1
|
Wölfl-Duchek M, van Os W, Al Jalali V, Rabl U, Wohlrab P, Bauer M, Lackner E, Wulkersdorfer B, Marhofer P, Bergmann F, Jorda A, Reiter B, Stimpfl T, Zeitlinger M. Cerebrospinal fluid concentrations of ceftaroline and ceftazidime/avibactam in healthy volunteers: pharmacokinetics and probability of target attainment. Int J Antimicrob Agents 2025:107512. [PMID: 40239748 DOI: 10.1016/j.ijantimicag.2025.107512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/13/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
OBJECTIVES This study measured the penetration of ceftaroline and ceftazidime/avibactam into cerebrospinal fluid (CSF) to evaluate the potential of both drugs for treatment of central nervous system (CNS) infections. METHODS In this prospective, single-centre pharmacokinetic (PK) study, 24 healthy volunteers equally divided into two groups received four doses of either 600mg ceftaroline fosamil or 2000/500mg ceftazidime/avibactam as intravenous infusions over 2h at 8h intervals for 4 doses. Plasma samples were obtained on both study days and CSF was sampled once per subject at either 2h, 4h or 8h after the start of the last infusion via lumbar puncture. PK data were analysed using non-compartmental analysis, as well as using a population PK modelling approach. Monte Carlo simulations were performed to calculate probability of PK-pharmacodynamic (PK-PD) target attainment. RESULTS Two-compartment models described the plasma PK data for all three compounds. The ratios between the estimated distribution clearances into and out of the CSF were 0.021, 0.083 and 0.071 for ceftaroline, ceftazidime and avibactam, respectively, indicating limited CSF penetration. Ceftaroline and ceftazidime PK-PD targets were not attained in CSF for minimum inhibitory concentrations around commonly used susceptibility breakpoints, but exposure appears sufficient to treat several pathogens commonly causing CNS infections. Avibactam concentrations were well below reported threshold concentrations that are required for activity. CONCLUSION In healthy subjects, ceftaroline, ceftazidime and avibactam poorly distribute to CSF. Nonetheless, CSF exposure of both cephalosporins might be sufficient to cover certain, but not all, pathogens causative of CNS infections.
Collapse
Affiliation(s)
- Michael Wölfl-Duchek
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria; Department of Biomedical Imaging and Image-guided Therapy Medical University of Vienna, Vienna, Austria
| | - Wisse van Os
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Valentin Al Jalali
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ulrich Rabl
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Peter Wohlrab
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Martin Bauer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Edith Lackner
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Peter Marhofer
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Felix Bergmann
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria; Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Anselm Jorda
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Birgit Reiter
- Clinical Institute of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Stimpfl
- Clinical Institute of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Chen Y, Xiang G, Liu P, Zhou X, Guo P, Wu Z, Yang J, Chen P, Huang J, Liao K. Prevalence and molecular characteristics of ceftazidime-avibactam resistance among carbapenem-resistant Pseudomonas aeruginosa clinical isolates. J Glob Antimicrob Resist 2024; 36:276-283. [PMID: 38295902 DOI: 10.1016/j.jgar.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/06/2023] [Accepted: 01/09/2024] [Indexed: 02/20/2024] Open
Abstract
OBJECTIVES Resistance against ceftazidime-avibactam (CZA) in carbapenem-resistant Pseudomonas aeruginosa (CRPA) is emerging. This study was aimed at detecting the prevalence and molecular characteristics of CZA-resistant CRPA clinical isolates in Guangdong Province, China. METHODS The antimicrobial susceptibility profile of these strains was determined. A subset of 16 CZA-resistant CRPA isolates was analysed by whole-genome sequencing (WGS). Genetic surroundings of carbapenem resistance genes and pan-genome-wide association analysis were further studied. RESULTS Of the 250 CRPA isolates, CZA resistance rate was 6.4% (16/250). The minimum inhibitory concentration (MIC) of CZA range was from 0.25 to >256 mg/L. MIC50 and MIC90 were 2/4 and 8/4 mg/L, respectively. Among the 16 CZA-resistant CRPA strains, 31.3% (5/16) of them carried class B carbapenem resistance genes, including blaIMP-4, blaIMP-45, and blaVIM-2, located on IncP-2 megaplasmids or chromosomes, respectively. Pan-genome-wide association analysis of accessory genes for CZA-susceptible or -resistant CRPA isolates showed that PA1874, a hypothetical protein containing BapA prefix-like domain, was enriched in CZA-resistant group significantly. CONCLUSIONS Class B carbapenem resistance genes play important roles in CZA resistance. Meanwhile, the PA1874 gene may be a novel mechanism involving in CZA resistance. It is necessary to continually monitor CZA-resistant CRPA isolates.
