1
|
L’Etoile N, Zalot MA, Sadaf S, Wittmeyer N, Davis A, Mick J, Hayes E, Gibbs KA, Coffin SE. Healthcare-Associated Gastroenteritis: Outbreak Report and Systematic Review of the Literature. J Pediatric Infect Dis Soc 2025; 14:piaf019. [PMID: 40036241 PMCID: PMC12022606 DOI: 10.1093/jpids/piaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
Healthcare-associated gastroenteritis continues to be associated with significant pediatric morbidity and mortality despite the introduction of rotavirus vaccines. Infection prevention (IP) measures are critical in mitigating outbreaks. We describe an outbreak of norovirus and effective IP strategies utilized and calculated the costs associated with the outbreak. To demonstrate the burden of these events, we conducted a systematic review of pediatric healthcare-associated gastroenteritis outbreaks since 1973 to describe changing epidemiologic trends. Twenty-four publications describing 27 outbreaks were included in the final analysis with 293 healthcare-associated cases. Rotavirus (14) and norovirus (7) outbreaks were most commonly described. Limitations include the retrospective nature of included reports, nonuniform data ascertainment and reporting among publications. Norovirus has replaced rotavirus as the most common etiology of healthcare-associated gastroenteritis outbreaks in North America, Europe, and Australia and New Zealand, since the introduction of rotavirus vaccines.
Collapse
Affiliation(s)
- Nathan L’Etoile
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Morgan A Zalot
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Salma Sadaf
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Nicole Wittmeyer
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Anna Davis
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jordan Mick
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ericka Hayes
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kathleen A Gibbs
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Susan E Coffin
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
2
|
Ramani S, Javornik Cregeen SJ, Surathu A, Neill FH, Muzny DM, Doddapaneni H, Menon VK, Hoffman KL, Ross MC, Metcalf G, Opekun AR, Graham DY, Gibbs RA, Petrosino JF, Estes MK, Atmar RL. INTRA- AND INTER-HOST EVOLUTION OF HUMAN NOROVIRUS IN HEALTHY ADULTS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.30.542907. [PMID: 39282326 PMCID: PMC11398385 DOI: 10.1101/2023.05.30.542907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Background Human noroviruses are a leading cause of acute and sporadic gastroenteritis worldwide. The evolution of human noroviruses in immunocompromised persons has been evaluated in many studies. Much less is known about the evolutionary dynamics of human norovirus in healthy adults. Methods We used sequential samples collected from a controlled human infection study with GI.1/Norwalk/US/68 virus to evaluate intra- and inter-host evolution of a human norovirus in healthy adults. Up to 12 samples from day 1 to day 56 post-challenge were sequenced using a norovirus-specific capture probe method. Results Complete genomes were assembled, even in samples that were below the limit of detection of standard RT-qPCR assays, up to 28 days post-challenge. Analysis of 123 complete genomes showed changes in the GI.1 genome in all persons, but there were no conserved changes across all persons. Single nucleotide variants resulting in non-synonymous amino acid changes were observed in all proteins, with the capsid VP1 and nonstructural protein NS3 having the largest numbers of changes. Conclusions These data highlight the potential of a new capture-based sequencing approach to assemble human norovirus genomes with high sensitivity and demonstrate limited conserved immune pressure-driven evolution of GI.1 virus in healthy adults.
Collapse
Affiliation(s)
- Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sara J. Javornik Cregeen
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Anil Surathu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Frederick H. Neill
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Donna M. Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Harsha Doddapaneni
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Vipin K. Menon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Kristi L. Hoffman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Matthew C. Ross
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ginger Metcalf
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Antone R. Opekun
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - David Y. Graham
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Joseph F. Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Robert L. Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
3
|
Tao L, Wang X, Yu Y, Ge T, Gong H, Yong W, Si J, He M, Ding J. Identifying SNP threshold from P2 sequences for investigating norovirus transmission. Virus Res 2024; 346:199408. [PMID: 38797342 PMCID: PMC11153907 DOI: 10.1016/j.virusres.2024.199408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Noroviruses are a group of non-enveloped single-stranded positive-sense RNA virus belonging to Caliciviridae family. They can be transmitted by the fecal-oral route from contaminated food and water and cause mainly acute gastroenteritis. Outbreaks of norovirus infections could be difficult to detect and investigate. In this study, we developed a simple threshold detection approach based on variations of the P2 domain of the capsid protein. We obtained sequences from the norovirus hypervariable P2 region using Sanger sequencing, including 582 pairs of epidemiologically-related strains from 35 norovirus outbreaks and 6402 pairs of epidemiologically-unrelated strains during the four epidemic seasons. Genetic distances were calculated and a threshold was performed by adopting ROC (Receiver Operating Characteristic) curve which identified transmission clusters in all tested outbreaks with 80 % sensitivity. In average, nucleotide diversity between outbreaks was 67.5 times greater than the diversity within outbreaks. Simple and accurate thresholds for detecting norovirus transmissions of three genotypes obtained here streamlines molecular investigation of norovirus outbreaks, thus enabling rapid and efficient responses for the control of norovirus.
