1
|
Cheraghi M, Amiri M, Andarzgoo S, Zarei F, Seghatoleslami ZS, Centis R, Visca D, D'Ambrosio L, Pontali E, Nasiri MJ, Migliori GB. Bedaquiline and linezolid regimens for multidrug-resistant tuberculosis: a systematic review and meta-analysis. J Bras Pneumol 2025; 51:e20240391. [PMID: 40172415 DOI: 10.36416/1806-3756/e20240391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 04/04/2025] Open
Abstract
OBJECTIVE Multidrug-resistant tuberculosis (MDR-TB) remains a global public health challenge, complicating treatment strategies and requiring advanced therapeutic approaches. The persistence of MDR-TB has led to a demand for regimens that are more effective in improving treatment outcomes and controlling transmission. This systematic review and meta-analysis sought to examine the efficacy of linezolid (LZD) and bedaquiline (BDQ) in MDR-TB treatment regimens, evaluating their roles in enhancing therapeutic success and informing optimized management of MDR-TB. METHODS A comprehensive search was conducted across MEDLINE (PubMed), EMBASE, the Cochrane Central Register of Controlled Trials, Scopus, and Web of Science for randomized controlled trials assessing the efficacy of LZD and BDQ in MDR-TB patients up to September 14, 2024. We analyzed treatment outcomes, reporting favorable outcomes (cured and treatment completed) and unfavorable outcomes (death, treatment failure, and loss to follow-up) with a 95% confidence interval. RESULTS Our analysis included 11 trials, with a total of 1,999 participants. The findings indicate that BDQ+LZD-containing regimens yield significantly higher favorable treatment outcomes (84.5%; 95% CI, 79.8%-88.2%) and lower unfavorable outcomes (15.4%; 95% CI, 11.6%-20.2%). In contrast, regimens lacking either LZD or BDQ show lower efficacy, with favorable outcomes at 66.8% (95% CI, 59.5%-73.4%) and unfavorable outcomes at 33.0% (95% CI, 25.6%-41.4%). CONCLUSIONS MDR-TB treatment regimens including BDQ and LZD lead to significantly better patient outcomes. The combined bactericidal and protein synthesis-inhibiting effects of BDQ and LZD create a powerful therapeutic synergy. Adding pretomanid further enhances this effectiveness, highlighting its value in complex cases. Future research should focus on optimizing these regimens for safety and efficacy and explore adjunctive therapies to improve MDR-TB outcomes even further.
Collapse
Affiliation(s)
- Mahdis Cheraghi
- . School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Amiri
- . School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Andarzgoo
- . Faculty of Nursing and Midwifery, Islamic Azad University, Tehran, Iran
| | - Fatemeh Zarei
- . School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | | | - Rosella Centis
- . Istituti Clinici Scientifici Maugeri - IRCCS - Tradate, Italia
| | - Dina Visca
- . Istituti Clinici Scientifici Maugeri - IRCCS - Tradate, Italia
| | | | - Emanuele Pontali
- . Servizio di Malattie Infettive, Hospital Galliera, Genova, Italia
| | | | | |
Collapse
|
2
|
Singh S, Gumbo T, Wang JY, Boorgula GD, Burke A, Huang HL, McShane PJ, Amaro-Galvez R, Gross JE, Aryal S, Heysell SK, Srivastava S. Imipenem pharmacokinetics/pharmacodynamics in preclinical hollow fiber model, dose-finding in virtual patients, and clinical evidence of efficacy for Mycobacterium abscessus lung disease. J Infect Dis 2024:jiae601. [PMID: 39688388 DOI: 10.1093/infdis/jiae601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Guideline-based therapy (GBT) for Mycobacterium abscessus (Mab) lung disease achieves sputum culture conversion rates (SCC) of 35%. This poor GBT efficacy is mirrored in the hollow fiber system model of Mab (HFS-Mab). While imipenem is part of GBT, biological effect with or without β-lactamase inhibitors, is unproven. METHODS We performed imipenem/relebactam minimum inhibitory concentration (MIC) in 122 Mab isolates, and an exposure-response study in the HFS-Mab using human intrapulmonary pharmacokinetics. The % time that concentration persisted above MIC (TMIC) mediating maximal effect in the HFS-Mab was used as the exposure target in 10,000 virtual subjects Monte Carlo experiment (MCE)-based dose-finding. For real-world evidence, we performed a patient, intervention (imipenem), comparison (no β-lactam), and outcome (SCC) (PICO) analysis. RESULTS Imipenem killed 1.32 log10 CFU/mL below day 0 in HFS-Mab. Imipenem target exposure was TMIC=47.9±9.77%. 1g infusion, every 6h, achieved the target in >90% of virtual patients in MCEs. The pharmacokinetics/pharmacodynamics MIC breakpoint was 1mg/L. In PICO analyses, median days-to-SCC were 470 in comparators, 311 for imipenem added on failing regimen, and 37 in newly treated (p=0.049). The odds ratio for SCC when imipenem was part of the initial regimen versus comparators was 12.5 (95% confidence interval: 1.47 to 84.55). Patients on imipenem experienced no treatment-limiting adverse event, while 2/7 comparators did (p=0.0457). Middlebrook 7H9 broth MIC distribution, read at 24 hours, correlated better with patient responses than cation-adjusted Mueller Hinton broth. CONCLUSION Imipenem demonstrated biologic effect in the HFS-Mab and in patients. Imipenem/relebactam doses of 1g every 6h are recommended.
Collapse
Affiliation(s)
- Sanjay Singh
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Texas at Tyler, Tyler, Texas, USA
| | - Tawanda Gumbo
- Mathematical Modeling and AI Department, Praedicare Inc., Dallas, Texas, USA
- Hollow Fiber System & Experimental Therapeutics Laboratories, Wet Lab Systems, Praedicare Inc., Dallas, Texas, USA
| | - Jann-Yuan Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Gunavanthi D Boorgula
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Texas at Tyler, Tyler, Texas, USA
| | - Andrew Burke
- The Prince Charles Hospital Rode Rd Chermside, Queensland, Australia
| | - Hung-Ling Huang
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Taiwan
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan
| | - Pamela J McShane
- Department of Medicine, Section of Pulmonary and Critical Care, School of Medicine, University of Texas at Tyler, Tyler, Texas, USA
| | - Rodolfo Amaro-Galvez
- Department of Medicine, Section of Pulmonary and Critical Care, School of Medicine, University of Texas at Tyler, Tyler, Texas, USA
| | | | - Santosh Aryal
- Department of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, Texas, USA
| | - Scott K Heysell
- Division of Infectious Diseases and International Health, University of Virginia, USA
| | - Shashikant Srivastava
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Texas at Tyler, Tyler, Texas, USA
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, Texas, USA
| |
Collapse
|
3
|
Johnson TM, Rivera CG, Lee G, Zeuli JD. Pharmacology of emerging drugs for the treatment of multi-drug resistant tuberculosis. J Clin Tuberc Other Mycobact Dis 2024; 37:100470. [PMID: 39188351 PMCID: PMC11345926 DOI: 10.1016/j.jctube.2024.100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Mycobacterium tuberculosis (TB) remains the leading cause of infection-related mortality worldwide. Drug resistance, need for multiple antimycobacterial agents, prolonged treatment courses, and medication-related side effects are complicating factors to TB cure. The introduction of treatment regimens containing the novel agents bedaquiline, pretomanid, and linezolid, with or without moxifloxacin (BPaL-M or BPaL, respectively) have substantially reduced TB-related morbidity and mortality and are associated with favorable rates of treatment completion and cure. This review summarizes key information on the pharmacology and treatment principles for moxifloxacin, bedaquiline, delamanid, pretomanid, linezolid, and tedizolid in the treatment of multi-drug resistant TB, with recommendations provided to address and attenuate common adverse effects during treatment.
Collapse
Affiliation(s)
| | | | - Grace Lee
- Department of Pharmacy, Mayo Clinic, Rochester, MN, USA
| | - John D. Zeuli
- Department of Pharmacy, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
4
|
Sarkar M, Sarkar J. Therapeutic drug monitoring in tuberculosis. Eur J Clin Pharmacol 2024; 80:1659-1684. [PMID: 39240337 DOI: 10.1007/s00228-024-03749-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
PURPOSE Therapeutic drug monitoring (TDM) is a standard clinical procedure that uses the pharmacokinetic and pharmacodynamic parameters of the drug in the body to determine the optimal dose. The pharmacokinetic variability of the drug(s) is a significant contributor to poor treatment outcomes, including the development of acquired drug resistance. TDM aids in dose optimization and improves outcomes while lessening drug toxicity. TDM is used to manage patients with tuberculosis (TB) who exhibit a slow response to therapy, despite good compliance and drug-susceptible organisms. Additional indications include patients at risk of malabsorption or delayed absorption of TB drugs and patients with drug-drug interaction and drug toxicity, which confirm compliance with therapy. TDM usually requires two blood samples: the 2 h and the 6 h post-dose. This narrative review will discuss the pharmacokinetics and pharmacodynamics of TB drugs, determinants of poor response to therapy, indications of TDM, methods of performing TDM, and its interpretations. METHODS This is a narrative review. We searched PubMed, Embase, and the CINAHL from inception to April 2024. We used the following search terms: tuberculosis, therapeutic drug monitoring, anti-TB drugs, pharmacokinetics, pharmacodynamics, limited sample strategies, diabetes and TB, HIV and TB, and multidrug-resistant TB. All types of articles were selected. RESULTS TDM is beneficial in managing TB, especially in patients with slow responses, drug-resistance TB, recurrent TB, and comorbidities such as diabetes mellitus and human immunodeficiency virus infection. CONCLUSION TDM is beneficial for improving outcomes, reducing the risk of acquired drug resistance, and avoiding side effects.
Collapse
Affiliation(s)
- M Sarkar
- Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla, 171001, Himachal Pradesh, India.
| | - J Sarkar
- MRes Neuroscience, University of Leeds, Leeds, UK
| |
Collapse
|
5
|
Simeon S, Garcia-Cremades M, Savic R, Solans BP. Pharmacokinetic-pharmacodynamic modeling of tuberculosis time to positivity and colony-forming unit to assess the response to dose-ranging linezolid. Antimicrob Agents Chemother 2024; 68:e0019024. [PMID: 39016594 PMCID: PMC11323931 DOI: 10.1128/aac.00190-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/08/2024] [Indexed: 07/18/2024] Open
Abstract
According to the World Health Organization, the number of tuberculosis (TB) infections and the drug-resistant burden worldwide increased by 4.5% and 3.0%, respectively, between 2020 and 2021. Disease severity and complexity drive the interest for undertaking new clinical trials to provide efficient treatment to limit spread and drug resistance. TB Alliance conducted a phase 2 study in 106 patients to guide linezolid (LZD) dose selection using early bactericidal activity over 14 days of treatment. LZD is highly efficient for drug-resistant TB treatment, but treatment monitoring is required since serious adverse events can occur. The objective of this study was to develop a pharmacokinetic-pharmacodynamic (PKPD) model to analyze the dose-response relationship between linezolid exposure and efficacy biomarkers. Using time to positivity (TTP) and colony-forming unit (CFU) count data, we developed a PKPD model in six dosing regimens, differing on LZD dosing intensity. A one-compartment model with five transit absorption compartments and non-linear auto-inhibition elimination described best LZD pharmacokinetic characteristics. TTP and CFU logarithmic scaled [log(CFU)] showed a bactericidal activity of LZD against Mycobacterium tuberculosis. TTP was defined by a model with two significant covariates: the presence of uni- and bilateral cavities decreased baseline TTP value by 24%, and an increase on every 500 mg/L/h of cumulative area under the curve increased the rate at which TTP and CFU change from baseline by 20% and 11%, respectively. CLINICAL TRIALS This study is registered with ClinicalTrials.gov as NCT02279875.
Collapse
Affiliation(s)
- Segolene Simeon
- Department of
Bioengineering and Therapeutic Sciences, University of California San
Francisco Schools of Pharmacy and
Medicine, San Francisco,
California, USA
- UCSF Center for
Tuberculosis, University of California,
San Francisco, California,
USA
| | - Maria Garcia-Cremades
- Department of
Bioengineering and Therapeutic Sciences, University of California San
Francisco Schools of Pharmacy and
Medicine, San Francisco,
California, USA
- Department of
Pharmaceutics and Food Technology, School of Pharmacy, Complutense
University of Madrid,
Madrid, Spain
- Institute of
Industrial Pharmacy, Complutense University of
Madrid, Madrid,
Spain
| | - Rada Savic
- Department of
Bioengineering and Therapeutic Sciences, University of California San
Francisco Schools of Pharmacy and
Medicine, San Francisco,
California, USA
- UCSF Center for
Tuberculosis, University of California,
San Francisco, California,
USA
| | - Belén P. Solans
- Department of
Bioengineering and Therapeutic Sciences, University of California San
Francisco Schools of Pharmacy and
Medicine, San Francisco,
California, USA
- UCSF Center for
Tuberculosis, University of California,
San Francisco, California,
USA
| |
Collapse
|
6
|
Keutzer L, Mockeliunas L, Sturkenboom MGG, Bolhuis MS, Akkerman OW, Simonsson USH. Derivation and Clinical Utility of Safety Targets for Linezolid-Related Adverse Events in Drug-Resistant Tuberculosis Treatment. Pharmaceuticals (Basel) 2023; 16:1575. [PMID: 38004440 PMCID: PMC10674798 DOI: 10.3390/ph16111575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Long-term usage of linezolid can result in adverse events such as peripheral neuropathy, anemia and thrombocytopenia. Therapeutic drug monitoring data from 75 drug-resistant tuberculosis patients treated with linezolid were analyzed using a time-to-event (TTE) approach for peripheral neuropathy and anemia and indirect response modelling for thrombocytopenia. Different time-varying linezolid pharmacokinetic exposure indices (AUC0-24h,ss, Cav, Cmax and Cmin) and patient characteristics were investigated as risk factors. A treatment duration shorter than 3 months was considered dropout and was modelled using a TTE approach. An exposure-response relationship between linezolid Cmin and both peripheral neuropathy and anemia was found. The exposure index which best described the development of thrombocytopenia was AUC0-24h. The final TTE dropout model indicated an association between linezolid Cmin and dropout. New safety targets for each adverse event were proposed which can be used for individualized linezolid dosing. According to the model predictions at 6 months of treatment, a Cmin of 0.11 mg/L and 1.4 mg/L should not be exceeded to keep the cumulative probability to develop anemia and peripheral neuropathy below 20%. The AUC0-24h should be below 111 h·mg/L or 270 h·mg/L to prevent thrombocytopenia and severe thrombocytopenia, respectively. A clinical utility assessment showed that the currently recommended dose of 600 mg once daily is safer compared to a 300 mg BID dosing strategy considering all four safety endpoints.
Collapse
Affiliation(s)
- Lina Keutzer
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
| | - Laurynas Mockeliunas
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
| | - Marieke G. G. Sturkenboom
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Mathieu S. Bolhuis
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Onno W. Akkerman
- Department of Pulmonary Diseases and Tuberculosis, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- Tuberculosis Center Beatrixoord, University Medical Center Groningen, University of Groningen, 9751 ND Groningen, The Netherlands
| | | |
Collapse
|
7
|
Haley CA, Schechter MC, Ashkin D, Peloquin CA, Peter Cegielski J, Andrino BB, Burgos M, Caloia LA, Chen L, Colon-Semidey A, DeSilva MB, Dhanireddy S, Dorman SE, Dworkin FF, Hammond-Epstein H, Easton AV, Gaensbauer JT, Ghassemieh B, Gomez ME, Horne D, Jasuja S, Jones BA, Kaplan LJ, Khan AE, Kracen E, Labuda S, Landers KM, Lardizabal AA, Lasley MT, Letzer DM, Lopes VK, Lubelchek RJ, Patricia Macias C, Mihalyov A, Misch EA, Murray JA, Narita M, Nilsen DM, Ninneman MJ, Ogawa L, Oladele A, Overman M, Ray SM, Ritger KA, Rowlinson MC, Sabuwala N, Schiller TM, Schwartz LE, Spitters C, Thomson DB, Tresgallo RR, Valois P, Goswami ND. Implementation of Bedaquiline, Pretomanid, and Linezolid in the United States: Experience Using a Novel All-Oral Treatment Regimen for Treatment of Rifampin-Resistant or Rifampin-Intolerant Tuberculosis Disease. Clin Infect Dis 2023; 77:1053-1062. [PMID: 37249079 PMCID: PMC11001496 DOI: 10.1093/cid/ciad312] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/20/2023] [Accepted: 05/27/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Rifampin-resistant tuberculosis is a leading cause of morbidity worldwide; only one-third of persons start treatment, and outcomes are often inadequate. Several trials demonstrate 90% efficacy using an all-oral, 6-month regimen of bedaquiline, pretomanid, and linezolid (BPaL), but significant toxicity occurred using 1200-mg linezolid. After US Food and Drug Administration approval in 2019, some US clinicians rapidly implemented BPaL using an initial 600-mg linezolid dose adjusted by serum drug concentrations and clinical monitoring. METHODS Data from US patients treated with BPaL between 14 October 2019 and 30 April 2022 were compiled and analyzed by the BPaL Implementation Group (BIG), including baseline examination and laboratory, electrocardiographic, and clinical monitoring throughout treatment and follow-up. Linezolid dosing and clinical management was provider driven, and most patients had linezolid adjusted by therapeutic drug monitoring. RESULTS Of 70 patients starting BPaL, 2 changed to rifampin-based therapy, 68 (97.1%) completed BPaL, and 2 of the 68 (2.9%) experienced relapse after completion. Using an initial 600-mg linezolid dose daily adjusted by therapeutic drug monitoring and careful clinical and laboratory monitoring for adverse effects, supportive care, and expert consultation throughout BPaL treatment, 3 patients (4.4%) with hematologic toxicity and 4 (5.9%) with neurotoxicity required a change in linezolid dose or frequency. The median BPaL duration was 6 months. CONCLUSIONS BPaL has transformed treatment for rifampin-resistant or intolerant tuberculosis. In this cohort, effective treatment required less than half the duration recommended in 2019 US guidelines for drug-resistant tuberculosis. Use of individualized linezolid dosing and monitoring likely enhanced safety and treatment completion. The BIG cohort demonstrates that early implementation of new tuberculosis treatments in the United States is feasible.
