1
|
Deng X, Li J, He R, Wen Y, Lin Y, Li L, Ling X, Hu F, Li L, Lan Y. High concordance of human immunodeficiency virus-1 genotypic drug resistance generated from paired cerebrospinal fluid and plasma in antiretroviral therapy -naive or -experienced patients. Front Microbiol 2025; 16:1518225. [PMID: 40207163 PMCID: PMC11979107 DOI: 10.3389/fmicb.2025.1518225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/25/2025] [Indexed: 04/11/2025] Open
Abstract
Background The development of human immunodeficiency virus (HIV) drug resistance significantly impairs patients' quality of life. However, the HIV-1 drug resistance patterns in the central nervous system (CNS) have been poorly studied. Objective We aimed to compare HIV-1 genotypes and drug resistance mutations (DRMs) derived from the cerebrospinal fluid (CSF) and plasma of antiretroviral therapy (ART)-naive or -experienced patients. Methods The matched CSF and plasma samples from 59 patients with HIV were subjected to HIV proteinase (PR), reverse transcriptase (RT), and integrase (IN) gene sequencing. To determine the HIV-1 genotypes, sequences were assessed with the Context-based Modelling for Expeditious Typing (COMET) tool, and the neighbour-joining (NJ) phylogenetic tree was used to confirm the results. Quality control based on genotype and phylogenetic tree analysis was conducted to assess potential sequence contamination during the detection process. The HIV-1 drug resistance database of Stanford University was used to identify DRMs and sensitivity to four drug classes [protease inhibitors (PIs), nucleoside reverse transcriptase inhibitors (NRTIs), nonnucleoside reverse transcriptase inhibitors (NNRTIs), and integrase strand transfer inhibitors (INSTIs)]. Results Of the 59 patients with HIV with matched CSF and plasma samples, samples from 37 were included in the study after excluding the samples that failed to be successfully amplified. CRF01_AE was the most frequently occurring genotype, with a frequency of 46.0% (17/37), followed by CRF07_BC (27.0%, 10/37) and CRF55_01B (10.8%, 4/37). Among the 37 patients, 37.8% (14/37) carried at least one DRM, and the mutation sites were consistent in both CSF and matched plasma, except one. NNRTI-related resistance mutations were the predominant DRMs, particularly V179D/E, present in 71.4% (10/14) of patients with DRM sites, primarily in ART-naive patients. Conclusion A high concordance of HIV-1 DRMs between CSF and plasma samples was observed. No unique mutations were identified in CSF other than those in plasma, indicating that the mutant variants in CSF were derived from blood.
Collapse
Affiliation(s)
- Xizi Deng
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiaojiao Li
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ruiying He
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yingfen Wen
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yaqing Lin
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Liya Li
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xuemei Ling
- Infectious Disease Center, Guangzhou Eighth People’s Hospital, Guangzhou Institute of Clinical Infectious Diseases, Guangzhou Medical University, Guangzhou, China
| | - Fengyu Hu
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Linghua Li
- Infectious Disease Center, Guangzhou Eighth People’s Hospital, Guangzhou Institute of Clinical Infectious Diseases, Guangzhou Medical University, Guangzhou, China
| | - Yun Lan
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Nühn MM, Gumbs SBH, Schipper PJ, Drosou I, Gharu L, Buchholtz NVEJ, Snijders GJLJ, Gigase FAJ, Wensing AMJ, Symons J, de Witte LD, Nijhuis M. Microglia Exhibit a Unique Intact HIV Reservoir in Human Postmortem Brain Tissue. Viruses 2025; 17:467. [PMID: 40284910 PMCID: PMC12030925 DOI: 10.3390/v17040467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
A proviral reservoir persists within the central nervous system (CNS) of people with HIV, but its characteristics remain poorly understood. Research has primarily focused on cerebrospinal fluid (CSF), as acquiring brain tissue is challenging. We examined size, cellular tropism, and infection-dynamics of the viral reservoir in post-mortem brain tissue from five individuals on and off antiretroviral therapy (ART) across three brain regions. Microglia-enriched fractions (CD11b+) were isolated and levels of intact proviral DNA were quantified (IPDA). Full-length envelope reporter viruses were generated and characterized in CD4+ T cells and monocyte-derived microglia. HIV DNA was observed in microglia-enriched fractions of all individuals, but intact proviruses were identified only in one ART-treated individual, representing 15% of the total proviruses. Phenotypic analyses of clones from this individual showed that 80% replicated efficiently in microglia and CD4+ T cells, while the remaining viruses replicated only in CD4+ T cells. No region-specific effects were observed. These results indicate a distinct HIV brain reservoir in microglia for all individuals, although intact proviruses were detected in only one. Given the unique immune environment of the CNS, the characteristics of microglia, and the challenges associated with targeting these cells, the CNS reservoir should be considered in cure strategies.
Collapse
Affiliation(s)
- Marieke M. Nühn
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.M.N.); (S.B.H.G.); (P.J.S.); (N.V.E.J.B.); (J.S.)
| | - Stephanie B. H. Gumbs
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.M.N.); (S.B.H.G.); (P.J.S.); (N.V.E.J.B.); (J.S.)
| | - Pauline J. Schipper
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.M.N.); (S.B.H.G.); (P.J.S.); (N.V.E.J.B.); (J.S.)
| | - Irene Drosou
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.M.N.); (S.B.H.G.); (P.J.S.); (N.V.E.J.B.); (J.S.)
| | - Lavina Gharu
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.M.N.); (S.B.H.G.); (P.J.S.); (N.V.E.J.B.); (J.S.)
| | - Ninée V. E. J. Buchholtz
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.M.N.); (S.B.H.G.); (P.J.S.); (N.V.E.J.B.); (J.S.)
| | - Gijsje J. L. J. Snijders
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA (F.A.J.G.); (L.D.d.W.)
| | - Frederieke A. J. Gigase
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA (F.A.J.G.); (L.D.d.W.)
| | - Annemarie M. J. Wensing
- Translational Virology, Department of Global Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Jori Symons
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.M.N.); (S.B.H.G.); (P.J.S.); (N.V.E.J.B.); (J.S.)
| | - Lot D. de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA (F.A.J.G.); (L.D.d.W.)
- Department of Psychiatry, Radboud UMC, 6525 GA Nijmegen, The Netherlands
- Department of Human Genetics, Radboud UMC, 6525 GA Nijmegen, The Netherlands
| | - Monique Nijhuis
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.M.N.); (S.B.H.G.); (P.J.S.); (N.V.E.J.B.); (J.S.)
| |
Collapse
|
3
|
Chan P, Li X, Li F, Emu B, Price RW, Spudich S. Longitudinal CNS and systemic T-lymphocyte and monocyte activation before and after antiretroviral therapy beginning in primary HIV infection. Front Immunol 2025; 16:1531828. [PMID: 40070827 PMCID: PMC11893981 DOI: 10.3389/fimmu.2025.1531828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
Background Trafficking of immune cells to the central nervous system is hypothesized to facilitate HIV entry and immune-induced neuronal injury and is mediated by surface proteins such as chemokine receptors and α4 integrin. We longitudinally assessed immune cell activation and surface marker expression in cerebrospinal fluid (CSF) and blood and their relationship with CSF HIV RNA beginning during primary HIV infection (PHI) before and after antiretroviral therapy (ART). Methods Longitudinal paired blood and CSF were obtained in ART-naïve PHI (<12 month since infection) participants; some independently initiated ART during follow up. Multiparameter flow cytometry of fresh samples determined activation (% CD38+HLADR+) and chemokine receptor expression (% CCR5+ and CXCR3+) on CD4+ and CD8+ T cells, and subtype and α4 integrin expression (% and mean fluorescence intensity (mfi) of CD49d+) on monocytes. HIV RNA was quantified by PCR. Analyses employed Spearman correlation, within-subject correlation, and linear mixed models. Results 51 participants enrolled at a median 3.2 months post HIV transmission with 168 total visits (113 pre-ART, 55 post-ART) and a median of 6.5 months of longitudinal follow up (range 0-40). In pre-ART PHI, frequencies of activated CD4+ and CD8+ T cells were much higher in CSF than in blood, with levels similar to ART-naïve people with chronic HIV infection. Both CSF CD4+ and CD8+ T cell activation increased longitudinally prior to initiation of ART. In multivariate analysis, CSF CD4+ but not CD8+ T cell activation independently predicted CSF HIV RNA. Neither CSF monocyte subtypes or α4 expression correlated with CSF HIV RNA. Blood monocyte α4 MFI correlated with CD4+ and CD8+ T cell activation (p<0.05). Following ART initiation, blood but not CSF T cell activation declined with days on treatment (slope=-0.06, p=0.001). During ART, blood and CSF monocyte α4 MFI correlated with T cell activation (p<0.05). Conclusions In untreated early infection after PHI, immune activation increases over time, and CSF CD4+ T cell activation but not monocyte activation correlates with CSF HIV RNA. Intrathecal T cell activation does not decline during early follow up on ART. Immunomodulating therapies may be needed to prevent neuronal injury and HIV neuroinvasion during early HIV.
Collapse
Affiliation(s)
- Phillip Chan
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
- Yale Center for Brain and Mind Health, Yale University School of Medicine, New Haven, CT, United States
| | - Xiang Li
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| | - Fangyong Li
- Yale Center for Analytical Sciences, Yale University School of Medicine, New Haven, CT, United States
| | - Brinda Emu
- Department of Medicine, Division of Infectious Diseases, Yale School of Medicine, New Haven, CT, United States
| | - Richard W. Price
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Serena Spudich
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
- Yale Center for Brain and Mind Health, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
4
|
Ulfhammer G, Yilmaz A, Mellgren Å, Tyrberg E, Sörstedt E, Hagberg L, Gostner J, Fuchs D, Zetterberg H, Nilsson S, Nyström K, Edén A, Gisslén M. Asymptomatic Cerebrospinal Fluid HIV-1 Escape: Incidence and Consequences. J Infect Dis 2025; 231:e429-e437. [PMID: 39531854 PMCID: PMC11841626 DOI: 10.1093/infdis/jiae555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The incidence and clinical relevance of asymptomatic cerebrospinal fluid escape (CSFE) during antiretroviral therapy (ART) is uncertain. We examined the impact and incidence of asymptomatic CSFE in a Swedish HIV cohort. METHODS Neuroasymptomatic people with HIV (PWH) who have been on ART for at least 6 months with suppressed plasma viral load were followed longitudinally. CSFE was defined as either increased CSF HIV-1 RNA with concurrent plasma suppression or CSF HIV-1 RNA exceeding that in plasma when both were quantifiable. Paired CSF and plasma were analyzed for HIV-1 RNA, neopterin, neurofilament light protein (NfL), white blood cell (WBC) count, and albumin ratio. RESULTS Asymptomatic CSFE (cutoff 50 copies/mL) was found in 4 of 173 PWH (2%) and 5 of 449 samples (1%). The corresponding proportions were 8% of PWH and 4% for samples using a 20 copies/mL cutoff for CSF HIV-1 RNA. CSFE samples (cutoff 20 copies/mL) had a 25% higher geometric mean of CSF neopterin (P = .01) and 8% higher albumin ratio (P = .04) compared to samples without CSFE. No differences were observed in CSF NfL levels (P = .8). The odds ratio for increased CSF WBC (≥ 3 cells/μL) in samples with CSFE was 3.9 (P = .004), compared to samples without elevated CSF viral load. CONCLUSIONS Asymptomatic CSFE was identified in only 4 (2%) PWH, with no cases of continuous CSFE observed. Increased CSF HIV-1 RNA was associated with biomarkers of CNS immune activation and blood-brain barrier impairment, but not with biomarkers of neuronal injury.
Collapse
Affiliation(s)
- Gustaf Ulfhammer
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Aylin Yilmaz
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Åsa Mellgren
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Erika Tyrberg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Erik Sörstedt
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lars Hagberg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Johanna Gostner
- Institute of Medical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom
- UK Dementia Research Institute, University College London, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Staffan Nilsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristina Nyström
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Arvid Edén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
- Public Health Agency of Sweden, Solna, Sweden
| |
Collapse
|
5
|
Kelly SH, Nightingale S, Gupta RK, Collier DA. HIV Cerebrospinal Fluid Escape: Interventions for the Management, Current Evidence and Future Perspectives. Trop Med Infect Dis 2025; 10:45. [PMID: 39998049 PMCID: PMC11860496 DOI: 10.3390/tropicalmed10020045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
Neurocognitive impairment is an important cause of HIV-associated morbidity. The advent of antiretroviral therapy (ART) has shifted the spectrum of HIV-associated cognitive impairment from HIV-associated dementia to milder forms of cognitive impairment. Independent replication of HIV within the central nervous system in those on effective ART with peripheral suppression is a recognised phenomenon known as cerebrospinal fluid (CSF) HIV RNA escape. CSF HIV RNA escape is independently associated with neurocognitive impairment but has also been detected in asymptomatic persons with HIV. The current consensus for management of CSF HIV RNA escape is based on expert opinion rather than empirical evidence. The current evidence suggests having a low threshold to investigate for CSF HIV RNA escape and optimising ART based on resistance profiles. The use of central nervous system (CNS) penetration effectiveness scores is no longer recommended. The evidence for statins, SSRIs, minocycline, lithium and valproate is limited to small-scale studies. There are potential new developments in the form of nanoparticles, Janus Kinase inhibitors and latency reversal agents.
Collapse
Affiliation(s)
- Sophie H. Kelly
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK;
- Department of Medicine, University of Cambridge, Cambridge CB2 1TN, UK
| | - Sam Nightingale
- Neuroscience Institute, University of Cape Town, Cape Town 7700, South Africa;
| | - Ravindra K. Gupta
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK;
- Department of Medicine, University of Cambridge, Cambridge CB2 1TN, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge CB2 0AW, UK
- Africa Health Research Institute, Durban 4013, South Africa
| | - Dami A. Collier
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK;
- Department of Pathology, University of Cambridge, Cambridge CB2 1TN, UK
| |
Collapse
|
6
|
Moschopoulos CD, Alford K, Antoniadou A, Vera JH. Cognitive impairment in people living with HIV: mechanisms, controversies, and future perspectives. Trends Mol Med 2024; 30:1076-1089. [PMID: 38955654 DOI: 10.1016/j.molmed.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
Despite the dramatic decrease in HIV-associated neurocognitive impairment (NCI) in the combined antiretroviral treatment (cART) era, subtler neuropsychological complications remain prevalent. In this review, we discuss the changing pathophysiology of HIV-associated NCI, considering recent evidence of HIV neuropathogenesis, and the pivotal role of cART. Furthermore, we address the multifactorial nature of NCI in people living with HIV, including legacy and ongoing insults to the brain, as well as host-specific factors. We also summarize the ongoing debate about the refinement of diagnostic criteria, exploring the strengths and limitations of these recent approaches. Finally, we present current research in NCI management in people living with HIV and highlight the need for using both pharmacological and nonpharmacological pathways toward a holistic approach.
