1
|
Downie AT, Champion C, Booth DJ. Physiological Traits for Predicting Poleward Extensions in Tropical Fishes: From Lab to Management. GLOBAL CHANGE BIOLOGY 2025; 31:e70213. [PMID: 40290058 PMCID: PMC12035794 DOI: 10.1111/gcb.70213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/06/2025] [Accepted: 04/11/2025] [Indexed: 04/30/2025]
Abstract
Tropicalization, the phenomena by which tropical organisms are extending their distributions poleward into temperate latitudes in response to increasing temperatures and strengthening boundary currents, is occurring globally. Vagrant tropical species have large ecological and economic ramifications for the temperate habitats they invade. However, not all vagrants are able to persist long term in temperate habitats, with the first winter being a potential bottleneck for their persistence. This brings into question how some tropical vagrant species are successful at surviving temperate conditions and the physiology underpinning this success. This provides the opportunity to not only look at the available data introspectively but also forward-thinking by applying a range of holistic physiological traits relevant for biology and management. Therefore, the aim of our review is twofold: to review the current state-of-knowledge of the physiological mechanisms underpinning tropicalization and to develop a physiological framework by which current practices can complement new perspectives and tools. We use range-expanding tropical reef fishes as a model group of over 100 species undergoing climate-driven range shifts and eastern Australia as a case-study location due to it being a primary focal "living laboratory" for understanding tropicalization dynamics since the early 2000s. Current studies suggest that diet, behavior, and metabolic trade-offs may explain vagrant fish persistence, but these studies focus on whole-animal traits. Our framework helps expand upon focal traits, life stages, experimental design, physiological traits (e.g., we highlight the value of genetic and cellular markers for metabolic pathway changes under cold stress as potential biomarkers) and species to improve our understanding of the mechanisms underpinning tropicalization. Taken together, our framework places emphasis on measuring a suite of complimentary physiological traits, from cellular to whole-animal, to help guide future predictions of the long-term persistence of tropical species in temperate habitats.
Collapse
Affiliation(s)
- Adam T. Downie
- School of Mathematical SciencesQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Curtis Champion
- Fisheries Research, Department of Primary Industries and Regional DevelopmentNational Marine Science CenterCoffs HarborNew South WalesAustralia
| | - David J. Booth
- School of Life SciencesUniversity of Technology SydneySydneyNew South WalesAustralia
| |
Collapse
|
2
|
Malorey P, Porter ES, Gamperl AK, Briffa M, Wilson ADM. Swimming performance, but not metabolism, is related to a boldness-activity syndrome in schoolmaster snapper (Lutjanus apodus). JOURNAL OF FISH BIOLOGY 2024; 105:1811-1829. [PMID: 39251204 DOI: 10.1111/jfb.15900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/12/2024] [Accepted: 07/26/2024] [Indexed: 09/11/2024]
Abstract
Commercial overexploitation and climate change can alter the physiology and behavior of marine organisms, although intraspecific phenotypic responses to such changes can vary greatly depending on the environment, species, and severity of the stressor. Under the pace-of-life syndrome (POLS) hypothesis, behavior, physiology, and life-history traits are linked, and thus, affected by selection targeting any aspect of organismal biology. However, these links are understudied in tropical marine fishes, and further work is needed to better understand the impacts of fisheries and climate change on wild stocks. Moreover, tropical regions have a greater reliance on fisheries; thus investigations should focus on species with substantial socioeconomic value to ensure benefits at the local level. This study aimed to address this need by measuring the behavior (boldness and activity), metabolism, and swimming performance (using a critical swim speed [Ucrit] test) of schoolmaster snapper Lutjanus apodus in Eleuthera, the Bahamas. We report a strong positive correlation between boldness and activity, high repeatability of these behavioral metrics, and two groupings that were consistent with "proactive" and "reactive" behavioral types. These behavioral types differed significantly in their swimming performance, with reactive individuals having a 13.1% higher mean Ucrit. In contrast, no significant differences were found in the measured metabolic parameters between behavioral types. This study is the first to investigate the intraspecific links between behavior and physiology in a snapper species, using the novel and ecologically relevant comparison of Ucrit with behavioral syndrome types. These data suggest that additional research is needed to better predict the success of proactive/reactive tropical fish if overexploited and as influenced by climate change.