Collapse
Affiliation(s)
- Luqiu Tao
- Nanjing Municipal Center for Disease Control and Prevention affiliated to Nanjing Medical University, Zizhulin 2, 210003 Nanjing, Jiangsu, China; School of Public Health, Nanjing Medical University, 101 Longmian Avenue, 211166 Nanjing, Jiangsu, China
| | - Xuan Wang
- Nanjing Municipal Center for Disease Control and Prevention affiliated to Nanjing Medical University, Zizhulin 2, 210003 Nanjing, Jiangsu, China
| | - Yan Yu
- Nanjing Municipal Center for Disease Control and Prevention affiliated to Nanjing Medical University, Zizhulin 2, 210003 Nanjing, Jiangsu, China
| | - Teng Ge
- Nanjing Municipal Center for Disease Control and Prevention affiliated to Nanjing Medical University, Zizhulin 2, 210003 Nanjing, Jiangsu, China
| | - Hongjin Gong
- Nanjing Municipal Center for Disease Control and Prevention affiliated to Nanjing Medical University, Zizhulin 2, 210003 Nanjing, Jiangsu, China
| | - Wei Yong
- Nanjing Municipal Center for Disease Control and Prevention affiliated to Nanjing Medical University, Zizhulin 2, 210003 Nanjing, Jiangsu, China
| | - Jiali Si
- Nanjing Municipal Center for Disease Control and Prevention affiliated to Nanjing Medical University, Zizhulin 2, 210003 Nanjing, Jiangsu, China
| | - Min He
- Nanjing Municipal Center for Disease Control and Prevention affiliated to Nanjing Medical University, Zizhulin 2, 210003 Nanjing, Jiangsu, China
| | - Jie Ding
- Nanjing Municipal Center for Disease Control and Prevention affiliated to Nanjing Medical University, Zizhulin 2, 210003 Nanjing, Jiangsu, China; School of Public Health, Nanjing Medical University, 101 Longmian Avenue, 211166 Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Koudokpon H, Lègba B, Sintondji K, Kissira I, Kounou A, Guindo I, Koné KM, Abdou M, Koné A, Sambou C, Bankolé H, Yadouleton A, Dougnon V. Empowering public health: building advanced molecular surveillance in resource-limited settings through collaboration and capacity-building. FRONTIERS IN HEALTH SERVICES 2024; 4:1289394. [PMID: 38957804 PMCID: PMC11217560 DOI: 10.3389/frhs.2024.1289394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/31/2024] [Indexed: 07/04/2024]
Abstract
The rapid detection and continuous surveillance of infectious diseases are important components of an effective public health response. However, establishing advanced molecular surveillance systems, crucial for monitoring and mitigating pandemics, poses significant challenges in resource-limited developing countries. In a collaborative effort, research institutions from Benin joined forces with Mali's National Institute of Public Health to implement a state-of-the-art molecular surveillance system in Mali. This approach was characterized by collaboration, multidisciplinarity, and tutoring. Key activities included a comprehensive assessment of infrastructure and human resources through document reviews, interviews, and laboratory visits; the development and validation of Standard Operating Procedures (SOPs) for advanced molecular surveillance following an inclusive approach; capacity-building initiatives for 25 biologists in Mali on sequencing techniques; and international tutoring sessions for eight Malian professionals held in Benin. These collective efforts enabled Mali to establish an advanced molecular surveillance system aligned with the WHO's global strategy for genomic surveillance. This manuscript aims to share experiences, insights, and outcomes from this initiative, with the hope of contributing to the broader discussion on strengthening global health security through collaborative approaches and capacity-building efforts, particularly in developing countries.
Collapse
Affiliation(s)
- Hornel Koudokpon
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Cotonou, Benin
| | - Boris Lègba
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Cotonou, Benin
| | - Kevin Sintondji
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Cotonou, Benin
| | - Islamiath Kissira
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Cotonou, Benin
| | - Arielle Kounou
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Cotonou, Benin
| | - Ibrehima Guindo
- National Institute of Public Health, Laboratory and Biomedical Research Department, Bamako, Mali
| | - Kléma Marcel Koné
- National Institute of Public Health, Laboratory and Biomedical Research Department, Bamako, Mali
| | - Mahamadou Abdou
- National Institute of Public Health, Laboratory and Biomedical Research Department, Bamako, Mali
| | - Amadou Koné
- University Clinical Research Center, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Claire Sambou
- Project Responses to the various Crises Caused by COVID-19 in Mali (RC3-Mali), Health Department, Expertise France, Bamako, Mali
| | - Honoré Bankolé
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Cotonou, Benin
| | - Anges Yadouleton
- Hemorrhagic and Viral Fevers Laboratory, Ministry of Health, Cotonou, Benin
| | - Victorien Dougnon
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Cotonou, Benin
| |
Collapse
|
5
|
Tao L, Zhang X, Wang X, Ding J. Using molecular methods to delineate norovirus outbreaks: a systematic review. Arch Virol 2024; 169:16. [PMID: 38172375 DOI: 10.1007/s00705-023-05953-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024]
Abstract
Noroviruses are among the major causative agents of human acute gastroenteritis, and the nature of norovirus outbreaks can differ considerably. The number of single-nucleotide polymorphisms (SNPs) between strains is used to assess their relationships. There is currently no universally accepted cutoff value for clustering strains that define an outbreak or linking the individuals involved. This study was conducted to estimate the threshold value of genomic variations among related strains within norovirus outbreaks. We carried out a literature search in the PubMed and Web of Science databases. SNP rates were defined as the number of SNPs/sequence length (bp) × 100%. The Mann-Whitney U-test was used in comparisons of the distribution of SNP rates for different sequence regions, genogroups (GI and GII), transmission routes, and sequencing methods. A total of 25 articles reporting on 108 norovirus outbreaks were included. In 99.1% of the outbreaks, the SNP rates were below 0.50%, and in 89.8%, the SNP rates were under 0.20%. Outbreak strains showed higher SNP rates when the P2 domain was used for sequence analysis (Z = -2.652, p = 0.008) and when an NGS method was used (Z = -3.686, p < 0.001). Outbreaks caused by different norovirus genotypes showed no significant difference in SNP rates. Compared with person-to-person outbreaks, SNP rates were lower in common-source outbreaks, but no significant difference was found when differences in sequencing methods were taken into consideraton. SNP rates under 0.20% and 0.50% could be considered as the rigorous and relaxed threshold, respectively, of strain similarity within a norovirus outbreak. More data are needed to evaluate differences within and between various norovirus outbreaks.
