV prophylaxis with valganciclovir for 3 months. The number of days from the date of transplant to viremia ranged from 38 to 458 days (median 219). All 5 patients received other antiviral agents (e.g. ganciclovir, foscarnet), and in 4 patients, viremia was cleared before leflunomide was initiated as consolidation (or maintenance) therapy. Conclusion Leflunomide was well tolerated and successful in preventing recurrence of viremia in renal transplant recipients with resistant CMV infection. The beneficial effect of leflunomide in this setting warrants further investigation.
Collapse
Affiliation(s)
- W James Chon
- Section of Nephrology, University of Chicago, Chicago, Ill., USA
| | - Pradeep V Kadambi
- Division of Nephrology and Transplant Medicine, University of Arizona, Tucson, Ariz., USA
| | - Chang Xu
- Section of Nephrology, University of Chicago, Chicago, Ill., USA
| | - Yolanda T Becker
- Section of Transplant Surgery, University of Chicago, Chicago, Ill., USA
| | - Piotr Witkowski
- Section of Transplant Surgery, University of Chicago, Chicago, Ill., USA
| | - Kenneth Pursell
- Section of Infectious Disease, University of Chicago, Chicago, Ill., USA
| | - Brenna Kane
- Department of Pharmacy Services, University of Chicago, Chicago, Ill., USA
| | | |
Collapse
|
40
|
Holmes-Liew CL, Holmes M, Beagley L, Hopkins P, Chambers D, Smith C, Khanna R. Adoptive T-cell immunotherapy for ganciclovir-resistant CMV disease after lung transplantation. Clin Transl Immunology 2015; 4:e35. [PMID: 25859390 PMCID: PMC4386617 DOI: 10.1038/cti.2015.5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/12/2015] [Accepted: 02/12/2015] [Indexed: 01/02/2023] Open
Abstract
Infections with cytomegalovirus (CMV) can induce severe complications after solid organ transplantation (SOT). The prognosis for ganciclovir-resistant CMV infection and disease is particularly poor. Whereas adoptive transfer of CMV-specific T cells has emerged as a powerful tool in hematopoietic stem cell transplant patients, its translation into the SOT setting remains a significant challenge as underlying immunosuppression inhibits the virus-specific T-cell response in vivo. Here, we demonstrate successful expansion and adoptive transfer of autologous CMV-specific T cells from a seronegative recipient of a seropositive lung allograft with ganciclovir-resistant CMV disease, resulting in the long-term reconstitution of protective anti-viral immunity, CMV infection, disease-free survival and no allograft rejection.
Collapse
Affiliation(s)
- Chien-Li Holmes-Liew
- South Australian Lung Transplant Unit, Department of Thoracic Medicine, Royal Adelaide Hospital , Adelaide, South Australia, Australia ; Faculty of Health Sciences, School of Medicine, University of Adelaide , Adelaide, South Australia, Australia
| | - Mark Holmes
- South Australian Lung Transplant Unit, Department of Thoracic Medicine, Royal Adelaide Hospital , Adelaide, South Australia, Australia ; Faculty of Health Sciences, School of Medicine, University of Adelaide , Adelaide, South Australia, Australia
| | - Leone Beagley
- QIMR Centre for Immunotherapy and Vaccine Development, QIMR Berghofer Medical Research Institute , Brisbane, Queensland, Australia
| | - Peter Hopkins
- Queensland Lung Transplant Service, The Prince Charles Hospital , Brisbane, Queensland, Australia ; School of medicine, The University of Queensland , Brisbane, Queensland, Australia
| | - Daniel Chambers
- Queensland Lung Transplant Service, The Prince Charles Hospital , Brisbane, Queensland, Australia ; School of medicine, The University of Queensland , Brisbane, Queensland, Australia
| | - Corey Smith
- QIMR Centre for Immunotherapy and Vaccine Development, QIMR Berghofer Medical Research Institute , Brisbane, Queensland, Australia
| | - Rajiv Khanna
- QIMR Centre for Immunotherapy and Vaccine Development, QIMR Berghofer Medical Research Institute , Brisbane, Queensland, Australia
| |
Collapse
|
41
|
In vitro drug combination studies of Letermovir (AIC246, MK-8228) with approved anti-human cytomegalovirus (HCMV) and anti-HIV compounds in inhibition of HCMV and HIV replication. Antimicrob Agents Chemother 2015; 59:3140-8. [PMID: 25779572 DOI: 10.1128/aac.00114-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/06/2015] [Indexed: 12/13/2022] Open
Abstract