Collapse
Affiliation(s)
- Yili Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guoxiu Xiang
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pingjuan Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xianling Zhou
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Penghao Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhongwen Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Juhua Yang
- Vision Medicals Co., Ltd, Guangzhou, China
| | - Peisong Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Junqi Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Organ Transplant Centre, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China.
| | - Kang Liao
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
3
|
Liu G, Qiu J, Liu Y, Liu Z. Effectiveness and safety of cefotaxime combined with avibactam for treating multidrug-resistant E coli infections: A systematic review and meta-analysis. Medicine (Baltimore) 2024; 103:e36938. [PMID: 38241533 PMCID: PMC10798705 DOI: 10.1097/md.0000000000036938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Multidrug-resistant Escherichia coli infections are a global health challenge, notably in North America, Europe, Asia, and Africa. This systematic review and meta-analysis evaluates the effectiveness and safety of cefotaxime combined with avibactam, aiming to mitigate these infections' impact and lessen their burden on healthcare systems worldwide. METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses and PICO frameworks, we conducted a comprehensive literature search across 4 primary databases on May 6, 2023. Studies evaluating the efficacy and safety of cefotaxime and avibactam were included. Key outcomes included treatment success, adverse effects, and microbiological eradication. Quality assessment utilized the Cochrane Collaboration Risk of Bias instrument. Heterogeneity was analyzed using chi-square statistics and the I2 index. Both fixed- and random-effects models were applied as appropriate. Publication bias was rigorously evaluated using Egger linear regression test and funnel plot analysis, ensuring the study's integrity and reliability. RESULTS The clinical cure rate derived from 8 studies showed no significant difference between the treatment groups (odds ratio [OR] = 1.97, 95% CI: 0.69 to 1.36, P = .86). Analysis of the bacterial clearance rate from the 5 studies also indicated no significant difference (OR = 0.97, 95% CI: 0.42 to 2.25, P = .36). Notably, a reduced mortality rate favoring the experimental group was observed in 6 studies (OR = 0.64, 95% CI: 0.44 to 0.92, P = .012). Comprehensive sensitivity analyses and the assessment of publication bias strengthened the reliability of the results. CONCLUSIONS Ceftazidime combined with avibactam significantly reduced mortality among patients with multidrug-resistant Escherichia coli infections, indicating its potential as a therapeutic option, especially for carbapenem-resistant Enterobacteriaceae. However, extensive large-scale clinical trials are required to validate these findings.
Collapse
Affiliation(s)
- Geming Liu
- Department of Pharmacy, Affiliated Hospital of Jilin Medical University, Jilin, Jilin Province, China
| | - Jia Qiu
- Department of Pharmacy, Affiliated Hospital of Beihua University, Jilin, Jilin Province, China
| | - Yang Liu
- Department of Pharmacy, Jilin Chemical Hospital, Jilin, Jilin Province, China
| | - Zhisen Liu
- Clinical Pharmacy, Affiliated Hospital of Jilin Medical University, Jilin, Jilin Province, China
| |
Collapse
|
4
|
Moreira NK, Caierão J. Ceftazidime-avibactam: are we safe from class A carbapenemase producers' infections? Folia Microbiol (Praha) 2021; 66:879-896. [PMID: 34505209 DOI: 10.1007/s12223-021-00918-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/29/2021] [Indexed: 01/14/2023]
Abstract
Recently, new combinations of β-lactams and β-lactamase inhibitors became available, including ceftazidime-avibactam, and increased the ability to treat infections caused by carbapenem-resistant Enterobacterales (CRE). Despite the reduced time of clinical use, isolates expressing resistance to ceftazidime-avibactam have been reported, even during treatment or in patients with no previous contact with this drug. Here, we detailed review data on global ceftazidime-avibactam susceptibility, the mechanisms involved in resistance, and the molecular epidemiology of resistant isolates. Ceftazidime-avibactam susceptibility remains high (≥ 98.4%) among Enterobacterales worldwide, being lower among extended-spectrum β-lactamase (ESBL) producers and CRE. Alterations in class A β-lactamases are the major mechanism involved in ceftazidime-avibactam resistance, and mutations are mainly, but not exclusively, located in the Ω loop of these enzymes. Modifications in Klebsiella pneumoniae carbapenemase (KPC) 3 and KPC-2 have been observed by many authors, generating variants with different mutations, insertions, and/or deletions. Among these, the most commonly described is Asp179Tyr, both in KPC-3 (KPC-31 variant) and in KPC-2 (KPC-33 variant). Changes in membrane permeability and overexpression of efflux systems may also be associated with ceftazidime-avibactam resistance. Although several clones have been reported, ST258 with Asp179Tyr deserves special attention. Surveillance studies and rationale use are essential to retaining the activity of this and other antimicrobials against class A CRE.
