1
|
Thoma Y, Cathignol AE, Pétermann YJ, Sariko ML, Said B, Csajka C, Guidi M, Mpagama SG. Toward a Clinical Decision Support System for Monitoring Therapeutic Antituberculosis Medical Drugs in Tanzania (Project TuberXpert): Protocol for an Algorithm' Development and Implementation. JMIR Res Protoc 2024; 13:e58720. [PMID: 39432902 PMCID: PMC11535787 DOI: 10.2196/58720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND The end tuberculosis (TB) strategy requires a novel patient treatment approach contrary to the one-size-fits-all model. It is well known that each patient's physiology is different and leads to various rates of drug elimination. Therapeutic drug monitoring (TDM) offers a way to manage drug dosage adaptation but requires trained pharmacologists, which is scarce in resource-limited settings. OBJECTIVE We will develop an automated clinical decision support system (CDSS) to help practitioners with the dosage adaptation of rifampicin, one of the essential medical drugs targeting TB, that is known for large pharmacokinetic variability and frequent suboptimal blood exposure. Such an advanced system will encourage the spread of a dosage-individualization culture, including among practitioners not specialized in pharmacology. Thus, the objectives of this project are to (1) develop the appropriate population pharmacokinetic (popPK) model for rifampicin for Tanzanian patients, (2) optimize the reporting of relevant information to practitioners for drug dosage adjustment, (3) automate the delivery of the report in line with the measurement of drug concentration, and (4) validate and implement the final system in the field. METHODS A total of 3 teams will combine their efforts to deliver the first automated TDM CDSS for TB. A cross-sectional study will be conducted to define the best way to display information to clinicians. In parallel, a rifampicin popPK model will be developed taking advantage of the published literature, complemented with data provided by existing literature data from the Pan-African Consortium for the Evaluation of Antituberculosis Antibiotics (panACEA), and samples collected within this project. A decision tree will be designed and implemented as a CDSS, and an automated report generation will be developed and validated through selected case studies. Expert pharmacologists will validate the CDSS, and finally, field implementation in Tanzania will occur, coupled with a prospective study to assess clinicians' adherence to the CDSS recommendations. RESULTS The TuberXpert project started in November 2022. In July 2024, the clinical study in Tanzania was completed with the enrollment of 50 patients to gather the required data to build a popPK model for rifampicin, together with a qualitative study defining the report design, as well as the CDSS general architecture definition. CONCLUSIONS At the end of the TuberXpert project, Tanzania will possess a new tool to help the practitioners with the adaptation of drug dosage targeting complicated TB cases (TB or HIV, TB or diabetes mellitus, and TB or malnutrition). This automated system will be validated and used in the field and will be proposed to other countries affected by endemic TB. In addition, this approach will serve as proof of concept regarding the feasibility and suitability of CDSS-assisted TDM for further anti-TB drugs in TB-burdened areas deprived of TDM experts, including second-line treatments considered important to monitor. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/58720.
Collapse
Affiliation(s)
- Yann Thoma
- School of Engineering and Management Vaud, HES-SO University of Applied Sciences and Arts Western Switzerland, Yverdon-les-Bains, Switzerland
| | - Annie E Cathignol
- School of Engineering and Management Vaud, HES-SO University of Applied Sciences and Arts Western Switzerland, Yverdon-les-Bains, Switzerland
- Centre for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Yuan J Pétermann
- Centre for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Bibie Said
- Kibong'oto Infectious Diseases Hospital, Sanya Juu, United Republic of Tanzania
- The Nelson Mandela African Institution of Science and Technology, Arusha, United Republic of Tanzania
| | - Chantal Csajka
- Centre for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Monia Guidi
- Centre for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Stellah G Mpagama
- Kibong'oto Infectious Diseases Hospital, Sanya Juu, United Republic of Tanzania
| |
Collapse
|
2
|
Thu NQ, Tien NTN, Yen NTH, Duong TH, Long NP, Nguyen HT. Push forward LC-MS-based therapeutic drug monitoring and pharmacometabolomics for anti-tuberculosis precision dosing and comprehensive clinical management. J Pharm Anal 2024; 14:16-38. [PMID: 38352944 PMCID: PMC10859566 DOI: 10.1016/j.jpha.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/25/2023] [Accepted: 09/18/2023] [Indexed: 02/16/2024] Open
Abstract
The spread of tuberculosis (TB), especially multidrug-resistant TB and extensively drug-resistant TB, has strongly motivated the research and development of new anti-TB drugs. New strategies to facilitate drug combinations, including pharmacokinetics-guided dose optimization and toxicology studies of first- and second-line anti-TB drugs have also been introduced and recommended. Liquid chromatography-mass spectrometry (LC-MS) has arguably become the gold standard in the analysis of both endo- and exo-genous compounds. This technique has been applied successfully not only for therapeutic drug monitoring (TDM) but also for pharmacometabolomics analysis. TDM improves the effectiveness of treatment, reduces adverse drug reactions, and the likelihood of drug resistance development in TB patients by determining dosage regimens that produce concentrations within the therapeutic target window. Based on TDM, the dose would be optimized individually to achieve favorable outcomes. Pharmacometabolomics is essential in generating and validating hypotheses regarding the metabolism of anti-TB drugs, aiding in the discovery of potential biomarkers for TB diagnostics, treatment monitoring, and outcome evaluation. This article highlighted the current progresses in TDM of anti-TB drugs based on LC-MS bioassay in the last two decades. Besides, we discussed the advantages and disadvantages of this technique in practical use. The pressing need for non-invasive sampling approaches and stability studies of anti-TB drugs was highlighted. Lastly, we provided perspectives on the prospects of combining LC-MS-based TDM and pharmacometabolomics with other advanced strategies (pharmacometrics, drug and vaccine developments, machine learning/artificial intelligence, among others) to encapsulate in an all-inclusive approach to improve treatment outcomes of TB patients.
Collapse
Affiliation(s)
- Nguyen Quang Thu
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Nguyen Tran Nam Tien
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Nguyen Thi Hai Yen
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Thuc-Huy Duong
- Department of Chemistry, University of Education, Ho Chi Minh City, 700000, Viet Nam
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Huy Truong Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, 700000, Viet Nam
| |
Collapse
|
3
|
Qi M, Lv D, Zhang Y, Wang D, Chen X, Zhu Z, Hong Z, Chai Y, Zhang H, Cao Y. Development of a surface plasmon resonance biosensor for accurate and sensitive quantitation of small molecules in blood samples. J Pharm Anal 2022; 12:929-936. [PMID: 36605571 PMCID: PMC9805936 DOI: 10.1016/j.jpha.2022.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 01/07/2023] Open
Abstract
Therapeutic drug monitoring (TDM) has played an important role in clinical medicine for precise dosing. Currently, chromatographic technology and immunoassay detection are widely used in TDM and have met most of the needs of clinical drug therapy. However, some problems still exist in practical applications, such as complicated operation and the influence of endogenous substances. Surface plasmon resonance (SPR) has been applied to detect the concentrations of small molecules, including pesticide residues in crops and antibiotics in milk, which indicates its potential for in vivo drug detection. In this study, a new SPR-based biosensor for detecting chloramphenicol (CAP) in blood samples was developed and validated using methodological verification, including precision, accuracy, matrix effect, and extraction recovery rate, and compared with the classic ultra-performance liquid chromatography-ultraviolet (UPLC-UV) method. The detection range of SPR was 0.1-50 ng/mL and the limit of detection was 0.099 ± 0.023 ng/mL, which was lower than that of UPLC-UV. The intra-day and inter-day accuracies of SPR were 98%-114% and 110%-122%, which met the analysis requirement. The results show that the SPR biosensor is identical to UPLC-UV in the detection of CAP in rat blood samples; moreover, the SPR biosensor has better sensitivity. Therefore, the present study shows that SPR technology can be used for the detection of small molecules in the blood samples and has the potential to become a method for therapeutic drug monitoring.