Collapse
Affiliation(s)
- Peter Malorey
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Emma S Porter
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. Johns, Newfoundland and Labrador, Canada
| | - A Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. Johns, Newfoundland and Labrador, Canada
| | - Mark Briffa
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | | |
Collapse
|
3
|
Hamamoto K, Iguchi A, Gibu K, Ozawa H, Kojima M, Mizuno S, Yoshioka Y, Saito N, Fujita Y. Asymmetric genetic population structures at the range edges of a mangrove whelk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173248. [PMID: 38750732 DOI: 10.1016/j.scitotenv.2024.173248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/28/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Many marine species are distributed across incredibly wide geographical ranges spanning thousands of kilometers often due to movement along prevailing ocean currents. However, data are lacking on genetic connectivity among populations of such widespread species within or among ecoregions, possibly due to the lack of appropriate datasets. In this study, we investigated the genetic structure of populations of the mangrove whelk, Terebralia palustris, using mitochondrial cytochrome oxidase subunit I (COI) sequences. Sequences generated for this study from Okinawa, Japan, were compared to samples from the coast of East Africa analyzed in a previous study. Interestingly, despite considerable distance separating them, the African and Japanese populations share major haplotypes and do not show clear genetic differentiation. At lower latitudes, core African populations exhibited higher genetic diversity than either the more southerly African and Japanese populations. Genetic β-diversity revealed that the northern edge population in Japan has a greater proportion of βSNE (the nestedness-resultant component), indicating contemporary migration, whereas the southern edge population in Africa is characterized by a predominant βSIM (the turnover component), suggesting historical demography. A potential cause of this dissimilarity could be due to the strong Kuroshio Current along the Ryukyu Islands, which may promote larval dispersal. These differing patterns suggest that there may be divergent responses to future climate change at the population level at the periphery of the range of T. palustris.
Collapse
Affiliation(s)
- Kohei Hamamoto
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan; Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan; Research Laboratory on Environmentally-Conscious Developments and Technologies [E-code], National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8567, Japan.
| | - Kodai Gibu
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Hiroyuki Ozawa
- Incorporated Foundation Okinawa Environment Science Center, Urasoe, Okinawa 901-2111, Japan
| | - Mari Kojima
- Department of Bioresources Engineering, National Institute of Technology, Okinawa College, 905 Henoko, Nago-City, Okinawa 905-2192, Japan
| | - Saki Mizuno
- Department of Bioresources Engineering, National Institute of Technology, Okinawa College, 905 Henoko, Nago-City, Okinawa 905-2192, Japan
| | - Yuki Yoshioka
- Department of Bioresources Engineering, National Institute of Technology, Okinawa College, 905 Henoko, Nago-City, Okinawa 905-2192, Japan
| | - Naoki Saito
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan; Research Laboratory on Environmentally-Conscious Developments and Technologies [E-code], National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8567, Japan
| | - Yoshihisa Fujita
- General Educational Center, Okinawa Prefectural University of Arts, 1-4, Shuri Tounokura-cho, Naha-City, Okinawa 903-8602, Japan.
| |
Collapse
|
4
|
Seebacher F, Little AG. Thyroid hormone links environmental signals to DNA methylation. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220506. [PMID: 38310936 PMCID: PMC10838643 DOI: 10.1098/rstb.2022.0506] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/14/2023] [Indexed: 02/06/2024] Open
Abstract
Environmental conditions experienced within and across generations can impact individual phenotypes via so-called 'epigenetic' processes. Here we suggest that endocrine signalling acts as a 'sensor' linking environmental inputs to epigenetic modifications. We focus on thyroid hormone signalling and DNA methylation, but other mechanisms are likely to act in a similar manner. DNA methylation is one of the most important epigenetic mechanisms, which alters gene expression patterns by methylating cytosine bases via DNA methyltransferase enzymes. Thyroid hormone is mechanistically linked to DNA methylation, at least partly by regulating the activity of DNA methyltransferase 3a, which is the principal enzyme that mediates epigenetic responses to environmental change. Thyroid signalling is sensitive to natural and anthropogenic environmental impacts (e.g. light, temperature, endocrine-disrupting pollution), and here we propose that thyroid hormone acts as an environmental sensor to mediate epigenetic modifications. The nexus between thyroid hormone signalling and DNA methylation can integrate multiple environmental signals to modify phenotypes, and coordinate phenotypic plasticity at different time scales, such as within and across generations. These dynamics can have wide-ranging effects on health and fitness of animals, because they influence the time course of phenotypic adjustments and potentially the range of environmental stimuli that can elicit epigenetic responses. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, New South Wales 2006, Australia