Collapse
Affiliation(s)
- Natália Kehl Moreira
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul, Avenida Ipiranga, Porto Alegre, RS, 2752, 90610-000, Brazil.
| | - Juliana Caierão
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul, Avenida Ipiranga, Porto Alegre, RS, 2752, 90610-000, Brazil
| |
Collapse
|
5
|
Kang Y, Zhou Q, Cui J. Pharmacokinetic/pharmacodynamic modelling to evaluate the efficacy of various dosing regimens of ceftazidime/avibactam in patients with pneumonia caused by Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae: a multicentre study in northern China. J Glob Antimicrob Resist 2021; 27:67-71. [PMID: 34428596 DOI: 10.1016/j.jgar.2021.07.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/15/2021] [Accepted: 07/31/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES The objective of this study was to evaluate the efficacy of different dosing regimens of ceftazidime/avibactam (CZA) in patients with Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-Kp) pulmonary infections. METHODS A total of 70 KPC-Kp strains were isolated from sputum and bronchoalveolar lavage samples of patients with pulmonary infections in three hospitals in northern China from April 2015 to October 2015. Monte Carlo simulation (MCS) was performed using population pharmacokinetic parameters of CZA combined with the minimum inhibitory concentration (MIC) distributions gained from antimicrobial susceptibility testing to predict the efficacy of different dosing regimens. Various CZA dosing regimens were modelled using MCS. RESULTS The in vitro study showed potent activity of CZA against KPC-Kp strains with MIC50/90 values of 1/2 mg/L, with a susceptibility rate of 95.7%. The values of cumulative fraction of response (CFR) for bactericidal (50%fT>5 × MIC) target were as follows: for patients with creatinine clearance (CLCr) >51 mL/min, the CFR was 96.01% for 2.5 g CZA every 12 h (q12h) and 97.14% for 2.5 g CZA every 8 h (q8h); and for patients with moderate renal impairment (CLCr >30 to ≤50 mL/min), the CFR was 95.75% for 1.25 g CZA q12h and 97.09% for 1.25 g CZA q8h. CONCLUSION This study indicated that the recommended dose of CZA can provide adequate pharmacodynamic exposure for treating KPC-Kp pneumonia.
Collapse
Affiliation(s)
- Yixin Kang
- Department of Respiratory Diseases, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Qian Zhou
- Department of Respiratory Diseases, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing 100853, China; Department of Respiratory Diseases, People's Hospital of Hainan District, Wuhai 016000, China
| | - Junchang Cui
- Department of Respiratory Diseases, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing 100853, China.
