1
|
Costa MM, Corbel V, Ben Hamouda R, Almeras L. MALDI-TOF MS Profiling and Its Contribution to Mosquito-Borne Diseases: A Systematic Review. INSECTS 2024; 15:651. [PMID: 39336619 PMCID: PMC11432722 DOI: 10.3390/insects15090651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024]
Abstract
Mosquito-borne diseases are responsible for hundreds of thousands of deaths per year. The identification and control of the vectors that transmit pathogens to humans are crucial for disease prevention and management. Currently, morphological classification and molecular analyses via DNA barcoding are the standard methods used for vector identification. However, these approaches have several limitations. In the last decade, matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) profiling has emerged as an innovative technology in biological sciences and is now considered as a relevant tool for the identification of pathogens and arthropods. Beyond species identification, this tool is also valuable for determining various life traits of arthropod vectors. The purpose of the present systematic review was to highlight the contribution of MALDI-TOF MS to the surveillance and control of mosquito-borne diseases. Published articles from January 2003 to August 2024 were retrieved, focusing on different aspects of mosquito life traits that could be determinants in disease transmission and vector management. The screening of the scientific literature resulted in the selection of 54 published articles that assessed MALDI-TOF MS profiling to study various mosquito biological factors, such species identification, life expectancy, gender, trophic preferences, microbiota, and insecticide resistance. Although a large majority of the selected articles focused on species identification, the present review shows that MALDI-TOF MS profiling is promising for rapidly identifying various mosquito life traits, with high-throughput capacity, reliability, and low cost. The strengths and weaknesses of this proteomic tool for vector control and surveillance are discussed.
Collapse
Affiliation(s)
- Monique Melo Costa
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (M.M.C.); (R.B.H.)
- Aix Marseille Univ, SSA, AP-HM, RITMES, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Vincent Corbel
- Institut de Recherche pour le Développement (IRD), MIVEGEC, Univ. Montpellier, CNRS, IRD, 911 Av. Agropolis, 34394 Montpellier, France;
- Laboratório de Fisiologia e Controle de Artrópodes Vetores (Laficave), Fundação Oswaldo Cruz (FIOCRUZ), Instituto Oswaldo Cruz (IOC), Avenida Brasil, 4365 Manguinhos, Rio de Janeiro 21040-360, Brazil
| | - Refka Ben Hamouda
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (M.M.C.); (R.B.H.)
- Aix Marseille Univ, SSA, AP-HM, RITMES, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Lionel Almeras
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (M.M.C.); (R.B.H.)
- Aix Marseille Univ, SSA, AP-HM, RITMES, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| |
Collapse
|
2
|
Sánchez Herrera M, Forero D, Calor AR, Romero GQ, Riyaz M, Callisto M, de Oliveira Roque F, Elme-Tumpay A, Khan MK, Justino de Faria AP, Pires MM, Silva de Azevêdo CA, Juen L, Zakka U, Samaila AE, Hussaini S, Kemabonta K, Guillermo-Ferreira R, Ríos-Touma B, Maharaj G. Systematic challenges and opportunities in insect monitoring: a Global South perspective. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230102. [PMID: 38705182 PMCID: PMC11070269 DOI: 10.1098/rstb.2023.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/21/2024] [Indexed: 05/07/2024] Open
Abstract
Insect monitoring is pivotal for assessing biodiversity and informing conservation strategies. This study delves into the complex realm of insect monitoring in the Global South-world developing and least-developed countries as identified by the United Nations Conference on Trade and Development-highlighting challenges and proposing strategic solutions. An analysis of publications from 1990 to 2024 reveals an imbalance in research contributions between the Global North and South, highlighting disparities in entomological research and the scarcity of taxonomic expertise in the Global South. We discuss the socio-economic factors that exacerbate the issues, including funding disparities, challenges in collaboration, infrastructure deficits, information technology obstacles and the impact of local currency devaluation. In addition, we emphasize the crucial role of environmental factors in shaping insect diversity, particularly in tropical regions facing multiple challenges including climate change, urbanization, pollution and various anthropogenic activities. We also stress the need for entomologists to advocate for ecosystem services provided by insects in addressing environmental issues. To enhance monitoring capacity, we propose strategies such as community engagement, outreach programmes and cultural activities to instill biodiversity appreciation. Further, language inclusivity and social media use are emphasized for effective communication. More collaborations with Global North counterparts, particularly in areas of molecular biology and remote sensing, are suggested for technological advancements. In conclusion, advocating for these strategies-global collaborations, a diverse entomological community and the integration of transverse disciplines-aims to address challenges and foster inclusive, sustainable insect monitoring in the Global South, contributing significantly to biodiversity conservation and overall ecosystem health. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Collapse
Affiliation(s)
- Melissa Sánchez Herrera
- Department of Museum Research and Collections, University of Alabama Museums, Tuscaloosa, AL 35487, USA
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
- Laboratorio de Zoología y Ecología Acuática (LAZOEA), Biological Sciences Department, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Dimitri Forero
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, 11132, Colombia
| | - Adolfo Ricardo Calor
- Instituto de Biologia, Laboratório de Entomologia Aquática, Universidade Federal da Bahia, Salvador, 40000-000, Brazil
| | - Gustavo Q. Romero
- Laboratório de Interações Multitróficas e Biodiversidade, Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CP 6109, Campinas-SP, CEP 13083-970, Brazil
| | - Muzafar Riyaz
- St Xavier's College, Palayamkottai, Tirunelveli, Tamil Nadu, CEP: 40170-115 7 – 627002, India
| | - Marcos Callisto
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Genética, Ecologia e Evolução, Pampulha, Belo Horizonte - MG, 31270-901, Brazil
| | - Fabio de Oliveira Roque
- Departamento de Biología, Universidade Federal de Mato Grosso do Sul, Ciudade Universitaria, Pioneiros, Campo Grande, MS, 79070-900, Brazil
- Centre for Tropical Environmental and Sustainability Science and College of Science and Engineering, James Cook University, Douglas, Cairns, 4811, Queensland, Australia
| | - Araseli Elme-Tumpay
- Laboratorio de Biodiversidad y Genética Ambiental (BioGeA), Universidad Nacional de Avellaneda, Mario Bravo 1460, CP1870 Piñeyro, Avellaneda, Buenos Aires, Argentina