Collapse
Affiliation(s)
- Minyu Qi
- Department of Biochemical Pharmacy, Faculty of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Diya Lv
- Pharmaceutical Analysis and Testing Center, Faculty of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Ying Zhang
- Department of Biochemical Pharmacy, Faculty of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Dongyao Wang
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Xiaofei Chen
- Pharmaceutical Analysis and Testing Center, Faculty of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Zhenyu Zhu
- Pharmaceutical Analysis and Testing Center, Faculty of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Zhanying Hong
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Yifeng Chai
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Hai Zhang
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China,Corresponding author.
| | - Yan Cao
- Department of Biochemical Pharmacy, Faculty of Pharmacy, Naval Medical University, Shanghai, 200433, China,Corresponding author.
| |
Collapse
|
4
|
Bhattacharya B, Damle N, Ranjan P, Arora G, Prakash S, Nischal N, Jorwal P, Kumar A, Tyagi A, Wig N. 99mTc-Ethambutol Scintigraphy with Single-Photon Emission Computed Tomography/Computed Tomography in Lymph Node Tuberculosis: An Initial Experience. Indian J Nucl Med 2022; 37:323-328. [PMID: 36817210 PMCID: PMC9930455 DOI: 10.4103/ijnm.ijnm_207_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/12/2022] [Accepted: 04/25/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose of the Study The purpose of the study is to evaluate 99mTc-labeled ethambutol (99mTc-EMB) as a potential diagnostic agent in lymph node tuberculosis (LNTB). Materials and Methods A prospective pilot study was done at All India Institute of Medical Sciences, New Delhi. We included adult consenting patients who were diagnosed with LNTB and were either treatment naïve or had just started treatment. Patients were injected with 10-15 mCi of 99mTc-EMB. Whole-body anteroposterior planar imaging was done from 15 min after injection at serial intervals till 4-6 h along with one single-photon emission computed tomography-computed tomography (SPECT-CT) imaging with the help of a dual-head SPECT-CT gamma camera. The uptake of 99mTc-EMB was analyzed and corroborated with clinicoradiological findings. Results Between January 2019 and November 2020, we recruited 23 patients who underwent 99mTc-EMB, and 19 scans were interpretable and considered for analysis. Cervical lymphadenopathy was the most common presentation (13, 68.42%), followed by mediastinal (9, 47.36%) and abdominal (4, 21.05%) nodes. Other involvement included pulmonary (8, 42.1%), gastrointestinal (3, 15.78%), and chest wall abscess and bone marrow deposits in 1 patient each. A positive scan was noted in 7 (53.84%) patients with cervical lymphadenopathy, whereas uptake in abdominal and mediastinal lymph nodes was seen in 1 (25%) and 2 (22.22%) cases, respectively. Uptake in pulmonary lesions was noted in 3 (37.5%), but uptake in hepatic and splenic lesions was not seen. Conclusion 99mTc-EMB scan can demonstrate drug penetrance in vivo in some patients with LNTB and should be explored further with a larger sample size.
Collapse
Affiliation(s)
- Bisakh Bhattacharya
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Nishikant Damle
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Piyush Ranjan
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Geetanjali Arora
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sneha Prakash
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Neeraj Nischal
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Pankaj Jorwal
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Arvind Kumar
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Apoorva Tyagi
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Naveet Wig
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
5
|
Alffenaar JWC, Stocker SL, Forsman LD, Garcia-Prats A, Heysell SK, Aarnoutse RE, Akkerman OW, Aleksa A, van Altena R, de Oñata WA, Bhavani PK, Van't Boveneind-Vrubleuskaya N, Carvalho ACC, Centis R, Chakaya JM, Cirillo DM, Cho JG, D Ambrosio L, Dalcolmo MP, Denti P, Dheda K, Fox GJ, Hesseling AC, Kim HY, Köser CU, Marais BJ, Margineanu I, Märtson AG, Torrico MM, Nataprawira HM, Ong CWM, Otto-Knapp R, Peloquin CA, Silva DR, Ruslami R, Santoso P, Savic RM, Singla R, Svensson EM, Skrahina A, van Soolingen D, Srivastava S, Tadolini M, Tiberi S, Thomas TA, Udwadia ZF, Vu DH, Zhang W, Mpagama SG, Schön T, Migliori GB. Clinical standards for the dosing and management of TB drugs. Int J Tuberc Lung Dis 2022; 26:483-499. [PMID: 35650702 PMCID: PMC9165737 DOI: 10.5588/ijtld.22.0188] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND: Optimal drug dosing is important to ensure adequate response to treatment, prevent development of drug resistance and reduce drug toxicity. The aim of these clinical standards is to provide guidance on 'best practice´ for dosing and management of TB drugs.METHODS: A panel of 57 global experts in the fields of microbiology, pharmacology and TB care were identified; 51 participated in a Delphi process. A 5-point Likert scale was used to score draft standards. The final document represents the broad consensus and was approved by all participants.RESULTS: Six clinical standards were defined: Standard 1, defining the most appropriate initial dose for TB treatment; Standard 2, identifying patients who may be at risk of sub-optimal drug exposure; Standard 3, identifying patients at risk of developing drug-related toxicity and how best to manage this risk; Standard 4, identifying patients who can benefit from therapeutic drug monitoring (TDM); Standard 5, highlighting education and counselling that should be provided to people initiating TB treatment; and Standard 6, providing essential education for healthcare professionals. In addition, consensus research priorities were identified.CONCLUSION: This is the first consensus-based Clinical Standards for the dosing and management of TB drugs to guide clinicians and programme managers in planning and implementation of locally appropriate measures for optimal person-centred treatment to improve patient care.
Collapse
Affiliation(s)
- J W C Alffenaar
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia, School of Pharmacy, The University of Sydney Faculty of Medicine and Health, Sydney, NSW, Australia, Westmead Hospital, Sydney, NSW, Australia
| | - S L Stocker
- School of Pharmacy, The University of Sydney Faculty of Medicine and Health, Sydney, NSW, Australia, Department of Clinical Pharmacology and Toxicology, St Vincent´s Hospital, Sydney, NSW, Australia, St Vincent´s Clinical Campus, University of NSW, Kensington, NSW, Australia
| | - L Davies Forsman
- Division of Infectious Diseases, Department of Medicine, Karolinska Institutet, Solna, Sweden, Department of Infectious Diseases Karolinska University Hospital, Solna, Sweden
| | - A Garcia-Prats
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Tygerberg, South Africa, Department of Pediatrics, University of Wisconsin, Madison, WI
| | - S K Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - R E Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - O W Akkerman
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases and Tuberculosis, Groningen, The Netherlands, University of Groningen, University Medical Center Groningen, Tuberculosis Center Beatrixoord, Haren, The Netherlands
| | - A Aleksa
- Educational Institution "Grodno State Medical University", Grodno, Belarus
| | - R van Altena
- Asian Harm Reduction Network (AHRN) and Medical Action Myanmar (MAM) in Yangon, Myanmar
| | - W Arrazola de Oñata
- Belgian Scientific Institute for Public Health (Belgian Lung and Tuberculosis Association), Brussels, Belgium
| | - P K Bhavani
- Indian Council of Medical Research-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India
| | - N Van't Boveneind-Vrubleuskaya
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, Department of Public Health TB Control, Metropolitan Public Health Services, The Hague, The Netherlands
| | - A C C Carvalho
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos (LITEB), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - R Centis
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Tradate, Italy
| | - J M Chakaya
- Department of Medicine, Therapeutics and Dermatology, Kenyatta University, Nairobi, Kenya, Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - D M Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - J G Cho
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia, Westmead Hospital, Sydney, NSW, Australia, Parramatta Chest Clinic, Parramatta, NSW, Australia
| | - L D Ambrosio
- Public Health Consulting Group, Lugano, Switzerland
| | - M P Dalcolmo
- Reference Center Hélio Fraga, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - P Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - K Dheda
- Centre for Lung Infection and Immunity, Department of Medicine, Division of Pulmonology and UCT Lung Institute, University of Cape Town, Cape Town, South Africa, University of Cape Town Lung Institute & South African MRC Centre for the Study of Antimicrobial Resistance, Cape Town, South Africa, Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| | - G J Fox
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia, Woolcock Institute of Medical Research, Glebe, NSW, Australia
| | - A C Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Tygerberg, South Africa
| | - H Y Kim
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia, School of Pharmacy, The University of Sydney Faculty of Medicine and Health, Sydney, NSW, Australia, Westmead Hospital, Sydney, NSW, Australia
| | - C U Köser
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - B J Marais
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia, Department of Infectious Diseases and Microbiology, The Children´s Hospital at Westmead, Westmead, NSW, Australia
| | - I Margineanu
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - A G Märtson
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - M Munoz Torrico
- Clínica de Tuberculosis, Instituto Nacional de Enfermedades Respiratorias, Ciudad de México, Mexico