| |
Collapse
|
6
|
Yahav D, Giske CG, Grāmatniece A, Abodakpi H, Tam VH, Leibovici L. New β-Lactam-β-Lactamase Inhibitor Combinations. Clin Microbiol Rev 2020; 34:e00115-20. [PMID: 33177185 PMCID: PMC7667665 DOI: 10.1128/cmr.00115-20] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The limited armamentarium against drug-resistant Gram-negative bacilli has led to the development of several novel β-lactam-β-lactamase inhibitor combinations (BLBLIs). In this review, we summarize their spectrum of in vitro activities, mechanisms of resistance, and pharmacokinetic-pharmacodynamic (PK-PD) characteristics. A summary of available clinical data is provided per drug. Four approved BLBLIs are discussed in detail. All are options for treating multidrug-resistant (MDR) Enterobacterales and Pseudomonas aeruginosa Ceftazidime-avibactam is a potential drug for treating Enterobacterales producing extended-spectrum β-lactamase (ESBL), Klebsiella pneumoniae carbapenemase (KPC), AmpC, and some class D β-lactamases (OXA-48) in addition to carbapenem-resistant Pseudomonas aeruginosa Ceftolozane-tazobactam is a treatment option mainly for carbapenem-resistant P. aeruginosa (non-carbapenemase producing), with some activity against ESBL-producing Enterobacterales Meropenem-vaborbactam has emerged as treatment option for Enterobacterales producing ESBL, KPC, or AmpC, with similar activity as meropenem against P. aeruginosa Imipenem-relebactam has documented activity against Enterobacterales producing ESBL, KPC, and AmpC, with the combination having some additional activity against P. aeruginosa relative to imipenem. None of these drugs present in vitro activity against Enterobacterales or P. aeruginosa producing metallo-β-lactamase (MBL) or against carbapenemase-producing Acinetobacter baumannii Clinical data regarding the use of these drugs to treat MDR bacteria are limited and rely mostly on nonrandomized studies. An overview on eight BLBLIs in development is also provided. These drugs provide various levels of in vitro coverage of carbapenem-resistant Enterobacterales, with several drugs presenting in vitro activity against MBLs (cefepime-zidebactam, aztreonam-avibactam, meropenem-nacubactam, and cefepime-taniborbactam). Among these drugs, some also present in vitro activity against carbapenem-resistant P. aeruginosa (cefepime-zidebactam and cefepime-taniborbactam) and A. baumannii (cefepime-zidebactam and sulbactam-durlobactam).
Collapse
Affiliation(s)
- Dafna Yahav
- Infectious Diseases Unit, Rabin Medical Center, Beilinson Hospital, Petah-Tikva, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel
| | - Christian G Giske
- Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Alise Grāmatniece
- Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Pauls Stradins University Hospital, University of Latvia, Riga, Latvia
| | - Henrietta Abodakpi
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Vincent H Tam
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Leonard Leibovici
- Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel
- Medicine E, Rabin Medical Center, Beilinson Hospital, Petah-Tikva, Israel
| |
Collapse
|
7
|
In Vitro Activity of Cefepime-Zidebactam, Ceftazidime-Avibactam, and Other Comparators against Clinical Isolates of Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii: Results from China Antimicrobial Surveillance Network (CHINET) in 2018. Antimicrob Agents Chemother 2020; 65:AAC.01726-20. [PMID: 33139291 DOI: 10.1128/aac.01726-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/23/2020] [Indexed: 01/15/2023] Open
Abstract
This study evaluated the in vitro activity of cefepime-zidebactam in comparison with that of ceftazidime-avibactam and other comparators against clinically significant Gram-negative bacillus isolates. A total of 3,400 nonduplicate Gram-negative clinical isolates were collected from 45 medical centers across China in the CHINET Program in 2018, including Enterobacterales (n = 2,228), Pseudomonas aeruginosa (n = 657), and Acinetobacter baumannii (n = 515). The activities of cefepime-zidebactam and 20 comparators were determined by broth microdilution as recommended by the Clinical and Laboratory Standards Institute. Cefepime-zidebactam demonstrated potent activity against almost all Enterobacterales (MIC50/90, 0.125/1 mg/liter) and good activity against P. aeruginosa (MIC50/90, 2/8 mg/liter). Among the 373 carbapenem-resistant Enterobacteriaceae isolates, 57.3% (213/373) and 15.3% (57/373) were positive for bla KPC-2 and bla NDM, respectively. Cefepime-zidebactam showed a MIC of ≤2 mg/liter for 92.0% (196/213) of bla KPC-2 producers and 79.7% (47/59) of bla NDM producers. Ceftazidime-avibactam showed good in vitro activity against Enterobacterales (MIC50/90, 0.25/2 mg/liter; 94.0% susceptible) and P. aeruginosa (MIC50/90, 4/16 mg/liter; 86.9% susceptible). Ceftazidime-avibactam was active against 9.1% of carbapenem-resistant Escherichia coli isolates (63.6% were bla NDM producers) and 84.6% of Klebsiella pneumoniae isolates (74.3% were bla KPC producers). Most (90.1%) bla KPC-2 producers were susceptible to ceftazidime-avibactam. Cefepime-zidebactam demonstrated limited activity (MIC50/90, 16/32 mg/liter) against the 515 A. baumannii isolates (79.2% were carbapenem resistant), and ceftazidime-avibactam was less active (MIC50/90, 64/>64 mg/liter). Cefepime-zidebactam was highly active against clinical isolates of Enterobacterales and P. aeruginosa, including bla KPC-2-positive Enterobacterales and bla NDM-positive Enterobacterales and carbapenem-resistant P. aeruginosa And ceftazidime-avibactam was highly active against bla KPC-2-positive Enterobacterales and carbapenem-resistant P. aeruginosa.