Collapse
Affiliation(s)
- Charalampos D Moschopoulos
- Fourth Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece.
| | - Kate Alford
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Anastasia Antoniadou
- Fourth Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Jaime H Vera
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, UK; Department of Medicine, Brighton and Sussex Medical School, University of Sussex, Brighton, UK; University Hospitals Sussex NHS Foundation Trust, Brighton, UK
| |
Collapse
|
7
|
Schlachetzki JC, Gianella S, Ouyang Z, Lana AJ, Yang X, O'Brien S, Challacombe JF, Gaskill PJ, Jordan-Sciutto KL, Chaillon A, Moore D, Achim CL, Ellis RJ, Smith DM, Glass CK. Gene expression and chromatin conformation of microglia in virally suppressed people with HIV. Life Sci Alliance 2024; 7:e202402736. [PMID: 39060113 PMCID: PMC11282357 DOI: 10.26508/lsa.202402736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The presence of HIV in sequestered reservoirs is a central impediment to a functional cure, allowing HIV to persist despite life-long antiretroviral therapy (ART), and driving a variety of comorbid conditions. Our understanding of the latent HIV reservoir in the central nervous system is incomplete, because of difficulties in accessing human central nervous system tissues. Microglia contribute to HIV reservoirs, but the molecular phenotype of HIV-infected microglia is poorly understood. We leveraged the unique "Last Gift" rapid autopsy program, in which people with HIV are closely followed until days or even hours before death. Microglial populations were heterogeneous regarding their gene expression profiles but showed similar chromatin accessibility landscapes. Despite ART, we detected occasional microglia containing cell-associated HIV RNA and HIV DNA integrated into open regions of the host's genome (∼0.005%). Microglia with detectable HIV RNA showed an inflammatory phenotype. These results demonstrate a distinct myeloid cell reservoir in the brains of people with HIV despite suppressive ART. Strategies for curing HIV and neurocognitive impairment will need to consider the myeloid compartment to be successful.
Collapse
Affiliation(s)
- Johannes Cm Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, USA
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | - Sara Gianella
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, San Diego, CA, USA
| | - Zhengyu Ouyang
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, USA
| | - Addison J Lana
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, USA
| | - Xiaoxu Yang
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Sydney O'Brien
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, USA
| | - Jean F Challacombe
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, USA
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Kelly L Jordan-Sciutto
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Antoine Chaillon
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, San Diego, CA, USA
| | - David Moore
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Cristian L Achim
- Department of Pathology, University of California San Diego, San Diego, CA, USA
| | - Ronald J Ellis
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | - Davey M Smith
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, San Diego, CA, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
8
|
Kincer LP, Dravid A, Trunfio M, Calcagno A, Zhou S, Vercesi R, Spudich S, Gisslen M, Price RW, Cinque P, Joseph SB. Neurosymptomatic HIV-1 CSF escape is associated with replication in CNS T cells and inflammation. J Clin Invest 2024; 134:e176358. [PMID: 39352388 PMCID: PMC11444166 DOI: 10.1172/jci176358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/06/2024] [Indexed: 10/03/2024] Open
Abstract
During antiretroviral therapy (ART), most people living with HIV-1 have undetectable HIV-1 RNA in their plasma. However, they occasionally present with new or progressive neurologic deficits and detectable HIV-1 RNA in the cerebrospinal fluid (CSF), a condition defined as neurosymptomatic HIV-1 CSF escape (NSE). We explored the source of neuropathogenesis and HIV-1 RNA in the CSF during NSE by characterizing HIV-1 populations and inflammatory biomarkers in CSF from 25 individuals with NSE. HIV-1 populations in the CSF were uniformly drug resistant and adapted to replication in CD4+ T cells, but differed greatly in genetic diversity, with some having low levels of diversity similar to those observed during untreated primary infection and others having high levels like those during untreated chronic infection. Higher diversity in the CSF during NSE was associated with greater CNS inflammation. Finally, optimization of ART regimen was associated with viral suppression and improvement of neurologic symptoms. These results are consistent with CNS inflammation and neurologic injury during NSE being driven by replication of partially drug-resistant virus in CNS CD4+ T cells. This is unlike nonsuppressible viremia in the plasma during ART, which typically lacks clinical consequences and is generated by virus expression without replication.
Collapse
Affiliation(s)
- Laura P. Kincer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ameet Dravid
- Department of Medicine, Poona Hospital and Research Center, Pune, India
- Ruby Hall Clinic, Pune, India
| | - Mattia Trunfio
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin at the “Amedeo di Savoia” Hospital, Torino, Italy
| | - Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin at the “Amedeo di Savoia” Hospital, Torino, Italy
- ASL “CIttà di Torino,” Torino, Italy
| | - Shuntai Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Riccardo Vercesi
- Unit of Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Serena Spudich
- Department of Neurology, Yale University, New Haven, Connecticut, USA
| | - Magnus Gisslen
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Public Health Agency of Sweden, Solna, Sweden
| | - Richard W. Price
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Paola Cinque
- Unit of Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Sarah B. Joseph
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology and
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
9
|
Hu Z, Cinque P, Dravid A, Hagberg L, Yilmaz A, Zetterberg H, Fuchs D, Gostner J, Blennow K, Spudich SS, Kincer L, Zhou S, Joseph SB, Swanstrom R, Price RW, Gisslén M. Changes in cerebrospinal fluid proteins across the spectrum of untreated and treated chronic HIV-1 infection. PLoS Pathog 2024; 20:e1012470. [PMID: 39316609 PMCID: PMC11469498 DOI: 10.1371/journal.ppat.1012470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/11/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024] Open
Abstract
Using the Olink Explore 1536 platform, we measured 1,463 unique proteins in 303 cerebrospinal fluid (CSF) specimens from four clinical centers contributed by uninfected controls and 12 groups of people living with HIV-1 infection representing the spectrum of progressive untreated and treated chronic infection. We present three initial analyses of these measurements: an overview of the CSF protein features of the sample; correlations of the CSF proteins with CSF HIV-1 RNA and neurofilament light chain protein (NfL) concentrations; and comparison of CSF proteins in HIV-associated dementia (HAD) and neurosymptomatic CSF escape (NSE). These reveal a complex but coherent picture of CSF protein changes with highest concentrations of many proteins during CNS injury in the HAD and NSE groups and variable protein changes across the course of systemic HIV-1 progression that included two common patterns, designated as lymphoid and myeloid patterns, related to principal involvement of their underlying inflammatory cell lineages. Antiretroviral therapy reduced CSF protein perturbations, though not always to control levels. The dataset of these CSF protein measurements, along with background clinical information, is posted online. Extended studies of this unique dataset will supplement this report to provide more detailed characterization of the dynamic impact of HIV-1 infection on the CSF proteome across the spectrum of HIV-1 infection, advancing the mechanistic understanding of HIV-1-related CNS pathobiology.
Collapse
Affiliation(s)
- Zicheng Hu
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Paola Cinque
- Unit of Neurovirology, San Raffaele Hospital, Milan, Italy
- Unit of Infectious Diseases, San Raffaele Hospital, Milan, Italy
| | - Ameet Dravid
- HIV Medicine and Infectious Diseases, Poona Hospital and Research Centre, Pune, India
- Noble Hospital and Research Centre, Pune, India
- Ruby Hall Clinic, Pune, India
| | - Lars Hagberg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Aylin Yilmaz
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Dietmar Fuchs
- Institute of Medical Biological Chemistry, Innsbruck Medical University, Innsbruck, Austria
| | - Johanna Gostner
- Institute of Medical Biological Chemistry, Innsbruck Medical University, Innsbruck, Austria
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Serena S. Spudich
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Laura Kincer
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Shuntai Zhou
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Sarah Beth Joseph
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- UNC Center for AIDS Research, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Richard W. Price
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
- Public Health Agency of Sweden, Solna, Sweden
| |
Collapse
|
10
|
Trunfio M, Bonora S, di Perri G, Calcagno A. Further considerations on the use of cerebrospinal fluid C-X-C motif chemokine ligand 13 in the diagnosis of neurosyphilis among people with HIV. AIDS 2024; 38:1273-1275. [PMID: 38814718 DOI: 10.1097/qad.0000000000003902] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Affiliation(s)
- Mattia Trunfio
- Unit of Infectious Diseases, Department of Medical Sciences at Amedeo di Savoia Hospital, University of Turin, Turin, Italy
- HIV Neurobehavioral Research Program, Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Stefano Bonora
- Unit of Infectious Diseases, Department of Medical Sciences at Amedeo di Savoia Hospital, University of Turin, Turin, Italy
| | - Giovanni di Perri
- Unit of Infectious Diseases, Department of Medical Sciences at Amedeo di Savoia Hospital, University of Turin, Turin, Italy
| | - Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences at Amedeo di Savoia Hospital, University of Turin, Turin, Italy
| |
Collapse
|
11
|
Hu Z, Cinque P, Dravid A, Hagberg L, Yilmaz A, Zetterberg H, Fuchs D, Gostner J, Blennow K, Spudich SS, Kincer L, Zhou S, Joseph S, Swanstrom R, Price RW, Gisslén M. Changes in Cerebrospinal Fluid Proteins across the Spectrum of Untreated and Treated Chronic HIV-1 Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592451. [PMID: 38746436 PMCID: PMC11092784 DOI: 10.1101/2024.05.03.592451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Using the Olink Explore 1536 platform, we measured 1,463 unique proteins in 303 cerebrospinal fluid (CSF) specimens from four clinical centers that included uninfected controls and 12 groups of people living with HIV-1 infection representing the spectrum of progressive untreated and treated chronic infection. We present three initial analyses of these measurements: an overview of the CSF protein features of the sample; correlations of the CSF proteins with CSF HIV-1 RNA and neurofilament light chain protein (NfL) concentrations; and comparison of the CSF proteins in HIV-associated dementia ( HAD ) and neurosymptomatic CSF escape ( NSE ). These reveal a complex but coherent picture of CSF protein changes that includes highest concentrations of many proteins during CNS injury in the HAD and NSE groups and variable protein changes across the course of neuroasymptomatic systemic HIV-1 progression, including two common patterns, designated as lymphoid and myeloid patterns, related to the principal involvement of their underlying inflammatory cell lineages. Antiretroviral therapy reduced CSF protein perturbations, though not always to control levels. The dataset of these CSF protein measurements, along with background clinical information, is posted online. Extended studies of this unique dataset will provide more detailed characterization of the dynamic impact of HIV-1 infection on the CSF proteome across the spectrum of HIV-1 infection, and further the mechanistic understanding of HIV-1-related CNS pathobiology.
Collapse
|
12
|
Mastrangelo A, Gama L, Cinque P. Strategies to target the central nervous system HIV reservoir. Curr Opin HIV AIDS 2024; 19:133-140. [PMID: 38457227 DOI: 10.1097/coh.0000000000000847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
PURPOSE OF THE REVIEW The central nervous system (CNS) is an hotspot for HIV persistence and may be a major obstacle to overcome for curative strategies. The peculiar anatomical, tissular and cellular characteristics of the HIV reservoir in the CNS may need to be specifically addressed to achieve a long-term HIV control without ART. In this review, we will discuss the critical challenges that currently explored curative strategies may face in crossing the blood-brain barrier (BBB), targeting latent HIV in brain-resident myeloid reservoirs, and eliminating the virus without eliciting dangerous neurological adverse events. RECENT FINDINGS Latency reversing agents (LRA), broadly neutralizing monoclonal antibodies (bNabs), chimeric antigen receptor (CAR) T-cells, and adeno-associated virus 9-vectored gene-therapies cross the BBB with varying efficiency. Although brain penetration is poor for bNAbs, viral vectors for in vivo gene-editing, certain LRAs, and CAR T-cells may reach the cerebral compartment more efficiently. All these approaches, however, may encounter difficulties in eliminating HIV-infected perivascular macrophages and microglia. Safety, including local neurological adverse effects, may also be a concern, especially if high doses are required to achieve optimal brain penetration and efficient brain cell targeting. SUMMARY Targeting the CNS remains a potential problem for the currently investigated HIV curing strategies. In vivo evidence on CNS effectiveness is limited for most of the investigated strategies, and additional studies should be focused on evaluating the interplay between the cerebral HIV reservoir and treatment aiming to achieve an ART-free cure.
Collapse
Affiliation(s)
- Andrea Mastrangelo
- Department of Allergy and Clinical Immunology, Centre Hopitalier Universitaire Vaudoise (CHUV), Lausanne, Switzerland
| | - Lucio Gama
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Paola Cinque
- Unit of Infectious Diseases and Neurovirology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
13
|
Wang M, Yoon J, Reisert H, Das B, Orlinick B, Chiarella J, Halvas EK, Mellors J, Pang AP, Barakat LA, Fikrig M, Cyktor J, Kluger Y, Spudich S, Corley MJ, Farhadian SF. HIV-1-infected T cell clones are shared across cerebrospinal fluid and blood during ART. JCI Insight 2024; 9:e176208. [PMID: 38587074 PMCID: PMC11128194 DOI: 10.1172/jci.insight.176208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/27/2024] [Indexed: 04/09/2024] Open
Abstract
The central nervous system HIV reservoir is incompletely understood and is a major barrier to HIV cure. We profiled people with HIV (PWH) and uninfected controls through single-cell transcriptomic and T cell receptor (TCR) sequencing to understand the dynamics of HIV persistence in the CNS. In PWH on ART, we found that most participants had single cells containing HIV-1 RNA, which was found predominantly in CD4 central memory T cells, in both cerebrospinal fluid (CSF) and blood. HIV-1 RNA-containing cells were found more frequently in CSF than blood, indicating a higher burden of reservoir cells in the CNS than blood for some PWH. Most CD4 T cell clones containing infected cells were compartment specific, while some (22%) - including rare clones with members of the clone containing detectable HIV RNA in both blood and CSF - were found in both CSF and blood. These results suggest that infected T cells trafficked between tissue compartments and that maintenance and expansion of infected T cell clones contributed to the CNS reservoir in PWH on ART.
Collapse
Affiliation(s)
- Meng Wang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, USA
| | | | | | | | | | - Jennifer Chiarella
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Elias K. Halvas
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John Mellors
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alina P.S. Pang
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
| | | | | | - Joshua Cyktor
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yuval Kluger
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Serena Spudich
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael J. Corley
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
| | - Shelli F. Farhadian
- Section of Infectious Diseases, and
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
14
|
Chan P, Moreland S, Sacdalan C, Kroon E, Colby D, Sriplienchan S, Pinyakorn S, Phanuphak N, Jagodzinski L, Valcour V, Vasan S, Paul R, Trautmann L, Spudich S. Cerebrospinal fluid pleocytosis is associated with HIV-1 neuroinvasion during acute infection. AIDS 2024; 38:373-378. [PMID: 37916464 PMCID: PMC10842649 DOI: 10.1097/qad.0000000000003777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
OBJECTIVE HIV-1 invades the brain within days post-transmission. This study quantitated cerebrospinal fluid (CSF) white blood cell count (WBC) and investigated whether it associated with plasma and CSF HIV-1 RNA during untreated acute HIV infection (AHI). DESIGN Seventy participants underwent lumbar puncture during Fiebig stages I-V AHI. METHOD WBC and HIV-1 RNA with a lower limit of quantification (LLQ) of 80 copies/ml were measured in CSF. RESULTS Sixty-nine (99%) participants were men, with a median age of 26. Their blood CD4 + and CD8 + T-cell counts were 335 [interquartile range (IQR) 247-553) and 540 (IQR 357-802) cells/μl, respectively. Forty-five (64%) were in Fiebig stages III-V whereas 25 (36%) were in Feibig stages I-II. Fifty-two (74%) experienced acute retroviral syndrome. Median plasma and CSF HIV-1 RNA were 6.10 (IQR 5.15-6.78) and 3.15 (IQR 1.90-4.11) log 10 copies/ml, respectively. Sixteen (23%) CSF samples had HIV-1 RNA below LLQ. Median CSF WBC was 2.5 (IQR 1-8) cells/μl. CSF pleocytosis (WBC >5) was observed in 33% and was only present in CSF samples with detectable HIV-1 RNA. The frequencies of CSF pleocytosis during Fiebig stages III-V and among CSF samples of higher viral load (>1000 copies/ml) were 42 and 45%, respectively. Pleocytosis independently associated with CSF HIV-1 RNA in multivariate analysis [adjusted coefficient: 0.79, 95% confidence interval (CI) 0.41-1.14), P < 0.001] and a lower plasma to CSF HIV-1 RNA ratio ( P < 0.001). CONCLUSION CSF pleocytosis was present in one-third of participants with AHI. It associated with higher CSF HIV-1 RNA and a lower plasma to CSF HIV-1 RNA ratio, suggesting a potential association with HIV-1 neuroinvasion.
