1
|
Albrich WC, Just N, Kahlert C, Casanova C, Baty F, Hilty M. Serotype epidemiology and case-fatality risk of invasive pneumococcal disease: a nationwide population study from Switzerland, 2012-2022. Emerg Microbes Infect 2025; 14:2488189. [PMID: 40167153 PMCID: PMC12024505 DOI: 10.1080/22221751.2025.2488189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/18/2025] [Accepted: 03/31/2025] [Indexed: 04/02/2025]
Abstract
In Switzerland, thirteen-valent pneumococcal conjugate vaccine (PCV13) has been introduced in 2011. During the COVID-19 pandemic, cases of invasive pneumococcal disease (IPD) have decreased but consequences on the serotype epidemiology are less clear. The objective of the study has been to analyse the impact of PCV13 introduction and the COVID-19 pandemic on the IPD epidemiology and investigate the changes in the case fatality risk (CFR). We analysed data from the Swiss nationwide surveillance for the period 2012-2022. Poisson and logistic regression analyses were performed allowing us to inspect trends over time and to define serotypes that are associated with case fatality. In total, 8747 IPD cases were included from 2012 to 2022. IPD incidence dropped in the years 2020 (6.0/100,000) and 2021 (5.5/100,000) but recovered in 2022 (9.1/100,000). While the incidence numbers of patients >65 years did not reach the pre-pandemic level, numbers significantly increased in infants <1 year in 2022 (IRR 1.08, 95%CI: 1.01-1.16). The incidence of PCV13 serotypes among all IPD cases decreased until 2019 before increasing again during the pandemic (in 2022). Logistic regression analyses revealed that the PCV20 serotype 11A (OR: 1.76, 95%CI: 1.14-2.64), and the PCV13 serotypes 3 (OR: 1.26, 95% CI: 1.04-1.53) and 19F (OR: 1.76, 95%CI: 1.14-2.65) were significantly associated with increased CFR. In conclusion, the COVID-19 pandemic has had only minor temporary effects on the serotype distribution. Continued use of vaccines with extended serotype coverage may further reduce IPD disease burden and mortality.
Collapse
Affiliation(s)
- Werner C. Albrich
- Division of Infectious Diseases, Infection Prevention and Travel Medicine, HOCH Health Ostschweiz, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Nicolaj Just
- School of Medicine, University of St. Gallen, St. Gallen, Switzerland
| | | | - Carlo Casanova
- Swiss National Reference Center for Invasive Pneumococci (NZPn), Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Florent Baty
- Lung Center, HOCH Health Ostschweiz, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Markus Hilty
- Swiss National Reference Center for Invasive Pneumococci (NZPn), Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Hong E, Shin Y, Kim H, Cho WY, Song WH, Jung SH, Lee M. PneusPage: A WEB-BASED TOOL for the analysis of Whole-Genome Sequencing Data of Streptococcus pneumonia. J Microbiol 2025; 63:e.2409020. [PMID: 39895075 DOI: 10.71150/jm.2409020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/04/2024] [Indexed: 02/04/2025]
Abstract
With the advent of whole-genome sequencing, opportunities to investigate the population structure, transmission patterns, antimicrobial resistance profiles, and virulence determinants of Streptococcus pneumoniae at high resolution have been increasingly expanding. Consequently, a user-friendly bioinformatics tool is needed to automate the analysis of Streptococcus pneumoniae whole-genome sequencing data, summarize clinically relevant genomic features, and further guide treatment options. Here, we developed PneusPage, a web-based tool that integrates functions for species prediction, molecular typing, drug resistance determination, and data visualization of Streptococcus pneumoniae. To evaluate the performance of PneusPage, we analyzed 80 pneumococcal genomes with different serotypes from the Global Pneumococcal Sequencing Project and compared the results with those from another platform, PathogenWatch. We observed a high concordance between the two platforms in terms of serotypes (100% concordance rate), multilocus sequence typing (100% concordance rate), penicillin-binding protein typing (88.8% concordance rate), and the Global Pneumococcal Sequencing Clusters (98.8% concordance rate). In addition, PneusPage offers integrated analysis functions for the detection of virulence and mobile genetic elements that are not provided by previous platforms. By automating the analysis pipeline, PneusPage makes whole-genome sequencing data more accessible to non-specialist users, including microbiologists, epidemiologists, and clinicians, thereby enhancing the utility of whole-genome sequencing in both research and clinical settings. PneusPage is available at https://pneuspage.minholee.net/.