Collapse
|
8
|
Zhang H, Xu Y, Jia P, Zhu Y, Zhang G, Zhang J, Duan S, Kang W, Wang T, Jing R, Cheng J, Liu Y, Yang Q. Global trends of antimicrobial susceptibility to ceftaroline and ceftazidime-avibactam: a surveillance study from the ATLAS program (2012-2016). Antimicrob Resist Infect Control 2020; 9:166. [PMID: 33109242 PMCID: PMC7590473 DOI: 10.1186/s13756-020-00829-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/15/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND This study reports the global trends of antimicrobial susceptibility to ceftaroline and ceftazidime-avibactam using data from the Antimicrobial Testing Leadership and Surveillance (ATLAS) program between 2012 and 2016. METHODS For the 2012-2016 ATLAS program, 205 medical centers located in Africa-Middle East (n = 12), Asia-Pacific (n = 32), Europe (n = 94), Latin America (n = 26), North America (n = 31), and Oceania (n = 10) consecutively collected the clinical isolates. The minimum inhibitory concentrations (MICs) and in vitro susceptibilities to ceftaroline and ceftazidime-avibactam were assessed using the Clinical and Laboratory Standards Institute (CLSI) 2019and European Committee on Antimicrobial Susceptibility Testing (EUCAST) 2019 guidelines. RESULTS Between 2012 and 2016, 176,345 isolates were collected from around the globe and included in the analysis. Regarding Gram-negative bacteria, ceftazidime-avibactam demonstrated high susceptibility (> 90%) against Enterobacteriaceae and Pseudomonas aeruginosa, with increased antimicrobial activity observed from the addition of avibactam (4 mg/L) to ceftazidime. Regarding Gram-positive bacteria, ceftaroline showed > 90% susceptibility against Staphylococcus aureus, Streptococcus pneumoniae, α-and β-hemolytic Streptococcus. The antimicrobial susceptibilities to ceftaroline and ceftazidime-avibactam were mostly stable from 2012 to 2016, but the susceptibilities to ceftazidime-avibactam to carbapenem-resistant (CR) Klebsiella pneumonia (88.4-81.6%) and to CR-P. aeruginosa (89.6-72.7%) decreased over time. In terms of regional difference, the susceptibilities of methicillin-resistant S. aureus to ceftaroline in Asia and of CR-K. pneumonia to ceftazidime-avibactam in Asia/Africa-Middle East were lower compared with other regions, while the susceptibility of CR-P. aeruginosa to ceftazidime-avibactam in North America was higher. CONCLUSION The addition of avibactam improves the activity of ceftazidime against Enterobacteriaceae and P. aeruginosa. The global antimicrobial susceptibilities to ceftaroline and ceftazidime-avibactam were, in general, stable from 2012 to 2016, but a marked reduction in the susceptibilities of specific species and CR-P. aeruginosa to ceftazidime-avibactam was observed.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Yingchun Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Peiyao Jia
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Ying Zhu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Ge Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Jingjia Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Simeng Duan
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Wei Kang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Tong Wang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Ran Jing
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Jingwei Cheng
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Yali Liu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Qiwen Yang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China.