- Colección Entomológica, Universidad Nacional de San Antonio Abad del Cusco, Gabinete C-338, Pabellón C, Ciudad Universitaria de Perayoc, Cusco, 08003, Peru
| | - M. Kawsar Khan
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, 14195, Germany
| | - Ana Paula Justino de Faria
- Instituto de Ciências Biológicas, Universidade Estadual do Piauí, Rua João Cabral - Matinha, Teresina - PI, 64018-030, Brazil
| | - Mateus Marques Pires
- Laboratory of Ecology and Conservation of Aquatic Ecosystems, Universidade do Vale do Taquari - UNIVATES, Lajeado, RS, 95914-014 Brazil
| | - Carlos Augusto Silva de Azevêdo
- Departamento de Biología, Universidade Estadual do Maranhão, Programa em Biodiversidade, Ambiente e Saúde, 65.055-310, Brazil
| | - Leandro Juen
- Instituto de Ciências Biológicas, Universidade Federal do Pará, UFPA, Belém - PA, 66077-830, Brazil
| | - Usman Zakka
- Department of Crop & Soil Science, University of Port Harcourt, Port Harcourt 500272, Nigeria
| | - Akeweta Emmanuel Samaila
- Department of Agronomy, Federal University of Kashere: Kashere, P.M.B. 0182, Gombe State, Nigeria
| | - Suwaiba Hussaini
- Department of Biological Sciences, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Kehinde Kemabonta
- Department of Zoology, University of Lagos: Akoka, Lagos, 100213, Nigeria
| | - Rhainer Guillermo-Ferreira
- Centro de Pesquisas em Entomologia e Biologia Experimental, Universidade Federal do Triangulo Mineiro (UFTM), Uberaba - MG, 38061-500, Brazil
| | - Blanca Ríos-Touma
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud (BIOMAS), Universidad de Las Américas, Campus UDLAPARK, Quito, Ecuador 170513
| | - Gyanpriya Maharaj
- University of Guyana, Centre for the Study of Biological Diversity, Georgetown, Guyana
| |
Collapse
|
3
|
Benyahia H, Parola P, Almeras L. Evolution of MALDI-TOF MS Profiles from Lice and Fleas Preserved in Alcohol over Time. INSECTS 2023; 14:825. [PMID: 37887837 PMCID: PMC10607003 DOI: 10.3390/insects14100825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
MALDI-TOF is now considered a relevant tool for the identification of arthropods, including lice and fleas. However, the duration and conditions of storage, such as in ethanol, which is frequently used to preserve these ectoparasites, could impede their classification. The purpose of the present study was to assess the stability of MS profiles from Pediculus humanus corporis lice and Ctenocephalides felis fleas preserved in alcohol from one to four years and kinetically submitted to MALDI-TOF MS. A total of 469 cephalothoraxes from lice (n = 170) and fleas (n = 299) were tested. The reproducibility of the MS profiles was estimated based on the log score values (LSVs) obtained for query profiles compared to the reference profiles included in the MS database. Only MS spectra from P. humanus corporis and C. felis stored in alcohol for less than one year were included in the reference MS database. Approximately 75% of MS spectra from lice (75.2%, 94/125) and fleas (74.4%, 122/164) specimens stored in alcohol for 12 to 48 months, queried against the reference MS database, obtained relevant identification. An accurate analysis revealed a significant decrease in the proportion of identification for both species stored for more than 22 months in alcohol. It was hypothesized that incomplete drying was responsible for MS spectra variations. Then, 45 lice and 60 fleas were subjected to longer drying periods from 12 to 24 h. The increase in the drying period improved the proportion of relevant identification for lice (95%) and fleas (80%). This study highlighted that a correct rate of identification by MS could be obtained for lice and fleas preserved in alcohol for up to four years on the condition that the drying period was sufficiently long for accurate identification.
Collapse
Affiliation(s)
- Hanene Benyahia
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France; (H.B.); (P.P.)
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Philippe Parola
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France; (H.B.); (P.P.)
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Lionel Almeras
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France; (H.B.); (P.P.)
- IHU Méditerranée Infection, 13005 Marseille, France
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France
| |
Collapse
|
4
|
MALDI-TOF MS Identification of Dromedary Camel Ticks and Detection of Associated Microorganisms, Southern Algeria. Microorganisms 2022; 10:microorganisms10112178. [DOI: 10.3390/microorganisms10112178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
This study used MALDI-TOF MS and molecular tools to identify tick species infesting camels from Tamanrasset in southern Algeria and to investigate their associated microorganisms. Ninety-one adult ticks were collected from nine camels and were morphologically identified as Hyalomma spp., Hyalomma dromedarii, Hyalomma excavatum, Hyalomma impeltatum and Hyalomma anatolicum. Next, the legs of all ticks were subjected to MALDI-TOF MS, and 88/91 specimens provided good-quality MS spectra. Our homemade MALDI-TOF MS arthropod spectra database was then updated with the new MS spectra of 14 specimens of molecularly confirmed species in this study. The spectra of the remaining tick specimens not included in the MS database were queried against the upgraded database. All 74 specimens were correctly identified by MALDI-TOF MS, with logarithmic score values ranging from 1.701 to 2.507, with median and mean values of 2.199 and 2.172 ± 0.169, respectively. One H. impeltatum and one H. dromedarii (2/91; 2.20%) tested positive by qPCR for Coxiella burnetii, the agent of Q fever. We also report the first detection of an Anaplasma sp. close to A. platys in H. dromedarii in Algeria and a potentially new Ehrlichia sp. in H. impeltatum.
Collapse
|
5
|
Chaiphongpachara T, Weluwanarak T, Changbunjong T. Intraspecific variation in wing geometry among Tabanus rubidus (Diptera: Tabanidae) populations in Thailand. Front Vet Sci 2022; 9:920755. [PMID: 36118331 PMCID: PMC9480827 DOI: 10.3389/fvets.2022.920755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Tabanus rubidus (Wiedemann, 1821) (Diptera: Tabanidae) is a hematophagous insect of veterinary and medical importance and is the predominant Tabanus spp. in Thailand. It is a potential mechanical vector of Trypanosoma evansi, which causes surra in domestic and wild animals. Wing geometric morphometrics is widely used as morphological markers for species identification and to assess the insect population structure. Herein, we investigated the intraspecific variation in wing geometry among T. rubidus populations in Thailand using landmark-based geometric morphometric analysis. Tabanus rubidus females were collected from five populations in four geographical regions in Thailand. The left wings of 240 specimens were removed and digitized using 22 landmarks for analysis. While wing size variations were found between some populations, wing shape variations were detected in all. These intraspecific variations in T. rubidus populations indicate an adaptive response to the local environmental conditions.