Collapse
Affiliation(s)
- Phillip Chan
- Department of Neurology
- Yale Center for Brain and Mind Health, Yale University School of Medicine, New Haven, CT
| | - Sarah Moreland
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Carlo Sacdalan
- SEARCH Research Foundation
- Faculty of Medicine, Chulalongkorn University
| | - Eugene Kroon
- SEARCH Research Foundation
- Institute of HIV Research and Innovation, Bangkok, Thailand
| | - Donn Colby
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | | | - Suteeraporn Pinyakorn
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | | | - Linda Jagodzinski
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
| | - Victor Valcour
- Memory and Aging Center, Department of Neurology, University of California San Francisco, CA
| | - Sandhya Vasan
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Robert Paul
- Faculty of Psychological Sciences, Missouri Institute of Mental Health, University of Missouri-St. Louis, St. Louis, MO, USA
| | - Lydie Trautmann
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Serena Spudich
- Department of Neurology
- Yale Center for Brain and Mind Health, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
15
|
Kang J, Wang Z, Zhou Y, Wang W, Wen Y. Learning from cerebrospinal fluid drug-resistant HIV escape-associated encephalitis: a case report. Virol J 2023; 20:292. [PMID: 38072961 PMCID: PMC10712177 DOI: 10.1186/s12985-023-02255-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND In the era of antiretroviral therapy (ART), central nervous system (CNS) complications in patients with human immunodeficiency virus (HIV) infection are sometimes associated with cerebrospinal fluid (CSF) viral escape. Here, we reported a case of persistent CNS viral escape with recurrent symptomatic encephalitis, which had ultimate stabilization achieved by a combination of ART adjustment and corticosteroids. CASE PRESENTATION A 27-year-old man with HIV infection complained of recurrent headaches during the last year. His magnetic resonance imaging (MRI) presented diffused bilateral white matter lesions, and laboratory tests confirmed elevated CSF protein level, lymphocytic pleocytosis, and detectable CSF HIV RNA (774 copies/mL). Plasma HIV RNA was well suppressed with tenofovir, lamivudine, and lopinavir/ritonavir. Prednisone 60 mg once daily was initiated to reduce intracranial inflammation, followed by a good clinical response, with CSF HIV RNA still detectable (31.1 copies/mL). During the gradual tapering of prednisone, his headache relapsed, and booming viral loads were detected in both CSF (4580 copies/mL) and plasma (340 copies/mL) with consistent drug-resistant mutations. Thereupon, prednisone was resumed and the ART regimen was switched to zidovudine, lamivudine, and dolutegravir according to drug resistance tests. Persistent clinical recovery of symptoms, neuroimaging, and laboratory abnormalities were observed in the follow-up visits. CONCLUSION CSF and plasma HIV RNA and further drug resistance tests should be monitored in HIV-infected patients with neurologic symptoms, as opportunistic infections or tumors can be ruled out. ART optimization using a sensitive regimen may be crucial for addressing CSF viral escape and the related encephalitis.
Collapse
Affiliation(s)
- Jing Kang
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ziqiu Wang
- Dongguan Institute for Microscale and Precision Medical Measurement, Dongguan, China
| | - Ying Zhou
- Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Wen Wang
- Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Ying Wen
- Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
16
|
Wang J, Li M, Li J, Deng R. Differences in drug resistance of HIV-1 genotypes in CSF and plasma and analysis of related factors. Virulence 2023; 14:2171632. [PMID: 36694270 PMCID: PMC9908293 DOI: 10.1080/21505594.2023.2171632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The emergence of HIV drug resistance seriously affects the quality of life of patients. However, there has been no extensive study of CSF resistance. The aim of this study is to evaluate common HIV-1 resistance in CSF and compare it with resistance in matched plasma, and analyse the influencing factors of cerebrospinal fluid drug resistance. The matched CSF and plasma samples of 62 HIV-1 patients were tested at one study site in China (Chongqing; 2019-2022). HIV genotyping and drug resistance was evaluated using the Stanford v8.7 algorithm. The diagnosis and treatment data and basic information were collected from the clinical case system, and the influencing factors of drug resistance mutations in CSF was obtained by variance analysis. CSF and matched plasma HIV-1 subtypes were confirmed in 62 patients, and the most frequent recombinant form was CRF07-BC (64.5%). Thirteen patients (21.0%) were detected with drug-resistant mutations, and the sites were consistent in both CSF and matched plasma. The drug-resistant ratios of untreated patients and treated patients were 5/51 (9.8%) and 8/11 (72.7%), respectively. The type with the highest mutation frequency was NNRTI, and no mutation was found in INSTI. Multivariate analysis indicated that ARV treatment was associated with CSF resistance (P < 0.001). The subtypes and drug resistance mutation sites are consistent in CSF and matched plasma samples of HIV-1 patients, and there is a correlation between ARV treatment and possible drug resistance, especially in CSF reservoirs. These findings highlight the concern about CSF drug resistance in HIV patients.
Collapse
Affiliation(s)
- Jie Wang
- Central lab, Chongqing Public Health Medical Center, Chongqing, China
| | - Mei Li
- Central lab, Chongqing Public Health Medical Center, Chongqing, China
| | - Jungang Li
- Central lab, Chongqing Public Health Medical Center, Chongqing, China
| | - Renni Deng
- Central lab, Chongqing Public Health Medical Center, Chongqing, China,CONTACT Renni Deng
| |
Collapse
|
17
|
Henderson M, Pepper N, Bawa M, Muir D, Everitt A, Mackie NE, Winston A. Cerebrospinal fluid virology in people with HIV. HIV Med 2023; 24:838-844. [PMID: 36895097 DOI: 10.1111/hiv.13471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/08/2023] [Indexed: 03/11/2023]
Abstract
OBJECTIVE Our objectives were to investigate the recent frequency of cerebrospinal fluid (CSF) HIV RNA escape and other CSF viral nucleic acid detection in people with HIV with neurological symptoms and to assess associated clinical factors. METHOD This was a retrospective cohort analysis of people with HIV who underwent CSF examination for clinical indications between 2017 and 2022. Individuals were identified from pathology records, and clinical data were recorded. CSF HIV RNA escape was defined as CSF HIV RNA concentrations greater than in plasma. CSF viral screen included herpes simplex virus types 1 (HSV-1) and 2 (HSV-2), varicella zoster virus (VZV), Epstein Barr virus (EBV), cytomegalovirus (CMV), human herpesvirus 6 (HHV-6) and JC virus. When cases were detected in five or more people with HIV, associated clinical factors were assessed using linear regression modelling. RESULTS CSF HIV RNA escape was observed in 19 of 114 individuals (17%) and was associated with the presence of HIV drug resistance mutations and non-integrase strand transfer inhibitor-based antiretroviral therapy (p < 0.05 for all) when compared to people with HIV without escape. Positive viral nucleic acid testing included EBV (n = 10), VZV (3), CMV (2), HHV-6 (2) and JC virus (4). Detectable CSF EBV was not considered related to neurological symptoms and was associated with concomitant CSF infections in eight of ten individuals and with CSF pleocytosis, previous AIDS, lower nadir and current CD4 T-cell count (p < 0.05 for all). CONCLUSION In people with HIV with neurological symptoms, the frequency of CSF HIV RNA escape remains similar to that in historical reports. Detectable EBV viral nucleic acid in the CSF was observed frequently and, in the absence of clinical manifestations, may be a consequence of CSF pleocytosis.
Collapse
Affiliation(s)
- Merle Henderson
- Department of Infectious Disease, Faculty of Medicine, St Mary's Campus, Imperial College London, London, UK
- Department of HIV and GU Medicine, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Nuala Pepper
- Department of Infectious Disease, Faculty of Medicine, St Mary's Campus, Imperial College London, London, UK
| | - Manraj Bawa
- Department of Infectious Disease, Faculty of Medicine, St Mary's Campus, Imperial College London, London, UK
| | - David Muir
- North West London Pathology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Alex Everitt
- Department of Neurology, St. Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Nicola E Mackie
- Department of HIV and GU Medicine, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Alan Winston
- Department of Infectious Disease, Faculty of Medicine, St Mary's Campus, Imperial College London, London, UK
- Department of HIV and GU Medicine, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
18
|
Tang Y, Chaillon A, Gianella S, Wong LM, Li D, Simermeyer TL, Porrachia M, Ignacio C, Woodworth B, Zhong D, Du J, de la Parra Polina E, Kirchherr J, Allard B, Clohosey ML, Moeser M, Sondgeroth AL, Whitehill GD, Singh V, Dashti A, Smith DM, Eron JJ, Bar KJ, Chahroudi A, Joseph SB, Archin NM, Margolis DM, Jiang G. Brain microglia serve as a persistent HIV reservoir despite durable antiretroviral therapy. J Clin Invest 2023; 133:e167417. [PMID: 37317962 PMCID: PMC10266791 DOI: 10.1172/jci167417] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/25/2023] [Indexed: 06/16/2023] Open
Abstract
Brain microglia (MG) may serve as a human immunodeficiency virus 1 (HIV) reservoir and ignite rebound viremia following cessation of antiretroviral therapy (ART), but they have yet to be proven to harbor replication-competent HIV. Here, we isolated brain myeloid cells (BrMCs) from nonhuman primates and rapid autopsy of people with HIV (PWH) on ART and sought evidence of persistent viral infection. BrMCs predominantly displayed microglial markers, in which up to 99.9% of the BrMCs were TMEM119+ MG. Total and integrated SIV or HIV DNA was detectable in the MG, with low levels of cell-associated viral RNA. Provirus in MG was highly sensitive to epigenetic inhibition. Outgrowth virus from parietal cortex MG in an individual with HIV productively infected both MG and PBMCs. This inducible, replication-competent virus and virus from basal ganglia proviral DNA were closely related but highly divergent from variants in peripheral compartments. Phenotyping studies characterized brain-derived virus as macrophage tropic based on the ability of the virus to infect cells expressing low levels of CD4. The lack of genetic diversity in virus from the brain suggests that this macrophage-tropic lineage quickly colonized brain regions. These data demonstrate that MG harbor replication-competent HIV and serve as a persistent reservoir in the brain.
Collapse
Affiliation(s)
- Yuyang Tang
- University of North Carolina (UNC) HIV Cure Center, and
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Sara Gianella
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Lilly M. Wong
- University of North Carolina (UNC) HIV Cure Center, and
| | - Dajiang Li
- University of North Carolina (UNC) HIV Cure Center, and
| | | | | | | | | | - Daniel Zhong
- University of North Carolina (UNC) HIV Cure Center, and
| | - Jiayi Du
- University of North Carolina (UNC) HIV Cure Center, and
| | | | | | | | | | - Matt Moeser
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, Chapel Hill, North Carolina, USA
| | - Amy L. Sondgeroth
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, Chapel Hill, North Carolina, USA
| | - Gregory D. Whitehill
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Vidisha Singh
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Amir Dashti
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Joseph J. Eron
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Katherine J. Bar
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Sarah B. Joseph
- University of North Carolina (UNC) HIV Cure Center, and
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nancie M. Archin
- University of North Carolina (UNC) HIV Cure Center, and
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David M. Margolis
- University of North Carolina (UNC) HIV Cure Center, and
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Guochun Jiang
- University of North Carolina (UNC) HIV Cure Center, and
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, North Carolina, USA
| |
Collapse
|
19
|
Lisco A, Lange C, Manion M, Kuriakose S, Dewar R, Gorelick RJ, Huik K, Yu Q, Hammoud DA, Smith BR, Muranski P, Rehm C, Sherman BT, Sykes C, Lindo N, Ye P, Bricker KM, Keele BF, Fennessey CM, Maldarelli F, Sereti I. Immune reconstitution inflammatory syndrome drives emergence of HIV drug resistance from multiple anatomic compartments in a person living with HIV. Nat Med 2023; 29:1364-1369. [PMID: 37322122 PMCID: PMC10494392 DOI: 10.1038/s41591-023-02387-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/05/2023] [Indexed: 06/17/2023]
Abstract
Reservoirs of HIV maintained in anatomic compartments during antiretroviral therapy prevent HIV eradication. However, mechanisms driving their persistence and interventions to control them remain elusive. Here we report the presence of an inducible HIV reservoir within antigen-specific CD4+T cells in the central nervous system of a 59-year-old male with progressive multifocal leukoencephalopathy immune reconstitution inflammatory syndrome (PML-IRIS). HIV production during PML-IRIS was suppressed by modulating inflammation with corticosteroids; selection of HIV drug resistance caused subsequent breakthrough viremia. Therefore, inflammation can influence the composition, distribution and induction of HIV reservoirs, warranting it as a key consideration for developing effective HIV remission strategies.
Collapse
Affiliation(s)
- Andrea Lisco
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Camille Lange
- Clinical Retrovirology Section, HIV Dynamics and Replication Program National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
- Military HIV Research Program, Walter Reed Army Institute of Research, Henry M. Jackson Foundation for the Advancement of Military Medicine, Silver Spring, MD, USA.
| | - Maura Manion
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Safia Kuriakose
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Robin Dewar
- Virus Isolation and Serology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Robert J Gorelick
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kristi Huik
- Clinical Retrovirology Section, HIV Dynamics and Replication Program National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Quan Yu
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Bryan R Smith
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Pawel Muranski
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Catherine Rehm
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brad T Sherman
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Craig Sykes
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Natalie Lindo
- Clinical Retrovirology Section, HIV Dynamics and Replication Program National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Peiying Ye
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Katherine M Bricker
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Frank Maldarelli
- Clinical Retrovirology Section, HIV Dynamics and Replication Program National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| | - Irini Sereti
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
20
|
Hagberg L, Gisslén M. Cohort profile: a longitudinal study of HIV infection in the central nervous system with focus on cerebrospinal fluid - the Gothenburg HIV CSF Study Cohort. BMJ Open 2023; 13:e070693. [PMID: 37197824 PMCID: PMC10193099 DOI: 10.1136/bmjopen-2022-070693] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/02/2023] [Indexed: 05/19/2023] Open
Abstract
PURPOSE In order to enable long-term follow-up of the natural course of HIV infection in the central nervous system, a longitudinal cohort study with repeated cerebrospinal fluid (CSF) analyses at intervals over time was initiated in 1985. When antiretrovirals against HIV were introduced in the late 1980s, short-term and long-term effects of various antiretroviral treatment (ART) regimens were added to the study. PARTICIPANTS All adult people living with HIV (PLWH) who were diagnosed at or referred to the Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden were asked to participate in the Gothenburg HIV CSF Study Cohort. PLWH with neurological symptoms or other clinical symptoms of HIV, as well as those with no symptoms of HIV infection, were included. Most participants were asymptomatic, which distinguishes this cohort from most other international HIV CSF studies. In addition, HIV-negative controls were recruited. These included people on HIV pre-exposure prophylaxis who served as lifestyle-matched controls to HIV-infected men who have sex with men. Since lumbar puncture (LP) is an invasive procedure, some PLHW only consented to participate in one examination. Furthermore, at the beginning of the study, several participants were lost to follow-up having died from AIDS. Of 662 PLWH where an initial LP was done, 415 agreed to continue with follow-up. Among the 415, 56 only gave permission to be followed with LP for less than 1 year, mainly to analyse the short-term effect of ART. The remaining 359 PLWH were followed up with repeated LP for periods ranging from >1 to 30 years. This group was defined as the 'longitudinal cohort'. So far, on 7 April 2022, 2650 LP and samplings of paired CSF/blood had been performed, providing a unique biobank. FINDINGS TO DATE A general finding during the 37-year study period was that HIV infection in the central nervous system, as mirrored by CSF findings, appears early in the infectious course of the disease and progresses slowly in the vast majority of untreated PLWH. Combination ART has been highly effective in reducing CSF viral counts, inflammation and markers of neural damage. Minor CSF signs of long-term sequels or residual inflammatory activity and CSF escape (viral CSF blips) have been observed during follow-up. The future course of these changes and their clinical impact require further studies. FUTURE PLANS PLWH today have a life expectancy close to that of non-infected people. Therefore, our cohort provides a unique opportunity to study the long-term effects of HIV infection in the central nervous system and the impact of ART and is an ongoing study.
