1
|
Kilgour DAV, Romero LM, Reed JM. Feather corticosterone is lower in translocated and historical populations of the endangered Laysan duck ( Anas laysanensis). Proc Biol Sci 2024; 291:20240330. [PMID: 38772417 DOI: 10.1098/rspb.2024.0330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/16/2024] [Indexed: 05/23/2024] Open
Abstract
Identifying reliable bioindicators of population status is a central goal of conservation physiology. Physiological stress measures are often used as metrics of individual health and can assist in managing endangered species if linked to fitness traits. We analysed feather corticosterone, a cumulative physiological stress metric, of individuals from historical, translocated, and source populations of an endangered endemic Hawaiian bird, the Laysan duck (Anas laysanensis). We hypothesized that feather corticosterone would reflect the improved reproduction and survival rates observed in populations translocated to Midway and Kure Atolls from Laysan Island. We also predicted less physiological stress in historical Laysan birds collected before ecological conditions deteriorated and the population bottleneck. All hypotheses were supported: we found lower feather corticosterone in the translocated populations and historical samples than in those from recent Laysan samples. This suggests that current Laysan birds are experiencing greater physiological stress than historical Laysan and recently translocated birds. Our initial analysis suggests that feather corticosterone may be an indicator of population status and could be used as a non-invasive physiological monitoring tool for this species with further validation. Furthermore, these preliminary results, combined with published demographic data, suggest that current Laysan conditions may not be optimal for this species.
Collapse
Affiliation(s)
| | | | - J Michael Reed
- Department of Biology, Tufts University , , MA 02155, USA
| |
Collapse
|
2
|
Park JK, Do Y. Current State of Conservation Physiology for Amphibians: Major Research Topics and Physiological Parameters. Animals (Basel) 2023; 13:3162. [PMID: 37893886 PMCID: PMC10603670 DOI: 10.3390/ani13203162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Analysis of physiological responses can be used to assess population health, identify threat factors, and understand mechanisms of stress. In addition to this, conservation physiologists have sought to establish potential management strategies for environmental change and evaluate the effectiveness of conservation efforts. From past to present, the field of conservation physiology is developing in an increasingly broader context. In this review, we aim to categorize the topics covered in conservation physiology research on amphibians and present the measured physiological parameters to provide directions for future research on conservation physiology. Physiological responses of amphibians to environmental stressors are the most studied topic, but conservation physiological studies on metamorphosis, habitat loss and fragmentation, climate change, and conservation methods are relatively lacking. A number of physiological indices have been extracted to study amphibian conservation physiology, and the indices have varying strengths of correlation with each subject. Future research directions are suggested to develop a comprehensive monitoring method for amphibians, identify interactions among various stressors, establish physiological mechanisms for environmental factors, and quantify the effects of conservation activities on amphibian physiology.
Collapse
Affiliation(s)
| | - Yuno Do
- Department of Biological Sciences, Kongju National University, Gongju 32588, Republic of Korea;
| |
Collapse
|
3
|
Monroe DJ, Barny LA, Wu A, Minbiole KPC, Gabor CR. An integrated physiological perspective on anthropogenic stressors in the Gulf coast toad (Incilius nebulifer). Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1112982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Anthropogenic environmental change, including climate change and urbanization, results in warmer temperatures in both terrestrial and aquatic habitats and changes in community assemblages including invasive species introductions, among many other alterations. Anurans are particularly susceptible to these changes because generally they have a biphasic lifecycle and rely on aquatic and terrestrial habitats for survival. Changes such as warmer water temperature can result in direct and carryover effects, after metamorphosis that decrease fitness. However, Gulf Coast toads (Incilius (Bufo) nebulifer) are expanding their range, including into anthropogenically disturbed areas. We hypothesize that I. nebulifer copes with warmer water, reduced water levels, and invasive species by altering their physiology and/or behavior. Corticosterone is the primary glucocorticoid in amphibians, and it modulates many aspects of physiology and behavior, potentially including lipid storage and hop performance, during unpredictable (stressful) events. As a true toad, I. nebulifer also produces bufadienolide toxins that aid in its antipredator defense and may have tradeoffs with corticosterone. In a fully factorial design, we measured baseline corticosterone levels in tadpoles in response to two treatments: decreased water levels and increased water temperatures. After metamorphosis, we measured the corticosterone profile and other associated responses to exposure to the predatory red imported fire ant (Solenopsis invicta; RIFA). We found that tadpoles had elevated baseline corticosterone release rates when reared in warmer water and reduced water levels. Toadlets also had elevated baseline corticosterone release rates when exposed to any combination of two of the three treatments but when exposed to all three treatments toadlets instead showed elevated magnitude of their stress response. Predator avoidance (as measured by hop performance) was reduced after exposure to RIFA. Tadpoles from warmer water developed more quickly and were smaller in mass after metamorphosis. Toadlets had reduced production of two of the three detected bufadienolides and increased energy storage (lipids) after exposure to warmer water and reduced growth after exposure to reduced water levels. We found direct and carryover effects of common anthropogenic changes in I. nebulifer that may aid in their ability to persist despite these changes.