| | - H M Nataprawira
- Division of Paediatric Respirology, Department of Child Health, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin Hospital, Bandung, Indonesia
| | - C W M Ong
- Infectious Disease Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, Singapore, Division of Infectious Diseases, Department of Medicine, National University Hospital, Singapore
| | - R Otto-Knapp
- German Central Committee against Tuberculosis (DZK), Berlin, Germany
| | - C A Peloquin
- Infectious Disease Pharmacokinetics Laboratory, Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - D R Silva
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - R Ruslami
- TB/HIV Research Centre, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia, Department of Biomedical Sciences, Division of Pharmacology and Therapy, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - P Santoso
- Division of Respirology and Critical Care, Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung, Indonesia
| | - R M Savic
- Department of Bioengineering and Therapeutic Sciences, Division of Pulmonary and Critical Care Medicine, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA, USA
| | - R Singla
- Department of TB & Respiratory Diseases, National Institute of TB & Respiratory Diseases, New Delhi, India
| | - E M Svensson
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - A Skrahina
- The Republican Research and Practical Centre for Pulmonology and TB, Minsk, Belarus
| | - D van Soolingen
- National Institute for Public Health and the Environment, TB Reference Laboratory (RIVM), Bilthoven, The Netherlands
| | - S Srivastava
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - M Tadolini
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy, Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - S Tiberi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - T A Thomas
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Z F Udwadia
- P. D. Hinduja National Hospital and Medical Research Centre, Mumbai, India
| | - D H Vu
- National Drug Information and Adverse Drug Reaction Monitoring Centre, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - W Zhang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People´s Republic of China
| | - S G Mpagama
- Kilimanjaro Christian Medical University College, Moshi, United Republic of Tanzania, Kibong´oto Infectious Diseases Hospital, Sanya Juu, Siha, Kilimanjaro, United Republic of Tanzania
| | - T Schön
- Department of Infectious Diseases, Linköping University Hospital, Linköping, Sweden, Institute of Biomedical and Clinical Sciences, Division of Infection and Inflammation, Linköping University, Linköping, Sweden, Department of Infectious Diseases, Kalmar County Hospital, Kalmar, Linköping University, Linköping, Sweden
| | - G B Migliori
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Tradate, Italy
| |
Collapse
|
6
|
Margineanu I, Akkerman O, Cattaneo D, Goletti D, Marriott DJE, Migliori GB, Mirzayev F, Peloquin CA, Stienstra Y, Alffenaar JW. Practices of therapeutic drug monitoring in tuberculosis: an international survey. Eur Respir J 2022; 59:2102787. [PMID: 35086830 PMCID: PMC9030066 DOI: 10.1183/13993003.02787-2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/02/2022] [Indexed: 11/08/2022]
Abstract
Tuberculosis (TB) is still one of the top 10 causes of death in low and lower-middle income countries [1]. TB's long and complex treatment, side-effects, and development of resistant bacteria compromise treatment success. To improve treatment outcomes, therapeutic drug monitoring (TDM) has been included in TB treatment guidelines [2–4] to be considered for specific situations in which there is documented or expected poor response to treatment, drug toxicity, or a lower drug concentration. Several strategies for implementation of TDM for programmatic use have been proposed to overcome barriers to widespread use of TDM [5, 6], including more accessible techniques such as dried blood spot analysis or saliva and urine testing [7], but uptake in programmatic care is still limited [8]. Survey responses indicate that there is concern surrounding cost-effectiveness and the resources available in different settings to implement therapeutic drug monitoring in TB. Robust research is needed to better inform of the potential long-term benefits. https://bit.ly/34PFSfd
Collapse
Affiliation(s)
- Ioana Margineanu
- Dept of Clinical Pharmacy and Pharmacology, Rijksuniversiteit Groningen, University Medical Centrum Groningen, Groningen, The Netherlands
| | - Onno Akkerman
- University of Groningen, University Medical Centrum Groningen, Dept of Pulmonary Diseases and Tuberculosis, Groningen, The Netherlands
- University Of Groningen, University Medical Centrum Groningen, TB center Beatrixoord, Groningen, The Netherlands
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy
- In alphabetical order
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases (INMI), Rome, Italy
- In alphabetical order
| | - Deborah J E Marriott
- Dept of Clinical Microbiology and Infectious Diseases, St Vincent's Hospital, Sydney, Australia
- In alphabetical order
| | | | - Fuad Mirzayev
- Global TB Programme, World Health Organization, Geneva, Switzerland
- In alphabetical order
| | - Charles A Peloquin
- University of Florida, College of Pharmacy and Emerging Pathogens Institute, Gainesville, FL, USA
- In alphabetical order
| | - Ymkje Stienstra
- Dept of Internal Medicine, Rijksuniversiteit Groningen, University Medical Centrum Groningen, Groningen, The Netherlands
| | - Jan-Willem Alffenaar
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| |
Collapse
|
7
|
Kim HY, Byashalira KC, Heysell SK, Märtson AG, Mpagama SG, Rao P, Sturkenboom MG, Alffenaar JWC. Therapeutic Drug Monitoring of Anti-infective Drugs: Implementation Strategies for 3 Different Scenarios. Ther Drug Monit 2022; 44:3-10. [PMID: 34686647 PMCID: PMC8755585 DOI: 10.1097/ftd.0000000000000936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/14/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Therapeutic drug monitoring (TDM) supports personalized treatment. For successful implementation, TDM must have a turnaround time suited to the clinical needs of patients and their health care settings. Here, the authors share their views of how a TDM strategy can be tailored to specific settings and patient groups. METHODS The authors selected distinct scenarios for TDM: high-risk, complex, and/or critically ill patient population; outpatients; and settings with limited laboratory resources. In addition to the TDM scenario approach, they explored potential issues with the legal framework governing dose escalation. RESULTS The most important issues identified in the different scenarios are that critically ill patients require rapid turnaround time, outpatients require an easy sampling procedure for the sample matrix and sample collection times, settings with limited laboratory resources necessitate setting-specific analytic techniques, and all scenarios warrant a legal framework to capture the use of escalated dosages, ideally with the use of trackable dosing software. CONCLUSIONS To benefit patients, TDM strategies need to be tailored to the intended population. Strategies can be adapted for rapid turnaround time for critically ill patients, convenient sampling for outpatients, and feasibility for those in settings with limited laboratory resources.
Collapse
Affiliation(s)
- Hannah Yejin Kim
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
- Westmead Hospital, Sydney, NSW 2145, Australia
- Marie Bashir Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2006, Australia
| | | | - Scott K. Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Virginia, USA
| | - Anne-Grete Märtson
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, the Netherlands
| | | | - Prakruti Rao
- Division of Infectious Diseases and International Health, University of Virginia, Virginia, USA
| | - Marieke G.G. Sturkenboom
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, the Netherlands
| | - Jan-Willem C. Alffenaar
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
- Westmead Hospital, Sydney, NSW 2145, Australia
- Marie Bashir Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
8
|
Sinha P, Lönnroth K, Bhargava A, Heysell SK, Sarkar S, Salgame P, Rudgard W, Boccia D, Van Aartsen D, Hochberg NS. Food for thought: addressing undernutrition to end tuberculosis. THE LANCET. INFECTIOUS DISEASES 2021; 21:e318-e325. [PMID: 33770535 PMCID: PMC8458477 DOI: 10.1016/s1473-3099(20)30792-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/18/2020] [Accepted: 09/04/2020] [Indexed: 01/15/2023]
Abstract
Tuberculosis is the leading cause of deaths from an infectious disease worldwide. WHO's End TB Strategy is falling short of several 2020 targets. Undernutrition is the leading population-level risk factor for tuberculosis. Studies have consistently found that undernutrition is associated with increased tuberculosis incidence, increased severity, worse treatment outcomes, and increased mortality. Modelling studies support implementing nutritional interventions for people living with tuberculosis and those at risk of tuberculosis disease to ensure the success of the End TB Strategy. In this Personal View, we highlight nutrition-related immunocompromisation, implications of undernutrition for tuberculosis treatment and prevention, the role of nutritional supplementation, pharmacokinetics and pharmacodynamics of antimycobacterial medications in undernourished people with tuberculosis, and the role of social protection interventions in addressing undernutrition as a tuberculosis risk factor. To catalyse action on this insufficiently addressed accelerant of the global tuberculosis epidemic, research should be prioritised to understand the immunological pathways that are impaired by nutrient deficiencies, develop tools to diagnose clinical and subclinical tuberculosis in people who are undernourished, and understand how nutritional status affects the efficacy of tuberculosis vaccine and therapy. Through primary research, modelling, and implementation research, policy change should also be accelerated, particularly in countries with a high burden of tuberculosis.