Collapse
Affiliation(s)
- Connie A Haley
- Southeastern National Tuberculosis Center, Division of Infectious Diseases and Global Medicine, Department of Medicine in the College of Medicine, University of Florida, Gainesville, Florida, USA
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Marcos C Schechter
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Georgia State Tuberculosis Program, Atlanta, Georgia, USA
| | - David Ashkin
- Southeastern National Tuberculosis Center, Division of Infectious Diseases and Global Medicine, Department of Medicine in the College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Charles A Peloquin
- Translational Research, College of Pharmacy and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - J Peter Cegielski
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | | | - Marcos Burgos
- New Mexico Department of Health, Santa Fe, New Mexico, USA
- University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
- New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA
| | - Lori A Caloia
- Louisville Metro Department of Public Health and Wellness, Louisville, Kentucky, USA
- Humana Healthy Horizons in Kentucky, Louisville, Kentucky, USA
| | - Lisa Chen
- Curry International Tuberculosis Center, University of California, San Francisco, California, USA
| | | | - Malini B DeSilva
- Saint Paul–Ramsey County Public Health, Saint Paul, Minnesota, USA
- HealthPartners Institute, Bloomington, Minnesota, USA
| | - Shireesha Dhanireddy
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Susan E Dorman
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- South Carolina Department of Health and Environmental Control, Greenville, South Carolina, USA
| | - Felicia F Dworkin
- New York City Department of Health and Mental Hygiene, Bureau of Tuberculosis Control, New York, New York, USA
| | - Heidi Hammond-Epstein
- Southeastern National Tuberculosis Center, University of Florida, Gainesville, Florida, USA
| | - Alice V Easton
- New York City Department of Health and Mental Hygiene, Bureau of Tuberculosis Control, New York, New York, USA
| | - James T Gaensbauer
- Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Bijan Ghassemieh
- Public Health—Seattle & King County, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Maria E Gomez
- Southeastern National Tuberculosis Center, University of Florida, Gainesville, Florida, USA
| | - David Horne
- Pulmonary, Critical Care and Sleep Medicine, Harborview Medical Center, University of Washington, Seattle, Washington, USA
| | - Supriya Jasuja
- Cook County Department of Public Health, Forest Park, Illinois, USA
| | - Betsy A Jones
- Bureau of Public Health Laboratories, Florida State Tuberculosis Program, Jacksonville, Florida, USA
| | - Leonard J Kaplan
- Division of Infectious Diseases, Department of Medicine, NorthShore University HealthSystem, Evanston, Illinois, USA
| | | | - Elizabeth Kracen
- Public Health—Seattle & King County, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Sarah Labuda
- Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Puerto Rico Department of Health, San Juan, Puerto Rico, USA
| | - Karen M Landers
- Alabama Department of Public Health, Montgomery, Alabama, USA
| | | | - Maria T Lasley
- Southeastern National Tuberculosis Center, University of Florida, Gainesville, Florida, USA
| | | | - Vinicius K Lopes
- Sheboygan County Health and Human Services, Sheboygan, Wisconsin, USA
- Southern California Infectious Diseases Associates, Inc., Newport Beach, California, USA
| | - Ronald J Lubelchek
- Cook County Department of Public Health, Forest Park, Illinois, USA
- Division of Infectious Diseases, John H. Stroger, Jr. Hospital of Cook County, Chicago, Illinois, USA
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - C Patricia Macias
- Health Transformation Program NorthShore University, Chicago, Illinois, USA
- The International Union Against Tuberculosis and Lung Disease, Paris, France
| | - Aimee Mihalyov
- Louisville Metro Department of Public Health and Wellness, Louisville, Kentucky, USA
| | - Elizabeth Ann Misch
- Division of Infectious Disease, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jason A Murray
- Emergency Medicine, Saint Elizabeth Healthcare System, Edgewood, Kentucky, USA
- Northern Kentucky Health Department, Florence, Kentucky, USA
| | - Masahiro Narita
- Public Health—Seattle & King County, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Diana M Nilsen
- New York City Department of Health and Mental Hygiene, Bureau of Tuberculosis Control, New York, New York, USA
| | | | - Lynne Ogawa
- Saint Paul–Ramsey County Public Health, Saint Paul, Minnesota, USA
| | | | - Melissa Overman
- South Carolina Department of Health and Environmental Control, Greenville, South Carolina, USA
| | - Susan M Ray
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Georgia State Tuberculosis Program, Atlanta, Georgia, USA
| | | | - Marie-Claire Rowlinson
- Bureau of Public Health Laboratories, Florida State Tuberculosis Program, Jacksonville, Florida, USA
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Nadya Sabuwala
- Minnesota Department of Health, Saint Paul, Minnesota, USA
| | | | | | - Christopher Spitters
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Snohomish County Health Department, Everett, Washington, USA
- Washington State Department of Health, Shoreline, Washington, USA
| | - Douglas B Thomson
- Barren River District Health Department, Bowling Green, Kentucky, USA
| | - Rene Rico Tresgallo
- Department of Medicine, University of Miami, Jackson Memorial Hospital, Miami, Florida, USA
| | - Patrick Valois
- Bureau of Public Health Laboratories, Florida State Tuberculosis Program, Jacksonville, Florida, USA
| | - Neela D Goswami
- Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Burke A, Carter R, Tolson C, Congdon J, Duplancic C, Bursle E, Bell SC, Roberts JA, Thomson R. In vitro susceptibility testing of imipenem-relebactam and tedizolid against 102 Mycobacterium abscessus isolates. Int J Antimicrob Agents 2023; 62:106938. [PMID: 37517624 DOI: 10.1016/j.ijantimicag.2023.106938] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/15/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVES Mycobacterium abscessus is an emerging infection in people living with lung diseases, including cystic fibrosis (CF) and bronchiectasis, and it has limited treatment options and low cure rates. The off-label use of novel antibiotics developed for other bacterial pathogens offers potential new therapeutic options. We aimed to describe the in vitro activity of imipenem, imipenem-relebactam and tedizolid against comparator antibiotics in M. abscessus isolates from Australian patients with and without CF. METHODS We performed susceptibility testing for imipenem-relebactam, tedizolid and comparator antibiotics by Clinical and Laboratory Standards Institute (CLSI) criteria against 102 clinical M. abscessus isolates, including 46 from people with CF. RESULTS In this study, the minimum inhibitory concentration (MICs) of imipenem-relebactam was one-fold dilution less than of imipenem alone. The MIC50 and MIC90 of imipenem-relebactam were 8 and 16 mg/L, respectively, whereas for imipenem they were 16 and 32 mg/L. Tedizolid had an MIC50 and MIC90 of 2 and 4 mg/L, respectively. Forty non-CF isolates had linezolid susceptibility performed, with MIC50 and MIC90 values of 16 and 32 mg/L, respectively, measured. CONCLUSIONS This study shows lower MICs for imipenem-relebactam and tedizolid compared to other more commonly used antibiotics and supports their consideration in clinical trials for M. abscessus treatment.
Collapse
Affiliation(s)
- Andrew Burke
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia; The Prince Charles Hospital, Brisbane, Australia.
| | - Robyn Carter
- Faculty of Medicine, The University of Queensland School of Medicine School of Medicine, Australia; Gallipoli Medical Research Institute, Brisbane, Australia
| | - Carla Tolson
- Gallipoli Medical Research Institute, Brisbane, Australia
| | - Jacob Congdon
- Gallipoli Medical Research Institute, Brisbane, Australia
| | - Christine Duplancic
- Faculty of Medicine, The University of Queensland School of Medicine School of Medicine, Australia
| | - Evan Bursle
- Faculty of Medicine, The University of Queensland School of Medicine School of Medicine, Australia; Sullivan and Nicolaides Pathology, Brisbane, Australia
| | - Scott C Bell
- The Prince Charles Hospital, Brisbane, Australia; Faculty of Medicine, The University of Queensland School of Medicine School of Medicine, Australia; Translational Research Institute, Brisbane, Australia
| | - Jason A Roberts
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia; Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia; Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - Rachel Thomson
- The Prince Charles Hospital, Brisbane, Australia; Faculty of Medicine, The University of Queensland School of Medicine School of Medicine, Australia; Gallipoli Medical Research Institute, Brisbane, Australia
| |
Collapse
|
9
|
Nguyen TVA, Nguyen QH, Nguyen TNT, Anthony RM, Vu DH, Alffenaar JWC. Pretomanid resistance: An update on emergence, mechanisms and relevance for clinical practice. Int J Antimicrob Agents 2023; 62:106953. [PMID: 37595848 DOI: 10.1016/j.ijantimicag.2023.106953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/20/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
Pretomanid (PA-824), a novel anti-tuberculosis (TB) nitroimidazoxazine, has been approved for multi-drug-resistant TB treatment for a few years. Pretomanid has been demonstrated to be highly active against Mycobacterium tuberculosis when combined with other anti-TB drugs. This review provides an update of the current knowledge on the modes of action, resistance mechanisms, emergence of drug resistance, and status of antimicrobial susceptibility testing for pretomanid and its relevance for clinical practice. Pretomanid resistance has been reported in in-vitro and animal models but not yet in clinical trials. Pretomanid-resistance-associated mutations have been reported in the fbiA, fbiB, fbiC, fbiD, ddn and fgd1 genes. However, understanding of in-vivo molecular resistance mechanisms remains limited, and complicates the development of accurate antimicrobial susceptibility testing methods for pretomanid. As such, no reference method for antimicrobial susceptibility testing of pretomanid has been established to guide clinical use. Further studies linking specific mutations, in-vitro susceptibility, drug exposure and resistance mechanisms to treatment failure with pretomanid should be prioritized.
Collapse
Affiliation(s)
- Thi Van Anh Nguyen
- LMI DRISA, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Quang Huy Nguyen
- LMI DRISA, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Tran Nam Tien Nguyen
- National Centre of Drug information and Adverse Drug Reaction Monitoring, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Richard M Anthony
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Dinh Hoa Vu
- National Centre of Drug information and Adverse Drug Reaction Monitoring, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Jan-Willem C Alffenaar
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Westmead Hospital, Sydney, Australia; Sydney Institute for Infectious Diseases, University of Sydney, Sydney, Australia.
| |
Collapse
|
10
|
Mishra G, Alffenaar JW, Munje R, Khateeb S. Adverse drug reactions due to linezolid in the programmatic management of drug-resistant tuberculosis in India: A retrospective multicenter study. Indian J Tuberc 2023; 71 Suppl 1:S101-S109. [PMID: 39067941 DOI: 10.1016/j.ijtb.2023.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 07/30/2024]
Abstract
BACKGROUND Monitoring and managing adverse drug reactions (ADR) are critical for treating drug-resistant tuberculosis (TB). OBJECTIVE To study symptomatic, linezolid-attributable ADRs in TB patients initiated on all oral longer bedaquiline-based treatment regime for multidrug-resistant/rifampicin-resistant (MDR/RR)-TB under programmatic conditions. METHODS It was a multicenter, retrospective study of people with MDR/RR-TB in nine TB units in Nagpur, India, from March 2020 to April 2022. RESULTS The study consisted of a sample size of 106 individuals with multidrug-resistant and rifampicin-resistant tuberculosis out of a total of 110 individuals with the disease. Of these, 45 (42.45%) experienced linezolid ADRs, with an incidence of 11.37 cases per 1000 person-weeks. These patients were significantly younger (31.24 ± 11.13 years) and more likely to be female (27, 50%) than those without ADRs. ADR severity was mild in 20 (44.45%), moderate in 15 (33.33%), and severe in 10 (22.22%) patients. The most common ADR was peripheral neuropathy (42, 93.33%), followed by lactic acidosis (3, 6.67%), anemia (2, 4.44%), and optic neuritis (2, 4.44%). Dosing was reduced in 17 (37.78%) patients, and linezolid was withdrawn entirely in 19 (42.22%) patients. Only 9 (20%) patients continued linezolid unmodified. For mild to moderate linezolid-associated symptomatic peripheral neuropathy, symptom management with or without dose reduction is an effective strategy; however, immediate linezolid withdrawal is necessary in severe or life-threatening peripheral neuropathy cases. After a mean follow-up of 41 ± 21.33 weeks, ADR symptoms resolved completely in 4 (6.67%) patients and decreased in 42 (93.33%) patients. CONCLUSION Linezolid ADRs, often neuropathy, frequently occur in patients on an all-oral bedaquiline-based treatment regime for MDR/RR-TB. Women and younger patients are more likely to experience these ADRs, usually mild to moderate in severity. Management of symptomatic linezolid-associated peripheral neuropathy should be based on ADR severity. These ADRs often affect linezolid dosing, so it is important to identify and manage them early.
Collapse
Affiliation(s)
- Gyanshankar Mishra
- Department of Respiratory Medicine, Indira Gandhi Government Medical College, Nagpur, Maharashtra, India.
| | - Jan-Willem Alffenaar
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, NSW, Australia; Westmead Hospital, Sydney, NSW, Australia
| | - Radha Munje
- Department of Respiratory Medicine, Indira Gandhi Government Medical College, Nagpur, Maharashtra, India
| | - Sadaf Khateeb
- Department of Respiratory Medicine, Indira Gandhi Government Medical College, Nagpur, Maharashtra, India
| |
Collapse
|
11
|
Litjens CHC, Verscheijden LFM, Svensson EM, van den Broek PHH, van Hove H, Koenderink JB, Russel FGM, Aarnoutse RE, te Brake LHM. Physiologically-Based Pharmacokinetic Modelling to Predict the Pharmacokinetics and Pharmacodynamics of Linezolid in Adults and Children with Tuberculous Meningitis. Antibiotics (Basel) 2023; 12:antibiotics12040702. [PMID: 37107064 PMCID: PMC10135070 DOI: 10.3390/antibiotics12040702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Linezolid is used off-label for treatment of central nervous system infections. However, its pharmacokinetics and target attainment in cranial cerebrospinal fluid (CSF) in tuberculous meningitis patients is unknown. This study aimed to predict linezolid cranial CSF concentrations and assess attainment of pharmacodynamic (PD) thresholds (AUC:MIC of >119) in plasma and cranial CSF of adults and children with tuberculous meningitis. A physiologically based pharmacokinetic (PBPK) model was developed to predict linezolid cranial CSF profiles based on reported plasma concentrations. Simulated steady-state PK curves in plasma and cranial CSF after linezolid doses of 300 mg BID, 600 mg BID, and 1200 mg QD in adults resulted in geometric mean AUC:MIC ratios in plasma of 118, 281, and 262 and mean cranial CSF AUC:MIC ratios of 74, 181, and 166, respectively. In children using ~10 mg/kg BID linezolid, AUC:MIC values at steady-state in plasma and cranial CSF were 202 and 135, respectively. Our model predicts that 1200 mg per day in adults, either 600 mg BID or 1200 mg QD, results in reasonable (87%) target attainment in cranial CSF. Target attainment in our simulated paediatric population was moderate (56% in cranial CSF). Our PBPK model can support linezolid dose optimization efforts by simulating target attainment close to the site of TBM disease.
Collapse
Affiliation(s)
- Carlijn H. C. Litjens
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Laurens F. M. Verscheijden
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Elin M. Svensson
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| | - Petra H. H. van den Broek
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Hedwig van Hove
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Jan B. Koenderink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Frans G. M. Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Rob E. Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Lindsey H. M. te Brake
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
12
|
Eimer J, Fréchet-Jachym M, Le Dû D, Caumes E, El-Helali N, Marigot-Outtandy D, Mechai F, Peytavin G, Pourcher V, Rioux C, Yazdanpanah Y, Robert J, Guglielmetti L. Association Between Increased Linezolid Plasma Concentrations and the Development of Severe Toxicity in Multidrug-Resistant Tuberculosis Treatment. Clin Infect Dis 2023; 76:e947-e956. [PMID: 35717636 DOI: 10.1093/cid/ciac485] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/29/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Treatment of multidrug-resistant (MDR) tuberculosis with linezolid is characterized by high rates of adverse events. Evidence on therapeutic drug monitoring to predict drug toxicity is scarce. This study aimed to evaluate the association of linezolid trough concentrations with severe toxicity. METHODS We retrospectively assessed consecutive patients started on linezolid for MDR tuberculosis between 2011 and 2017. The primary outcome was severe mitochondrial toxicity (SMT) due to linezolid, defined as neurotoxicity or myelotoxicity leading to drug discontinuation. The impact of plasma linezolid trough concentrations >2 mg/L was assessed in multivariate Cox proportional hazards models including time-varying covariates. RESULTS SMT occurred in 57 of 146 included patients (39%) at an incidence rate of 0.38 per person-year (95% confidence interval, .30-.49). A maximum linezolid trough concentration >2 mg/L was detected in 52 patients (35.6%), while the mean trough concentration was >2 mg/L in 22 (15%). The adjusted hazard ratio for SMT was 2.35 (95% confidence interval, 1.26-4.38; P = .01) in patients with a mean trough concentration >2 mg/L and 2.63 (1.55-4.47; P < .01) for SMT after the first detection of a trough concentration >2 mg/L. In an exploratory analysis, higher maximum trough concentrations were dose-dependently associated with toxicity, while lowering elevated trough concentrations did not restore baseline risk. CONCLUSIONS Linezolid trough concentrations >2 mg/L are strongly associated with the development of severe treatment-emergent toxicity in patients treated for MDR tuberculosis. Pending further prospective evidence, an individual risk-benefit assessment on the continuation of linezolid treatment is warranted in any patient with trough concentrations >2 mg/L.