Collapse
Affiliation(s)
- Lars Hagberg
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg Sahlgrenska Academy, Gothenburg, Sweden
- Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg Sahlgrenska Academy, Gothenburg, Sweden
- Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
21
|
Gabuzda D, Yin J, Misra V, Chettimada S, Gelman BB. Intact Proviral DNA Analysis of the Brain Viral Reservoir and Relationship to Neuroinflammation in People with HIV on Suppressive Antiretroviral Therapy. Viruses 2023; 15:1009. [PMID: 37112989 PMCID: PMC10142371 DOI: 10.3390/v15041009] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
HIV establishes a persistent viral reservoir in the brain despite viral suppression in blood to undetectable levels on antiretroviral therapy (ART). The brain viral reservoir in virally suppressed HIV+ individuals is not well-characterized. In this study, intact, defective, and total HIV proviral genomes were measured in frontal lobe white matter from 28 virally suppressed individuals on ART using the intact proviral DNA assay (IPDA). HIV gag DNA/RNA levels were measured using single-copy assays and expression of 78 genes related to inflammation and white matter integrity was measured using the NanoString platform. Intact proviral DNA was detected in brain tissues of 18 of 28 (64%) individuals on suppressive ART. The median proviral genome copy numbers in brain tissue as measured by the IPDA were: intact, 10 (IQR 1-92); 3' defective, 509 (225-858); 5' defective, 519 (273-906); and total proviruses, 1063 (501-2074) copies/106 cells. Intact proviral genomes accounted for less than 10% (median 8.3%) of total proviral genomes in the brain, while 3' and 5' defective genomes accounted for 44% and 49%, respectively. There was no significant difference in median copy number of intact, defective, or total proviruses between groups stratified by neurocognitive impairment (NCI) vs. no NCI. In contrast, there was an increasing trend in intact proviruses in brains with vs. without neuroinflammatory pathology (56 vs. 5 copies/106 cells, p = 0.1), but no significant differences in defective or total proviruses. Genes related to inflammation, stress responses, and white matter integrity were differentially expressed in brain tissues with >5 vs. +5 intact proviruses/106 cells. These findings suggest that intact HIV proviral genomes persist in the brain at levels comparable to those reported in blood and lymphoid tissues and increase CNS inflammation/immune activation despite suppressive ART, indicating the importance of targeting the CNS reservoir to achieve HIV cure.
Collapse
Affiliation(s)
- Dana Gabuzda
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Jun Yin
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Vikas Misra
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sukrutha Chettimada
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Benjamin B. Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
22
|
Carlander C, Brännström J, Månsson F, Elvstam O, Albinsson P, Blom S, Mattsson L, Hovmöller S, Norrgren H, Mellgren Å, Svedhem V, Gisslén M, Sönnerborg A. Cohort profile: InfCareHIV, a prospective registry-based cohort study of people with diagnosed HIV in Sweden. BMJ Open 2023; 13:e069688. [PMID: 36931676 PMCID: PMC10030896 DOI: 10.1136/bmjopen-2022-069688] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
PURPOSE The Swedish InfCareHIV cohort was established in 2003 to ensure equal and effective care of people living with HIV (PLHIV) and enable long-term follow-up. InfCareHIV functions equally as a decision support system as a quality registry, ensuring up-to-date data reported in real time. PARTICIPANTS InfCareHIV includes data on >99% of all people with diagnosed HIV in Sweden and up to now 13 029 have been included in the cohort. InfCareHIV includes data on HIV-related biomarkers and antiretroviral therapies (ART) and also on demographics, patient-reported outcome measures and patient-reported experience measures. FINDINGS TO DATE Sweden was in 2015 the first country to reach the UNAIDS (United Nations Programme on HIV/AIDS)/WHO's 90-90-90 goals. Late diagnosis of HIV infection was identified as a key problem in the Swedish HIV-epidemic, and low-level HIV viraemia while on ART associated with all-cause mortality. Increased HIV RNA load in the cerebrospinal fluid (CSF) despite suppression of the plasma viral load was found in 5% of PLHIV, a phenomenon referred to as 'CSF viral escape'. Dolutegravir-based treatment in PLHIV with pre-existing nucleoside reverse transcriptase inhibitor-mutations was non-inferior to protease inhibitor-based regimens. An increase of transmitted drug resistance was observed in the InfCareHIV cohort. Lower efficacy for protease inhibitors was not due to lower adherence to treatment. Incidence of type 2 diabetes and insulin resistance was high in the ageing HIV population. Despite ART, the risk of infection-related cancer as well as lung cancer was increased in PLHIV compared with HIV-negative. PLHIV were less likely successfully treated for cervical precancer and more likely to have human papillomavirus types not included in current HPV vaccines. Self-reported sexual satisfaction in PLHIV is improving and is higher in women than men. FUTURE PLANS InfCareHIV provides a unique base to study and further improve long-term treatment outcomes, comorbidity management and health-related quality of life in people with HIV in Sweden.
Collapse
Affiliation(s)
- Christina Carlander
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Johanna Brännström
- Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
- Department of Infectious Diseases/Venhälsan, Södersjukhuset, Stockholm, Sweden
| | - Fredrik Månsson
- Department of Clinical Sciences, Lund University, Infectious Diseases Research Unit, Malmo, Sweden
| | - Olof Elvstam
- Department of Translational Medicine, Lund University, Lund, Sweden
- Department of Infectious Diseases, Växjö Central Hospital, Växjö, Sweden
| | - Pernilla Albinsson
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | | | - Lena Mattsson
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Sanne Hovmöller
- Department of Infectious Diseases, Sunderby Hospital, Lulea, Sweden
| | - Hans Norrgren
- Department of Clinical Sciences, Lund University Faculty of Science, Lund, Sweden
| | - Åsa Mellgren
- Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Veronica Svedhem
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg Sahlgrenska Academy, Gothenburg, Sweden
- Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenbrug, Sweden
| | - Anders Sönnerborg
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
23
|
Rheinberger M, Costa AL, Kampmann M, Glavas D, Shytaj IL, Sreeram S, Penzo C, Tibroni N, Garcia-Mesa Y, Leskov K, Fackler OT, Vlahovicek K, Karn J, Lucic B, Herrmann C, Lusic M. Genomic profiling of HIV-1 integration in microglia cells links viral integration to the topologically associated domains. Cell Rep 2023; 42:112110. [PMID: 36790927 DOI: 10.1016/j.celrep.2023.112110] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/15/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
HIV-1 encounters the hierarchically organized host chromatin to stably integrate and persist in anatomically distinct latent reservoirs. The contribution of genome organization in HIV-1 infection has been largely understudied across different HIV-1 targets. Here, we determine HIV-1 integration sites (ISs), associate them with chromatin and expression signatures at different genomic scales in a microglia cell model, and profile them together with the primary T cell reservoir. HIV-1 insertions into introns of actively transcribed genes with IS hotspots in genic and super-enhancers, characteristic of blood cells, are maintained in the microglia cell model. Genome organization analysis reveals dynamic CCCTC-binding factor (CTCF) clusters in cells with active and repressed HIV-1 transcription, whereas CTCF removal impairs viral integration. We identify CTCF-enriched topologically associated domain (TAD) boundaries with signatures of transcriptionally active chromatin as HIV-1 integration determinants in microglia and CD4+ T cells, highlighting the importance of host genome organization in HIV-1 infection.
Collapse
Affiliation(s)
- Mona Rheinberger
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Ana Luisa Costa
- Health Data Science Unit, Medical Faculty University Heidelberg and BioQuant, 69120 Heidelberg, Germany
| | - Martin Kampmann
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Dunja Glavas
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Iart Luca Shytaj
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Sheetal Sreeram
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Carlotta Penzo
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Nadine Tibroni
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Yoelvis Garcia-Mesa
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Konstantin Leskov
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Oliver T Fackler
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Kristian Vlahovicek
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Bojana Lucic
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany.
| | - Carl Herrmann
- Health Data Science Unit, Medical Faculty University Heidelberg and BioQuant, 69120 Heidelberg, Germany.
| | - Marina Lusic
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany.
| |
Collapse
|
24
|
Ramirez-Mata AS, Ostrov D, Salemi M, Marini S, Magalis BR. Machine Learning Prediction and Phyloanatomic Modeling of Viral Neuroadaptive Signatures in the Macaque Model of HIV-Mediated Neuropathology. Microbiol Spectr 2023; 11:e0308622. [PMID: 36847516 PMCID: PMC10100676 DOI: 10.1128/spectrum.03086-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/06/2023] [Indexed: 03/01/2023] Open
Abstract
In human immunodeficiency virus (HIV) infection, virus replication in and adaptation to the central nervous system (CNS) can result in neurocognitive deficits in approximately 25% of patients with unsuppressed viremia. While no single viral mutation can be agreed upon as distinguishing the neuroadapted population, earlier studies have demonstrated that a machine learning (ML) approach could be applied to identify a collection of mutational signatures within the virus envelope glycoprotein (Gp120) predictive of disease. The S[imian]IV-infected macaque is a widely used animal model of HIV neuropathology, allowing in-depth tissue sampling infeasible for human patients. Yet, translational impact of the ML approach within the context of the macaque model has not been tested, much less the capacity for early prediction in other, noninvasive tissues. We applied the previously described ML approach to prediction of SIV-mediated encephalitis (SIVE) using gp120 sequences obtained from the CNS of animals with and without SIVE with 97% accuracy. The presence of SIVE signatures at earlier time points of infection in non-CNS tissues indicated these signatures cannot be used in a clinical setting; however, combined with protein structural mapping and statistical phylogenetic inference, results revealed common denominators associated with these signatures, including 2-acetamido-2-deoxy-beta-d-glucopyranose structural interactions and high rate of alveolar macrophage (AM) infection. AMs were also determined to be the phyloanatomic source of cranial virus in SIVE animals, but not in animals that did not develop SIVE, implicating a role for these cells in the evolution of the signatures identified as predictive of both HIV and SIV neuropathology. IMPORTANCE HIV-associated neurocognitive disorders remain prevalent among persons living with HIV (PLWH) owing to our limited understanding of the contributing viral mechanisms and ability to predict disease onset. We have expanded on a machine learning method previously used on HIV genetic sequence data to predict neurocognitive impairment in PLWH to the more extensively sampled SIV-infected macaque model in order to (i) determine the translatability of the animal model and (ii) more accurately characterize the predictive capacity of the method. We identified eight amino acid and/or biochemical signatures in the SIV envelope glycoprotein, the most predominant of which demonstrated the potential for aminoglycan interaction characteristic of previously identified HIV signatures. These signatures were not isolated to specific points in time or to the central nervous system, limiting their use as an accurate clinical predictor of neuropathogenesis; however, statistical phylogenetic and signature pattern analyses implicate the lungs as a key player in the emergence of neuroadapted viruses.
Collapse
Affiliation(s)
- Andrea S. Ramirez-Mata
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - David Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Marco Salemi
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Simone Marini
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
- Department of Epidemiology, University of Florida, Gainesville, Florida, USA
| | - Brittany Rife Magalis
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
25
|
Riggs PK, Chaillon A, Jiang G, Letendre SL, Tang Y, Taylor J, Kaytes A, Smith DM, Dubé K, Gianella S. Lessons for Understanding Central Nervous System HIV Reservoirs from the Last Gift Program. Curr HIV/AIDS Rep 2022; 19:566-579. [PMID: 36260191 PMCID: PMC9580451 DOI: 10.1007/s11904-022-00628-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW Deep tissue HIV reservoirs, especially within the central nervous system (CNS), are understudied due to the challenges of sampling brain, spinal cord, and other tissues. Understanding the cellular characteristics and viral dynamics in CNS reservoirs is critical so that HIV cure trials can address them and monitor the direct and indirect effects of interventions. The Last Gift program was developed to address these needs by enrolling altruistic people with HIV (PWH) at the end of life who agree to rapid research autopsy. RECENT FINDINGS Recent findings from the Last Gift emphasize significant heterogeneity across CNS reservoirs, CNS compartmentalization including differential sensitivity to broadly neutralizing antibodies, and bidirectional migration of HIV across the blood-brain barrier. Our findings add support for the potential of CNS reservoirs to be a source of rebounding viruses and reseeding of systemic sites if they are not targeted by cure strategies. This review highlights important scientific, practical, and ethical lessons learned from the Last Gift program in the context of recent advances in understanding the CNS reservoirs and key knowledge gaps in current research.
Collapse
Affiliation(s)
| | | | - Guochun Jiang
- Department of Biochemistry and Biophysics, Institute of Global Health and Infectious Diseases, UNC HIV Cure Center, Chapel Hill, NC, USA
| | | | - Yuyang Tang
- Department of Biochemistry and Biophysics, Institute of Global Health and Infectious Diseases, UNC HIV Cure Center, Chapel Hill, NC, USA
| | - Jeff Taylor
- AntiViral Research Center (AVRC) Community Advisory Board, University of California San Diego, San Diego, CA, USA
- HIV + Aging Research Project - Palm Springs (HARP-PS), Palm Springs, CA, USA
| | - Andrew Kaytes
- AntiViral Research Center (AVRC) Community Advisory Board, University of California San Diego, San Diego, CA, USA
| | | | - Karine Dubé
- Department of Medicine, UCSD, San Diego, CA, USA
| | | |
Collapse
|
26
|
Scanlan A, Zhang Z, Koneru R, Reece M, Gavegnano C, Anderson AM, Tyor W. A Rationale and Approach to the Development of Specific Treatments for HIV Associated Neurocognitive Impairment. Microorganisms 2022; 10:2244. [PMID: 36422314 PMCID: PMC9699382 DOI: 10.3390/microorganisms10112244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 05/22/2024] Open
Abstract
Neurocognitive impairment (NCI) associated with HIV infection of the brain impacts a large proportion of people with HIV (PWH) regardless of antiretroviral therapy (ART). While the number of PWH and severe NCI has dropped considerably with the introduction of ART, the sole use of ART is not sufficient to prevent or arrest NCI in many PWH. As the HIV field continues to investigate cure strategies, adjunctive therapies are greatly needed. HIV imaging, cerebrospinal fluid, and pathological studies point to the presence of continual inflammation, and the presence of HIV RNA, DNA, and proteins in the brain despite ART. Clinical trials exploring potential adjunctive therapeutics for the treatment of HIV NCI over the last few decades have had limited success. Ideally, future research and development of novel compounds need to address both the HIV replication and neuroinflammation associated with HIV infection in the brain. Brain mononuclear phagocytes (MPs) are the primary instigators of inflammation and HIV protein expression; therefore, adjunctive treatments that act on MPs, such as immunomodulating agents, look promising. In this review, we will highlight recent developments of innovative therapies and discuss future approaches for HIV NCI treatment.