Despite modern prevention and treatment strategies, human cytomegalovirus (HCMV) remains a common opportunistic pathogen associated with serious morbidity and mortality in immunocompromised individuals, such as transplant recipients and AIDS patients. All drugs currently licensed for the treatment of HCMV infection target the viral DNA polymerase and are associated with severe toxicity issues and the emergence of drug resistance. Letermovir (AIC246, MK-8228) is a new anti-HCMV agent in clinical development that acts via a novel mode of action and has demonstrated anti-HCMV activity in vitro and in vivo. For the future, drug combination therapies, including letermovir, might be indicated under special medical conditions, such as the emergence of multidrug-resistant virus strains in transplant recipients or in HCMV-HIV-coinfected patients. Accordingly, knowledge of the compatibility of letermovir with other HCMV or HIV antivirals is of medical importance. Here, we evaluated the inhibition of HCMV replication by letermovir in combination with all currently approved HCMV antivirals using cell culture checkerboard assays. In addition, the effects of letermovir on the antiviral activities of selected HIV drugs, and vice versa, were analyzed. Using two different mathematical techniques to analyze the experimental data, (i) additive effects were observed for the combination of letermovir with anti-HCMV drugs and (ii) no interaction was found between letermovir and anti-HIV drugs. Since none of the tested drug combinations significantly antagonized letermovir efficacy (or vice versa), our findings suggest that letermovir may offer the potential for combination therapy with the tested HCMV and HIV drugs.
Collapse
|
42
|
Macesic N, Langsford D, Nicholls K, Hughes P, Gottlieb DJ, Clancy L, Blyth E, Micklethwaite K, Withers B, Majumdar S, Fleming S, Sasadeusz J. Adoptive T cell immunotherapy for treatment of ganciclovir-resistant cytomegalovirus disease in a renal transplant recipient. Am J Transplant 2015; 15:827-32. [PMID: 25648555 DOI: 10.1111/ajt.13023] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 01/25/2023]
Abstract
Cytomegalovirus (CMV) is a significant cause of morbidity, mortality and graft loss in solid organ transplantation (SOT). Treatment options for ganciclovir-resistant CMV are limited. We describe a case of ganciclovir-resistant CMV disease in a renal transplant recipient manifested by thrombotic microangiopathy-associated glomerulopathy. Adoptive T cell immunotherapy using CMV-specific T cells from a donor bank was used as salvage therapy. This report is a proof-of-concept of the clinical and logistical feasibility of this therapy in SOT recipients.
Collapse
Affiliation(s)
- N Macesic
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zumla A, Al-Tawfiq JA, Enne VI, Kidd M, Drosten C, Breuer J, Muller MA, Hui D, Maeurer M, Bates M, Mwaba P, Al-Hakeem R, Gray G, Gautret P, Al-Rabeeah AA, Memish ZA, Gant V. Rapid point of care diagnostic tests for viral and bacterial respiratory tract infections--needs, advances, and future prospects. THE LANCET. INFECTIOUS DISEASES 2014; 14:1123-1135. [PMID: 25189349 PMCID: PMC7106435 DOI: 10.1016/s1473-3099(14)70827-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Respiratory tract infections rank second as causes of adult and paediatric morbidity and mortality worldwide. Respiratory tract infections are caused by many different bacteria (including mycobacteria) and viruses, and rapid detection of pathogens in individual cases is crucial in achieving the best clinical management, public health surveillance, and control outcomes. Further challenges in improving management outcomes for respiratory tract infections exist: rapid identification of drug resistant pathogens; more widespread surveillance of infections, locally and internationally; and global responses to infections with pandemic potential. Developments in genome amplification have led to the discovery of several new respiratory pathogens, and sensitive PCR methods for the diagnostic work-up of these are available. Advances in technology have allowed for development of single and multiplexed PCR techniques that provide rapid detection of respiratory viruses in clinical specimens. Microarray-based multiplexing and nucleic-acid-based deep-sequencing methods allow simultaneous detection of pathogen nucleic acid and multiple antibiotic resistance, providing further hope in revolutionising rapid point of care respiratory tract infection diagnostics.