Collapse
Affiliation(s)
- Johannes Eimer
- INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Équipe 2, Sorbonne Université, Paris, France
| | | | - Damien Le Dû
- Sanatorium, Centre Hospitalier de Bligny, Briis-sous-Forges, France
| | - Eric Caumes
- Service de Maladies Infectieuses et Tropicales, Hôpital Pitié-Salpêtrière, AP-HP.Sorbonne Université, Paris, France
| | - Najoua El-Helali
- Plateforme de Dosage des Anti-infectieux, Groupe Hospitalier Paris Saint-Joseph, Paris, France
| | - Dhiba Marigot-Outtandy
- Sanatorium, Centre Hospitalier de Bligny, Briis-sous-Forges, France.,AP-HP, Service de Maladies Infectieuses, Hôpital Raymond Poincaré, Université de Saint-Quentin en Yvelines, Garches, France
| | - Frédéric Mechai
- AP-HP, Service de Maladies Infectieuses et Tropicales, Hôpital Avicenne, Paris, France.,IAME INSERM UMR-S 1137, Hôpital Bichat-Claude Bernard, AP-HP, Paris, France
| | - Gilles Peytavin
- Laboratoire de Pharmacologie-Toxicologie, DMU Biologie et Génomique Médicale (BioGeM), IAME INSERM UMR-S 1137, Hôpital Bichat-Claude Bernard, AP-HP, Paris, France
| | - Valérie Pourcher
- Service de Maladies Infectieuses et Tropicales, Hôpital Pitié-Salpêtrière, AP-HP.Sorbonne Université, Paris, France
| | - Christophe Rioux
- AP-HP, Service de Maladies Infectieuses et Tropicales, Hôpital Bichat-Claude Bernard, Paris, France
| | - Yazdan Yazdanpanah
- AP-HP, Service de Maladies Infectieuses et Tropicales, Hôpital Bichat-Claude Bernard, Paris, France
| | - Jérôme Robert
- INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Équipe 2, Sorbonne Université, Paris, France.,Hôpital Pitié-Salpêtrière, Laboratoire de Bactériologie-Hygiène, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, AP-HP.Sorbonne Université, Paris, France
| | - Lorenzo Guglielmetti
- INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Équipe 2, Sorbonne Université, Paris, France.,Hôpital Pitié-Salpêtrière, Laboratoire de Bactériologie-Hygiène, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, AP-HP.Sorbonne Université, Paris, France
| | | |
Collapse
|
13
|
Heidari S, Khalili H. Linezolid pharmacokinetics: a systematic review for the best clinical practice. Eur J Clin Pharmacol 2023; 79:195-206. [PMID: 36565357 DOI: 10.1007/s00228-022-03446-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022]
Abstract
OBJECTIVES To summarize the pharmacokinetics of linezolid to optimize the dosing regimen in special populations. METHODS A literature search was performed in three largest medical databases, including Embase, Scopus, and PubMed. The main applied keywords were linezolid and pharmacokinetics. Of 3663 retrieved publications in the English language, 35 original research articles, clinical studies, and case reports about linezolid pharmacokinetics in different populations such as pregnant women, pediatrics, elderly subjects, obese people, individuals with organ dysfunction, and critically ill patients were included. RESULTS AND CONCLUSION: Dose adjustment is not currently recommended for linezolid in patients with mild to moderate renal or hepatic impairment, older adults, and pregnant women. Although dose adjustment is not recommended in patients with severe renal or hepatic impairment, it should be considered that these patients are more vulnerable to linezolid adverse effects and drug interactions. In pediatrics, reducing the linezolid dosing interval to 8 h is suggested. Despite the lack of sufficient information in obese individuals, dosing based on body weight or use of higher dose seems to be justifiable to prevent sub-therapeutic concentrations. Although dose adjustment of linezolid is not recommended in critically ill patients, administration of linezolid as continuous intravenous infusion is suggested in this population. Blood level monitoring should be considered in populations that are vulnerable to linezolid underexposure (such as critically ill patients with augmented renal clearance, pediatrics, overweight, and obese patients) or overexposure (such as elderly, patients with hepatic and renal impairment). To assess the efficacy and safety of linezolid, the area under the concentration-time curve over 24 h to minimum inhibitory concentration (AUC0-24 h/MIC) equal to 80-120, percentage of time above the MIC ≥ 85%, and serum trough concentration between 2 and 7 mg/L are suggested.
Collapse
Affiliation(s)
- Shima Heidari
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Khalili
- Department of Clinical Pharmacy, Faculty of Pharmacy, Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Tehran University of Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Zhang H, He Y, Davies Forsman L, Paues J, Werngren J, Niward K, Schön T, Bruchfeld J, Alffenaar JW, Hu Y. Population pharmacokinetics and dose evaluations of linezolid in the treatment of multidrug-resistant tuberculosis. Front Pharmacol 2023; 13:1032674. [PMID: 36699070 PMCID: PMC9868619 DOI: 10.3389/fphar.2022.1032674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Background: The pharmacokinetic/pharmacodynamics (PK/PD) target derived from the hollow-fiber system model for linezolid for treatment of the multidrug-resistant tuberculosis (MDR-TB) requires clinical validation. Therefore, this study aimed to develop a population PK model for linezolid when administered as part of a standardized treatment regimen, to identify the PK/PD threshold associated with successful treatment outcomes and to evaluate currently recommended linezolid doses. Method: This prospective multi-center cohort study of participants with laboratory-confirmed MDR-TB was conducted in five TB designated hospitals. The population PK model for linezolid was built using nonlinear mixed-effects modeling using data from 168 participants. Boosted classification and regression tree analyses (CART) were used to identify the ratio of 0- to 24-h area under the concentration-time curve (AUC0-24h) to the minimal inhibitory concentration (MIC) threshold using the BACTEC MGIT 960 method associated with successful treatment outcome and validated in multivariate analysis using data from a different and prospective cohort of 159 participants with MDR-TB. Furthermore, based on the identified thresholds, the recommended doses were evaluated by the probability of target attainment (PTA) analysis. Result: Linezolid plasma concentrations (1008 samples) from 168 subjects treated with linezolid, were best described by a 2-compartment model with first-order absorption and elimination. An AUC0-24h/MIC > 125 was identified as a threshold for successful treatment outcome. Median time to sputum culture conversion between the group with AUC0-24h/MIC above and below 125 was 2 versus 24 months; adjusted hazard ratio (aHR), 21.7; 95% confidence interval (CI), (6.4, 72.8). The boosted CART-derived threshold and its relevance to the final treatment outcome was comparable to the previously suggested target of AUC0-24h/MIC (119) using MGIT MICs in a hollow fiber infection model. Based on the threshold from the present study, at a standard linezolid dose of 600 mg daily, PTA was simulated to achieve 100% at MGIT MICs of ≤ .25 mg which included the majority (81.1%) of isolates in the study. Conclusion: We validated an AUC0-24h/MIC threshold which may serve as a target for dose adjustment to improve efficacy of linezolid in a bedaquiline-containing treatment. Linezolid exposures with the WHO-recommended dose (600 mg daily) was sufficient for all the M. tb isolates with MIC ≤ .25 mg/L.
Collapse
Affiliation(s)
- Haoyue Zhang
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Yuying He
- Institute of Tuberculosis Control, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, China
| | - Lina Davies Forsman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden,Department of Medicine, Division of Infectious Diseases, Karolinska Institute, Stockholm, Sweden
| | - Jakob Paues
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden,Department of Infectious Diseases, Linköping University Hospital, Linköping, Sweden
| | - Jim Werngren
- Department of Microbiology, The Public Health Agency of Sweden, Stockholm, Sweden
| | - Katarina Niward
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden,Department of Infectious Diseases, Linköping University Hospital, Linköping, Sweden
| | - Thomas Schön
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden,Department of Infectious Diseases, Linköping University Hospital, Linköping, Sweden,Department of Infectious Diseases, Kalmar County Hospital, Linköping University, Kalmar, Sweden
| | - Judith Bruchfeld
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden,Department of Medicine, Division of Infectious Diseases, Karolinska Institute, Stockholm, Sweden
| | - Jan-Willem Alffenaar
- University of Sydney, Faculty of Medicine and Health, School of Pharmacy, Sydney, NSW, Australia,Westmead Hospital, Sydney, NSW, Australia,Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW, Australia
| | - Yi Hu
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China,*Correspondence: Yi Hu,
| |
Collapse
|
15
|
Resendiz-Galvan JE, Arora PR, Abdelwahab MT, Udwadia ZF, Rodrigues C, Gupta A, Denti P, Ashavaid TF, Tornheim JA. Pharmacokinetic analysis of linezolid for multidrug resistant tuberculosis at a tertiary care centre in Mumbai, India. Front Pharmacol 2023; 13:1081123. [PMID: 36686664 PMCID: PMC9846493 DOI: 10.3389/fphar.2022.1081123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Linezolid is an oxazolidinone used to treat multidrug-resistant tuberculosis (MDR-TB), including in the recently-endorsed shorter 6-month treatment regimens. Due to its narrow therapeutic index, linezolid is often either dose-adjusted or discontinued due to intolerance or toxicity during treatment, and the optimal balance between linezolid efficacy and toxicity remains unclear. India carries a significant burden of MDR-TB cases in the world, but limited information on the pharmacokinetics of linezolid and minimum inhibitory concentration (MIC) distribution is available from Indian MDR-TB patients. We enrolled participants from a tertiary care centre in Mumbai, India, treated for MDR-TB and receiving linezolid daily doses of 600 or 300 mg. Pharmacokinetic visits were scheduled between 1 and 15 months after treatment initiation to undergo intensive or sparse blood sampling. Linezolid concentration versus time data were analysed using non-linear mixed-effects modelling, with simulations to evaluate doses for different scenarios. We enrolled 183 participants (121 females), with a median age of 26 years (interquartile range [IQR] 21-35), weight 55.0 kg (IQR 45.6-65.8), and fat-free mass 38.7 kg (IQR 32.7-46.0). Linezolid pharmacokinetics was best described by a one-compartment model with first-order elimination allometrically scaled by fat-free mass and transit compartment absorption. The typical clearance value was 3.81 L/h. Simulations predicted that treatment with 300 mg daily achieves a high probability of target attainment (PTA) when linezolid MIC was ≤0.25 mg/L (61.5% of participant samples tested), while 600 mg daily would be required if MIC were 0.5 mg/L (29% of samples). While linezolid 300 mg daily is predicted to achieve effective targets for the majority of adults with MDR-TB, it failed to achieve the therapeutic target for 21% participants. A dose of 600 mg had a PTA >90% for all susceptible samples, but with a higher likelihood of exceeding toxicity thresholds (31% vs 9.6%). These data suggest potential benefit to individualized dosing taking host and microbial characteristics into account to improve the likelihood of treatment efficacy while minimizing risk of toxicity from linezolid for the treatment of MDR-TB. Further prospective evaluation in different clinical settings is urgently needed to inform safety and efficacy of these lower doses.
Collapse
Affiliation(s)
| | - Prerna R Arora
- Research Laboratories, P. D. Hinduja National Hospital and Medical Research Centre, Mumbai, India
| | - Mahmoud Tareq Abdelwahab
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Zarir F Udwadia
- Division of Respiratory Medicine, P. D. Hinduja National Hospital and Medical Research Centre, Mumbai, India
| | - Camilla Rodrigues
- Research Laboratories, P. D. Hinduja National Hospital and Medical Research Centre, Mumbai, India
| | - Amita Gupta
- Center for Infectious Diseases in India, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Center for Tuberculosis Research, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Tester F Ashavaid
- Research Laboratories, P. D. Hinduja National Hospital and Medical Research Centre, Mumbai, India
| | - Jeffrey A Tornheim
- Center for Infectious Diseases in India, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Center for Tuberculosis Research, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
16
|
Hou J, Marriott D, Cattaneo D, Stocker S, Stojanova J, Alffenaar JW, Xiao C, Zhao Y, Gong H, Yan M. Therapeutic drug monitoring practices of anti-infectives: An Asia-wide cross-sectional survey. Front Pharmacol 2022; 13:992354. [PMID: 36299881 PMCID: PMC9589087 DOI: 10.3389/fphar.2022.992354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2023] Open
Abstract
Objectives: The current practice of therapeutic drug monitoring (TDM) in Asia is poorly documented. Our aim was to capture and describe TDM services delivered in hospitals across Asia, including aspects such as assay availability, interpretation of results and clinical decision-making. Methods: An online survey about anti-infective TDM practices, available in English and involving 50 questions, was promoted to people involved in TDM in Asia. The survey was open for responses from September to November 2021. Results: Of 207 responses from participants working in 14 Asian countries, 150 responses from 10 countries could be included. TDM services are available for many anti-infectives, providing assays based on chromatographic assays (100.0%) or immunoassays (39.3%). Clinicians (82.6%) and pharmacists (86.8%) were responsible for ordering and interpreting TDM. Most services provided reference targets and dose recommendations. Interpretative support was available to a varying degree. Assay results were available and clinical decision-making could be completed within 24 h in most hospitals (87.9% and 88.9% respectively). As the turnaround time of assay results decreased, the proportion of clinical decision-making completed within 8 h increased. Barriers to implementation of TDM included lack of funding or equipment (71.1%), lack of clinician interest or cooperation (47.0%), and lack of expertise (42.3%). Lack of expertise was the primary barrier for using precision dosing software (50.5%). Conclusion: There are significant differences and challenges in the development and practice of anti-infective TDM in Asian countries.
Collapse
Affiliation(s)
- Jingjing Hou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Debbie Marriott
- Department of Microbiology and Infectious Diseases, St. Vincent’s Hospital, Sydney, NSW, Australia
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, ASST FBF Sacco University Hospital, Milan, Italy
| | - Sophie Stocker
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- UNSW Sydney, St Vincent’s Clinical School, Sydney, Australia
- Department of Clinical Pharmacology and Toxicology, St Vincent’s Hospital Sydney, Sydney, NSW, Australia
| | - Jana Stojanova
- Department of Clinical Pharmacology and Toxicology, St Vincent’s Hospital Sydney, Sydney, NSW, Australia
| | - Jan-Willem Alffenaar
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Westmead Hospital, Sydney, NSW, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW, Australia
| | - Chenlin Xiao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Yichang Zhao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Hui Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| |
Collapse
|
17
|
Yuan Y, Li J, Chen Y, Cai Q, Xu Y, Lin L, Lang Y, Guo S, Zhang R, Cai X. Mechanism underlying linezolid-induced peripheral neuropathy in multidrug-resistant tuberculosis. Front Pharmacol 2022; 13:946058. [PMID: 36160387 PMCID: PMC9500448 DOI: 10.3389/fphar.2022.946058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Multidrug-resistant tuberculosis (MDR-TB) remains a main global health concern as there is no comprehensive therapeutic intervention yet and numerous adverse effects follow the therapeutic process. In recent years, linezolid has been frequently used for treating MDR-TB. However, peripheral neuropathy associated with linezolid has reduced patient compliance. The current study explored the mechanism underlying linezolid-induced peripheral neuropathy in MDR-TB. Autophagy plays a neuroprotective role against peripheral nerve injury. We hypothesized that autophagy might also play a neuroprotective role against linezolid-induced peripheral neuropathy. In this study, we collected 12 questionnaires from MDR-TB patients in our hospital, and 10 of them developed linezolid-induced pain. The pain is mainly concentrated in the feet and accompanied by numbness. Subsequently, we used Sprague-Dawley (SD) rats and Schwann cells (SCs) to explore the mechanism. We found that linezolid causes a sparse arrangement of sciatic nerve tissue with associated loss of neurons, myelin sheaths, and down-regulation of LC3B expression. These results were also confirmed by in vitro experiments, showing that linezolid inhibited the proliferation of SCs. And the expression of P-AKT and P62 was elevated, and the expression of LC3B declined compared with the control group. Moreover, chloroquine (CQ), an autophagy inhibitor, also exhibited experimental results similar to linezolid. In summary, we conclude that linezolid-induced peripheral neuropathy is associated with the inhibition of autophagy flux.