Collapse
Affiliation(s)
- Luqiu Tao
- Nanjing Municipal Center for Disease Control and Prevention affiliated to Nanjing Medical University, Zizhulin 2, 210003, Nanjing, Jiangsu, China
- School of Public Health, Nanjing Medical University, 101 Longmian Avenue, 211166, Nanjing, Jiangsu, China
| | - Xinyang Zhang
- Nanjing Municipal Center for Disease Control and Prevention affiliated to Nanjing Medical University, Zizhulin 2, 210003, Nanjing, Jiangsu, China
- School of Public Health, Nanjing Medical University, 101 Longmian Avenue, 211166, Nanjing, Jiangsu, China
| | - Xuan Wang
- Nanjing Municipal Center for Disease Control and Prevention affiliated to Nanjing Medical University, Zizhulin 2, 210003, Nanjing, Jiangsu, China
| | - Jie Ding
- Nanjing Municipal Center for Disease Control and Prevention affiliated to Nanjing Medical University, Zizhulin 2, 210003, Nanjing, Jiangsu, China.
- School of Public Health, Nanjing Medical University, 101 Longmian Avenue, 211166, Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
Widström J, Andersson ME, Westin J, Wahllöf M, Lindh M, Rydell GE. Complex norovirus transmission dynamics at hospital wards revealed by deep sequencing. J Clin Microbiol 2023; 61:e0060823. [PMID: 37889018 PMCID: PMC10662361 DOI: 10.1128/jcm.00608-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/05/2023] [Indexed: 10/28/2023] Open
Abstract
Detailed knowledge regarding norovirus transmission within hospitals is limited. We investigated a norovirus hospital outbreak affecting 65 patients at five different wards. PCR showed that 61 (94%) of the patients were infected with genotype II.4 strains. Successful Ion Torrent deep sequencing of GII.4 positive samples from 59 patients followed by phylogenetic analysis revealed that all sequences but two clustered into four distinct clades. Two of the clades belonged to GII.4 Sydney 2012, while the other two belonged to GII.4 New Orleans 2009. One of the clades was predominant at two wards, while two clades were predominant at one ward each. The fourth clade was found in sporadic cases at several wards. Thus, at four out of five wards, variants from one clade were predominant. At one ward, a single clade accounted for all cases, while at three wards the predominant clade accounted for 60%-71% of cases. Analysis of quasispecies variation identified positions that could further discriminate between variants from separate wards. The results illustrate a complex transmission of healthcare-associated norovirus infections and show that sequencing can be used to discriminate between related and unrelated cases.
Collapse
Affiliation(s)
- Julia Widström
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria E. Andersson
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Westin
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martina Wahllöf
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Lindh
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gustaf E. Rydell
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Zhu N, Zhou D, Xiong W, Zhang X, Li S. Performance of mNGS in bronchoalveolar lavage fluid for the diagnosis of invasive pulmonary aspergillosis in non-neutropenic patients. Front Cell Infect Microbiol 2023; 13:1271853. [PMID: 38029249 PMCID: PMC10644336 DOI: 10.3389/fcimb.2023.1271853] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
The diagnosis of invasive pulmonary aspergillosis (IPA) diseases in non-neutropenic patients remains challenging. It is essential to develop optimal non-invasive or minimally invasive detection methods for the rapid and reliable diagnosis of IPA. Metagenomic next-generation sequencing (mNGS) in bronchoalveolar lavage fluid (BALF) can be a valuable tool for identifying the microorganism. Our study aims to evaluate the performance of mNGS in BALF in suspected IPA patients and compare it with other detection tests, including serum/BALF galactomannan antigen (GM) and traditional microbiological tests (BALF fungal culture and smear and lung biopsy histopathology). Ninety-four patients with suspicion of IPA were finally enrolled in our study. Thirty-nine patients were diagnosed with IPA, and 55 patients were non-IPA. There was significance between the IPA and non-IPA groups, such as BALF GM (P < 0.001), history of glucocorticoid use (P = 0.004), and pulmonary comorbidities (P = 0.002), as well as no significance of the other demographic data including age, sex, BMI, history of cigarette, blood GM assay, T-SPOT.TB, and NEUT#/LYMPH#. The sensitivity of the BALF mNGS was 92.31%, which was higher than that of the traditional tests or the GM assays. The specificity of BALF mNGS was 92.73%, which was relatively similar to that of the traditional tests. The AUC of BALF mNGS was 0.925, which presented an excellent performance compared with other traditional tests or GM assays. Our study demonstrated the important role of BALF detection by the mNGS platform for pathogen identification in IPA patients with non-neutropenic states, which may provide an optimal way to diagnose suspected IPA disease.