Collapse
|
4
|
Gut Bacterial Communities Vary across Habitats and Their Diversity Increases with Increasing Glucocorticoids in Toad Tadpoles. DIVERSITY 2022. [DOI: 10.3390/d15010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The gut microbiome is important for host health and can be influenced by environmental and hormonal changes. We studied the interactions between anthropogenic land use, glucocorticoid hormones, and gut bacterial communities in common toads (Bufo bufo). We sampled tadpoles from ponds of three habitat types (natural, agricultural, and urban ponds), examined gut microbiome composition using amplicon sequencing of the 16S rRNA gene, and measured the associated stress physiology using water-borne hormones. Tadpoles from different habitat types significantly differed in bacterial composition. However, bacterial richness, Shannon diversity, and Firmicutes to Bacteroidota ratio did not vary with habitat type. In contrast with other studies, we found a positive correlation between baseline corticosterone release rate and bacterial diversity. Stress response and negative feedback were not significantly correlated with bacterial diversity. These results suggest that, despite alterations in the composition of intestinal bacterial communities due to land-use change, common toad tadpoles in anthropogenic habitats may maintain their physiological health in terms of the “gut-brain axis”.
Collapse
|
5
|
McClelland SJ, Woodley SK. Water-borne corticosterone assay is a valid method in some but not all life-history stages in Northern Leopard Frogs. Gen Comp Endocrinol 2021; 312:113858. [PMID: 34302845 DOI: 10.1016/j.ygcen.2021.113858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/04/2021] [Accepted: 07/17/2021] [Indexed: 11/24/2022]
Abstract
There is a particular need to develop conservation tools for use in amphibian populations, which are declining rapidly. Glucocorticoid hormones like corticosterone (CORT) are often used as biomarkers of amphibian stress. A relatively new method of assessing CORT in amphibians is to measure CORT concentrations in water that has held amphibians (water-borne (WB) CORT). Here, we tested whether WB CORT is a valid measure of CORT in larval and metamorphic Northern Leopard Frogs (Lithobates pipiens). We assessed whether levels of WB CORT are different among groups of animals that should have different levels of CORT due to a handling challenge, a pharmacological challenge (ACTH), or developmental stage. We also assessed whether WB CORT was correlated with plasma CORT within individuals. Results indicated that measurement of WB CORT is valid in prometamorphic tadpoles because injection with ACTH increased WB CORT, and WB CORT and plasma CORT levels were correlated within an animal in most cases. However, were unable to fully validate the use of WB CORT in metamorphic frogs (metamorphs) because although injection with ACTH elevated levels of WB CORT, WB CORT was not correlated with plasma CORT within individual metamorphs. Also, there was no correlation between WB CORT and plasma CORT in early stage (premetamorphic) tadpoles or tadpoles undergoing metamorphic climax, indicating that WB CORT is not sensitive enough to detect natural variation of organismal CORT in these groups. Together, results indicated that WB CORT is a valid method of assessing plasma CORT in Northern Leopard Frogs, but only for some life-history stages. Our results illustrate the importance of carefully validating the use of WB CORT for appropriate interpretation of results.
Collapse
Affiliation(s)
- Sara J McClelland
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15218, United States
| | - Sarah K Woodley
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15218, United States.
| |
Collapse
|
6
|
Shidemantle G, Buss N, Hua J. Are glucocorticoids good indicators of disturbance across populations that exhibit cryptic variation in contaminant tolerance? Anim Conserv 2021. [DOI: 10.1111/acv.12737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- G. Shidemantle
- Biological Sciences Department Binghamton University (SUNY) Binghamton NY USA
| | - N. Buss
- Biological Sciences Department Binghamton University (SUNY) Binghamton NY USA
| | - J. Hua
- Biological Sciences Department Binghamton University (SUNY) Binghamton NY USA
| |
Collapse
|
7
|
Tornabene BJ, Hossack BR, Crespi EJ, Breuner CW. Evaluating corticosterone as a biomarker for amphibians exposed to increased salinity and ambient corticosterone. CONSERVATION PHYSIOLOGY 2021; 9:coab049. [PMID: 34249364 PMCID: PMC8254138 DOI: 10.1093/conphys/coab049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/28/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Physiological biomarkers are commonly used to assess the health of taxa exposed to natural and anthropogenic stressors. Glucocorticoid (GC) hormones are often used as indicators of physiological stress in wildlife because they affect growth, reproduction and survival. Increased salinity from human activities negatively influences amphibians and their corticosterone (CORT; the main amphibian GC) physiology; therefore, CORT could be a useful biomarker. We evaluated whether waterborne CORT could serve as a biomarker of salt stress for three free-living amphibian species that vary in their sensitivity to salinity: boreal chorus frogs (Pseudacris maculata), northern leopard frogs (Rana pipiens) and barred tiger salamanders (Ambystoma mavortium). Across a gradient of contamination from energy-related saline wastewaters, we tested the effects of salinity on baseline and stress-induced waterborne CORT of larvae. Stress-induced, but not baseline, CORT of leopard frogs increased with increasing salinity. Salinity was not associated with baseline or stress-induced CORT of chorus frogs or tiger salamanders. Associations between CORT and salinity were also not related to species-specific sensitivities to salinity. However, we detected background environmental CORT (ambient CORT) in all wetlands and spatial variation was high within and among wetlands. Higher ambient CORT was associated with lower waterborne CORT of larvae in wetlands. Therefore, ambient CORT likely confounded associations between waterborne CORT and salinity in our analysis and possibly influenced physiology of larvae. We hypothesize that larvae may passively take up CORT from their environment and downregulate endogenous CORT. Although effects of some hormones (e.g. oestrogen) and endocrine disruptors on aquatic organisms are well described, studies investigating the occurrence and effects of ambient CORT are limited. We provide suggestions to improve collection methods, reduce variability and avoid confounding effects of ambient CORT. By making changes to methodology, waterborne CORT could still be a promising, non-invasive conservation tool to evaluate effects of salinity on amphibians.