Collapse
Affiliation(s)
- Aaron Scanlan
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhan Zhang
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rajeth Koneru
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Monica Reece
- Department of Pathology, Division of Experimental Pathology, Emory University, Atlanta, GA 30322, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | - Christina Gavegnano
- Department of Pathology, Division of Experimental Pathology, Emory University, Atlanta, GA 30322, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | - Albert M. Anderson
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - William Tyor
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
27
|
Nühn MM, Gumbs SBH, Buchholtz NVEJ, Jannink LM, Gharu L, de Witte LD, Wensing AMJ, Lewin SR, Nijhuis M, Symons J. Shock and kill within the CNS: A promising HIV eradication approach? J Leukoc Biol 2022; 112:1297-1315. [PMID: 36148896 PMCID: PMC9826147 DOI: 10.1002/jlb.5vmr0122-046rrr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 01/18/2023] Open
Abstract
The most studied HIV eradication approach is the "shock and kill" strategy, which aims to reactivate the latent reservoir by latency reversing agents (LRAs) and allowing elimination of these cells by immune-mediated clearance or viral cytopathic effects. The CNS is an anatomic compartment in which (persistent) HIV plays an important role in HIV-associated neurocognitive disorder. Restriction of the CNS by the blood-brain barrier is important for maintenance of homeostasis of the CNS microenvironment, which includes CNS-specific cell types, expression of transcription factors, and altered immune surveillance. Within the CNS predominantly myeloid cells such as microglia and perivascular macrophages are thought to be a reservoir of persistent HIV infection. Nevertheless, infection of T cells and astrocytes might also impact HIV infection in the CNS. Genetic adaptation to this microenvironment results in genetically distinct, compartmentalized viral populations with differences in transcription profiles. Because of these differences in transcription profiles, LRAs might have different effects within the CNS as compared with the periphery. Moreover, reactivation of HIV in the brain and elimination of cells within the CNS might be complex and could have detrimental consequences. Finally, independent of activity on latent HIV, LRAs themselves can have adverse neurologic effects. We provide an extensive overview of the current knowledge on compartmentalized (persistent) HIV infection in the CNS and on the "shock and kill" strategy. Subsequently, we reflect on the impact and promise of the "shock and kill" strategy on the elimination of persistent HIV in the CNS.
Collapse
Affiliation(s)
- Marieke M. Nühn
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Stephanie B. H. Gumbs
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Ninée V. E. J. Buchholtz
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Lisanne M. Jannink
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Lavina Gharu
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Lot D. de Witte
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands,Department of PsychiatryIcahn School of MedicineNew YorkNew YorkUSA
| | - Annemarie M. J. Wensing
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Sharon R. Lewin
- Department of Infectious DiseasesThe University of Melbourne at the Peter Doherty Institute of Immunity and InfectionMelbourneVICAustralia,Victorian Infectious Diseases ServiceThe Royal Melbourne Hospital at the Peter Doherty Institute of Immunity and InfectionMelbourneVICAustralia,Department of Infectious DiseasesAlfred Hospital and Monash UniversityMelbourneVICAustralia
| | - Monique Nijhuis
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Jori Symons
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| |
Collapse
|
28
|
Cochrane CR, Angelovich TA, Byrnes SJ, Waring E, Guanizo AC, Trollope GS, Zhou J, Vue J, Senior L, Wanicek E, Eddine JJ, Gartner MJ, Jenkins TA, Gorry PR, Brew BJ, Lewin SR, Estes JD, Roche M, Churchill MJ. Intact HIV Proviruses Persist in the Brain Despite Viral Suppression with ART. Ann Neurol 2022; 92:532-544. [PMID: 35867351 PMCID: PMC9489665 DOI: 10.1002/ana.26456] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/23/2022] [Accepted: 07/11/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Human immunodeficiency virus (HIV) persistence in blood and tissue reservoirs, including the brain, is a major barrier to HIV cure and possible cause of comorbid disease. However, the size and replication competent nature of the central nervous system (CNS) reservoir is unclear. Here, we used the intact proviral DNA assay (IPDA) to provide the first quantitative assessment of the intact and defective HIV reservoir in the brain of people with HIV (PWH). METHODS Total, intact, and defective HIV proviruses were measured in autopsy frontal lobe tissue from viremic (n = 18) or virologically suppressed (n = 12) PWH. Total or intact/defective proviruses were measured by detection of HIV pol or the IPDA, respectively, through use of droplet digital polymerase chain reaction (ddPCR). HIV-seronegative individuals were included as controls (n = 6). RESULTS Total HIV DNA was present at similar levels in brain tissues from untreated viremic and antiretroviral (ART)-suppressed individuals (median = 22.3 vs 26.2 HIV pol copies/106 cells), reflecting a stable CNS reservoir of HIV that persists despite therapy. Furthermore, 8 of 10 viremic and 6 of 9 virally suppressed PWH also harbored intact proviruses in the CNS (4.63 vs 12.7 intact copies/106 cells). Viral reservoirs in CNS and matched lymphoid tissue were similar in the composition of intact and/or defective proviruses, albeit at lower levels in the brain. Importantly, CNS resident CD68+ myeloid cells in virally suppressed individuals harbored HIV DNA, directly showing the presence of a CNS resident HIV reservoir. INTERPRETATION Our results demonstrate the first evidence for an intact, potentially replication competent HIV reservoir in the CNS of virally suppressed PWH. ANN NEUROL 2022;92:532-544.
Collapse
Affiliation(s)
- Catherine R. Cochrane
- Emerging Infections Program, School of Health and Biomedical SciencesRMIT UniversityMelbourneVICAustralia,Department of MedicineThe Royal Melbourne Hospital, The University of MelbourneMelbourneVICAustralia
| | - Thomas A. Angelovich
- Emerging Infections Program, School of Health and Biomedical SciencesRMIT UniversityMelbourneVICAustralia,Life SciencesBurnet InstituteMelbourneVICAustralia,Department of Infectious DiseasesThe University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Sarah J. Byrnes
- Emerging Infections Program, School of Health and Biomedical SciencesRMIT UniversityMelbourneVICAustralia
| | - Emily Waring
- Emerging Infections Program, School of Health and Biomedical SciencesRMIT UniversityMelbourneVICAustralia,Department of MedicineThe Royal Melbourne Hospital, The University of MelbourneMelbourneVICAustralia
| | - Aleks C. Guanizo
- Emerging Infections Program, School of Health and Biomedical SciencesRMIT UniversityMelbourneVICAustralia
| | - Gemma S. Trollope
- Emerging Infections Program, School of Health and Biomedical SciencesRMIT UniversityMelbourneVICAustralia,Department of MedicineThe Royal Melbourne Hospital, The University of MelbourneMelbourneVICAustralia
| | - Jingling Zhou
- Emerging Infections Program, School of Health and Biomedical SciencesRMIT UniversityMelbourneVICAustralia
| | - Judith Vue
- Emerging Infections Program, School of Health and Biomedical SciencesRMIT UniversityMelbourneVICAustralia
| | - Lachlan Senior
- Emerging Infections Program, School of Health and Biomedical SciencesRMIT UniversityMelbourneVICAustralia
| | - Emma Wanicek
- Emerging Infections Program, School of Health and Biomedical SciencesRMIT UniversityMelbourneVICAustralia
| | - Janna Jamal Eddine
- Emerging Infections Program, School of Health and Biomedical SciencesRMIT UniversityMelbourneVICAustralia
| | - Matthew J. Gartner
- Department of Infectious DiseasesThe University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Trisha A. Jenkins
- Emerging Infections Program, School of Health and Biomedical SciencesRMIT UniversityMelbourneVICAustralia
| | - Paul R. Gorry
- Emerging Infections Program, School of Health and Biomedical SciencesRMIT UniversityMelbourneVICAustralia,Department of Infectious DiseasesAlfred Hospital and Monash UniversityMelbourneVICAustralia,Department of Microbiology and ImmunologyThe University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Bruce J. Brew
- Peter Duncan Neurosciences Unit, Departments of Neurology and Immunology St Vincent's HospitalSydney, University of New South Wales and University of Notre DameSydneyNew South WalesAustralia
| | - Sharon R. Lewin
- Department of Infectious DiseasesThe University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia,Department of Infectious DiseasesAlfred Hospital and Monash UniversityMelbourneVICAustralia,Victorian Infectious Diseases ServiceRoyal Melbourne Hospital at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Jacob D. Estes
- Vaccine and Gene Therapy Institute, Oregon National Primate Research CentreOregon Health & Science UniversityPortlandORUSA
| | - Michael Roche
- Emerging Infections Program, School of Health and Biomedical SciencesRMIT UniversityMelbourneVICAustralia,Department of Infectious DiseasesThe University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Melissa J. Churchill
- Emerging Infections Program, School of Health and Biomedical SciencesRMIT UniversityMelbourneVICAustralia,Life SciencesBurnet InstituteMelbourneVICAustralia,Departments of Microbiology and MedicineMonash UniversityMelbourneVICAustralia
| |
Collapse
|
29
|
Killingsworth L, Spudich S. Neuropathogenesis of HIV-1: insights from across the spectrum of acute through long-term treated infection. Semin Immunopathol 2022; 44:709-724. [PMID: 35882661 PMCID: PMC10126949 DOI: 10.1007/s00281-022-00953-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/20/2022] [Indexed: 01/16/2023]
Abstract
This review outlines the neuropathogenesis of HIV, from initial HIV entry into the central nervous system (CNS) to chronic infection, focusing on key advancements in the last 5 years. Discoveries regarding acute HIV infection reveal timing and mechanisms of early HIV entry and replication in the CNS, early inflammatory responses, and establishment of genetically distinct viral reservoirs in the brain. Recent studies additionally explore how chronic HIV infection is maintained in the CNS, examining how the virus remains in a latent "hidden" state in diverse cells in the brain, and how this leads to sustained pathological inflammatory responses. Despite viral suppression with antiretroviral therapy, HIV can persist and even replicate in the CNS, and associate with ongoing neuropathology including CD8 + T-lymphocyte mediated encephalitis. Crucial investigation to advance our understanding of the immune mechanisms that both control viral infection and lead to pathological consequences in the brain is necessary to develop treatments to optimize long-term neurologic health in people living with HIV.
Collapse
Affiliation(s)
- Lauren Killingsworth
- Department of Neurology, Yale University School of Medicine, 300 George Street, Room 8300c, New Haven, CT, 06520, USA
| | - Serena Spudich
- Department of Neurology, Yale University School of Medicine, 300 George Street, Room 8300c, New Haven, CT, 06520, USA.
| |
Collapse
|
30
|
Lessard D, Dubé K, Bilodeau M, Keeler P, Margolese S, Rosenes R, Sinyavskaya L, Durand M, Benko E, Kovacs C, Guerlotté C, Tharao W, Arnold K, Masching R, Taylor D, Sousa J, Ostrowski M, Taylor J, Kaytes A, Smith D, Gianella S, Chomont N, Angel JB, Routy JP, Cohen ÉA, Lebouché B, Costiniuk CT. Willingness of Older Canadians with HIV to Participate in HIV Cure Research Near and After the End of Life: A Mixed-Method Study. AIDS Res Hum Retroviruses 2022; 38:670-682. [PMID: 35778845 PMCID: PMC9483839 DOI: 10.1089/aid.2022.0006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
HIV cure research requires interrogating latent HIV reservoirs in deep tissues, which necessitates autopsies to avoid risks to participants. An HIV autopsy biobank would facilitate this research, but such research raises ethical issues and requires participant engagement. This study explores the willingness to participate in HIV cure research at the end of life. Participants include Canadians with HIV [people with HIV (PWHIV)] aged 55 years or older. Following a mixed-method study design, all participants completed a phone or online survey, and a subset of participants participated in in-depth phone or videoconference interviews. We produced descriptive statistics of quantitative data and a thematic analysis of qualitative data. Barriers and facilitators were categorized under domains of the Theoretical Domains Framework. From April 2020 to August 2021, 37 participants completed the survey (mean age = 69.9 years old; mean duration of HIV infection = 28.5 years), including 15 interviewed participants. About three quarters of participants indicated being willing to participate in hypothetical medical studies toward the end of life (n = 30; 81.1%), in HIV biobanking (n = 30; 81.1%), and in a research autopsy (n = 28; 75.7%) to advance HIV cure research, mainly for altruistic benefits. The main perceived risks had to do with physical pain and confidentiality. Barriers and facilitators were distributed across five domains: social/professional role and identity, environmental context and resources, social influences, beliefs about consequences, and capabilities. Participants wanted more information about study objectives and procedures, possible accommodations with their last will, and rationale for studies or financial interests funding studies. Our results indicate that older PWHIV would be willing to participate in HIV cure research toward the end of life, HIV biobanking, and research autopsy. However, a dialogue should be initiated to inform participants thoroughly about HIV cure studies, address concerns, and accommodate their needs and preferences. Additional work is required, likely through increased community engagement, to address educational needs.
Collapse
Affiliation(s)
- David Lessard
- Chronic Viral Illness Service, Division of Infectious Diseases, Department of Medicine, McGill University Health Centre (MUHC), Montreal, Canada
- Canadian Institutes of Health Research Strategy for Patient-Oriented Research Mentorship Chair in Innovative Clinical Trials, Montreal, Canada
- Centre for Outcome Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Karine Dubé
- Department of Medicine, The Last Gift Team, Division of Infectious Diseases and Global Public Health, University of California San Diego School of Medicine, San Diego, California, USA
- Department of Health Policy and Management, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | - Shari Margolese
- Canadian HIV Cure Enterprise (CanCURE) Community Advisory Board, Toronto, Canada
| | - Ron Rosenes
- Canadian HIV Cure Enterprise (CanCURE) Community Advisory Board, Toronto, Canada
| | - Liliya Sinyavskaya
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Madeleine Durand
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | | | | | - Charlotte Guerlotté
- COCQ-Sida, Montreal, Canada
- Canadian HIV Cure Enterprise (CanCURE) Community Advisory Board, Toronto, Canada
| | - Wangari Tharao
- Canadian HIV Cure Enterprise (CanCURE) Community Advisory Board, Toronto, Canada
- Women's Health in Women's Hands, Canada and African and Black Diaspora Global Network on HIV and AIDS, Toronto, Canada
- African and Caribbean Council on HIV/AIDS in Ontario, Toronto, Canada
| | - Keresa Arnold
- Canadian HIV Cure Enterprise (CanCURE) Community Advisory Board, Toronto, Canada
- African and Caribbean Council on HIV/AIDS in Ontario, Toronto, Canada
| | - Renée Masching
- Canadian HIV Cure Enterprise (CanCURE) Community Advisory Board, Toronto, Canada
- Canadian Aboriginal AIDS Network, Dartmouth, Canada
- Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Canada
| | - Darien Taylor
- Canadian HIV Cure Enterprise (CanCURE) Community Advisory Board, Toronto, Canada
| | - José Sousa
- Canadian HIV Cure Enterprise (CanCURE) Community Advisory Board, Toronto, Canada
| | - Mario Ostrowski
- Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Canada
| | - Jeff Taylor
- Department of Medicine, The Last Gift Team, Division of Infectious Diseases and Global Public Health, University of California San Diego School of Medicine, San Diego, California, USA
| | - Andy Kaytes
- Department of Medicine, The Last Gift Team, Division of Infectious Diseases and Global Public Health, University of California San Diego School of Medicine, San Diego, California, USA
| | - Davey Smith
- Department of Medicine, The Last Gift Team, Division of Infectious Diseases and Global Public Health, University of California San Diego School of Medicine, San Diego, California, USA
| | - Sara Gianella
- Department of Medicine, The Last Gift Team, Division of Infectious Diseases and Global Public Health, University of California San Diego School of Medicine, San Diego, California, USA
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal and Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Canada
| | - Jonathan B. Angel
- Ottawa Hospital Research Institute and Division of Infectious Disease, The Ottawa Hospital, Ottawa, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illness Service, Division of Infectious Diseases, Department of Medicine, McGill University Health Centre (MUHC), Montreal, Canada
| | - Éric A. Cohen
- Institut de Recherche Clinique de Montréal, Montreal, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Canada
| | - Bertrand Lebouché
- Chronic Viral Illness Service, Division of Infectious Diseases, Department of Medicine, McGill University Health Centre (MUHC), Montreal, Canada
- Canadian Institutes of Health Research Strategy for Patient-Oriented Research Mentorship Chair in Innovative Clinical Trials, Montreal, Canada
- Centre for Outcome Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Family Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Cecilia T. Costiniuk
- Chronic Viral Illness Service, Division of Infectious Diseases, Department of Medicine, McGill University Health Centre (MUHC), Montreal, Canada
- Division of Infectious Diseases, Department of Medicine, McGill University, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| |
Collapse
|
31
|
HIV drug resistance in various body compartments. Curr Opin HIV AIDS 2022; 17:205-212. [PMID: 35762375 DOI: 10.1097/coh.0000000000000741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW HIV drug resistance testing using blood plasma or dried blood spots forms part of international guidelines. However, as the clinical utility of assessing drug resistance in other body compartments is less well established, we review this for blood cells and samples from other body compartments. RECENT EVIDENCE Although clinical benefit is not clear, drug resistance testing in blood cells is often performed when patients with suppressed plasma viral loads require a treatment substitution. In patients with HIV neurocognitive disease, cerebral spinal fluid (CSF) drug resistance is rarely discordant with plasma but has nevertheless been used to guide antiretroviral drug substitutions. Cases with HIV drug resistance in genital fluids have been documented but this does not appear to indicate transmission risk when blood plasma viral loads are suppressed. SUMMARY Drug-resistant variants, which may be selected in tissues under conditions of variable adherence and drug penetration, appear to disseminate quickly, and become detectable in blood. This may explain why drug resistance discordance between plasma and these compartments is rarely found. Partial compartmentalization of HIV populations is well established for the CSF and the genital tract but other than blood plasma, evidence is lacking to support drug resistance testing in body compartments.