Collapse
Affiliation(s)
- Eunju Hong
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Youngjin Shin
- Basic Medical Science Facilitation Program, Catholic Medical Center, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyunseong Kim
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | | | - Woo-Hyun Song
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Seung-Hyun Jung
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Integrated Research Center for Genomic Polymorphism, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Minho Lee
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| |
Collapse
|
3
|
Kremer PHC, Ferwerda B, Bootsma HJ, Rots NY, Wijmenga-Monsuur AJ, Sanders EAM, Trzciński K, Wyllie AL, Turner P, van der Ende A, Brouwer MC, Bentley SD, van de Beek D, Lees JA. Pneumococcal genetic variability in age-dependent bacterial carriage. eLife 2022; 11:e69244. [PMID: 35881438 PMCID: PMC9395192 DOI: 10.7554/elife.69244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/03/2022] [Indexed: 11/13/2022] Open
Abstract
The characteristics of pneumococcal carriage vary between infants and adults. Host immune factors have been shown to contribute to these age-specific differences, but the role of pathogen sequence variation is currently less well-known. Identification of age-associated pathogen genetic factors could leadto improved vaccine formulations. We therefore performed genome sequencing in a large carriage cohort of children and adults and combined this with data from an existing age-stratified carriage study. We compiled a dictionary of pathogen genetic variation, including serotype, strain, sequence elements, single-nucleotide polymorphisms (SNPs), and clusters of orthologous genes (COGs) for each cohort - all of which were used in a genome-wide association with host age. Age-dependent colonization showed weak evidence of being heritable in the first cohort (h2 = 0.10, 95% CI 0.00-0.69) and stronger evidence in the second cohort (h2 = 0.56, 95% CI 0.23-0.87). We found that serotypes and genetic background (strain) explained a proportion of the heritability in the first cohort (h2serotype = 0.07, 95% CI 0.04-0.14 and h2GPSC = 0.06, 95% CI 0.03-0.13) and the second cohort (h2serotype = 0.11, 95% CI 0.05-0.21 and h2GPSC = 0.20, 95% CI 0.12-0.31). In a meta-analysis of these cohorts, we found one candidate association (p=1.2 × 10-9) upstream of an accessory Sec-dependent serine-rich glycoprotein adhesin. Overall, while we did find a small effect of pathogen genome variation on pneumococcal carriage between child and adult hosts, this was variable between populations and does not appear to be caused by strong effects of individual genes. This supports proposals for adaptive future vaccination strategies that are primarily targeted at dominant circulating serotypes and tailored to the composition of the pathogen populations.
Collapse
Affiliation(s)
- Philip HC Kremer
- Department of Neurology, Amsterdam UMC, University of AmsterdamMeibergdreefNetherlands
| | - Bart Ferwerda
- Department of Neurology, Amsterdam UMC, University of AmsterdamMeibergdreefNetherlands
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, University of AmsterdamAmsterdamNetherlands
| | - Hester J Bootsma
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthovenNetherlands
| | - Nienke Y Rots
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthovenNetherlands
| | - Alienke J Wijmenga-Monsuur
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthovenNetherlands
| | - Elisabeth AM Sanders
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthovenNetherlands
- Department of Pediatric Immunology and Infectious D, Wilhelmina Children's HospitalUtrechtNetherlands
| | - Krzysztof Trzciński
- Department of Pediatric Immunology and Infectious D, Wilhelmina Children's HospitalUtrechtNetherlands
| | - Anne L Wyllie
- Department of Pediatric Immunology and Infectious D, Wilhelmina Children's HospitalUtrechtNetherlands
- Epidemiology of Microbial Diseases, Yale School of Public HealthNew HavenUnited States
| | - Paul Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for ChildrenSiem ReapCambodia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Arie van der Ende
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMCAmsterdamNetherlands
- The Netherlands Reference Laboratory for Bacterial MeningitisAmsterdamNetherlands
| | - Matthijs C Brouwer
- Department of Neurology, Amsterdam UMC, University of AmsterdamMeibergdreefNetherlands
| | - Stephen D Bentley
- Parasites and Microbes, Wellcome Sanger InstituteCambridgeUnited Kingdom
| | - Diederik van de Beek
- Department of Neurology, Amsterdam UMC, University of AmsterdamMeibergdreefNetherlands
| | - John A Lees
- European Molecular Biology Laboratory–European Bioinformatics InstituteCambridgeUnited Kingdom
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
4
|
Coll F, Gouliouris T, Bruchmann S, Phelan J, Raven KE, Clark TG, Parkhill J, Peacock SJ. PowerBacGWAS: a computational pipeline to perform power calculations for bacterial genome-wide association studies. Commun Biol 2022; 5:266. [PMID: 35338232 PMCID: PMC8956664 DOI: 10.1038/s42003-022-03194-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
Genome-wide association studies (GWAS) are increasingly being applied to investigate the genetic basis of bacterial traits. However, approaches to perform power calculations for bacterial GWAS are limited. Here we implemented two alternative approaches to conduct power calculations using existing collections of bacterial genomes. First, a sub-sampling approach was undertaken to reduce the allele frequency and effect size of a known and detectable genotype-phenotype relationship by modifying phenotype labels. Second, a phenotype-simulation approach was conducted to simulate phenotypes from existing genetic variants. We implemented both approaches into a computational pipeline (PowerBacGWAS) that supports power calculations for burden testing, pan-genome and variant GWAS; and applied it to collections of Enterococcus faecium, Klebsiella pneumoniae and Mycobacterium tuberculosis. We used this pipeline to determine sample sizes required to detect causal variants of different minor allele frequencies (MAF), effect sizes and phenotype heritability, and studied the effect of homoplasy and population diversity on the power to detect causal variants. Our pipeline and user documentation are made available and can be applied to other bacterial populations. PowerBacGWAS can be used to determine sample sizes required to find statistically significant associations, or the associations detectable with a given sample size. We recommend to perform power calculations using existing genomes of the bacterial species and population of study.