Collapse
Affiliation(s)
- Pranay Sinha
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston University, MA, USA.
| | - Knut Lönnroth
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Anurag Bhargava
- Department of Medicine, Yenepoya Medical College, and Center for Nutrition Studies, Yenepoya (Deemed to be University), Mangalore, India; Department of Medicine, McGill University, Montreal, QC, Canada
| | - Scott K Heysell
- Division of Infectious Diseases and International Health, University of Virginia, VA, USA
| | - Sonali Sarkar
- Department of Preventive and Social Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Padmini Salgame
- Center for Emerging Pathogens, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - William Rudgard
- Department of Social Policy and Intervention, University of Oxford, Oxford, UK
| | - Delia Boccia
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Daniel Van Aartsen
- Division of Infectious Diseases and International Health, University of Virginia, VA, USA
| | - Natasha S Hochberg
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston University, MA, USA; Department of Epidemiology, Boston University School of Public Health, Boston University, MA, USA
| |
Collapse
|
9
|
Kim HY, Ruiter E, Jongedijk EM, Ak HK, Marais BJ, Pk B, Sawleshwarkar S, Touw DJ, Alffenaar JW. Saliva-based linezolid monitoring on a mobile UV spectrophotometer. J Antimicrob Chemother 2021; 76:1786-1792. [PMID: 33734351 DOI: 10.1093/jac/dkab075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/15/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND In TB, therapeutic drug monitoring (TDM) is recommended for linezolid; however, implementation is challenging in endemic settings. Non-invasive saliva sampling using a mobile assay would increase the feasibility of TDM. OBJECTIVES To validate a linezolid saliva assay using a mobile UV spectrophotometer. METHODS The saliva assay was developed using NanoPhotometer NP80® and linezolid concentrations were quantified using second-order derivative spectroscopy. Sample preparation involved liquid-liquid extraction of saliva, using saturated sodium chloride and ethyl acetate at 1:1:3 (v/v/v). The assay was validated for accuracy, precision, selectivity, specificity, carry-over, matrix effect, stability and filters. Acceptance criteria were bias and coefficient of variation (CV) <15% for quality control (QC) samples and <20% for the lower limit of quantification (LLOQ). RESULTS Linezolid concentrations correlated with the amplitude between 250 and 270 nm on the second-order derivative spectra. The linezolid calibration curve was linear over the range of 3.0 to 25 mg/L (R2 = 0.99) and the LLOQ was 3.0 mg/L. Accuracy and precision were demonstrated with bias of -7.5% to 2.7% and CV ≤5.6%. The assay met the criteria for selectivity, matrix effect, carry-over, stability (tested up to 3 days) and use of filters (0.22 μM Millex®-GV and Millex®-GP). Specificity was tested with potential co-medications. Interferences from pyrazinamide, levofloxacin, moxifloxacin, rifampicin, abacavir, acetaminophen and trimethoprim were noted; however, with minimal clinical implications on linezolid dosing. CONCLUSIONS We validated a UV spectrophotometric assay using non-invasive saliva sampling for linezolid. The next step is to demonstrate clinical feasibility and value to facilitate programmatic implementation of TDM.
Collapse
Affiliation(s)
- Hannah Yejin Kim
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.,Westmead Hospital, Westmead, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia
| | - Evelien Ruiter
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.,School of Pharmacy, Utrecht University, Utrecht, The Netherlands
| | - Erwin M Jongedijk
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | | | - Ben J Marais
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia.,Department of Infectious Diseases and Microbiology, The Children's Hospital at Westmead, Westmead, Australia
| | - Bhavani Pk
- National Institute for Research in Tuberculosis, Chennai, India
| | - Shailendra Sawleshwarkar
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Daan J Touw
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | - Jan-Willem Alffenaar
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.,Westmead Hospital, Westmead, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
10
|
Alffenaar JWC, Jongedijk EM, van Winkel CAJ, Sariko M, Heysell SK, Mpagama S, Touw DJ. A mobile microvolume UV/visible light spectrophotometer for the measurement of levofloxacin in saliva. J Antimicrob Chemother 2021; 76:423-429. [PMID: 33089322 PMCID: PMC7816168 DOI: 10.1093/jac/dkaa420] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Therapeutic drug monitoring (TDM) for personalized dosing of fluoroquinolones has been recommended to optimize efficacy and reduce acquired drug resistance in the treatment of MDR TB. Therefore, the aim of this study was to develop a simple, low-cost, robust assay for TDM using mobile UV/visible light (UV/VIS) spectrophotometry to quantify levofloxacin in human saliva at the point of care for TB endemic settings. METHODS All experiments were performed on a mobile UV/VIS spectrophotometer. The levofloxacin concentration was quantified by using the amplitude of the second-order spectrum between 300 and 400 nm of seven calibrators. The concentration of spiked samples was calculated from the spectrum amplitude using linear regression. The method was validated for selectivity, specificity, linearity, accuracy and precision. Drugs frequently co-administered were tested for interference. RESULTS The calibration curve was linear over a range of 2.5-50.0 mg/L for levofloxacin, with a correlation coefficient of 0.997. Calculated accuracy ranged from -5.2% to 2.4%. Overall precision ranged from 2.1% to 16.1%. Application of the Savitsky-Golay method reduced the effect of interferents on the quantitation of levofloxacin. Although rifampicin and pyrazinamide showed analytical interference at the lower limit of quantitation of levofloxacin concentrations, this interference had no implication on decisions regarding the levofloxacin dose. CONCLUSIONS A simple UV/VIS spectrophotometric method to quantify levofloxacin in saliva using a mobile nanophotometer has been validated. This method can be evaluated in programmatic settings to identify patients with low levofloxacin drug exposure to trigger personalized dose adjustment.
Collapse
Affiliation(s)
- Jan-Willem C Alffenaar
- University of Sydney, Faculty of Medicine and Health, School of Pharmacy, Sydney, Australia.,Westmead Hospital, Sydney, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia.,University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | - Erwin M Jongedijk
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | - Claudia A J van Winkel
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | | | - Scott K Heysell
- University of Virginia, Division of Infectious Diseases and International Health, Charlottesville, VA, USA
| | - Stellah Mpagama
- Kibong'oto Infectious Diseases Hospital, Kilimanjaro, Tanzania
| | - Daan J Touw
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| |
Collapse
|
11
|
Mohamed S, Mvungi HC, Sariko M, Rao P, Mbelele P, Jongedijk EM, van Winkel CAJ, Touw DJ, Stroup S, Alffenaar JWC, Mpagama S, Heysell SK. Levofloxacin pharmacokinetics in saliva as measured by a mobile microvolume UV spectrophotometer among people treated for rifampicin-resistant TB in Tanzania. J Antimicrob Chemother 2021; 76:1547-1552. [PMID: 33675664 PMCID: PMC8120342 DOI: 10.1093/jac/dkab057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/05/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Early detection and correction of low fluoroquinolone exposure may improve treatment of MDR-TB. OBJECTIVES To explore a recently developed portable, battery-powered, UV spectrophotometer for measuring levofloxacin in saliva of people treated for MDR-TB. METHODS Patients treated with levofloxacin as part of a regimen for MDR-TB in Northern Tanzania had serum and saliva collected concurrently at 1 and 4 h after 2 weeks of observed levofloxacin administration. Saliva levofloxacin concentrations were quantified in the field via spectrophotometry, while serum was analysed at a regional laboratory using HPLC. A Bayesian population pharmacokinetics model was used to estimate the area under the concentration-time curve (AUC0-24). Subtarget exposures of levofloxacin were defined by serum AUC0-24 <80 mg·h/L. The study was registered at Clinicaltrials.gov with clinical trial identifier NCT04124055. RESULTS Among 45 patients, 11 (25.6%) were women and 16 (37.2%) were living with HIV. Median AUC0-24 in serum was 140 (IQR = 102.4-179.09) mg·h/L and median AUC0-24 in saliva was 97.10 (IQR = 74.80-121.10) mg·h/L. A positive linear correlation was observed with serum and saliva AUC0-24, and a receiver operating characteristic curve constructed to detect serum AUC0-24 below 80 mg·h/L demonstrated excellent prediction [AUC 0.80 (95% CI = 0.62-0.94)]. Utilizing a saliva AUC0-24 cut-off of 91.6 mg·h/L, the assay was 88.9% sensitive and 69.4% specific in detecting subtarget serum AUC0-24 values, including identifying eight of nine patients below target. CONCLUSIONS Portable UV spectrophotometry as a point-of-care screen for subtarget levofloxacin exposure was feasible. Use for triage to other investigation or personalized dosing strategy should be tested in a randomized study.