Collapse
|
32
|
Kelentse N, Moyo S, Molebatsi K, Morerinyane O, Bitsang S, Bareng OT, Lechiile K, Leeme TB, Lawrence DS, Kasvosve I, Musonda R, Mosepele M, Harrison TS, Jarvis JN, Gaseitsiwe S. Reversal of CSF HIV-1 Escape during Treatment of HIV-Associated Cryptococcal Meningitis in Botswana. Biomedicines 2022; 10:1399. [PMID: 35740421 PMCID: PMC9219642 DOI: 10.3390/biomedicines10061399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
Cerebrospinal fluid (CSF) viral escape has been poorly described among people with HIV-associated cryptococcal meningitis. We determined the prevalence of CSF viral escape and HIV-1 viral load (VL) trajectories in individuals treated for HIV-associated cryptococcal meningitis. A retrospective longitudinal study was performed using paired CSF and plasma collected prior to and during the antifungal treatment of 83 participants recruited at the Botswana site of the phase-3 AMBITION-cm trial (2018−2021). HIV-1 RNA levels were quantified then CSF viral escape (CSF HIV-1 RNA ≥ 0.5 log10 higher than plasma) and HIV-1 VL trajectories were assessed. CSF viral escape occurred in 20/62 (32.3%; 95% confidence interval [CI]: 21.9−44.6%), 13/52 (25.0%; 95% CI: 15.2−38.2%) and 1/33 (3.0%; 95% CI: 0.16−15.3%) participants at days 1, 7 and 14 respectively. CSF viral escape was significantly lower on day 14 compared to days 1 and 7, p = 0.003 and p = 0.02, respectively. HIV-1 VL decreased significantly from day 1 to day 14 post antifungal therapy in the CSF but not in the plasma (β = −0.47; 95% CI: −0.69 to −0.25; p < 0.001). CSF viral escape is high among individuals presenting with HIV-associated cryptococcal meningitis; however, antifungal therapy may reverse this, highlighting the importance of rapid initiation of antifungal therapy in these patients.
Collapse
Affiliation(s)
- Nametso Kelentse
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (K.M.); (O.M.); (O.T.B.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (M.M.); (J.N.J.)
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana;
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (K.M.); (O.M.); (O.T.B.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (M.M.); (J.N.J.)
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Kesaobaka Molebatsi
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (K.M.); (O.M.); (O.T.B.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (M.M.); (J.N.J.)
- Department of Statistics, Faculty of Social Sciences, University of Botswana, Gaborone, Botswana
| | - Olorato Morerinyane
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (K.M.); (O.M.); (O.T.B.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (M.M.); (J.N.J.)
| | - Shatho Bitsang
- Botswana-University of Maryland School of Medicine Health Initiative, Gaborone, Botswana;
| | - Ontlametse T. Bareng
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (K.M.); (O.M.); (O.T.B.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (M.M.); (J.N.J.)
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana;
| | - Kwana Lechiile
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (K.M.); (O.M.); (O.T.B.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (M.M.); (J.N.J.)
| | - Tshepo B. Leeme
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (K.M.); (O.M.); (O.T.B.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (M.M.); (J.N.J.)
| | - David S. Lawrence
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (K.M.); (O.M.); (O.T.B.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (M.M.); (J.N.J.)
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, The London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Ishmael Kasvosve
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana;
| | - Rosemary Musonda
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (K.M.); (O.M.); (O.T.B.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (M.M.); (J.N.J.)
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Mosepele Mosepele
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (K.M.); (O.M.); (O.T.B.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (M.M.); (J.N.J.)
- Department of Internal Medicine, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| | - Thomas S. Harrison
- Centre for Global Health, Institute for Infection and Immunity, St. George’s University of London, London SW17 0RE, UK;
| | - Joseph N. Jarvis
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (K.M.); (O.M.); (O.T.B.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (M.M.); (J.N.J.)
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, The London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (K.M.); (O.M.); (O.T.B.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (M.M.); (J.N.J.)
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
33
|
Chan P, Spudich S. HIV Compartmentalization in the CNS and Its Impact in Treatment Outcomes and Cure Strategies. Curr HIV/AIDS Rep 2022; 19:207-216. [PMID: 35536438 PMCID: PMC10590959 DOI: 10.1007/s11904-022-00605-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review focuses on the cerebrospinal fluid (CSF) findings in connection to the central nervous system (CNS) reservoir in treatment-naïve and virally suppressed PLWH, followed by the findings in CSF HIV-1 escape and analytical treatment interruption studies. RECENT FINDINGS Compared to chronic infection, initiating antiretroviral therapy (ART) during acute HIV-1 infection results in more homogeneous longitudinal benefits in the CNS. Viral variants in CSF HIV-1 escape are independently linked to infected cells from the systemic reservoir and in the CNS, highlighting the phenomenon as a consequence of different mechanisms. HIV-infected cells persist in CSF in nearly half of the individuals on stable ART and are associated with worse neurocognitive performance. Future studies should probe into the origin of the HIV-infected cells in the CSF. Examining the capacity for viral replication would provide new insight into the CNS reservoir and identify strategies to eradicate it or compensate for the insufficiency of ART.
Collapse
Affiliation(s)
- Phillip Chan
- SEARCH, Institute of HIV Research and Innovation, Bangkok, Thailand
| | - Serena Spudich
- Department of Neurology and Center for Neuroepidemiology and Clinical Neurological Research, Yale University, New Haven, CT, USA.
| |
Collapse
|
34
|
Barbian HJ, Seaton MS, Narasipura SD, Wallace J, Rajan R, Sha BE, Al-Harthi L. β-catenin regulates HIV latency and modulates HIV reactivation. PLoS Pathog 2022; 18:e1010354. [PMID: 35255110 PMCID: PMC8939789 DOI: 10.1371/journal.ppat.1010354] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/22/2022] [Accepted: 02/09/2022] [Indexed: 11/18/2022] Open
Abstract
Latency is the main obstacle towards an HIV cure, with cure strategies aiming to either elicit or prevent viral reactivation. While these strategies have shown promise, they have only succeeded in modulating latency in a fraction of the latent HIV reservoir, suggesting that the mechanisms controlling HIV latency are not completely understood, and that comprehensive latency modulation will require targeting of multiple latency maintenance pathways. We show here that the transcriptional co-activator and the central mediator of canonical Wnt signaling, β-catenin, inhibits HIV transcription in CD4+ T cells via TCF-4 LTR binding sites. Further, we show that inhibiting the β-catenin pathway reactivates HIV in a primary TCM cell model of HIV latency, primary cells from cART-controlled HIV donors, and in CD4+ latent cell lines. β-catenin inhibition or activation also enhanced or inhibited the activity of several classes of HIV latency reversing agents, respectively, in these models, with significant synergy of β-catenin and each LRA class tested. In sum, we identify β-catenin as a novel regulator of HIV latency in vitro and ex vivo, adding new therapeutic targets that may be combined for comprehensive HIV latency modulation in HIV cure efforts.
Collapse
Affiliation(s)
- Hannah J. Barbian
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Melanie S. Seaton
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Srinivas D. Narasipura
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Jennillee Wallace
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Reshma Rajan
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Beverly E. Sha
- Department of Internal Medicine, Division of Infectious Diseases, Rush University Medical Center, Chicago, Illinios United States of America
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
35
|
Capoferri AA, Redd AD, Gocke CD, Clark LR, Quinn TC, Ambinder RF, Durand CM. Brief Report: Rebound HIV Viremia With Meningoencephalitis After Antiretroviral Therapy Interruption After Allogeneic Bone Marrow Transplant. J Acquir Immune Defic Syndr 2022; 89:297-302. [PMID: 34753870 PMCID: PMC10985789 DOI: 10.1097/qai.0000000000002862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/29/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND Allogeneic bone marrow transplant (alloBMT) in people living with HIV can lead to the undetectable levels of HIV reservoirs in blood, even using highly sensitive assays. However, with antiretroviral therapy (ART) interruption, rebound of HIV viremia occurs. The source of this rebound viremia is of interest in HIV cure strategies. METHODS Within a trial of alloBMT in individuals with hematologic malignancies and HIV (ClinicalTrials.gov, NCT01836068), one recipient self-interrupted ART after achieving >99.5% host cell replacement in peripheral blood by day 147 and developed severe acute retroviral syndrome with meningoencephalitis at 156 days post alloBMT. We isolated replication-competent HIV using a quantitative viral outgrowth assay at 100 and 25 days before alloBMT and from the same time points before alloBMT for HIV DNA and cell-associated RNA from peripheral blood mononuclear cells and resting memory CD4+ T cells. We isolated HIV RNA in plasma and cerebrospinal fluid (CSF) at viral rebound. We sequenced the RT-region of pol and performed neighbor-joining phylogenetic reconstruction. RESULTS Phylogenetic analysis revealed an identical viral sequence at both pre-alloBMT time points accounting for 9 of 34 sequences (26%) of the sampled HIV reservoir. This sequence population grouped with viral rebound sequences from plasma and CSF with high sequence homology. DISCUSSION Despite >99.5% replacement of host cells in peripheral blood, ART interruption led to HIV viral rebound in plasma and CSF. Furthermore, the rebound virus matched replication-competent virus from resting memory CD4+ T cells before alloBMT. This case underscores that HIV-infected recipient cells can persist after alloBMT and that latent replication-competent virus can reestablish infection.
Collapse
Affiliation(s)
| | - Andrew D. Redd
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Laura R. Clark
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Cancer Center, Baltimore, MD, USA
| | - Thomas C. Quinn
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard F. Ambinder
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Cancer Center, Baltimore, MD, USA
| | - Christine M. Durand
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Cancer Center, Baltimore, MD, USA
| |
Collapse
|
36
|
Pérez-González A, Suárez-García I, Ocampo A, Poveda E. Two-Drug Regimens for HIV-Current Evidence, Research Gaps and Future Challenges. Microorganisms 2022; 10:433. [PMID: 35208887 PMCID: PMC8880461 DOI: 10.3390/microorganisms10020433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
During the last 30 years, antiretroviral treatment (ART) for human immunodeficiency virus (HIV) infection has been continuously evolving. Since 1996, three-drug regimens (3DR) have been standard-of-care for HIV treatment and are based on a protease inhibitor (PI) or a non-nucleoside reverse transcriptase inhibitor (NNRTI) plus two nucleoside reverse transcriptase inhibitors (NRTIs). The effectiveness of first-generation 3DRs allowed a dramatic increase in the life expectancy of HIV-infected patients, although it was associated with several side effects and ART-related toxicities. The development of novel two-drug regimens (2DRs) started in the mid-2000s in order to minimize side effects, reduce drug-drug interactions and improve treatment compliance. Several clinical trials compared 2DRs and 3DRs in treatment-naïve and treatment-experienced patients and showed the non-inferiority of 2DRs in terms of efficacy, which led to 2DRs being used as first-line treatment in several clinical scenarios, according to HIV clinical guidelines. In this review, we summarize the current evidence, research gaps and future prospects of 2DRs.
Collapse
Affiliation(s)
- Alexandre Pérez-González
- Group of Virology and Pathogenesis, Galicia Sur Health Research Institute (IIS Galicia Sur), Complexo Hospitalario Universitario de Vigo, SERGAS-UVigo, 36213 Vigo, Spain;
- Infectious Diseases Unit, Department of Internal Medicine, Galicia Sur Health Research Institute (IIS Galicia Sur), Complexo Hospitalario Universitario de Vigo, SERGAS-UVigo, 36213 Vigo, Spain;
| | - Inés Suárez-García
- Infectious Diseases Group, Internal Medicine Department, Hospital Universitario Infanta Sofía, FIIB HUIS HHEN, 28703 San Sebastián de los Reyes, Spain;
- Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea, 28670 Madrid, Spain
- CIBER de Enfermedades Infecciosas, 28029 Madrid, Spain
| | - Antonio Ocampo
- Infectious Diseases Unit, Department of Internal Medicine, Galicia Sur Health Research Institute (IIS Galicia Sur), Complexo Hospitalario Universitario de Vigo, SERGAS-UVigo, 36213 Vigo, Spain;
| | - Eva Poveda
- Group of Virology and Pathogenesis, Galicia Sur Health Research Institute (IIS Galicia Sur), Complexo Hospitalario Universitario de Vigo, SERGAS-UVigo, 36213 Vigo, Spain;
| |
Collapse
|
37
|
Lau CY, Adan MA, Maldarelli F. Why the HIV Reservoir Never Runs Dry: Clonal Expansion and the Characteristics of HIV-Infected Cells Challenge Strategies to Cure and Control HIV Infection. Viruses 2021; 13:2512. [PMID: 34960781 PMCID: PMC8708047 DOI: 10.3390/v13122512] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022] Open
Abstract
Antiretroviral therapy (ART) effectively reduces cycles of viral replication but does not target proviral populations in cells that persist for prolonged periods and that can undergo clonal expansion. Consequently, chronic human immunodeficiency virus (HIV) infection is sustained during ART by a reservoir of long-lived latently infected cells and their progeny. This proviral landscape undergoes change over time on ART. One of the forces driving change in the landscape is the clonal expansion of infected CD4 T cells, which presents a key obstacle to HIV eradication. Potential mechanisms of clonal expansion include general immune activation, antigenic stimulation, homeostatic proliferation, and provirus-driven clonal expansion, each of which likely contributes in varying, and largely unmeasured, amounts to maintaining the reservoir. The role of clinical events, such as infections or neoplasms, in driving these mechanisms remains uncertain, but characterizing these forces may shed light on approaches to effectively eradicate HIV. A limited number of individuals have been cured of HIV infection in the setting of bone marrow transplant; information from these and other studies may identify the means to eradicate or control the virus without ART. In this review, we describe the mechanisms of HIV-1 persistence and clonal expansion, along with the attempts to modify these factors as part of reservoir reduction and cure strategies.