Collapse
Affiliation(s)
- Francesc Coll
- Department of Infection Biology, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | - Theodore Gouliouris
- Department of Medicine, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Jody Phelan
- Department of Infection Biology, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Kathy E Raven
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Taane G Clark
- Department of Infection Biology, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
5
|
Martín-Galiano AJ, García E. Streptococcus pneumoniae: a Plethora of Temperate Bacteriophages With a Role in Host Genome Rearrangement. Front Cell Infect Microbiol 2021; 11:775402. [PMID: 34869076 PMCID: PMC8637289 DOI: 10.3389/fcimb.2021.775402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/29/2021] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages (phages) are viruses that infect bacteria. They are the most abundant biological entity on Earth (current estimates suggest there to be perhaps 1031 particles) and are found nearly everywhere. Temperate phages can integrate into the chromosome of their host, and prophages have been found in abundance in sequenced bacterial genomes. Prophages may modulate the virulence of their host in different ways, e.g., by the secretion of phage-encoded toxins or by mediating bacterial infectivity. Some 70% of Streptococcus pneumoniae (the pneumococcus)—a frequent cause of otitis media, pneumonia, bacteremia and meningitis—isolates harbor one or more prophages. In the present study, over 4000 S. pneumoniae genomes were examined for the presence of prophages, and nearly 90% were found to contain at least one prophage, either defective (47%) or present in full (43%). More than 7000 complete putative integrases, either of the tyrosine (6243) or serine (957) families, and 1210 full-sized endolysins (among them 1180 enzymes corresponding to 318 amino acid-long N-acetylmuramoyl-L-alanine amidases [LytAPPH]) were found. Based on their integration site, 26 different pneumococcal prophage groups were documented. Prophages coding for tRNAs, putative virulence factors and different methyltransferases were also detected. The members of one group of diverse prophages (PPH090) were found to integrate into the 3’ end of the host lytASpn gene encoding the major S. pneumoniae autolysin without disrupting it. The great similarity of the lytASpnand lytAPPH genes (85–92% identity) allowed them to recombine, via an apparent integrase-independent mechanism, to produce different DNA rearrangements within the pneumococcal chromosome. This study provides a complete dataset that can be used to further analyze pneumococcal prophages, their evolutionary relationships, and their role in the pathogenesis of pneumococcal disease.
Collapse
Affiliation(s)
- Antonio J Martín-Galiano
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
| | - Ernesto García
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
6
|
Arends DW, Miellet WR, Langereis JD, Ederveen THA, van der Gaast–de Jongh CE, van Scherpenzeel M, Knol MJ, van Sorge NM, Lefeber DJ, Trzciński K, Sanders EAM, Dorfmueller HC, Bootsma HJ, de Jonge MI. Examining the Distribution and Impact of Single-Nucleotide Polymorphisms in the Capsular Locus of Streptococcus pneumoniae Serotype 19A. Infect Immun 2021; 89:e0024621. [PMID: 34251291 PMCID: PMC8519296 DOI: 10.1128/iai.00246-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/02/2021] [Indexed: 11/30/2022] Open
Abstract
Streptococcus pneumoniae serotype 19A prevalence has increased after the implementation of the PCV7 and PCV10 vaccines. In this study, we have provided, with high accuracy, the genetic diversity of the 19A serotype in a cohort of Dutch invasive pneumococcal disease patients and asymptomatic carriers obtained in the period from 2004 to 2016. The whole genomes of the 338 pneumococcal isolates in this cohort were sequenced and their capsule (cps) loci compared to examine their diversity and determine the impact on the production of capsular polysaccharide (CPS) sugar precursors and CPS shedding. We discovered 79 types with a unique cps locus sequence. Most variation was observed in the rmlB and rmlD genes of the TDP-Rha synthesis pathway and in the wzg gene, which is of unknown function. Interestingly, gene variation in the cps locus was conserved in multiple alleles. Using RmlB and RmlD protein models, we predict that enzymatic function is not affected by the single-nucleotide polymorphisms as identified. To determine if RmlB and RmlD function was affected, we analyzed nucleotide sugar levels using ultrahigh-performance liquid chromatography-mass spectrometry (UHPLC-MS). CPS precursors differed between 19A cps locus subtypes, including TDP-Rha, but no clear correlation was observed. Also, significant differences in multiple nucleotide sugar levels were observed between phylogenetically branched groups. Because of indications of a role for Wzg in capsule shedding, we analyzed if this was affected. No clear indication of a direct role in shedding was found. We thus describe genotypic variety in rmlB, rmlD, and wzg in serotype 19A in the Netherlands, for which we have not discovered an associated phenotype.