Collapse
Affiliation(s)
- Tanawat Chaiphongpachara
- Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Bangkok, Thailand
| | - Thekhawet Weluwanarak
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Tanasak Changbunjong
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
- Department of Pre-clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
- *Correspondence: Tanasak Changbunjong
| |
Collapse
|
6
|
Abdellahoum Z, Nebbak A, Lafri I, Kaced A, Bouhenna MM, Bachari K, Boumegoura A, Agred R, Boudchicha RH, Smadi MA, Maurin M, Bitam I. Identification of Algerian field-caught mosquito vectors by MALDI-TOF MS. Vet Parasitol Reg Stud Reports 2022; 31:100735. [PMID: 35569916 DOI: 10.1016/j.vprsr.2022.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Vector-borne diseases represent a real threats worldwide, in reason of the lack of vaccine and cure for some diseases. Among arthropod vectors, mosquitoes are described to be the most dangerous animal on earth, resulting in an estimated 725,000 deaths per year due to their borne diseases. Geographical position of Algeria makes this country a high risk area for emerging and re-emerging diseases, such as dengue coming from north (Europe) and malaria from south (Africa). To prevent these threats, rapid and continuous surveillance of mosquito vectors is essential. For this purpose we aimed in this study to create a mosquito vectors locale database using MALDI-TOF mass spectrometry technology for rapid identification of these arthropods. This methodology was validated by testing 211 mosquitoes, including four species (Aedes albopictus, Culex pipiens, Culex quinquefasciatus, and Culiseta longiareolata), in two northern wilayahs of Algeria (Algiers and Bejaia). Species determination by MALDI TOF MS was highly concordant with reference phenotypic and genetic methods. Using this MALDI-TOF MS tool will allow better surveillance of mosquito species able to transmit mosquito borne diseases in Algeria.
Collapse
Affiliation(s)
- Zakaria Abdellahoum
- Laboratoire Biodiversité et Environnement: Interaction Génome, Faculté des Sciences Biologique, Université des Sciences et de la Technologie Houari Boumediene, Alger 16111, Algeria
| | - Amira Nebbak
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Zone Industrielle, BP 284 Bou-Ismail, Tipaza, Algeria
| | - Ismail Lafri
- Laboratoire des Biotechnologies Liées à la Reproduction Animale, Institut des Sciences Vétérinaires, Université Blida 1, BP 270 Blida, Algeria.
| | - Amel Kaced
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Zone Industrielle, BP 284 Bou-Ismail, Tipaza, Algeria
| | - Mustapha Mounir Bouhenna
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Zone Industrielle, BP 284 Bou-Ismail, Tipaza, Algeria
| | - Khaldoun Bachari
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Zone Industrielle, BP 284 Bou-Ismail, Tipaza, Algeria
| | - Ali Boumegoura
- National Centre for Biotechnology Research, Ali Mendjli Nouvelle Ville, UV 03, BP E73 Constantine, Algeria.
| | - Rym Agred
- National Centre for Biotechnology Research, Ali Mendjli Nouvelle Ville, UV 03, BP E73 Constantine, Algeria.
| | - Rima Hind Boudchicha
- National Centre for Biotechnology Research, Ali Mendjli Nouvelle Ville, UV 03, BP E73 Constantine, Algeria.
| | - Mustapha Adnane Smadi
- National Centre for Biotechnology Research, Ali Mendjli Nouvelle Ville, UV 03, BP E73 Constantine, Algeria; Veterinary and Agricultural Sciences Institute, Department of Veterinary Sciences, University of Batna 1, Batna, Algeria
| | - Max Maurin
- Centre National de Référence des Francisella, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, 38043 Grenoble, France; Centre National de la Recherche Scientifique, TIMC-IMAG, UMR5525, Université Grenoble Alpes, 38400, Saint Martin d'Heres, France.
| | - Idir Bitam
- Laboratoire Biodiversité et Environnement: Interaction Génome, Faculté des Sciences Biologique, Université des Sciences et de la Technologie Houari Boumediene, Alger 16111, Algeria; Ecole Supérieure des Sciences de l'Aliment et des Industries Alimentaires, Alger 16004, Algeria
| |
Collapse
|
7
|
Huynh LN, Diarra AZ, Nguyen HS, Tran LB, Do VN, Ly TDA, Ho VH, Nguyen XQ, Parola P. MALDI-TOF mass spectrometry identification of mosquitoes collected in Vietnam. Parasit Vectors 2022; 15:39. [PMID: 35090542 PMCID: PMC8795957 DOI: 10.1186/s13071-022-05149-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 01/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a tool that has revolutionised clinical microbiology and has recently been described as an innovative and effective approach to arthropod identification. METHODS In this study, mosquitoes were captured in Vietnam using four different methods (human landing catch, CDC light traps, BG-Sentinel traps, animal-baited net traps). A total of 4215 mosquitoes were captured and morphologically identified as belonging to three genera: Aedes, Anopheles and Culex. We randomly selected 1253 mosquitoes, including 662 specimens of 14 Anopheles species, 200 specimens of two Aedes species and 391 morphologically unidentified Culex specimens, for molecular and MALDI-TOF MS analysis. The DNA from 98 mosquitoes (69 Anopheles specimens, 23 Culex specimens and six Aedes sp. specimens) was subjected to molecular analysis, either to confirm our morphological identification or the MALDI-TOF MS results, as well as to identify the Culex species that were morphologically identified at the genus level and to resolve the discrepancies between the morphological identification and the MALDI-TOF MS identification. RESULTS High-quality MS spectra were obtained for 1058 of the 1253 specimens (84%), including 192/200 for Aedes, 589/662 for Anopheles and 277/391 for Culex. The blind test showed that 986/997 (99%) of the specimens were correctly identified by MALDI-TOF MS, with log score values ranging from 1.708 to 2.843. Eleven specimens of Culex could not be identified based on morphological features, MALDI-TOF MS or molecular analysis. CONCLUSIONS This study enabled us to identify several species of mosquitoes from Vietnam using MALDI-TOF MS, and to enrich our database of MALDI-TOF MS reference spectra.