Collapse
Affiliation(s)
- Chuen-Yen Lau
- HIV Dynamics and Replication Program, NCI, NIH, Bethesda, MD 20892, USA; (C.-Y.L.); (M.A.A.)
| | - Matthew A. Adan
- HIV Dynamics and Replication Program, NCI, NIH, Bethesda, MD 20892, USA; (C.-Y.L.); (M.A.A.)
- Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, NCI, NIH, Bethesda, MD 20892, USA; (C.-Y.L.); (M.A.A.)
| |
Collapse
|
38
|
Sharma V, Creegan M, Tokarev A, Hsu D, Slike BM, Sacdalan C, Chan P, Spudich S, Ananworanich J, Eller MA, Krebs SJ, Vasan S, Bolton DL. Cerebrospinal fluid CD4+ T cell infection in humans and macaques during acute HIV-1 and SHIV infection. PLoS Pathog 2021; 17:e1010105. [PMID: 34874976 PMCID: PMC8683024 DOI: 10.1371/journal.ppat.1010105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/17/2021] [Accepted: 11/10/2021] [Indexed: 12/30/2022] Open
Abstract
HIV-1 replication within the central nervous system (CNS) impairs neurocognitive function and has the potential to establish persistent, compartmentalized viral reservoirs. The origins of HIV-1 detected in the CNS compartment are unknown, including whether cells within the cerebrospinal fluid (CSF) produce virus. We measured viral RNA+ cells in CSF from acutely infected macaques longitudinally and people living with early stages of acute HIV-1. Active viral transcription (spliced viral RNA) was present in CSF CD4+ T cells as early as four weeks post-SHIV infection, and among all acute HIV-1 specimens (N = 6; Fiebig III/IV). Replication-inactive CD4+ T cell infection, indicated by unspliced viral RNA in the absence of spliced viral RNA, was even more prevalent, present in CSF of >50% macaques and human CSF at ~10-fold higher frequency than productive infection. Infection levels were similar between CSF and peripheral blood (and lymph nodes in macaques), indicating comparable T cell infection across these compartments. In addition, surface markers of activation were increased on CSF T cells and monocytes and correlated with CSF soluble markers of inflammation. These studies provide direct evidence of HIV-1 replication in CD4+ T cells and broad immune activation in peripheral blood and the CNS during acute infection, likely contributing to early neuroinflammation and reservoir seeding. Thus, early initiation of antiretroviral therapy may not be able to prevent establishment of CNS viral reservoirs and sources of long-term inflammation, important targets for HIV-1 cure and therapeutic strategies. Neurological pathologies are associated with HIV-1 infection and remain common in the ongoing AIDS epidemic. Despite the advent of successful viremia suppression by anti-retroviral therapy, increased life expectancies and co-morbidities have led to higher prevalence of milder forms of neurocognitive dysfunction. How HIV-1 causes neurocognitive dysfunction is currently unclear, though it is widely believed that viral replication within the central nervous system (CNS) prior to therapy triggers these detrimental processes. The appearance of HIV-1 in the cerebrospinal fluid during the earliest stages of infection suggests that these processes may begin very early. Here, we use novel techniques to probe cells for viral infection during the first few weeks of infection in the CNS of humans and animals to determine the source of this virus. We found HIV-1 replication in T cells in the cerebrospinal fluid during this early window. In addition, infected T cells were present at similar frequencies in the CNS and other anatomic compartments, suggesting equilibration of T cell infection levels across these sites and potential for establishment of long-term reservoirs in the CNS. Our study provides new insights to the early events of viral entry and replication in the CNS with implications for subsequent viral persistence and neuronal injury.
Collapse
Affiliation(s)
- Vishakha Sharma
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Matthew Creegan
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Andrey Tokarev
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Denise Hsu
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Bonnie M. Slike
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Carlo Sacdalan
- Institute of HIV Research and Innovation, Bangkok, Thailand
| | - Phillip Chan
- Institute of HIV Research and Innovation, Bangkok, Thailand
| | - Serena Spudich
- Department of Neurology, Yale University, New Haven, Connecticut, United States of America
| | - Jintanat Ananworanich
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Michael A. Eller
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Shelly J. Krebs
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Sandhya Vasan
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Diane L. Bolton
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
- * E-mail:
| | | |
Collapse
|
39
|
Lustig G, Cele S, Karim F, Derache A, Ngoepe A, Khan K, Gosnell BI, Moosa MYS, Ntshuba N, Marais S, Jeena PM, Govender K, Adamson J, Kløverpris H, Gupta RK, Harrichandparsad R, Patel VB, Sigal A. T cell derived HIV-1 is present in the CSF in the face of suppressive antiretroviral therapy. PLoS Pathog 2021; 17:e1009871. [PMID: 34555123 PMCID: PMC8509856 DOI: 10.1371/journal.ppat.1009871] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/12/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022] Open
Abstract
HIV cerebrospinal fluid (CSF) escape, where HIV is suppressed in blood but detectable in CSF, occurs when HIV persists in the CNS despite antiretroviral therapy (ART). To determine the virus producing cell type and whether lowered CSF ART levels are responsible for CSF escape, we collected blood and CSF from 156 neurosymptomatic participants from Durban, South Africa. We observed that 28% of participants with an undetectable HIV blood viral load showed CSF escape. We detected host cell surface markers on the HIV envelope to determine the cellular source of HIV in participants on the first line regimen of efavirenz, emtricitabine, and tenofovir. We confirmed CD26 as a marker which could differentiate between T cells and macrophages and microglia, and quantified CD26 levels on the virion surface, comparing the result to virus from in vitro infected T cells or macrophages. The measured CD26 level was consistent with the presence of T cell produced virus. We found no significant differences in ART concentrations between CSF escape and fully suppressed individuals in CSF or blood, and did not observe a clear association with drug resistance mutations in CSF virus which would allow HIV to replicate. Hence, CSF HIV in the face of ART may at least partly originate in CD4+ T cell populations.
Collapse
Affiliation(s)
- Gila Lustig
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Sandile Cele
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Farina Karim
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Anne Derache
- Africa Health Research Institute, Durban, South Africa
| | | | - Khadija Khan
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Bernadett I. Gosnell
- Department of Infectious Diseases, University of KwaZulu-Natal, Durban, South Africa
| | | | | | - Suzaan Marais
- Department of Neurology, University of KwaZulu-Natal, Durban, South Africa
| | - Prakash M. Jeena
- Discipline of Pediatrics and Child Health, University of KwaZulu-Natal, Durban, South Africa
| | | | - John Adamson
- Africa Health Research Institute, Durban, South Africa
| | - Henrik Kløverpris
- Africa Health Research Institute, Durban, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Ravindra K. Gupta
- Africa Health Research Institute, Durban, South Africa
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Vinod B. Patel
- Department of Neurology, University of KwaZulu-Natal, Durban, South Africa
| | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, Germany
- * E-mail:
| |
Collapse
|
40
|
Sharma I. Interrogating the impact of combination antiretroviral therapies on HIV-associated neurocognitive disorders. HIV Med 2021; 22:783-790. [PMID: 34291558 DOI: 10.1111/hiv.13142] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/27/2021] [Accepted: 06/24/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Although the advent of Combination Antiretroviral Therapy (cART) has greatly reduced the prevalence of HIV-Associated Dementia, the most severe form of HIV-Associated Neurocognitive Disorder (HAND), the incidence of the milder forms of HAND have risen. The explanations proposed include persistent central nervous system (CNS) viraemia and the neurotoxicity of chronic cART regimens. Nonetheless, controversies in HAND prevalence estimates, alongside a lack of consensus on the significance of CNS Penetration Effectiveness (CPE) have added to the complexity of elucidating the role of cART in HAND. The present review will evaluate the evidence underlying these explanations, as well as highlighting the need for improved trial designs and the incorporation of emerging biomarkers and neuroimaging tools. METHODS A review of the current literature investigating cART neurotoxicity, controversies in HAND prevalence estimates, CNS Penetration Effectiveness, and neuroprotective adjuvant therapies. CONCLUSIONS Ultimately, the inadequacy of cART in achieving complete preservation of the CNS underscores the imminent need for neuroprotective adjuvant therapies, where the efficacy of combining multiple adjuvant classes presents a potential therapeutic frontier which must be interrogated.
Collapse
Affiliation(s)
- Ishta Sharma
- St John's College, University of Oxford, Oxford, UK
| |
Collapse
|
41
|
Gisslen M, Keating SM, Spudich S, Arechiga V, Stephenson S, Zetterberg H, Di Germanio C, Blennow K, Fuchs D, Hagberg L, Norris PJ, Peterson J, Shacklett BL, Yiannoutsos CT, Price RW. Compartmentalization of cerebrospinal fluid inflammation across the spectrum of untreated HIV-1 infection, central nervous system injury and viral suppression. PLoS One 2021; 16:e0250987. [PMID: 33983973 PMCID: PMC8118251 DOI: 10.1371/journal.pone.0250987] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/16/2021] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To characterize the evolution of central nervous system (CNS) inflammation in HIV-1 infection applying a panel of cerebrospinal fluid (CSF) inflammatory biomarkers to grouped subjects representing a broad spectrum of systemic HIV-1 immune suppression, CNS injury and viral control. METHODS This is a cross-sectional analysis of archived CSF and blood samples, assessing concentrations of 10 functionally diverse soluble inflammatory biomarkers by immunoassays in 143 HIV-1-infected subjects divided into 8 groups: untreated primary HIV-1 infection (PHI); four untreated groups defined by their blood CD4+ T lymphocyte counts; untreated patients presenting with subacute HIV-associated dementia (HAD); antiretroviral-treated subjects with ≥1 years of plasma viral suppression; and untreated elite controllers. Twenty HIV-1-uninfected controls were included for comparison. Background biomarkers included blood CD4+ and CD8+ T lymphocytes, CSF and blood HIV-1 RNA, CSF white blood cell (WBC) count, CSF/blood albumin ratio, CSF neurofilament light chain (NfL), and CSF t-tau. FINDINGS HIV-1 infection was associated with a broad compartmentalized CSF inflammatory response that developed early in its course and changed with systemic disease progression, development of neurological injury, and viral suppression. CSF inflammation in untreated individuals without overt HAD exhibited at least two overall patterns of inflammation as blood CD4+ T lymphocytes decreased: one that peaked at 200-350 blood CD4+ T cells/μL and associated with lymphocytic CSF inflammation and HIV-1 RNA concentrations; and a second that steadily increased through the full range of CD4+ T cell decline and associated with macrophage responses and increasing CNS injury. Subacute HAD was distinguished by a third inflammatory profile with increased blood-brain barrier permeability and robust combined lymphocytic and macrophage CSF inflammation. Suppression of CSF and blood HIV-1 infections by antiretroviral treatment and elite viral control were associated with reduced CSF inflammation, though not fully to levels found in HIV-1 seronegative controls.
Collapse
Affiliation(s)
- Magnus Gisslen
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sheila M. Keating
- Vitalant Research Institute (formerly Blood Systems Research Institute), San Francisco, CA, United States of America
| | - Serena Spudich
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States of America
| | - Victor Arechiga
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States of America
| | - Sophie Stephenson
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States of America
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| | - Clara Di Germanio
- Vitalant Research Institute (formerly Blood Systems Research Institute), San Francisco, CA, United States of America
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Innsbruck Medical University, Innsbruck, Austria
| | - Lars Hagberg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Philip J. Norris
- Vitalant Research Institute (formerly Blood Systems Research Institute), San Francisco, CA, United States of America
| | - Julia Peterson
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States of America
| | - Barbara L. Shacklett
- Department of Medical Microbiology and Immunology, University of California Davis, Davis CA, United States of America
| | - Constantin T. Yiannoutsos
- Department of Biostatistics, Indiana University R.M. Fairbanks School of Public Health, Indianapolis, IN, United States of America
| | - Richard W. Price
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Central nervous system (CNS) infections associated with HIV remain significant contributors to morbidity and mortality, particularly among people living with HIV (PLWH) in resource-limited settings worldwide. In this review, we discuss several recent important scientific discoveries in the prevention, diagnosis, and management around two of the major causes of CNS opportunistic infections-tuberculous meningitis (TBM) and cryptococcal meningitis including immune reconstitution syndrome (IRIS) associated with cryptococcal meningitis. We also discuss the CNS as a possible viral reservoir, highlighting Cerebrospinal fluid viral escape. RECENT FINDINGS CNS infections in HIV-positive people in sub-Saharan Africa contribute to 15-25% of AIDS-related deaths. Morbidity and mortality in those is associated with delays in HIV diagnosis, lack of availability for antimicrobial treatment, and risk of CNS IRIS. The CNS may serve as a reservoir for replication, though it is unclear whether this can impact peripheral immunosuppression. SUMMARY Significant diagnostic and treatment advances for TBM and cryptococcal meningitis have yet to impact overall morbidity and mortality according to recent data. Lack of early diagnosis and treatment initiation, and also maintenance on combined antiretroviral treatment are the main drivers of the ongoing burden of CNS opportunistic infections. The CNS as a viral reservoir has major potential implications for HIV eradication strategies, and also control of CNS opportunistic infections.
Collapse
|
43
|
HANDOKO R, CHAN P, JAGODZINSKI L, PINYAKORN S, UBOLYAM S, PHANUPHAK N, SACDALAN C, KROON E, DUMRONGPISUTIKUL N, PAUL R, VALCOUR V, ANANWORANICH J, VASAN S, SPUDICH S. Minimal detection of cerebrospinal fluid escape after initiation of antiretroviral therapy in acute HIV-1 infection. AIDS 2021; 35:777-782. [PMID: 33306551 PMCID: PMC7969409 DOI: 10.1097/qad.0000000000002786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Despite suppression of HIV-1 replication in the periphery by antiretroviral therapy (ART), up to 10% of treated individuals have quantifiable HIV-1 in the CSF, termed CSF escape. CSF escape may be asymptomatic but has also been linked to progressive neurological disease, and may indicate persistence of HIV in the central nervous system (CNS). CSF escape has not yet been assessed after initiation of ART during acute HIV-1 infection (AHI). DESIGN Prospective cohort study. SETTING Major voluntary counseling and testing site in Bangkok, Thailand. PARTICIPANTS Participants identified and initiated on ART during AHI who received an optional study lumbar puncture at pre-ART baseline or after 24 or 96 weeks of ART. MAIN OUTCOME MEASURES Paired levels of CSF and plasma HIV-1 RNA, with CSF greater than plasma HIV-1 RNA defined as CSF escape. RESULTS Two hundred and four participants had paired blood and CSF sampling in at least one visit at baseline, week 24, or week 96. Twenty-nine participants had CSF sampling at all three visits. CSF escape was detected in 1/90 at week 24 (CSF HIV-1 RNA 2.50 log10 copies/ml, plasma HIV-1 RNA <50 copies/ml), and 0/55 at week 96. CONCLUSION Although levels of CSF HIV-1 RNA in untreated AHI are high, initiating treatment during AHI results in a very low rate of CSF escape in the first 2 years of treatment. Early treatment may improve control of HIV-1 within the CNS compared with treatment during chronic infection, which may have implications for long-term neurological outcomes and CNS HIV-1 persistence.