Collapse
Affiliation(s)
- D. W. Arends
- Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - W. R. Miellet
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - J. D. Langereis
- Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - T. H. A. Ederveen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - C. E. van der Gaast–de Jongh
- Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M. van Scherpenzeel
- GlycoMScan, Oss, The Netherlands
- Translational Metabolic Laboratory, Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M. J. Knol
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - N. M. van Sorge
- Department of Medical Microbiology and Infection Prevention, Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - D. J. Lefeber
- Translational Metabolic Laboratory, Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - K. Trzciński
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - E. A. M. Sanders
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - H. C. Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - H. J. Bootsma
- Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - M. I. de Jonge
- Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Dirkx KKT, Mulder B, Post AS, Rutten MH, Swanink CMA, Wertheim HFL, Cremers AJH. The drop in reported invasive pneumococcal disease among adults during the first COVID-19 wave in the Netherlands explained. Int J Infect Dis 2021; 111:196-203. [PMID: 34455081 PMCID: PMC8444629 DOI: 10.1016/j.ijid.2021.08.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 01/28/2023] Open
Abstract
Objectives: Streptococcus pneumoniae is the leading bacterial pathogen causing respiratory infections. Since the COVID-19 pandemic emerged, less invasive pneumococcal disease (IPD) was identified by surveillance systems worldwide. Measures to prevent transmission of SARS-CoV-2 also reduce transmission of pneumococci, but this would gradually lead to lower disease rates. Design: Here, we explore additional factors contributing to the instant drop in pneumococcal disease cases captured in surveillance. Results: Our observations on referral practices and other impediments to diagnostic testing indicate that residual IPD has likely occurred but remained undetected by conventional hospital-based surveillance. Conclusions: Depending on the setting, we discuss alternative monitoring strategies that could improve understanding of pneumococcal disease dynamics.
Collapse
Affiliation(s)
- Kirsten K T Dirkx
- Department of Clinical Microbiology and Infectious Diseases, Canisius-Wilhelmina Ziekenhuis, Nijmegen, the Netherlands; Department of Clinical Microbiology, Radboud Centre for Infectious Diseases, Radboudumc, Nijmegen, the Netherlands
| | - Bert Mulder
- Department of Clinical Microbiology and Infectious Diseases, Canisius-Wilhelmina Ziekenhuis, Nijmegen, the Netherlands
| | - Annelies S Post
- Department of Clinical Microbiology and Infectious Diseases, Canisius-Wilhelmina Ziekenhuis, Nijmegen, the Netherlands
| | - Martijn H Rutten
- Department of Primary and Community Care, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Caroline M A Swanink
- Department of Clinical Microbiology and Immunology, Rijnstate, Arnhem, the Netherlands
| | - Heiman F L Wertheim
- Department of Clinical Microbiology, Radboud Centre for Infectious Diseases, Radboudumc, Nijmegen, the Netherlands
| | - Amelieke J H Cremers
- Department of Clinical Microbiology, Radboud Centre for Infectious Diseases, Radboudumc, Nijmegen, the Netherlands
| |
Collapse
|
8
|
Allen JP, Snitkin E, Pincus NB, Hauser AR. Forest and Trees: Exploring Bacterial Virulence with Genome-wide Association Studies and Machine Learning. Trends Microbiol 2021; 29:621-633. [PMID: 33455849 PMCID: PMC8187264 DOI: 10.1016/j.tim.2020.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022]
Abstract
The advent of inexpensive and rapid sequencing technologies has allowed bacterial whole-genome sequences to be generated at an unprecedented pace. This wealth of information has revealed an unanticipated degree of strain-to-strain genetic diversity within many bacterial species. Awareness of this genetic heterogeneity has corresponded with a greater appreciation of intraspecies variation in virulence. A number of comparative genomic strategies have been developed to link these genotypic and pathogenic differences with the aim of discovering novel virulence factors. Here, we review recent advances in comparative genomic approaches to identify bacterial virulence determinants, with a focus on genome-wide association studies and machine learning.
Collapse
Affiliation(s)
- Jonathan P Allen
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA.
| | - Evan Snitkin
- Department of Microbiology and Immunology, Department of Internal Medicine/Division of Infectious Diseases, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nathan B Pincus
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alan R Hauser
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Medicine/Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
9
|
Tsang RSW. A Narrative Review of the Molecular Epidemiology and Laboratory Surveillance of Vaccine Preventable Bacterial Meningitis Agents: Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae and Streptococcus agalactiae. Microorganisms 2021; 9:449. [PMID: 33671611 PMCID: PMC7926440 DOI: 10.3390/microorganisms9020449] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/23/2022] Open
Abstract
This narrative review describes the public health importance of four most common bacterial meningitis agents, Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae, and S. agalactiae (group B Streptococcus). Three of them are strict human pathogens that normally colonize the nasopharynx and may invade the blood stream to cause systemic infections and meningitis. S. agalactiae colonizes the genito-gastrointestinal tract and is an important meningitis agent in newborns, but also causes invasive infections in infants or adults. These four bacteria have polysaccharide capsules that protect them against the host complement defense. Currently licensed conjugate vaccines (against S. pneumoniae, H. influenza, and N. meningitidis only but not S. agalactiae) can induce protective serum antibodies in infants as young as two months old offering protection to the most vulnerable groups, and the ability to eliminate carriage of homologous serotype strains in vaccinated subjects lending further protection to those not vaccinated through herd immunity. However, the serotype-specific nature of these vaccines have driven the bacteria to adapt by mechanisms that affect the capsule antigens through either capsule switching or capsule replacement in addition to the possibility of unmasking of strains or serotypes not covered by the vaccines. The post-vaccine molecular epidemiology of vaccine-preventable bacterial meningitis is discussed based on findings obtained with newer genomic laboratory surveillance methods.