Collapse
Affiliation(s)
| | | | | | | | - Shengqing Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Li HH, Zhou XM, Liu T, Wu R, Huang ZF, Sun CW, Liu ZA, Zheng SY, Lai W, Lou H, Xiong B. The clinical value of metagenomic next-generation sequencing for rapid microbial identification of chronic granulation wound infections. Arch Med Sci 2023; 19:1162-1167. [PMID: 37560730 PMCID: PMC10408008 DOI: 10.5114/aoms/166255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/16/2023] [Indexed: 08/11/2023] Open
Affiliation(s)
- Han-hua Li
- Department of Burns and Wound Repair Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xiao-ming Zhou
- Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tao Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Rongjie Wu
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Zhi-feng Huang
- Department of Burns and Wound Repair Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Chuan-wei Sun
- Department of Burns and Wound Repair Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zu-an Liu
- Department of Burns and Wound Repair Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shao-yi Zheng
- Department of Burns and Wound Repair Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wen Lai
- Department of Burns and Wound Repair Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hongming Lou
- Department of Burns and Wound Repair Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Bing Xiong
- Department of Burns and Wound Repair Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Burns and Wound Repair Surgery, Burns and Wound Repair Institute, Shenzhen People’s Hospital, Shenzhen, China Guangdong Provincial, China
| |
Collapse
|
9
|
Behling AH, Wilson BC, Ho D, Virta M, O'Sullivan JM, Vatanen T. Addressing antibiotic resistance: computational answers to a biological problem? Curr Opin Microbiol 2023; 74:102305. [PMID: 37031568 DOI: 10.1016/j.mib.2023.102305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 04/11/2023]
Abstract
The increasing prevalence of infections caused by antibiotic-resistant bacteria is a global healthcare crisis. Understanding the spread of resistance is predicated on the surveillance of antibiotic resistance genes within an environment. Bioinformatics and artificial intelligence (AI) methods applied to metagenomic sequencing data offer the capacity to detect known and infer yet-unknown resistance mechanisms, and predict future outbreaks of antibiotic-resistant infections. Machine learning methods, in particular, could revive the waning antibiotic discovery pipeline by helping to predict the molecular structure and function of antibiotic resistance compounds, and optimising their interactions with target proteins. Consequently, AI has the capacity to play a central role in guiding antibiotic stewardship and future clinical decision-making around antibiotic resistance.
Collapse
Affiliation(s)
- Anna H Behling
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Brooke C Wilson
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Daniel Ho
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Marko Virta
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Justin M O'Sullivan
- Liggins Institute, University of Auckland, Auckland, New Zealand; The Maurice Wilkins Centre, The University of Auckland, Private Bag 92019, Auckland, New Zealand; Australian Parkinsons Mission, Garvan Institute of Medical Research, Sydney, New South Wales, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton SO16 6YD, United Kingdom; Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore.
| | - Tommi Vatanen
- Liggins Institute, University of Auckland, Auckland, New Zealand; Department of Microbiology, University of Helsinki, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
10
|
Epifanova NV, Sashina TA, Morozova OV, Oparina SV, Novikova NA. An increase in prevalence of recombinant GII.3[P12] norovirus in sporadic acute diarrhea in children in Nizhny Novgorod, Russia, 2018-2021. Virus Genes 2022; 58:467-472. [PMID: 35680691 DOI: 10.1007/s11262-022-01919-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/25/2022] [Indexed: 11/25/2022]
Abstract
Noroviruses are important etiological agents causing acute intestinal infection in humans. In the last decades, the most common norovirus genotype was GII.4 despite a significant genetic diversity among strains, while the active circulation of noroviruses with other genotypes was observed periodically. This study shows an increase in the detection rate of recombinant GII.3[P12] norovirus in Nizhny Novgorod, Russia, from 6.8% in 2018-2019 to 34.9% in 2020-2021. We performed a phylogenetic analysis based on the nucleotide sequences of noroviruses possessing this genotype obtained in this work, as well as presented in the GenBank database. It has been shown that the circulation of GII.3[P12] noroviruses in the study area was the result of several independent introductions, either directly from the Western Pacific region, or through the Asian part of Russia. The polyphyletic origin, the geographical expansion, and the growth of the epidemic significance of the recombinant GII.3[P12] noroviruses were noted.
Collapse
Affiliation(s)
- N V Epifanova
- I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russia
| | - T A Sashina
- I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russia
| | - O V Morozova
- I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russia.
| | - S V Oparina
- I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russia
| | - N A Novikova
- I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russia
| |
Collapse
|
11
|
Adams C, Peterson SR, Hall AJ, Parashar U, Lopman BA. Associations of infection control measures and norovirus outbreak outcomes in healthcare settings: a systematic review and meta-analysis. Expert Rev Anti Infect Ther 2022; 20:279-290. [PMID: 34225537 PMCID: PMC8810727 DOI: 10.1080/14787210.2021.1949985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Although most norovirus outbreaks in high-income countries occur in healthcare facilities, information on associations between control measures and outbreak outcomes in these settings is lacking. METHODS We conducted a systematic review/meta-analysis to assess associations between norovirus outbreak control measures and outcomes in hospitals and long-term care facilities (LTCFs), globally. Using regression analyses stratified by setting (hospital/LTCF), we compared durations, attack rates, and case counts for outbreaks in which control measures were reportedly implemented to those in which they were not. RESULTS We identified 102 papers describing 162 norovirus outbreaks. Control measures were reportedly implemented in 118 (73%) outbreaks and were associated with 0.6 (95% CI: 0.3-1.1) times smaller patient case counts and 0.7 (95% CI: 0.4, 1.0) times shorter durations in hospitals but 1.5 (95% CI: 1.1-2.2), 1.5 (95% CI: 1.0-2.1) and 1.6 (95% CI: 1.0-2.6) times larger overall, resident and staff case counts, respectively, and 1.4 (95% CI: 1.0-2.0) times longer durations in LTCFs. CONCLUSIONS Reported implementation of control measures was associated with smaller/shorter outbreaks in hospitals but larger/longer outbreaks in LTCFs. Control measures were likely implemented in response to larger/longer outbreaks in LTCFs, rather than causing them. Prospective observational or intervention studies are needed to determine effectiveness.