| | - Alexander G. Little
- Department of Biology, Life Sciences Building, McMaster University, Ontario, Canada L8S 4K1
| |
Collapse
|
5
|
Rowsey LE, Reeve C, Savoy T, Speers-Roesch B. Thermal constraints on exercise and metabolic performance do not explain the use of dormancy as an overwintering strategy in the cunner (Tautogolabrus adspersus). J Exp Biol 2024; 227:jeb246741. [PMID: 38044850 PMCID: PMC10906487 DOI: 10.1242/jeb.246741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
Winter cold slows ectotherm physiology, potentially constraining activities and ecological opportunities at poleward latitudes. Yet, many fishes are winter-active, facilitated by thermal compensation that improves cold performance. Conversely, winter-dormant fishes (e.g. cunner, Tautogolabrus adspersus) become inactive and non-feeding overwinter. Why are certain fishes winter-dormant? We hypothesized that winter dormancy is an adaptive behavioural response arising in poleward species that tolerate severe, uncompensated constraints of cold on their physiological performance. We predicted that below their dormancy threshold of 7--8°C, exercise and metabolic performance of cunner are greatly decreased, even after acclimation (i.e. shows above-normal, uncompensated thermal sensitivity, Q10>1-3). We measured multiple key performance metrics (e.g. C-start maximum velocity, chase swimming speed, aerobic scope) in cunner after acute exposure to 26-2°C (3°C intervals using 14°C-acclimated fish) or acclimation (5-8 weeks) to 14-2°C (3°C intervals bracketing the dormancy threshold). Performance declined with cooling, and the acute Q10 of all six performance rate metrics was significantly greater below the dormancy threshold temperature (Q10,acute8-2°C=1.5-4.9, mean=3.3) than above (Q10,acute14-8°C=1.1-1.9, mean=1.5), inferring a cold constraint. However, 2°C acclimation (temporally more relevant to seasonal cooling) improved performance, abolishing the acute constraint (Q10,acclimated8-2°C=1.4-3.0, mean=2.0; also cf. Q10,acclimated14-8°C=1.2-2.9, mean=1.7). Thus, dormant cunner show partial cold-compensation of exercise and metabolic performance, similar to winter-active species. However, responsiveness to C-start stimuli was greatly cold-constrained even following acclimation, suggesting dormancy involves sensory limitation. Thermal constraints on metabolic and exercise physiology are not significant drivers of winter dormancy in cunner. In fact, compensatory plasticity at frigid temperatures is retained even in a dormant fish.
Collapse
Affiliation(s)
- Lauren E. Rowsey
- Department of Biological Sciences, University of New Brunswick Saint John, 100 Tucker Park Road, Saint John, NB E2L 4L5, Canada
| | - Connor Reeve
- Department of Biological Sciences, University of New Brunswick Saint John, 100 Tucker Park Road, Saint John, NB E2L 4L5, Canada
| | - Tyler Savoy
- Department of Biological Sciences, University of New Brunswick Saint John, 100 Tucker Park Road, Saint John, NB E2L 4L5, Canada
| | - Ben Speers-Roesch
- Department of Biological Sciences, University of New Brunswick Saint John, 100 Tucker Park Road, Saint John, NB E2L 4L5, Canada
| |
Collapse
|
6
|
Quattrocchi G, Christensen E, Sinerchia M, Marras S, Cucco A, Domenici P, Behrens JW. Aerobic metabolic scope mapping of an invasive fish species with global warming. CONSERVATION PHYSIOLOGY 2023; 11:coad094. [PMID: 38425367 PMCID: PMC10904007 DOI: 10.1093/conphys/coad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/13/2023] [Accepted: 11/07/2023] [Indexed: 03/02/2024]
Abstract
Climate change will exacerbate the negative effects associated with the introduction of non-indigenous species in marine ecosystems. Predicting the spread of invasive species in relation to environmental warming is therefore a fundamental task in ecology and conservation. The Baltic Sea is currently threatened by several local stressors and the highest increase in sea surface temperature of the world's large marine ecosystems. These new thermal conditions can further favour the spreading of the invasive round goby (Neogobius melanostomus), a fish of Ponto-Caspian origin, currently well established in the southern and central parts of the Baltic Sea. This study aims to assess the thermal habitat suitability of the round goby in the Baltic Sea considering the past and future conditions. The study combines sightings records with known physiological models of aerobic performance and sea surface temperatures. Physiological models read these temperatures, at sighting times and locations, to determine their effects on the aerobic metabolic scope (AMS) of the fish, a measure of its energetic potential in relation to environmental conditions. The geographical mapping of the AMS was used to describe the changes in habitat suitability during the past 3 decades and for climatic predictions (until 2100) showing that the favourable thermal habitat in the Baltic Sea has increased during the past 32 years and will continue to do so in all the applied climate model predictions. Particularly, the predicted new thermal conditions do not cause any reduction in the AMS of round goby populations, while the wintertime cold ranges are likely expected to preserve substantial areas from invasion. The results of this research can guide future monitoring programs increasing the chance to detect this invader in novel areas.