Collapse
Affiliation(s)
- Yuan Yuan
- Zhejiang University School of Medicine, Affiliated Hangzhou Chest Hospital, Hangzhou, Zhejiang, China
| | - Jinmeng Li
- Zhejiang University School of Medicine, Affiliated Hangzhou Chest Hospital, Hangzhou, Zhejiang, China
| | - Yanhong Chen
- Laboratory Animal Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Qingshan Cai
- Zhejiang University School of Medicine, Affiliated Hangzhou Chest Hospital, Hangzhou, Zhejiang, China
| | - Yingying Xu
- Zhejiang University School of Medicine, Affiliated Hangzhou Chest Hospital, Hangzhou, Zhejiang, China
| | - Luting Lin
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yazhen Lang
- Zhejiang University School of Medicine, Affiliated Hangzhou Chest Hospital, Hangzhou, Zhejiang, China
| | - Suhang Guo
- Zhejiang University School of Medicine, Affiliated Hangzhou Chest Hospital, Hangzhou, Zhejiang, China
| | - Ruoying Zhang
- Zhejiang University School of Medicine, Affiliated Hangzhou Chest Hospital, Hangzhou, Zhejiang, China
- *Correspondence: Ruoying Zhang, ; Xinjun Cai,
| | - Xinjun Cai
- Zhejiang University School of Medicine, Affiliated Hangzhou Chest Hospital, Hangzhou, Zhejiang, China
- *Correspondence: Ruoying Zhang, ; Xinjun Cai,
| |
Collapse
|
18
|
Lin B, Hu Y, Xu P, Xu T, Chen C, He L, Zhou M, Chen Z, Zhang C, Yu X, Fang L, Zhu J, Ji Y, Lin Q, Cao H, Dai Y, Lu X, Shi C, Li L, Wang C, Li X, Fang Q, Miao J, Zhu Z, Lin G, Zhan H, Lv S, Zhu Y, Cai X, Ying Y, Chen M, Xu Q, Zhang Y, Xu Y, Federico P, Jiang S, Dai H. Expert consensus statement on therapeutic drug monitoring and individualization of linezolid. Front Public Health 2022; 10:967311. [PMID: 36033811 PMCID: PMC9399604 DOI: 10.3389/fpubh.2022.967311] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/19/2022] [Indexed: 01/24/2023] Open
Abstract
Linezolid is an oxazolidinone antibacterial drug, and its therapeutic drug monitoring and individualized treatment have been challenged since its approval. With the in-depth clinical research of linezolid, we have changed our attitude toward its therapeutic drug monitoring and our view of individualized treatment. On the basis of summarizing the existing clinical studies, and based on the practical experience of each expert in their respective professional fields, we have formed this expert consensus. Our team of specialists is a multidisciplinary team that includes pharmacotherapists, clinical pharmacology specialists, critical care medicine specialists, respiratory specialists, infectious disease specialists, emergency medicine specialists and more. We are committed to the safe and effective use of linezolid in patients in need, and the promotion of its therapeutic drug monitoring.
Collapse
Affiliation(s)
- Bin Lin
- Department of Pharmacy, Changxing People's Hospital, Changxing Branch, Second Affiliated Hospital of Zhejiang University School of Medicine, Huzhou, China,Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Huzhou, China
| | - Yangmin Hu
- Department of Pharmacy, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Xu
- Department of Pharmacy, Ningbo First Hospital, Ningbo, China
| | - Tao Xu
- Department of Pharmacy, Ningbo First Hospital, Ningbo, China
| | - Chunyan Chen
- Department of Pharmacy, Ningbo First Hospital, Ningbo, China
| | - Le He
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mi Zhou
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, China
| | - Zhangzhang Chen
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunhong Zhang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuben Yu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luo Fang
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Junfeng Zhu
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yanlan Ji
- Department of Pharmacy, Deqing People's Hospital, Huzhou, China
| | - Qun Lin
- Department of Pharmacy, Tiantai People's Hospital, Taizhou, China
| | - Hengbin Cao
- Department of Clinical Pharmacy, Huzhou Central Hospital, Huzhou, China
| | - Youqin Dai
- Department of Pharmacy, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Xiaoyan Lu
- Department of Pharmacy, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Changcheng Shi
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Li
- Department of Pharmacy, Zhejiang Hospital, Hangzhou, China
| | - Changjiang Wang
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xumei Li
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Qiongyan Fang
- Department of Pharmacy, Zhoushan Hospital, Zhoushan, China
| | - Jing Miao
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zhengyi Zhu
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Guangyong Lin
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haichao Zhan
- Department of Clinical Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Shiwen Lv
- Department of Clinical Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Yalan Zhu
- Department of Clinical Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xinjun Cai
- Department of Pharmacy, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yin Ying
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Meng Chen
- Department of Pharmacy, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Qiong Xu
- Department of Pharmacy, Putuo Hospital, Zhoushan, China
| | - Yiwen Zhang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yubin Xu
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Pea Federico
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy,SSD Clinical Pharmacology, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Saiping Jiang
- Department of Clinical Pharmacy, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,Saiping Jiang
| | - Haibin Dai
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Huzhou, China,Department of Pharmacy, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,*Correspondence: Haibin Dai
| |
Collapse
|
19
|
Alffenaar JWC, Stocker SL, Forsman LD, Garcia-Prats A, Heysell SK, Aarnoutse RE, Akkerman OW, Aleksa A, van Altena R, de Oñata WA, Bhavani PK, Van't Boveneind-Vrubleuskaya N, Carvalho ACC, Centis R, Chakaya JM, Cirillo DM, Cho JG, D Ambrosio L, Dalcolmo MP, Denti P, Dheda K, Fox GJ, Hesseling AC, Kim HY, Köser CU, Marais BJ, Margineanu I, Märtson AG, Torrico MM, Nataprawira HM, Ong CWM, Otto-Knapp R, Peloquin CA, Silva DR, Ruslami R, Santoso P, Savic RM, Singla R, Svensson EM, Skrahina A, van Soolingen D, Srivastava S, Tadolini M, Tiberi S, Thomas TA, Udwadia ZF, Vu DH, Zhang W, Mpagama SG, Schön T, Migliori GB. Clinical standards for the dosing and management of TB drugs. Int J Tuberc Lung Dis 2022; 26:483-499. [PMID: 35650702 PMCID: PMC9165737 DOI: 10.5588/ijtld.22.0188] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND: Optimal drug dosing is important to ensure adequate response to treatment, prevent development of drug resistance and reduce drug toxicity. The aim of these clinical standards is to provide guidance on 'best practice´ for dosing and management of TB drugs.METHODS: A panel of 57 global experts in the fields of microbiology, pharmacology and TB care were identified; 51 participated in a Delphi process. A 5-point Likert scale was used to score draft standards. The final document represents the broad consensus and was approved by all participants.RESULTS: Six clinical standards were defined: Standard 1, defining the most appropriate initial dose for TB treatment; Standard 2, identifying patients who may be at risk of sub-optimal drug exposure; Standard 3, identifying patients at risk of developing drug-related toxicity and how best to manage this risk; Standard 4, identifying patients who can benefit from therapeutic drug monitoring (TDM); Standard 5, highlighting education and counselling that should be provided to people initiating TB treatment; and Standard 6, providing essential education for healthcare professionals. In addition, consensus research priorities were identified.CONCLUSION: This is the first consensus-based Clinical Standards for the dosing and management of TB drugs to guide clinicians and programme managers in planning and implementation of locally appropriate measures for optimal person-centred treatment to improve patient care.
Collapse
Affiliation(s)
- J W C Alffenaar
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia, School of Pharmacy, The University of Sydney Faculty of Medicine and Health, Sydney, NSW, Australia, Westmead Hospital, Sydney, NSW, Australia
| | - S L Stocker
- School of Pharmacy, The University of Sydney Faculty of Medicine and Health, Sydney, NSW, Australia, Department of Clinical Pharmacology and Toxicology, St Vincent´s Hospital, Sydney, NSW, Australia, St Vincent´s Clinical Campus, University of NSW, Kensington, NSW, Australia
| | - L Davies Forsman
- Division of Infectious Diseases, Department of Medicine, Karolinska Institutet, Solna, Sweden, Department of Infectious Diseases Karolinska University Hospital, Solna, Sweden
| | - A Garcia-Prats
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Tygerberg, South Africa, Department of Pediatrics, University of Wisconsin, Madison, WI
| | - S K Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - R E Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - O W Akkerman
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases and Tuberculosis, Groningen, The Netherlands, University of Groningen, University Medical Center Groningen, Tuberculosis Center Beatrixoord, Haren, The Netherlands
| | - A Aleksa
- Educational Institution "Grodno State Medical University", Grodno, Belarus
| | - R van Altena
- Asian Harm Reduction Network (AHRN) and Medical Action Myanmar (MAM) in Yangon, Myanmar
| | - W Arrazola de Oñata
- Belgian Scientific Institute for Public Health (Belgian Lung and Tuberculosis Association), Brussels, Belgium
| | - P K Bhavani
- Indian Council of Medical Research-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India
| | - N Van't Boveneind-Vrubleuskaya
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, Department of Public Health TB Control, Metropolitan Public Health Services, The Hague, The Netherlands
| | - A C C Carvalho
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos (LITEB), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - R Centis
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Tradate, Italy
| | - J M Chakaya
- Department of Medicine, Therapeutics and Dermatology, Kenyatta University, Nairobi, Kenya, Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - D M Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - J G Cho
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia, Westmead Hospital, Sydney, NSW, Australia, Parramatta Chest Clinic, Parramatta, NSW, Australia
| | - L D Ambrosio
- Public Health Consulting Group, Lugano, Switzerland
| | - M P Dalcolmo
- Reference Center Hélio Fraga, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - P Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - K Dheda
- Centre for Lung Infection and Immunity, Department of Medicine, Division of Pulmonology and UCT Lung Institute, University of Cape Town, Cape Town, South Africa, University of Cape Town Lung Institute & South African MRC Centre for the Study of Antimicrobial Resistance, Cape Town, South Africa, Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| | - G J Fox
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia, Woolcock Institute of Medical Research, Glebe, NSW, Australia
| | - A C Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Tygerberg, South Africa
| | - H Y Kim
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia, School of Pharmacy, The University of Sydney Faculty of Medicine and Health, Sydney, NSW, Australia, Westmead Hospital, Sydney, NSW, Australia
| | - C U Köser
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - B J Marais
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia, Department of Infectious Diseases and Microbiology, The Children´s Hospital at Westmead, Westmead, NSW, Australia
| | - I Margineanu
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - A G Märtson
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - M Munoz Torrico
- Clínica de Tuberculosis, Instituto Nacional de Enfermedades Respiratorias, Ciudad de México, Mexico
| | - H M Nataprawira
- Division of Paediatric Respirology, Department of Child Health, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin Hospital, Bandung, Indonesia
| | - C W M Ong
- Infectious Disease Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, Singapore, Division of Infectious Diseases, Department of Medicine, National University Hospital, Singapore
| | - R Otto-Knapp
- German Central Committee against Tuberculosis (DZK), Berlin, Germany
| | - C A Peloquin
- Infectious Disease Pharmacokinetics Laboratory, Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - D R Silva
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - R Ruslami
- TB/HIV Research Centre, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia, Department of Biomedical Sciences, Division of Pharmacology and Therapy, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - P Santoso
- Division of Respirology and Critical Care, Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung, Indonesia
| | - R M Savic
- Department of Bioengineering and Therapeutic Sciences, Division of Pulmonary and Critical Care Medicine, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA, USA
| | - R Singla
- Department of TB & Respiratory Diseases, National Institute of TB & Respiratory Diseases, New Delhi, India
| | - E M Svensson
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - A Skrahina
- The Republican Research and Practical Centre for Pulmonology and TB, Minsk, Belarus
| | - D van Soolingen
- National Institute for Public Health and the Environment, TB Reference Laboratory (RIVM), Bilthoven, The Netherlands
| | - S Srivastava
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - M Tadolini
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy, Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - S Tiberi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - T A Thomas
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Z F Udwadia
- P. D. Hinduja National Hospital and Medical Research Centre, Mumbai, India
| | - D H Vu
- National Drug Information and Adverse Drug Reaction Monitoring Centre, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - W Zhang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People´s Republic of China
| | - S G Mpagama
- Kilimanjaro Christian Medical University College, Moshi, United Republic of Tanzania, Kibong´oto Infectious Diseases Hospital, Sanya Juu, Siha, Kilimanjaro, United Republic of Tanzania
| | - T Schön
- Department of Infectious Diseases, Linköping University Hospital, Linköping, Sweden, Institute of Biomedical and Clinical Sciences, Division of Infection and Inflammation, Linköping University, Linköping, Sweden, Department of Infectious Diseases, Kalmar County Hospital, Kalmar, Linköping University, Linköping, Sweden
| | - G B Migliori
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Tradate, Italy
| |
Collapse
|
20
|
Zhang P, Li W, Liu M, Zhan S, Zhang H, Deng G, Chen X. Linezolid-Associated Neuropathy in Patients with MDR/XDR Tuberculosis in Shenzhen, China. Infect Drug Resist 2022; 15:2617-2624. [PMID: 35634579 PMCID: PMC9139335 DOI: 10.2147/idr.s365371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/12/2022] [Indexed: 12/04/2022] Open
Abstract
Objective Linezolid is one of the key drugs for the treatment of multidrug-resistant/extensively drug-resistant tuberculosis (MDR/XDR-TB). We aimed to describe the incorporation of the Michigan Neuropathy Screening Instrument (MNSI) and serum trough concentration as screening tools for neurotoxicity in the management of MDR/XDR-TB patients receiving a linezolid-based treatment regimen in Shenzhen, China. Methods A total of 73 patients on a linezolid-containing anti–MDR/XDR-TB regimen were prospectively enrolled. The MNSI was used for peripheral neuropathy screening. Optic neuropathy was diagnosed by ophthalmologists. Serum trough concentration was recorded and its relationship with neuropathy analyzed. Results Of all patients, neuropathy was observed in 40% (29) during anti-TB treatment. Of these, 20 (69%) had peripheral neuritis, seven (24%) optic neuritis, and two (7%) both. Serum trough concentration >2 mg/L was observed in 17 (59%) patients with neuropathy and 13 (30%) patients without neuropathy. There was a significant statistical difference between the two groups (P=0.013). Time to onset of neuropathy from initiation of the linezolid-containing regimen was within 2 months for eight (28%) patients, 2–6 months for 18 (62%) patients, and >6 months for three (10%) patients. Sixteen (55%) patients were adjusted to a lower dose of 300 mg linezolid daily. Four (14%) patients had linezolid permanently removed from their regimen. Conclusion Neuropathy is a commonly reported adverse event associated with long-term use of linezolid. MNSI and serum trough–concentration monitoring can be adopted as simple screening tools for early detection of neuropathy to balance linezolid efficacy and tolerability.
Collapse
Affiliation(s)
- Peize Zhang
- Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People’s Republic of China
- Department of Pulmonary Medicine and Tuberculosis, The Third People’s Hospital of Shenzhen, Shenzhen, Guangdong, People’s Republic of China
| | - Wei Li
- Department of Pharmacy, The Third People’s Hospital of Shenzhen, Shenzhen, Guangdong, People’s Republic of China
| | - Miaona Liu
- Department of Pharmacy, The Third People’s Hospital of Shenzhen, Shenzhen, Guangdong, People’s Republic of China
| | - Senlin Zhan
- Department of Pulmonary Medicine and Tuberculosis, The Third People’s Hospital of Shenzhen, Shenzhen, Guangdong, People’s Republic of China
| | - Hailin Zhang
- Department of Pulmonary Medicine and Tuberculosis, The Third People’s Hospital of Shenzhen, Shenzhen, Guangdong, People’s Republic of China
| | - Guofang Deng
- Department of Pulmonary Medicine and Tuberculosis, The Third People’s Hospital of Shenzhen, Shenzhen, Guangdong, People’s Republic of China
- Correspondence: Guofang Deng; Xiaoyou Chen, Email ;
| | - Xiaoyou Chen
- Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People’s Republic of China
| |
Collapse
|
21
|
Linezolid Pharmacokinetics/Pharmacodynamics-Based Optimal Dosing for Multidrug-Resistant Tuberculosis. Int J Antimicrob Agents 2022; 59:106589. [DOI: 10.1016/j.ijantimicag.2022.106589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/03/2022] [Accepted: 04/03/2022] [Indexed: 11/05/2022]
|
22
|
Wasserman S, Brust JCM, Abdelwahab MT, Little F, Denti P, Wiesner L, Gandhi NR, Meintjes G, Maartens G. Linezolid toxicity in patients with drug-resistant tuberculosis: a prospective cohort study. J Antimicrob Chemother 2022; 77:1146-1154. [PMID: 35134182 PMCID: PMC7612559 DOI: 10.1093/jac/dkac019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/28/2021] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Linezolid is recommended for treating drug-resistant TB. Adverse events are a concern to prescribers but have not been systematically studied at the standard dose, and the relationship between linezolid exposure and clinical toxicity is not completely elucidated. PATIENTS AND METHODS We conducted an observational cohort study to describe the incidence and determinants of linezolid toxicity, and to determine a drug exposure threshold for toxicity, among patients with rifampicin-resistant TB in South Africa. Linezolid exposures were estimated from a population pharmacokinetic model. Mixed-effects modelling was used to analyse toxicity outcomes. RESULTS One hundred and fifty-one participants, 63% HIV positive, were enrolled and followed for a median of 86 weeks. Linezolid was permanently discontinued for toxicity in 32 (21%) participants. Grade 3 or 4 linezolid-associated adverse events occurred in 21 (14%) participants. Mean haemoglobin concentrations increased with time on treatment (0.03 g/dL per week; 95% CI 0.02-0.03). Linezolid trough concentration, male sex and age (but not HIV positivity) were independently associated with a decrease in haemoglobin >2 g/dL. Trough linezolid concentration of 2.5 mg/L or higher resulted in optimal model performance to describe changing haemoglobin and treatment-emergent anaemia (adjusted OR 2.9; 95% CI 1.3-6.8). SNPs 2706A > G and 3010G > A in mitochondrial DNA were not associated with linezolid toxicity. CONCLUSIONS Permanent discontinuation of linezolid was common, but linezolid-containing therapy was associated with average improvement in toxicity measures. HIV co-infection was not independently associated with linezolid toxicity. Linezolid trough concentration of 2.5 mg/L should be evaluated as a target for therapeutic drug monitoring.