Collapse
Affiliation(s)
| | - Phillip CHAN
- SEARCH, The Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Linda JAGODZINSKI
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Suteeraporn PINYAKORN
- SEARCH, The Thai Red Cross AIDS Research Centre, Bangkok, Thailand
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | | | | | - Carlo SACDALAN
- SEARCH, The Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Eugene KROON
- SEARCH, The Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | | | - Robert PAUL
- Missouri Institute of Mental Health, University of Missouri-St. Louis, St. Louis, MO, USA
| | - Victor VALCOUR
- Department of Neurology, University of California San Francisco Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA
| | - Jintanat ANANWORANICH
- SEARCH, The Thai Red Cross AIDS Research Centre, Bangkok, Thailand
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Department of Global Health, Amsterdam University Medical Centers, University of Amsterdam, and Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | - Sandhya VASAN
- SEARCH, The Thai Red Cross AIDS Research Centre, Bangkok, Thailand
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | | |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Systemic inflammation increases as a consequence of aging (inflammaging) and contributes to age-related morbidities. Inflammation in people living with HIV is elevated compared with the general population even after prolonged suppression of viremia with anti-retroviral therapy. Mechanisms that contribute to inflammation during aging and in treated HIV disease are potentially interactive, leading to an exaggerated inflammatory phenotype in people with HIV. RECENT FINDINGS Recent studies highlight roles for anti-retroviral therapy, co-infections, immune system alterations, and microbiome perturbations as important contributors to HIV-associated inflammation. These factors likely contribute to increased risk of age-related morbidities in people living with HIV. Understanding mechanisms that exaggerate the inflammaging process in people with HIV may lead to improved intervention strategies, ultimately, extending both lifespan and healthspan.
Collapse
|
45
|
Devanathan AS, Cottrell ML. Pharmacology of HIV Cure: Site of Action. Clin Pharmacol Ther 2021; 109:841-855. [PMID: 33540481 DOI: 10.1002/cpt.2187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022]
Abstract
Despite significant advances in HIV treatment over the past 30 years, critical barriers to an HIV cure persist. The HIV reservoir, defined at both the cellular and anatomical level, constitutes the main barrier to cure. While the mechanisms underlying the reservoir are not yet well understood, one theory to explain persistence at the anatomical level is that subtherapeutic exposure to antiretroviral therapy (ART) within certain tissue compartments permits ongoing replication. Characterizing ART pharmacology throughout the body is important in the context of these potential pharmacologic sanctuaries and for maximizing the probability of success with forthcoming cure strategies that rely on latency reversal and require ART to prevent reseeding the reservoir. In this review, we provide a comprehensive overview of ART and latency reversal agent distribution at the site of action for HIV cure (i.e., anatomical sites commonly associated with HIV persistence, such as lymphoid organs and the central nervous system). We also discuss methodologic approaches that provide insight into HIV cure pharmacology, including experimental design and advances within the computational, pharmaceutical, and analytical chemistry fields. The information discussed in this review will assist in streamlining the development of investigational cure strategies by providing a roadmap to ensure therapeutic exposure within the site of action for HIV cure.
Collapse
Affiliation(s)
- Aaron S Devanathan
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Mackenzie L Cottrell
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| |
Collapse
|
46
|
Boerwinkle AH, Meeker KL, Luckett P, Ances BM. Neuroimaging the Neuropathogenesis of HIV. Curr HIV/AIDS Rep 2021; 18:221-228. [PMID: 33630240 DOI: 10.1007/s11904-021-00548-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW This review highlights neuroimaging studies of HIV conducted over the last 2 years and discusses how relevant findings further our knowledge of the neuropathology of HIV. Three major avenues of neuroimaging research are covered with a particular emphasis on inflammation, aging, and substance use in persons living with HIV (PLWH). RECENT FINDINGS Neuroimaging has been a critical tool for understanding the neuropathological underpinnings observed in HIV. Recent studies comparing levels of neuroinflammation in PLWH and HIV-negative controls show inconsistent results but report an association between elevated neuroinflammation and poorer cognition in PLWH. Other recent neuroimaging studies suggest that older PLWH are at increased risk for brain and cognitive compromise compared to their younger counterparts. Finally, recent findings also suggest that the effects of HIV may be exacerbated by alcohol and drug abuse. These neuroimaging studies provide insight into the structural, functional, and molecular changes occurring in the brain due to HIV. HIV triggers a strong neuroimmune response and may lead to a cascade of events including increased chronic inflammation and cognitive decline. These outcomes are further exacerbated by age and age-related comorbidities, as well as lifestyle factors such as drug use/abuse.
Collapse
Affiliation(s)
- Anna H Boerwinkle
- Department of Neurology, Washington University in St. Louis, School of Medicine, Campus Box 8111, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Karin L Meeker
- Department of Neurology, Washington University in St. Louis, School of Medicine, Campus Box 8111, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Patrick Luckett
- Department of Neurology, Washington University in St. Louis, School of Medicine, Campus Box 8111, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Beau M Ances
- Department of Neurology, Washington University in St. Louis, School of Medicine, Campus Box 8111, 660 South Euclid Avenue, St. Louis, MO, 63110, USA.
| |
Collapse
|
47
|
Abstract
Currently, the incidence of HIV infection exceeds the death rate from HIV, and as a result, the prevalence of individuals living with the infection continues to increase. A critical limitation preventing the development of curative strategies is the lack of knowledge regarding mechanisms that allow HIV-infected cells to persist in individuals during combination antiviral therapy (ART). In this issue of the JCI, Chaillon and coworkers assessed HIV-infected cells from various anatomic compartments obtained through a rapid autopsy program of individuals undergoing long-term ART. This study, made possible with strong community collaboration, provides new insights on the potential locations of reservoirs of HIV-infected cells that persist during therapy.
Collapse
|
48
|
Kelentse N, Moyo S, Mogwele ML, Ditshwanelo D, Mokaleng B, Moraka NO, Lechiile K, Leeme TB, Lawrence DS, Musonda R, Kasvosve I, Harrison TS, Jarvis JN, Gaseitsiwe S. HIV-1C env and gag Variation in the Cerebrospinal Fluid and Plasma of Patients with HIV-Associated Cryptococcal Meningitis in Botswana. Viruses 2020; 12:E1404. [PMID: 33297399 PMCID: PMC7762280 DOI: 10.3390/v12121404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 12/19/2022] Open
Abstract
HIV-1 compartmentalization in reservoir sites remains a barrier to complete HIV eradication. It is unclear whether there is variation in HIV-1 env and gag between cerebrospinal fluid (CSF) and plasma of individuals with HIV-associated cryptococcal meningitis (CM). We compared HIV-1 env characteristics and the gag cytotoxic T-lymphocyte (CTL) escape mutations from CSF and plasma samples. Employing population-based Sanger sequencing, we sequenced HIV-1 env from CSF of 25 patients and plasma of 26 patients. For gag, 15 CSF and 21 plasma samples were successfully sequenced. Of these, 18 and 9 were paired env and gag CSF/plasma samples, respectively. There was no statistically significant difference in the proportion of CCR5-using strains in the CSF and plasma, (p = 0.50). Discordant CSF/plasma virus co-receptor use was found in 2/18 pairs (11.1%). The polymorphisms in the HIV-1 V3 loop were concordant between the two compartments. From the HIV-1 gag sequences, three pairs had discordant CTL escape mutations in three different epitopes of the nine analyzed. These findings suggest little variation in the HIV-1 env between plasma and CSF and that the CCR5-using strains predominate in both compartments. HIV-1 gag CTL escape mutations also displayed little variation in CSF and plasma suggesting similar CTL selective pressure.
Collapse
MESH Headings
- AIDS-Related Opportunistic Infections/blood
- AIDS-Related Opportunistic Infections/cerebrospinal fluid
- AIDS-Related Opportunistic Infections/diagnosis
- AIDS-Related Opportunistic Infections/metabolism
- Adult
- Amino Acid Sequence
- Amino Acid Substitution
- Botswana
- CD4 Lymphocyte Count
- Cross-Sectional Studies
- Disease Susceptibility
- Female
- HIV Infections/complications
- HIV Infections/virology
- Humans
- Immunocompromised Host
- Male
- Meningitis, Cryptococcal/blood
- Meningitis, Cryptococcal/cerebrospinal fluid
- Meningitis, Cryptococcal/etiology
- Meningitis, Cryptococcal/metabolism
- Middle Aged
- Mutation
- RNA, Viral
- Viral Load
- env Gene Products, Human Immunodeficiency Virus/blood
- env Gene Products, Human Immunodeficiency Virus/cerebrospinal fluid
- env Gene Products, Human Immunodeficiency Virus/metabolism
- gag Gene Products, Human Immunodeficiency Virus/blood
- gag Gene Products, Human Immunodeficiency Virus/cerebrospinal fluid
- gag Gene Products, Human Immunodeficiency Virus/metabolism
Collapse
Affiliation(s)
- Nametso Kelentse
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (M.L.M.); (D.D.); (B.M.); (N.O.M.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (J.N.J.)
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana;
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (M.L.M.); (D.D.); (B.M.); (N.O.M.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (J.N.J.)
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Mompati L. Mogwele
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (M.L.M.); (D.D.); (B.M.); (N.O.M.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (J.N.J.)
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Doreen Ditshwanelo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (M.L.M.); (D.D.); (B.M.); (N.O.M.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (J.N.J.)
| | - Baitshepi Mokaleng
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (M.L.M.); (D.D.); (B.M.); (N.O.M.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (J.N.J.)
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana;
| | - Natasha O. Moraka
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (M.L.M.); (D.D.); (B.M.); (N.O.M.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (J.N.J.)
- Department of Pathology, Stellenbosch University, Stellenbosch 7505, South Africa
| | - Kwana Lechiile
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (M.L.M.); (D.D.); (B.M.); (N.O.M.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (J.N.J.)
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
| | - Tshepo B. Leeme
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (M.L.M.); (D.D.); (B.M.); (N.O.M.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (J.N.J.)
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
| | - David S. Lawrence
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (M.L.M.); (D.D.); (B.M.); (N.O.M.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (J.N.J.)
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, The London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Rosemary Musonda
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (M.L.M.); (D.D.); (B.M.); (N.O.M.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (J.N.J.)
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Ishmael Kasvosve
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana;
| | - Thomas S. Harrison
- Centre for Global Health, Institute for Infection and Immunity, St. George’s University of London, London SW17 0RE, UK;
| | - Joseph N. Jarvis
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (M.L.M.); (D.D.); (B.M.); (N.O.M.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (J.N.J.)
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, The London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
- Department of Medicine, Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (M.L.M.); (D.D.); (B.M.); (N.O.M.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (J.N.J.)
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
49
|
Rai MA, Hammonds J, Pujato M, Mayhew C, Roskin K, Spearman P. Comparative analysis of human microglial models for studies of HIV replication and pathogenesis. Retrovirology 2020; 17:35. [PMID: 33213476 PMCID: PMC7678224 DOI: 10.1186/s12977-020-00544-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Background HIV associated neurocognitive disorders cause significant morbidity and mortality despite the advent of highly active antiretroviral therapy. A deeper understanding of fundamental mechanisms underlying HIV infection and pathogenesis in the central nervous system is warranted. Microglia are resident myeloid cells of the brain that are readily infected by HIV and may constitute a CNS reservoir. We evaluated two microglial model cell lines (C20, HMC3) and two sources of primary cell-derived microglia (monocyte-derived microglia [MMG] and induced pluripotent stem cell-derived microglia [iPSC-MG]) as potential model systems for studying HIV-microglia interactions. Results All four microglial model cells expressed typical myeloid markers with the exception of low or absent CD45 and CD11b expression by C20 and HMC3, and all four expressed the microglia-specific markers P2RY12 and TMEM119. Marked differences were observed upon gene expression profiling, however, indicating that MMG and iPSC-MG cluster closely together with primary human microglial cells, while C20 and HMC3 were similar to each other but very different from primary microglia. Expression of HIV-relevant genes also revealed important differences, with iPSC-MG and MMG expressing relevant genes at levels more closely resembling primary microglia. iPSC-MG and MMG were readily infected with R5-tropic HIV, while C20 and HMC3 lack CD4 and require pseudotyping for infection. Despite many similarities, HIV replication dynamics and HIV-1 particle capture by Siglec-1 differed markedly between the MMG and iPSC-MG. Conclusions MMG and iPSC-MG appear to be viable microglial models that are susceptible to HIV infection and bear more similarities to authentic microglia than two transformed microglia cell lines. The observed differences in HIV replication and particle capture between MMG and iPSC-MG warrant further study.
Collapse
Affiliation(s)
- Mohammad A Rai
- Division of Infectious Diseases, Cincinnati Children's Hospital, 3333 Burnet Avenue, MLC 7017, Cincinnati, OH, 45229, USA.,Division of Infectious Diseases, Department of Medicine, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Jason Hammonds
- Division of Infectious Diseases, Cincinnati Children's Hospital, 3333 Burnet Avenue, MLC 7017, Cincinnati, OH, 45229, USA.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Mario Pujato
- Division of Biomedical Informatics, Cincinnati Children's Hospital, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Christopher Mayhew
- Pluripotent Stem Cell Core Facility, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Krishna Roskin
- Division of Biomedical Informatics, Cincinnati Children's Hospital, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Paul Spearman
- Division of Infectious Diseases, Cincinnati Children's Hospital, 3333 Burnet Avenue, MLC 7017, Cincinnati, OH, 45229, USA. .,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
50
|
Morphine and HIV-1 Tat interact to cause region-specific hyperphosphorylation of tau in transgenic mice. Neurosci Lett 2020; 741:135502. [PMID: 33202259 DOI: 10.1016/j.neulet.2020.135502] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022]
Abstract
Opiate abuse is prevalent among HIV-infected individuals and may exacerbate HIV-associated age-related neurocognitive disorders. However, the extent to which HIV and opiates converge to accelerate pathological traits indicative of brain aging remains unknown. The pathological phospho-isotypes of tau (pSer396, pSer404, pThr205, pSer202, and pThr181) and the tau kinases GSK3β and CDK5/p35 were explored in the striatum, hippocampus, and prefrontal cortex of inducible male and female HIV-1 Tat-transgenic mice, with some receiving escalating doses of morphine for 2 weeks. In the striatum of male mice, pSer396 was increased by co-exposure to morphine and Tat as compared to all other groups. Striatal pSer404 and pThr205 were increased by Tat alone, while pSer202 and pThr181 were unchanged. A comparison between Tat-transgenic female and male mice revealed disparate outcomes for pThr205. No other sex-related changes to tau phosphorylation were observed. In the hippocampus, Tat increased pSer396, while other phosphorylation sites were unchanged and pSer202 was not detected. In the prefrontal cortex, morphine increased pSer396 levels, which were unaffected by Tat, while other phosphorylation sites were unaffected. Assessment of tau kinases revealed no changes to striatal GSK3β (phosphorylated or total) or the total CDK5 levels. Striatal levels of phosphorylated CDK5 and p35, the activator of CDK5, were increased by Tat and with morphine co-exposure, respectively. P35 levels positively correlated with those of pSer396 with Tat and morphine co-exposure. The results reveal region-specific hyperphosphorylation of tau induced by exposure to morphine, Tat, and unique morphine and Tat interactions.
Collapse
|