Collapse
Affiliation(s)
- Sagal Mohamed
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | | | | | - Prakruti Rao
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Peter Mbelele
- Kibong'oto Infectious Diseases Hospital, Sanya Juu, Tanzania
| | - Erwin M Jongedijk
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Claudia A J van Winkel
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Daan J Touw
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Suzanne Stroup
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Jan-Willem C Alffenaar
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Westmead Hospital, Sydney, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia
| | | | - Scott K Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
12
|
Szipszky C, Van Aartsen D, Criddle S, Rao P, Zentner I, Justine M, Mduma E, Mpagama S, Al-Shaer MH, Peloquin C, Thomas TA, Vinnard C, Heysell SK. Determination of Rifampin Concentrations by Urine Colorimetry and Mobile Phone Readout for Personalized Dosing in Tuberculosis Treatment. J Pediatric Infect Dis Soc 2021; 10:104-111. [PMID: 32170944 PMCID: PMC7996640 DOI: 10.1093/jpids/piaa024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/01/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND Individual pharmacokinetic variability is a driver of poor tuberculosis (TB) treatment outcomes. We developed a method for measurement of rifampin concentrations by urine colorimetry and a mobile phone photographic application to predict clinically important serum rifampin pharmacokinetic measurements in children treated for TB. METHODS Among spiked urine samples, colorimetric assay performance was tested with conventional spectrophotometric and the mobile phone/light box methods under various environmental and biologic conditions. Urine rifampin absorbance (Abs) was then determined from timed specimens from children treated for TB in Tanzania, and compared to serum pharmacokinetic measurements collected throughout the dosing interval. RESULTS Both the mobile phone/light box and spectrophotometry demonstrated excellent correlation across a wide range of urine rifampin concentrations (7.8-1000 mg/L) in intra- and interday trials, 24-hour exposure to ambient light or darkness, and varying urinalysis profiles (all r ≥ 0.98). In 12 Tanzanian children, the urine mobile phone/light box measurement and serum peak concentration (Cmax) were significantly correlated (P = .004). Using a Cmax target of 8 mg/L, the area under the receiver operating characteristic curve was 80.1% (range, 47.2%-100%). A urine mobile phone/light box threshold of 50 Abs correctly classified all patients (n = 6) with serum measurements below target. CONCLUSIONS The urine colorimetry with mobile phone/light box assay accurately measured rifampin absorbance in varying environmental and biological conditions that may be observed clinically. Among children treated for TB, the assay was sensitive for detection of low rifampin serum concentrations. Future work will identify the optimal timing for urine collection, and operationalize use in TB-endemic settings.
Collapse
Affiliation(s)
- Claire Szipszky
- Departments of Biology and Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Daniel Van Aartsen
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Sarah Criddle
- School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Prakruti Rao
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Isaac Zentner
- Public Health Research Institute, Rutgers State University of New Jersey, Newark, New Jersey, USA
| | | | | | - Stellah Mpagama
- Kibong’oto Infectious Diseases Hospital, Sanya Juu, Kilimanjaro, Tanzania
| | - Mohammad H Al-Shaer
- Infectious Disease Pharmacokinetics Laboratory, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Charles Peloquin
- Infectious Disease Pharmacokinetics Laboratory, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Tania A Thomas
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Christopher Vinnard
- Public Health Research Institute, Rutgers State University of New Jersey, Newark, New Jersey, USA
| | - Scott K Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
13
|
Sturkenboom MGG, Märtson AG, Svensson EM, Sloan DJ, Dooley KE, van den Elsen SHJ, Denti P, Peloquin CA, Aarnoutse RE, Alffenaar JWC. Population Pharmacokinetics and Bayesian Dose Adjustment to Advance TDM of Anti-TB Drugs. Clin Pharmacokinet 2021; 60:685-710. [PMID: 33674941 PMCID: PMC7935699 DOI: 10.1007/s40262-021-00997-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Tuberculosis (TB) is still the number one cause of death due to an infectious disease. Pharmacokinetics and pharmacodynamics of anti-TB drugs are key in the optimization of TB treatment and help to prevent slow response to treatment, acquired drug resistance, and adverse drug effects. The aim of this review was to provide an update on the pharmacokinetics and pharmacodynamics of anti-TB drugs and to show how population pharmacokinetics and Bayesian dose adjustment can be used to optimize treatment. We cover aspects on preclinical, clinical, and population pharmacokinetics of different drugs used for drug-susceptible TB and multidrug-resistant TB. Moreover, we include available data to support therapeutic drug monitoring of these drugs and known pharmacokinetic and pharmacodynamic targets that can be used for optimization of therapy. We have identified a wide range of population pharmacokinetic models for first- and second-line drugs used for TB, which included models built on NONMEM, Pmetrics, ADAPT, MWPharm, Monolix, Phoenix, and NPEM2 software. The first population models were built for isoniazid and rifampicin; however, in recent years, more data have emerged for both new anti-TB drugs, but also for defining targets of older anti-TB drugs. Since the introduction of therapeutic drug monitoring for TB over 3 decades ago, further development of therapeutic drug monitoring in TB next steps will again depend on academic and clinical initiatives. We recommend close collaboration between researchers and the World Health Organization to provide important guideline updates regarding therapeutic drug monitoring and pharmacokinetics/pharmacodynamics.
Collapse
Affiliation(s)
- Marieke G G Sturkenboom
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anne-Grete Märtson
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Elin M Svensson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.,Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Derek J Sloan
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,Liverpool School of Tropical Medicine, Liverpool, UK.,School of Medicine, University of St Andrews, St Andrews, UK
| | - Kelly E Dooley
- Department of Medicine, Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Simone H J van den Elsen
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Clinical Pharmacy, Hospital Group Twente, Almelo, Hengelo, the Netherlands
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Charles A Peloquin
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Rob E Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jan-Willem C Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands. .,Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia. .,Westmead Hospital, Westmead, NSW, Australia. .,Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
14
|
Alffenaar JWC, Gumbo T, Dooley KE, Peloquin CA, Mcilleron H, Zagorski A, Cirillo DM, Heysell SK, Silva DR, Migliori GB. Integrating Pharmacokinetics and Pharmacodynamics in Operational Research to End Tuberculosis. Clin Infect Dis 2021; 70:1774-1780. [PMID: 31560376 PMCID: PMC7146003 DOI: 10.1093/cid/ciz942] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) elimination requires innovative approaches. The new Global Tuberculosis Network (GTN) aims to conduct research on key unmet therapeutic and diagnostic needs in the field of TB elimination using multidisciplinary, multisectorial approaches. The TB Pharmacology section within the new GTN aims to detect and study the current knowledge gaps, test potential solutions using human pharmacokinetics informed through preclinical infection systems, and return those findings to the bedside. Moreover, this approach would allow prospective identification and validation of optimal shorter therapeutic durations with new regimens. Optimized treatment using available and repurposed drugs may have an increased impact when prioritizing a person-centered approach and acknowledge the importance of age, gender, comorbidities, and both social and programmatic environments. In this viewpoint article, we present an in-depth discussion on how TB pharmacology and the related strategies will contribute to TB elimination.