Collapse
Affiliation(s)
- Raymond S W Tsang
- Laboratory for Vaccine Preventable Bacterial Diseases, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| |
Collapse
|
10
|
Chaguza C, Yang M, Cornick JE, du Plessis M, Gladstone RA, Kwambana-Adams BA, Lo SW, Ebruke C, Tonkin-Hill G, Peno C, Senghore M, Obaro SK, Ousmane S, Pluschke G, Collard JM, Sigaùque B, French N, Klugman KP, Heyderman RS, McGee L, Antonio M, Breiman RF, von Gottberg A, Everett DB, Kadioglu A, Bentley SD. Bacterial genome-wide association study of hyper-virulent pneumococcal serotype 1 identifies genetic variation associated with neurotropism. Commun Biol 2020; 3:559. [PMID: 33033372 PMCID: PMC7545184 DOI: 10.1038/s42003-020-01290-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022] Open
Abstract
Hyper-virulent Streptococcus pneumoniae serotype 1 strains are endemic in Sub-Saharan Africa and frequently cause lethal meningitis outbreaks. It remains unknown whether genetic variation in serotype 1 strains modulates tropism into cerebrospinal fluid to cause central nervous system (CNS) infections, particularly meningitis. Here, we address this question through a large-scale linear mixed model genome-wide association study of 909 African pneumococcal serotype 1 isolates collected from CNS and non-CNS human samples. By controlling for host age, geography, and strain population structure, we identify genome-wide statistically significant genotype-phenotype associations in surface-exposed choline-binding (P = 5.00 × 10-08) and helicase proteins (P = 1.32 × 10-06) important for invasion, immune evasion and pneumococcal tropism to CNS. The small effect sizes and negligible heritability indicated that causation of CNS infection requires multiple genetic and other factors reflecting a complex and polygenic aetiology. Our findings suggest that certain pathogen genetic variation modulate pneumococcal survival and tropism to CNS tissue, and therefore, virulence for meningitis.
Collapse
Affiliation(s)
- Chrispin Chaguza
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Darwin College, University of Cambridge, Silver Street, Cambridge, UK.
| | - Marie Yang
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jennifer E Cornick
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Mignon du Plessis
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Rebecca A Gladstone
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Brenda A Kwambana-Adams
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, UK
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Stephanie W Lo
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Chinelo Ebruke
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Gerry Tonkin-Hill
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Chikondi Peno
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- MRC Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Madikay Senghore
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Stephen K Obaro
- Division of Pediatric Infectious Disease, University of Nebraska Medical Center Omaha, Omaha, NE, USA
- International Foundation against Infectious Diseases in Nigeria, Abuja, Nigeria
| | - Sani Ousmane
- Centre de Recherche Médicale et Sanitaire, Niamey, Niger
| | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | - Betuel Sigaùque
- Centro de Investigação em Saúde da Manhiça, Maputo, Mozambique
| | - Neil French
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Keith P Klugman
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Robert S Heyderman
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, UK
| | - Lesley McGee
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Martin Antonio
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Robert F Breiman
- Emory Global Health Institute, Emory University, Atlanta, GA, USA
| | - Anne von Gottberg
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Dean B Everett
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- MRC Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Stephen D Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
11
|
Karer M, Kussmann M, Ratzinger F, Obermueller M, Reischer V, Winkler H, Kriz R, Burgmann H, Jilma B, Lagler H. Different Types of Coagulase Are Associated With 28-Day Mortality in Patients With Staphylococcus aureus Bloodstream Infections. Front Cell Infect Microbiol 2020; 10:236. [PMID: 32509602 PMCID: PMC7248564 DOI: 10.3389/fcimb.2020.00236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/24/2020] [Indexed: 11/13/2022] Open
Abstract
Background:Staphylococcus aureus (S. aureus), a leading cause of bacteremia and infective endocarditis, exploits the human coagulation system by using a wide range of specific virulence factors. However, the impact of these host-pathogen interactions on the outcome of patients with Staphylococcus aureus bacteremia (SAB) remains unclear. Methods: A total of 178 patients with S. aureus bacteremia were included and analyzed regarding bacterial factors (coa gene size, vWbp, clfA, clfB, fnbA, fnbB, fib) and clinical parameters. A stepwise multivariate Cox regression model and a Partitioning Around Medoids (PAM) cluster algorithm were used for statistical analysis. Results: Patients' risk factors for 28-day mortality were creatinine (OR 1.49, p < 0.001), age (OR 1.9, p < 0.002), fibrinogen (OR 0.44, p < 0.004), albumin (OR 0.63, p < 0.02), hemoglobin (OR 0.59, p < 0.03), and CRP (OR 1.72, p < 0.04). Five distinct bacterial clusters with different mortality rates were unveiled, whereof two showed a 2-fold increased mortality and an accumulation of specific coagulase gene sizes, 547-base pairs and 660-base pairs. Conclusions: Based on the data obtained in the present study an association of coagulase gene size and fib regarding 28-day mortality was observed in patients with S. aureus bloodstream infections. Further animal and prospective clinical studies are needed to confirm our preliminary findings.