Collapse
Affiliation(s)
- Brian J Tornabene
- Wildlife Biology Program, W.A. Franke College of Forestry & Conservation, University of Montana, Missoula, MT 59812, USA
| | - Blake R Hossack
- Wildlife Biology Program, W.A. Franke College of Forestry & Conservation, University of Montana, Missoula, MT 59812, USA
- US Geological Survey, Northern Rocky Mountain Science Center, Missoula, MT 59812, USA
| | - Erica J Crespi
- School of Biological Sciences, Center for Reproductive Sciences, Washington State University, Pullman, WA 99163, USA
| | - Creagh W Breuner
- Wildlife Biology Program, W.A. Franke College of Forestry & Conservation, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
8
|
Bókony V, Ujhegyi N, Hamow KÁ, Bosch J, Thumsová B, Vörös J, Aspbury AS, Gabor CR. Stressed tadpoles mount more efficient glucocorticoid negative feedback in anthropogenic habitats due to phenotypic plasticity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141896. [PMID: 32889314 DOI: 10.1016/j.scitotenv.2020.141896] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Coping with anthropogenic environmental change is among the greatest challenges faced by wildlife, and endocrine flexibility is a potentially crucial coping mechanism. Animals may adapt to anthropogenic environments by dampening their glucocorticoid stress response, but empirical tests of this hypothesis have provided mixed evidence. An alternative hypothesis is that a non-attenuated stress response and efficient negative feedback are favored in anthropogenic habitats. To test this idea, we non-invasively sampled corticosterone release rates of common toad (Bufo bufo) tadpoles in agricultural, urban, and natural habitats, and quantified their stress response and negative feedback by a standardized stress-and-recovery protocol. We repeated the same sampling with tadpoles raised from eggs from the same ponds in a common-garden experiment to infer if the differences observed between populations in different habitats were due to individual phenotypic plasticity rather than microevolution or transgenerational effects. We found that, compared to tadpoles in natural ponds, urban tadpoles had higher baseline and stressed corticosterone release rates, and tadpoles in agricultural ponds had similar corticosterone release rates but greater stress-induced change, indicating stronger stress responses in both types of anthropogenic habitats. As predicted, tadpoles in both agricultural and urban ponds showed more efficient negative feedback than did tadpoles in natural ponds. Water pollution levels, as indicated by the concentrations of carbamazepine and corticoid-disrupting compounds in pond water, contributed to elevating the stress response regardless of land use. Infection by neither Batrachochytrium dendrobatidis nor Ranavirus was detected in free-living tadpoles. No habitat-related glucocorticoid differences persisted in the common-garden experiment. These results suggest that toad tadpoles in anthropogenic habitats increased their glucocorticoid flexibility via phenotypic plasticity. The coupling of stronger stress response and stronger negative feedback in these habitats supports the importance of rapidly "turning on and off" the stress response as a mechanism for coping with anthropogenic environmental change.
Collapse
Affiliation(s)
- Veronika Bókony
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Herman Ottó út 15, 1022 Budapest, Hungary.
| | - Nikolett Ujhegyi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Herman Ottó út 15, 1022 Budapest, Hungary
| | - Kamirán Á Hamow
- Plant Protection Institute, Centre for Agricultural Research, Brunszvik u. 2, 2462 Martonvásár, Hungary
| | - Jaime Bosch
- Museo Nacional de Ciencias Naturales-CSIC, José Gutiérrez Abascal 2, 28006 Madrid, Spain; Research Unit of Biodiversity (CSIC, UO, PA), Gonzalo Gutiérrez Quirós s/n, Oviedo University - Campus Mieres, Edificio de Investigación, 33600 Mieres, Spain
| | - Barbora Thumsová
- Museo Nacional de Ciencias Naturales-CSIC, José Gutiérrez Abascal 2, 28006 Madrid, Spain; Research Unit of Biodiversity (CSIC, UO, PA), Gonzalo Gutiérrez Quirós s/n, Oviedo University - Campus Mieres, Edificio de Investigación, 33600 Mieres, Spain
| | - Judit Vörös
- Department of Zoology, Hungarian Natural History Museum, Baross u. 13, 1088 Budapest, Hungary
| | - Andrea S Aspbury
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, United States
| | - Caitlin R Gabor
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, United States
| |
Collapse
|