Collapse
Affiliation(s)
- Jan-Willem C Alffenaar
- University of Sydney, Faculty of Medicine and Health, School of Pharmacy, Sydney, Australia.,Westmead Hospital, Sydney, Australia
| | - Tawanda Gumbo
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas, USA
| | - Kelly E Dooley
- Division of Clinical Pharmacology, Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Charles A Peloquin
- Infectious Disease Pharmacokinetics Laboratory, University of Florida College of Pharmacy, Gainesville, Florida, USA
| | - Helen Mcilleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Andre Zagorski
- Management Sciences for Health, Arlington, Virginia, USA
| | - Daniela M Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Scott K Heysell
- University of Virginia, Division of Infectious Diseases and International Health, Charlottesville, Virginia, USA
| | - Denise Rossato Silva
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Giovanni Battista Migliori
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| |
Collapse
|
15
|
Märtson AG, Burch G, Ghimire S, Alffenaar JWC, Peloquin CA. Therapeutic drug monitoring in patients with tuberculosis and concurrent medical problems. Expert Opin Drug Metab Toxicol 2020; 17:23-39. [PMID: 33040625 DOI: 10.1080/17425255.2021.1836158] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Therapeutic drug monitoring (TDM) has been recommended for treatment optimization in tuberculosis (TB) but is only is used in certain countries e.g. USA, Germany, the Netherlands, Sweden and Tanzania. Recently, new drugs have emerged and PK studies in TB are continuing, which contributes further evidence for TDM in TB. The aim of this review is to provide an update on drugs used in TB, treatment strategies for these drugs, and TDM to support broader implementation. AREAS COVERED This review describes the different drug classes used for TB, multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB), along with their pharmacokinetics, dosing strategies, TDM and sampling strategies. Moreover, the review discusses TDM for patient TB and renal or liver impairment, patients co-infected with HIV or hepatitis, and special patient populations - children and pregnant women. EXPERT OPINION TB treatment has a long history of using 'one size fits all.' This has contributed to treatment failures, treatment relapses, and the selection of drug-resistant isolates. While challenging in resource-limited circumstances, TDM offers the clinician the opportunity to individualize and optimize treatment early in treatment. This approach may help to refine treatment and thereby reduce adverse effects and poor treatment outcomes. Funding, training, and randomized controlled trials are needed to advance the use of TDM for patients with TB.
Collapse
Affiliation(s)
- Anne-Grete Märtson
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, The Netherlands
| | - Gena Burch
- Infectious Disease Pharmacokinetics Laboratory, College of Pharmacy and Emerging Pathogens Institute, University of Florida , Gainesville, FL, USA
| | - Samiksha Ghimire
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, The Netherlands
| | - Jan-Willem C Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, The Netherlands.,Department of Pharmacy, Westmead Hospital , Sydney, Australia.,Sydney Pharmacy School, The University of Sydney , Sydney, New South Wales, Australia.,Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney , Sydney, Australia
| | - Charles A Peloquin
- Infectious Disease Pharmacokinetics Laboratory, College of Pharmacy and Emerging Pathogens Institute, University of Florida , Gainesville, FL, USA
| |
Collapse
|
16
|
Zheng X, Bao Z, Forsman LD, Hu Y, Ren W, Gao Y, Li X, Hoffner S, Bruchfeld J, Alffenaar JW. Drug exposure and minimum inhibitory concentration predict pulmonary tuberculosis treatment response. Clin Infect Dis 2020; 73:e3520-e3528. [PMID: 33070176 DOI: 10.1093/cid/ciaa1569] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Prospective studies correlating pharmacokinetic/pharmacodynamic (PK/PD) indices to clinical responses are urgently needed. This study aimed to find clinically relevant PK/PD thresholds that can be used for treatment optimization. METHODS Pharmacokinetic sampling and minimum inhibitory concentration (MIC) measurements were performed for culture-confirmed tuberculosis patients. Classification and regression tree (CART) analysis was applied to obtain PK and/or PD thresholds for first-line drugs predictive of two-week/month culture conversion, treatment outcome determined at 6-8 months, acute kidney injury (AKI) and drug-induced liver injury (DILI). Least absolute shrinkage and selection operator (LASSO) logistic regression was used for model development and validation. RESULTS Finally, 168 and 52 patients with tuberculosis were included in development and validation cohort for analysis, respectively. Area under concentration-time curve (AUC)/MIC below CART-derived thresholds for pyrazinamide of 8.42, pyrazinamide of 2.79 or rifampicin of 435.45 were the predominant predictors of two-week culture conversion, two-month culture conversion or treatment success, respectively. Isoniazid AUC above 21.78 mg·h/L or rifampicin AUC above 82.01 mg·h/L were predictive of DILI or AKI during TB treatment. The predictive performance of trained LASSO models in validation cohort was evaluated by receiver operating characteristic curves and ranged from 0.625 to 0.978. CONCLUSIONS PK/PD indices and drug exposure of anti-TB drugs were associated with clinical outcome and adverse events. The effect of CART-derived thresholds for individualized dosing on treatment outcome should be studied in a randomized controlled trial.
Collapse
Affiliation(s)
- Xubin Zheng
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Ziwei Bao
- The Fifth People's Hospital of Suzhou, Suzhou, China
| | - Lina Davies Forsman
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Disease, Karolinska University Hospital, Stockholm, Sweden
| | - Yi Hu
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Weihua Ren
- Central Laboratory, First Affiliated Hospital, Henan University of Science and Technology, Luoyang, China
| | - Yazhou Gao
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Xuliang Li
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Sven Hoffner
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Judith Bruchfeld
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Disease, Karolinska University Hospital, Stockholm, Sweden
| | - Jan-Willem Alffenaar
- University of Sydney, Faculty of Medicine and Health, School of Pharmacy, Sydney, Australia.,Westmead hospital, Sydney, Australia.,Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia
| |
Collapse
|
17
|
Kim HY, Ulbricht E, Ahn YK, Gillooly IS, Lee KJ, Lieu J, Nguyen W, Young S, Cho JG, Alffenaar JW. Therapeutic drug monitoring practice in patients with active tuberculosis: assessment of opportunities. Eur Respir J 2020; 57:13993003.02349-2020. [PMID: 32817005 DOI: 10.1183/13993003.02349-2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/06/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Hannah Yejin Kim
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Clinical Pharmacy, Westmead Hospital, Westmead, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, Australia
| | | | - Yu Kyung Ahn
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Isabelle Sarah Gillooly
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Kher Jing Lee
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Jessica Lieu
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - William Nguyen
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Sylvia Young
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Jin-Gun Cho
- Parramatta Chest Clinic, Parramatta, Australia.,Dept of Respiratory and Sleep Medicine, Westmead Hospital, Westmead, Australia.,Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Jan-Willem Alffenaar
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Clinical Pharmacy, Westmead Hospital, Westmead, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, Australia
| |
Collapse
|
18
|
van den Elsen SH, Sturkenboom MG, Akkerman O, Barkane L, Bruchfeld J, Eather G, Heysell SK, Hurevich H, Kuksa L, Kunst H, Kuhlin J, Manika K, Moschos C, Mpagama SG, Muñoz Torrico M, Skrahina A, Sotgiu G, Tadolini M, Tiberi S, Volpato F, van der Werf TS, Wilson MR, Zúñiga J, Touw DJ, Migliori GB, Alffenaar JW. Prospective evaluation of improving fluoroquinolone exposure using centralised therapeutic drug monitoring (TDM) in patients with tuberculosis (PERFECT): a study protocol of a prospective multicentre cohort study. BMJ Open 2020; 10:e035350. [PMID: 32554740 PMCID: PMC7304807 DOI: 10.1136/bmjopen-2019-035350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION Global multidrug-resistant tuberculosis (MDR-TB) treatment success rates remain suboptimal. Highly active WHO group A drugs moxifloxacin and levofloxacin show intraindividual and interindividual pharmacokinetic variability which can cause low drug exposure. Therefore, therapeutic drug monitoring (TDM) of fluoroquinolones is recommended to personalise the drug dosage, aiming to prevent the development of drug resistance and optimise treatment. However, TDM is considered laborious and expensive, and the clinical benefit in MDR-TB has not been extensively studied. This observational multicentre study aims to determine the feasibility of centralised TDM and to investigate the impact of fluoroquinolone TDM on sputum conversion rates in patients with MDR-TB compared with historical controls. METHODS AND ANALYSIS Patients aged 18 years or older with sputum smear and culture-positive pulmonary MDR-TB will be eligible for inclusion. Patients receiving TDM using a limited sampling strategy (t=0 and t=5 hours) will be matched to historical controls without TDM in a 1:2 ratio. Sample analysis and dosing advice will be performed in a centralised laboratory. Centralised TDM will be considered feasible if >80% of the dosing recommendations are returned within 7 days after sampling and 100% within 14 days. The number of patients who are sputum smear and culture-negative after 2 months of treatment will be determined in the prospective TDM group and will be compared with the control group without TDM to determine the impact of TDM. ETHICS AND DISSEMINATION Ethical clearance was obtained by the ethical review committees of the 10 participating hospitals according to local procedures or is pending (online supplementary file 1). Patients will be included after obtaining written informed consent. We aim to publish the study results in a peer-reviewed journal. TRIAL REGISTRATION NUMBER ClinicalTrials.gov Registry (NCT03409315).