| |
Collapse
|
9
|
Zhou J, Yang J, Hu F, Gao K, Sun J, Yang J. Clinical and Molecular Epidemiologic Characteristics of Ceftazidime/Avibactam-Resistant Carbapenem-Resistant Klebsiella pneumoniae in a Neonatal Intensive Care Unit in China. Infect Drug Resist 2020; 13:2571-2578. [PMID: 32801794 PMCID: PMC7394509 DOI: 10.2147/idr.s256922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/24/2020] [Indexed: 01/19/2023] Open
Abstract
Background Ceftazidime/avibactam (CZA)-resistant carbapenem-resistant Klebsiella pneumoniae (CRKP) infections occur in adults worldwide but are rarely observed in neonates. We evaluated the activities of CZA against CRKP and described the clinical and molecular epidemiology of CZA-resistant CRKP in a NICU prior to CZA approval in China. Methods A laboratory-based surveillance of CRKP was conducted from July 2017 to June 2018. Clinical data were initially reviewed. Antimicrobial susceptibility was determined by the broth microdilution method. CZA-resistant CRKP isolates were submitted to carbapenemase types screening and multilocus sequence typing. Results Over 23.3% (10/43) of CRKP strains were resistant to CZA, MIC50 and MIC90 values being 0.5 μg/mL and >32μg/mL, respectively. Most neonates shared similar clinical features with cesarean (n=8), preterm birth (n=6), low birth weight (n=5), and exposure to carbapenems/β-lactam (n=8). All CZA-resistant CRKP isolates were highly resistant to most tested drugs except for polymyxin B (POL) and tigecycline (TGC). CZA-resistant CRKP isolates showed greater sensitivity to amikacin (AMK), nitrofurantoin (NIT), levofloxacin (LVX) and ciprofloxacin (CIP), compared with CZA-sensitive CRKP. All CZA-resistant CRKP isolates harbored carbapenemase genes, blakpc-2 (n=5) being predominant, followed by blaNDM-1 (n=4) and blaNDM-5 (n=2). Among these CZA-resistant CRKP isolates, a total of eight different STs were identified. CRKP harboring KPC belonged to ST1419, ST37 and ST11, while NDM types were assigned to ST784, ST1710, ST37 and ST324. Furthermore, other β-lactamase genes including blaSHV and blaCTX-M were also found. Conclusion Over 23.3% of CRKP strains isolated from neonates were resistant to CZA. Cesarean, preterm birth, low birth weight, and exposure to carbapenems/β-lactam were similar clinical features of most neonates with CZA-resistant CRKP. The predominant carbapenemases of CZA-resistant CRKP were KPC-2 and NDM-1, and KPC-2 producing K. pneumoniae assigned into 3 STs, which indicate the genetic diversity of clinical CZA-resistant CRKP isolates.
Collapse
Affiliation(s)
- Juanjuan Zhou
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, People's Republic of China.,Department of Laboratory Medicine, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, People's Republic of China
| | - Junwen Yang
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, People's Republic of China.,Department of Laboratory Medicine, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, People's Republic of China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People's Republic of China
| | - Kaijie Gao
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, People's Republic of China.,Department of Laboratory Medicine, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jiufeng Sun
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, People's Republic of China
| | - Junmei Yang
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, People's Republic of China.,Department of Laboratory Medicine, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
10
|
Chen T, Xu W, Yu K, Zeng W, Xu C, Cao J, Zhou T. In Vitro Activity of Ceftazidime-Avibactam Alone and in Combination with Amikacin Against Colistin-Resistant Gram-Negative Pathogens. Microb Drug Resist 2020; 27:401-409. [PMID: 32721272 DOI: 10.1089/mdr.2019.0463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aims: Colistin became the critical treatment option for multidrug-resistant Gram-negative bacteria (GNB); however, resistance to colistin is increasingly being reported among clinical isolates. New therapy strategies should be considered nowadays. The aim of this study was to investigate the in vitro activity of a novel β-lactam/β-lactamases inhibitor ceftazidime-avibactam (CZA) alone and in combination with amikacin against colistin-resistant Gram-negative pathogens. Results: Among all the colistin-resistant GNB strains, 30.4% (21/69) were resistant to CZA, which was similar to the resistance rate of 25.4% (35/138) in colistin-susceptible strains (p > 0.05), displaying a relatively lower resistance rate compared with other antimicrobial agents (except amikacin). A majority of CZA-resistant GNB isolates (33/56) produced NDM carbapenemase. The fractional inhibitory concentration index method revealed synergistic (47.6%, 10/21) or additive (52.4%, 11/21) effects of CZA in combination with amikacin against colistin- and CZA-resistant GNB isolates, wherein the synergistic activity was found against all tested Klebsiella pneumoniae isolates (four) and Pseudomonas aeruginosa isolates (two). The time-killing curve assay verified the synergistic activity of CZA and amikacin in K. pneumoniae (FK2778) and P. aeruginosa (TL2294). The susceptible breakpoint index values showed that CZA in combination with amikacin reduced the MIC to less than the susceptibility breakpoint among 71.4% (15/21) of all tested strains. Conclusion: CZA may be a new alternative for colistin-resistant Gram-negative infections and pending clinical studies combining CZA with amikacin should be considered against these pathogens, particularly for K. pneumoniae and P. aeruginosa.