Collapse
Affiliation(s)
- Giovanni Quattrocchi
- National Research Council, Institute for the study of the Anthropic Impact and Sustainability in the marine environment, Loc. Sa Mardini, 09170, Oristano, Italy
| | - Emil Christensen
- National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Matteo Sinerchia
- National Research Council, Institute for the study of the Anthropic Impact and Sustainability in the marine environment, Loc. Sa Mardini, 09170, Oristano, Italy
| | - Stefano Marras
- National Research Council, Institute for the study of the Anthropic Impact and Sustainability in the marine environment, Loc. Sa Mardini, 09170, Oristano, Italy
| | - Andrea Cucco
- National Research Council, Institute for the study of the Anthropic Impact and Sustainability in the marine environment, Loc. Sa Mardini, 09170, Oristano, Italy
| | - Paolo Domenici
- National Research Council, Institute for the study of the Anthropic Impact and Sustainability in the marine environment, Loc. Sa Mardini, 09170, Oristano, Italy
- National Research Council, Istituto di Biofisica, Pisa, Italy
| | - Jane W Behrens
- National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
7
|
Bowering LR, McArley TJ, Devaux JBL, Hickey AJR, Herbert NA. Metabolic resilience of the Australasian snapper ( Chrysophrys auratus) to marine heatwaves and hypoxia. Front Physiol 2023; 14:1215442. [PMID: 37528894 PMCID: PMC10387550 DOI: 10.3389/fphys.2023.1215442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/05/2023] [Indexed: 08/03/2023] Open
Abstract
Marine organisms are under threat from a simultaneous combination of climate change stressors, including warming sea surface temperatures (SST), marine heatwave (MHW) episodes, and hypoxic events. This study sought to investigate the impacts of these stressors on the Australasian snapper (C. auratus) - a finfish species of high commercial and recreational importance, from the largest snapper fishery in Aotearoa New Zealand (SNA1). A MHW scenario was simulated from 21°C (current February SST average for north-eastern New Zealand) to a future predicted level of 25°C, with the whole-animal and mitochondrial metabolic performance of snapper in response to hypoxia and elevated temperature tested after 1-, 10-, and 30-days of thermal challenge. It was hypothesised that key indicators of snapper metabolic performance would decline after 1-day of MHW stress, but that partial recovery might arise as result of thermal plasticity after chronic (e.g., 30-day) exposures. In contrast to this hypothesis, snapper performance remained high throughout the MHW: 1) Aerobic metabolic scope increased after 1-day of 25°C exposure and remained high. 2) Hypoxia tolerance, measured as the critical O2 pressure and O2 pressure where loss of equilibrium occurred, declined after 1-day of warm-acclimation, but recovered quickly with no observable difference from the 21°C control following 30-days at 25°C. 3) The performance of snapper mitochondria was also maintained, with oxidative phosphorylation respiration and proton leak flux across the inner mitochondrial membrane of the heart remaining mostly unaffected. Collectively, the results suggest that heart mitochondria displayed resilience, or plasticity, in snapper chronically exposed to 25°C. Therefore, contrary to the notion of climate change having adverse metabolic effects, future temperatures approaching 25°C may be tolerated by C. auratus in Northern New Zealand. Even in conjunction with supplementary hypoxia, 25°C appears to represent a metabolically optimal temperature for this species.