Collapse
Affiliation(s)
- Simone Hj van den Elsen
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marieke Gg Sturkenboom
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Onno Akkerman
- Department of Pulmonary Diseases and Tuberculosis, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Tuberculosis Center Beatrixoord, University of Groningen, University Medical Center Groningen, Haren, The Netherlands
| | - Linda Barkane
- Department of Multidrug Resistant Tuberculosis, Riga East University Hospital TB and Lung Disease Clinic, Riga, Latvia
| | - Judith Bruchfeld
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Geoffrey Eather
- Department of Respiratory Medicine and Metro South Clinical Tuberculosis Service, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Scott K Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Henadz Hurevich
- The Republican Scientific and Practical Center for Pulmonology and Tuberculosis, Minsk, Belarus
| | - Liga Kuksa
- Department of Multidrug Resistant Tuberculosis, Riga East University Hospital TB and Lung Disease Clinic, Riga, Latvia
| | - Heinke Kunst
- Department of Respiratory Medicine, Blizard Institute, Queen Mary University of London, Barts Health NHS Trust, London, UK
| | - Johanna Kuhlin
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Katerina Manika
- Pulmonary Department, Respiratory Infections Unit, G. Papanikolaou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Charalampos Moschos
- Drug-Resistant Tuberculosis Unit, 'Sotiria' Hospital for Chest Diseases, Athens, Greece
| | - Stellah G Mpagama
- Kibong'oto Infectious Diseases Hospital, Kilimanjaro, United Republic of Tanzania
| | - Marcela Muñoz Torrico
- Clínica de Tuberculosis, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Alena Skrahina
- The Republican Scientific and Practical Center for Pulmonology and Tuberculosis, Minsk, Belarus
| | - Giovanni Sotgiu
- Department of Medical, Surgical and Experimental Sciences, Clinical Epidemiology and Medical Statistics Unit, University of Sassari, Sassari, Italy
| | - Marina Tadolini
- Department of Medical and Surgical Sciences, Unit of Infectious Diseases, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Simon Tiberi
- Department of Infection, Blizard Institute, Queen Mary University of London, Barts Health NHS Trust, London, UK
| | - Francesca Volpato
- Department of Medical and Surgical Sciences, Unit of Infectious Diseases, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Tjip S van der Werf
- Department of Pulmonary Diseases and Tuberculosis, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Malcolm R Wilson
- Department of Respiratory Medicine and Metro South Clinical Tuberculosis Service, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Joaquin Zúñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de Salud, Mexico City, Mexico
| | - Daan J Touw
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Giovanni B Migliori
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| | - Jan-Willem Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
19
|
Byashalira K, Mbelele P, Semvua H, Chilongola J, Semvua S, Liyoyo A, Mmbaga B, Mfinanga S, Moore C, Heysell S, Mpagama S. Clinical outcomes of new algorithm for diagnosis and treatment of Tuberculosis sepsis in HIV patients. Int J Mycobacteriol 2020; 8:313-319. [PMID: 31793499 DOI: 10.4103/ijmy.ijmy_135_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Despite effort to diagnose tuberculosis (TB) in the Human Immunodeficiency Virus (HIV) infected population, 45% of adults with HIV that had a previously unknown reason for death, demonstrated TB was the cause by autopsy examination. We aimed to assess the clinical outcomes of implementation a new algorithm for diagnosis and treatment of tuberculosis (TB) related sepsis among PLHIV presenting with life-threatening illness. Methods This study is a prospective cohort conducted in three-referral hospitals in Kilimanjaro, recruited 97 PLHIV from February through June 2018. Patients provided urine and sputum samples for testing lateral flow - lipoarabinomannan (LF-LAM) and Xpert Mycobacterium tuberculosis (MTB)/rifampicin (RIF) assays, respectively. Anti-TB was prescribed to patients with positive LF-LAM or Xpert MTB/RIF or received broad-spectrum antibiotics but deteriorated. Results Of 97 patients, 84 (87%) provided urine and sputa, and 13 (13%) provided only urine. The mean age (95% confidence interval) was 40 (38-43) years and 52 (54%) were female. In 84 patients, LF-LAM increased TB detection from 26 (31%) by Xpert MTB/RIF to 41 (55%) by both tests. Of 97 patients, 69 (71%) prescribed anti-TB, 67% (46/69) and 33% (23/69) had definitive and probable TB respectively. Sixteen (16.5%) patients died, of which one died before treatment, 73% (11/15) died within 7 days of admission. The 30-day survival was similar in both treatment groups (log rank = 0.1574). Mortality was significantly higher among hospitalized patients compared to outpatients (P ≤ 0.027). Conclusion Implementation of new algorithm increased TB case detection in patients that could have been missed by Xpert MTB/RIF assay. Survival of PLHIV with confirmed or probable TB was comparable to those of PLHIV that were treated with broad-spectrum antibiotics alone. Further work should focus on the optimal timing and content of the immediate antimicrobial regimen for sepsis among PLHIV in TB-endemic settings.
Collapse
Affiliation(s)
- Kenneth Byashalira
- Kilimanjaro Christian Medical University College; Kibong'oto Infectious Diseases Hospital, Tanzania
| | | | - Hadija Semvua
- Kilimanjaro Christian Medical University College; Kilimanjaro Clinical Research Institute, Tanzania
| | - Jaffu Chilongola
- Kilimanjaro Christian Medical University College; Kilimanjaro Clinical Research Institute, Tanzania
| | - Seleman Semvua
- Kilimanjaro Christian Medical University College, Tanzania
| | | | - Blandina Mmbaga
- Kilimanjaro Christian Medical University College; Kilimanjaro Clinical Research Institute, Tanzania
| | - Sayoki Mfinanga
- National Institute for Medical Research-Muhimbili Medical Research Centre, Tanzania
| | - Christopher Moore
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Scott Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Stellah Mpagama
- Kilimanjaro Christian Medical University College; Kibong'oto Infectious Diseases Hospital, Tanzania
| |
Collapse
|
20
|
Migliori GB, Tiberi S, Zumla A, Petersen E, Chakaya JM, Wejse C, Muñoz Torrico M, Duarte R, Alffenaar JW, Schaaf HS, Marais BJ, Cirillo DM, Alagna R, Rendon A, Pontali E, Piubello A, Figueroa J, Ferlazzo G, García-Basteiro A, Centis R, Visca D, D'Ambrosio L, Sotgiu G. MDR/XDR-TB management of patients and contacts: Challenges facing the new decade. The 2020 clinical update by the Global Tuberculosis Network. Int J Infect Dis 2020; 92S:S15-S25. [PMID: 32032752 DOI: 10.1016/j.ijid.2020.01.042] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/20/2022] Open
Abstract
The continuous flow of new research articles on MDR-TB diagnosis, treatment, prevention and rehabilitation requires frequent update of existing guidelines. This review is aimed at providing clinicians and public health staff with an updated and easy-to-consult document arising from consensus of Global Tuberculosis Network (GTN) experts. The core published documents and guidelines have been reviewed, including the recently published MDR-TB WHO rapid advice and ATS/CDC/ERS/IDSA guidelines. After a rapid review of epidemiology and risk factors, the clinical priorities on MDR-TB diagnosis (including whole genome sequencing and drug-susceptibility testing interpretations) and treatment (treatment design and management, TB in children) are discussed. Furthermore, the review comprehensively describes the latest information on contact tracing and LTBI management in MDR-TB contacts, while providing guidance on post-treatment functional evaluation and rehabilitation of TB sequelae, infection control and other public health priorities.