Collapse
Affiliation(s)
- Ly Na Huynh
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.,IHU-Méditerranée Infection, Marseille, France.,Institute of Malariology, Parasitology and Entomology Quy Nhon (IMPE-QN), Quy Nhon, Vietnam
| | - Adama Zan Diarra
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Hong Sang Nguyen
- Institute of Malariology, Parasitology and Entomology Quy Nhon (IMPE-QN), Quy Nhon, Vietnam
| | - Long Bien Tran
- Institute of Malariology, Parasitology and Entomology Quy Nhon (IMPE-QN), Quy Nhon, Vietnam
| | - Van Nguyen Do
- Institute of Malariology, Parasitology and Entomology Quy Nhon (IMPE-QN), Quy Nhon, Vietnam
| | - Tran Duc Anh Ly
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Van Hoang Ho
- Institute of Malariology, Parasitology and Entomology Quy Nhon (IMPE-QN), Quy Nhon, Vietnam
| | - Xuan Quang Nguyen
- Institute of Malariology, Parasitology and Entomology Quy Nhon (IMPE-QN), Quy Nhon, Vietnam
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France. .,IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
8
|
Aouadi N, Benkacimi L, Zan Diarra A, Laroche M, Bérenger JM, Bitam I, Parola P. Microorganisms associated with the North African hedgehog Atelerix algirus and its parasitizing arthropods in Algeria. Comp Immunol Microbiol Infect Dis 2021; 80:101726. [PMID: 34933167 DOI: 10.1016/j.cimid.2021.101726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 11/19/2022]
Abstract
Hedgehogs are small mammals. They are potential reservoirs of various zoonotic agents. This study was conducted in Bouira, a north-central region of Algeria. A total of 21 Atelerix algirus corpses were picked up on roadsides and gardens. Hedgehog kidneys, spleens and ectoparasites were collected. Twelve hedgehogs were infested with ectoparasites, including Archaeopsylla erinacei, Rhipicephalus sanguineus s.l. and Haemaphysalis erinacei. Hedgehog organs and randomly selected arthropods were screened for microorganisms using molecular methods. Coxiella burnetii was detected in kidneys, spleens, A. erinacei, Hae. erinacei and Rh. sanguineus s.l. Leptospira interrogans was detected in kidneys. Rickettsia felis and Rickettsia massiliae were detected respectively in A. erinacei and in Rh. sanguineus s.l. DNA of an uncultivated Rickettsia spp. was found in Hae. erinacei. Wolbachia spp. DNA was detected in fleas. The DNA of potential new Bartonella and Ehrlichia species were found respectively in fleas and ticks. This study highlights the presence of DNA from a broad range of microorganisms in hedgehogs and their ectoparasites that may be responsible for zoonoses in Algeria.
Collapse
Affiliation(s)
- Nawal Aouadi
- Laboratoire de Valorisation et Conservation des Ressources Biologiques (VALCOR), Faculté des Sciences, Université M'Hamed Bougara, Boumerdes, Algeria
| | - Linda Benkacimi
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU Méditerranée Infection, 13005 Marseille, France
| | - Adama Zan Diarra
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU Méditerranée Infection, 13005 Marseille, France
| | - Maureen Laroche
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU Méditerranée Infection, 13005 Marseille, France
| | - Jean-Michel Bérenger
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU Méditerranée Infection, 13005 Marseille, France
| | - Idir Bitam
- IHU Méditerranée Infection, 13005 Marseille, France; École Supérieure en Sciences de l'Aliment et des Industries Agroalimentaires (ESSAIA), El Harrach, Alger, Algeria
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU Méditerranée Infection, 13005 Marseille, France.
| |
Collapse
|
9
|
Hamlili FZ, Bérenger JM, Diarra AZ, Parola P. Molecular and MALDI-TOF MS identification of swallow bugs Cimex hirundinis (Heteroptera: Cimicidae) and endosymbionts in France. Parasit Vectors 2021; 14:587. [PMID: 34838119 PMCID: PMC8627032 DOI: 10.1186/s13071-021-05073-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/16/2021] [Indexed: 01/07/2023] Open
Abstract
Background The Cimicidae are obligatory blood-feeding ectoparasites of medical and veterinary importance. We aim in the current study to assess the ability of MALDI-TOF MS to identify Cimex hirundinis swallow bugs collected in house martin nests. Methods Swallow bugs were picked out from abandoned nests of house martin swallows and identified morphologically to the species level. The bugs were randomly selected, dissected and then subjected to MALDI-TOF MS and molecular analyses. Results A total of 65 adults and 50 nymphs were used in the attempt to determine whether this tool could identify the bug species and discriminate their developmental stages. Five adults and four nymphs of C. hirundinis specimens were molecularly identified to update our MS homemade arthropod database. BLAST analysis of COI gene sequences from these C. hirundinis revealed 98.66–99.12% identity with the corresponding sequences of C. hirundinis of the GenBank. The blind test against the database supplemented with MS reference spectra showed 100% (57/57) C. hirundinis adults and 100% (46/46) C. hirundinis nymphs were reliably identified and in agreement with morphological identification with logarithmic score values between 1.922 and 2.665. Ninety-nine percent of C. hirundinis specimens tested were positive for Wolbachia spp. The sequencing results revealed that they were identical to Wolbachia massiliensis, belonging to the new T-supergroup strain and previously isolated from C. hemipterus. Conclusions We report for the first time to our knowledge a case of human infestation by swallow bugs (C. hirundinis) in France. We also show the usefulness of MALDI-TOF MS in the rapid identification of C. hirundinis specimens and nymphs with minimal sample requirements. We phylogenetically characterized the novel Wolbachia strain (W. massiliensis) infecting C. hirundinis and compared it to other recognized Wolbachia clades. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05073-x.
Collapse
Affiliation(s)
- Fatima Zohra Hamlili
- IHU-Méditerranée Infection, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Jean-Michel Bérenger
- IHU-Méditerranée Infection, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Adama Zan Diarra
- IHU-Méditerranée Infection, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Philippe Parola
- IHU-Méditerranée Infection, Marseille, France. .,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.
| |
Collapse
|
10
|
Sevestre J, Diarra AZ, Oumarou HA, Durant J, Delaunay P, Parola P. Detection of emerging tick-borne disease agents in the Alpes-Maritimes region, southeastern France. Ticks Tick Borne Dis 2021; 12:101800. [PMID: 34352531 DOI: 10.1016/j.ttbdis.2021.101800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/13/2021] [Accepted: 07/17/2021] [Indexed: 11/19/2022]
Abstract
Lyme borreliosis is a zoonotic tick-borne infection representing the most frequent vector-borne disease in the northern hemisphere. The Mediterranean rim is generally described as unsuitable for the European vector, Ixodes ricinus. We conducted an epidemiological study to assess whether I. ricinus was present and study its infection status for tick-borne bacteria. Ticks originating from southeastern France were obtained from flagging sampling and removed from animals and tick-bitten patients. Species level identification used morphological keys and MALDI-TOF MS. Quantitative PCR and sequencing assays were used to detect and identify tick-associated bacteria (Borrelia, Rickettsia, Anaplasmataceae, Bartonella, Coxiella burnetii) in each specimen. A total of 1232 ticks were collected in several localities. Among these, 863 were identified as I. ricinus (70%). Bacterial screening allowed identification of Lyme group Borrelia among I. ricinus ticks originating from various regional areas. Other emerging tick-borne pathogens like Borrelia miyamotoi and Rickettsia species were also detected. The Alpes-Maritimes region, part of the French Riviera, harbours I. ricinus ticks infected with Lyme group Borrelia and several other tick-borne bacterial agents. Clinicians and outdoor activity participants should be aware of the local Lyme borreliosis transmission risk.