Collapse
Affiliation(s)
- Sean Wasserman
- Wellcome Centre for Infectious Diseases Research in Africa, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Infectious Diseases and HIV Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - James C. M. Brust
- Division of General Internal Medicine, Department of Medicine, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY, USA
| | | | - Francesca Little
- Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa
| | - Paolo Denti
- Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa
| | - Neel R. Gandhi
- Departments of Epidemiology & Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Division of Infectious Diseases, Department of Medicine, Emory School of Medicine, Emory University, Atlanta, GA, USA
| | - Graeme Meintjes
- Wellcome Centre for Infectious Diseases Research in Africa, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Gary Maartens
- Wellcome Centre for Infectious Diseases Research in Africa, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
23
|
Kim HY, Byashalira KC, Heysell SK, Märtson AG, Mpagama SG, Rao P, Sturkenboom MG, Alffenaar JWC. Therapeutic Drug Monitoring of Anti-infective Drugs: Implementation Strategies for 3 Different Scenarios. Ther Drug Monit 2022; 44:3-10. [PMID: 34686647 PMCID: PMC8755585 DOI: 10.1097/ftd.0000000000000936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/14/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Therapeutic drug monitoring (TDM) supports personalized treatment. For successful implementation, TDM must have a turnaround time suited to the clinical needs of patients and their health care settings. Here, the authors share their views of how a TDM strategy can be tailored to specific settings and patient groups. METHODS The authors selected distinct scenarios for TDM: high-risk, complex, and/or critically ill patient population; outpatients; and settings with limited laboratory resources. In addition to the TDM scenario approach, they explored potential issues with the legal framework governing dose escalation. RESULTS The most important issues identified in the different scenarios are that critically ill patients require rapid turnaround time, outpatients require an easy sampling procedure for the sample matrix and sample collection times, settings with limited laboratory resources necessitate setting-specific analytic techniques, and all scenarios warrant a legal framework to capture the use of escalated dosages, ideally with the use of trackable dosing software. CONCLUSIONS To benefit patients, TDM strategies need to be tailored to the intended population. Strategies can be adapted for rapid turnaround time for critically ill patients, convenient sampling for outpatients, and feasibility for those in settings with limited laboratory resources.
Collapse
Affiliation(s)
- Hannah Yejin Kim
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
- Westmead Hospital, Sydney, NSW 2145, Australia
- Marie Bashir Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2006, Australia
| | | | - Scott K. Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Virginia, USA
| | - Anne-Grete Märtson
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, the Netherlands
| | | | - Prakruti Rao
- Division of Infectious Diseases and International Health, University of Virginia, Virginia, USA
| | - Marieke G.G. Sturkenboom
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, the Netherlands
| | - Jan-Willem C. Alffenaar
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
- Westmead Hospital, Sydney, NSW 2145, Australia
- Marie Bashir Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
24
|
Oehadian A, Santoso P, Menzies D, Ruslami R. Hematologic Toxicity of Linezolid in Multidrug Resistant and Extensively Drug Resistant Tuberculosis (MDR/XDR-TB): the role of mitochondria. Tuberc Respir Dis (Seoul) 2022; 85:111-121. [PMID: 35045688 PMCID: PMC8987663 DOI: 10.4046/trd.2021.0122] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 01/16/2022] [Indexed: 12/02/2022] Open
Abstract
Multidrug-resistant tuberculosis (MDR-TB) is caused by an organism that is resistant to both rifampicin and isoniazid. Extensively drug-resistant TB, a rare type of MDR-TB, is caused by an organism that is resistant to quinolone and one of group A TB drugs (i.e., linezolid and bedaquiline). In 2018, the World Health Organization revised the groupings of TB medicines and reclassified linezolid as a group A drug for the treatment of MDR-TB. Linezolid is a synthetic antimicrobial agent in the oxazolidinone class. Although linezolid has a good efficacy, it can cause substantial adverse events, especially hematologic toxicity. In both TB infection and linezolid mechanism of action, mitochondrial dysfunction plays an important role. In this concise review, characteristics of linezolid as an anti-TB drug are summarized, including its efficacy, pathogenesis of hematologic toxicity highlighting mitochondrial dysfunction, and the monitoring and management of hematologic toxicity.
Collapse
Affiliation(s)
- Amaylia Oehadian
- Department of Internal Medicine, Hasan Sadikin Hospital, Faculty of Medicine Universitas Padjadjaran, Bandung, Indonesia
| | - Prayudi Santoso
- Department of Internal Medicine, Hasan Sadikin Hospital, Faculty of Medicine Universitas Padjadjaran, Bandung, Indonesia
| | - Dick Menzies
- McGill International TB Centre Respiratory Epidemiology and Clinical Research Unit, Montreal Canada, Director of the WHO McGill Collaborative Centre for TB Research
| | - Rovina Ruslami
- Department of Biomedical Science, Division of Pharmacology, Faculty of Medicine Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
25
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:905-917. [DOI: 10.1093/jpp/rgac004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022]
|
26
|
Yu X, Huo F, Wang F, Wen S, Jiang G, Xue Y, Dong L, Zhao L, Zhu R, Huang H. In vitro Antimicrobial Activity Comparison of Linezolid, Tedizolid, Sutezolid and Delpazolid Against Slowly Growing Mycobacteria Isolated in Beijing, China. Infect Drug Resist 2021; 14:4689-4697. [PMID: 34785916 PMCID: PMC8590452 DOI: 10.2147/idr.s332835] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/28/2021] [Indexed: 12/27/2022] Open
Abstract
Background The antimicrobial activities of some new oxazolidinones against slowly growing mycobacteria (SGM) have never been well evaluated. Methods We evaluate the in vitro susceptibility of 20 reference strains and 157 clinical isolates, pertaining different SGM species, against four oxazolidinones, ie, delpazolid, sutezolid, tedizolid and linezolid. In addition, the association of linezolid resistance and mutations in 23srRNA, rplC, rplD were also tested. Results Sutezolid presented the strongest antimicrobial activity against the clinical isolates of M. intracellulare than the other oxazolidinones, with MIC50 at 2 μg/mL and MIC90 at 4 μg/mL. MICs of sutezolid were usually 4- to 8-fold lower than these of linezolid against M. intracellulare and M. avium. The tested isolates of M. kansasii were susceptible to all of the four oxazolidinones. According to the multiple sequence alignment, novel 23srRNA mutations (A2267C and A2266G) in M. intracellulare and rplD mutations (Thr147Ala) in M. avium were identified in this study which have plausible involvement in rendering resistance against linezolid. Conclusion This study showed that sutezolid harbors the strongest inhibitory activity against M. intracellulare, M. avium and M. kansasii in vitro, which provided important insights on the potential clinical application of oxazolidinones for treating SGM infections.
Collapse
Affiliation(s)
- Xia Yu
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Fengmin Huo
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Fen Wang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Shu'an Wen
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Guanglu Jiang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yi Xue
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Lingling Dong
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Liping Zhao
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Rui Zhu
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
27
|
Zheng X, Davies Forsman L, Bao Z, Xie Y, Ning Z, Schön T, Bruchfeld J, Xu B, Alffenaar JW, Hu Y. Drug exposure and susceptibility of second-line drugs correlate with treatment response in patients with multidrug-resistant tuberculosis: a multi-centre prospective cohort study in China. Eur Respir J 2021; 59:13993003.01925-2021. [PMID: 34737224 PMCID: PMC8943270 DOI: 10.1183/13993003.01925-2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/21/2021] [Indexed: 11/15/2022]
Abstract
Background Understanding the impact of drug exposure and susceptibility on treatment response of multidrug-resistant tuberculosis (MDR-TB) will help to optimise treatment. This study aimed to investigate the association between drug exposure, susceptibility and response to MDR-TB treatment. Methods Drug exposure and susceptibility for second-line drugs were measured for patients with MDR-TB. Multivariate analysis was applied to investigate the impact of drug exposure and susceptibility on sputum culture conversion and treatment outcome. Probability of target attainment was evaluated. Random Forest and CART (Classification and Regression Tree) analysis was used to identify key predictors and their clinical targets among patients on World Health Organization-recommended regimens. Results Drug exposure and corresponding susceptibility were available for 197 patients with MDR-TB. The probability of target attainment was highly variable, ranging from 0% for ethambutol to 97% for linezolid, while patients with fluoroquinolones above targets had a higher probability of 2-month culture conversion (56.3% versus 28.6%; adjusted OR 2.91, 95% CI 1.42–5.94) and favourable outcome (88.8% versus 68.8%; adjusted OR 2.89, 95% CI 1.16–7.17). Higher exposure values of fluoroquinolones, linezolid and pyrazinamide were associated with earlier sputum culture conversion. CART analysis selected moxifloxacin area under the drug concentration–time curve/minimum inhibitory concentration (AUC0–24h/MIC) of 231 and linezolid AUC0–24h/MIC of 287 as best predictors for 6-month culture conversion in patients receiving identical Group A-based regimens. These associations were confirmed in multivariate analysis. Conclusions Our findings indicate that target attainment of TB drugs is associated with response to treatment. The CART-derived thresholds may serve as targets for early dose adjustment in a future randomised controlled study to improve MDR-TB treatment outcome. Drug exposure and susceptibility were proved to be associated with treatment responses during multidrug-resistant tuberculosis treatment, and identified thresholds may serve as targets for dose adjustment in future clinical studies to improve treatment efficacyhttps://bit.ly/3pZQbFU
Collapse
Affiliation(s)
- Xubin Zheng
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Lina Davies Forsman
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Disease, Karolinska University Hospital, Stockholm, Sweden
| | - Ziwei Bao
- The Fifth People's Hospital of Suzhou, Jiangsu, China
| | - Yan Xie
- Zigong City Centre for Disease Control and Prevention, Sichuan, China
| | - Zhu Ning
- Zigong City Centre for Disease Control and Prevention, Sichuan, China
| | - Thomas Schön
- Department of Infectious Diseases, Linköping University Hospital and Kalmar County Hospital, Sweden.,Division of Inflammation and Infectious Diseases, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Judith Bruchfeld
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Disease, Karolinska University Hospital, Stockholm, Sweden
| | - Biao Xu
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Jan-Willem Alffenaar
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, Australia.,Westmead hospital, Sydney, Australia.,Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia
| | - Yi Hu
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Tietjen AK, Kroemer N, Cattaneo D, Baldelli S, Wicha SG. Population pharmacokinetics and target attainment analysis of linezolid in multidrug-resistant tuberculosis patients. Br J Clin Pharmacol 2021; 88:1835-1844. [PMID: 34622478 DOI: 10.1111/bcp.15102] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/31/2021] [Accepted: 09/22/2021] [Indexed: 01/02/2023] Open
Abstract
AIM This study investigates the pharmacokinetic/pharmacodynamic (PK/PD) target attainment of linezolid in patients infected with multidrug-resistant (MDR) tuberculosis (TB). METHODS A pharmacometric model was developed including 244 timed linezolid concentration samples from 39 patients employing NONMEM 7.4. The probability of target attainment (PTA, PK/PD target: unbound (f) area-under-the-concentration-time-curve (AUC)/minimal inhibitory concentration (MIC) of 119) as well as a region-specific cumulative fraction of response (CFR) were estimated for different dosing regimens. RESULTS A one-compartment model with linear elimination with a clearance (CL) of 7.69 L/h (interindividual variability 34.1%), a volume of distribution (Vd) of 45.2 L and an absorption constant (KA) of 0.679 h-1 (interoccasion variability 143.7%) allometric scaled by weight best described the PK of linezolid. The PTA at an MIC of 0.5 mg/L was 55% or 97% if patients receiving 300 or 600 mg twice daily, respectively. CFRs varied greatly among populations and geographic regions. A desirable global CFR of ≥90% was achieved if linezolid was administered at a dose of 600 mg twice daily but not at a dose of 300 mg twice daily. CONCLUSION This study showed that a dose of 300 mg twice daily of linezolid might not be sufficient to treat MDR-TB patients from a PK/PD perspective. Thus, it might be recommendable to start with a higher dose of 600 mg twice daily to ensure PK/PD target attainment. Hereby, therapeutic drug monitoring and MIC determination should be performed to control PK/PD target attainment as linezolid shows high variability in its PK in the TB population.
Collapse
Affiliation(s)
- Anna K Tietjen
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany.,University of Lübeck, Lübeck, Germany
| | - Niklas Kroemer
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, Department of Laboratory Medicine, Luigi Sacco University Hospital, Milan, Italy
| | - Sara Baldelli
- Unit of Clinical Pharmacology, Department of Laboratory Medicine, Luigi Sacco University Hospital, Milan, Italy
| | - Sebastian G Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| |
Collapse
|
29
|
Imperial MZ, Nedelman JR, Conradie F, Savic RM. Proposed linezolid dosing strategies to minimize adverse events for treatment of extensively drug-resistant tuberculosis. Clin Infect Dis 2021; 74:1736-1747. [PMID: 34604901 PMCID: PMC9155613 DOI: 10.1093/cid/ciab699] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND We evaluated clinical trial data (Nix-TB, NCT02333799) to provide data-driven dosing recommendations to potentially minimize linezolid toxicity in patients with extensively drug-resistant tuberculosis. METHODS Based on 104 participants, a pharmacokinetic model and toxicodynamic models for peripheral neuropathy, hemoglobin, and platelets were developed. Simulations compared safety outcomes for daily linezolid of 1200 and 600 mg, with and without dose adjustments for toxicity. Severe neuropathy was based on symptom scores from the Brief Peripheral Neuropathy Screen. Severe anemia and thrombocytopenia were defined as ≥grade 3 adverse events according to the Division of Microbiology and Infectious Disease Adult Toxicity table. RESULTS Predicted individual concentration-time profiles were a major predictor in all three toxicodynamic models. Simulations showed higher percentages of patients with severe neuropathy (median: 19% (90%CI: 17-22%) vs 5% (4-7%)) and severe anemia (15% (12-17%) vs 1% (0-2%)) between 1200 and 600 mg daily linezolid. No differences in severe thrombocytopenia were observed (median: <1% for both daily doses). Generally, neuropathy occurred after 3 to 6 months of treatment and, with protocol-specified management, reversed within 15 months after onset. Simulations indicated that a >10% decrease from pretreatment in hemoglobin level after 4 weeks of treatment would have maximum sensitivity (82%) and specificity (84%) for predicting severe anemia. Reducing dose from 1200 to 600 mg triggered by this marker may prevent 60% (90%CI: 45-72) of severe anemia. CONCLUSIONS Simple neuropathy symptom and hemoglobin monitoring may guide linezolid dosing to avoid toxicities, but prospective testing is needed to confirm benefit-to-risk ratio.
Collapse
Affiliation(s)
- Marjorie Z Imperial
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy, University of California, San Francisco, CA, USA
| | | | - Francesca Conradie
- Clinical HIV Research Unit, University of Witwatersrand, Johannesburg, South Africa
| | - Rada M Savic
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy, University of California, San Francisco, CA, USA
| |
Collapse
|
30
|
Wen S, Gao X, Zhao W, Huo F, Jiang G, Dong L, Zhao L, Wang F, Yu X, Huang H. Comparison of the in vitro activity of linezolid, tedizolid, sutezolid, and delpazolid against rapidly growing mycobacteria isolated in Beijing, China. Int J Infect Dis 2021; 109:253-260. [PMID: 34216736 DOI: 10.1016/j.ijid.2021.06.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/27/2021] [Accepted: 06/24/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The natural resistance of rapidly growing mycobacteria (RGM) to multiple antibiotics renders the treatment of the infections caused less successful. The objective of this study was to evaluate the in vitro susceptibilities of four oxazolidinones against different RGM species. METHODS The microplate alamarBlue assay was performed to identify the minimum inhibitory concentrations (MICs) of four oxazolidinones - delpazolid, sutezolid, tedizolid, and linezolid - for 32 reference strains and 115 clinical strains of different RGM species. The MIC breakpoint concentration was defined as 16 μg/ml for linezolid. Next, the gene fragments associated with oxazolidinone resistance were amplified and sequenced, and mutations were defined in contrast with the sequences of the reference strains. RESULTS Tedizolid showed the strongest inhibitory activity against the Mycobacterium abscessus isolates. Delpazolid exhibited better antimicrobial activity against the Mycobacterium fortuitum isolates when compared to linezolid, with 4-fold lower MIC values. The protein alignment and structure-based analysis showed that there might be no correlation between oxazolidinone resistance and mutations in the rplC, rplD, and 23S rRNA genes in the tested RGM. CONCLUSIONS Tedizolid had the strongest inhibitory activity against M. abscessus in vitro, while delpazolid presented the best inhibitory activity against M. fortuitum. This provides important insights into the potential clinical application of oxazolidinones to treat RGM infections.
Collapse
Affiliation(s)
- Shu'an Wen
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xiaopan Gao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weijie Zhao
- The Administration Office of Clinical Trial, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Fengmin Huo
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Guanglu Jiang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Lingling Dong
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Liping Zhao
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Fen Wang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xia Yu
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing, China.
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
31
|
Kim HY, Ruiter E, Jongedijk EM, Ak HK, Marais BJ, Pk B, Sawleshwarkar S, Touw DJ, Alffenaar JW. Saliva-based linezolid monitoring on a mobile UV spectrophotometer. J Antimicrob Chemother 2021; 76:1786-1792. [PMID: 33734351 DOI: 10.1093/jac/dkab075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/15/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND In TB, therapeutic drug monitoring (TDM) is recommended for linezolid; however, implementation is challenging in endemic settings. Non-invasive saliva sampling using a mobile assay would increase the feasibility of TDM. OBJECTIVES To validate a linezolid saliva assay using a mobile UV spectrophotometer. METHODS The saliva assay was developed using NanoPhotometer NP80® and linezolid concentrations were quantified using second-order derivative spectroscopy. Sample preparation involved liquid-liquid extraction of saliva, using saturated sodium chloride and ethyl acetate at 1:1:3 (v/v/v). The assay was validated for accuracy, precision, selectivity, specificity, carry-over, matrix effect, stability and filters. Acceptance criteria were bias and coefficient of variation (CV) <15% for quality control (QC) samples and <20% for the lower limit of quantification (LLOQ). RESULTS Linezolid concentrations correlated with the amplitude between 250 and 270 nm on the second-order derivative spectra. The linezolid calibration curve was linear over the range of 3.0 to 25 mg/L (R2 = 0.99) and the LLOQ was 3.0 mg/L. Accuracy and precision were demonstrated with bias of -7.5% to 2.7% and CV ≤5.6%. The assay met the criteria for selectivity, matrix effect, carry-over, stability (tested up to 3 days) and use of filters (0.22 μM Millex®-GV and Millex®-GP). Specificity was tested with potential co-medications. Interferences from pyrazinamide, levofloxacin, moxifloxacin, rifampicin, abacavir, acetaminophen and trimethoprim were noted; however, with minimal clinical implications on linezolid dosing. CONCLUSIONS We validated a UV spectrophotometric assay using non-invasive saliva sampling for linezolid. The next step is to demonstrate clinical feasibility and value to facilitate programmatic implementation of TDM.