Collapse
Affiliation(s)
- Matthias Karer
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria.,Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Manuel Kussmann
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Franz Ratzinger
- Division of Medical and Chemical Laboratory Diagnostics, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.,Ihr Labor, Medical Diagnostics Laboratories, Vienna, Austria
| | - Markus Obermueller
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Veronika Reischer
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Heidemarie Winkler
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Richard Kriz
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Heinz Burgmann
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Heimo Lagler
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Hendriks ACA, Reubsaet FAG, Kooistra-Smid AMDM, Rossen JWA, Dutilh BE, Zomer AL, van den Beld MJC. Genome-wide association studies of Shigella spp. and Enteroinvasive Escherichia coli isolates demonstrate an absence of genetic markers for prediction of disease severity. BMC Genomics 2020; 21:138. [PMID: 32041522 PMCID: PMC7011524 DOI: 10.1186/s12864-020-6555-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/04/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND We investigated the association of symptoms and disease severity of shigellosis patients with genetic determinants of infecting Shigella and entero-invasive Escherichia coli (EIEC), because determinants that predict disease outcome per individual patient could be used to prioritize control measures. For this purpose, genome wide association studies (GWAS) were performed using presence or absence of single genes, combinations of genes, and k-mers. All genetic variants were derived from draft genome sequences of isolates from a multicenter cross-sectional study conducted in the Netherlands during 2016 and 2017. Clinical data of patients consisting of binary/dichotomous representation of symptoms and their calculated severity scores were also available from this study. To verify the suitability of the methods used, the genetic differences between the genera Shigella and Escherichia were used as control. RESULTS The isolates obtained were representative of the population structure encountered in other Western European countries. No association was found between single genes or combinations of genes and separate symptoms or disease severity scores. Our benchmark characteristic, genus, resulted in eight associated genes and > 3,000,000 k-mers, indicating adequate performance of the algorithms used. CONCLUSIONS To conclude, using several microbial GWAS methods, genetic variants in Shigella spp. and EIEC that can predict specific symptoms or a more severe course of disease were not identified, suggesting that disease severity of shigellosis is dependent on other factors than the genetic variation of the infecting bacteria. Specific genes or gene fragments of isolates from patients are unsuitable to predict outcomes and cannot be used for development, prioritization and optimization of guidelines for control measures of shigellosis or infections with EIEC.
Collapse
Affiliation(s)
- Amber C A Hendriks
- Infectious Disease Research, Diagnostics and laboratory Surveillance, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Frans A G Reubsaet
- Infectious Disease Research, Diagnostics and laboratory Surveillance, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - A M D Mirjam Kooistra-Smid
- Department of Medical Microbiology, Certe, Groningen, the Netherlands
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - John W A Rossen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Utrecht, The Netherlands
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Aldert L Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Maaike J C van den Beld
- Infectious Disease Research, Diagnostics and laboratory Surveillance, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
13
|
Lees JA, Ferwerda B, Kremer PHC, Wheeler NE, Serón MV, Croucher NJ, Gladstone RA, Bootsma HJ, Rots NY, Wijmega-Monsuur AJ, Sanders EAM, Trzciński K, Wyllie AL, Zwinderman AH, van den Berg LH, van Rheenen W, Veldink JH, Harboe ZB, Lundbo LF, de Groot LCPGM, van Schoor NM, van der Velde N, Ängquist LH, Sørensen TIA, Nohr EA, Mentzer AJ, Mills TC, Knight JC, du Plessis M, Nzenze S, Weiser JN, Parkhill J, Madhi S, Benfield T, von Gottberg A, van der Ende A, Brouwer MC, Barrett JC, Bentley SD, van de Beek D. Joint sequencing of human and pathogen genomes reveals the genetics of pneumococcal meningitis. Nat Commun 2019; 10:2176. [PMID: 31092817 PMCID: PMC6520353 DOI: 10.1038/s41467-019-09976-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/11/2019] [Indexed: 12/21/2022] Open
Abstract
Streptococcus pneumoniae is a common nasopharyngeal colonizer, but can also cause life-threatening invasive diseases such as empyema, bacteremia and meningitis. Genetic variation of host and pathogen is known to play a role in invasive pneumococcal disease, though to what extent is unknown. In a genome-wide association study of human and pathogen we show that human variation explains almost half of variation in susceptibility to pneumococcal meningitis and one-third of variation in severity, identifying variants in CCDC33 associated with susceptibility. Pneumococcal genetic variation explains a large amount of invasive potential (70%), but has no effect on severity. Serotype alone is insufficient to explain invasiveness, suggesting other pneumococcal factors are involved in progression to invasive disease. We identify pneumococcal genes involved in invasiveness including pspC and zmpD, and perform a human-bacteria interaction analysis. These genes are potential candidates for the development of more broadly-acting pneumococcal vaccines.