Collapse
Affiliation(s)
- Jacques Sevestre
- Service de Parasitologie, Centre Hospitalier Universitaire de Nice, Nice, France; Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13385 Cedex 05, France; Aix-Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Adama Zan Diarra
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13385 Cedex 05, France; Aix-Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | | | - Jacques Durant
- Service d'Infectiologie, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Pascal Delaunay
- Service de Parasitologie, Centre Hospitalier Universitaire de Nice, Nice, France; MIVEGEC, Université de Montpellier, Montpellier, France
| | - Philippe Parola
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13385 Cedex 05, France; Aix-Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.
| |
Collapse
|
11
|
Simon L, Boukari F, Oumarou HA, Hubiche T, Marty P, Pomares C, Delaunay P. Anthrenus sp. and an Uncommon Cluster of Dermatitis. Emerg Infect Dis 2021; 27:1940-1943. [PMID: 34152950 PMCID: PMC8237892 DOI: 10.3201/eid2707.203245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We report patients in their homes in France who had cutaneous lesions caused by Anthrenus sp. larvae during the end of winter and into spring. These lesions mimic bites but are allergic reactions to larvae hairs pegged in the skin. These lesions should be distinguished from bites of bed bugs or fleas.
Collapse
|
12
|
Ngoy S, Diarra AZ, Laudisoit A, Gembu GC, Verheyen E, Mubenga O, Mbalitini SG, Baelo P, Laroche M, Parola P. Using MALDI-TOF mass spectrometry to identify ticks collected on domestic and wild animals from the Democratic Republic of the Congo. EXPERIMENTAL & APPLIED ACAROLOGY 2021; 84:637-657. [PMID: 34146230 PMCID: PMC8257524 DOI: 10.1007/s10493-021-00629-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/22/2021] [Indexed: 05/25/2023]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) has recently emerged as an alternative to morphological and molecular tools to identify tick species. In this study, we set out to evaluate and confirm the ability of MALDI-TOF MS to identify different species of ticks collected in the Democratic Republic of the Congo and preserved in 70% ethanol. A total of 575 ticks, of which 530 were collected from domestic pigs and 45 from wild animals, were subjected to MALDI-TOF MS analysis to evaluate the intraspecies reproducibility and interspecies specificity of MS profiles obtained from the different species. Morphologically, the ticks belonged to seven different species, namely Rhipicephalus complanatus, Rhipicephalus congolensis, Haemaphysalis muhsamae, Ixodes cumulatimpunctatus, Amblyomma exornatum, Amblyomma compressum and an unidentified Rhipicephalus sp. A total of 535/575 (93%) of the spectra obtained were of good enough quality to be used for our analyses. Our home-made MALDI-TOF MS arthropod database was upgraded with spectra obtained from between one and five randomly selected specimens per species. For these reference specimens, molecular identification of the ticks was also made using 16S, 12S rDNA genes and the Cox1 mtDNA gene sequencing. The remaining good quality spectra were then queried against the upgraded MALDI-TOF MS database, showing that 100% were in agreement with the morphological identification, with logarithmic score values (LSVs) between 1.813 and 2.51. The consistency between our morphological, molecular and MALDI-TOF MS identification confirms the capability and precision of MALDI-TOF MS for tick identification.
Collapse
Affiliation(s)
- Steve Ngoy
- Department of Zoology Centre de Surveillance de la Biodiversité, University of Kisangani, P.O. Box 2012, Kisangani, Democratic Republic of the Congo
| | - Adama Zan Diarra
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
- IHU Méditerranée Infection, Marseille, France
| | | | - Guy-Crispin Gembu
- Department of Zoology Centre de Surveillance de la Biodiversité, University of Kisangani, P.O. Box 2012, Kisangani, Democratic Republic of the Congo
- Faculty of Sciences, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Erik Verheyen
- Evolutionary Ecology Group, University of Antwerp, 2020, Antwerp, Belgium
- OD Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, 1000, Brussels, Belgium
| | - Onésime Mubenga
- Department of Zoology Centre de Surveillance de la Biodiversité, University of Kisangani, P.O. Box 2012, Kisangani, Democratic Republic of the Congo
- Faculté de Gestion des Ressources Naturelles Renouvelables, University of Kisangani, P.O. Box 2012, Kisangani, Democratic Republic of the Congo
| | - Sylvestre Gambalemoke Mbalitini
- Department of Zoology Centre de Surveillance de la Biodiversité, University of Kisangani, P.O. Box 2012, Kisangani, Democratic Republic of the Congo
- Faculty of Sciences, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Pascal Baelo
- Department of Zoology Centre de Surveillance de la Biodiversité, University of Kisangani, P.O. Box 2012, Kisangani, Democratic Republic of the Congo
| | - Maureen Laroche
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
- IHU Méditerranée Infection, Marseille, France
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France.
- IHU Méditerranée Infection, Marseille, France.
| |
Collapse
|
13
|
Fall FK, Laroche M, Bossin H, Musso D, Parola P. Performance of MALDI-TOF Mass Spectrometry to Determine the Sex of Mosquitoes and Identify Specific Colonies from French Polynesia. Am J Trop Med Hyg 2021; 104:1907-1916. [PMID: 33755583 PMCID: PMC8103438 DOI: 10.4269/ajtmh.20-0031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 01/19/2021] [Indexed: 12/25/2022] Open
Abstract
Mosquitoes are the main arthropod vectors of human pathogens. The current methods for mosquito identification include morphological and molecular methods. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), now routinely used for bacterial identification, has recently emerged in the field of entomology. The aim of this study was to use MALDI-TOF MS to identify mosquito colonies from French Polynesia. Five hundred specimens from French Polynesia belonging to three species, Aedes aegypti, Aedes polynesiensis, and Culex quinquefasciatus, were included in the study. Testing the legs of these mosquitoes by MALDI-TOF MS revealed a 100% correct identification of all specimens at the species level. The MALDI-TOF MS profiles obtained allowed differentiation of male from female mosquitoes and the specific identification of female mosquito colonies of the same species but different geographic origin.