Collapse
Affiliation(s)
- Alimuddin Zumla
- Division of Infection and Immunity, University College London, London, UK; NIHR Biomedical Research Center, University College London Hospitals, London, UK; Department of Medical Microbiology, University College London Hospitals NHS Foundation Trust, London, UK; Global Center for Mass Gatherings Medicine, Ministry of Health, Riyadh, Kingdom of Saudi Arabia; UNZA-UCLMS Research and Training Project, University Teaching Hospital, Lusaka, Zambia.
| | | | - Virve I Enne
- Division of Infection and Immunity, University College London, London, UK
| | - Mike Kidd
- Division of Infection and Immunity, University College London, London, UK; Department of Medical Microbiology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Christian Drosten
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Judy Breuer
- Division of Infection and Immunity, University College London, London, UK; NIHR Biomedical Research Center, University College London Hospitals, London, UK; Department of Medical Microbiology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Marcel A Muller
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - David Hui
- Division of Respiratory Medicine and Stanley Ho Center for emerging Infectious Diseases, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong
| | - Markus Maeurer
- Therapeutic Immunology, Departments of Laboratory Medicine and Microbiology, Tumour and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Matthew Bates
- Division of Infection and Immunity, University College London, London, UK; UNZA-UCLMS Research and Training Project, University Teaching Hospital, Lusaka, Zambia
| | - Peter Mwaba
- UNZA-UCLMS Research and Training Project, University Teaching Hospital, Lusaka, Zambia
| | - Rafaat Al-Hakeem
- Global Center for Mass Gatherings Medicine, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | - Gregory Gray
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Philippe Gautret
- Assistance Publique Hôpitaux de Marseille, CHU Nord, Pôle Infectieux, Institut Hospitalo-Universitaire Méditerranée Infection & Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), Marseille, France
| | - Abdullah A Al-Rabeeah
- Global Center for Mass Gatherings Medicine, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | - Ziad A Memish
- Global Center for Mass Gatherings Medicine, Ministry of Health, Riyadh, Kingdom of Saudi Arabia; Al-Faisal University, Riyadh, Saudi Arabia
| | - Vanya Gant
- Department of Medical Microbiology, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
44
|
Abstract
In treating cytomegalovirus (CMV) infection, it is crucial to decide whether one is treating pre-emptively or if one is treating established disease. Disease may be further divided into viral syndrome and tissue-invasive disease. Generally, mild disease in immunosuppressed patients may be treated with oral valganciclovir. Treatment may also be started with valganciclovir for CMV retinitis in AIDS patients. In other tissue-invasive syndromes, starting with intravenous ganciclovir or foscarnet at full doses (adjusted for renal function) is preferred. Treatment at full doses should be continued until symptom resolution and until blood antigenemia (or DNAemia) is cleared. Patients receiving treatment must be closely monitored for side effects to the drugs, as well as for response. Drug-resistant CMV is a therapeutic challenge; combination therapy with both ganciclovir and foscarnet may be tried. In extreme cases, resorting to unconventional agents like leflunomide or maribavir may be necessary. Immune reconstitution, through reduction in immunosuppression, or the introduction of anti-retroviral therapy, should be attempted. CMX001 is a novel agent active against double-stranded viruses; thus far, resistance to CMX001 does not confer resistance to ganciclovir or foscarnet. Hence, prophylaxis or pre-emptive treatment with CMX001 may allow the use of ganciclovir or foscarnet for treatment.
Collapse
|
45
|
|
46
|
Piret J, Boivin G. Antiviral drug resistance in herpesviruses other than cytomegalovirus. Rev Med Virol 2014; 24:186-218. [DOI: 10.1002/rmv.1787] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/23/2014] [Accepted: 01/29/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Jocelyne Piret
- Research Center in Infectious Diseases; Laval University; Quebec City QC Canada
| | - Guy Boivin
- Research Center in Infectious Diseases; Laval University; Quebec City QC Canada
| |
Collapse
|
47
|
Elbasani E, Gabaev I, Steinbrück L, Messerle M, Borst EM. Analysis of essential viral gene functions after highly efficient adenofection of cells with cloned human cytomegalovirus genomes. Viruses 2014; 6:354-70. [PMID: 24452007 PMCID: PMC3917448 DOI: 10.3390/v6010354] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 12/15/2022] Open
Abstract
Human cytomegalovirus (HCMV) has a large 240 kb genome that may encode more than 700 gene products with many of them remaining uncharacterized. Mutagenesis of bacterial artificial chromosome (BAC)-cloned CMV genomes has greatly facilitated the analysis of viral gene functions. However, the roles of essential proteins often remain particularly elusive because their investigation requires the cumbersome establishment of suitable complementation systems. Here, we show that HCMV genomes can be introduced into cells with unprecedented efficiency by applying a transfection protocol based on replication-defective, inactivated adenovirus particles (adenofection). Upon adenofection of several permissive cell types with HCMV genomes carrying mutations in essential genes, transfection rates of up to 60% were observed and viral proteins of all kinetic classes were found expressed. This enabled further analyses of the transfected cells by standard biochemical techniques. Remarkably, HCMV genomes lacking elements essential for viral DNA replication, such as the lytic origin of replication, still expressed several late proteins. In conclusion, adenofection allows the study of essential HCMV genes directly in BAC-transfected cells without the need for sophisticated complementation strategies.