Collapse
Affiliation(s)
- Carly Adams
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta, GA 30322, USA,Corresponding author
| | - Shenita R Peterson
- Woodruff Health Science Center Library, Emory University, 1462 Clifton Rd, Atlanta, GA 30322, USA
| | - Aron J Hall
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA 30333, USA
| | - Umesh Parashar
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA 30333, USA
| | - Benjamin A Lopman
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta, GA 30322, USA
| |
Collapse
|
12
|
Greninger AL, Zerr DM. NGSocomial Infections: High-Resolution Views of Hospital-Acquired Infections Through Genomic Epidemiology. J Pediatric Infect Dis Soc 2021; 10:S88-S95. [PMID: 34951469 PMCID: PMC8755322 DOI: 10.1093/jpids/piab074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Hospital outbreak investigations are high-stakes epidemiology. Contacts between staff and patients are numerous; environmental and community exposures are plentiful; and patients are highly vulnerable. Having the best data is paramount to understanding an outbreak in order to stop ongoing transmission and prevent future outbreaks. In the past 5 years, the high-resolution view of transmission offered by analyzing pathogen whole-genome sequencing (WGS) is increasingly part of hospital outbreak investigations. Concerns over speed and actionability, assay validation, liability, cost, and payment models lead to further opportunities for work in this area. Now accelerated by funding for COVID-19, the use of genomics in hospital outbreak investigations has firmly moved from the academic literature to more quotidian operations, with associated concerns involving regulatory affairs, data integration, and clinical interpretation. This review details past uses of WGS data in hospital-acquired infection outbreaks as well as future opportunities to increase its utility and growth in hospital infection prevention.
Collapse
Affiliation(s)
- Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,Corresponding Author: Alexander L. Greninger MD, PhD, MS, MPhil, 1616 Eastlake Ave East Suite 320, Seattle, WA 98102, USA. E-mail:
| | - Danielle M Zerr
- Department of Pediatrics, University of Washington Medical Center, Seattle, Washington, USA,Division of Infectious Diseases, Seattle Children’s Hospital, Seattle, Washington, USA
| |
Collapse
|
13
|
Hasan H, Nasirudeen NA, Ruzlan MAF, Mohd Jamil MA, Ismail NAS, Wahab AA, Ali A. Acute Infectious Gastroenteritis: The Causative Agents, Omics-Based Detection of Antigens and Novel Biomarkers. CHILDREN (BASEL, SWITZERLAND) 2021; 8:1112. [PMID: 34943308 PMCID: PMC8700514 DOI: 10.3390/children8121112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/25/2022]
Abstract
Acute infectious gastroenteritis (AGE) is among the leading causes of mortality in children less than 5 years of age worldwide. There are many causative agents that lead to this infection, with rotavirus being the commonest pathogen in the past decade. However, this trend is now being progressively replaced by another agent, which is the norovirus. Apart from the viruses, bacteria such as Salmonella and Escherichia coli and parasites such as Entamoeba histolytica also contribute to AGE. These agents can be recognised by their respective biological markers, which are mainly the specific antigens or genes to determine the causative pathogen. In conjunction to that, omics technologies are currently providing crucial insights into the diagnosis of acute infectious gastroenteritis at the molecular level. Recent advancement in omics technologies could be an important tool to further elucidate the potential causative agents for AGE. This review will explore the current available biomarkers and antigens available for the diagnosis and management of the different causative agents of AGE. Despite the high-priced multi-omics approaches, the idea for utilization of these technologies is to allow more robust discovery of novel antigens and biomarkers related to management AGE, which eventually can be developed using easier and cheaper detection methods for future clinical setting. Thus, prediction of prognosis, virulence and drug susceptibility for active infections can be obtained. Case management, risk prediction for hospital-acquired infections, outbreak detection, and antimicrobial accountability are aimed for further improvement by integrating these capabilities into a new clinical workflow.
Collapse
Affiliation(s)
- Haziqah Hasan
- Department of Pediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (H.H.); (N.A.N.); (M.A.F.R.); (M.A.M.J.)
| | - Nor Ashika Nasirudeen
- Department of Pediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (H.H.); (N.A.N.); (M.A.F.R.); (M.A.M.J.)
| | - Muhammad Alif Farhan Ruzlan
- Department of Pediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (H.H.); (N.A.N.); (M.A.F.R.); (M.A.M.J.)
| | - Muhammad Aiman Mohd Jamil
- Department of Pediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (H.H.); (N.A.N.); (M.A.F.R.); (M.A.M.J.)
| | - Noor Akmal Shareela Ismail
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia;
| | - Asrul Abdul Wahab
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia;
| | - Adli Ali
- Department of Pediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (H.H.); (N.A.N.); (M.A.F.R.); (M.A.M.J.)
| |
Collapse
|
14
|
Zhao B, Hu L, Song Y, Patil K, Ramani S, Atmar RL, Estes MK, Prasad BVV. Norovirus Protease Structure and Antivirals Development. Viruses 2021; 13:v13102069. [PMID: 34696498 PMCID: PMC8537771 DOI: 10.3390/v13102069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 11/30/2022] Open
Abstract
Human norovirus (HuNoV) infection is a global health and economic burden. Currently, there are no licensed HuNoV vaccines or antiviral drugs available. The protease encoded by the HuNoV genome plays a critical role in virus replication by cleaving the polyprotein and is an excellent target for developing small-molecule inhibitors. The current strategy for developing HuNoV protease inhibitors is by targeting the enzyme’s active site and designing inhibitors that bind to the substrate-binding pockets located near the active site. However, subtle differential conformational flexibility in response to the different substrates in the polyprotein and structural differences in the active site and substrate-binding pockets across different genogroups, hamper the development of effective broad-spectrum inhibitors. A comparative analysis of the available HuNoV protease structures may provide valuable insight for identifying novel strategies for the design and development of such inhibitors. The goal of this review is to provide such analysis together with an overview of the current status of the design and development of HuNoV protease inhibitors.
Collapse
Affiliation(s)
- Boyang Zhao
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (B.Z.); (K.P.); (S.R.); (R.L.A.); (M.K.E.)
| | - Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Yongcheng Song
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Ketki Patil
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (B.Z.); (K.P.); (S.R.); (R.L.A.); (M.K.E.)