Collapse
Affiliation(s)
- Fatou Kiné Fall
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France;,IHU Méditerranée Infection, Marseille, France;,Campus International IRD-UCAD de l’IRD, Dakar, Senegal
| | - Maureen Laroche
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France;,IHU Méditerranée Infection, Marseille, France
| | - Hervé Bossin
- Medical Entomology Laboratory, Institut Louis Malardé, Tahiti, French Polynesia
| | - Didier Musso
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France;,SELAS Eurofins Labazur Guyane, Cayenne, French Guiana
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France;,IHU Méditerranée Infection, Marseille, France;,Address correspondence to Philippe Parola, VITROME, IHU Méditerranée Infection, 19-21 Blvd., Jean Moulin, Marseille 13005, France. E-mail:
| |
Collapse
|
14
|
Nebbak A, Monteil-Bouchard S, Berenger JM, Almeras L, Parola P, Desnues C. Virome Diversity among Mosquito Populations in a Sub-Urban Region of Marseille, France. Viruses 2021; 13:v13050768. [PMID: 33925487 PMCID: PMC8145591 DOI: 10.3390/v13050768] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 12/28/2022] Open
Abstract
Some mosquito species have significant public health importance given their ability to transmit major diseases to humans and animals, making them the deadliest animals in the world. Among these, the Aedes (Ae.) genus is a vector of several viruses such as Dengue, Chikungunya, and Zika viruses that can cause serious pathologies in humans. Since 2004, Ae. albopictus has been encountered in the South of France, and autochthonous cases of Dengue, Chikungunya, and Zika diseases have recently been reported, further highlighting the need for a comprehensive survey of the mosquitoes and their associated viruses in this area. Using high throughput sequencing (HTS) techniques, we report an analysis of the DNA and RNA viral communities of three mosquito species Ae. albopictus, Culex (Cx.) pipiens, and Culiseta (Cs.) longiareolata vectors of human infectious diseases in a small sub-urban city in the South of France. Results revealed the presence of a significant diversity of viruses known to infect bacteria, plants, insects, and mammals. Several novel viruses were detected, including novel members of the Rhabdoviridae, Totiviridae, Iflaviviridae, Circoviridae, and Sobemoviridae families. No sequence related to major zoonotic viruses transmitted by mosquitoes was detected. The use of HTS on arthropod vector populations is a promising strategy for monitoring the emergence and circulation of zoonoses and epizooties. This study is a contribution to the knowledge of the mosquito microbiome.
Collapse
Affiliation(s)
- Amira Nebbak
- IHU-Méditerranée Infection, 13005 Marseille, France; (A.N.); (J.-M.B.); (L.A.); (P.P.)
- Aix Marseille Université, Intitut de Recherche pour le Développement (IRD), Assistance Publique-Hopitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Vecteurs Infections Tropicales et Méditerranéennes (VITROME), 13005 Marseille, France
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP 384, Zone Industrielle, Bou-Ismail RP 42004, Tipaza, Algeria
| | - Sonia Monteil-Bouchard
- Aix Marseille Université, Intitut de Recherche pour le Développement (IRD), Assistance Publique-Hopitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI) UM 63, 13005 Marseille, France;
- Aix-Marseille Université, Université de Toulon, Centre National pour la Recherche Scientifique (CNRS), Intitut de Recherche pour le Développement (IRD), Mediterranean Institute of Oceanography (MIO) UM 110, 13288 Marseille, France
| | - Jean-Michel Berenger
- IHU-Méditerranée Infection, 13005 Marseille, France; (A.N.); (J.-M.B.); (L.A.); (P.P.)
- Aix Marseille Université, Intitut de Recherche pour le Développement (IRD), Assistance Publique-Hopitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Vecteurs Infections Tropicales et Méditerranéennes (VITROME), 13005 Marseille, France
| | - Lionel Almeras
- IHU-Méditerranée Infection, 13005 Marseille, France; (A.N.); (J.-M.B.); (L.A.); (P.P.)
- Aix Marseille Université, Intitut de Recherche pour le Développement (IRD), Assistance Publique-Hopitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Vecteurs Infections Tropicales et Méditerranéennes (VITROME), 13005 Marseille, France
- Unité de Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France
| | - Philippe Parola
- IHU-Méditerranée Infection, 13005 Marseille, France; (A.N.); (J.-M.B.); (L.A.); (P.P.)
- Aix Marseille Université, Intitut de Recherche pour le Développement (IRD), Assistance Publique-Hopitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Vecteurs Infections Tropicales et Méditerranéennes (VITROME), 13005 Marseille, France
| | - Christelle Desnues
- Aix Marseille Université, Intitut de Recherche pour le Développement (IRD), Assistance Publique-Hopitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI) UM 63, 13005 Marseille, France;
- Aix-Marseille Université, Université de Toulon, Centre National pour la Recherche Scientifique (CNRS), Intitut de Recherche pour le Développement (IRD), Mediterranean Institute of Oceanography (MIO) UM 110, 13288 Marseille, France
- Correspondence:
| |
Collapse
|
15
|
Sevestre J, Diarra AZ, Laroche M, Almeras L, Parola P. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: an emerging tool for studying the vectors of human infectious diseases. Future Microbiol 2021; 16:323-340. [PMID: 33733821 DOI: 10.2217/fmb-2020-0145] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Arthropod vectors have historically been identified morphologically, and more recently using molecular biology methods. However, both of these methods are time-consuming and require specific expertise and equipment. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, which has revolutionized the routine identification of microorganisms in clinical microbiology laboratories, was recently successfully applied to the identification of arthropod vectors. Since then, the robustness of this identification technique has been confirmed, extended to a large panel of arthropod vectors, and assessed for detecting blood feeding behavior and identifying the infection status in regard to certain pathogenic agents. In this study, we summarize the state-of-the-art of matrix-assisted laser desorption ionization time-of-flight mass spectrometry applied to the identification of arthropod vectors (ticks, mosquitoes, phlebotomine sand-flies, fleas, triatomines, lice and Culicoides), their trophic preferences and their ability to discriminate between infection statuses.
Collapse
Affiliation(s)
- Jacques Sevestre
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Adama Z Diarra
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Maureen Laroche
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Lionel Almeras
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.,Département Microbiologie et Maladies Infectieuses, Unité Parasitologie et Entomologie, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Philippe Parola
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| |
Collapse
|
16
|
Dao TL, Hoang VT, Ly TDA, Lagier JC, Baron SA, Raoult D, Parola P, Courjon J, Marty P, Chaudet H, Gautret P. Sputum proteomic analysis for distinguishing between pulmonary tuberculosis and non-tuberculosis using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS): preliminary results. Clin Microbiol Infect 2021; 27:1694.e1-1694.e6. [PMID: 33711448 DOI: 10.1016/j.cmi.2021.02.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVES The aim was to evaluate the feasibility and diagnostic contribution of protein profiling using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) applied to sputum to diagnose pulmonary tuberculosis. METHODS Sputum samples collected from patients suspected of having pulmonary tuberculosis were analysed using MALDI-TOF MS. Using the differentially expressed protein peaks, we compared three groups of patients, including those with confirmed pulmonary tuberculosis (PTB), those without tuberculosis but with a lower respiratory tract infection (non-TB LRTI) and those without tuberculosis and without an LRTI (non-TB controls). RESULTS A total of 102 patients included 35 PTB, 36 non-TB LRTI and 31 non-TB controls. The model differentiated between the PTB patients and the non-TB controls using the 25 most differentially expressed protein peaks, with a sensitivity of 97%, 95% CI 85-100%, and a specificity of 77%, 95% CI 59-90%. The model distinguished the PTB patients from the non-TB LRTI patients using the ten most differentially expressed protein peaks, with a sensitivity of 80%, 95% CI 63-92%, and a specificity of 89%, 95% CI 74-97%. We observed that the negative predictive value of MALDI-TOF MS sputum analysis was higher (96%, 95% CI 80-100%) than that of direct sputum microscopic examination and sputum culture (78%, 95% CI 62-89%) for non-TB controls. When MALDI-TOF MS sputum analysis and direct microscopic examination were combined, the negative predictive value reached 94%, 95% CI 80-99%, for non-TB LRTI patients. DISCUSSION These results suggest that MALDI-TOF MS sputum analysis coupled with microscopic examination could be used as a screening tool for diagnosing pulmonary TB.