Collapse
Affiliation(s)
- Hannah Yejin Kim
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.,Westmead Hospital, Westmead, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia
| | - Evelien Ruiter
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.,School of Pharmacy, Utrecht University, Utrecht, The Netherlands
| | - Erwin M Jongedijk
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | | | - Ben J Marais
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia.,Department of Infectious Diseases and Microbiology, The Children's Hospital at Westmead, Westmead, Australia
| | - Bhavani Pk
- National Institute for Research in Tuberculosis, Chennai, India
| | - Shailendra Sawleshwarkar
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Daan J Touw
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | - Jan-Willem Alffenaar
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.,Westmead Hospital, Westmead, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
32
|
Ghimire S, Karki S, Maharjan B, Kosterink JGW, Touw DJ, van der Werf TS, Shrestha B, Alffenaar JW. Treatment outcomes of patients with MDR-TB in Nepal on a current programmatic standardised regimen: retrospective single-centre study. BMJ Open Respir Res 2021; 7:7/1/e000606. [PMID: 32796020 PMCID: PMC7430340 DOI: 10.1136/bmjresp-2020-000606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 01/20/2023] Open
Abstract
Objectives The objectives of this study were to evaluate treatment in patients on current programmatic multidrug-resistant tuberculosis (MDR-TB) regimen and verify eligibility for the 9-month regimen and therapeutic drug monitoring (TDM). Methods We performed a retrospective chart review of patients with MDR-TB receiving standardised regimen at the German Nepal TB Project Clinic, Nepal, between 2014 and 2016. Eligibility for the 9-month regimen and indications for TDM were evaluated. Results Out of 107 available patients’ medical records, 98 were included. In this centre, the MDR-TB treatment success rates were 69.0% in 2015, 86.6% in 2016 and 86.5% in 2017. The median time to sputum smear conversion was 60 days (60–90 IQR) and culture conversion was 60 days (60–90 IQR). Observed side effects did not impact treatment outcomes. No difference in treatment success rates was observed between patients with predisposing risk factors and those without. Only 49% (36/74) of patients were eligible for the 9-month regimen and 23 patients for TDM according to American Thoracic Society guideline criteria. Conclusions Nepalese patients with MDR-TB on ambulatory care had good treatment outcome after programmatic treatment. Implementation of the new WHO oral MDR-TB treatment regimen may further improve treatment results. The 9-month regimen and TDM should be considered as part of programmatic care.
Collapse
Affiliation(s)
- Samiksha Ghimire
- Clinical Pharmacy and Pharmacology, University of Groningen Faculty of Medical Sciences, Groningen, The Netherlands
| | - Samriddhi Karki
- Tuberculosis Unit, Nepal Anti-Tuberculosis Association/German Nepal TB Project, Kathmandu, Nepal
| | - Bhagwan Maharjan
- Tuberculosis Unit, Nepal Anti-Tuberculosis Association/German Nepal TB Project, Kathmandu, Nepal
| | - Jos G W Kosterink
- Clinical Pharmacy and Pharmacology, University of Groningen Faculty of Medical Sciences, Groningen, The Netherlands
| | - Daan J Touw
- Clinical Pharmacy and Pharmacology, University of Groningen Faculty of Medical Sciences, Groningen, The Netherlands.,Groningen Research Institute of Pharmacy, Department of Pharmaceutical Analysis, University of Groningen, Groningen, Groningen, the Netherlands
| | - Tjip S van der Werf
- Infectious Diseases Service and Tuberculosis Unit, University of Groningen Faculty of Medical Sciences, Groningen, The Netherlands
| | - Bhabana Shrestha
- Tuberculosis Unit, Nepal Anti-Tuberculosis Association/German Nepal TB Project, Kathmandu, Nepal
| | - Jan-Willem Alffenaar
- Clinical Pharmacy and Pharmacology, University of Groningen Faculty of Medical Sciences, Groningen, The Netherlands.,Faculty of Medicine and Health, School of Pharmacy and Westmead hospital, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
33
|
Du J, Gao J, Yu Y, Li Q, Bai G, Shu W, Gao M, Liu Y, Wang L, Wang Y, Xue Z, Huo F, Li L, Pang Y. Low Rate of Acquired Linezolid Resistance in Multidrug-Resistant Tuberculosis Treated With Bedaquiline-Linezolid Combination. Front Microbiol 2021; 12:655653. [PMID: 34012425 PMCID: PMC8126624 DOI: 10.3389/fmicb.2021.655653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/08/2021] [Indexed: 11/18/2022] Open
Abstract
In this retrospective study in China, we aimed to: (1) determine the prevalence of linezolid (LZD) resistance among multidrug-resistant tuberculosis (MDR-TB)-infected patients; (2) monitor for dynamic LZD susceptibility changes during anti-TB treatment; and (3) explore molecular mechanisms conferring LZD resistance. A total of 277 MDR-TB patients receiving bedaquiline (BDQ)-containing regimens in 13 TB specialized hospitals across China were enrolled in the study. LZD and BDQ susceptibility rates were determined using the minimum inhibitory concentration (MIC) method, then DNA sequences of patient isolates were analyzed using Sanger sequencing to detect mutations conferring LZD resistance. Of 277 patients in our cohort, 115 (115/277, 41.5%) with prior LZD exposure yielded 19 (19/277, 6.9%) isolates exhibiting LZD resistance. The LZD resistance rate of LZD-exposed group isolates significantly exceeded the corresponding rate for non-exposed group isolates (P = 0.047). Genetic mutations were observed in 10 (52.6%, 10/19) LZD-resistant isolates, of which a Cys154Arg (36.8%, 7/19) substitution within ribosomal protein L3 was most prevalent. Analysis of sequential positive cultures obtained from 81 LZD-treated patients indicated that cultured organisms obtained from most patients (85.2%, 69/81) retained original LZD MIC values; however, organisms cultured later from two patients exhibited significantly increased MIC values that were attributed to the rplC substitution T460C. Overall, LZD resistance was detected in 6.9% of patients of an MDR-TB cohort in China. Low rate of acquired LZD resistance was noted in MDR-TB treated with BDQ-LZD combination.
Collapse
Affiliation(s)
- Jian Du
- Clinical Center on TB, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Jingtao Gao
- Clinical Center on TB, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yanhong Yu
- Tuberculosis Laboratory, Shenyang Tenth People's Hospital (Shenyang Chest Hospital), Shenyang, China
| | - Qingfeng Li
- Department of Laboratory, Public Health and Clinical Center of Chengdu, Chengdu, China
| | - Guanghong Bai
- Department of Laboratory, Shaanxi Provincial Tuberculosis Institute, Xi'an, China
| | - Wei Shu
- Clinical Center on TB, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Mengqiu Gao
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yuhong Liu
- Clinical Center on TB, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Lu Wang
- Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yufeng Wang
- Department of Laboratory Quality Control, Innovation Alliance on Tuberculosis Diagnosis and Treatment (Beijing), Beijing, China
| | - Zhongtan Xue
- Department of Laboratory Quality Control, Innovation Alliance on Tuberculosis Diagnosis and Treatment (Beijing), Beijing, China
| | - Fengmin Huo
- Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Liang Li
- Clinical Center on TB, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yu Pang
- Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
34
|
Rao GG, Konicki R, Cattaneo D, Alffenaar JW, Marriott DJE, Neely M. Therapeutic Drug Monitoring Can Improve Linezolid Dosing Regimens in Current Clinical Practice: A Review of Linezolid Pharmacokinetics and Pharmacodynamics. Ther Drug Monit 2021; 42:83-92. [PMID: 31652190 DOI: 10.1097/ftd.0000000000000710] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Linezolid is an antibiotic used to treat infections caused by drug-resistant gram-positive organisms, including vancomycin-resistant Enterococcus faecium, multi-drug resistant Streptococcus pneumoniae, and methicillin-resistant Staphylococcus aureus. The adverse effects of linezolid can include thrombocytopenia and neuropathy, which are more prevalent with higher exposures and longer treatment durations. Although linezolid is traditionally administered at a standard 600 mg dose every 12 hours, the resulting exposure can vary greatly between patients and can lead to treatment failure or toxicity. The efficacy and toxicity of linezolid are determined by the exposure achieved in the patient; numerous clinical and population pharmacokinetics (popPK) studies have identified threshold measurements for both parameters. Several special populations with an increased need for linezolid dose adjustments have also been identified. Therapeutic Drug Monitoring (TDM) is a clinical strategy that assesses the response of an individual patient and helps adjust the dosing regimen to maximize efficacy while minimizing toxicity. Adaptive feedback control and model-informed precision dosing are additional strategies that use Bayesian algorithms and PK models to predict patient-specific drug exposure. TDM is a very useful tool for patient populations with sparse clinical data or known alterations in pharmacokinetics, including children, patients with renal insufficiency or those receiving renal replacement therapy, and patients taking co-medications known to interact with linezolid. As part of the clinical workflow, clinicians can use TDM with the thresholds summarized from the current literature to improve linezolid dosing for patients and maximize the probability of treatment success.
Collapse
Affiliation(s)
- Gauri G Rao
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Robyn Konicki
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, Department of Laboratory Medicine, Luigi Sacco University Hospital, Milan, Italy
| | - Jan-Willem Alffenaar
- University of Sydney, Faculty of Medicine and Health, School of Pharmacy.,Westmead Hospital, Sydney, NSW, Australia.,Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia
| | - Deborah J E Marriott
- Department of Clinical Microbiology and Infectious Diseases, St. Vincent's Hospital, Sydney, NSW, Australia
| | - Michael Neely
- Laboratory of Applied Pharmacokinetics and Bioinformatics, The Saban Research Institute, Children's Hospital Los Angeles; and.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | | |
Collapse
|
35
|
A Review of Clinical Pharmacokinetic and Pharmacodynamic Relationships and Clinical Implications for Drugs Used to Treat Multi-drug Resistant Tuberculosis. Eur J Drug Metab Pharmacokinet 2021; 45:305-313. [PMID: 31925745 DOI: 10.1007/s13318-019-00604-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Multidrug-resistant tuberculosis (MDR-TB) is becoming a global health crisis. The World Health Organization has released new guidelines for the use of tuberculosis-active drugs for the treatment of patients with MDR-TB. Despite documented activity against tuberculosis isolates, doses and exposure targets are yet to be optimized. Our objective was therefore to review the clinical pharmacokinetic and pharmacodynamic literature pertaining to drugs recommended to treat MDR-TB and to identify target areas for future research. To date, published research is limited but studies were identified that evaluated the pharmacokinetics and pharmacodynamics of these drugs. Exposure targets were assessed and summarized for each drug. Exposure-based targets (e.g., area under the concentration curve/minimum inhibitory concentration) appear to be most commonly associated with predicting drug efficacy. Dose variation studies based on these targets were largely inconclusive. Future research should focus on determining the risks and benefits of dose optimization to meet exposure targets and improve patient outcomes. The role of therapeutic drug monitoring also remains yet to be confirmed, both from a clinical perspective as well as a resource allocation perspective in regions where MDR-TB is active.
Collapse
|
36
|
Sturkenboom MGG, Märtson AG, Svensson EM, Sloan DJ, Dooley KE, van den Elsen SHJ, Denti P, Peloquin CA, Aarnoutse RE, Alffenaar JWC. Population Pharmacokinetics and Bayesian Dose Adjustment to Advance TDM of Anti-TB Drugs. Clin Pharmacokinet 2021; 60:685-710. [PMID: 33674941 PMCID: PMC7935699 DOI: 10.1007/s40262-021-00997-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Tuberculosis (TB) is still the number one cause of death due to an infectious disease. Pharmacokinetics and pharmacodynamics of anti-TB drugs are key in the optimization of TB treatment and help to prevent slow response to treatment, acquired drug resistance, and adverse drug effects. The aim of this review was to provide an update on the pharmacokinetics and pharmacodynamics of anti-TB drugs and to show how population pharmacokinetics and Bayesian dose adjustment can be used to optimize treatment. We cover aspects on preclinical, clinical, and population pharmacokinetics of different drugs used for drug-susceptible TB and multidrug-resistant TB. Moreover, we include available data to support therapeutic drug monitoring of these drugs and known pharmacokinetic and pharmacodynamic targets that can be used for optimization of therapy. We have identified a wide range of population pharmacokinetic models for first- and second-line drugs used for TB, which included models built on NONMEM, Pmetrics, ADAPT, MWPharm, Monolix, Phoenix, and NPEM2 software. The first population models were built for isoniazid and rifampicin; however, in recent years, more data have emerged for both new anti-TB drugs, but also for defining targets of older anti-TB drugs. Since the introduction of therapeutic drug monitoring for TB over 3 decades ago, further development of therapeutic drug monitoring in TB next steps will again depend on academic and clinical initiatives. We recommend close collaboration between researchers and the World Health Organization to provide important guideline updates regarding therapeutic drug monitoring and pharmacokinetics/pharmacodynamics.
Collapse
Affiliation(s)
- Marieke G G Sturkenboom
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anne-Grete Märtson
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Elin M Svensson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.,Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Derek J Sloan
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,Liverpool School of Tropical Medicine, Liverpool, UK.,School of Medicine, University of St Andrews, St Andrews, UK
| | - Kelly E Dooley
- Department of Medicine, Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Simone H J van den Elsen
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Clinical Pharmacy, Hospital Group Twente, Almelo, Hengelo, the Netherlands
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Charles A Peloquin
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Rob E Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jan-Willem C Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands. .,Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia. .,Westmead Hospital, Westmead, NSW, Australia. .,Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
37
|
Gumbo T, Sherman CM, Deshpande D, Alffenaar JW, Srivastava S. Mycobacterium tuberculosis sterilizing activity of faropenem, pyrazinamide and linezolid combination and failure to shorten the therapy duration. Int J Infect Dis 2021; 104:680-684. [PMID: 33556616 PMCID: PMC8168785 DOI: 10.1016/j.ijid.2021.01.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 01/26/2023] Open
Abstract
Background: Faropenem (F), an orally bioavailable β-lactam, kills Mycobacterium tuberculosis (Mtb) without the help of a β-lactamase inhibitor. This study explored the sterilizing effect of adding F once or twice daily to a linezolid (L) plus pyrazinamide (Z) backbone regimen. Methods: In vitro studies were performed using the hollow fiber model of tuberculosis (HFS-TB) to compare the kill rates of: 1) ZL two-drug combination; 2) F administered once daily plus ZL (F1ZL); 3) F administered twice-daily plus once daily ZL (F2ZL); 4) F2ZL with high-dose Z (F2ZhiL); 5) standard therapy of isoniazid, rifampin and Z; and 6) non-treated controls. The study was performed over 56 days with three HFS-TB replicates for each regimen. Results: Mtb in the non-treated HFS-TB grew at a rate of 0.018 ± 0.007 log10 CFU/mL/day. The exponential kill rates for standard therapy were 6.6–13.2-fold higher than ZL dual therapy. The F1ZL and F2ZL regimens ranked third. The pre-existing isoniazid-resistant sub-population in the inoculum (1.34 ± 0.57 log10 CFU/mL) grew to 4.21 ± 0.58 log10 CFU/mL in 56 days in non-treated HFS-TB. However, no isoniazid-resistant sub-population was recorded in any of the FZL combination regimens. Conclusion: Due to the slow kill rate compared to standard therapy, FZL regimens are unlikely to shorten therapy duration. Efficacy of these regimens against drug-resistant tuberculosis needs to be determined.