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (B.Z.); (K.P.); (S.R.); (R.L.A.); (M.K.E.)
| | - Robert L. Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (B.Z.); (K.P.); (S.R.); (R.L.A.); (M.K.E.)
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (B.Z.); (K.P.); (S.R.); (R.L.A.); (M.K.E.)
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - B. V. Venkataram Prasad
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (B.Z.); (K.P.); (S.R.); (R.L.A.); (M.K.E.)
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
- Correspondence: ; Tel.: +1-713-798-5686
| |
Collapse
|
15
|
Ming DK, Myall AC, Hernandez B, Weiße AY, Peach RL, Barahona M, Rawson TM, Holmes AH. Informing antimicrobial management in the context of COVID-19: understanding the longitudinal dynamics of C-reactive protein and procalcitonin. BMC Infect Dis 2021; 21:932. [PMID: 34496795 PMCID: PMC8424157 DOI: 10.1186/s12879-021-06621-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 08/26/2021] [Indexed: 01/08/2023] Open
Abstract
Background To characterise the longitudinal dynamics of C-reactive protein (CRP) and Procalcitonin (PCT) in a cohort of hospitalised patients with COVID-19 and support antimicrobial decision-making. Methods Longitudinal CRP and PCT concentrations and trajectories of 237 hospitalised patients with COVID-19 were modelled. The dataset comprised of 2,021 data points for CRP and 284 points for PCT. Pairwise comparisons were performed between: (i) those with or without significant bacterial growth from cultures, and (ii) those who survived or died in hospital. Results CRP concentrations were higher over time in COVID-19 patients with positive microbiology (day 9: 236 vs 123 mg/L, p < 0.0001) and in those who died (day 8: 226 vs 152 mg/L, p < 0.0001) but only after day 7 of COVID-related symptom onset. Failure for CRP to reduce in the first week of hospital admission was associated with significantly higher odds of death. PCT concentrations were higher in patients with COVID-19 and positive microbiology or in those who died, although these differences were not statistically significant. Conclusions Both the absolute CRP concentration and the trajectory during the first week of hospital admission are important factors predicting microbiology culture positivity and outcome in patients hospitalised with COVID-19. Further work is needed to describe the role of PCT for co-infection. Understanding relationships of these biomarkers can support development of risk models and inform optimal antimicrobial strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06621-7.
Collapse
Affiliation(s)
- Damien K Ming
- Centre for Antimicrobial Optimisation, Hammersmith Hospital, Imperial College London, Du Cane Road, London, W12 0NN, UK. .,National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| | - Ashleigh C Myall
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.,Department of Mathematics, Imperial College London, London, UK
| | - Bernard Hernandez
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Andrea Y Weiße
- School of Informatics, University of Edinburgh, Scotland, UK.,School of Biological Science, University of Edinburgh, Scotland, UK
| | - Robert L Peach
- Department of Neurology, University Hospital of Würzburg, 97080, Würzburg, Germany.,Department of Mathematics, Imperial College London, London, UK
| | | | - Timothy M Rawson
- Centre for Antimicrobial Optimisation, Hammersmith Hospital, Imperial College London, Du Cane Road, London, W12 0NN, UK.,National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Alison H Holmes
- Centre for Antimicrobial Optimisation, Hammersmith Hospital, Imperial College London, Du Cane Road, London, W12 0NN, UK.,National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
16
|
Comas I, Cancino-Muñoz I, Mariner-Llicer C, Goig GA, Ruiz-Hueso P, Francés-Cuesta C, García-González N, González-Candelas F. Use of next generation sequencing technologies for the diagnosis and epidemiology of infectious diseases. Enferm Infecc Microbiol Clin 2021; 38 Suppl 1:32-38. [PMID: 32111363 DOI: 10.1016/j.eimc.2020.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For the first time, next generation sequencing technologies provide access to genomic information at a price and scale that allow their implementation in routine clinical practice and epidemiology. While there are still many obstacles to their implementation, there are also multiple examples of their major advantages compared with previous methods. Their main advantage is that a single determination allows epidemiological information on the causative microorganism to be obtained simultaneously, as well as its resistance profile, although these advantages vary according to the pathogen under study. This review discusses several examples of the clinical and epidemiological use of next generation sequencing applied to complete genomes and microbiomes and reflects on its future in clinical practice.
Collapse
Affiliation(s)
- Iñaki Comas
- Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia, España; CIBER en Epidemiología y Salud Pública, Valencia, España.