Collapse
Affiliation(s)
- Thi Loi Dao
- Aix Marseille Université, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France; Thai Binh University of Medicine and Pharmacy, Thai Binh, Viet Nam
| | - Van Thuan Hoang
- Aix Marseille Université, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France; Thai Binh University of Medicine and Pharmacy, Thai Binh, Viet Nam
| | - Tran Duc Anh Ly
- Aix Marseille Université, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Jean Christophe Lagier
- IHU-Méditerranée Infection, Marseille, France; Aix Marseille Université, IRD, AP-HM, MEPHI, Marseille, France
| | - Sophie Alexandra Baron
- IHU-Méditerranée Infection, Marseille, France; Aix Marseille Université, IRD, AP-HM, MEPHI, Marseille, France
| | - Didier Raoult
- IHU-Méditerranée Infection, Marseille, France; Aix Marseille Université, IRD, AP-HM, MEPHI, Marseille, France
| | - Philippe Parola
- Aix Marseille Université, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Johan Courjon
- Université Côte d'Azur, U1065, Centre Méditerranéen de Médecine Moléculaire, C3M, Virulence Microbienne et Signalisation Inflammatoire, Inserm, Nice, France; Infectiologie, Hôpital de l'Archet, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Pierre Marty
- Université Côte d'Azur, Inserm, C3M, Nice, France; Parasitologie-Mycologie, Centre Hospitalier Universitaire l'Archet, Nice, France
| | - Hervé Chaudet
- Aix Marseille Université, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Philippe Gautret
- Aix Marseille Université, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
17
|
Benkacimi L, Gazelle G, El Hamzaoui B, Bérenger JM, Parola P, Laroche M. MALDI-TOF MS identification of Cimex lectularius and Cimex hemipterus bedbugs. INFECTION GENETICS AND EVOLUTION 2020; 85:104536. [PMID: 32927120 DOI: 10.1016/j.meegid.2020.104536] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 08/30/2020] [Accepted: 09/04/2020] [Indexed: 11/29/2022]
Abstract
Bedbugs (Cimex lectularius and C. hemipterus) have reemerged as a major public health problem around the world. Their bites cause various skin lesions as well as discomfort and anxiety. Their role as potential vectors of various infectious agents is discussed. Accordingly, all suspected cases of bedbug infestations need to be documented thoroughly, with an unequivocal identification of the arthropods involved, if any are present. Although morphological identification is easily and quickly performed by entomologists or professionals, it can be challenging otherwise. Also, distinguishing Cimex lectularius and C. hemipterus requires entomological expertise. MALDI-TOF mass spectrometry has been recently presented as an additional tool for arthropod identification. In this study, we assess the use of MALDI-TOF MS for the identification of laboratory and wild strains of C. lectularius and C. hemipterus. Several body parts of laboratory reared C. lectularius specimens were used to develop a MALDI-TOF MS protocol for bedbug identification, which was later validated using five other laboratory and wild populations of C. hemipterus and C. lectularius. A total of 167C. lectularius and C. hemipterus bedbug specimens (98 laboratory specimens and 69 wild specimens) were submitted to MALDI-TOF MS analysis. 143/167 (85.63%) provided high quality MS spectra. The in-lab database was then upgraded with a total of 20 reference spectra from all bedbug populations and the rest of the MS spectra (123 bedbugs) were blind tested. All specimens were properly identified to the species level using MALDI-TOF MS and 86,25% (69/80) were aptly identified according to their origin with LSVs ranging from 1.867 to 2.861. MALDI-TOF MS appears as a reliable additional tool for the identification of these two anthropophilic species.
Collapse
Affiliation(s)
- Linda Benkacimi
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Gladys Gazelle
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Basma El Hamzaoui
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Jean-Michel Bérenger
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Maureen Laroche
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
18
|
Ouarti B, Laroche M, Righi S, Meguini MN, Benakhla A, Raoult D, Parola P. Development of MALDI-TOF mass spectrometry for the identification of lice isolated from farm animals. ACTA ACUST UNITED AC 2020; 27:28. [PMID: 32351208 PMCID: PMC7191974 DOI: 10.1051/parasite/2020026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 04/11/2020] [Indexed: 12/18/2022]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is now routinely used for the rapid identification of microorganisms isolated from clinical samples and has been recently successfully applied to the identification of arthropods. In the present study, this proteomics tool was used to identify lice collected from livestock and poultry in Algeria. The MALDI-TOF MS spectra of 408 adult specimens were measured for 14 species, including Bovicola bovis, B. ovis, B. caprae, Haematopinus eurysternus, Linognathus africanus, L. vituli, Solenopotes capillatus, Menacanthus stramineus, Menopon gallinae, Chelopistes meleagridis, Goniocotes gallinae, Goniodes gigas, Lipeurus caponis and laboratory reared Pediculus humanus corporis. Good quality spectra were obtained for 305 samples. Spectral analysis revealed intra-species reproducibility and inter-species specificity that were consistent with the morphological classification. A blind test of 248 specimens was performed against the in-lab database upgraded with new spectra and validated using molecular tools. With identification percentages ranging from 76% to 100% alongside high identification scores (mean = 2.115), this study proposes MALDI-TOF MS as an effective tool for discriminating lice species.