Collapse
Affiliation(s)
- Endrit Elbasani
- Department of Virology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | - Ildar Gabaev
- Department of Virology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | - Lars Steinbrück
- Department of Virology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | - Martin Messerle
- Department of Virology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | - Eva Maria Borst
- Department of Virology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| |
Collapse
|
48
|
Ramanan P, Razonable RR. Cytomegalovirus infections in solid organ transplantation: a review. Infect Chemother 2013; 45:260-71. [PMID: 24396627 PMCID: PMC3848521 DOI: 10.3947/ic.2013.45.3.260] [Citation(s) in RCA: 231] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Indexed: 12/12/2022] Open
Abstract
Cytomegalovirus (CMV) continues to have a tremendous impact in solid organ transplantation despite remarkable advances in its diagnosis, prevention and treatment. It can affect allograft function and increase patient morbidity and mortality through a number of direct and indirect effects. Patients may develop asymptomatic viremia, CMV syndrome or tissue-invasive disease. Late-onset CMV disease continues to be a major problem in high-risk patients after completion of antiviral prophylaxis. Emerging data suggests that immunologic monitoring may be useful in predicting the risk of late onset CMV disease. There is now increasing interest in the development of an effective vaccine for prevention. Novel antiviral drugs with unique mechanisms of action and lesser toxicity are being developed. Viral load quantification is now undergoing standardization, and this will permit the generation of clinically relevant viral thresholds for the management of patients. This article provides a brief overview of the contemporary epidemiology, clinical presentation, diagnosis, prevention and treatment of CMV infection in solid organ transplant recipients.
Collapse
Affiliation(s)
- Poornima Ramanan
- Division of Infectious Diseases, Department of Medicine and the William J von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Raymund R Razonable
- Division of Infectious Diseases, Department of Medicine and the William J von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
49
|
Comparison of six real-time PCR assays for qualitative detection of cytomegalovirus in clinical specimens. J Clin Microbiol 2013; 51:3749-52. [PMID: 24006002 DOI: 10.1128/jcm.02005-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In this study, we compared the performance of six real-time PCR assays for the qualitative detection of cytomegalovirus (CMV) in clinical samples other than plasma. Two hundred specimens (respiratory [n = 72], urine [n = 67], cerebrospinal fluid [CSF] [n = 25], tissue [n = 18], amniotic fluid [n = 10], and bone marrow [n = 8]) submitted for routine testing by CMV real-time PCR analyte-specific reagents (ASR) (Roche Diagnostics, Indianapolis, IN) were also tested by a laboratory-developed test (LDT) and 4 commercially available PCR assays: EraGen Multicode (Luminex, Austin, TX), Focus Simplexa (Focus Diagnostics, Cypress, CA), Elitech MGB Alert CMV (Fisher Scientific, Hanover Park, IL), and Abbott CMV (Abbott Park, IL). Nucleic acid was extracted using the MagNA Pure system (Roche Diagnostics) and subsequently tested by each PCR method. Results were analyzed by comparing each assay to a "consensus result," which was defined as the result obtained from at least 4 of the 6 assays. In addition to the prospective samples, 13 lower respiratory samples with known positive results by CMV shell vial were tested by each PCR method. Following testing of the 200 prospective specimens, the Abbott, Elitech, EraGen, and Focus PCR assays demonstrated a sensitivity of 100% (46/46), while the Roche analyte-specific reagents (ASR) and LDT showed sensitivities of 89% (41/46) and 98% (45/46), respectively. Percent specificities ranged from 97% (149/154) by Elitech to 100% (154/154) by the LDT. Among the 13 shell vial-positive lower respiratory samples, the percent sensitivities ranged from 69% (9/13) by Elitech to 92% (12/13) by the LDT. The Abbott, EraGen, Elitech, Focus, and LDT PCR assays performed similarly (κ ≥ 0.89) for the detection of CMV in clinical specimens and demonstrated increased sensitivity compared to the Roche ASR.
Collapse
|