| | | | | | - Galo A Goig
- Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia, España
| | - Paula Ruiz-Hueso
- Unidad Mixta "Infección y Salud Pública" FISABIO-Universitat de València, Instituto de Biología Integrativa de Sistemas, I2SysBio (CSIC-UV), Valencia, España
| | - Carlos Francés-Cuesta
- Unidad Mixta "Infección y Salud Pública" FISABIO-Universitat de València, Instituto de Biología Integrativa de Sistemas, I2SysBio (CSIC-UV), Valencia, España
| | - Neris García-González
- Unidad Mixta "Infección y Salud Pública" FISABIO-Universitat de València, Instituto de Biología Integrativa de Sistemas, I2SysBio (CSIC-UV), Valencia, España
| | - Fernando González-Candelas
- CIBER en Epidemiología y Salud Pública, Valencia, España; Unidad Mixta "Infección y Salud Pública" FISABIO-Universitat de València, Instituto de Biología Integrativa de Sistemas, I2SysBio (CSIC-UV), Valencia, España
| |
Collapse
|
17
|
Tohma K, Lepore CJ, Martinez M, Degiuseppe JI, Khamrin P, Saito M, Mayta H, Nwaba AUA, Ford-Siltz LA, Green KY, Galeano ME, Zimic M, Stupka JA, Gilman RH, Maneekarn N, Ushijima H, Parra GI. Genome-wide analyses of human noroviruses provide insights on evolutionary dynamics and evidence of coexisting viral populations evolving under recombination constraints. PLoS Pathog 2021; 17:e1009744. [PMID: 34255807 PMCID: PMC8318288 DOI: 10.1371/journal.ppat.1009744] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/28/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022] Open
Abstract
Norovirus is a major cause of acute gastroenteritis worldwide. Over 30 different genotypes, mostly from genogroup I (GI) and II (GII), have been shown to infect humans. Despite three decades of genome sequencing, our understanding of the role of genomic diversification across continents and time is incomplete. To close the spatiotemporal gap of genomic information of human noroviruses, we conducted a large-scale genome-wide analyses that included the nearly full-length sequencing of 281 archival viruses circulating since the 1970s in over 10 countries from four continents, with a major emphasis on norovirus genotypes that are currently underrepresented in public genome databases. We provided new genome information for 24 distinct genotypes, including the oldest genome information from 12 norovirus genotypes. Analyses of this new genomic information, together with those publicly available, showed that (i) noroviruses evolve at similar rates across genomic regions and genotypes; (ii) emerging viruses evolved from transiently-circulating intermediate viruses; (iii) diversifying selection on the VP1 protein was recorded in genotypes with multiple variants; (iv) non-structural proteins showed a similar branching on their phylogenetic trees; and (v) contrary to the current understanding, there are restrictions on the ability to recombine different genomic regions, which results in co-circulating populations of viruses evolving independently in human communities. This study provides a comprehensive genetic analysis of diverse norovirus genotypes and the role of non-structural proteins on viral diversification, shedding new light on the mechanisms of norovirus evolution and transmission. Norovirus is a highly diverse enteric pathogen. The large genomic database accumulated in the last three decades advanced our understanding of norovirus diversity; however, this information is limited by geographical bias, sporadic times of collection, and missing or incomplete genome sequences. In this multinational collaborative study, we mined archival samples collected since the 1970s and sequenced nearly full-length new genomes from 281 historical noroviruses, including the first full-length genomic sequences for three genotypes. Using this novel dataset, we found evidence for restrictions in the recombination of genetically disparate viruses and that diversifying selection results in new variants with different epidemiological profiles. These new insights on the diversification of noroviruses could provide baseline information for the study of future epidemics and ultimately the prevention of norovirus infections.
Collapse
Affiliation(s)
- Kentaro Tohma
- Division of Viral Products, CBER, FDA, Silver Spring, Maryland, United States of America
| | - Cara J. Lepore
- Division of Viral Products, CBER, FDA, Silver Spring, Maryland, United States of America
| | - Magaly Martinez
- Division of Viral Products, CBER, FDA, Silver Spring, Maryland, United States of America
- IICS, National University of Asuncion, Asuncion, Paraguay
| | | | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Mayuko Saito
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Holger Mayta
- Department of Cellular and Molecular Sciences, Faculty of Sciences, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Amy U. Amanda Nwaba
- Division of Viral Products, CBER, FDA, Silver Spring, Maryland, United States of America
| | - Lauren A. Ford-Siltz
- Division of Viral Products, CBER, FDA, Silver Spring, Maryland, United States of America
| | - Kim Y. Green
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | | | - Mirko Zimic
- Department of Cellular and Molecular Sciences, Faculty of Sciences, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Robert H. Gilman
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Gabriel I. Parra
- Division of Viral Products, CBER, FDA, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
18
|
Liu N, Kan J, Yu N, Cao W, Cao J, Jiang E, Feng J. Application of metagenomic next-generation sequencing technology for difficult lung lesions in patients with haematological diseases. Transl Cancer Res 2020; 9:5245-5254. [PMID: 35117891 PMCID: PMC8798119 DOI: 10.21037/tcr-20-604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/29/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND The purpose of this study was to evaluate the diagnostic value of combined virtual bronchoscopic navigation (Direct Path), radial endobronchial ultrasound with guide-sheath (EBUS), ultrathin bronchoscopy, rapid on-site evaluation of cytology (ROSE), and metagenomic next-generation sequencing (mNGS) for difficult lung lesions in patients with haematological diseases. METHODS In this study, lung specimens were obtained from patients with haematological diseases by transbronchial lung biopsy (TBLB) and bronchoalveolar lavage (BAL). The specimens were subjected to mNGS for sequencing of pathogenic microorganisms and sent to the laboratory for examination and pathological analysis. Additionally, the clinical data and pathogenic characteristics of the patients were analysed. The sensitivity and specificity of mNGS for sequencing pathogenic microorganisms were compared between TBLB and BAL specimens. RESULTS In this study, the diagnosis of infectious pneumonia mainly included cytomegalovirus pneumonia, Pneumocystis jirovecii pneumonia (PCP), pulmonary aspergillosis, and tuberculosis. Some patients had non-infectious pulmonary complications, and the clinical and therapeutic outcomes were diagnosed as graft-versus-host disease (GVHD), idiopathic pneumonia syndrome (IPS), and delayed pulmonary toxicity syndrome (DPTS). The sensitivity of mNGS for pathogenic microbes in lung tissue is better than that of alveolar lavage fluid, whereas compared with alveolar lavage fluid, its specificity is reduced. CONCLUSIONS The results of this study indicate that combined virtual bronchoscopic navigation (Direct Path), radial EBUS, ultrathin bronchoscopy, and ROSE of target control specimens reduce the risk of bleeding, and their combination with mNGS has high diagnostic value for difficult lung lesions in patients with haematological diseases, especially in the field of infection diagnosis. TBLB and BAL specimens have respective advantages in specificity and sensitivity for mNGS analysis.