Collapse
Affiliation(s)
- John A Lees
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | - Bart Ferwerda
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Philip H C Kremer
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Nicole E Wheeler
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
- The Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | - Mercedes Valls Serón
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, W2 1PG, UK
| | | | - Hester J Bootsma
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, 3721 MA, The Netherlands
| | - Nynke Y Rots
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, 3721 MA, The Netherlands
| | - Alienke J Wijmega-Monsuur
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, 3721 MA, The Netherlands
| | - Elisabeth A M Sanders
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, 3721 MA, The Netherlands
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, 3508 AB, The Netherlands
| | - Krzysztof Trzciński
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, 3508 AB, The Netherlands
| | - Anne L Wyllie
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, 3508 AB, The Netherlands
- Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06520, USA
| | - Aeilko H Zwinderman
- Amsterdam UMC, University of Amsterdam, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam Public Health, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, 3584 CG, The Netherlands
| | - Wouter van Rheenen
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, 3584 CG, The Netherlands
| | - Jan H Veldink
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, 3584 CG, The Netherlands
| | - Zitta B Harboe
- Department of Microbiological Surveillance and Research, Statens Serum Institut, Copenhagen, DK-2300, Denmark
| | - Lene F Lundbo
- Department of Infectious Diseases, Hvidovre Hospital, University of Copenhagen, Hvidovre, 2650, Denmark
| | - Lisette C P G M de Groot
- Department of Human Nutrition, Wageningen University, P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| | - Natasja M van Schoor
- Amsterdam UMC, VU University, Department of Epidemiology and Biostatistics, Amsterdam Public Health, Van der Boechorststraat 7, Amsterdam, 1007 MB, The Netherlands
| | - Nathalie van der Velde
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Geriatrics, Amsterdam Public Health, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Centre Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Lars H Ängquist
- Center for Clinical Research and Disease Prevention, Bispebjerg and Frederiksberg Hospitals, The Capital Region, Copenhagen, DK-2000, Denmark
| | - Thorkild I A Sørensen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Copenhagen, DK-2200, Denmark
- The Department of Public Health, Section of Epidemiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-1014, Denmark
| | - Ellen A Nohr
- Institute of Clinical Research, University of Southern Denmark, Odense, DK-5000, Denmark
| | - Alexander J Mentzer
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Tara C Mills
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Julian C Knight
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Mignon du Plessis
- School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, 2000, South Africa
| | - Susan Nzenze
- School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, 2000, South Africa
| | - Jeffrey N Weiser
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA
| | - Julian Parkhill
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | - Shabir Madhi
- National Institute for Communicable Diseases, Johannesburg, 2192, South Africa
| | - Thomas Benfield
- Department of Infectious Diseases, Hvidovre Hospital, University of Copenhagen, Hvidovre, 2650, Denmark
| | - Anne von Gottberg
- School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, 2000, South Africa
- National Institute for Communicable Diseases, Johannesburg, 2192, South Africa
| | - Arie van der Ende
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology, Amsterdam Infection and Immunity, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
- Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam UMC/RIVM, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Matthijs C Brouwer
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Jeffrey C Barrett
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
- Genomics Plc, East Road, Cambridge, CB1 1BH, UK
| | - Stephen D Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK.
| | - Diederik van de Beek
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands.