Collapse
Affiliation(s)
- Lyvia R. Bowering
- Institute of Marine Science, University of Auckland, Leigh, New Zealand
| | | | - Jules B. L. Devaux
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Neill A. Herbert
- Institute of Marine Science, University of Auckland, Leigh, New Zealand
| |
Collapse
|
8
|
Zhu W, Zhao C, Zhao T, Chang L, Chen Q, Liu J, Li C, Xie F, Jiang J. Rising floor and dropping ceiling: organ heterogeneity in response to cold acclimation of the largest extant amphibian. Proc Biol Sci 2022; 289:20221394. [PMID: 36196548 PMCID: PMC9532983 DOI: 10.1098/rspb.2022.1394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/09/2022] [Indexed: 02/06/2023] Open
Abstract
Low temperature imposes strong selective pressure on ectotherms. To maximize their overall fitness under cold conditions, the ectotherms may either try to maintain their physiological activities through metabolic compensation or enter into metabolic depression; however, some species adopt both strategies to cope with different degrees of cold. Nevertheless, how these two seemingly opposite strategies are coordinated has rarely been elucidated. Here, we investigated the molecular strategy underlying the cold acclimation of Andrias davidianus, the largest extant amphibian, using multi-organ metabolomics and transcriptomics. The results showed remarkable organ heterogeneity in response to cold. While most organs showed transcriptional upregulation of metabolic processes, the heart exhibited downregulation. This heterogeneity explained the adaptive reorganization in resource allocation, which compensates for metabolic maintenance by compromising growth. Importantly, the cardiac function might constitute a 'ceiling' to constrain the space for compensation, especially under colder conditions. Additionally, the opposite transcriptional regulation of oxidative phosphorylation and other pathways might also shape the overall metabolic capacity under cold conditions. The heterogeneity in cold responses may have directed a shift in cold adaptive strategy from compensation to depression with a drop in temperature. These results provide a novel insight into the regulatory mechanisms underlying cold survival strategies of ectotherms.
Collapse
Affiliation(s)
- Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chendgu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chunlin Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chendgu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Tian Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chendgu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Liming Chang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chendgu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Qiheng Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chendgu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jiongyu Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chendgu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Cheng Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chendgu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Feng Xie
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chendgu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chendgu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
9
|
Jahn M, Seebacher F. Variations in cost of transport and their ecological consequences: a review. J Exp Biol 2022; 225:276242. [PMID: 35942859 DOI: 10.1242/jeb.243646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Movement is essential in the ecology of most animals, and it typically consumes a large proportion of individual energy budgets. Environmental conditions modulate the energetic cost of movement (cost of transport, COT), and there are pronounced differences in COT between individuals within species and across species. Differences in morphology affect COT, but the physiological mechanisms underlying variation in COT remain unresolved. Candidates include mitochondrial efficiency and the efficiency of muscle contraction-relaxation dynamics. Animals can offset increased COT behaviourally by adjusting movement rate and habitat selection. Here, we review the theory underlying COT and the impact of environmental changes on COT. Increasing temperatures, in particular, increase COT and its variability between individuals. Thermal acclimation and exercise can affect COT, but this is not consistent across taxa. Anthropogenic pollutants can increase COT, although few chemical pollutants have been investigated. Ecologically, COT may modify the allocation of energy to different fitness-related functions, and thereby influence fitness of individuals, and the dynamics of animal groups and communities. Future research should consider the effects of multiple stressors on COT, including a broader range of pollutants, the underlying mechanisms of COT and experimental quantifications of potential COT-induced allocation trade-offs.
Collapse
Affiliation(s)
- Miki Jahn
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
10
|
Friedland KD, Smoliński S, Tanaka KR. Contrasting patterns in the occurrence and biomass centers of gravity among fish and macroinvertebrates in a continental shelf ecosystem. Ecol Evol 2021; 11:2050-2063. [PMID: 33717441 PMCID: PMC7920786 DOI: 10.1002/ece3.7150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 11/24/2022] Open
Abstract
The distribution of a group of fish and macroinvertebrates (n = 52) resident in the US Northeast Shelf large marine ecosystem were characterized with species distribution models (SDM), which in turn were used to estimate occurrence and biomass center of gravity (COG). The SDMs were fit using random forest machine learning and were informed with a range of physical and biological variables. The estimated probability of occurrence and biomass from the models provided the weightings to determine depth, distance to the coast, and along-shelf distance COG. The COGs of occupancy and biomass habitat tended to be separated by distances averaging 50 km, which approximates half of the minor axis of the subject ecosystem. During the study period (1978-2018), the biomass COG has tended to shift to further offshore positions whereas occupancy habitat has stayed at a regular spacing from the coastline. Both habitat types have shifted their along-shelf distances, indicating a general movement to higher latitude or to the Northeast for this ecosystem. However, biomass tended to occur at lower latitudes in the spring and higher latitude in the fall in a response to seasonal conditions. Distribution of habitat in relation to depth reveals a divergence in response with occupancy habitat shallowing over time and biomass habitat distributing in progressively deeper water. These results suggest that climate forced change in distribution will differentially affect occurrence and biomass of marine taxa, which will likely affect the organization of ecosystems and the manner in which human populations utilize marine resources.