Collapse
Affiliation(s)
- Basma Ouarti
- Aix Marseille Univ., IRD, AP-HM, SSA, VITROME, 13005 Marseille, France - IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Maureen Laroche
- Aix Marseille Univ., IRD, AP-HM, SSA, VITROME, 13005 Marseille, France - IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Souad Righi
- Université Chadli Bendjdid, Département des sciences Vétérinaire, 36000 El Tarf, Algeria
| | - Mohamed Nadir Meguini
- Université Chadli Bendjdid, Département des sciences Vétérinaire, 36000 El Tarf, Algeria - Institut des Sciences Vétérinaire et Agronomiques, Université Mohamed Cherif Messaadia, 41000 Souk-Ahras, Algeria
| | - Ahmed Benakhla
- Université Chadli Bendjdid, Département des sciences Vétérinaire, 36000 El Tarf, Algeria
| | - Didier Raoult
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France - Aix Marseille Univ., IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Philippe Parola
- Aix Marseille Univ., IRD, AP-HM, SSA, VITROME, 13005 Marseille, France - IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
19
|
Balinandi S, Mugisha L, Bbira J, Kabasa W, Nakayiki T, Bakkes DK, Lutwama JJ, Chitimia-Dobler L, Malmberg M. General and Local Morphological Anomalies in Amblyomma lepidum (Acari: Ixodidae) and Rhipicephalus decoloratus Infesting Cattle in Uganda. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:873-877. [PMID: 30576463 PMCID: PMC6467642 DOI: 10.1093/jme/tjy221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Indexed: 06/09/2023]
Abstract
Morphological abnormalities in ticks seem to be rare phenomena in nature, and are underreported in Africa. In this article, we describe general and local anomalies in two Amblyomma lepidum females and one Rhipicephalus decoloratus female collected from cattle in Moroto and Kasese districts, Uganda. One A. lepidum specimen displayed metagynander gynandromorphism with the presence of both male and female features in the same organism. The second A. lepidum female showed slight asymmetry and lacked a genital aperture. The R. decoloratus displayed multiple anomalies that included asymmetry on the right side in association with ectromely, chitinous formations and constrictions on the left side. This article presents the first report of metagynander gynandromorphism, as well as genital aperture absence which is not linked to gynandromorphism, in A. lepidum collected from cattle.
Collapse
Affiliation(s)
- Stephen Balinandi
- Department of Arbovirology, Emerging and Reemrging Infections, Uganda Virus Research Institute, Entebbe, Uganda
- College of Veterinary Medicine, Animal Resources & Biosecurity (COVAB), Makerere University, Kampala, Uganda
| | - Lawrence Mugisha
- College of Veterinary Medicine, Animal Resources & Biosecurity (COVAB), Makerere University, Kampala, Uganda
- Ecohealth Research Group, Conservation & Ecosystem Health Alliance (CEHA), Kampala, Uganda
| | - Johnson Bbira
- College of Veterinary Medicine, Animal Resources & Biosecurity (COVAB), Makerere University, Kampala, Uganda
| | - William Kabasa
- College of Veterinary Medicine, Animal Resources & Biosecurity (COVAB), Makerere University, Kampala, Uganda
| | - Teddy Nakayiki
- Department of Arbovirology, Emerging and Reemrging Infections, Uganda Virus Research Institute, Entebbe, Uganda
| | - Deon K Bakkes
- Gertrud Theiler Tick Museum, Epidemiology, Parasites and Vectors, Agricultural Research Council – Onderstepoort Veterinary Research, Pretoria, South Africa
| | - Julius J Lutwama
- Department of Arbovirology, Emerging and Reemrging Infections, Uganda Virus Research Institute, Entebbe, Uganda
| | - Lidia Chitimia-Dobler
- Department of Virology-Rickettsiology, Bundeswehr Institute of Microbiology, Munich, Germany
- Parasitology Unit, University of Hohenheim, Stuttgart, Germany
| | - Maja Malmberg
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
- SLU Global Bioinformatics Centre, Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
20
|
Chabriere E, Bassène H, Drancourt M, Sokhna C. MALDI-TOF MS and point of care are disruptive diagnostic tools in Africa. New Microbes New Infect 2018; 26:S83-S88. [PMID: 30402248 PMCID: PMC6205576 DOI: 10.1016/j.nmni.2018.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022] Open
Abstract
We review reviewing our experience of point-of-care and mass spectrometry in Senegal as two disruptive technologies promoting the rapid diagnosis of infection, permitting better medical management of patients.
Collapse
Affiliation(s)
- E. Chabriere
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - H. Bassène
- Aix Marseille Université, IRD, APHM, VITROME, IHU-Méditerranée Infection, Marseille, France
- VITROME, Campus International IRD-UCAD de Hann, Dakar, Senegal
| | - M. Drancourt
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - C. Sokhna
- Aix Marseille Université, IRD, APHM, VITROME, IHU-Méditerranée Infection, Marseille, France
- VITROME, Campus International IRD-UCAD de Hann, Dakar, Senegal
| |
Collapse
|
21
|
Charrel RN, Berenger JM, Laroche M, Ayhan N, Bitam I, Delaunay P, Parola P. Neglected vector-borne bacterial diseases and arboviruses in the Mediterranean area. New Microbes New Infect 2018; 26:S31-S36. [PMID: 30402241 PMCID: PMC6205580 DOI: 10.1016/j.nmni.2018.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/19/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022] Open
Abstract
Arthropod vectors can transmit pathogenic microorganisms from one vertebrate to another during their blood meal. Although some vector-borne diseases have been eradicated in the Mediterranean area, such as malaria and dengue, recent endemic microorganisms (Toscana virus, Rickettsia spp.) remain neglected even though they cause many more cases. New diagnostic tools and innovative tools for the identification and characterization of vector species and microorganisms have been developed at IHU Méditerranée Infection, either internally or through collaborative and integrated projects. We have detected Rickettsia slovaca as a human pathogen and have described the disease; we have shown that Rickettsia felis can be transmitted by Anopheles mosquitoes; we have emphasized the increasing importance of bedbug (Cimex lectularius) as a potential vector of Bartonella quintana; and we have described the Toscana virus, a major agent of meningitis and meningoencephalitis which was disseminated in North Africa and Central and Eastern Europe, where it frequently cocirculates with a large number of newly described phleboviruses transmitted by sand flies.
Collapse
Affiliation(s)
- R N Charrel
- Unite des Virus Emergents, IRD 190, INSERM 1207, IHU Méditerranée Infection, Aix-Marseille Université, Marseille, France
| | - J-M Berenger
- IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, Aix-Marseille Université, Marseille, France
| | - M Laroche
- IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, Aix-Marseille Université, Marseille, France
| | - N Ayhan
- Unite des Virus Emergents, IRD 190, INSERM 1207, IHU Méditerranée Infection, Aix-Marseille Université, Marseille, France
| | - I Bitam
- IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, Aix-Marseille Université, Marseille, France
| | - P Delaunay
- Laboratory of Parasitology and Mycology, Centre Hospitalier Universitaire de Nice, Hôpital de l'Archet, Nice, France.,MIVEGEC, UMR IRD224-CNRS5290, Université de Montpellier, Montpellier, France
| | - P Parola
- IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, Aix-Marseille Université, Marseille, France
| |
Collapse
|