Collapse
Affiliation(s)
- Tao Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenya Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kaihang Yu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Weiliang Zeng
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chunquan Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianming Cao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Bassetti M, Peghin M. How to manage KPC infections. Ther Adv Infect Dis 2020; 7:2049936120912049. [PMID: 32489663 PMCID: PMC7238785 DOI: 10.1177/2049936120912049] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/31/2020] [Indexed: 11/16/2022] Open
Abstract
Carbapenemase-producing Enterobacteriaceae represent an increasing global threat worldwide and Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae (KPC-KP) has become one of the most important contemporary pathogens, especially in endemic areas. Risk stratification and rapid diagnostics laboratory workflows are of paramount importance and indication for therapy of KPC-KP infection must be individualized according to the baseline characteristics of the patient and severity of infection. The optimal treatment of infection because of KPC-KP organisms is uncertain and antibiotic options are limited. The knowledge of the patient's pathophysiology, infection site, and application of the pharmacokinetic/pharmacodynamic principles on the basis of minimum inhibitory concentration (MIC) has progressively gained major relevance. Combination therapies including high-dose meropenem, colistin, fosfomycin, tigecycline, and aminoglycosides are widely used, with suboptimal results. In the past few years, new antimicrobials targeting KPC-KP have been developed and are now at various stages of clinical research. However, their optimal use should be guaranteed in the long term for delaying, as much as possible, the emergence of resistance. Strict infection control measures remain necessary. The aim of this review is to discuss the challenges in the management and treatment of patients with infections because KPC-KP and provide an expert opinion.
Collapse
Affiliation(s)
- Matteo Bassetti
- Clinica Malattie Infettive, Azienda Ospedaliero-Universitaria "Santa Maria della Misericordia", Piazzale S. Maria della Misericordia, n. 15, Udine, 33100, Italy
| | - Maddalena Peghin
- Department of Medicine, Infectious Diseases Clinic, University of Udine and Azienda Sanitaria Universitaria, Integrata di Udine, Udine, Italy
| |
Collapse
|
12
|
Veeraraghavan B, Pragasam AK, Bakthavatchalam YD, Anandan S, Swaminathan S, Sundaram B. Colistin-sparing approaches with newer antimicrobials to treat carbapenem-resistant organisms: Current evidence and future prospects. Indian J Med Microbiol 2019; 37:72-90. [PMID: 31424014 DOI: 10.4103/ijmm.ijmm_19_215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Antimicrobial resistance is on the rise across the globe. Increasing incidence of infections due to carbapenem resistance organisms is becoming difficult to treat, due to the limited availability of therapeutic agents. Very few agents such as colistin, fosfomycin, tigecycline and minocycline are widely used, despite its toxicity. However, with the availability of novel antimicrobials, beta-lactam/beta-lactamase inhibitor-based and non-beta-lactam-based agents could be of great relief. This review covers three important aspects which include (i) current management of carbapenem-resistant infections, (ii) determination of specific types of carbapenemases produced by multidrug-resistant and extensively drug-resistant Gram-negative pathogens and (iii) the currently available novel beta-lactam/beta-lactamase inhibitors and non-beta-lactam-based agents' laboratory findings, clinical outcome and implications.