| |
Collapse
|
14
|
Gladstone RA, Lo SW, Lees JA, Croucher NJ, van Tonder AJ, Corander J, Page AJ, Marttinen P, Bentley LJ, Ochoa TJ, Ho PL, du Plessis M, Cornick JE, Kwambana-Adams B, Benisty R, Nzenze SA, Madhi SA, Hawkins PA, Everett DB, Antonio M, Dagan R, Klugman KP, von Gottberg A, McGee L, Breiman RF, Bentley SD. International genomic definition of pneumococcal lineages, to contextualise disease, antibiotic resistance and vaccine impact. EBioMedicine 2019; 43:338-346. [PMID: 31003929 PMCID: PMC6557916 DOI: 10.1016/j.ebiom.2019.04.021] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Pneumococcal conjugate vaccines have reduced the incidence of invasive pneumococcal disease, caused by vaccine serotypes, but non-vaccine-serotypes remain a concern. We used whole genome sequencing to study pneumococcal serotype, antibiotic resistance and invasiveness, in the context of genetic background. METHODS Our dataset of 13,454 genomes, combined with four published genomic datasets, represented Africa (40%), Asia (25%), Europe (19%), North America (12%), and South America (5%). These 20,027 pneumococcal genomes were clustered into lineages using PopPUNK, and named Global Pneumococcal Sequence Clusters (GPSCs). From our dataset, we additionally derived serotype and sequence type, and predicted antibiotic sensitivity. We then measured invasiveness using odds ratios that relating prevalence in invasive pneumococcal disease to carriage. FINDINGS The combined collections (n = 20,027) were clustered into 621 GPSCs. Thirty-five GPSCs observed in our dataset were represented by >100 isolates, and subsequently classed as dominant-GPSCs. In 22/35 (63%) of dominant-GPSCs both non-vaccine serotypes and vaccine serotypes were observed in the years up until, and including, the first year of pneumococcal conjugate vaccine introduction. Penicillin and multidrug resistance were higher (p < .05) in a subset dominant-GPSCs (14/35, 9/35 respectively), and resistance to an increasing number of antibiotic classes was associated with increased recombination (R2 = 0.27 p < .0001). In 28/35 dominant-GPSCs, the country of isolation was a significant predictor (p < .05) of its antibiogram (mean misclassification error 0.28, SD ± 0.13). We detected increased invasiveness of six genetic backgrounds, when compared to other genetic backgrounds expressing the same serotype. Up to 1.6-fold changes in invasiveness odds ratio were observed. INTERPRETATION We define GPSCs that can be assigned to any pneumococcal genomic dataset, to aid international comparisons. Existing non-vaccine-serotypes in most GPSCs preclude the removal of these lineages by pneumococcal conjugate vaccines; leaving potential for serotype replacement. A subset of GPSCs have increased resistance, and/or serotype-independent invasiveness.
Collapse
Affiliation(s)
| | - Stephanie W Lo
- Parasites and microbes, Wellcome Sanger Institute, Hinxton, UK
| | - John A Lees
- New York University School of Medicine, New York, NY, USA
| | | | | | - Jukka Corander
- Parasites and microbes, Wellcome Sanger Institute, Hinxton, UK; Department of Biostatistics, University of Oslo, 0317 Oslo, Norway
| | - Andrew J Page
- Parasites and microbes, Wellcome Sanger Institute, Hinxton, UK
| | - Pekka Marttinen
- Department of Computer Science, Helsinki Institute for Information Technology HIIT, Espoo, Finland
| | - Leon J Bentley
- Parasites and microbes, Wellcome Sanger Institute, Hinxton, UK
| | - Theresa J Ochoa
- Instituto de Medicina Tropical, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Pak Leung Ho
- Department of Microbiology, Carol Yu Centre for Infection, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Mignon du Plessis
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Jennifer E Cornick
- Malawi-Liverpool-Wellcome-Trust Clinical Research Programme, Blantyre, Malawi
| | - Brenda Kwambana-Adams
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, UK; WHO Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273 Banjul, the Gambia
| | - Rachel Benisty
- The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Susan A Nzenze
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, University of the Witwatersrand, South Africa; Department of Science and Technology, National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, South Africa
| | - Shabir A Madhi
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, University of the Witwatersrand, South Africa; Department of Science and Technology, National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, South Africa
| | | | | | - Martin Antonio
- WHO Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273 Banjul, the Gambia; Division of Microbiology & Immunity, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Ron Dagan
- The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Anne von Gottberg
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Lesley McGee
- Centers for Disease Control and Prevention, Atlanta, USA
| | - Robert F Breiman
- Rollins School Public Health, Emory University, USA; Emory Global Health Institute, Atlanta, USA
| | | |
Collapse
|
15
|
Blood‒Brain Barrier Pathology and CNS Outcomes in Streptococcus pneumoniae Meningitis. Int J Mol Sci 2018; 19:ijms19113555. [PMID: 30423890 PMCID: PMC6275034 DOI: 10.3390/ijms19113555] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae is a major meningitis-causing pathogen globally, bringing about significant morbidity and mortality, as well as long-term neurological sequelae in almost half of the survivors. Subsequent to nasopharyngeal colonisation and systemic invasion, translocation across the blood‒brain barrier (BBB) by S. pneumoniae is a crucial early step in the pathogenesis of meningitis. The BBB, which normally protects the central nervous system (CNS) from deleterious molecules within the circulation, becomes dysfunctional in S. pneumoniae invasion due to the effects of pneumococcal toxins and a heightened host inflammatory environment of cytokines, chemokines and reactive oxygen species intracranially. The bacteria‒host interplay within the CNS likely determines not only the degree of BBB pathological changes, but also host survival and the extent of neurological damage. This review explores the relationship between S. pneumoniae bacteria and the host inflammatory response, with an emphasis on the BBB and its roles in CNS protection, as well as both the acute and long-term pathogenesis of meningitis.
Collapse
|
16
|
Langelier C. A molecular warning system for invasive pneumococcus. Sci Transl Med 2018. [DOI: 10.1126/scitranslmed.aau0470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A genome-wide association study of
Streptococcus pneumoniae
identifies and validates bacterial loci associated with invasive infection.
Collapse
Affiliation(s)
- Chaz Langelier
- Division of Infectious Diseases, University of California, San Francisco, San Francisco, CA 94049, USA
| |
Collapse
|