Collapse
Affiliation(s)
- Giovanni Battista Migliori
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Via Roncaccio 16, Tradate, Varese, 21049, Italy.
| | - Simon Tiberi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom; Division of Infection, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom.
| | - Alimuddin Zumla
- Division of Infection and Immunity, University College London and NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, United Kingdom.
| | - Eskild Petersen
- Directorate General for Disease Surveillance and Control, Ministry of Health, Muscat, Oman; Institute for Clinical Medicine, Faculty of Health Science, University of Aarhus, Denmark; ESCMID Emerging Infections Task Force, Basel, Switzerland.
| | - Jeremiah Muhwa Chakaya
- The International Union Against Tuberculosis and Lung Disease, Paris, France; Department of Medicine, Therapeutics, Dermatology and Psychiatry, Kenyatta University, Nairobi, Kenya.
| | - Christian Wejse
- Department of Infectious Disease, Aarhus University Hospital and School of Public Health, Faculty of Health Sciences, University of Aarhus, Denmark.
| | - Marcela Muñoz Torrico
- Clínica de Tuberculosis, Instituto Nacional de Enfermedades Respiratorias, Ciudad de México, Mexico.
| | - Raquel Duarte
- National Reference Centre for MDR-TB, Hospital Centre Vila Nova de Gaia, Department of Pneumology, Public Health Science and Medical Education Department, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Jan Willem Alffenaar
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Westmead Hospital, Sydney, Australia; Dept. Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, The Netherlands.
| | - H Simon Schaaf
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa.
| | - Ben J Marais
- The University of Sydney Faculty of Medicine and Health, Sydney, New South Wales, Australia; The University of Sydney Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney, New South Wales, Australia.
| | - Daniela Maria Cirillo
- Emerging Pathogens Unit, TB Supranational Reference Laboratory, San Raffaele Scientific Institute, Milan, Italy.
| | - Riccardo Alagna
- Emerging Pathogens Unit, TB Supranational Reference Laboratory, San Raffaele Scientific Institute, Milan, Italy.
| | - Adrian Rendon
- Centro de Investigación, Prevención y Tratamiento de Infecciones Respiratorias CIPTIR, University Hospital of Monterrey UANL (Universidad Autonoma de Nuevo Leon), Monterrey, Mexico.
| | - Emanuele Pontali
- Department of Infectious Diseases, Galliera Hospital, Genova, Italy.
| | - Alberto Piubello
- The International Union Against Tuberculosis and Lung Disease, Paris, France; Tuberculosis Division, Damien Foundation, Niamey, Niger.
| | - José Figueroa
- National Health Service (NHS) England, London, United Kingdom.
| | - Gabriella Ferlazzo
- Southern Africa Medical Unit, Médecins Sans Frontières, Cape Town, South Africa.
| | - Alberto García-Basteiro
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique; ISGlobal, Barcelona Centre for International Health Research, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.
| | - Rosella Centis
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Via Roncaccio 16, Tradate, Varese, 21049, Italy.
| | - Dina Visca
- Division of Pulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri, IRCCS, Tradate, Italy; Department of Medicine and Surgery, Respiratory Diseases, University of Insubria, Varese, Italy.
| | | | - Giovanni Sotgiu
- Clinical Epidemiology and Medical Statistics Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy.
| | | |
Collapse
|
21
|
Perumal R, Naidoo K, Naidoo A, Ramachandran G, Requena-Mendez A, Sekaggya-Wiltshire C, Mpagama SG, Matteelli A, Fehr J, Heysell SK, Padayatchi N. A systematic review and meta-analysis of first-line tuberculosis drug concentrations and treatment outcomes. Int J Tuberc Lung Dis 2020; 24:48-64. [PMID: 32005307 PMCID: PMC10622255 DOI: 10.5588/ijtld.19.0025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Low serum concentrations of first-line tuberculosis (TB) drugs have been widely reported. However, the impact of low serum concentrations on treatment outcome is less well studied. A systematic search of MEDLINE/Pubmed and the Cochrane Central Register of Controlled Trials up to 31 March 2018 was conducted for articles describing drug concentrations of first-line TB drugs and treatment outcome in adult patients with drug-susceptible TB. The search identified 3073 unique publication abstracts, which were reviewed for suitability: 21 articles were acceptable for inclusion in the qualitative analysis comprising 13 prospective observational cohorts, 4 retrospective observational cohorts, 1 case-control study and 3 randomised controlled trials. Data for meta-analysis were available for 15 studies, 13 studies of rifampicin (RMP), 10 of isoniazid (INH), 8 of pyrazinamide (PZA) and 4 of ethambutol (EMB). This meta-analysis revealed that low PZA concentration appears to increase the risk of poor outcomes (8 studies, n = 2727; RR 1.73, 95%CI 1.10-2.72), low RMP concentrations may slightly increase the risk of poor outcomes (13 studies, n = 2753; RR 1.40, 95%CI 0.91-2.16), whereas low concentrations of INH (10 studies, n = 2640; RR 1.32, 95%CI 0.66-2.63) and EMB (4 studies, n = 551; RR 1.12, 95%CI 0.41-3.05) appear to make no difference to treatment outcome. There was no significant publication bias or between-study heterogeneity in any of the analyses. The potential clinical impact of low concentrations of PZA and RMP warrants further evaluation. Also, comprehensive assessments of the complex pharmacokinetic-pharmacodynamic relationships in the treatment of TB are urgently needed.
Collapse
Affiliation(s)
- R Perumal
- Centre for the AIDS Programme of Research in South Africa, Nelson R Mandela School of Medicine, College of Health Sciences, Medical Research Council-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, Department of Pulmonology and Critical Care, Groote Schuur Hospital, University of Cape Town, South Africa
| | - K Naidoo
- Centre for the AIDS Programme of Research in South Africa, Nelson R Mandela School of Medicine, College of Health Sciences, Department of Pulmonology and Critical Care, Groote Schuur Hospital, University of Cape Town, South Africa
| | - A Naidoo
- Centre for the AIDS Programme of Research in South Africa, Nelson R Mandela School of Medicine, College of Health Sciences
| | - G Ramachandran
- Department of Biochemistry and Clinical Pharmacology, National Institute for Research in Tuberculosis, Chennai, India
| | - A Requena-Mendez
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Uganda
| | | | | | - A Matteelli
- Kibong'oto Infectious Diseases Hospital, Siha, Kilimanjaro, Tanzania
| | - J Fehr
- Department of Infectious and Tropical Diseases, WHO Collaborating Centre for TB/HIV and TB Elimination, University of Brescia, Brescia, Italy
| | - S K Heysell
- Department of Public Health, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Switzerland
| | - N Padayatchi
- Centre for the AIDS Programme of Research in South Africa, Nelson R Mandela School of Medicine, College of Health Sciences, Department of Pulmonology and Critical Care, Groote Schuur Hospital, University of Cape Town, South Africa
| |
Collapse
|
22
|
Evaluation of Saliva as a Potential Alternative Sampling Matrix for Therapeutic Drug Monitoring of Levofloxacin in Patients with Multidrug-Resistant Tuberculosis. Antimicrob Agents Chemother 2019; 63:AAC.02379-18. [PMID: 30782999 DOI: 10.1128/aac.02379-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/06/2019] [Indexed: 12/16/2022] Open
Abstract
Saliva may be a useful alternative matrix for monitoring levofloxacin concentrations in multidrug-resistant tuberculosis (MDR-TB) patients. The objectives of this study were (i) to evaluate the correlation between plasma and salivary levofloxacin (Lfx) concentrations in MDR-TB patients and (ii) to gauge the possibility of using saliva as an alternative sampling matrix for therapeutic drug monitoring of Lfx in areas where TB is endemic. This was a prospective pharmacokinetic study that enrolled MDR-TB patients receiving levofloxacin (750- to 1,000-mg once-daily dosing) under standardized treatment regimen in Nepal. Paired blood and saliva samples were collected at steady state. Lfx concentrations were quantified using liquid chromatography-tandem mass spectrometry. Pharmacokinetic parameters were calculated using noncompartmental kinetics. Lfx drug exposures were evaluated in 23 MDR-TB patients. During the first month, the median (interquartile range [IQR]) areas under the concentration-time curve from 0 to 24 h (AUC0-24) were 67.09 (53.93 to 98.37) mg ⋅ h/liter in saliva and 99.91 (76.80 to 129.70) mg ⋅ h/liter in plasma, and the saliva plasma (S/P) ratio was 0.69 (0.53 to 0.99). Similarly, during the second month, the median (IQR) AUC0-24 were 75.63 (61.45 to 125.5) mg ⋅ h/liter in saliva and 102.7 (84.46 to 131.9) mg ⋅ h/liter in plasma, with an S/P ratio of 0.73 (0.66 to 1.18). Furthermore, large inter- and intraindividual variabilities in Lfx concentrations were observed. This study could not demonstrate a strong correlation between plasma and saliva Lfx levels. Despite a good Lfx penetration in saliva, the variability in individual saliva-to-plasma ratios limits the use of saliva as a valid substitute for plasma. Nevertheless, saliva could be useful in semiquantitatively predicting Lfx plasma levels. (This study has been registered at ClinicalTrials.gov under identifier NCT03000517.).
Collapse
|