Collapse
Affiliation(s)
- Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Agila Kumari Pragasam
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Shalini Anandan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | | | | |
Collapse
|
13
|
Gajdács M, Urbán E. Resistance Trends and Epidemiology of Citrobacter- Enterobacter- Serratia in Urinary Tract Infections of Inpatients and Outpatients (RECESUTI): A 10-Year Survey. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E285. [PMID: 31216725 PMCID: PMC6630883 DOI: 10.3390/medicina55060285] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/17/2022]
Abstract
Background and objectives: Urinary tract infections (UTIs) are the third most common infections in humans, representing a significant factor of morbidity, both among outpatients and inpatients. The pathogenic role of Citrobacter, Enterobacter, and Serratia species (CES bacteria) has been described in UTIs. CES bacteria present a therapeutic challenge due to the various intrinsic and acquired resistance mechanisms they possess. Materials and Methods: The aim of this study was to assess and compare the resistance trends and epidemiology of CES pathogens in UTIs (RECESUTI) in inpatients and outpatients during a 10-year study period. To evaluate the resistance trends of isolated strains, several antibiotics were chosen as indicator drugs based on local utilization data. 578 CES isolates were obtained from inpatients and 554 from outpatients, representing 2.57 ± 0.41% of all positive urine samples for outpatients and 3.02 ± 0.40% for inpatients. E. cloacae was the most prevalent species. Results: The ratio of resistant strains to most of the indicator drugs was higher in the inpatient group and lower in the second half of the study period. ESBL-producing isolates were detected in 0-9.75% from outpatient and 0-29.09% from inpatient samples. Conclusions: Resistance developments of CES bacteria, coupled with their intrinsic non-susceptibility to several antibiotics, severely limits the number of therapeutic alternatives, especially for outpatients.
Collapse
Affiliation(s)
- Márió Gajdács
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös utca 6., 6720 Szeged, Hungary.
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Semmelweis utca 6., 6725 Szeged, Hungary.
| | - Edit Urbán
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Semmelweis utca 6., 6725 Szeged, Hungary.
| |
Collapse
|
14
|
The Continuing Threat of Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2019; 8:antibiotics8020052. [PMID: 31052511 PMCID: PMC6627156 DOI: 10.3390/antibiotics8020052] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus has been an exceptionally successful pathogen, which is still relevant in modern age-medicine due to its adaptability and tenacity. This bacterium may be a causative agent in a plethora of infections, owing to its abundance (in the environment and in the normal flora) and the variety of virulence factors that it possesses. Methicillin-resistant S. aureus (MRSA) strains—first described in 1961—are characterized by an altered penicillin-binding protein (PBP2a/c) and resistance to all penicillins, cephalosporins, and carbapenems, which makes the β-lactam armamentarium clinically ineffective. The acquisition of additional resistance determinants further complicates their eradication; therefore, MRSA can be considered as the first representative of multidrug-resistant bacteria. Based on 230 references, the aim of this review is to recap the history, the emergence, and clinical features of various MRSA infections (hospital-, community-, and livestock-associated), and to summarize the current advances regarding MRSA screening, typing, and therapeutic options (including lipoglycopeptides, oxazolidinones, anti-MRSA cephalosporins, novel pleuromutilin-, tetracycline- and quinolone-derivatives, daptomycin, fusidic acid, in addition to drug candidates in the development phase), both for an audience of clinical microbiologists and infectious disease specialists.
Collapse
|
15
|
Gajdács M. The Concept of an Ideal Antibiotic: Implications for Drug Design. Molecules 2019; 24:E892. [PMID: 30832456 PMCID: PMC6429336 DOI: 10.3390/molecules24050892] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/21/2019] [Accepted: 02/27/2019] [Indexed: 02/06/2023] Open
Abstract
The emergence and spread of antibiotic-resistant pathogens is a major public health issue, which requires global action of an intersectoral nature. Multidrug-resistant (MDR) pathogens-especially "ESKAPE" bacteria-can withstand lethal doses of antibiotics with various chemical structures and mechanisms of action. Pharmaceutical companies are increasingly turning away from participating in the development of new antibiotics, due to the regulatory environment and the financial risks. There is an urgent need for innovation in antibiotic research, as classical discovery platforms (e.g., mining soil Streptomycetes) are no longer viable options. In addition to discovery platforms, a concept of an ideal antibiotic should be postulated, to act as a blueprint for future drugs, and to aid researchers, pharmaceutical companies, and relevant stakeholders in selecting lead compounds. Based on 150 references, the aim of this review is to summarize current advances regarding the challenges of antibiotic drug discovery and the specific attributes of an ideal antibacterial drug (a prodrug or generally reactive compound with no specific target, broad-spectrum antibacterial activity, adequate penetration through the Gram-negative cell wall, activity in biofilms and in hard-to-treat infections, accumulation in macrophages, availability for oral administration, and for use in sensitive patient groups).
Collapse
Affiliation(s)
- Márió Gajdács
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary.
| |
Collapse
|