Collapse
Affiliation(s)
| | - Szymon Smoliński
- Demersal Fish Research GroupInstitute of Marine ResearchBergenNorway
- Department of Fisheries ResourcesNational Marine Fisheries Research InstituteGdyniaPoland
| | - Kisei R. Tanaka
- Pacific Islands Fisheries Science CenterNational Oceanic and Atmospheric AdministrationHonoluluHIUSA
| |
Collapse
|
11
|
Christensen EAF, Norin T, Tabak I, van Deurs M, Behrens JW. Effects of temperature on physiological performance and behavioral thermoregulation in an invasive fish, the round goby. J Exp Biol 2021; 224:jeb237669. [PMID: 33257434 PMCID: PMC7823162 DOI: 10.1242/jeb.237669] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/16/2020] [Indexed: 11/20/2022]
Abstract
Invasive species exert negative impacts on biodiversity and ecosystems on a global scale, which may be enhanced in the future by climate change. Knowledge of how invasive species respond physiologically and behaviorally to novel and changing environments can improve our understanding of which traits enable the ecological success of these species, and potentially facilitate mitigation efforts. We examined the effects of acclimation to temperatures ranging from 5 to 28°C on aerobic metabolic rates, upper temperature tolerance (critical thermal maximum, CTmax), as well as temperature preference (Tpref) and avoidance (Tavoid) of the round goby (Neogobius melanostomus), one of the most impactful invasive species in the world. We show that round goby maintained a high aerobic scope from 15 to 28°C; that is, the capacity to increase its aerobic metabolic rate above that of its maintenance metabolism remained high across a broad thermal range. Although CTmax increased relatively little with acclimation temperature compared with other species, Tpref and Tavoid were not affected by acclimation temperature at all, meaning that round goby maintained a large thermal safety margin (CTmax-Tavoid) across acclimation temperatures, indicating a high level of thermal resilience in this species. The unperturbed physiological performance and high thermal resilience were probably facilitated by high levels of phenotypic buffering, which can make species readily adaptable and ecologically competitive in novel and changing environments. We suggest that these physiological and behavioral traits could be common for invasive species, which would only increase their success under continued climate change.
Collapse
Affiliation(s)
- Emil A F Christensen
- Section for Marine Living Resources, DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark
| | - Tommy Norin
- Section for Marine Living Resources, DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark
| | - Iren Tabak
- Section for Marine Living Resources, DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark
| | - Mikael van Deurs
- Section for Marine Living Resources, DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark
| | - Jane W Behrens
- Section for Marine Living Resources, DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
12
|
Christensen EAF, Norin T, Tabak I, van Deurs M, Behrens JW. Effects of temperature on physiological performance and behavioral thermoregulation in an invasive fish, the round goby. J Exp Biol 2021. [PMID: 33257434 PMCID: PMC7823162 DOI: 10.1242/jeb.237669 10.1242/jeb.237669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Invasive species exert negative impacts on biodiversity and ecosystems on a global scale, which may be enhanced in the future by climate change. Knowledge of how invasive species respond physiologically and behaviorally to novel and changing environments can improve our understanding of which traits enable the ecological success of these species, and potentially facilitate mitigation efforts. We examined the effects of acclimation to temperatures ranging from 5 to 28°C on aerobic metabolic rates, upper temperature tolerance (critical thermal maximum, CTmax), as well as temperature preference (T pref) and avoidance (T avoid) of the round goby (Neogobius melanostomus), one of the most impactful invasive species in the world. We show that round goby maintained a high aerobic scope from 15 to 28°C; that is, the capacity to increase its aerobic metabolic rate above that of its maintenance metabolism remained high across a broad thermal range. Although CTmax increased relatively little with acclimation temperature compared with other species, T pref and T avoid were not affected by acclimation temperature at all, meaning that round goby maintained a large thermal safety margin (CTmax-T avoid) across acclimation temperatures, indicating a high level of thermal resilience in this species. The unperturbed physiological performance and high thermal resilience were probably facilitated by high levels of phenotypic buffering, which can make species readily adaptable and ecologically competitive in novel and changing environments. We suggest that these physiological and behavioral traits could be common for invasive species, which would only increase their success under continued climate change.
Collapse
|