Collapse
Affiliation(s)
- Tawanda Gumbo
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA; Praedicare Laboratories and Quantitative Preclinical & Clinical Sciences Department, Praedicare Inc., Dallas, TX, USA; Department of Medicine, University of Cape Town, Observatory, South Africa
| | - Carleton M Sherman
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA; Praedicare Laboratories and Quantitative Preclinical & Clinical Sciences Department, Praedicare Inc., Dallas, TX, USA
| | - Devyani Deshpande
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | - Jan-Willem Alffenaar
- The University of Sydney, Faculty of Medicine and Health, School of Pharmacy, Sydney, Australia; Westmead Hospital, Sydney, Australia; Marie Bashir Institute of Infectious Diseases, The University of Sydney, Sydney, Australia
| | - Shashikant Srivastava
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA; Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA; Department of Pulmonary Immunology, University of Texas Health Science Centre, Tyler, TX, USA.
| |
Collapse
|
38
|
Wen S, Zhang T, Yu X, Dong W, Lan T, Fan J, Xue Y, Wang F, Dong L, Qin S, Huang H. Bone penetration of linezolid in osteoarticular tuberculosis patients of China. Int J Infect Dis 2020; 103:364-369. [PMID: 33278623 DOI: 10.1016/j.ijid.2020.11.203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Linezolid presents strong antimicrobial activity against multidrug-resistant (MDR) pulmonary tuberculosis (TB), but its application in osteoarticular tuberculosis treatment remains understudied. Our objective was to analyze the bone penetration efficiency of linezolid in osteoarticular TB patients. METHODS Osteoarticular TB patients, treated with 600 mg q 24 h linezolid-containing regimens and undergoing surgery, were prospectively and consecutively enrolled. One dose linezolid was administered before surgery. Blood and bone samples were collected simultaneously during operation, and their linezolid concentrations were then detected using high-performance liquid chromatography-tandem mass spectrometry. Pus samples were subjected to mycobacterial culture and GeneXpert MTB/RIF assay. The minimum inhibition concentrations (MICs) and drug susceptibility testing were performed with the recovered isolates. RESULTS A total of 36 eligible osteoarticular TB patients were enrolled, including five MDR/rifampicin-resistant cases. All the 12 recovered isolates had MICs ≤0.5 μg/mL for linezolid. Mean concentrations in plasma, collected 100-510 min after the preoperative dosing, were 10.43 ± 4.83 μg/mL (range 3.29-22.26 μg/mL), and median concentrations in bone were 3.93 μg/mL (range 0.61-16.34 μg/mL). The median bone/plasma penetration ratio was 0.42 (range 0.14-0.95 μg/mL). Linezolid concentration in bone had a linear correlation with the drug concentration in plasma (r = 0.7873, p < 0.0001), while plasma concentration could explain 61.98% of the variation of concentration in bone (R2 = 0.6198). Notably, stratification analysis by sampling time demonstrated that samples collected 200-510 min after dosing had very good linear relationships between their bone and plasma concentrations (r = 0.9323). CONCLUSIONS Linezolid penetrates from blood to bone efficiently, and the penetration further stabilizes ∼3 h after dosing.
Collapse
Affiliation(s)
- Shu'an Wen
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Tingting Zhang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Xia Yu
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Weijie Dong
- Department of Orthopedics, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Tinglong Lan
- Department of Orthopedics, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jun Fan
- Department of Orthopedics, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yi Xue
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Fen Wang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Lingling Dong
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Shibing Qin
- Department of Orthopedics, Beijing Chest Hospital, Capital Medical University, Beijing, China.
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China.
| |
Collapse
|
39
|
Märtson AG, Burch G, Ghimire S, Alffenaar JWC, Peloquin CA. Therapeutic drug monitoring in patients with tuberculosis and concurrent medical problems. Expert Opin Drug Metab Toxicol 2020; 17:23-39. [PMID: 33040625 DOI: 10.1080/17425255.2021.1836158] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Therapeutic drug monitoring (TDM) has been recommended for treatment optimization in tuberculosis (TB) but is only is used in certain countries e.g. USA, Germany, the Netherlands, Sweden and Tanzania. Recently, new drugs have emerged and PK studies in TB are continuing, which contributes further evidence for TDM in TB. The aim of this review is to provide an update on drugs used in TB, treatment strategies for these drugs, and TDM to support broader implementation. AREAS COVERED This review describes the different drug classes used for TB, multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB), along with their pharmacokinetics, dosing strategies, TDM and sampling strategies. Moreover, the review discusses TDM for patient TB and renal or liver impairment, patients co-infected with HIV or hepatitis, and special patient populations - children and pregnant women. EXPERT OPINION TB treatment has a long history of using 'one size fits all.' This has contributed to treatment failures, treatment relapses, and the selection of drug-resistant isolates. While challenging in resource-limited circumstances, TDM offers the clinician the opportunity to individualize and optimize treatment early in treatment. This approach may help to refine treatment and thereby reduce adverse effects and poor treatment outcomes. Funding, training, and randomized controlled trials are needed to advance the use of TDM for patients with TB.
Collapse
Affiliation(s)
- Anne-Grete Märtson
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, The Netherlands
| | - Gena Burch
- Infectious Disease Pharmacokinetics Laboratory, College of Pharmacy and Emerging Pathogens Institute, University of Florida , Gainesville, FL, USA
| | - Samiksha Ghimire
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, The Netherlands
| | - Jan-Willem C Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, The Netherlands.,Department of Pharmacy, Westmead Hospital , Sydney, Australia.,Sydney Pharmacy School, The University of Sydney , Sydney, New South Wales, Australia.,Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney , Sydney, Australia
| | - Charles A Peloquin
- Infectious Disease Pharmacokinetics Laboratory, College of Pharmacy and Emerging Pathogens Institute, University of Florida , Gainesville, FL, USA
| |
Collapse
|
40
|
Optimal Dose or Optimal Exposure? Consideration for Linezolid in Tuberculosis Treatment. Antimicrob Agents Chemother 2020; 64:AAC.00287-20. [PMID: 32366715 DOI: 10.1128/aac.00287-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
41
|
van den Elsen SH, Sturkenboom MG, Akkerman O, Barkane L, Bruchfeld J, Eather G, Heysell SK, Hurevich H, Kuksa L, Kunst H, Kuhlin J, Manika K, Moschos C, Mpagama SG, Muñoz Torrico M, Skrahina A, Sotgiu G, Tadolini M, Tiberi S, Volpato F, van der Werf TS, Wilson MR, Zúñiga J, Touw DJ, Migliori GB, Alffenaar JW. Prospective evaluation of improving fluoroquinolone exposure using centralised therapeutic drug monitoring (TDM) in patients with tuberculosis (PERFECT): a study protocol of a prospective multicentre cohort study. BMJ Open 2020; 10:e035350. [PMID: 32554740 PMCID: PMC7304807 DOI: 10.1136/bmjopen-2019-035350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION Global multidrug-resistant tuberculosis (MDR-TB) treatment success rates remain suboptimal. Highly active WHO group A drugs moxifloxacin and levofloxacin show intraindividual and interindividual pharmacokinetic variability which can cause low drug exposure. Therefore, therapeutic drug monitoring (TDM) of fluoroquinolones is recommended to personalise the drug dosage, aiming to prevent the development of drug resistance and optimise treatment. However, TDM is considered laborious and expensive, and the clinical benefit in MDR-TB has not been extensively studied. This observational multicentre study aims to determine the feasibility of centralised TDM and to investigate the impact of fluoroquinolone TDM on sputum conversion rates in patients with MDR-TB compared with historical controls. METHODS AND ANALYSIS Patients aged 18 years or older with sputum smear and culture-positive pulmonary MDR-TB will be eligible for inclusion. Patients receiving TDM using a limited sampling strategy (t=0 and t=5 hours) will be matched to historical controls without TDM in a 1:2 ratio. Sample analysis and dosing advice will be performed in a centralised laboratory. Centralised TDM will be considered feasible if >80% of the dosing recommendations are returned within 7 days after sampling and 100% within 14 days. The number of patients who are sputum smear and culture-negative after 2 months of treatment will be determined in the prospective TDM group and will be compared with the control group without TDM to determine the impact of TDM. ETHICS AND DISSEMINATION Ethical clearance was obtained by the ethical review committees of the 10 participating hospitals according to local procedures or is pending (online supplementary file 1). Patients will be included after obtaining written informed consent. We aim to publish the study results in a peer-reviewed journal. TRIAL REGISTRATION NUMBER ClinicalTrials.gov Registry (NCT03409315).
Collapse
Affiliation(s)
- Simone Hj van den Elsen
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marieke Gg Sturkenboom
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Onno Akkerman
- Department of Pulmonary Diseases and Tuberculosis, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Tuberculosis Center Beatrixoord, University of Groningen, University Medical Center Groningen, Haren, The Netherlands
| | - Linda Barkane
- Department of Multidrug Resistant Tuberculosis, Riga East University Hospital TB and Lung Disease Clinic, Riga, Latvia
| | - Judith Bruchfeld
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Geoffrey Eather
- Department of Respiratory Medicine and Metro South Clinical Tuberculosis Service, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Scott K Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Henadz Hurevich
- The Republican Scientific and Practical Center for Pulmonology and Tuberculosis, Minsk, Belarus
| | - Liga Kuksa
- Department of Multidrug Resistant Tuberculosis, Riga East University Hospital TB and Lung Disease Clinic, Riga, Latvia
| | - Heinke Kunst
- Department of Respiratory Medicine, Blizard Institute, Queen Mary University of London, Barts Health NHS Trust, London, UK
| | - Johanna Kuhlin
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Katerina Manika
- Pulmonary Department, Respiratory Infections Unit, G. Papanikolaou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Charalampos Moschos
- Drug-Resistant Tuberculosis Unit, 'Sotiria' Hospital for Chest Diseases, Athens, Greece
| | - Stellah G Mpagama
- Kibong'oto Infectious Diseases Hospital, Kilimanjaro, United Republic of Tanzania
| | - Marcela Muñoz Torrico
- Clínica de Tuberculosis, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Alena Skrahina
- The Republican Scientific and Practical Center for Pulmonology and Tuberculosis, Minsk, Belarus
| | - Giovanni Sotgiu
- Department of Medical, Surgical and Experimental Sciences, Clinical Epidemiology and Medical Statistics Unit, University of Sassari, Sassari, Italy
| | - Marina Tadolini
- Department of Medical and Surgical Sciences, Unit of Infectious Diseases, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Simon Tiberi
- Department of Infection, Blizard Institute, Queen Mary University of London, Barts Health NHS Trust, London, UK
| | - Francesca Volpato
- Department of Medical and Surgical Sciences, Unit of Infectious Diseases, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Tjip S van der Werf
- Department of Pulmonary Diseases and Tuberculosis, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Malcolm R Wilson
- Department of Respiratory Medicine and Metro South Clinical Tuberculosis Service, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Joaquin Zúñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de Salud, Mexico City, Mexico
| | - Daan J Touw
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Giovanni B Migliori
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| | - Jan-Willem Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
42
|
Davidson N, Grigg MJ, Mcguinness SL, Baird RJ, Anstey NM. Safety and Outcomes of Linezolid Use for Nocardiosis. Open Forum Infect Dis 2020; 7:ofaa090. [PMID: 32258209 PMCID: PMC7112726 DOI: 10.1093/ofid/ofaa090] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/13/2020] [Indexed: 11/12/2022] Open
Abstract
Background Tropical Australia has a high incidence of nocardiosis, with high rates of intrinsic antimicrobial resistance. Linezolid, the only antimicrobial to which all local Nocardia species are susceptible, has been recommended in empirical combination treatment regimens for moderate-severe Nocardia infections at Royal Darwin Hospital (RDH) since 2014. We report the safety and efficacy of linezolid use for nocardiosis in this setting. Methods We identified cases through a retrospective review of all RDH Nocardia isolates from December 2014 to August 2018 and included 5 linezolid-treated cases from a previous cohort. Laboratory, demographic, and clinical data were included in the primary analysis of safety and treatment outcomes. Results Between 2014 and 2018, Nocardia was isolated from 35 individuals; 28 (80%) had clinically significant infection and 23 (82%) received treatment. All isolates were linezolid-susceptible. Safety and efficacy were assessed for 20 patients receiving linezolid-containing regimens and 8 receiving nonlinezolid regimens. Median linezolid induction therapy duration was 28 days. Common adverse effects in those receiving linezolid were thrombocytopenia (45%) and anemia (40%). Adverse events prompted discontinuation of trimethoprim-sulfamethoxazole more often than linezolid (40% vs 20%). Linezolid therapeutic drug monitoring was used in 1 patient, with successful dose reduction and outcome. There was no difference in 30-day survival between those treated with linezolid (90%) vs no linezolid (87%). One Nocardia-attributed death occurred during linezolid therapy. Conclusions Linezolid is safe and efficacious in empirical treatment for moderate to severe nocardiosis in a monitored hospital setting, with 100% drug susceptibility and no difference in adverse events or outcomes compared with nonlinezolid regimens.
Collapse
Affiliation(s)
- Natalie Davidson
- Department of Infectious Diseases, Royal Darwin Hospital, Darwin, NT, Australia
| | | | | | - Robert J Baird
- Department of Infectious Diseases, Royal Darwin Hospital, Darwin, NT, Australia.,Department Microbiology, Royal Darwin Hospital, Darwin, NT, Australia
| | - Nicholas M Anstey
- Department of Infectious Diseases, Royal Darwin Hospital, Darwin, NT, Australia.,Menzies School of Health Research, Darwin, NT, Australia
| |
Collapse
|
43
|
Alffenaar JWC, Akkerman OW, Kim HY, Tiberi S, Migliori GB. Precision and personalized medicine and anti-TB treatment: Is TDM feasible for programmatic use? Int J Infect Dis 2020; 92S:S5-S9. [PMID: 31996324 DOI: 10.1016/j.ijid.2020.01.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 10/25/2022] Open
Abstract
Therapeutic Drug Monitoring (TDM) is increasingly recommended to ensure the correct drug dose thereby minimizing adverse events and maximizing regimen efficacy. To facilitate implementation in TB programs, a framework for TDM is urgently needed. TDM is only useful for dose optimization if a patient is on an appropriate regimen guided by drug susceptibility testing. TDM using a targeted approach selecting patients with risk factors for suboptimal drug exposure (e.g. diabetes) or not responding to treatment for drugs with a clear concentration-response relationship may provide the best value for money. Semiquantitative point-of-care tests for detection of low or high drug concentration should be implemented at community level while quantitative assays can be performed at regional or central level. Expanding PK/PD research followed by clinical trials including both clinical outcome as well as cost-effectiveness will increase the level of evidence supporting TDM.
Collapse
Affiliation(s)
- Jan-Willem C Alffenaar
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; Westmead Hospital, Westmead, NSW 2145, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Onno W Akkerman
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases and Tuberculosis, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, TB Center Beatrixoord, Haren, The Netherlands
| | - Hannah Yejin Kim
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; Westmead Hospital, Westmead, NSW 2145, Australia
| | - Simon Tiberi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom; Department of Infection, Royal London and Newham Hospitals, Barts Health NHS Trust, London, United Kingdom
| | - Giovanni Battista Migliori
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom; Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| |
Collapse
|
44
|
van den Elsen SH, Akkerman OW, Jongedijk EM, Wessels M, Ghimire S, van der Werf TS, Touw DJ, Bolhuis MS, Alffenaar JWC. Therapeutic drug monitoring using saliva as matrix: an opportunity for linezolid, but challenge for moxifloxacin. Eur Respir J 2020; 55:13993003.01903-2019. [DOI: 10.1183/13993003.01903-2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/10/2020] [Indexed: 11/05/2022]
|
45
|
Borisov S, Danila E, Maryandyshev A, Dalcolmo M, Miliauskas S, Kuksa L, Manga S, Skrahina A, Diktanas S, Codecasa LR, Aleksa A, Bruchfeld J, Koleva A, Piubello A, Udwadia ZF, Akkerman OW, Belilovski E, Bernal E, Boeree MJ, Cadiñanos Loidi J, Cai Q, Cebrian Gallardo JJ, Dara M, Davidavičienė E, Forsman LD, De Los Rios J, Denholm J, Drakšienė J, Duarte R, Elamin SE, Escobar Salinas N, Ferrarese M, Filippov A, Garcia A, García-García JM, Gaudiesiute I, Gavazova B, Gayoso R, Gomez Rosso R, Gruslys V, Gualano G, Hoefsloot W, Jonsson J, Khimova E, Kunst H, Laniado-Laborín R, Li Y, Magis-Escurra C, Manfrin V, Marchese V, Martínez Robles E, Matteelli A, Mazza-Stalder J, Moschos C, Muñoz-Torrico M, Mustafa Hamdan H, Nakčerienė B, Nicod L, Nieto Marcos M, Palmero DJ, Palmieri F, Papavasileiou A, Payen MC, Pontarelli A, Quirós S, Rendon A, Saderi L, Šmite A, Solovic I, Souleymane MB, Tadolini M, van den Boom M, Vescovo M, Viggiani P, Yedilbayev A, Zablockis R, Zhurkin D, Zignol M, Visca D, Spanevello A, Caminero JA, Alffenaar JW, Tiberi S, Centis R, D'Ambrosio L, Pontali E, Sotgiu G, Migliori GB. Surveillance of adverse events in the treatment of drug-resistant tuberculosis: first global report. Eur Respir J 2019; 54:13993003.01522-2019. [PMID: 31601711 DOI: 10.1183/13993003.01522-2019] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/17/2019] [Indexed: 11/05/2022]
Abstract
The World Health Organization (WHO) recommends that countries implement pharmacovigilance and collect information on active drug safety monitoring (aDSM) and management of adverse events.The aim of this prospective study was to evaluate the frequency and severity of adverse events to anti-tuberculosis (TB) drugs in a cohort of consecutive TB patients treated with new (i.e. bedaquiline, delamanid) and repurposed (i.e. clofazimine, linezolid) drugs, based on the WHO aDSM project. Adverse events were collected prospectively after attribution to a specific drug together with demographic, bacteriological, radiological and clinical information at diagnosis and during therapy. This interim analysis included patients who completed or were still on treatment at time of data collection.Globally, 45 centres from 26 countries/regions reported 658 patients (68.7% male, 4.4% HIV co-infected) treated as follows: 87.7% with bedaquiline, 18.4% with delamanid (6.1% with both), 81.5% with linezolid and 32.4% with clofazimine. Overall, 504 adverse event episodes were reported: 447 (88.7%) were classified as minor (grade 1-2) and 57 (11.3%) as serious (grade 3-5). The majority of the 57 serious adverse events reported by 55 patients (51 out of 57, 89.5%) ultimately resolved. Among patients reporting serious adverse events, some drugs held responsible were discontinued: bedaquiline in 0.35% (two out of 577), delamanid in 0.8% (one out of 121), linezolid in 1.9% (10 out of 536) and clofazimine in 1.4% (three out of 213) of patients. Serious adverse events were reported in 6.9% (nine out of 131) of patients treated with amikacin, 0.4% (one out of 221) with ethionamide/prothionamide, 2.8% (15 out of 536) with linezolid and 1.8% (eight out of 498) with cycloserine/terizidone.The aDSM study provided valuable information, but implementation needs scaling-up to support patient-centred care.