Collapse
Affiliation(s)
- Nana Liu
- Department of Respiratory, Tianjin Medical University General Hospital, Tianjin, China.,Department of Critical Care Medicine, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Jianying Kan
- Department of Critical Care Medicine, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Naihao Yu
- Department of Critical Care Medicine, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Wenbin Cao
- Haematopoietic Stem Cell Transplantation Center, Institute of Haematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jie Cao
- Department of Respiratory, Tianjin Medical University General Hospital, Tianjin, China
| | - Erlie Jiang
- Haematopoietic Stem Cell Transplantation Center, Institute of Haematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jing Feng
- Department of Respiratory, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW The majority of norovirus outbreaks in the United States occur in healthcare facilities. With the growing population of immunocompromised hosts who are in frequent contact with healthcare facilities, norovirus is not only a threat to hospitals and nursing homes but also to these individuals. This review summarizes the impact of norovirus infection on healthcare facilities and immunocompromised hosts. RECENT FINDINGS The natural history of norovirus infection in immunocompromised individuals remains poorly understood. Although host immune responses play a critical role in reducing duration of viral shedding and viral load in norovirus-infected individuals, why some immunocompromised patients spontaneously recover while others develop a chronic and protracted course of illness remains unclear. Norovirus outbreaks occur in healthcare facilities because the virus is highly contagious, resistant to disinfection and efficiently transmitted. The use of real-time metagenomic next-generation sequencing and phylogenetic analyses has provided valuable information on transmission patterns in complex hospital-associated norovirus outbreaks. The development of human intestinal enteroid cultures enables the determination of effectiveness of disinfectants against human noroviruses, circumventing the validity questions with surrogate virus models due to differences in susceptibility to inactivation and disinfectants. SUMMARY Metagenomics next-generation sequencing can enhance our understanding of norovirus transmission and lead to more timely mitigation strategies to curb norovirus outbreaks in healthcare facilities. With new in-vitro cultivation methods for human noroviruses, candidate vaccines and effective antivirals could be available in the near future.
Collapse
|
20
|
Berg MG, Olivo A, Forberg K, Harris BJ, Yamaguchi J, Shirazi R, Gozlan Y, Sauleda S, Kaptue L, Rodgers MA, Mor O, Cloherty GA. Advanced molecular surveillance approaches for characterization of blood borne hepatitis viruses. PLoS One 2020; 15:e0236046. [PMID: 32678844 PMCID: PMC7367454 DOI: 10.1371/journal.pone.0236046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/26/2020] [Indexed: 12/27/2022] Open
Abstract
Defining genetic diversity of viral infections directly from patient specimens is the ultimate goal of surveillance. Simple tools that can provide full-length sequence information on blood borne viral hepatitis viruses: hepatitis C, hepatitis B and hepatitis D viruses (HCV, HBV and HDV) remain elusive. Here, an unbiased metagenomic next generation sequencing approach (mNGS) was used for molecular characterization of HCV infections (n = 99) from Israel which yielded full-length HCV sequences in 89% of samples, with 7 partial sequences sufficient for classification. HCV genotypes were primarily 1b (68%) and 1a (19%), with minor representation of genotypes 2c (1%) and 3a (8%). HBV/HDV coinfections were characterized by suppressed HBV viral loads, resulting in sparse mNGS coverage. A probe-based enrichment approach (xGen) aiming to increase HBV and HDV coverage was validated on a panel of diverse genotypes, geography and titers. The method extended HBV genome coverage a median 61% (range 8–84%) and provided orders of magnitude boosts in reads and sequence depth for both viruses. When HBV-xGen was applied to Israeli samples, coverage was improved by 28–73% in 4 samples and identified HBV genotype A1, A2, D1 specimens and a dual B/D infection. Abundant HDV reads in mNGS libraries yielded 18/26 (69%) full genomes and 8 partial sequences, with HDV-xGen only providing minimal extension (3–11%) of what were all genotype 1 genomes. Advanced molecular approaches coupled to virus-specific capture probes promise to enhance surveillance of viral infections and aid in monitoring the spread of local subtypes.
Collapse
Affiliation(s)
- Michael G. Berg
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, Illinois, United States of America
- * E-mail:
| | - Ana Olivo
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, Illinois, United States of America
| | - Kenn Forberg
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, Illinois, United States of America
| | - Barbara J. Harris
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, Illinois, United States of America
| | - Julie Yamaguchi
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, Illinois, United States of America
| | - Rachel Shirazi
- Central Virology Laboratory, National HIV and Viral Hepatitis Reference Center, Public Health Services, Ministry of Health, Tel-Hashomer, Ramat-Gan, Israel
| | - Yael Gozlan
- Central Virology Laboratory, National HIV and Viral Hepatitis Reference Center, Public Health Services, Ministry of Health, Tel-Hashomer, Ramat-Gan, Israel
| | - Silvia Sauleda
- Transfusion Safety Laboratory, Banc de Sang i Teixits, Servei Català de la Salut, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Mary A. Rodgers
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, Illinois, United States of America
| | - Orna Mor
- Central Virology Laboratory, National HIV and Viral Hepatitis Reference Center, Public Health Services, Ministry of Health, Tel-Hashomer, Ramat-Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Israel
| | - Gavin A. Cloherty
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, Illinois, United States of America
| |
Collapse
|
21
|
Shean RC, Greninger AL. One future of clinical metagenomic sequencing for infectious diseases. Expert Rev Mol Diagn 2019; 19:849-851. [PMID: 31426667 DOI: 10.1080/14737159.2019.1658524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ryan C Shean
- Department of Laboratory Medicine, University of Washington , Seattle , WA , USA
| | | |
Collapse
|