Collapse
Affiliation(s)
- Sergey Borisov
- Moscow Research and Clinical Center for TB Control, Moscow Government's Health Department, Moscow, Russian Federation.,These authors contributed equally
| | - Edvardas Danila
- Clinic of Chest Diseases, Immunology and Allergology, Vilnius University Medical Faculty, Centre of Pulmonology and Allergology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | | | - Margareth Dalcolmo
- Reference Center Hélio Fraga, Fundação Oswaldo Cruz (Fiocruz)/Ministry of Health, Rio de Janeiro, Brazil
| | - Skaidrius Miliauskas
- Dept of Pulmonology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Liga Kuksa
- MDR-TB Dept, Riga East University Hospital for TB and Lung Disease Centre, Riga, Latvia
| | - Selene Manga
- Dept of Infectious Diseases, University National San Antonio Abad Cusco, Cusco, Peru
| | - Alena Skrahina
- Republican Research and Practical Centre for Pulmonology and Tuberculosis, Minsk, Belarus
| | - Saulius Diktanas
- Tuberculosis Dept, 3rd Tuberculosis Unit, Republican Klaipėda Hospital, Klaipėda, Lithuania
| | | | - Alena Aleksa
- Dept of Phthisiology and Pulmonology, Grodno State Medical University, Grodno, Belarus
| | - Judith Bruchfeld
- Division of Infectious Diseases, Dept of Medicine, Karolinska Institute, Solna, Sweden.,Dept of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.,These authors contributed equally
| | - Antoniya Koleva
- Pulmonology and Physiotherapy Dept, Gabrovo Lung Diseases Hospital, Gabrovo, Bulgaria
| | - Alberto Piubello
- Tuberculosis Division, International Union against Tuberculosis and Lung Disease (The Union), Paris, France.,Tuberculosis Division, Damien Foundation, Niamey, Niger.,These authors contributed equally
| | - Zarir Farokh Udwadia
- Dept of Respiratory Medicine, P.D. Hinduja National Hospital and MRC, Mumbai, India
| | - Onno W Akkerman
- University of Groningen, University Medical Center Groningen, Dept of Pulmonary Diseases and Tuberculosis, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, TB Center Beatrixoord, Haren, The Netherlands.,These authors contributed equally
| | - Evgeny Belilovski
- Moscow Research and Clinical Center for TB Control, Moscow Government's Health Department, Moscow, Russian Federation
| | - Enrique Bernal
- Unidad de Enfermedades Infecciosas, Hospital General Universitario Reina Sofia, Murcia, Spain
| | - Martin J Boeree
- Radboud University Medical Center, Center Dekkerswald, Nijmegen, The Netherlands
| | | | - Qingshan Cai
- Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, China
| | | | - Masoud Dara
- World Health Organization Regional Office for Europe, Copenhagen, Denmark
| | - Edita Davidavičienė
- National TB Registry, Public Health Dept, Ministry of Health, Vilnius, Lithuania.,Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Lina Davies Forsman
- Division of Infectious Diseases, Dept of Medicine, Karolinska Institute, Solna, Sweden.,Dept of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Jorge De Los Rios
- Centro de Excelencia de TB "Niño Jesus", Servicio de Neumologia, Hospital Maria Auxiliadora, Lima, Peru
| | - Justin Denholm
- Victorian Tuberculosis Program, Melbourne Health, Melbourne, Australia.,Dept of Microbiology and Immunology, University of Melbourne, Melbourne, Australia.,These authors contributed equally
| | - Jacinta Drakšienė
- Tuberculosis Dept, 3rd Tuberculosis Unit, Republican Klaipėda Hospital, Klaipėda, Lithuania
| | - Raquel Duarte
- National Reference Centre for MDR-TB, Hospital Centre Vila Nova de Gaia, Dept of Pneumology, Public Health Science and Medical Education Dept, Faculty of Medicine, University of Porto, Porto, Portugal
| | | | - Nadia Escobar Salinas
- Division of Disease Prevention and Control, Dept of Communicable Diseases, National Tuberculosis Control and Elimination Programme, Ministry of Health, Santiago, Chile
| | - Maurizio Ferrarese
- TB Reference Centre, Villa Marelli Institute, Niguarda Hospital, Milan, Italy
| | - Alexey Filippov
- Moscow Research and Clinical Center for TB Control, Moscow Government's Health Department, Moscow, Russian Federation
| | - Ana Garcia
- Pulmonology Division, Municipal Hospital F.J. Muñiz, Buenos Aires, Argentina
| | | | - Ieva Gaudiesiute
- Dept of Pulmonology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Regina Gayoso
- Reference Center Hélio Fraga, Fundação Oswaldo Cruz (Fiocruz)/Ministry of Health, Rio de Janeiro, Brazil
| | - Roscio Gomez Rosso
- National Institute of Respiratory and Environmental Diseases "Prof. Dr. Juan Max Boettner" Asunción, Paraguay
| | - Vygantas Gruslys
- Clinic of Chest Diseases, Immunology and Allergology, Vilnius University Medical Faculty, Centre of Pulmonology and Allergology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Gina Gualano
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases "L. Spallanzani", IRCCS, Rome, Italy
| | - Wouter Hoefsloot
- Radboud University Medical Center, Center Dekkerswald, Nijmegen, The Netherlands
| | - Jerker Jonsson
- Dept of Public Health Analysis and Data Management, Public Health Agency of Sweden, Solna, Sweden
| | - Elena Khimova
- Northern State Medical University, Arkhangelsk, Russian Federation
| | - Heinke Kunst
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Rafael Laniado-Laborín
- Universidad Autónoma de Baja California, Baja California, Mexico; Clínica de Tuberculosis del Hospital General de Tijuana, Tijuana, Mexico.,These authors contributed equally
| | - Yang Li
- Dept of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Cecile Magis-Escurra
- Radboud University Medical Center, Center Dekkerswald, Nijmegen, The Netherlands
| | | | - Valentina Marchese
- Clinic of Infectious and Tropical Diseases, WHO Collaborating Centre for TB elimination and TB/HIV co-infection, University of Brescia, Brescia, Italy
| | - Elena Martínez Robles
- Internal Medicine Dept, Tuberculosis Unit, Hospital de Cantoblanco - Hospital General Universitario La Paz, Madrid, Spain
| | - Alberto Matteelli
- Clinic of Infectious and Tropical Diseases, WHO Collaborating Centre for TB elimination and TB/HIV co-infection, University of Brescia, Brescia, Italy
| | - Jesica Mazza-Stalder
- Division of Pulmonary Medicine, University Hospital of Lausanne CHUV, Lausanne, Switzerland.,These authors contributed equally
| | - Charalampos Moschos
- Dept of Tuberculosis, Sotiria Athens Hospital of Chest Diseases, Athens, Greece
| | - Marcela Muñoz-Torrico
- Clínica de Tuberculosis, Instituto Nacional De Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad De Mexico, Mexico.,These authors contributed equally
| | | | - Birutė Nakčerienė
- National TB Registry, Public Health Dept, Ministry of Health, Vilnius, Lithuania.,Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Laurent Nicod
- Division of Pulmonary Medicine, University Hospital of Lausanne CHUV, Lausanne, Switzerland
| | | | | | - Fabrizio Palmieri
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases "L. Spallanzani", IRCCS, Rome, Italy
| | | | - Marie-Christine Payen
- Division of Infectious Diseases, CHU Saint-Pierre, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Agostina Pontarelli
- Reference Center for MDR-TB and HIV-TB, Eugenio Morelli Hospital, Sondalo, Italy
| | - Sarai Quirós
- Pneumology Dept, Tuberculosis Unit, Hospital de Cantoblanco - Hospital General Universitario La Paz, Madrid, Spain
| | - Adrian Rendon
- Centro de Investigación, Prevención y Tratamiento de Infecciones Respiratorias CIPTIR, University Hospital of Monterrey UANL (Universidad Autonoma de Nuevo Leon), Monterrey, Mexico
| | - Laura Saderi
- Clinical Epidemiology and Medical Statistics Unit, Dept of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy.,These authors contributed equally
| | - Agnese Šmite
- MDR-TB Dept, Riga East University Hospital for TB and Lung Disease Centre, Riga, Latvia
| | - Ivan Solovic
- National Institute for TB, Lung Diseases and Thoracic Surgery, Vysne Hagy, Catholic University Ruzomberok, Ruzomberok, Slovakia
| | | | - Marina Tadolini
- Unit of Infectious Diseases, Dept of Medical and Surgical Sciences Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Martin van den Boom
- World Health Organization Regional Office for Europe, Copenhagen, Denmark.,These authors contributed equally
| | - Marisa Vescovo
- Pulmonology Division, Municipal Hospital F.J. Muñiz, Buenos Aires, Argentina
| | - Pietro Viggiani
- Reference Center for MDR-TB and HIV-TB, Eugenio Morelli Hospital, Sondalo, Italy
| | - Askar Yedilbayev
- World Health Organization Regional Office for Europe, Copenhagen, Denmark
| | - Rolandas Zablockis
- Clinic of Chest Diseases, Immunology and Allergology, Vilnius University Medical Faculty, Centre of Pulmonology and Allergology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Dmitry Zhurkin
- Republican Research and Practical Centre for Pulmonology and Tuberculosis, Minsk, Belarus
| | - Matteo Zignol
- Global Tuberculosis Programme, World Health Organization, Geneva, Switzerland
| | - Dina Visca
- Division of Pulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri, IRCCS, Tradate, Italy.,Dept of Medicine and Surgery, Respiratory Diseases, University of Insubria, Tradate, Italy.,These authors contributed equally
| | - Antonio Spanevello
- Division of Pulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri, IRCCS, Tradate, Italy.,Dept of Medicine and Surgery, Respiratory Diseases, University of Insubria, Tradate, Italy
| | - José A Caminero
- Pneumology Dept, Hospital General de Gran Canaria "Dr. Negrin", Las Palmas de Gran Canaria, Spain.,MDR-TB Unit, Tuberculosis Division, International Union against Tuberculosis and Lung Disease (The Union), Paris, France.,These authors contributed equally
| | - Jan-Willem Alffenaar
- University of Sydney, Faculty of Medicine and Health, School of Pharmacy, Sydney, Australia.,Westmead Hospital, Sydney, Australia.,University of Groningen, University Medical Center Groningen, Dept of Pharmacy and Pharmacology, Groningen, The Netherlands.,These authors contributed equally
| | - Simon Tiberi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Dept of Infection, Royal London and Newham Hospitals, Barts Health NHS Trust, London, UK.,These authors contributed equally
| | - Rosella Centis
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy.,These authors contributed equally
| | - Lia D'Ambrosio
- Public Health Consulting Group, Lugano, Switzerland.,These authors contributed equally
| | - Emanuele Pontali
- Dept of Infectious Diseases, Galliera Hospital, Genova, Italy.,These authors contributed equally
| | - Giovanni Sotgiu
- Clinical Epidemiology and Medical Statistics Unit, Dept of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy.,These authors contributed equally
| | - Giovanni Battista Migliori
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy .,These authors contributed equally
| |
Collapse
|
46
|
Nahid P, Mase SR, Migliori GB, Sotgiu G, Bothamley GH, Brozek JL, Cattamanchi A, Cegielski JP, Chen L, Daley CL, Dalton TL, Duarte R, Fregonese F, Horsburgh CR, Ahmad Khan F, Kheir F, Lan Z, Lardizabal A, Lauzardo M, Mangan JM, Marks SM, McKenna L, Menzies D, Mitnick CD, Nilsen DM, Parvez F, Peloquin CA, Raftery A, Schaaf HS, Shah NS, Starke JR, Wilson JW, Wortham JM, Chorba T, Seaworth B. Treatment of Drug-Resistant Tuberculosis. An Official ATS/CDC/ERS/IDSA Clinical Practice Guideline. Am J Respir Crit Care Med 2019; 200:e93-e142. [PMID: 31729908 PMCID: PMC6857485 DOI: 10.1164/rccm.201909-1874st] [Citation(s) in RCA: 262] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: The American Thoracic Society, U.S. Centers for Disease Control and Prevention, European Respiratory Society, and Infectious Diseases Society of America jointly sponsored this new practice guideline on the treatment of drug-resistant tuberculosis (DR-TB). The document includes recommendations on the treatment of multidrug-resistant TB (MDR-TB) as well as isoniazid-resistant but rifampin-susceptible TB.Methods: Published systematic reviews, meta-analyses, and a new individual patient data meta-analysis from 12,030 patients, in 50 studies, across 25 countries with confirmed pulmonary rifampin-resistant TB were used for this guideline. Meta-analytic approaches included propensity score matching to reduce confounding. Each recommendation was discussed by an expert committee, screened for conflicts of interest, according to the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) methodology.Results: Twenty-one Population, Intervention, Comparator, and Outcomes questions were addressed, generating 25 GRADE-based recommendations. Certainty in the evidence was judged to be very low, because the data came from observational studies with significant loss to follow-up and imbalance in background regimens between comparator groups. Good practices in the management of MDR-TB are described. On the basis of the evidence review, a clinical strategy tool for building a treatment regimen for MDR-TB is also provided.Conclusions: New recommendations are made for the choice and number of drugs in a regimen, the duration of intensive and continuation phases, and the role of injectable drugs for MDR-TB. On the basis of these recommendations, an effective all-oral regimen for MDR-TB can be assembled. Recommendations are also provided on the role of surgery in treatment of MDR-TB and for treatment of contacts exposed to MDR-TB and treatment of isoniazid-resistant TB.
Collapse
|
47
|
Li Y, Huang H, Dong W, Lan T, Fan J, Wen S, Zhang T, Qin S, Guo A. Penetration of linezolid into bone tissue 24 h after administration in patients with multidrug-resistant spinal tuberculosis. PLoS One 2019; 14:e0223391. [PMID: 31581274 PMCID: PMC6776296 DOI: 10.1371/journal.pone.0223391] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/19/2019] [Indexed: 11/25/2022] Open
Abstract
Background Linezolid has shown strong antimicrobial activity against multidrug-resistant (MDR)/rifampin-resistant strains of Mycobacterium tuberculosis. Linezolid achieves clinical efficacy mainly through area under the concentration time curve/minimum inhibitory concentration ratio in the infected lesion site. Previous studies mainly focused on the relationship between linezolid concentrations in the blood and infected bone tissue when the blood drug concentration reached the peak 2 h after administration. However, we do not know whether linezolid can maintain the same bone/plasma ratio in infected bone tissue when the blood concentration reaches the trough level. Therefore, this study aimed to evaluate the penetrability of linezolid into bone tissue 24 h after administration in patients with MDR spinal tuberculosis (TB). Methods Nine MDR spinal TB patients, who received a treatment regimen including linezolid and underwent surgery, were enrolled prospectively from April 2017 to March 2019. Blood and diseased bone tissue specimens were collected simultaneously during operations 24 h after taking 600 mg of linezolid orally. Linezolid concentrations in plasma and diseased bone tissue specimens were determined by high-performance liquid chromatography–tandem mass spectrometry. Results Following a 600 mg oral administration of linezolid 24 h before surgery, median concentrations of linezolid in plasma and diseased bone tissue for the 9 patients were 1.98 mg/L (range 0.30–3.44 mg/L) and 0.60 mg/L (range 0.18–2.13 mg/L), respectively, at resection time. The median diseased bone/plasma linezolid concentration ratio was 0.48 (range 0.30–0.67). Pearson’s correlation analysis showed that linezolid concentrations in the plasma were positively related to those in diseased bone tissue (r = 0.949, p < 0.001). Conclusions After 24 h of medication, linezolid still had good penetrability into diseased bone tissue in patients with MDR spinal TB.
Collapse
Affiliation(s)
- Yuan Li
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Orthopedics, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Weijie Dong
- Department of Orthopedics, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Tinglong Lan
- Department of Orthopedics, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jun Fan
- Department of Orthopedics, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Shu’an Wen
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Tingting Zhang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Shibing Qin
- Department of Orthopedics, Beijing Chest Hospital, Capital Medical University, Beijing, China
- * E-mail: (AG); (SQ)
| | - Ai Guo
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- * E-mail: (AG); (SQ)
| |
Collapse
|
48
|
Mass spectrometry for therapeutic drug monitoring of anti-tuberculosis drugs. CLINICAL MASS SPECTROMETRY 2019; 14 Pt A:34-45. [DOI: 10.1016/j.clinms.2018.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 11/18/2022]
|
49
|
Bolhuis MS, van der Werf TS, Kerstjens HA, de Lange WC, Alffenaar JWC, Akkerman OW. Treatment of multidrug-resistant tuberculosis using therapeutic drug monitoring: first experiences with sub-300 mg linezolid dosages using in-house made capsules. Eur Respir J 2019; 54:13993003.00580-2019. [DOI: 10.1183/13993003.00580-2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/12/2019] [Indexed: 11/05/2022]
|
50
|
Yew WW, Chan DP, Chang KC. Does linezolid have a role in shortening treatment of tuberculosis? Clin Microbiol Infect 2019; 25:1060-1062. [PMID: 31238119 DOI: 10.1016/j.cmi.2019.06.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
Affiliation(s)
- W-W Yew
- Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - D P Chan
- Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - K-C Chang
- Tuberculosis and Chest Service, Centre for Health Protection, Department of Health, Hong Kong SAR, China.
| |
Collapse
|